
INFORMATION TECHNOLOGY

SOFTWARE ENGINEERING (23IT501)
III-YEAR I SEM

CONTENTS

Software Engineering Definition

Nature of Software Engineering

Software Myths

Layered Technology

Process Framework

CMMI (Capability Maturity Model Integration)

Process Patterns, Assessments

Personal and team Process models

Waterfall Model, Incremental Process Model, Evolutionary Process
Model

Unified Process

1. SOFTWARE ENGINEERING

Software engineering is defined as a process of analyzing

user requirements and then designing, building, and

testing software application which will satisfy those

requirements.

It is an engineering stream dedicated to software

development. Software programs can be developed

without S/E principles and methodologies but they are

indispensable if we want to achieve good quality software

in a cost effective manner

There are various definitions for software engineering

IEEE DEFINITION

IEEE, in its standard 610.12-1990, defines software

engineering as the application of a systematic,

disciplined, which is a computable approach for the

development, operation, and maintenance of

software.

FRITZ BAUER DEFINITION

The establishment and used standard engineering

principles. It helps you to obtain, economically,

software which is reliable and works efficiently on the

real machines.

BOEHM DEFINITION

The practical application of scientific knowledge to the

creative design and building of computer programs. It

also includes associated documentation needed for

developing, operating, and maintaining them.

2. CHANGING NATURE OF SOFTWARE

ENGINEERING

Now-a-days, the software landscape has been
completely changed . There are 7 various software
each for a specific use

 System Software

 Application Software

 Engineering and Scientific Software

 Embedded Software

 Product Line Software

Web Application

 AI Software

SYSTEM SOFTWARE

System software is a collection of programs which are

written to service other programs. Some system

software processes complex but determinate,

information structures.

Example : Operating Systems

APPLICATION SOFTWARE

Application software is defined as programs that

solve a specific business need. Application in

this area process business or technical data in

a way that facilitates business operation or

management technical decision making.

Example: MS Office Suite

ENGINEERING AND SCIENTIFIC SOFTWARE

This software is used to facilitate the engineering

function and task.

Computer-aided design, system simulation, and other

interactive applications have begun to take a real-time

and even system software characteristic.

Example: MATLAB, Stellarium, ORCAD

EMBEDDED SOFTWARE

Embedded software resides within the system or product

and is used to implement and control feature and

function for the end-user and for the system itself.

Fly-by-wire control systems found in aircraft.

Motion detection systems in security cameras.

PRODUCT LINE SOFTWARE

 Designed to provide a specific capability for use by many different customers,

WEB APPLICATION

It is a client-server computer program which the client

runs on the web browser. In their simplest form, Web

apps can be little more than a set of linked hypertext

files that present information using text and limited

graphics.

AI SOFTWARE

 Artificial intelligence software makes use of a

non-numerical algorithm to solve a complex

problem that is not amenable to computation

or straightforward analysis.

3. SOFTWARE MYTHS

SOFTWARE MYTHS (CONTD..)

We have all the standards and procedures available for software development i.e. the

software developer has all the reqd.

The addition of the latest hardware programs will improve the software development.

Managers think that, with the addition of more people and program planners to

Software development can help meet project deadlines (If lagging behind).

4. LAYERED TECHNOLOGY

Software engineering is a fully layered technology.

To develop a software, we need to go from one layer to

another.

All these layers are related to each other and each layer

demands the fulfillment of the previous layer.

5. PROCESS FRAMEWORK

Framework is a Standard way to build and deploy applications.

Software Process Framework is a foundation of complete

software engineering process. Software process framework

includes all set of umbrella activities.

Contains 5 activities :

 Communication

 Planning

 Modelling

 Construction

 Deployment.

5. PROCESS FRAMEWORK CONTD.

Under Process framework the umbrella activities include:

 Risk Management

 Software Quality Assurance

 Software Configuration Management

Measurement

 Format Technical Reviews

6.CMMI

The Capability Maturity Model Integration (CMMI) is a process and

behavioral model that helps organizations streamline process

improvement and encourage productive, efficient behaviors that

decrease risks in software, product, and service development.

was developed by the Software Engineering Institute at Carnegie

Mellon University as a process improvement tool for projects,

divisions, or organizations.

CMMI LEVELS

7.PROCESS PATTERNS

At any level of abstraction, patterns can be defined. They can be used to
describe a problem and solution associated with framework activity
in some situations. While in other situations patterns can be used to
describe a problem and solution associated with a complete process
model.

There are 3 types of patterns :
 Stage Pattern :

 Establishing Communication might be an example of a staged pattern
 Task Pattern:
 Problems associated with a software engineering action or work task and relevant to

successful software engineering practice

 Phase Pattern:
 Even when the overall flow of activities is iterative in nature, it defines sequence of

framework activities that occurs within process.

PROCESS ASSESSMENT

A software process assessment is a disciplined examination of the
software processes used by an organization, based on a process
model.

The assessment includes the identification and characterization of
current practices, identifying areas of strengths and weaknesses,
and the ability of current practices to control or avoid significant
causes of poor (software) quality, cost, and schedule.

There are 3 types of assessment:
 Self-assessment: Performed Internally by a company’s own personnel

 Second Party Assessment: Performed by an external assessment team

 Third Party ; Performed by a third party

8.PERSONAL PROCESS MODELS

Personal Software Process (PSP) is the skeleton or the
structure that assist the engineers in finding a way to
measure and improve the way of working to a great extend.

The aim of PSP is to give software engineers with the regulated
methods for the betterment of personal software development
processes.

PSP has 4 levels;
 Level 0 : Personal Measurement, Basic Size measures, Coding standards

 Level 1: Includes Planning of time and scheduling

 Level 2: Introduces Personal Quality Management design and code reviews.

 Level 3: Personal Process Evolution.

TEAM PROCESS MODELS

 The goal of TSP is to build a “self directed” project team that organizes itself to

produce high quality software.

TSP defines the following framework activities: project launch, high level design,

implementation, personal and team process model, integration and test, and

postmortem.

SDLC

WATERFALL MODEL

INCREMENTAL PROCESS MODEL

EVOLUTIONARY PROCESS MODEL

UNIFIED PROCESS

Contents-PART-I

Software Requirements:

Functional Requirements

Non-Functional Requirements

User Requirements

System Requirements

Interface Specification

Software Requirements Document

CONTENTS-PART-II

Requirements Engineering Process:

Feasibility Studies

Requirements elicitation and Analysis

Requirements validation

Requirements Management

CONTENTS-PART-III

System Models :

Context Models

Behavioral Models

Data Models

Object Models

Structured Models

P A R T – I : S O F T W A R E E N G I N E E R I N G :

R E Q U I R E M E N T E N G I N E E R I N G .

PART I

The Software requirements are a description of features and functionalities of the

target system.

Characteristics:

 Clear

 Concise

 Correct

 Coherent

Modifiable

 Verifiable

 Prioritized.

Functional Requirements

Functional Requirements usually define if/then behaviors and include calculations,

data input and business processes.

The Features Which allow the system to function as it was intended.

Examples:

 Business Rules

 Transaction Corrections

 Authentication

 Audit Tracking

 External Interfaces.

Non-Functional Requirements

Non-Functional Requirements are the constraints or the requirements imposed on the
system.

They Specify the quality attribute of the software.

Non-Functional Issues like Security, Reliability, maintenance, performance etc. are
monitored

Types:

 Performance Constraints :
 Reliability, Security, Response Time etc.

 Operating Constraints : Physical Constraints

 Interface Constraints : How the system is to interface with its environment.

 Economic Constraints: Long term and Immediate Costs

 Lifecycle Requirements : Quality of Design.

Advantages and Disadvantages of Non-

Functional Requirements.

Advantages Disadvantages

They ensure the software system
follows legal and adherence rules

The nonfunctional requirement

may affect the various high-level

software subsystem.

They specify the quality attribute

of the software.

They generally increase the cost

as they require special

consideration during the

software architecture/high-level

design phase.

They help in constructing the

security policy of the software

system.

It is difficult to change or alter

non-functional requirements

once you pass them to the

architecture phase.

Functional vs Non-Functional.

User requirements

 The User Requirement Specification describes the business needs for what user is

expecting from the system.

It is written early in the validation process, before system is created.

Many user requirements deal with how a user will interact with a system and what

that user expects

When user requirements such as these are written down, they can often break into

multiple system requirements later due to switching of screens, the maximum

delays in starting the process, and finally what the next screen should look like

System Requirements

A System Requirements Specification (SRS) (also known as a Software Requirements

Specification) is a document or set of documentation that describes the features

and behavior of a system or software application.

In a System Requirements Document we have :

 Business Drivers

 Business Model

 Functional And System Requirement

 Business and System Use Cases

 System Qualities

 Constraints and Assumptions

 Acceptance Criteria

Interface Specification

Interface Specification refers to the document that captures the details of Software

user interface into a written document.

The Specification covers all possible actions that an end user may perform all visual

auditory and other interaction elements.

There are two types of UI :

 GUI (Graphical User Interface)

 CLI(Command Line Interface)

Software Requirements Document

A software requirements is a document that describes the intended use-case

features and challenges of a software application.

These documents are created before the project has started development in order to

get every stakeholder on the same page regarding the software’s functionality.

The Document contains many parts : Introduction, General Description, Functional

Requirements, Interface, Performance requirements, Design Constraints, Non-

Functional Attributes, Appendices etc..

SAMPLE SRS DOCUMENT

Requirements Engineering Process

The Process of Defining, Documenting and Maintaining the requirements. Process of

gathering and defining service provided by the system,

Consists of the following main activities :

 Requirements Elicitation

 Requirements Specification

 Requirements verification and validation

 Requirements Management.

FEASIBILITY STUDIES

Feasibility Studies in Software Engineering is a study to evaluate the feasibility of

proposed project or system.

It is one of the stage among important 4 stages of Software Project Management

Process.

Carried out based on many purposes to analyze whether software product will be right

in terms of development , implantation , contribution etc..

Types: Technical , Operational , Economic, Legal and Schedule

Technical Feasibility

In Technical Feasibility current resources both hardware software along with required

technology are analyzed/assessed to develop project.

This technical feasibility study gives report whether there exists correct required

resources and technologies which will be used for project development.

Along with this, feasibility study also analyzes technical skills and capabilities of

technical team, existing technology can be used or not, maintenance and up-

gradation is easy or not for chosen technology

Operational Feasibility

Degree of providing service to requirements is

analyzed along with how much easy product will

be to operate and maintenance after deployment.

Determining suggested solution by software

development team is acceptable or not

 Operational Feasibility helps in taking advantage of

the opportunities and fulfills the requirements as

identified during the development of the project.

Economic feasibility

Study Cost and Benefit of the Project is analyzed.

A detail analysis is carried out what will be cost of
the project for development which includes all
required cost for final development like hardware
and software resource required, design and
development cost and operational cost and so on.

After that it is analyzed whether project will be
beneficial in terms of finance for organization or
not.

Legal Feasibility

Project is analyzed in legality point of view.

Analyzing barriers of legal implementation of

project, data protection acts or social media

laws, project certificate, license, copyright etc.

are done in this study.

To confirm if proposed project conform legal and

ethical requirements.

Schedule Feasibility

Timelines/ deadlines are analyzed for proposed
project which includes how many teams will
take to complete the Project.

Includes how many times teams will take to
complete final project which has a great
impact on the organization as purpose of
project may fail if it can’t be completed on
time.

Feasibility Study Process

Information Assessment

Information Collection

Report Writing

General Information

Requirements elicitation and Analysis

Requirements Elicitation is the practice of researching and discovering the

requirements of a system from users, customers and other stakeholders.

This process is also known as requirement gathering.

It is needed to know what the users really need.

This step defines what the users the need is and how the developers can develop this

project.

The various methods are : Interviews, Brainstorming Sessions, Facilitated Application

Specification Technique, Quality Function Deployment, Use Case Approach.

Requirement Analysis

It is the essential activity after elicitation . We analyze, refine and scrutinize the

gathered requirements to make consistent and un-ambiguous requirements.

After the completion of the analysis, it is expected that the understandability of the

project may improve significantly.

 We may also use the interaction with the customer to clarify points of confusion and

to understand which requirements are more important than others.

Requirement Analysis Steps

Requirements Validation

Process of Checking that requirements defined for development, define the system

that the customer really wants.

To Check issues related to requirements , we perform requirements validation.

Use this validation step to check error at the initial phase of development as the error

may increase excessive rework when detected later.

These checks include: Completeness, Consistency, Validity, Realism, Ambiguity,

Verifiability.

Requirements Validation

Requirements management

Requirement management is the process of analyzing , documenting tracking

prioritizing and agreeing on the requirement and controlling the communication

to relevant stakeholders.

This stake takes care of the changing nature of requirements.

Should be ensured that SRS is as modifiable as possible so as to incorporate

changes in requirements specified in a systematic and controlled manner is an

important part of the requirements process.

Requirements Management

SYSTEM MODEL & SYSTEM MODELLING

The interdisciplinary study of the use of models to conceptualize and construct

systems in businesses and IT development.

System Modelling helps the analyst to understand the functionality of the system and

models are used to communicate with customers.

For System Modelling we use the concept of data models to understand.

We have the following models : Context, Behavioral, Data, Object and Structured.

CONTEXT MODEL

Defines how context data are structured and maintained.

A key role of context model is to simplify and introduce greater structure into the task

of developing context aware applications.

A key role of developing a context model is to simplify and introduce a greater

structure into the task of developing a context aware applications.

Best Example: Unified Modelling Language as used in systems engineering defines a

context model as the physical scope of the system being designed.

CONTEXT MODEL

Behavioral Model

Behavioral Model is specially designed to make us understand behavior and factors

that influence behavior of a System. Behavior of a system is explained and

represented with the help of a diagram. This diagram is known as State Transition

Diagram. It is a collection of states and events. It usually describes overall states

that a system can have and events which are responsible for a change in state of

a system.

So, on some occurrence of a particular event, an action is taken and what action

needs to be taken is represented by State Transition Diagram.

Behavioral Model

DATA MODEL

Data modeling in software engineering is the process of creating a data model by

applying formal data model descriptions using data modeling techniques. Data

modeling is a technique for defining business requirements for a database.

The goal is to create a visual data map that accurately describes the data structure,

how data will flow through the system whilst highlighting important data

relationships. This can involve the data input itself, the data infrastructure and

output, whether that’s predictive models, ML algorithms, AI or other

products/services.

DATA MODEL

OBJECT MODEL

Object Modeling Technique (OMT) is real world based modeling approach for software

modeling and designing.

It was developed basically as a method to develop object-oriented systems and to

support object-oriented programming.

It describes the static structure of the system.

Object Modeling Technique is easy to draw and use

OMT is one of the most popular object oriented development techniques used now-a-

days.

OMT was developed by James Rambaugh.

OBJECT MODEL

STRUCTURED MODEL

Structural models of software display the organization of a system in terms of the

components that make up that system and their relationships.

Structural models may be static models, which show the structure of the system

design, or dynamic models, which show the organization of the system when it is

executing.

Structural models show the organization and architecture of a system.

Class diagrams are used to define the static structure of classes in a system and their

associations.

STRUCTURED MODEL

CONTENTS

Design Engineering :

 Design Engineering Definition

 Process and Quality

 Design Concepts

 The Design Model.

CONTENTS PART II

Software Architecture

Data Design

Architectural Styles and Patterns

Architectural Design

Conceptual Model

Basic Structural Modelling

Class Diagrams

Sequence diagrams

Collaboration diagrams

Use case diagrams

Component Diagrams

DESIGN ENGINEERING

The Design Phase of Software Engineering deals with transforming the customer

requirements as described in the SRS.

The Design Process can be divided into 3 parts :

 Interface Design

 Architectural Design

 Detailed Design

INTERFACE DESIGN

 Interface design is the specification of the interaction between a
system and its environment. this phase proceeds at a high level of
abstraction with respect to the inner workings of the system i.e,
during interface design, the internal of the systems are completely
ignored and the system is treated as a black box.

 Interface design should include the following details:

 Precise description of events in the environment, or messages from
agents to which the system must respond.

 Precise description of the events or messages that the system must
produce.

 Specification on the data, and the formats of the data coming into and
going out of the system.

INTERFACE DESIGN

ARCHITECTURAL DESIGN

 Architectural design is the specification of the major components of a system,

their responsibilities, properties, interfaces, and the relationships and

interactions between them.

 In architectural design, the overall structure of the system is chosen, but the

internal details of major components are ignored.

ARCHITECTURAL DESIGN

DETAILED DESIGN

 Design is the specification of the internal elements of all major system

components, their properties, relationships, processing, and often their

algorithms and the data structures.

 The detailed design may include: User interfaces, Unit states and state changes,

Data and control interaction between units, Algorithms and data structures etc.

DESIGN ENGINEERING PROCESS

 The engineering design process is a series of steps that

engineers follow to find a solution to a problem. The steps

include problem solving processes such as, for example,

determining your objectives and constraints, prototyping, testing

and evaluation.

While the design process is iterative it follows a predetermined

set of steps, some of these may need to be repeated before

moving to the next one.

DESIGN ENGINEERING PROCESS DIAGRAM

STEPS OF DESIGN ENGINEERING

STEP-1: DEFINE THE PROBLEM

What is the problem or need?

Who has the problem or need?

Why is it important to solve?

STEPS OF DESIGN ENGINEERING

STEP 2: DO BACKGROUND RESEARCH
 Learn from the experiences of others — this can help you find out about existing

solutions to similar problems, and avoid mistakes that were made in the past. So,

for an engineering design project, do background research in two major areas:

 Users or customers

 Existing solutions

STEPS IN DESIGN ENGINEERING

STEP 3: SPECIFY REQUIREMENTS
Design requirements state the important characteristics that your solution must meet

to succeed. One of the best ways to identify the design requirements for your

solution is to analyze the concrete example of a similar, existing product, noting

each of its key features.

STEPS IN DESIGN ENGINEERING

STEP-4: BRAINSTORM SOLUTIONS

There are always many good possibilities for solving design

problems. If you focus on just one before looking at the

alternatives, it is almost certain that you are overlooking a better

solution. Good designers try to generate as many possible

solutions as they can.

STEPS IN DESIGN ENGINEERING

STEP 5: CHOOSE THE BEST SOLUTION

Look at whether each possible solution meets

your design requirements. Some solutions

probably meet more requirements than

others. Reject solutions that do not meet the

requirements.

STEPS OF DESIGN ENGINEERING

STEP-6: DEVELOP THE SOLUTION
 Development involves the refinement and improvement of a solution, and it

continues throughout the design process, often even after a product ships to

customers.

STEPS OF DESIGN ENGINEERING

STEP-7:BUILD A PROTOTYPE
A prototype is an operating version of a solution.

Often it is made with different materials than the final version, and generally it is not

as polished.

Prototypes are a key step in the development of a final solution, allowing the designer

to test how the solution will work.

STEPS OF DESIGN ENGINEERING

STEP-8: TEST AND RE-DESIGN

The design process involves multiple iterations and redesigns of

your final solution.

 You will likely test your solution, find new problems, make changes,

and test new solutions before settling on a final design.

STEPS OF DESIGN ENGINEERING

STEP-COMMUNICATE RESULTS
 To complete your project, communicate your results to others in a

final report and/or a display board.

 Professional engineers always do the same, thoroughly

documenting their solutions so that they can be manufactured

and supported.

DESIGN ENGINEERING QUALITY

 Quality engineering is the discipline of engineering concerned with the principles

and practice of product and service quality assurance and control.

 In software development, it is the management, development, operation and

maintenance of IT systems and enterprise architectures with a high quality

standard.

DESIGN CONCEPTS

 A set of the Concepts that go hand in hand along with the design engineering of the

software system are known as Design Concepts

These Concepts are a key factor in analyzing the design of the software.

There are Few Concepts that are categorized as Design Concepts

1. ABSTRACTION

A solution is stated in large terms using the language of the problem environment at

the highest level abstraction.

The lower level of abstraction provides a more detail description of the solution.

A sequence of instruction that contain a specific and limited function refers in a

procedural abstraction.

A collection of data that describes a data object is a data abstraction.

2. ARCHITECTURE

The complete structure of the software is known as software architecture.

Structure provides conceptual integrity for a system in a number of ways.

The architecture is the structure of program modules where they interact with each

other in a specialized way.

The components use the structure of data.

3. PATTERNS

A design pattern describes a design

structure and that structure solves a

particular design problem in a specified

content.

4. MODULARITY

A software is separately divided into name and addressable components. Sometime

they are called as modules which integrate to satisfy the problem requirements.

Modularity is the single attribute of a software that permits a program to be managed

easily.

5. INFORMATION HIDING

Modules must be specified and designed so that

the information like algorithm and data

presented in a module is not accessible for

other modules not requiring that information.

6. FUNCTIONAL INDEPENDENCE

 The functional independence is the concept of separation and related to the

concept of modularity, abstraction and information hiding.

 The functional independence is accessed using two criteria i.e Cohesion and

coupling.

6.1 COHESION

Cohesion is an extension of the information hiding concept.

A cohesive module performs a single task

It requires a small interaction with the other components in other parts of the

program.

6.2 COUPLING

Coupling is an indication of interconnection between modules in a structure of

software.

More precisely it is the interdependence between software modules.

Or it can be a measure of how closely connected two modules are.

7. REFINEMENT

 Refinement is a top-down design approach.

 It is a process of elaboration.

 A program is established for refining levels of procedural details.

 A hierarchy is established by decomposing a statement of function in a stepwise

manner till the programming language statement are reached.

8. REFACTORING

It is a reorganization technique which simplifies the design of components without

changing its function behavior.

Refactoring is the process of changing the software system in a way that it does not

change the external behavior of the code still improves its internal structure.

9. DESIGN CLASSES

 The model of software is defined as a set of design classes.

 Every class describes the elements of problem domain and that focus on features

of the problem which are user visible.

THE DESIGN MODEL

 Design modeling in software engineering represents the features of the software

that helps engineer to develop it effectively, the architecture, the user interface,

and the component level detail.

 Different methods like data-driven, pattern-driven, or object-oriented methods are

used for constructing the design model.

 All these methods use set of design principles for designing a model.

DESIGN MODELLING

 The design model builds on the analysis model by describing, in greater detail,

the structure of the system and how the system will be implemented.

 In the design model, packages contain the design elements of the system, such

as design classes, interfaces, and design subsystems, that evolve from the

analysis classes each package can contain any number of sub-packages that

further partition the contained design elements.

 These architectural layers form the basis for a second-level organization of the

elements that describe the specifications

SOFTWARE ARCHITECTURE
 Software architecture refers to the fundamental structures of a software

system and the discipline of creating such structures and systems.

 The architecture of the system is a metaphor analogous to the architecture of a

building.

 Functions as a blueprint for the development of the software.

SOFTWARE ARCHITECTURE TYPES

The most used software architectures are:

 Business Architecture

 Application Architecture

 Information Architecture

 Information Technology Architecture

BUSINESS ARCHITECTURE

Business architecture defines the strategy of business, governance, organization and

key business processes within an enterprise.

This type of architecture focuses on the analysis and design of business processes.

APPLICATION ARCHITECTURE

 It describes the patterns and techniques used to design and build an

application.

 Gives a roadmap and best practices to follow when building an application.

 This diagram is a representation of Kubernetes Architecture.

INFORMATION ARCHITECTURE

 It is structural design of shared information environments; the art and science of

organizing and labelling websites, intranets, online communities and software to

support usability and findability.

 A discipline that focuses on the organization of information within digital

products.

INFORMATION TECHNOLOGY ARCHITECTURE

Process of development of methodical information technology specifications, models

and guidelines.

It uses a variety of Information Technology notations for example UML within a

coherent information architecture.

Focuses on three basic tiers within organization.

DATA DESIGN

 The first design activity resulting in a less complex, modular and efficient

program.

 The information domain model developed during analysis phase is transformed

into data structures needed for implementing the software

ARCHITECTURAL STYLE

Shows how we organize our code or how the system will look like from an aerial view.

The list of style:

 Structure Architecture Style

 Messaging Styles

 Distributed Systems

 Shared memory Styles

 Adaptive System Style.

STRUCTURE ARCHITECTURE STYLE

 It consists of Several Component based Styles such as :

 Layers

 Pipes

 Filters

MESSAGING STYLES

Messaging refers to various form s of communication information to users

Some of the forms are : E-Mail , SMS, EMS, MMS , Instant Messaging , HDML

Notifications , WAP Push

 Based on the software requirement, developer can design the messaging system.

DISTRIBUTED SYSTEMS

 A distributed computer system consists of multiple software

components that are on multiple computers, but run as a single

system.

 The computers that are in a distributed system can be physically

close together and connected by a local network, or they can be

geographically distant and connected by a wide area network.

DISTRIBUTED SYSTEM

SHARED MEMORY STYLES

 Shared Memory Consists of three types:

Database Centric : Based on a DB

Blackboard: An AI Approach

Rule based: Applicable in most systems where automatic rule inference re executed.

SHARED MEMORY

ADAPTIVE SYSTEM STYLES

These Styles consists of Microkernel Style , reflection , domain Specific language styles

.

The System that changes its behavior in response to its environment.

ARCHITECTURAL PATTERNS

 Architectural Design Pattern are accumulative best practices and experiences

that software professionals used over the years to solve the general problem by –

trial and error – they faced during software development.

 Two main principles of object-oriented design:

 Develop to an interface, not to an implementation.

 Favor object composition over inheritance.

They are Creational Patterns, Structural Patterns, Behavioral Patterns.

CREATIONAL DESIGN PATTERN

 Provide a way to create objects while hiding the creation logic. Thus, the object

creation is to be done without instantiating objects directly with the “New”

keyword to gives the flexibility to decide which objects need to be created for a

given use case.

 Abstract Factory Pattern, Singleton Pattern, Builder Pattern and Prototype Pattern.

STRUCTURAL PATTERN

 These Patterns are concerned with class and object composition of the system

 Adapter, Bridge, Filter, Composite, Decorator, Façade, Flyweight and Proxy Come

under these Structural Pattern.

BEHAVIORAL PATTERN

Behavioral Patterns are concerned with communications between objects.

The communication can be of any type.

Responsibility, Command, Interpreter, Iterator, Mediator, Memento, Observer, State,

Null, Strategy, Template and Visitor Come under Behavioral Pattern.

J2EE PATTERNS

These Patterns are specifically concerned with presentation tier

It was identified by Sun Java Center at Menlo Park in California USA.

ARCHITECTURAL DESIGN

The process of defining a collection of hardware and software components and their

interfaces to establish the framework for the development of a computer system.

The Various Designs are

 Data centered

 Data Flow

 Call and Return

 Object Oriented

 Layered

DATA CENTERED

A data store will reside at the center of this architecture and is accessed frequently by the

other components that update, add, delete or modify the data present within the store.

This data-centered architecture will promote integrity

DATA FLOW ARCHITECTURE

 This kind of architecture is used when input data to be transformed into output

data through a series of computational manipulative components.

 Pipes are used to transmit data from one component to the next.

 Each filter will work independently and is designed to take data input of a certain

form and produces data output to the next filter of a specified form. The filters

don’t require any knowledge of the working of neighboring filters.

DATA FLOW ARCHITECTURE

CALL AND RETURN ARCHITECTURES

It is used to create a program that is easy to scale and modify. Many sub-styles exist

within this category

Sub Categories Include: Remote Procedure call and Main program-Sub program

Architectures.

OBJECT ORIENTED ARCHITECTURE

 The components of a system encapsulate data and the operations that must be

applied to manipulate the data.

 The coordination and communication between the components are established via

the message passing.

LAYERED ARCHITECTURE

 A number of different layers are defined with each layer performing a well-defined set

of operations.

 Each layer will do some operations that becomes closer to machine instruction set

progressively.

CONCEPTUAL MODEL

 It is a representation of a system that uses concepts and ideas to form said

representation.

Used across many fields ranging from sciences to socioeconomics to software

development.

 These Models try to capture people’s understanding of what is being modeled.

CLASS DIAGRAM

It is a Static diagram representing the static view of an application. It is not only used

for visualizing , describing and documenting aspects but also for constructing

executable code.

Class diagram shows a collection of classes, interfaces, associations, collaborations,

and constraints. It is also known as a structural diagram.

CLASS DIAGRAMS

SEQUENCE DIAGRAMS-UML

UML is a modelling Language in the field of software engineering which aims to set

standard ways to visualize the design of a system.

The Sequence Diagram is an Interaction Diagram.

It Simply depicts interaction between objects in a sequential order.

SEQUENCE DIAGRAMS

We also use the terms event diagrams or event scenarios to refer to the diagram.

Describe how and in what order the objects in a system function.

The Parts are : Actors, Lifelines, Messages, Guards,

SEQUENCE DIAGRAM

ADVANTAGE OF SEQUENCE DIAGRAM

Used to model and visualize the logic behind a sophisticated function, operation or

procedure.

They are also used to show details of UML use case diagrams.

Used to understand the detailed functionality of current or future systems.

Visualize how messages and tasks move between objects or components in a system

COLLABORATION DIAGRAMS

 A collaboration diagram, also known as a communication diagram, is an

illustration of the relationships and interactions among software objects in the

Unified Modeling Language (UML). These diagrams can be used to portray the

dynamic behavior of a particular use case and define the role of each object.

COLLABORATION DIAGRAM

ADVANTAGES OF COLLABORATION DIAGRAM

 The collaboration diagram is also known as Communication Diagram.

 It mainly puts emphasis on the structural aspect of an interaction

diagram, i.e., how lifelines are connected.

 The syntax of a collaboration diagram is similar to the sequence

diagram; just the difference is that the lifeline does not consist of tails.

 The special case of a collaboration diagram is the object diagram.

 It focuses on the elements and not the message flow, like sequence

diagrams.

DISADVANTAGE OF COLLABORATION DIAGRAM

Multiple objects residing in the system can make a complex collaboration diagram, as

it becomes quite hard to explore the objects.

It is a time-consuming diagram.

After the program terminates, the object is destroyed.

As the object state changes momentarily, it becomes difficult to keep an eye on every

single that has occurred inside the object of a system.

UML USE CASE DIAGRAM

 A use case diagram is used to represent the dynamic behavior of a system.

 It encapsulates the system's functionality by incorporating use cases, actors, and

their relationships.

 It models the tasks, services, and functions required by a system/subsystem of

an application.

 It depicts the high-level functionality of a system and also tells how the user

handles a system.

 Accumulates system’s requirement.

UML USE CASE DIAGRAM

UML USE CASE DIAGRAM BENEFITS

It gathers the system's needs.

It depicts the external view of the system.

It recognizes the internal as well as external factors that influence the system.

It represents the interaction between the actors.

COMPONENT DIAGRAM

Component diagrams are different in terms of nature and behavior.

 Component diagrams are used to model the physical aspects of a system.

Physical aspects are the elements such as executables, libraries, files, documents,

etc. which reside in a node.

Component diagrams are used to visualize the organization and relationships among

components in a system.

COMPONENT DIAGRAM

UML COMPONENT DIAGRAM

ADVANTAGES
Component diagrams are very simple, standardized, and very easy to understand.

It is also useful in representing implementation of system.

These are very useful when you want to make a design of some device that contains

an input-output socket.

Use of reusable components also helps in reducing overall development cost.

It is very easy to modify and update implementation without any causing any other

side effects.

CONTENTS PART-I

A strategic approach to software testing

Testing Strategies

Black Box and White Box Testing

Validation Testing

System Testing

Art of Debugging

SOFTWARE TESTING

Software Testing is a method to check whether the actual software product matches

expected requirements and to ensure that software product is defect free.

It involves execution of software/system components using manual or automated

tools to evaluate one or more properties of interest.

A STRATEGIC APPROACH TO TESTING

According to Glenn Myers, The objectives are :

The process of investigating and checking a program to find whether there is an

error or not and does it fulfill the requirements or not is called testing.

When the number of errors found during the testing is high, it indicates that the

testing was good and is a sign of good test case.

Finding an unknown error that’s wasn’t discovered yet is a sign of a successful and a

good test case.

VARIOUS TESTING STRATEGIES

CHARACTERISTICS OF TESTING

The developer should conduct the successful technical reviews.

Testing starts with the component level and work from outside toward the integration.

Different testing techniques are suitable at different point in time.

Testing is organized by the developer of the software and by an independent test

group.

Debugging and testing are different activities, then also the debugging should be

accommodated in any strategy of testing.

SPIRAL TESTING STRATEGY

BLACK BOX TESTING

A type of Software Testing where the functionality of software is not known.

The Testing is done without internal knowledge of products.

SYNTAX DRIVEN TESTING

1. Syntax Driven : This type of testing is applied to systems that can be

syntactically represented by some language.

Example: Compilers, Language that can be represented by context free grammar

Each grammar rule is used once.

EQUIVALENCE PARTITIONING

The idea is to partition the input domain of the system into a number of equivalence

classes such that each member of class works in a similar way, i.e.,

 If a test case in one class results in some error, other members of class would also

result into same error.

Has Two Steps: Identification of equivalence classes and generating test cases. For

each class.

BOUNDARY VALUE ANALYSIS

Boundaries are very good places for errors to occur. Hence if test cases are

designed for boundary values of input domain then the efficiency of testing

improves and probability of finding errors also increase.

 For example – If valid range is 10 to 100 then test for 10,100 also apart from valid

and invalid inputs.

CAUSE EFFECT GRAPHING

This technique establishes relationship between logical input called causes with corresponding

actions called effect.

The causes and effects are represented using Boolean graphs.

REQUIREMENT BASED TESTING

This Testing Includes Validating the requirements given in the Software Requirement

Specification Document for a particular software system.

Testing must be carried out in a timely manner.

Testing process should add value to the software life cycle, hence it needs to be

effective.

Testing must provide the overall status of the project, hence it should be manageable.

COMPATIBILITY TESTING

The test case result not only depend on product but also infrastructure for delivering

functionality. When the infrastructure parameters are changed it is still expected

to work properly.

Some of them include processor, architecture, back-end components and OS.

WHITE BOX TESTING

White box testing techniques analyze the internal structures the used data structures,

internal design, code structure and the working of the software rather than just

the functionality as in black box testing.

 It is also called glass box testing or clear box testing or structural testing.

The Process Steps Include: Input, Processing , Proper Test Planning and Output.

WHITE BOX TESTING

WHITE BOX TESTING TECHNIQUES

Statement Coverage: In this technique, the aim is to traverse all statement at least

once. Hence, each line of code is tested. In case of a flowchart, every node must

be traversed at least once

Branch Coverage In this technique, test cases are designed so that each branch

from all decision points are traversed at least once.

Condition Coverage: In this technique, all individual conditions must be covered.

WHITE BOX TESTING TECHNIQUES

Multiple Condition Coverage: In this technique, all the possible combinations of the

possible outcomes of conditions are tested at least once.

Basis Path Testing: In this technique, control flow graphs are made from code or

flowchart and then Cyclomatic complexity is calculated which defines the number

of independent paths so that the minimal number of test cases can be designed

for each independent path.

WHITE BOX TESTING TECHNIQUES

Flow graph notation: It is a directed graph consisting of nodes and edges. Each

node represents a sequence of statements, or a decision point.

 A predicate node is the one that represents a decision point that contains a

condition after which the graph splits.

Regions are bounded by nodes and edges.

ADVANTAGES OF WHITE BOX TESTING

White box testing is very thorough as the entire code and structures are tested.

It results in the optimization of code removing error and helps in removing extra

lines of code.

It can start at an earlier stage as it doesn’t require any interface as in case of black

box testing.

Easy to automate.

DISADVANTAGES OF WHITE BOX TESTING

Main disadvantage is that it is very expensive.

Redesign of code and rewriting code needs test cases to be written again.

Testers are required to have in-depth knowledge of the code and programming

language as opposed to black box testing.

Missing functionalities cannot be detected as the code that exists is tested.

Very complex and at times not realistic.

DIFFERENCES BETWEEN WHITE BOX AND BLACK

BOX

VALIDATION TESTING

The process of evaluating software during the development process or at the end of

the development process to determine whether it satisfies specified business

requirements.

It answers to the question, Are we building the right product?

Validation Testing ensures that the product actually meets the client's needs.

VALIDATION TESTING V-MODEL

VALIDATION TESTING TYPES

Unit Testing

Integration Testing

System Testing

User Accepting Testing

UNIT TESTING

It is an important type of validation testing. The point of the unit testing is to search for bugs in the

product segment. Simultaneously, it additionally confirms crafted by modules and articles which can

be tried independently.

INTEGRATION TESTING

This is a significant piece of the validation model wherein the interaction between, where the

association between the various interfaces of the pertaining component is tried.

SYSTEM TESTING

System testing is done when the whole programming framework is prepared. The principal worry of

framework testing is to confirm the framework against the predefined necessities.

USER ACCEPTANCE TESTING

During this testing, the tester actually needs to think like the customer and test the product

concerning client needs, prerequisites, business forms and decide if the product can be given

over to the customer or not.

DEBUGGING

In the context of software engineering, debugging is the process of fixing a bug in the

software. In other words, it refers to identifying, analyzing and removing errors.

This activity begins after the software fails to execute properly and concludes by

solving the problem and successfully testing the software

. It is considered to be an extremely complex and tedious task because errors need to

be resolved at all stages of debugging.

DEBUGGING PROCESS

Problem identification and report preparation.

Assigning the report to software engineer to the defect to verify that it is genuine.

Defect Analysis using modeling, documentations, finding and testing candidate flaws,

etc.

Defect Resolution by making required changes to the system.

Validation of corrections.

DEBUGGING TOOLS

Debugging tool is a computer program that is used to test and debug other

programs. A lot of public domain software like gdb and dbx are available for

debugging.

Some of the widely used debuggers are:

Radare2

Win Dbg

Valgrind

DEBUGGING VS TESTING

CONTENTS

Software Quality

Metrics for Analysis Model

Metrics for Design Model

Metrics for Source Code

Metrics for Testing

Metrics for Maintenance.

SOFTWARE QUALITY

Software quality is defined as a field of study and practice that describes the

desirable attributes of software products. There are two main approaches to

software quality: defect management and quality attributes.

Software Quality refers to both functional quality and structural quality.

SOFTWARE FUNCTIONAL QUALITY

It reflects how well it satisfies a given design, based on the functional requirements or

specifications.

 SFQ is pertaining to conformance to the functional requirements.

The SFQ is measured by the level of end user satisfaction.

SOFTWARE STRUCTURAL QUALITY

It deals with the handling of non-functional requirements that support the delivery of

the functional requirements, such as robustness or maintainability, and the

degree to which the software was produced correctly

Attributes are : Code testability, Maintainability, understandability, efficiency , security.

SOFTWARE QUALITY ASSURANCE

Is simply a way to assure quality in the software. It is the set of activities which ensure

processes, procedures as well as standards suitable for the project and

implemented correctly.

Software Quality Assurance is a process which works parallel to development of a

software

Software Quality Assurance is a kind of an Umbrella activity that is applied throughout

the software process.

SOFTWARE QUALITY CONTROL

Software Quality Control (SQC) is a set of activities to ensure the quality in software

products.

These activities focus on determining the defects in the actual products produced.

It involves product-focused action.

Software Quality Control is commonly referred to as Testing.

SOFTWARE QUALITY CHALLENGE

In the software industry, the developers will never declare that the software is free

of defects, unlike other industrial product manufacturers usually do.

The Key Reasons are :

  Product Complexity

  Product Visibility

  Product Development and Production Process.

METRICS FOR ANALYSIS MODEL

Technical work in software engineering begins with the creation of the analysis

model. It is at this stage that requirements are derived and that a foundation for

design is established.

 Therefore, technical metrics that provide insight into the quality of the analysis model

are desirable.

These Metrics are used to analyze the analysis model with the objective of increased

coding, integration and testing effort.

Ex: Function Point(FP) and Lines of Code(LOC)

METRICS FOR DESIGN MODEL

The success of a software project depends largely on the quality and effectiveness

of the software design.

Hence, it is important to develop software metrics from which meaningful indicators

can be derived.

 Various design metrics such as architectural design metrics, component-level

design metrics, user-interface design metrics, and metrics for object-oriented

design are used to indicate the complexity, quality, and so on of the software

design.

METRICS FOR SOURCE CODE

Halstead proposed the first analytic laws for Computer science by
using a set of primitive measures, which can be derived once the
design phase is complete and code is generated. These measures
are listed below.

nl = number of distinct operators in a program

n2 = number of distinct operands in a program

N1 = total number of operators

N2= total number of operands.

The Halstead Equation denotes the Coding metric for software quality.

N = n1log2nl + n2 log2n2. [Program Length]

V = N log2 (n1+n2). [Program Volume]

METRICS FOR TESTING

Majority of the metrics used for testing focus on testing
process rather than the technical characteristics of test.
Generally, testers use metrics for analysis, design, and
coding to guide them in design and execution of test cases.

Halstead measures can be used to derive metrics for testing
effort. By using program volume (V) and program level
(PL),Halstead effort (e)can be calculated by the following
equations.

e = V/ PL

Percentage of testing effort (z) = e(z)/∑e(i)

METRICS FOR MAINTENANCE

For the maintenance activities, metrics have been designed explicitly. IEEE have

proposed Software Maturity Index (SMI), which provides indications relating to

the stability of software product. For calculating SMI, following parameters are

considered.

Number of modules in current release (MT)

Number of modules that have been changed in the current release (Fe)

Number of modules that have been added in the current release (Fa)

Number of modules that have been deleted from the current release (Fd)

Once all the parameters are known, SMI can be calculated by using the following

equation.

SMI = [MT– (Fa+ Fe + Fd)]/MT.

PROCESS METRICS

To improve any process, it is necessary to measure its specified attributes,

develop a set of meaningful metrics based on these attributes, and then use

these metrics to obtain indicators in order to derive a strategy for process

improvement.

Using software process metrics, software engineers are able to assess the

efficiency of the software process that is performed using the process as a

framework

PRODUCT METRICS

Product metrics are software product measures at any stage of their development,

from requirements to established systems. Product metrics are related to

software features only.

Metrics are of 2 types :

 Dynamic metrics that are collected by measurements made from a program in

execution.

 Static metrics that are collected by measurements made from system

representations such as design, programs, or documentation.

DYNAMIC PRODUCT METRICS

Dynamic metrics are usually quite closely related to software quality attributes. It is

relatively easy to measure the execution time required for particular tasks and to

estimate the time required to start the system. These are directly related to the

efficiency of the system failures and the type of failure can be logged and directly

related to the reliability of the software.

STATIC PRODUCT METRICS

Static metrics have an indirect relationship with quality attributes. A large number of

these matrices have been proposed to try to derive and validate the relationship

between the complexity, understandability, and maintainability.

CONTENTS

Software Measurement

Metrics for Software quality

Reactive vs Proactive Risk Management

Software Risks

Risk Identification

Risk Projection

Risk Refinement

RMMM

RMMM Plan

CONTENTS

Quality Concepts

Software Quality assurance

Software Reviews

Formal Technical Reviews

Statistical Software Quality Assurance

Software Reliability

ISO 9000 Quality Standards

SOFTWARE MEASUREMENT

• Software Measurement: A measurement is an manifestation of the size, quantity,

amount or dimension of a particular attributes of a product or process.

• Software measurement is a titrate impute of a characteristic of a software

product or the software process.

• It is an authority within software engineering. Software measurement process is

defined and governed by ISO Standard.

• Software Measurement is used as a parameter for the manifestation of software.

NEEDS OF SOFTWARE MEASUREMENT

• Create the quality of the current product or
process.

• Anticipate future qualities of the product or
process.

• Enhance the quality of a product or process.

• Regulate the state of the project in relation to
budget and schedule.

These are the 4 basic needs of software
measurement.

TYPES OF SOFTWARE MEASUREMENT

• There are 2 types of Software Measurement

  Direct Measurement: In direct
measurement the product, process or thing is
measured directly using standard scale.

 Indirect measurement: In indirect
measurement the quantity or quality to be
measured is measured using related parameter
i.e. by use of reference.

METRICS

A metrics is a measurement of the level that
any impute belongs to a system product or
process

The 4 Metrics are
Planning
Organizing
Controlling
Improving

CHARACTERISTICS OF METRICS

Quantitative

Understandable

Applicability

Repeatable

Economical

Language Independent

CLASSIFICATION OF SOFTWARE METRIC

There are 2 types of Software Metrics

Product Metric : Product metrics are used to evaluate the state of the product, tracing

risks and under covering prospective problem areas. The ability of team to control

quality is evaluated.

Process Metric: Process metrics pay particular attention on enhancing the long term

process of the team or organization.

Project Metrics: Project matrix is describes the project characteristic and execution

process.

Number of Developers, Staffing Pattern, Cost and Schedule and Productivity.

SOFTWARE RISK

• Software risk encompasses the probability of occurrence for uncertain events and

their potential for loss within an organization

• Risk management has become an important component of software development

as organizations continue to implement more applications across a multiple

technology, multi-tiered environment.

• Typically, software risk is viewed as a combination of robustness, performance

efficiency, security and transactional risk propagated throughout the system.

REACTIVE RISK MANAGEMENT

• Reactive risk management tries to reduce the damage of potential threats and

speed an organization's recovery from them, but assumes that those threats will

happen eventually.

PROACTIVE RISK MANAGEMENT

• As the name suggests, proactive risk management means that you identify risks

before they happen and figure out ways to avoid or alleviate the risk. It seeks to

reduce the hazard's risk potential or, even better, prevent the threat altogether. A

good example here is vulnerability testing and remediation

REACTIVE VS PROACTIVE

RISK IDENTIFICATION

• Risk identification is the process of determining risks that could potentially prevent

the program, enterprise, or investment from achieving its objectives. It includes

documenting and communicating the concern.

• Risk identification is the critical first step of the risk management process

RISK PROJECTION

• Risk projection, also called risk estimation, attempts to rate each risk in two ways—

the likelihood or probability that the risk is real and the consequences of the

problems associated with the risk, should it occur.

• The project planner, along with other managers and technical staff, performs four

risk projection activities:

• (1) establish a scale that reflects the perceived likelihood of a risk

• (2) delineate the consequences of the risk,

• (3) estimate the impact of the risk on the project and the product,

• (4)note the overall accuracy of the risk projection so that there will be no

misunderstandings.

RISK REFINEMENT

• Process of restating the risks as a set of more detailed risks that will be easier to

mitigate, monitor, and manage.

• In this step we actually understand the risk on a much more deeper detail and try

to look at a broader perspective on how to handle the risk.

• These Steps are actually the basis for the RMMM Model

• It stands for Risk Mitigation, Monitoring and Management Plan.

RMMM

• RMMM Stands for Risk Mitigation, Monitoring and Management Plan.

• A risk management technique is usually seen in the software project plan.

• In this plan all works are done as a part of risk analysis

• Risk is documented with the help of a Risk Information Sheet (RIS).

• This RIS is controlled by using a database system for easier management of

information i.e creation, priority ordering, searching, and other analysis.

• After documentation of RMMM and start of a project, risk mitigation and

monitoring steps will start.

RISK MITIGATION

• It is an activity used to avoid problems (Risk Avoidance).

Steps for mitigating the risks as follows.

1. Finding out the risk.

2. Removing causes that are the reason for risk creation.

3. Controlling the corresponding documents from time to time.

4. Conducting timely reviews to speed up the work.

RISK MONITORING

• It is an activity used for project tracking.

It has the following primary objectives as follows.

1) To Check if Predicted risks occur or not.

2) To Ensure proper application of risk aversion steps defined for risk

3) To Collect data for future risk analysis

4) To allocate what problems are caused by which risks throughout the project.

RISK MANAGEMENT AND PLANNING

It assumes that the mitigation activity failed and the risk is a reality.

This task is done by Project manager when risk becomes reality and causes severe

problems.

If the project manager effectively uses project mitigation to remove risks successfully

then it is easier to manage the risks.

This shows that the response that will be taken for each risk by a manager.

RISK MANAGEMENT LIFECYCLE

SOFTWARE QUALITY

• Software Quality is defined as a field of study and
practice that describes the desirable attributes of
software products.

• Software Quality Product is defined in terms of it’s
fitness of purpose.

• Quality Product does Precisely what users want it
to do.

• For software products the fitness of use is
generally explained in terms of satisfaction of
requirements.

SOFTWARE QUALITY ASSURANCE

• Software quality assurance (SQA) is a means and practice of monitoring the

software engineering processes and methods used in a project to ensure proper

quality of the software. It may include ensuring conformance to standards or

models, such as ISO/IEC 9126 (now superseded by ISO 25010), SPICE or CMMI.

• It is simply a way to assure quality in the software.

• Set of Activities which ensure processes, procedures as well as Standards

SOFTWARE REVIEWS

• Software Review is systematic inspection of a software by one or more individuals

who work together to find and resolve errors and defects in the software during

the early stages of Software Development Life Cycle (SDLC).

• Software review is an essential part of Software Development Life Cycle (SDLC)

that helps software engineers in validating the quality, functionality and other vital

features and components of the software.

• It is a whole process that includes testing the software product and it makes sure

that it meets the requirements stated by the client.

OBJECTIVE OF SOFTWARE REVIEWS

• To Improve the productivity of the development team

• To make the testing process time and cost effective.

• To make the final software and fewer defects

• To Eliminate the inadequacies

To understand the software reviews we need to understand the Process of Software

Review.

The Process contains 5 steps that helps us understands the Software review Process

during Software Engineering.

SOFTWARE REVIEW PROCESS

FORMAL TECHNICAL REVIEW

• Formal Technical Review (FTR) is a software quality control activity
performed by software engineers.

• Useful to uncover error in logic, function and implementation for any
representation of the software.

• The purpose of FTR is to verify that the software meets specified
requirements.

• To ensure that software is represented according to predefined
standards.

• To makes the project more manageable.

• It helps to review the uniformity in software that is development in a
uniform manner.

STATISTICAL SOFTWARE QUALITY ASSURANCE

• SQA is used to reduce cost and improve the product time to the market. In this

chapter we will discuss about various aspects of SQA.

• Software Quality Assurance is the set of activities which ensure that the

standards, processes and procedures are suitable for the project and

implemented correctly.

• Quality : Quality of Software is checked to see if it meets the requirements.

• Assurance: It means ensuring the correctness of the results and security of the

product, as it works without any bug and according to the expectations.

SOFTWARE RELIABILITY

• Software Reliability means Operational reliability. It is described as the ability of a

system or component to perform its required functions under static conditions for

a specific period.

• Software reliability is also defined as the probability that a software system fulfills

its assigned task in a given environment for a predefined number of input cases,

assuming that the hardware and the input are free of error.

• Software Reliability is an essential connect of software quality, composed with

functionality, usability, performance, serviceability, capability, install ability,

maintainability, and documentation

ISO 9000 QUALITY STANDARDS

• The ISO 9000 series was created by the International Organization for

Standardization (ISO) as international requirements and guidelines for quality

management systems.

• It was originally introduced in 1987 and over the years has established itself in the

global economy having been adopted in over 178 countries with over one million

registrations.

• The Current Version is ISO 9001: 2015 of the ISO 9001 Standard.

https://the9000store.com/articles/who-is-iso/
https://the9000store.com/articles/who-is-iso/
https://the9000store.com/iso-9001-2015-requirements/

WHY ISO

• ISO Standards are essential part of an societal institution.

• They Ensure quality and safety of our products and services in International Trade.

• Business can be seen to benefit from ISO standards as they can help cut costs by

improved systems and procedures put in place.

• ISO 9001 is among ISO's best-known standards, and it defines the criteria for

meeting a number of quality management principles. It helps businesses and

organizations be more efficient and improve customer satisfaction.

