NRGM your roots to success...

NARASIMHA REDDY ENGINEERING COLLEGE

(Autonomous)

Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad Accredited by NAAC with A Grade, Accredited by NBA

MECHANICAL ENGINEERING

QUESTION BANK

Course Title: Fluid Mechanics and Hydraulic Machines

Course Code: 23ME403

Regulation: NR23

<u>UNIT-I</u> UNIT NAME: FLUID STATICS

S.	No	Ouestions	BT	CO	PO
		Part – A (Short Answer Questions)		ı	ı
	1	Explain newtons law of viscosity	L1,L 2	1	1
	2	Define absolute, gauge and vacuum pressures	L1	1	2,3
•	3	Enunciate newtons law of viscosity. Explain the importance of viscosity in fluid motion	L2	1	2,3
4	4	Name the phenomenon of capillarity.	L1	1	1
:	5	Differentiate between :a) compressible and incompressible fluid b)real fluid and ideal fluid	L2	1	2,3
(6	Explain what monomer is. How it is classified?	L1,1 2	1	1
,	7	Differentiate U-tube manometer and differential manometer.	L1,1 2	1	2,3
	8	What is Capillarity? State the factors that affect the viscosity of a fluid	L1,1 2	1	2,3
	9	Define Viscosity. How it varies with temperature?	L1,1 2	1	2,3
1	0	Calculate the density, specific weight and weight of one of litre of petrol of specific gravity is 0.7.	L1,1 2	1	1
1	1	Explain the difference between simple and differential manometer.	L1,1 2	1	2,3
		Part – B (Long Answer Questions)			
11	a)	Distinguish between: i) standard and local atmospheric pressures, ii) barometric pressure and absolute pressure and iii) absolute pressure and gauge pressure	L1	1	2,3
	b)	Define Viscosity, Surface tension and Vapor Pressure and explain their influence on fluid motion	L1	1	2,3
12	a)	Derive an equation for capillary raise and fall of water when a glass tube immersed on it.	L2	1	2,3
	b)	Explain with neat sketch of the following: i) Simple manometers	L1	1	2,3

		"\ TT (1			
		ii) U tube manometers			
13	a)	Explain the following terms:	L2	1	2,3
		i) Specific weight ii) Vapour pressure iii) atmospheric pressure.			
	b)	Differentiate between:	L1,	1	2,3
		a)) Cohesion and Adhesion	L2		
		b) Real fluid and Ideal fluid			
		c) Compressible and Incompressible fluids			
14	a)	Explain how vacuum pressure can be measured with the help of	L1,	1	2,3
		a U-tube manometer.	L2		
	b)	Two horizontal plates are placed 1.25cm apart, the space	L1,	1	2,3
		between them being filled with oil of viscosity 14 poises.	L2		
		Calculate the shear stress in oil if upper plate is moved with a			
		velocity of 2.5 m/s.			
15	a)	Find the kinematic viscosity of an oil having density 981 kg/m	L1,	1	2,3
		³ . The shear stress at a point in oil is 0.2452 N/m ² and velocity	L2		
		gradient at that point is 0.2 per second.			
	b)	The pressure outside the droplet of water of water of diameter	L1,	1	2,3
		0.04mm is 10.32N/cm ² . Calculate the pressure within the	L3		
		droplet if surface tension is given as 0.0725N/m of water.			
16	a)	The right limb of a simple U- tube manometer containing	L1,	1	2,3
	,	mercury is open to the atmosphere while the left limb is	L2		
		connected to a pipe in which a fluid of sp. gr. 0.9 is flowing.			
		The centre of the pipe is 12cm below the level of mercury in the			
		right limb. Find the pressure of fluid in the pipe if the difference			
		of mercury level in the two limbs is 20 cm.			
	b)	A pipe contains an oil of sp. gr. 0.9. A differential manometer	L1,	1	2,3
		connected at the two points A and B shows a differential in	L2		
		mercury level as 15 cm. Find the difference of pressure at the			
		two points.			

<u>UNIT-II</u>
UNIT NAME: FLUID KINEMATICS & FLUID DYNAMICS

S.	No	Questions	BT	C	PO
				O	
		Part – A (Short Answer Questions)			
	1		L1, L2	2	1
		Examine critically one Dimensional and three Dimensional flows			
2	2		L1, L2	2	1
		What are the practical applications of Bernoulli's equation?			
	3	What do you mean by rotational and irrigational flows?.	L1, L2	2	1
2	4	What is momentum equation? What are its applications?	L1, L2	2	1
4	5	Define stream length and stream tube with neat sketch.	L1, L2	2	1
(6		L1, L2	2	1
		Describe assumptions of Bernoulli's theorem			
-	7		L1, L2	2	1
		Explain rotational and irrotational flows with practical examples			
8	8	What are different types of fluid flow?	L1, L2	2	1
9	9	Write the continuity equation for 2D and 3D flows.	L1, L2	2	1
1	0	State the of Bernoulli's theorem.	L1,	2	2,3
		Part – B (Long Answer Questions)			
1	a)	Derive continuity equation for 3-D flow.	L1, L2	2	
1	b)	Derive Bermoullis equation from Eulers equation	L1, L2	2	2,3

State Bernoulli's theorem for steady flow of an incompressible fluid. Derive an expression for Bernoulli's theorem from first principle 1 a) Discuss the classification of fluids and give one example for each type of fluid b) Explain the terms: (i) Path line (ii) Streak line (iii) Stream line and (iv) Stream tube 1 A 45° reducing bend is connected in a pipe line, the diameter at the inlet and outlet of the bend being 600mm and 300mm respectively. Find the force exerted by water on the bend if the intensity of pressure at inlet to bend is 8.829 N/cm² and rate of water is 600 litres/s. 1 a) A 30 cm diameter pipe, conveying water, branches into two pipes of diameters 20cm and 15cm respectively. If the average velocity in the 30cm diameter pipe is 2.5 m/s, find the discharge in this pipe. Also determine the velocity in 15cm pipe if the average velocity in 20 cm discharge pipe is 2 m/s. b) The water is flowing through a pipe having diameter 20cm and 10 cm at section 1 and 2 receptivity. The rate of flow through pipe is 35 litres/s. The section 1 is 6m above datum and section 2 is 4m above datum. If the pressure at section 1 is 39.24N/cm², find the intensity of pressure at section 1 is in upward direction. The difference of levels between the Throat and inlet section is 50 cm. The oil mercury differential monomer gives a reading of 30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet discharge of oil though the horizontal venturimeter. Take C₀=0.98				1		
expression for Bernoulli's theorem from first principle 1 a) Discuss the classification of fluids and give one example for each type of fluid b) Explain the terms: (i) Path line (ii) Streak line (iii) Stream line and (iv) Stream tube 1 A 45° reducing bend is connected in a pipe line, the diameter at the inlet and outlet of the bend being 600mm and 300mm respectively. Find the force exerted by water on the bend if the intensity of pressure at inlet to bend is 8.829 N/cm² and rate of water is 600 litres/s. 1 a) A 30 cm diameter pipe, conveying water, branches into two pipes of diameters 20cm and 15cm respectively. If the average velocity in the 30cm diameter pipe is 2.5 m/s, find the discharge in this pipe. Also determine the velocity in 15cm pipe if the average velocity in 20 cm discharge pipe is 2 m/s. b) The water is flowing through a pipe having diameter 20cm and 10 cm at section 1 and 2 receptivity. The rate of flow through pipe is 35 litres/s. The section 1 is 6m above datum and section 2 is 4m above datum. If the pressure at section 1 is 39.24N/cm², find the intensity of pressure at section 2. 1 a) A 20cmx 10 cm venturimeter is inserted in a vertical pipe carrying oil of sp.gr. 0.8, the flow of oil is in upward direction. The difference of levels between the Throat and inlet section is 50 cm. The oil mercury differential monomer gives a reading of 30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr. 0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the	1		State Bernoulli's theorem for steady flow of an incompressible	L1, L2		2,3
1 a) Discuss the classification of fluids and give one example for each type of fluid b) Explain the terms: (i) Path line (ii) Streak line (iii) Stream line and (iv) Stream tube L1, L2 2 1	2		fluid. Derive an	L1, L2	2	1
type of fluid b) Explain the terms: (i) Path line (ii) Streak line (iii) Stream line and (iv) Stream tube 1			expression for Bernoulli's theorem from first principle			
b) Explain the terms: (i) Path line (ii) Streak line (iii) Stream line and (iv) Stream tube 1	1	a)	Discuss the classification of fluids and give one example for each	L1, L2	2	1
and (iv) Stream tube 1	3		type of fluid			
A 45° reducing bend is connected in a pipe line, the diameter at the inlet and outlet of the bend being 600mm and 300mm respectively. Find the force exerted by water on the bend if the intensity of pressure at inlet to bend is 8.829 N/cm² and rate of water is 600 litres/s. 1 a) A 30 cm diameter pipe, conveying water, branches into two pipes of diameters 20cm and 15cm respectively. If the average velocity in the 30cm diameter pipe is 2.5 m/s, find the discharge in this pipe. Also determine the velocity in 15cm pipe if the average velocity in 20 cm discharge pipe is 2 m/s. b) The water is flowing through a pipe having diameter 20cm and 10 cm at section 1 and 2 receptivity. The rate of flow through pipe is 35 litres/s. The section 1 is 6m above datum and section 2 is 4m above datum. If the pressure at section 1 is 39.24N/cm², find the intensity of pressure at section 2. 1 a) A 20cmx 10 cm venturimeter is inserted in a vertical pipe carrying oil of sp.gr. 0.8, the flow of oil is in upward direction. The difference of levels between the Throat and inlet section is 50 cm. The oil mercury differential monomer gives a reading of 30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the		b)	Explain the terms: (i) Path line (ii) Streak line (iii) Stream line	L1, L2	2	1
the inlet and outlet of the bend being 600mm and 300mm respectively. Find the force exerted by water on the bend if the intensity of pressure at inlet to bend is 8.829 N/cm² and rate of water is 600 litres/s. 1 a) A 30 cm diameter pipe, conveying water, branches into two pipes of diameters 20cm and 15cm respectively. If the average velocity in the 30cm diameter pipe is 2.5 m/s, find the discharge in this pipe. Also determine the velocity in 15cm pipe if the average velocity in 20 cm discharge pipe is 2 m/s. b) The water is flowing through a pipe having diameter 20cm and 10 cm at section 1 and 2 receptivity. The rate of flow through pipe is 35 litres/s. The section 1 is 6m above datum and section 2 is 4m above datum. If the pressure at section 1 is 39.24N/cm², find the intensity of pressure at section 2. 1 a) A 20cmx 10 cm venturimeter is inserted in a vertical pipe carrying oil of sp.gr. 0.8, the flow of oil is in upward direction. The difference of levels between the Throat and inlet section is 50 cm. The oil mercury differential monomer gives a reading of 30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr. 0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the			and (iv) Stream tube			
respectively. Find the force exerted by water on the bend if the intensity of pressure at inlet to bend is 8.829 N/cm² and rate of water is 600 litres/s. 1 a) A 30 cm diameter pipe, conveying water, branches into two pipes of diameters 20cm and 15cm respectively. If the average velocity in the 30cm diameter pipe is 2.5 m/s, find the discharge in this pipe. Also determine the velocity in 15cm pipe if the average velocity in 20 cm discharge pipe is 2 m/s. b) The water is flowing through a pipe having diameter 20cm and 10 cm at section 1 and 2 receptivity. The rate of flow through pipe is 35 litres/s. The section 1 is 6m above datum and section 2 is 4m above datum. If the pressure at section 1 is 39.24N/cm², find the intensity of pressure at section 2. 1 a) A 20cmx 10 cm venturimeter is inserted in a vertical pipe carrying oil of sp.gr. 0.8, the flow of oil is in upward direction. The difference of levels between the Throat and inlet section is 50 cm. The oil mercury differential monomer gives a reading of 30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the	1		A 45 ⁰ reducing bend is connected in a pipe line, the diameter at	L1, L2	2	2,3
intensity of pressure at inlet to bend is 8.829 N/cm² and rate of water is 600 litres/s. 1 a) A 30 cm diameter pipe, conveying water, branches into two pipes of diameters 20cm and 15cm respectively. If the average velocity in the 30cm diameter pipe is 2.5 m/s, find the discharge in this pipe. Also determine the velocity in 15cm pipe if the average velocity in 20 cm discharge pipe is 2 m/s. b) The water is flowing through a pipe having diameter 20cm and 10 cm at section 1 and 2 receptivity. The rate of flow through pipe is 35 litres/s. The section 1 is 6m above datum and section 2 is 4m above datum. If the pressure at section 1 is 39.24N/cm², find the intensity of pressure at section 2. 1 a) A 20cmx 10 cm venturimeter is inserted in a vertical pipe carrying oil of sp.gr. 0.8, the flow of oil is in upward direction. The difference of levels between the Throat and inlet section is 50 cm. The oil mercury differential monomer gives a reading of 30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the	4		the inlet and outlet of the bend being 600mm and 300mm			
water is 600 litres/s. 1 a) A 30 cm diameter pipe, conveying water, branches into two pipes of diameters 20cm and 15cm respectively. If the average velocity in the 30cm diameter pipe is 2.5 m/s, find the discharge in this pipe. Also determine the velocity in 15cm pipe if the average velocity in 20 cm discharge pipe is 2 m/s. b) The water is flowing through a pipe having diameter 20cm and 10 cm at section 1 and 2 receptivity. The rate of flow through pipe is 35 litres/s. The section 1 is 6m above datum and section 2 is 4m above datum. If the pressure at section 1 is 39.24N/cm², find the intensity of pressure at section 2. 1 a) A 20cmx 10 cm venturimeter is inserted in a vertical pipe carrying oil of sp.gr. 0.8, the flow of oil is in upward direction. The difference of levels between the Throat and inlet section is 50 cm. The oil mercury differential monomer gives a reading of 30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the						
a) A 30 cm diameter pipe, conveying water, branches into two pipes of diameters 20cm and 15cm respectively. If the average velocity in the 30cm diameter pipe is 2.5 m/s, find the discharge in this pipe. Also determine the velocity in 15cm pipe if the average velocity in 20 cm discharge pipe is 2 m/s. b) The water is flowing through a pipe having diameter 20cm and 10 cm at section 1 and 2 receptivity. The rate of flow through pipe is 35 litres/s. The section 1 is 6m above datum and section 2 is 4m above datum. If the pressure at section 1 is 39.24N/cm², find the intensity of pressure at section 2. 1 a) A 20cmx 10 cm venturimeter is inserted in a vertical pipe carrying oil of sp.gr. 0.8, the flow of oil is in upward direction. The difference of levels between the Throat and inlet section is 50 cm. The oil mercury differential monomer gives a reading of 30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the			intensity of pressure at inlet to bend is 8.829 N/cm ² and rate of			
of diameters 20cm and 15cm respectively. If the average velocity in the 30cm diameter pipe is 2.5 m/s, find the discharge in this pipe. Also determine the velocity in 15cm pipe if the average velocity in 20 cm discharge pipe is 2 m/s. b) The water is flowing through a pipe having diameter 20cm and 10 cm at section 1 and 2 receptivity. The rate of flow through pipe is 35 litres/s. The section 1 is 6m above datum and section 2 is 4m above datum. If the pressure at section 1 is 39.24N/cm², find the intensity of pressure at section 2. 1 a) A 20cmx 10 cm venturimeter is inserted in a vertical pipe carrying oil of sp.gr. 0.8, the flow of oil is in upward direction. The difference of levels between the Throat and inlet section is 50 cm. The oil mercury differential monomer gives a reading of 30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the			water is 600 litres/s.			
in the 30cm diameter pipe is 2.5 m/s, find the discharge in this pipe. Also determine the velocity in 15cm pipe if the average velocity in 20 cm discharge pipe is 2 m/s. b) The water is flowing through a pipe having diameter 20cm and 10 cm at section 1 and 2 receptivity. The rate of flow through pipe is 35 litres/s. The section 1 is 6m above datum and section 2 is 4m above datum. If the pressure at section 1 is 39.24N/cm², find the intensity of pressure at section 2. 1 a) A 20cmx 10 cm venturimeter is inserted in a vertical pipe carrying oil of sp.gr. 0.8, the flow of oil is in upward direction. The difference of levels between the Throat and inlet section is 50 cm. The oil mercury differential monomer gives a reading of 30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the	1	a)		L1, L2	2	2,3
pipe. Also determine the velocity in 15cm pipe if the average velocity in 20 cm discharge pipe is 2 m/s. b) The water is flowing through a pipe having diameter 20cm and 10 cm at section 1 and 2 receptivity. The rate of flow through pipe is 35 litres/s. The section 1 is 6m above datum and section 2 is 4m above datum. If the pressure at section 1 is 39.24N/cm², find the intensity of pressure at section 2. 1 a) A 20cmx 10 cm venturimeter is inserted in a vertical pipe carrying oil of sp.gr. 0.8, the flow of oil is in upward direction. The difference of levels between the Throat and inlet section is 50 cm. The oil mercury differential monomer gives a reading of 30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the	5		of diameters 20cm and 15cm respectively. If the average velocity			
velocity in 20 cm discharge pipe is 2 m/s. b) The water is flowing through a pipe having diameter 20cm and 10 cm at section 1 and 2 receptivity. The rate of flow through pipe is 35 litres/s. The section 1 is 6m above datum and section 2 is 4m above datum. If the pressure at section 1 is 39.24N/cm², find the intensity of pressure at section 2. 1 a) A 20cmx 10 cm venturimeter is inserted in a vertical pipe carrying oil of sp.gr. 0.8, the flow of oil is in upward direction. The difference of levels between the Throat and inlet section is 50 cm. The oil mercury differential monomer gives a reading of 30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the			in the 30cm diameter pipe is 2.5 m/s, find the discharge in this			
b) The water is flowing through a pipe having diameter 20cm and 10 cm at section 1 and 2 receptivity. The rate of flow through pipe is 35 litres/s. The section 1 is 6m above datum and section 2 is 4m above datum. If the pressure at section 1 is 39.24N/cm², find the intensity of pressure at section 2. 1 a) A 20cmx 10 cm venturimeter is inserted in a vertical pipe carrying oil of sp.gr. 0.8, the flow of oil is in upward direction. The difference of levels between the Throat and inlet section is 50 cm. The oil mercury differential monomer gives a reading of 30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the			pipe. Also determine the velocity in 15cm pipe if the average			
cm at section 1 and 2 receptivity. The rate of flow through pipe is 35 litres/s. The section 1 is 6m above datum and section 2 is 4m above datum. If the pressure at section 1 is 39.24N/cm², find the intensity of pressure at section 2. 1 a) A 20cmx 10 cm venturimeter is inserted in a vertical pipe carrying oil of sp.gr. 0.8, the flow of oil is in upward direction. The difference of levels between the Throat and inlet section is 50 cm. The oil mercury differential monomer gives a reading of 30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the						
35 litres/s. The section 1 is 6m above datum and section 2 is 4m above datum. If the pressure at section 1 is 39.24N/cm², find the intensity of pressure at section 2. 1 a) A 20cmx 10 cm venturimeter is inserted in a vertical pipe carrying oil of sp.gr. 0.8, the flow of oil is in upward direction. The difference of levels between the Throat and inlet section is 50 cm. The oil mercury differential monomer gives a reading of 30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the		b)	The water is flowing through a pipe having diameter 20cm and 10	L1, L2	2	1
above datum. If the pressure at section 1 is 39.24N/cm², find the intensity of pressure at section 2. 1 a) A 20cmx 10 cm venturimeter is inserted in a vertical pipe carrying oil of sp.gr. 0.8, the flow of oil is in upward direction. The difference of levels between the Throat and inlet section is 50 cm. The oil mercury differential monomer gives a reading of 30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the						
intensity of pressure at section 2. 1 a) A 20cmx 10 cm venturimeter is inserted in a vertical pipe carrying oil of sp.gr. 0.8, the flow of oil is in upward direction. The difference of levels between the Throat and inlet section is 50 cm. The oil mercury differential monomer gives a reading of 30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the						
1 a) A 20cmx 10 cm venturimeter is inserted in a vertical pipe carrying oil of sp.gr. 0.8, the flow of oil is in upward direction. The difference of levels between the Throat and inlet section is 50 cm. The oil mercury differential monomer gives a reading of 30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the						
carrying oil of sp.gr. 0.8, the flow of oil is in upward direction. The difference of levels between the Throat and inlet section is 50 cm. The oil mercury differential monomer gives a reading of 30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the			• •			
The difference of levels between the Throat and inlet section is 50 cm. The oil mercury differential monomer gives a reading of 30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the		a)		L1, L2	2	1
cm. The oil mercury differential monomer gives a reading of 30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the	6					
30cm of mercury. Find the discharge of oil. Neglect losses. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the						
b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the			•			
diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the						
differential manometer shows a reading of 25cm. calculate the		b)		L1, L2	2	2,3
discharge of oil though the horizontal venturimeter .Take C _d =0.98						
			discharge of oil though the horizontal venturimeter .Take C _d =0.98			

<u>UNIT–III</u> UNIT NAME: BOUNDARY LAYER CONCEPTS

S.	No	Questions	BT	C	PO
				O	
		Part – A (Short Answer Questions)			
-	1	Write any two practical application of Bernoulli's equation	L1, L2	3	1
2	2	Define drag and lift.	L1, L2	3	1
3	3	Distinguish between Orifice meter and venturimeter	L1, L2	3	2,3
2	4	Write Darcy- Weisbach equation for head loss in pipes due to	L1, L2	3	1
		friction and name the terms.			
4	5	Distinguish between major and minor losses	L1, L2	3	1
(5	Define HGL and TEL.	L1, L2	3	1
-	7	What is meant by pipes in series and pipes in parallel?	L1, L2	3	1
			L1, L2		
8	3	List out the losses in pumps	L1, L2	3	1
Ç)	Write any two four head losses due to minor losses in pipes	L1, L2	3	2,3
1	0	Define Hydraulic gradient line and Total energy line.	L1, L2	3	2,3
		Part – B (Long Answer Questions)			
11	a)	Explain in detail laminar boundary layer, turbulent boundary	L1, L2	3	1
		layer, laminar sub-layer			

	-			
b)	_ -	L1, L2	3	2,3
	help of Reynolds experiment.			
	What conditions should be satisfied for separation of boundary	L1, L2	3	2,3
	layer? Discuss briefly the methods that can be used to prevent			1
	separation			
a)	Find the loss of head when a pipe of diameter 200mm is	L1, L2	3	2,3
	suddenly enlarged to a diameter 400 mm. The rate of flow of			
	water though the pipe is 250 litres/s.			
b)	What do you understand by pipes in series, pipes in parallel and	L1, L2	3	1
	equivalent pipe			
a)	Explain the principle of Venturimeter with a neat sketch. Derive	L1, L2	3	2,3
	the expression for the rate of flow of fluid through it.			
b)	Show that the loss of head due to sudden expansion in pipe line	L1, L2	3	1
	is a function of velocity head			
	Derive the Darcy- Weisbach equation for head loss in pipes due	L1, L2	3	2,3
	to friction.		3	1
a)	A plate 1.5m X 1.5m moves at 50 km/hour in stationary air of	L1, L2	3	1
	density 1.15 kg/m ³ . If the co-efficient of drag and lift are 0.15			
	and 0.75 respectively. Determine a) the lift force b) the drag			
	force c) the resultant force d) the power required to keep the			
	plate in motion.			
b)	A oil of sp.gr.0.8 is flowing through a venturimeter having inlet	L1, L2	3	2,3
	diameter 20cm and throat diameter 10cm. The oil-mercury			
	differential manometer shows a reading of 25cm. calculate the			
	discharge of oil though the horizontal venturimeter .Take			
	$C_d = 0.98$			
	a) b) a) b)	help of Reynolds experiment. What conditions should be satisfied for separation of boundary layer? Discuss briefly the methods that can be used to prevent separation a) Find the loss of head when a pipe of diameter 200mm is suddenly enlarged to a diameter 400 mm. The rate of flow of water though the pipe is 250 litres/s. b) What do you understand by pipes in series, pipes in parallel and equivalent pipe a) Explain the principle of Venturimeter with a neat sketch. Derive the expression for the rate of flow of fluid through it. b) Show that the loss of head due to sudden expansion in pipe line is a function of velocity head Derive the Darcy- Weisbach equation for head loss in pipes due to friction. a) A plate 1.5m X 1.5m moves at 50 km/hour in stationary air of density 1.15 kg/m³. If the co-efficient of drag and lift are 0.15 and 0.75 respectively. Determine a) the lift force b) the drag force c) the resultant force d) the power required to keep the plate in motion. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the discharge of oil though the horizontal venturimeter .Take	help of Reynolds experiment. What conditions should be satisfied for separation of boundary layer? Discuss briefly the methods that can be used to prevent separation a) Find the loss of head when a pipe of diameter 200mm is suddenly enlarged to a diameter 400 mm. The rate of flow of water though the pipe is 250 litres/s. b) What do you understand by pipes in series, pipes in parallel and equivalent pipe a) Explain the principle of Venturimeter with a neat sketch. Derive the expression for the rate of flow of fluid through it. b) Show that the loss of head due to sudden expansion in pipe line is a function of velocity head Derive the Darcy- Weisbach equation for head loss in pipes due to friction. a) A plate 1.5m X 1.5m moves at 50 km/hour in stationary air of density 1.15 kg/m³. If the co-efficient of drag and lift are 0.15 and 0.75 respectively. Determine a) the lift force b) the drag force c) the resultant force d) the power required to keep the plate in motion. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the discharge of oil though the horizontal venturimeter .Take	help of Reynolds experiment. What conditions should be satisfied for separation of boundary layer? Discuss briefly the methods that can be used to prevent separation a) Find the loss of head when a pipe of diameter 200mm is suddenly enlarged to a diameter 400 mm. The rate of flow of water though the pipe is 250 litres/s. b) What do you understand by pipes in series, pipes in parallel and equivalent pipe a) Explain the principle of Venturimeter with a neat sketch. Derive the expression for the rate of flow of fluid through it. b) Show that the loss of head due to sudden expansion in pipe line is a function of velocity head Derive the Darcy- Weisbach equation for head loss in pipes due to friction. a) A plate 1.5m X 1.5m moves at 50 km/hour in stationary air of density 1.15 kg/m³. If the co-efficient of drag and lift are 0.15 and 0.75 respectively. Determine a) the lift force b) the drag force c) the resultant force d) the power required to keep the plate in motion. b) A oil of sp.gr.0.8 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25cm. calculate the discharge of oil though the horizontal venturimeter .Take

<u>UNIT-IV</u> UNIT NAME: BASICS OF TURBO MACHINERY

S	No	Questions	BT	C	PO
В.	110	Questions	D1	o	10
		Part – A (Short Answer Questions)	1		
	1		L1, L2	4	1
		Summarize the classification of turbines			
	2	Explain different types of Heads in hydraulic turbines	L1, L2	4	2
	3	What is the difference between turbine and pump?	L1, L2	4	1
	4	Distinguish between drag and lift.	L1, L2	4	1
	5	What are classifications of turbines?	L1, L2	4	1
	6	Write any two definitions impulse turbine and reaction turbine	L1, L2	4	1
	7	Define gross head and net head with respect to turbine.	L1, L2	4	1
	8	Define mechanical efficiency and volumetric efficiency for a	L1, L2	4	1
		turbine.			
	9	What is draft tube .Write any two type of draft tube?.	L1, L2	4	1
1	10	What is cavitation? What is the significance of it?	L1, L2	4	1
		Part – B (Long Answer Questions)			
11	a)	Derive the Darcy Weisbach equation for pipe flow system.	L1, L2	4	2,3
	b)	What are the uses of a draft tube? Describe with neat sketches	L1, L2	4	1
		different types of draft tubes.			
12	a)	Define the term: impact of jets. Obtain an expression for the	L1, L2	4	1
		force exerted by a jet of water on a fixed vertical plate in the			
		direction of the jet.			
	b)	Pelton wheel has a mean bucket speed of 10 meters per second	L1, L2	4	1

		with a jet of water flowing at the rate of 700 liters/s under head of 30 meters. The buckets deflect the jet through an angle of 160^{0} .calculate the power given by water to the runner and the hydraulic efficiency of the turbine. Assume co-efficient of velocity as 0.98.			
13	a)	Water is flowing through a pipe at the end of which a nozzle is fitted .The diameter of the nozzle is 100mm and the head of water at the centre nozzle is 100m.find the force exerted by the jet of water on a fixed vertical plate. The co-efficient of velocity is given as 0.95.	L1, L2	4	1
	b)	Explain the boundary layer characteristics along thin plate, bring out essential important points	L1, L2	4	1
14	a)	What is specific speed? State its significance in the study of hydraulic machines.	L1, L2	4	1
	b)	Find the expression for the force exerted by the jet on a flat vertical plate moving in the direction of the jet	L1, L2	4	1
15	a)	By means of a neat sketch, explain the working of pelton Turbine.	L1, L2	4	1
	b)	A turbine is a to operate under a head of 25m at r.p.m. The discharge is 9cumec. If the efficiency is 90%, determine a) specific speed of turbine b) power generated, and c) types of turbine.	L1, L2	4	1
16	a)	Describe the theory of a draft tube with the help of a neat sketch	L1, L2	4	1
	b)	A turbine develops 500 kW power under a head of 100 meters at 200 r.p.m. What would be its normal speed and output under a head of 81 meters?	L1, L2	4	1

<u>UNIT-V</u>
UNIT NAME: Centrifugal pumps and Reciprocating pumps

S	No	Questions	BT	C	PO
Ι	110	Questions	<i>D</i> 1	o	
		Part – A (Short Answer Questions)			
	1		L1, L2	5	1
		Mention the advantages of centrifugal pumps.	·		
	2	Define specific speed of centrifugal pump	L1, L2	5	1
	3	Discuss the importance of priming in pumps. Can priming be	L1, L2	5	2,3
		avoided in pumps?			
	4	Define Specific Speed of a Pump.	L1, L2	5	1
	5	What is slip?	L1, L2	5	2,3
	6	Define Slip, percentage slip and negative slip in of a	L1, L2	5	1
		reciprocating pump			
,	7	How the centrifugal pumps are classified?	L1, L2	5	2,3
	8	What is priming of a centrifugal pump? Why it is needed.	L1, L2	5	2,3
	9	Give the classification of pumps.	L1, L2	5	1
1	.0	What is NPSH? Explain.	L1, L2	5	1
		Part – B (Long Answer Questions)			
11	a)	Define the terms 'unit power', 'unit speed' and 'unit discharge'	L1, L2	5	1
		with reference to a hydraulic turbine. Also derive expressions			
		for these terms.			
	b)	Define the following in case of Centrifugal pumps i)	L1, L2	5	1
		Manometric efficiency ii) Volumetric efficiency iii) Mechanical			
		efficiency iv) Specific speed.			

12		Define centrifugal pump and explain the working of a single-	L1, L2	5	2,3
		stage centrifugal pump with neat sketch		5	
13		Define a centrifugal pump. Explain the working of a multistage	L1, L2	5	1
		Centrifugal pumps with sketches.		5	
14		A three stage centrifugal pump has impellers 40cm in diameters	L1, L2	5	1
		and 2 cm wide at outlet. The vanes are curved at the back at the		5	
		outlet at 45° and reduce the circumference area by 10%. The			
		manometric efficiency is 90% and the overall efficiency is 80%.			
		Determine the head generated by the pump when running at			
		1000 r.p.m. Delivering 50 liters per second. What should be the			
		shaft horse power			
15	a)	A single -acting reciprocating pump, running at 50r.p.m,	L1, L2	5	2,3
		delivers 0.01 m ³ /s of water. The diameter of the piston is			
		200mm and stroke length 400 mm. determine: a) the theoretical			
		discharge of the pump b) co-efficient of discharge and c) slip			
		and the percentage slip of the pump.			
	b)	Define the term NPSH. Discuss the various provisions required	L1, L2	5	2,3
		for prevention of cavitation.			
16		Explain the principle and working of a Reciprocating pump.	L1, L2	5	1
				5	

^{*} Blooms Taxonomy Level (BT)(L1 - Remembering; L2 - Understanding; L3 - Applying; L4 - Analyzing; L5 - Evaluating; L6 - Creating)

Course Outcomes (CO)

Program Outcomes (PO)

Prepared By:	HOD,
--------------	------