

NARASIMHA REDDY ENGINEERING COLLEGE

(Autonomous)

Approved by AICTE, New Delhi & Affiliated to JNTUH,

HyderabadAccredited by NAAC with A Grade, Accredited by

NBA

Department Of Mechanical Engineering

Steam Power & Jet Propulsion

OUESTION BANK

Unit-I

Part – A (Short Answer Questions)						
-	1	What is adiabatic process?	т 1	COL		
	l		LI	COI	P01,P02	
_		Explain different methods to improve the efficiency of				
2	2	Rankine cycle	L1	CO1	PO1,PO2	
		Compare and contrast the boiler Mountings and				
	3	Accessories.	L4	CO1	PO1,PO2	
4	1	Explain regenerative cycle with neat sketch.	L1	CO1	PO1.PO2	
	•	Differences between external fired and internal fired boilers	LI	001	101,102	
4	5		L1	CO1	PO1,PO2	
		State differences between high-pressure and low pressure				
6	5	boilers?	L1	CO1	PO1,PO2	
-	7	Name the methods adopted for improving the performance of	Т 1	CO1		
,	/	the Rankine cycle State the assential differences between Carnot and Panking	LI	01	r01,r02	
8	3	cycles.	L2	CO1	PO1,PO2	
		What is the function of fusible plug?				
Ģ	Ð		L2	CO1	PO1,PO2	
1	0	Differentiate the super heater and economizer	12	CO1		
1	0		LS	COI	P01,P02	
		Explain the effect of operating variables on Rankine cycle	L2	CO1	PO1,PO2	
11	a)	performance.				
	b)	A steam power plant operates on ideal Rankine cycle. The	L3	CO1	PO1,PO2	
	0)	steam enters the turbine at 3 MPa, 350 oC and is condensed in the condenser at 75 kPa, coloulate thermal officiency, healt				
		in the condenser at 75 KPa, calculate thermal efficiency, back				
12		Explain the working principle of a volex boiler with a neat				
12		sketch and indicate all mountings and accessories on it.	L2	CO1	PO1,PO2	
		Calculate the height of a chimney required to produce a draught				
	a)	equivalent to 1.7cm of water if the flue gas temperature is				
		270°C and ambient temperature is 22°C and minimum amount				
12	b)	ot air per kg of fuel is 17kg.				
13	0)	what are the advantages and disadvantages of regenerative cycle over simple Rankine cycle?	13	CO1	PO1 PO2	
			L 3		101,102	

14	Steam at 15 bar and 300 oC expands isentropically in a steam turbine till the temperature falls to 80 oC. Find the condition of steam at the end of expansion process and the work done per kg of steam. If the steam flow rate is 10 kg/s, what power will be produced by the turbine	L3	CO1	PO1,PO2		
15	A power generating plant uses steam as working fluid and operates at boiler pressure of 50 bar, dry saturated and condenser pressure of 0.5 bar. Calculate for these limits i) the cycle efficiency and ii) the work ratio and iii) specific steam consumption for Carnot cycle and Rankine cycle.	L3	CO1	PO1,PO2		
16	In a steam turbine installation running on ideal Rankine cycle steam leaves the boiler at 10 MPa and 700oC and leaves turbine at 0.005 MPa. For the 50 MW output of the plant and cooling water entering and leaving condenser at 15oC and respectively determine. i) The mass flow rate of steam in kg/s ii) The mass flow rate of condenser cooling water in kg/s iii) The thermal efficiency of cycle iv) The ration of heat supplied and rejected (in boiler and condenser respectively). Neglet K.E. and P.E. changes.	L3	CO1	PO1,PO2		
UNIT-II						

S.N	Io.	Questions	BT	CO	PO
		Part – A (Short Answer Questions)			
1		Explain super saturated flow of steam in steam nozzles.	L2	CO2	PO2
2	2	Derive an expression for maximum mass flow through a convergent divergent nozzle when steam is expanded isentropic ally.	L2	CO2	PO2
3	;	What is the effect of friction on nozzle?.	L2	CO2	PO2
4	ŀ	Draw different nozzle cross sections and explain them.	L1	CO2	PO2
	Define Metastable state and critical velocity.				
5	5		L2	CO2	PO2
6	Ď	Discuss the effects of friction on the performance of nozzles	L3	CO2	PO2
7	1	What do you understand by nozzle? Discuss different types of nozzles.	L1	CO2	PO2
		What is the effect of friction on flow through steam efficiency	100	÷	
8	8		L2	CO2	PO2
9)	What are the parameters affect the nozzle efficiency?	L2	CO2	PO2
10)	Explain the phenomenon of supersaturated flow ?	L1	CO2	PO2
		Part – B (Long Answer Questions)			
	a)	Derive the equation for critical pressure ratio of nozzle for different conditions.	L2	CO2	PO2
11	b)	In a convergent-divergent nozzle, the steam enters at 15 bar and 300 $_{0}$ C and leaves at 2 bar. The inlet velocity to the nozzle is 150 m/s. Find the required throat and exit areas for a mass flow rate of 1 kg/s. Assume nozzle efficiency to be 90% and Cp _s = 2.4 kJ/kg K.	L2	CO2	PO2
12		Derive the equation for critical pressure ratio in nozzles.	L2	CO2	PO2
13		Air is expanded reversibly and adiabatically in a nozzle from 13 bars and 150 ₀ C to a pressure of 6 bar. The inlet velocity of the nozzle is very small and the process occurs under steady flow conditions. Calculate the exit velocity of the nozzle. b) Describe the 'over expansion' and 'under expansion' in nozzles.	L1	CO2	PO2

	Calculate the throat and exit diameters of a convergent- divergent	L1	CO2	PO2
	nozzle, which will discharge 820 kg of steam per hour at a pressure			
	of 8 bar superheated to 220 ₀ C into a chamber having a pressure of			
	1.5 bar. The friction loss in the divergent portion of the nozzle may			
14	be taken as 0.15 of the isentropic enthalpy drop.			
	A convergent-divergent nozzle is required to discharge 2 kg of steam per second. The nozzle is supplied with steam of 10 bar and 200 $_{0}$ C and discharge takes place against a back pressure of 0.34 bar. Estimate the throat and exit areas. Assume isentropic flow and take the index n = 1.3. If the nozzle efficiency is assumed to be 85%, determine the exit area.	L1	CO2	PO2
15				
	A single stage of simple impulse turbine produce 120 kW at blade speed	L1	CO2	PO2
16	blade at 350 m/s and leaves the stage axially. Considering velocity coefficient of 0.9 and smooth entry without shock into blades, determine the nozzle angle and blade angles. Solve using velocity diagram.			
17	An impulse turbine of 1MW has steam entering at 20 bar 3000C and steam consumption of 8 kg per kW hour. Steam leaves at 0.2 bar and 10% of total heat drop is lost in overcoming friction in deveining portion of nozzle. If throat diameter of each nozzle is 1 cm then determine (i) the	L4	CO2	PO2
Γ/	number of nozzle required (ii) exit diameter of each nozzle. Solve using mollier diameter			

Unit-III							
S. I	No. Questions	BT	СО	PO			
	Part – A (Short Answer Questions)						
1	Write the equation for blade efficiency (or) diagram efficiency derivation for impulseTurbine.	L2	CO3	PO2,PO4			
2	Write the equation for blade efficiency (or) diagram efficiency derivation for impulseturbine	L3	CO3	PO2,PO4			
3	Draw velocity triangle for 50% reaction steam turbine	L2	CO3	PO2,PO4			
4	What is the difference between impulse and reaction blading.	L1	CO3	PO2,PO4			
5	Explain the working of a single stage impulse turbine with the help of sketch.	L2	CO3	PO2,PO4			
6	Derive the equation optimum work out put in impulse turbine.	L2	CO3	PO2,PO4			
7	Why compounding is necessary in the steam turbines? What are the types and explain any one type of compounding with nea sketch.	t L2	CO3	PO2,PO4			
8	Explain the concept of critical pressure ratio	L3	CO3	PO2,PO4			
9	Briefly explain the saturated flow through the nozzle.	L2	CO3	PO2,PO4			
10	Sketch the velocity diagram of a single stage impulse turbine and determine the expression for the force, work done, diagram efficiency and axial thrust.	L2	CO3	PO2,PO4			
	Part – B (Long Answer Questions)						
	a) Draw the line diagram and velocity triangles and explain the working details of impulse turbine	L2	CO3	PO2,PO4			
11	b) Steam leaves the nozzle of a single stage impulse turbine at 850 m/s. The nozzle angle is 180 and the blade angles are 290 at the inlet and outlet. The friction coefficient is 0.9. Calculate blade velocity and steam mass flow rate in kg/hr to develop 300 W power	L2	CO3	PO2,PO4			
	a) Derive the condition for maximum efficiency and blade height of reaction turbine.	L2	CO3	PO2,PO4			
12	b) In a Parson reaction turbine, the angles of receiving tips are 350 and of discharging tips, 200. The blade speed is 100 m/s Calculate the tangential force, power developed, diagram efficiency and axial thrust of the turbine, if its steam consumption is 1 kg/min	L2	CO3	PO2,PO4			
13	a) Describe construction of inlet and exit velocity triangles of simple impulse turbine	L2	CO3	PO2,PO4			
	b) A simple impulse turbine has one ring of moving blades running at 150 m/s, absolute velocity of steam at exit is 85 m/s at an angle 800 with the tangent of wheel, friction coefficient is 0.82, rate of steam flowing 2 Kg/s. Assuming the moving blades to be a symmetrical, find the i) Blade angles ii) Nozzle angle iii) absolute velocity of steam at entrance and iv) power developed.		CO3	PO2,PO4			

14		A single stage steam Turbine is supplied with steam at 5bar and 200°C at the rate of 50Kg/min. It expands into a condenser at a pressure of 0.2bar. The blade speed is 400m/sec. The nozzles are inclined at an angle of 20° to the plane of wheel and outlet blade angle is 30°. Neglecting friction losses. Determine the power developed, blade efficiency and stage efficiency			
			L3	CO3	PO2,PO4
	a)	Sketch the velocity diagram of a single stage impulse turbine and			
		determine the expression for the force, work done, diagram			
		efficiency and axial thrust.	L4	CO3	PO2,PO4
	b)	The reaction turbine runs at 300 rpm and the steam consumption	L4	CO3	PO2,PO4
		is 20000 kg/h. The pressure of steam at a certain pair is 2 bar, its			
		dryness fraction is 0.93 and the power developed by the pair is			
		50 kW. The discharge blade angle is 200 for both the fixed and			
		Moving blades and the axial velocity of flow is 0.72 times the			
		blade velocity. Find the drum diameter and the blade height.			
15		Take the tip leakage steam as 8%. Neglect the blade thickness.			
16	a)	. Define the following:			
10		i) Blade efficiency	L2	CO3	PO2,PO4
		ii) Stage efficiency			
		iii) Overall efficiency			

UNIT-IV

S .	No.	Questions	BT	CO	PO
		Part – A (Short Answer Questions)			-
	1	Explain the deviation of actual Brayton cycle to the theoretical one.	L2	CO4	PO1,PO2,PO4
	2	Draw line diagram and explain the working of Evaporative Condenser.	L2	CO4	PO1,PO2,PO4
	3	What are the different types of combustion chambers in gas turbines?	L2	CO4	PO1,PO2,PO4
	4		L2	CO4	PO1,PO2,PO4
		Discuss the merits and demerits of surface condensers over jet condensers.			
	5	THE REPORT OF A DECK OF A DECK OF A DECK	L2	CO4	PO1,PO2,PO4
		Write briefly about the usage of gas turbines.			
	6		L2	CO4	PO1,PO2,PO4
		Distinguish between an ideal gas turbine plant and an actual gas turbine plant			
		What are the types of Condensers? Classify.			
	7		L3	CO4	PO1,PO2,PO4
	8	Is it always useful to have a regenerator in a gas turbine power cycle? Why?	L3	CO4	PO1,PO2,PO4
	9	Derive the expression for thermal efficiency of the simple gas turbine cycle	L2	CO4	PO1,PO2,PO4
		Sketch and describe the operation of central flow surface condenser	L2	CO4	PO1,PO2,PO4
1	0				
11		Explain the deviation of actual gas turbine cycle from ideal		[
11	<i>a)</i>	Brayton cycle.	L2	CO4	PO1,PO2,PO4

		A gas turbine takes in air at 27 oC and 1 bar. The pressure			
		ratio is 4. The maximum temperature of the cycle is 560 °C.	L2	CO4	PO1,PO2,PO4
		The efficiency of the compressor and turbine is 0.83 and 0.85			
1		respectively. Find the overall efficiency, if the regenerator			
. 1		effectiveness is 0.75.			
	a)	Explain the effect of regeneration; inter cooling, and reheating			
		on the performance of Gas turbine plant.	L2	CO4	PO1,PO2,PO4
		A gas turbine unit receives air at 100kPa and 300K and			
2		compresses it adiabatically to 620kPa with efficiency of the			
2		compressor 88%. The fuel has a heating value of 44,180kJ/kg			
		and the fuel/air ratio is 0.017kg fuel/kg air. The turbine internal			
		efficiency is 90%. Calculate the compressor work, turbine work			
		and thermal efficiency.			
	b)		L3	CO4	PO1,PO2,PO4
	/	The following data refers to a test of the surface condenser of			
		a steam turbine Absolute pressure of the steam entering the			
		condenser =5.628 kPa			
		Temperature of condensate leaving the condenser $=320$ C			
		Inlet temperature of cooling water=150C			
		Outlet temperature of cooling water=300C		10.0	
3		Mass of cooling water per kg of steam= 32 kg	L3	CO4	PO1.PO2.PO4
-		Assuming that all the heat lost by the exhaust steam is taken			- , - , -
		up by the circulating water: determine the dryness fraction of			
		the steam as it enters the condenser			
		A gas turbine unit has a pressure ratio of 6 and maximum			1990 - C.
		cycle temperature of 6100C. The isentropic efficiency of the			
		turbine and compressor are 0.82 and 0.8 respectively			
		Calculate the power output in kW of an electric generator			
		geared to the turbine when air enters the compressors at 15°C			
4		at a rate of 16 kg/s. Take $C_{\rm p} = 1.005$ kJ/kg K and y = 1.4 for			
		compression process and $Cn = 1.11 \text{ kJ/kg K}$ and $v = 1.333$ for	13	CO4	PO1 PO2 PO4
		evaluation process and $Cp = 1.11$ kJ/kg.K and $y = 1.555$ for	10	001	101,102,101
5		Why boiler mountings are installed Evaluin the operation of	13	CO4	PO1 PO2 PO4
5		fusible plug with the help of simple diagram	15	COT	101,102,104
		Explain the stages of combustion in a gas turbine combustion			
6		chamber with a neat sketch.			
5		the second secon			

		01111-7		r	1
S.	No.	Questions	BT	CO	PO
		Part – A (Short Answer Questions)			
	1	List out the factors which are to be considered for the comparison	L1	CO5	PO1,PO2
		of different types of Rockets?			
	2	List out the desirable properties required for liquid propellant	L2	CO5	PO1,PO2
		rockets	1.0	005	DO1 DO2
	2	Why propeller engines are not recommended now days in air $\frac{1}{2}$	L3	CO5	PO1,PO2
	3	craft S?	1.2	COS	DO1 DO1
	4	Explain infust augmentation used in jet and focket propulsion.		C05	PO1,PO2
	5	State the fundamental difference between the jet propulsion and	LZ	COS	P01,P02
	5	Derive the expressions for thermal efficiency of thrust and thrust	12	CO5	
	0	nower	LZ	005	F01,F02
		Explain the principle and working of liquid propellant rocket	I.4	CO5	PO1.PO2
	7	engine with neat sketch.	2.	000	101,102
	8	What are the various propulsive devices for aircrafts and missiles?	L2	CO5	PO1,PO2
	9	How rockets are classified? What is the essential difference	L2	CO5	PO1,PO2
		between rocket propulsion and turbojet propulsion			,
]	10	Describe the operation of ramjet engine.	L2	CO5	PO1,PO2
		Showing the basic components, explain the working of turbojet			
	a)	engine.	13	CO5	PO1 PO2
	<i>u)</i>		10	000	101,102
11		turbojet is flying with a speed of 850 KMPH at an altitude, where			
	b)	air density is 0.17 kg/m ₃ . The propulsive and overall efficiencies	L3	CO5	PO1,PO2
		are 55% and 17% respectively. If the drag on air craft is 6000 N,			,
		calculate the exit velocity of jet, diameter of jet and propulsive			
		power.			
		what are the desirable properties of a liquid propellant for a	12	COS	
	<i>a)</i>	rocket engine?	LS	COS	F01,F02
	h)	Derive the expressions for thermal efficiency of thrust and	-		
12	0)	thrust nower	1.3	CO5	PO1 PO2
		A turboiet engine flying at a speed of 800 km/hr consumes air at the	10	005	101,102
		rate of 45 kg/s. Calculate i) jet exit velocity, the change in enthalpy		1.214	
		for the nozzle is 190 kJ/kg and the velocity coefficient is 0.95, ii)		-	
12		fuel flow in kg/hr and thrust specific fuel consumption, assuming	т 2	COF	
13		that air-fuel ratio is 80:1, iii) thermal efficiency of plant given	L3	COS	P01,P02
		calorific value of fuel used is 43890 kJ/kg, iv) propulsive power			
		and thrust power and v) propulsive efficiency and overall			
		efficiency.			
14		For a rocket engine, jet velocity is 1600 m/s, flight to jet speed			
		ratio is 0.7. Oxidizer flow rate is 4 kg/s. Fuel flow rate is 1 kg/s.			
		Heat of reaction per kg of exhaust gas is 2500 kJ/kg. Calculate the	L3	CO5	PO1.PO2
		Thrust, specific impulse, propulsive efficiency, thermal and			,
		overall efficiency of rocket engine.			

UNIT V

15	a)	An aircraft fitted with a turbojet engine is flying at a higher altitude where, the ambient conditions are 0.07 bar pressure and 1 oC temperature. The flight speed is 800 kmph. Determine the rate of fuel consumption and thrust specific fuel consumption, when the thrust developed is 25000 N under the following conditions: Ram efficiency is 95%, total head pressure ration across the compressor 5:1, isentropic efficiency of compressor is 85%, isentropic efficiency of turbine is 90%. Consider an isentropic nozzle with expansion upto the ambient pressure. Take C.V. of the fuel as 42 MJ/kg.			
			L3	CO5	PO1,PO2
16		A jet plane having 2 jets works on turbo-jet system. It flies at a speed of 800km/hr at an altitude where density of air is 0.15 kg/m ₃ . The propulsive efficiency is 55%. The drag on the plane is 6500N. Calculate i) Absolute velocity of jet ii) quantity of compressed air and iii) diameter of jet.	L3	CO5	PO1,PO2