FLUID MECHANICS & HYDRAULIC MACHINES

Course Code	Category	Hours/ Week			Credits	Maximum Marks		
23ME403	Professional core	L	Т	Р	3	CIE	SEE	TOTAL
		3	0	0		40	60	100
Contact Classes:48	Tutorial Classes: Nil	Practical Clas Nill			lasses:	Total Classes:48		

B Tech II Year II Sem.

Course Objectives: To enable the student:

- 1. To understand the basic principles of fluid mechanics
- 2. To identify various types of flows
- 3. To understand boundary layer concepts and flow through pipes
- 4. To evaluate the performance of hydraulic turbines
- 5. To understand the functioning and characteristic curves of pumps

Course Outcomes:

- 1. Able to explain the effect of fluid properties on a flow system.
- 2. Able to identify type of fluid flow patterns and describe continuity equation.
- **3**. To analyze a variety of practical fluid flow and measuring devices and utilize Fluid Mechanics principles in design and Able to demonstrate boundary layer concepts.
- 4. To select and analyze an appropriate turbine with reference to given situation in power plants.
- 5. To estimate performance parameters of a given Centrifugal and Reciprocating pump.

UNIT – I:

Fluid statics: Dimensions and units: physical properties of fluids- specific gravity, viscosity, and surface tension - vapour pressure and their influence on fluid motionatmospheric, gauge and vacuum pressures – measurement of pressure- Piezometer, U-tube and differential manometers.

UNIT – II:

Fluid kinematics: Stream line, path line and streak lines and stream tube, classification of flows- steady & unsteady, uniform & non-uniform, laminar & turbulent, rotational & irrotational flows-equation of continuity for one dimensional flow and three-dimensional flows.

Fluid dynamics: Surface and body forces –Euler's and Bernoulli's equations for flow along a stream line, momentum equation and its application on force on pipe bend.

UNIT – III:

Boundary Layer Concepts: Definition, thicknesses, characteristics along thin plate, laminar and turbulent boundary layers (No derivation) boundary layer in transition, separation of boundary layer, submerged objects – drag and lift.

Closed conduit flow: Reynold's experiment- Darcy Weisbach equation- Minor losses in pipes- pipes in series and pipes in parallel- total energy line-hydraulic gradient line. Measurement of flow: Pitot tube, venturi meter, and orifice meter, Flow nozzle

UNIT – IV:

Basics of turbo machinery: Hydrodynamic force of jets on stationary and moving flat, inclined, and curved vanes, jet striking centrally and at tip, velocity diagrams, work done and efficiency, flow over radial vanes.

Hydraulic Turbines: Classification of turbines, Heads and efficiencies, impulse and reaction turbines, Pelton wheel, Francis turbine and Kaplan turbine-working proportions, work done, efficiencies, hydraulic design –draft tube theory- functions and efficiency.

Performance of hydraulic turbines: Geometric similarity, Unit and specific quantities, characteristic curves, governing of turbines, selection of type of turbine, cavitation, surge tank, water hammer.

UNIT – V:

Centrifugal pumps: Classification, working, work done – barometric head- losses and efficienciesspecific speed- performance characteristic curves, NPSH. **Reciprocating pumps:** Working, Discharge, slip, indicator diagrams.

TEXT BOOKS:

- 1. Hydraulics, Fluid mechanics and Hydraulic Machinery MODI and SETH, 21st Edition, standard Book House.
- 2. Fluid Mechanics and Hydraulic Machines by Er. R. K. Rajput, S. Chand, 2019.

REFERENCE BOOKS:

- 1. Fluid Mechanics and Fluid Power Engineering by D.S. Kumar, S.K. Kataria & Sons,2018
- 2. Fluid Mechanics and Machinery by D. Rama Durgaiah, New Age International publishers
- 3. Hydraulic Machines by T.R.Banga & S.C. Sharma, 7th Edition, Khanna Publishers