Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India

B.Tech II year I semester

Course Title: Mechanics of solids Course code:23ME3202 Regulation:NR23 Course objectives:

NRCV

- 1. Understand the concepts of internal forces, moments, stress, strain, and deformation of solidswith applications to bars, beams, and columns.
- 2. Learn the fundamentals of applying equilibrium, compatibility, and force-deformationrelationships to structural elements.
- 3. Study twisting of circular bars and hollow shafts acted on by torsional moments.
- 4. Define the state of stress at a point on a body and to develop stress transformations.
- 5. Introduce the concept of theories of elastic failure and their significance in the design.

Course Outcomes: At the end of the course, students will be able to:

C211.1	Evaluate the internal forces, moments, stresses, strains, and deformations in structures made of various			
	materials acted on by a variety of loads			
C2112	Draw axial force, shear force and bending moment diagrams for beams and frames.			
C211.3	Develop the Bending and Torsion formula and apply to the design of beams and shafts.			
C211.4	Use the stress transformation equations to find the state of stress at a point for various rotated			
	positions of the stress element and display the same in graphical form as Mohr's circle.			
C211.5	Understand the different criteria for the safety of the component by applying the theories of			
	elastic failure.			

Course outcomes

1	State Hooke's law.	Remember	PO1
2	Define thermal stress.	Remember	PO1
3	What do you mean by bar of uniform strength.	Understand	PO1
4	Define bulk modulus.	Remember	PO1
5	Define shear modulus	Understand	PO1
6	Define modulus of elasticity	Understand	PO1
7	Define longitudinal strain?	Understand	PO1
8	Define Poisson's ratio?	Remember	PO1
9	Define lateral strain?	Understand	PO1
10	Define modular ratio, Poisson's ratio	Understand	PO1
11	Explain lateral strain with a neat sketch?	Remember	PO1
12	How loads are shared in composite beams?	Remember	PO1
13	Draw stress strain diagram for brittle material	Remember	PO1
14	Write the relationship between bulk modulus, rigidity modulus and Poisson's Ratio.	Understand	PO1
15	Draw stress – strain diagram for mild steel and indicate salient points.	Understand	PO1
16	What is principle of super-position?	Remember	PO1
17	Define Factor of safety.	Remember	PO1

UGC - Autonomous Institute Accredited by NBA & NAAC with 'A' Grade Approved by AICTE

		Question	Bloom's	
3	to success	Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India	Permanently affiliated	to JNTUH

NRCV

S No	Question	Bloom's Taxonomy level	РО
1	Describe the effects of temperature changes when a body is i) Free to deform and ii) Restrained.	Understand	PO1
2	A concrete column is reinforced with steel bars comprising 6 percent of the gross area of column section. What is the fraction of the compressive load sustained by steel bars, if the ratio of Young's modulii of steel and concrete is 12.5?	Understand	PO1,PO2 &PO3
3	State the principle of superposition, and explain its significance.	Understand	PO1

Your roots	NARSIMHA REDDY ENGINEERING COLLE UGC AUTONOMOUS INSTITUTION Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India	GE UGC - Autonomous In Accredited by NBA & Approved by AICTE Permanently affiliate	UGC - Autonomous Institute Accredited by NBA & NAAC with 'A' Grade Approved by AICTE Permanently affiliated to JNTUH	
4	A compound bar ABC 1.5m long is made up of two parts of aluminium and steel and that cross sectional area of aluminium bar istwice that of the steel bar. The rod is subjected to an axial tensile load of 200 KN. If the elongations of aluminium and steel parts are equal, determine the lengths of the two parts of the compound bar. Take E for steel as 200 GPa and E for aluminium as 1/3 rd of E for steel.	Understand	PO1,PO2 &PO3	
5	A prismatic member of length I and unit weight w is suspended freely from its end. Determine the elongation of the member under gravity.	Understand	PO1,PO2 &PO3	
6	A straight bar of steel rectangular in section is 4m long and is18mmthick. The width of the rod varies uniformly from 130mm at one end 250mm at the other. If the rod is subjected to an axial tensile load of 50KN, determine the extension of the rod. Take E=2.0×10 ⁵ N/mm	Understand	PO1,PO2 &PO3	
7	Define composite bar how will you find the stress and load carried by each member of composite bar.	Understand	PO1	
8	A steel rod ABC firmly held at A and C has a cross sectional area of 1000 mm ² for 400 mm length and 1500 mm ² for 600 mm length asshown in fig. if the rod is heated through 10 K, determine the stresses developed in the parts AB and BC. Take $\alpha = 12 \times 10^{-6}$ /K, E = 200 GPa.	Understand	PO1,PO2 &PO3	

1500 sq.mm

Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India

12	A reinforced concrete column 500 mm x 500 mm in section is reinforced with 4 steel bars of 25 mm diameter, one in each corner. The column is carrying a load of 1000 KN. Determine the stresses in the concrete and steel bars. Take E for steel as 210 GPa and E for concrete as 14 GPa.	Understand	PO1,PO2 &PO3
13	A mild steel rod 1 m long and 20 mm diameter is subjected to an axial pull of 62.5 KN. What is the elongation of the rod, when the load is applied (i) gradually, and (ii) suddenly? Take E = 200 GPa.	Understand	PO1,PO2 &PO3
14	Define composite bar and how will you find the stress and load carried by each member of composite bar.	Remember	PO1
15	Determine the change in length breath and thickness of steel bar which is 5m long, 40 mm wide 30 mm thick and is subjected to axial pull of 35KN in the direction of its length. (E=2×10 ⁵ N/mm ² Poisson's ratio=0.32)	Remember	PO1,PO2 &PO3
16	Prove that the total extension of uniformly taper rod of diameter D_1 and D_2 , when rod is subjected to axial load P ;	Understand	PO1,PO2 &PO3
17	Calculate the strain energy that can be stored in a steel bar 2.4m long and 1000 mm ² cross sectional area, when subjected to a tensile stress of 50MPa. Take E = 200GPa.	Remember	PO1,PO2 &PO3
18	Define and explain the following terms: i) Poisson's ratio ii) Strain energy iii) Resilience iv) Proof Resilience	Remember	PO1
19	Determine the young's modulus and Passion's ratio of a metallic bar of length 25cm breadth 3cm depth 2cm when the beam is subjected to an axial compressive load 240KN. The decrease in length is given by 0.05cm and increase in breath 0.002.	Remember	PO1,PO2 &PO3
20	Draw stress and strain diagram for mild steel. Indicate salient points and define them.	Remember	PO1,PO2 &PO3
S No	QUESTION	Bloom's Taxonomy level	РО
1	The extension in a rectangular steel bar of length 400mm and thickness 10 mm, is found to be 0.21mm. The bar tapers uniformly in width from 100mm to 50mm. If E for the bar is 2x105 N/mm ² , determine the axial tensile load on the bar.	Remember	PO1,PO2 &PO3
2	The ultimate tensile stress for a hollow steel column which carries an axial load of 2MN is 500N/mm2.If the external diameter of the column is 250mm, determine the internal diameter. Take FOS as 4.0.	Understand	PO1,PO2 &PO3
3	Determine the changes in length and breadth and thickness of a steel bar which is 5m long, 40mm wide and 30mm thick and is subjectedto an axial pull of 35kN in the direction of the length. Take E = 2x105 N/mm2 and Poisson's ratio 0.23	Understand	PO1,PO2 &PO3

NRCM

our roots to success

4	A bar 30 mm in diameter and 200mm long was subjected to an axial		PO1,PO2 &PO3
	pull of 60 kN. The extension of the bar was found to be 0.1 mm,		
	while decrease in the diameter was found to be 0.004 mm. Find the	Remember	
	Young's modulus, Poisson's ratio, rigidity modulus and bulk		
	modulus of the material of the bar.		
5	A reinforced concrete column 500x500 mm in section is reinforced		PO1,PO2 &PO3
	with a steel bar of 25mm diameter, one in each corner, the column		
	is carrying the load of 1000 KN Find the stresses induced in the	Remember	
	concrete and steel bar. Take E for steel = 2.1x105 N/mm2 and E for		
	concrete = 1.4x103 N/mm2		

Maisammaguda (V)	Kompally - 500100	Secunderabad.	, Telangana State, Ir	idia

6	A steel rod of 3 cm diameter is enclosed centrally in a hollow copper		PO1.PO2 &PO3
-	tube of external diameter 5 cm and internal diameter of 4 cm. the		- ,
	composite bar is then subjected to an axial pull of 45000N.If		
	thelength of each bar is equal to 15cm,determine) The stress in the	Understand	
	rod and tube II) load carried by each bar Take E for steel = 2.1x105		
	N/mm2 and for copper =1.1x105 N/mm2		
7	A copper bar is 900mm long and circular in section. It consists of		PO1,PO2 &PO3
	200mm long of 40mm diameter,500mm long bar of 15mm		
	diameter and 200mm long bar of 30 mm diameter. If the bar is	Remember	
	subjected to atensile load of 60 kn. Find the total extension of the		
	bar. Take e for		
-	the bar material as 100Gpa		
8	A concrete column of 350mm diameter is reinforced with four bars		PO1,PO2 &PO3
	of 25 mm diameter. Find the stress I steel when the concrete is	Remember	
	subjected to a stress of 4.5 MPa. Also find the safe load the		
	column		
0	Call Cally. Take ES / EC= 15.		
3	of		FU1,FU2 &FU3
	25 mm internal diameter and 35 mm external diameter when the		
	nut on the rod is tightened, initial stress of 10 MPa is developed in	Remember	
	the rod. The temperature of the tube is then raised by 600.		
	Calculate the final stresses in the rod and tube. Take		
	Es=200gpa, Eb=		
	80Gpa.αs=11.7x10-6/0C and αb=19x10-6/0C		
10	A round bar 40 mm diameter is subjected to an axial pull of 80KN		PO1,PO2 &PO3
	and reduction in diameter was found to be 0.00775mm.Find	Understand	
	poison's ratio and young's modulus for the material of the bar.	onderstand	
	Take value of		
	shear modulus as 40 GPa		
S No	QUESTION	Bloom's	PO
		level	
1	Define Shear force?	Understand	PO1
2	What are the different types of beams?	Remember	PO1
3	What are the different types of loads acting on the beam	Understand	PO1
4	What are the sign conventions to be followed for shear force and	Remember	P∩1
	bending moment	Remember	101
5	How many points of contra flexure you will have for a simply	Remember	PO1
	supported beam overhanging at one end only?		.01
6		Domomhor	DO1
	Differentiate between a point load and an UDL	Remember	P01
7	Differentiate between a point load and an UDL What is the maximum b.m in a simply supported beam with pointload at center?	Remember	P01
7	Differentiate between a point load and an UDL What is the maximum b.m in a simply supported beam with pointload at center? What is meant by section modulus?	Remember	P01 P01 P01
7 8 9	Differentiate between a point load and an UDL What is the maximum b.m in a simply supported beam with pointload at center? What is meant by section modulus? What is the differential relation between bending moment, shear	Remember Remember Remember	P01 P01 P01

Maisammag	guda (V).	Kompally	v - 500100	Secunderabad	. Telangai	na State, li	ndia

10	Sketch the shear stress variation for symmetrical I section	Remember	PO1
11	What do you meant by point of contra flexure?	Remember	PO1
12	What is meant by moment of resistance of a beam?	Remember	PO1
13	Write any two assumptions in the theory of simple bending.	Remember	PO1
14	Differentiate between hogging and sagging bending moment.	Remember	PO1
15	Sketch any type of support used for a beam indicating the reactions.	Remember	PO1
16	Define bending moment?	Understand	PO1

E UGC - Autonomous Institute Accredited by NBA & NAAC with 'A' Grade Approved by AICTE Permanently affiliated to JNTUH

Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India

17	How would you find the bending stress in unsymmetrical sections?	Remember	PO1
18	What do you understand by neutral axis & amp; moment of resistance? How do you locate neutral axis?	Remember	PO1
19	What is the maximum b.m in a simply supported beam with UDL?	Remember	PO1
20	What is the maximum b.m in a cantilever with a point load at free end?	Remember	PO1
S No	QUESTION	Bloom's Taxonomy level	
1	Develop Bending moment and Shear force for the Figure 1 given below indicating the maximum and minimum values.	Understand	PO1
2	A cantilever beam 4 m long carries a gradually varying load, zero at the free end to 3 KN/m at the fixed end. Draw bending moment andshear force diagrams for the beam.	Understand	PO1,PO2 & PO3
3	The following Figure indicates the Shear Force diagram. Develop the loading and Bending Moment diagram for the beam. 33.17 + 6.5 kN + 5 kN + 11.83 + 3.5m +	Remember	PO1,PO2 & PO3
4	Derive the equations of shear force and bending moment for th overhanging beam, which is subjected to uniformly distributed loathroughout the length.	d Understand	PO1,PO2 & PO3
5	A Beam of length 6.0m is simply supported at the ends and carries a u.d.l of intensity 1.5KN/m run and three concentrated loads of 1KN, 2KN and 3KN acting at a distance of 1.5m, 3.0m and 4.5m respectively from left end. Draw the S.F.D and B.M.D and also determine the maximum bending moment.	Remember	PO1,PO2 & PO3
6	Define point of contra flexure with a neat diagram.	Understand	PO1
7	The intensity of loading on a simply supported beam of 5.0m span increases uniformly from 8KN/m at one end to 16KN/m at the othe end as shown in Fig.1. Find the position and magnitude of the maximum bending moment. Also draw S.F.D and B.M.D. 8KN/m A C 5m 5m	Understand	PO1,PO2 & PO3

UGC - Autonomous Institute Accredited by NBA & NAAC with 'A' Grade Approved by AICTE Permanently affiliated to JNTUH

Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India

17	A simply supported beam of length 5 m carries a uniformly increasing load of 800 N/m run at one end to 1600 N/m at the other end. Draw shear force and bending moment for the beam. Also calculate the position and magnitude of maximum bending	Remember	PO1,PO2 & PO3
18	Draw the shear force and bending moment diagram for a simply supported beam of length 9m and carrying the UDL OF 10KN/m for a distance of 6m from the left end and also carrying point load 3KN for a distance of 2m from the left end. Calculate the shear force and bending moment also calculates the maximum bending moment.	Remember	PO1,PO2 & PO3

Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India

NRCM

ur roots to success

	-		
19	A piece of material is subjected to tensile stresses of 70N/mm ² and 30N/mm ² at right angles to each other. Find the stresses on a plane thenormal of which makes an angle of 400 with the 70N/mm ² stress	Remember	PO1,PO2 & PO3
20	Find the maximum torque that can be safely applied to a shaft of 200 mm diameter if the permissible angle of twist is 10 in a length of 5mand the permissible shear stress is 45N/mm2. Take N=0.8×105 N/mm2.	Remember	PO1,PO2 & PO3
S No	QUESTION	Bloom's Taxonomy level	PO
1	A cantilever of length 2.0m carries a uniformly distributed load of 1kN/m run over a length of 1.5m from free end. Draw shear force and bending moment diagrams for the cantilever?	Understand	PO1,PO2 & PO3
2	A cantilever of length 2.0m carries a uniformly distributed load of 2kN/m run over the whole length and a point load of 3KN at the free end. Draw shear force and bending moment diagrams for the cantilever?	Understand	PO1,PO2 & PO3
3	A cantilever of length 2.0m carries a uniformly distributed load of 1.5kN/m run over the whole length and a point load of 2KN at a distance of 0.5m from the free end. Draw shear force and bendingmoment diagrams for the cantilever?	Remember	PO1,PO2 & PO3
4	A cantilever of length 5.0m is loaded as shown in fig. Draw the S.F and B.M diagrams for the cantilever beam. $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ &$	Remember	PO1,PO2 & PO3
5	A horizontal beam AB of length 8m is hinged at A and placed on rollers at B. The beam carries three inclined point loads as shown in fig. draw the S.F and B.M and axial force diagrams of the beam. 4 kN 4 kN 6 kN	Understand	PO1,PO2 & PO3
6	A simply supported beam AB of length6m is hinged at A and B. It is subjected to a clockwise couple of 24KNat a distance of 2m from the left end A. Draw the S.F and B.M diagram	Understand	PO1,PO2 & PO3

Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India

NRCM

our roots to success

8	Draw the S.F and B.M diagrams for a simply supported beam of		PO1,PO2 & PO3
	length 7m and carrying a uniformly distributed loads as shown in the		
	figure. 10 kN/m 5 kN/m		
	Dorden B		
		Understand	
	<3m>i∢2m>		
	R _A = 25		
9	Draw the S.F and B.M diagrams for a simply supported beam of		PO1,PO2 & PO3
	length 8m and carrying a uniformly distributed load of LUKN for a distance of 4m as shown in the fig.		
	10 kM/m		
	A Company B	Understand	
10	25 kN 15 kN		
10	A simply supported beam of length 5m carries a uniformly increasing load of 800N/m run at one end to 1600 N/m run at the		PO1,PO2 & PO3
	other end. Draw the S.F and B.Mdiagrams for the beam.Also		
	calculate the position and magnitude of maximum bending moment.		
	DE = 160 x G		
	F 1601	Remember	
	B		
	- x → X→ A		
	Load diagram		
S No	QUESTION	Bloom's	РО
		Taxonomy	
		level	
1	What is equivalent section?	Understand	PO1
2	What is pure bending?	Remember	PO1
3	What is strength of section?	Remember	PO1
4	Define modular ratio.	Remember	PO1
5	Define the terms: section modulus, Moment of resistance?	Understand	PO1
6	Write bending equation and indicate parameters.	Remember	PO1
7	What is neutral axis?	Remember	PO1
8	Where the tensile and compressive stresses occur for cantilever beamand simply supported beam	Remember	PO1
9	Indicate bending stress distribution in a rectangular beam.	Understand	PO1
10	Define area moment of inertia.	Remember	PO1
1	Show that for a beam subjected to pure bending, neutral		
	axiscoincides with the centroid of the cross- section.	Remember	PO1

NARSIMHA REDDY ENGINEERING COLLEGE UGC - Autonomous Institute Accredited by NBA & NAAC with 'A' Grade UGC - Autonomous Institute Accredited by NBA & NAAC with 'A' Grade Approved by AICTE Permanently affiliated to JNTUH

_				
	2	A cantilever of square section 200 mm × 200 mm, 2.0 m long, just		PO1,PO2 & PO3
		fails in flexure when a load of 12 KN is placed at its free end. A	Understand	
		beam of the same material and having a rectangular cross-		
		section		

Maisammaguda (V)	. Kompally	- 500100	. Secunderabad	. Telangan	a State. India
maisanning add (1)	1 North Built	000100	a countract usua	, i cluinguin	a ocaco, mana

3	Compare the section moduli of two beams of the weight and length and the beam is solid Circular beam of diameter 'd' and the second isa circular tube of outer diameter 'D1' and inner diameter 'D2'.	Understand	PO1,PO2 & PO3
4	A copper wire of 2mm diameter is required to be wound around a drum. Determine the min. radius of the drum, if the stress in the wireis not to exceed 80MPa. Take E as 100GPa for the copper.	Remember	PO1,PO2 & PO3
5	A rectangular beam 300mm deep is simply supported over a span		PO1,PO2 & PO3
	of 4.0m. Determine the uniformly distributed load per meter which the beam may carry, if bending stress should not exceed 120N/mm2. Take I=8.0x106mm4	Remember	
6	Derive an expression for bending stress.	Remember	PO1,PO2 & PO3
7	What do you mean by theory of simple bending?	Remember	PO1
8	A cast iron beam section is of I-section with a top flange 80 mm x 20 mm thick, bottom flange 160 mm x 40 mm thick and the web 200 mm deep and 20 mm thick. The beam is freely supported on a span	Understand	PO1,PO2 & PO3
9	A T-section beam having flange 2cm*10cm, web 10cm*2cm is simply supported over a span of 6m. it carries a U.D.L of 3KN/m run including its own weight over its entire span, together with a load of 2.5KN at mid span. Determine the maximum tensile and compressive stresses occurring in beam section.	Remember	PO1,PO2 & PO3
10	Define and explain the following terms: i) Bending stress ii) Neutral axis iii) Section modulus iv) Moment of resistance	Remember	PO1
1	A steel plate of width 60mm and thickness 10mm is bent into a Circular arc of radius 10m. Determine the max stress induced and Thebending moment which will produce the max stress. Take E = $2x10^5$ N/mm ²	Understand	PO1,PO2 & PO3
2	A copper plate of width 70mm and thickness 20mm is bent into a Circular arc of radius 2m. Determine the max stress induced and The bending moment which will produce the max stress. Take $E = 1.5 \times 10^5$ N/mm ²	Remember	PO1,PO2 & PO3
3	Two wooden planks 150 mm x 50mm each are connected to form a 1 section of a beam. If a moment of 3.4 kNm is applied around the horizontal neutral axis, inducing tension below the neutral axis, find the stresses at the extreme fibers of the cross section. Also calculate the total tensile force on the cross secion.	Remember	PO1,PO2 & PO3
4	A cast iron beam has an I-section with top flange 100mm × 40mm, web 140mm×20mm and bottom flange 180mm × 40mm. If tensile stress is not to exceed 35MPa and compressive stress 95MPa, what is the maximum uniformly distributed load the beam can carry over a simply supported span of 6.5m.	Remember	PO1,PO2 & PO3

NARSIMHA REDDY ENGINEERING COLLE UGC AUTONOMOUS INSTITUTION Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India	GE UGC - Autonomous Institute Accredited by NBA & NAAC with 'A' Grade Approved by AICTE Permanently affiliated to JNTUH	
5 A mild steel bracket has a cross section of T-section with top flange of 200mm × 50mm, web 150mm×20mm If tensile stress is not to exceed 45MPa and compressive stress 95MPa, what is the maximum uniformly distributed load the beam can carry over a simply supported span of 6.5m.	d PO1,PO2 & PO3	

Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India

S No	QUESTION	Bloom's Taxonomy level	РО
1	Write formula for maximum shear stress in a beam of isosceles triangular cross section and explain the parameters.	Remember	PO1
2	Write formula for shear stress at centroidal axis of isosceles triangular section and explain the parameters.	Remember	PO1
3	Find the maximum shear stress in a rectangular beam 100mm wide, and 250 mm deep when it is subjected to 50 KN shear force.	Understand	PO1,PO2 & PO3
4	Indicate shear stress distribution in an I-beam	Remember	PO1
5	Find the maximum shear stress in a circular beam of diameter 10 mm when it is subjected to a shear force 4 KN	Remember	PO1,PO2 & PO3
6	Indicate shear stress distribution in a circular section	Remember	PO1,PO2 & PO3
7	Explain shear stress in a beam	Understand	PO1
8	Indicate shear stress distribution in a beam of T-section	Remember	PO1
9	Write formula for shear stress in a beam and indicate theparameters including units.	Remember	PO1
10	Indicate the shear stress distribution in a beam of channel section.	Remember	PO1
S No	QUESTION	Bloom's Taxonomy level	РО
1	With a neat sketch illustrate the existence of vertical and horizontal shear stresses in a beam	Understand	PO1
2	A 300 mm × 150 mm I –girder has 12 mm thick flanges and 8 mm thick web it is subjected to a shear force of 150KN at a particular section. Find the maximum shear stress in the web and flange.	Remember	PO1,PO2 & PO3
3	Show that the maximum shear stress in a rectangular beam is 1.5 times of average shear stress when it is subjected to a bending moment.	Understand	PO1,PO2 & PO3
4	A wooden beam supports udl of 40 KN/m over a simple supported span of 4m. It is of rectangular cross-section of 200mm wide and400mm deep. Calculate average and maximum shear stress.	Remember	PO1,PO2 & PO3
5	Derive an equation for shear stress across a beam.	Understand	PO1,PO2 & PO3
6	Determine out the maximum shear stress in a shaft of dia 40 mm subjected to a shear force of 30 KN.	Remember	PO1,PO2 & PO3
7	Explain complimentary shear stress.	Remember	PO1
8	Show that max shear stress in a solid circular shaft is 1.33 times of average shear stress when it is subjected to a bending moment.	Remember	PO1,PO2 & PO3

Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India

9	Show that the maximum shear stress in a beam of square section	Remember	
	witha diagonal horizontal is 9/8 times of average shear stress.		PO1,PO2 &
			PO3

Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India

10	A square of 20mm side is used as a beam with diagonal horizontal		PO1,PO2 & PO3
	and subjected to a vertical shear force 2KN at a section. Determinethe maximum shear stress	Remember	
S No	QUESTION	PO	
1	A beam of I-section is having overall depth of 700mm and overall width as 230mm. The thickness of the flanges is 25mm where as the thickness of the web is 20mm. If the section carries a shear force of 64kN, Calculate the shear stress at salient points.	Remember	PO1,PO2 & PO3
2	A rectangular beam 125mm wide is subjected to maximum shear force of 110kN. Find the depth of the beam if the maximum permissible shear stress is 7Mpa	Understand	PO1,PO2 & PO3
3	A wooden beam 100mm wide and 150mm deep is simply supported over a span of 4m. If shear force at a section of the beam is 4500N, find the shear stress at a distance 25mm above the N.A.		PO1,PO2 & PO3
4	A timber beam of rectangular section is simply supported at the ends and carries appoint load at the center of the beam. The maximumbending stress is 12N/mm ² , find the ratio of span to the depth.	Remember	PO1,PO2 & PO3
5	A I section beam 350mm*150mm has a web thickness of 10mm and a flange thickness of 20mm.if the shear force acting on the section is40KN.find the maximum shear stress developed in the I section.	Remember	PO1,PO2 & PO3
	Part – A (Short Answer Questions)		
S No	QUESTION	Bloom's Taxonomy level	PO
1	What is principal stress?	Understand	PO1
2	What is principal plane?	Understand	PO1
3	What is normal stress?	Remember	PO1
4	What is tangential stress?	Remember	PO1
5	Explain maximum principal stress theory?	Understand	PO1
6	What is maximum principal strain theory?	Understand	PO1
7	Explain maximum strain energy theory?	Remember	PO1
8	What is maximum shear strain energy theory?	Remember	PO1
9	What are the theories of failure?	Understand	PO1
10	What is the stress on a plane inclined at an angle Θ?	Understand	PO1
11	A circular bar of diameter 80mm is subjected to an axial load of 20KN.Dtermine the shear stress on a section which is inclined at an angle of 30° with normal cross section of the bar?	Understand	PO1,PO2 & PO3
12	Write an equation for maximum shear stress when a body is subjected to direct stresses in two perpendicular directions?	Understand	PO1,PO2 & PO3

UGC - Autonomous Institute Accredited by NBA & NAAC with 'A' Grade Approved by AICTE Permanently affiliated to JNTUH

S	Maisammaguda (V)	Kompall	- 500100, Secunderaba	ad, Telan	gana State,	India

NRCM

ur roots to su

13	Write an equation for maximum shear stress when a body is subjected to a direct stress in one plane and accompanied by a simple shear stress?	Remember	PO1,PO2 & PO3
14	Write an equation for maximum principal stress when a body is subjected to a direct stress in one plane and accompanied by a simpleshear stress?	Remember	PO1

UGC - Autonomous Institute Accredited by NBA & NAAC with 'A' Grade Approved by AICTE Permanently affiliated to JNTUH

Maina managuda (\/)	Kampally E00100	Cooundorohod	Tolondono Chako India
 Maisammaguda (V)	. Kompally - SUULUU	. Secunderabad.	Telangana State, India

NRCM

r roots to su

15	A rectangular bar of cross sectional area 100mm*80mm is subjected to an axial load of 20KN.Determine the normal stress on a section which is inclined at an angle of 30° with normal cross section of the bar?	Understand	PO1,PO2 & PO3
16	A square bar of cross sectional area 200mm*200mm is subjected to an axial load of 30KN.Dtermine the shear stress on a section which is inclined at an angle of 40° with normal cross section of the bar?	Understand	PO1,PO2 & PO3
17	Write the equation for principal stress when a body is subjected to two direct stresses mutually perpendicular accompanied by a simpleshear?	Remember	PO1,PO2 & PO3
18	Write an equation for resultant stress when a body is subjected todirect stresses in two perpendicular directions?	Remember	PO1,PO2 & PO3
19	A circular bar of diameter 80mm is subjected to an axial load of 20KN.Dtermine the normal stress on a section which is inclined at anangle of 30° with normal cross section of the bar?	Understand	PO1,PO2 & PO3
20	Write the equation for maximum shear stress when a body is subjected to two direct stresses mutually perpendicular accompanied by a simpleshear?	Understand	PO1
S No	QUESTION	Bloom's Taxonomy level	РО
1	Derive equations for normal stress, shear stress and resultant stress on a plane the normal to which is inclined at 300 to the axis of thebar.	Understand	PO1,PO2 & PO3
2	A tie bar is subjected to a uniform tensile stress of 100N/mm2. Find the intensity of normal stress, shear stress and resultant stress on a plane the normal to which is inclined to the axis at 300 to the axis of the bar. Also estimate the max shear stress in the bar.	Understand	PO1,PO2 & PO3
3	Describe an equation for normal and shear stress when a material is subjected to biaxial stresses P1 and P2.	Remember	PO1,PO2 & PO3
4	A piece of material is subjected to tensile stresses of 70N/ mm2 and 50N/mm2 at right angles to each other. Find the stresses on a planethe normal of which makes an angle 350 with the 70N/ mm2 stress.	Remember	PO1,PO2 & PO3
5	Define Principal plane.	Understand	PO1
6	An element in a plane is subjected to stresses P1=120N/ mm2 P2=45N/ mm2 (both tensile and perpendicular to each other) andshearing stress of 30N/ mm2. Determine the stresses on a plane normal to which is inclined to the stress 120N/ mm2 at an angle 450.	Understand	PO1,PO2 & PO3
7	Explain the construction of Mohr's circle for two like stresses P1 and P2.	Remember	PO1,PO2 & PO3
8	A piece of material is subjected to tensile stresses of 70N/mm2 and 30N/mm2 at right angles to each other. Find the stresses on a plane the normal of which makes an angle of 400 with the 70N/mm2 stress	Remember	PO1,PO2 & PO3

NARSIMHA REDDY ENGINEERING COLLEGE UGC AUTONOMOUS INSTITUTION Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India

NRCM

our roots to success

9	A piece of material is subjected to stresses P1 and P2 (both tensile and mutually perpendicular) and a shear stress q. Indicate the principal stresses and their positions.	Remember	PO1,PO2 & PO3
10	At a point in an elastic material under strain, normal stresses 60N/mm ² and 40N/mm ² (both tensile and right angles to each other)with a shearing stress 20N/mm2. Find i) The principal stresses and their positions. ii) Maximum shear stress and it's plane.	Remember	PO1,PO2 & PO3
11	Explain maximum principal stress theory and indicate the materialsfor which it is suitable.	Remember	PO1
12	The load on a bolt consists of an axial pull of 15 KN together with a transverse shear of 7.5 KN. Determine the diameter of the bolt according to maximum principal stress theory.	Remember	PO1,PO2 & PO3
13	At a point in an elastic material there are stresses P1 and P2 (both tensile and mutually perpendicular) and shear stress q. Explain how to draw Mohr's circle with a neat diagram.	Remember	PO1,PO2 & PO3

Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India

NRCM

ur roots to success

14	At a point in a component a direct tensile stress of 70N/mm2 and a direct compressive stress of 50N/ mm2 are applied on planes at right angles to each other. If the maximum principal stress is limited to 75N/ mm2 find out the shear stress that may be allowed on the planes. Also determine magnitude and direction of the minimum	Remember	
15	Explain maximum strain theory and indicate materials for which it is suitable.	Remember	
16	The load on a bolt consists of an axial pull of 15 KN together with a transverse shear of 7.5 KN. Determine the diameter of the bolt according to maximum strain theory. Take μ =0.3.	Remember	
17	Explain maximum shear stress theory and indicate the type of material for which this theory gives reasonable results.	Remember	
18	The load on a bolt consists of an axial pull of 15 KN together with a transverse shear of 7.5 KN. Determine the diameter of the bolt by maximum shear stress theory.	Remember	
19	Explain maximum strain energy theory.	Remember	
20	The load on a bolt consists of an axial pull of 15 KN together with a transverse shear of 7.5 KN. Determine the diameter of the bolt according to max. strain energy theory	Remember	
S No	QUESTION	Bloom's Taxonomy level	
1	The stresses at a point in a component are 100 mpa tensile and 50 mpa compressive. Determine the magnitude of the normal and shear stresses on a plane inclined at an angle of 250 with tensile stress. Also determine the direction of the resultant stress and thje magnitude of the maximum intensity of shear stress.	Remember	
2	A plane element in a body is subjected to a tensile stress of 100MPA accompanied by a clock shear stress of 25 Mpa. Find (i) the normal and shear stress on a plane inclined at an angle 200 with the tensile stress; and (ii) the maximum shear stress on the plane.	Remember	
3	At a point in a strained material, the principal stresses are 100 Mpa ad 50 MPa both tensile. Find the normal ad shear stresses at a sectionat 600 with the axis of the major principle stresses.	Remember	
4	An element is a strained body is subjected to a tensile stress of 150Mpa ad a shear of 50Mpa tending to rotate the element in a anticlockwise direction. Find (i) the magnitude of the normal and shear stresses a section inclined at 400 with the tensile stress an (ii) the magnitude ad direction of maximum shear stress that ca exit on the element	Remember	
5	A plane element in a body is subjected to a tensile stress of 100Mpa accompanied by a clockwise shear stress of 25Mpa. Find (i) The normal shear stress on a inclined plane at an angle of 200 with the tensile stress; and (ii) the maximum shear stress o the plane.	Remember	

NARSIMHA REDDY ENGINEERING COLLEGE UGC AUTONOMOUS INSTITUTION Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India

NRCM

our roots to success

6	At a point in a stressed element, the normal stresses in two mutually perpendicular directions are 45Mpa and 25 MPa both are tensile. The complementary shear stress in those directions is 15 MPa. By using Mohr's circle method, or otherwise, determine the maximum and minimum principal stresses.	Remember	
7	How will you find out graphically the resultant stress of an oblique section when the body is subjected to direct stresses in two mutuallyperpendicular directions?	Remember	
8	Find the diameter of the circular bar which is subjected to an axial load of 160 kN, if the maximum allowable shear stress on any section is 65N/mm ² .	Remember	

UGC - Autonomous Institute Accredited by NBA & NAAC with 'A' Grade Approved by AICTE Permanently affiliated to JNTUH

Maisammaguda	(V) Kompall	V - 500100 Secu	ndershad Te	landana State li	ndia
Maisainnaguua	(V), Kumpan	y - 200100, 3ecu	nuerabau, re	langana State, n	ilula

NRCM

ur roots to su

9	A rectangular bar of cross sectional area 10000mm2 is subjected to an axial load of 20 kN. Determine the normal and shear stresses on a section which is inclined at an angle of 30° with normal cross section of the bar.	Remember	
10	A rectangular bar of cross sectional area 11000 mm2 is subjected to a tensile load P as shown in fig. The permissible normal and shear stresses on the oblique plane BC are given as 7N/mm2 and 3.5n/mm2 respectively. Determine the safe value of p.	Remember	
S No	QUESTION	Bloom's Taxonomy level	
1	What are the assumptions made in the theory of torsion?	Remember	
2	Define torsion?	Remember	
3	Write Torsional equation.	Remember	
4	Why hollow circular shafts are preferred when compared to solid circular shafts?	Remember	
5	Write the expression for power transmitted by a shaft.	Remember	
6	Define polar modulus?	Understand	
7	What is the maximum principle stress in a spherical thin shell?	Remember	
8	A circular shaft is subjected to a torque of 10kNm. The power transmitted by the shaft is 209.33kW. Find the speed of shaft in revolution per minute.	Understand	
9	What is hoop stress?	Remember	
10	What is a stepped shaft?	Understand	
11	Write an equation for longitudinal stress in a thin cylinder?	Remember	
12	Write an equation for volumetric strain of cylinder?	Understand	
13	What is the volumetric strain for a spherical thin shell?	Remember	
14	Write the equation for strain energy stored in a shaft due to torsion.	Understand	
15	What is the equivalent bending moment for a shaft subjected to moment M and torsion T?	Remember	
16	A shaft is having a diameter of 30mm. What is its polar moment of inertia?	Understand	
17	What is joint efficiency of a thin shell?	Remember	
18	What is the maximum shear stress in a thin cylindrical shell?	Remember	
19	What is the maximum principle stress in a cylindrical thin shell?	Understand	
20	What is torsional rigidity?	Remember	
S No	QUESTION	Bloom's Taxonomy level	
1	Derive torsion formula	Remember	
2	Determine the torque which a shaft of 200mm diameter can safely transmit if the shear stress is not to exceed 50N/mm2.	Understand	
3	Derive a formula for resisting torque.	Remember	

NARSIMHA REDDY ENGINEERING COLLEGE

Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India

our roots to success

4	A solid shaft is required to transmit 120 KW power at 200 rpm. Find	
	the suitable diameter of the shaft if the maximum torque	Lin de oete o d
	transmittedin each revolution exceeds the mean by 20%. Take	Understand
	allowable shear stress as 70N/mm2 for the material of the shaft	

	a State. India	langana	. Tela	abad.	Secundera	v - 500100.	Kompally	guda (V)	Maisammas	
--	----------------	---------	--------	-------	-----------	-------------	----------	----------	-----------	--

5	Derive an equation for power transmitted by a shaft.	Remember	
6	A solid shaft of 80mm diameter is transmitting 100 KW power at 200 rpm. Calculate the maximum shear stress induced in the shaft and theangle of twist in degrees for a length of 6m. Take N=8×104 N/mm2.	Understand	
7	Explain torsion section modulus, torsional rigidity, polar moment of inertia.	Remember	
8	Find the maximum torque that can be safely applied to a shaft of 200 mm diameter if the permissible angle of twist is 10 in a length of 5m and the permissible shear stress is 45N/mm2. Take N=0.8×105 N/mm2.	Understand	
9	Derive an equation for strain energy stored in a shaft under torsion.	Remember	
10	A solid shaft of 120mm diameter is transmitting 300KW at 120 rpm determine the strain energy stored.	Understand	
11	A compound shaft consisting of shaft 1 and shaft 2 in series, what is the angle of twist of the compound shaft.	Remember	
12	A solid circular shaft of length 3m has diameters of 60 mm, 70 mm and 40 mm of each 1m length. Determine the angle of twist if shaft istransmitting 20KW at 200 rpm. Take N=8×104 N/ mm2.	Remember	
13	Derive formulae for principal stress and its position for a shaft which is subjected torque T and bending moment M.	Understand	
14	At a certain cross section, a shaft of 80mm diameter is subjected to a bending moment 6 KNm and a twisting moment of 9 KNm. Compute the maximum and minimum principle stresses	Remember	
15	Derive expression for the stresses developed in a thin cylindrical vessel subjected to internal pressure.	Understand	
16	A steel water pipe 0.6 m in diameter has to resist the pressure due to a head of 120 m of water. To what thickness should it be made if theworking stress in the metal is to be 32 N/ mm2 after the pipe has lost 2.5 mm of its thickness due to corrosion. Take specific weight of water10KN/m3	Remember	
17	Derive an expression for volumetric strain of thin cylindrical shell.	Understand	
18	A copper cylinder 900 mm long 400 mm internal dia. and 6 mm thick initially at atmospheric pressure. Calculate the volume of oil which must be pumped into the cylinder in order to raise the pressure to 5 N/ mm2 above atmospheric pressure. For copper take E=1×105N/ mm2 and poisons ratio =1/3, Bulk Modulus of oil as 2580 N/mm3.	Remember	
19	Derive an expression for volumetric strain of thin spherical shell.	Understand	
20	A spherical shell is of 0.8 m diameter and 4mm thickness. It is filled with fluid under pressure until its volume increases by 50 cubic centimeters. Determine the fluid pressure, taking E=2×105N/ mm2poisons ratio=0.3.	Remember	
S No	QUESTION	Bloom's Taxonomy level	

1	A solid shaft is subjected to a torque of1.6kn-m. Find the diameter of the shaft, if the allowable shear stress is 60 MPa. The allowable twist is 10for every 20 diameters length of the shaft. Take C= 80 Gpa	Remember	
2	Determine the max. and min. hoop stress across the section of a pipe 400 mm internal diameter and 100 mm thick when the pipe contains afluid at a pressure of 8 N/mm2. Also sketch the radial pressure distribution and hoop stress distribution across the section.	Understand	
3	A solid steel shaft is required to transmit a torque of 6.5 KN-m. What should be the minimum diameter of the shaft, if the maximum shear stress is 40Mpa	Remember	