

UGC - Autonomous Institute
Accredited by NBA & NAAC with 'A' Grade
Approved by AICTE
Permanently affiliated to JNTUH

COMPUTER SCIENCE ENGINEERING (AIML)

QUESTION BANK

Course Title: COMPUTER ORIENTED STATISTICAL METHODS

Course Code: 23MA303

Regulation : NR23

Course Objectives

To learn theory of probability and probability distributions of single and multiple random variables.

1. The sampling theory and testing of hypothesis and making inferences.

Course Outcomes (CO's)

- 1. Apply the concept of Probability and distribution to some case studies,
- 2. Correlate the material of one unit to the material in other units.
- 3. Resolve the potential misconceptions and hazards in each topics of study.

<u>UNIT-I</u> PROBABILITY

S.No	Questions	BT	CO	PO
	Part – A (Short Answer Questions)			
1	Define conditional probability.		CO1	PO1
		L1		
2	Define pairwise independent events.	L1	CO1	PO3
3	Suppose a continuous random variable X has a	L3	CO1	PO1
	probability density function $f(x)=k(1-x^2)$ for $0 < x < 1$ and			
	f(x)=0 otherwise, then find k.			
4	For the following probability distribution find $E(x)$, $E(x^2)$,	L3	CO1	PO2
	$E[(2x+1)^2]$			
	X -3 6 9			
	P(x) = 1/6 = 1/2 = 1/3			

	5	Write the relation between raw and central moments.	L1	CO1	PO2
(6	An integer is chosen at random from the first 200 positive integers. What is the probability that the integer chosen is divisible by 6 or by 8.	L3	CO1	PO1
,	7	A bag contains 3 white and 5 black balls. If a ball is drawn at random find the probability for it to be black.	L3	PO1	
;	8	Write the formulas of skewness and kurtosis in terms of moments.	L1	CO1	PO1
9	9	A bag contains 50 tickets numbered 1,2, 3,50. Of which 5 are drawn at random and arranged in ascending order of the magnitude. What is the probability that the middle one is 30?	L2,L3	CO1	PO2
1	.0	In a single throw with two dice find the probability of throwing a sum 10.	L3	CO1	PO2
		Part – B (Long Answer Questions)			I
11	a)	State and prove Bayes theorem.	L1	CO1	P01
	b)	Of the three men, the chances that a politician, a businessman or an academician will be appointed as a vice-chancellor (V.C) of a university are 0.5,0.3,0.2 respectively. Probability that research is promoted by these persons if they are appointed as V.C are 0.3,0.7,0.8 respectively.	L1,L3	CO1	P02
		 i) Determine the probability that research is promoted. If the research is promoted what is the probability that V.C is ii) academician? iii) Business man iv) Politician 			
13		The probability density f(x) of a continuous random variable is given by f(x) = ce ^{- x} , -∞ < x, ∞ Show that c=1/2 and i. Find that the mean and variance of the distribution. ii. Find the probability that the variate lies between 0 and 4. iii. Find the probability that x>6.	L3,L4	CO1	PO3

14	a)	In a certain town 40 eyes and 15% have person is selected a	both bi	own ha	ir and b	rown ey		L3,L4	CO1	PO3
		prob ii. If he	ability has broability	own hair that he l own eye that he c	nas brov es, deter	vn eyes mine th	e			
	b)	From a city 3 news is read by 20%, B i A and B are read by both B and C are re read by 2%. What i read at least one pa	%, both y 5%,	L3,L4	CO1					
15	a)	Two aero planes be probability of each respectively. The se misses the target. F	correct econd wind the	ly scorin ill <mark>bom</mark>	ng <mark>a hit</mark> b only i	is 0.3 a f <mark>the</mark> fir	nd 0.2	L2,L4	CO1	PO1
		i. Targe ii. Both	et is hit fails to	score hi	its					
	b)	A sample of 4 item containing 12 items expected number E	of whi	ch 5 are	defecti			L2,L4,L5	CO1	PO2
16		Calculate the first four moments of the following about the arbitrary origin. Also find the moments about the mean.						L3,L5	C01	PO1
		Class	60- 62	63-	66-	69-	72-			
		interval Frequency	5	65	68	71 27	74 8			
1	l	1 requerie	9	10	74	41	U		1	1

<u>UNIT-II</u> MATHEMATICAL EXPECTATIONS AND DISCRETE PROPABIBLITY DISTRIBUTIONS

S. No	Questions	BT	CO	PO
	Part – A (Short Answer Questions)			
1	Define expectation of a random variable X	L1	CO2	PO1
2	Define variance of a random variable X for discrete and continuous cases.	L1	CO2	PO1
3	Let X be a random variable with density function	L3	CO2	PO2

	/ 3			
	$f(x) = \int \frac{x^3}{3}, -1 < x < 2$			
	$f(x) = \begin{cases} \frac{x^3}{3}, -1 < x < 2\\ 0, else \ where \end{cases}$			
	Find the expected value of $g(x)=4x+3$			
4	Let the random variable X represent the number of	L3	CO2	PO2
•	defective parts for a machine when 3 parts are sampled	113	002	102
	from a production line and tested. The following is the			
	probability distribution of X.			
	X 0 1 2 3			
	F(x) 0.51 0.38 0.10 0.01			
	Calculate E(X) and E(X^2).			
5	20% of item produced from a factory are defective. Find	L3	CO2	PO2
	the probability that in a sample of 5 chosen at random			
	P(1 < x < 4).			
6	If the probability of a defective bolt is 0.2 find the mean	L3	CO2	PO2
	and variances of the number of successes.			102
7	Define geometric distribution.	L1	CO2	PO1
8	If a random variable has a Poisson distribution such that	L3	CO2	PO2
8	P(1) = P(2), find mean of the distribution.	L3	CO2	102
9	Using Poisson distribution, find the probability that the	L3	CO2	PO2
	ace of spades will be drawn from a pack of well shuffled			
	cards at least once in 104 consecutive trials.			
10	In 256 set of 12 tosses of a coin, in how many cases one	L3	CO2	PO2
	can expect 8 heads and 4 tails.			
	Part – B (Long Answer Questions)			
11	Seven coins are tossed and the number of heads are	L3,L5	CO2	PO3
	noted. The experiment is repeated 128 times and the	- ,		
	following distribution is obtained. Fit a Binomial			
	Distribution to the following data assuming the coin is			
	unbiased			
	v 0 1 2 2 4 5 6 7			
	x 0 1 2 3 4 5 6 7 f 7 6 19 35 30 23 7 1			
12 a)	Using recurrence formula find the probabilities when	L3,L5	CO2	PO3
	X=0,1,2,3,4 and 5, if the mean of Poisson distribution is 3.	- ,		
b)	If the probability that an individual suffers a bad reaction	L3	CO2	PO2
	from a certain injection is 0.001, determine the	Sec		
	probability that out of 2000 individuals			
	i. Exactly 3			
	ii. More than 2 individuals			
	iii. None			
	i. Exactly 3			
	iii None			

			T	1	1
		iv. More than one individual suffers bad			
		reaction			
13	a)	Derive mean and variance of Geometric Distribution	L1	CO2	PO1
	b)	The weekly demand for a drinking-water product, in	L3	CO2	PO2
		thousands of liters, from a local chain of efficiency stores			
		is a continuous random variable X having the probability			
		density. Find mean and variance.			
		$f(x) = \begin{cases} 2(x-1); 1 < x < 2 \\ 0; else \ where \end{cases}$			
		(o, etse where			
14		Out of 800 families with 5 children each, how many	L3,L4,L5	CO2	PO3
		would you expect to have	- , , -		
		a. 3boys			
		b. 5girls			
		c. At least one boy			
		d. Mean			
		e. Variance			
15	a)	Derive mean and variance of Poisson distribution	L1	CO2	PO1
	b)	A die is tossed until 6 appears. Find the probability that it	L2	CO2	PO2
	,	must be cast more than 5 times.			
16	a)	If a Poisson Distribution is such that $\frac{3}{2}P(X=1) =$	L2	CO2	
		P(X=3). Find	600		PO2
		i. P(X≥1)			
		ii. P(X≤3)			
	b)	Calculate the variance of $g(X)=2X+3$, where X is a	L3	CO2	PO2
	,	random variable with the following probability	-3000		
		distribution	98:_		
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		F(x) 1/4 1/8 1/2 1/8			

<u>UNIT-III</u> CONTINUOUS PROBABILITY DISTRIBUTION

S.No	Questions	BT	CO	PO
	Part – A (Short Answer Questions)			
1	State the conditions under which Normal distribution is a limiting case of Binomial.	L1	CO3	PO1
2	If X is a Normal variate with mean 30 and standard deviation 5. find $P(26 \le X \le 40)$.	L2	CO3	PO2
3	Define Normal distribution.	L1	CO3	PO1

4	1	Define statistic and standard error of a statistic.	L1	CO3	PO1
-	5	Find the value of the finite population correction factor for n=10 and N=100.	L3	CO3	PO2
(6	A mobile conversation follows an Exponential distribution $f(x) = \frac{1}{3}e^{-x/3}$. What is the probability that the conversation takes more than 5 mins.	L3	CO3	PO2
7	7	Define Uniform Distribution and write its mean and variance.	L1	CO3	PO1
8	3	The variance of a population is 2. The size of the sample collected from the population is 169. What is the standard error of mean.	L3	CO3	PO2
9		Three masses are measured as 62.34,20.48,35.97kgs with standard deviation 0.54,0.21,0.46 kgs. Find the mean and standard deviation of the sum of the masses.	L3	CO3	PO2
10		A population consists 5,10,14,18,13,24. Consider all possible samples of size two which can be drawn without replacement from the population. Find mean and variance of the population.	L3	CO3	PO2
		Part – B (Long Answer Questions)			
11	a)	In a normal distribution 7% of the items are under 35 and 89% are under 63. Determine the mean and variance of the distribution	L4,L5	CO3	PO3
	b)	If the masses of 300 students are normally distributed with mean 68 kgs and standard deviation 3kgs how many students have masses i. Greater than 72kgs ii. Less than or equal to 64 kgs	L3	CO3	PO2
12	a)	A sample of 26 bulbs gives a mean life of 990 hours with a standard deviation of 20 hours. The manufacturer claims that the mean of bulbs is 1000hrs. is the sample not up to standard	L3	CO3	PO2
	b)	The means of two random samples of sizes 9 and 7 are 196.42 and 198.82 respectively. The sum of the squares of the deviations from the mean are 26.94 and 18.73 respectively. Can the sample be considered to have been from the same normal population	L3	CO3	PO2
13	a)	Memory capacity of 10 students were tested before and after training Before 12 14 11 8 7 10 3 0 5 6 After 15 16 10 7 5 12 10 2 3 8 Test whether the intensive training is useful at 5% level of significance.	L4,L5	CO3	PO3

	1						1		1		
	b)	The number of autom					L3	CO3	PO2		
		community are as follo frequencies in agreem									
		1	accident								
14	a)		conditions were same during this 10-week period Find the probability that out of 100 patients between 84								
1.	α,	95 inclusive will surv		_			L3	CO3	PO2		
		chances of survival is (1	C						
	b)	Given the following co	ntingency t	able for h	air color	and eye	L3	CO3	PO2		
		color. Find the value of	f χ^2 . Is there	good ass	ociation	between					
		the two.									
			TT .	1							
			Hair c		D1 1	T . 1					
		D1	Fair lue 15	Brown 5	Black	Total					
			lue 15 rey 20	10	20	50					
			rown 25	15	20	60					
			otal 60	30	60	150					
15		The nicotine contents i					L2,L3	CO3	PO2		
		tobacco were found to	_		1		,				
			4 27 26	21 25	-						
		Sample A 24		21 25	26						
		Sample B 27 Can it be said the		31 22	36	na fram					
		the same norma		-	iave con	ie mom					
		the same norma	п роринию								
16		A population consists of	of five numl	pers 2,3,6	,8,11. Co	onsider	L2,L3	CO3	PO2		
		all possible samples of	size two wl	hich can b	e drawn	with					
		replacement from this	population.	Find							
		; т	ha maan af	the nonul	lation						
			The mean of The standard								
			opulation.	deviation	1 of the						
		•	The mean of	sampling	distribu	tions of					
			neans and	samping	, arsarrou	MOIIS OI					
			The standard	deviation	of the	sampling					
			istributions			гг					

<u>UNIT-IV</u> TESTING OF HYPOTHESIS- LARGE SAMPLE

S.No	Questions	BT	CO	PO
	Part – A (Short Answer Questions)			
1	Define Type-I and Type-II error	L1	CO4	PO1
2	Define critical region and acceptance region.	L1	CO4	PO1
3	Explain Null and Alternative Hypothesis.	L4	CO4	PO1
4	Write Standard error formula for Method of Substitution and Method of Pooling in Proportions.	L1	CO4	PO1

		1					T	1	1
	5	11795 an	n and standard on and 14054 respective interval for the	tively. I	f n=50	• •	L3	CO4	PO1
	6		tossed 256 times times. If the did			up with an even d the test statistic	L3	CO4	PO1
,	7		$00, \bar{x} = 40, \mu =$ ce limits for the			nen find the 95%	L1	CO4	PO1
	A random sample of 500 pineapples was taken from a large consignment and 65 were found to be bad. Find the percentage of bad pineapples in the consignment.				L2,L3	CO4	PO1		
9	Given $n_1 = 1200$, $n_2 = 900$, $P_1 = 0.3$, $P_2 = 0.25$ then find the test statistic value for difference of two proportions of large samples.					L2	CO4	PO1	
1	10 Define Level of Significance.				L1	CO4	PO1		
			Part -	- B (Loi	ng An	swer Questions)			
11	a)	Can this		a s <mark>amp</mark> le	e from	weight of 70kgs. a population with ation 25kgs.	L3,L4	CO4	PO2
	b)	Explain t	_	ed in th	e proc	eedure for testing of	L2,L4,L5	CO4	PO3
12							L1,L4,L5	CO4	PO3
	b) Samples of students were drawn from two universities and from their weights in kilograms, mean and standard deviation are calculated and shown below. Make a large sample test to test the significance of the difference between the means						L3,L4	CO4	PO2
		1994	T	Mean	S.D	Size of the sample	160		
		36.54	University A University B	55 57	10	100	100		
		<u> </u>	Omversity D	JI	1J	100	1		<u> </u>

13	a)	A die was thrown 9000 times and of these 3220 yielded a 3 or 4. Is this consistent with the hypothesis that the die was unbiased?	L2,L3	CO4	PO3
	b)	Random samples of 400 men and 600 women were asked whether they would like to have a flyover near their residence. 200 men and 325 women were in favor of the proposal. Test the hypothesis that proportions of men and women in favor of proposal are same at 5% level.	L3,L4	CO4	PO3
14	a)	A cigarette manufacturing firm claims that its brand A line of cigarettes outsells its brand B by 8%. If it is found that 42 out of a sample of 200 smokers prefer brand A and 18 out of another sample of 100 smokers prefer brand B, test whether the 8% difference is a valid claim.	L3,L4	CO4	PO3
	b)	In two large populations, there are 30% and 25% respectively of fair-haired people. Is this difference likely to be hidden in samples of 1200 and 900 respectively from the two populations.	L3,L4	CO4	PO3
15	a)	Write a short note on one-tailed and two-tailed tests.	L1,L4	CO4	PO1
	b)	Explain Type-I and Type-II errors in detail with one example each.	L1,L4	CO4	PO1
16	a)	It is claimed that a random sample of 49 tyres has a mean life of 15200kms. This sample was drawn from a population whose mean is 15150kms and a standard deviation 1200 kms. Test the significance at 0.05 level for H_1 : $\mu \neq 15200$	L1,L3	CO4	PO2
	b)	In a sample of 1000 people in Telangana 540 are rice eaters and the rest are wheat eaters. Can we assume that both rice and wheat are equally popular in this state at 1% level of significance.	L3,L4	CO4	PO3

<u>UNIT-V</u> CORRELATION AND REGRESSION

S.No	Questions	BT	CO	PO							
Part – A (Short Answer Questions)											
1	Define correlation and regression.	L1	CO5	PO1							
2	Write a short note on types of correlation.	L1	CO5	PO1							
3	Criticize the following: Regression coefficient of Y on X is 0.7 and that of X on Y is 3.2.	L2,L4	CO5	PO2							
4	If θ is the angle between two regression lines and standard deviation of Y is twice the standard deviation of X and r=0.25, find tan θ .	L2,L3	CO5	PO1							

5	i	From the following data calculate correlation coefficient and standard deviation of Y, given $b_{xy} = 0.85$, $b_{yx} = 0.89$ and $\sigma_x = 3$.	L2,L3	CO5	PO1
6)	Find the regression line of X on Y and Yon X. given $\overline{X} = 83.67$, $\overline{Y} = 88.42$, $b_{xy} = 0.795$, $b_{yx} = 0.59$	L2,L3	CO5	PO1
7	,	Write the formula for correlation coefficient for Bivariate data.	L1	CO5	PO1
8	}	Write the formula for regression of Bivariate data.	L1	CO5	PO1
9)	Write the properties of correlation coefficient.	L1	CO5	PO1
10	0	Give a short note on Karl Pearson's coefficient of correlation.	L1	CO5	PO1
		Part – B (Long Answer Questions)			l
11	a)	Psychological tests of Intelligence and of engineering ability were applied to 10 students. Here is a record of ungrouped data showing intelligence ratio (I.R) and Engineering ratio (E.R). Calculate the coefficient of correlation. A B C D E F G H I J	L4,L5	CO5	PO3
		I.R 105 104 102 101 100 99 98 96 93 92 E.R 101 103 100 98 95 96 104 92 97 94			
	b)	Following are the rank obtained by 10 students in two subjects' statistics and Mathematics. To what extent the knowledge of the students in two subjects is related. statistics 1 2 3 4 5 6 7 8 9 10 Mathematics 2 4 1 5 3 9 7 10 6 8	L4,L5	CO5	PO4
12	a)	x 68 64 75 50 64 80 75 40 55 64 y 62 58 68 45 81 60 68 48 50 70	L4,L5	CO5	PO3
	b)	Given the following information regarding a distribution $N = 5, \bar{X} = 10, \bar{Y} = 20, \sum (X - 4)^2 = 100, \sum (Y - 10)^2 = 160$. Find the Regression coefficients and correlation coefficient.	L3	CO5	PO2
13	a)	Calculate the regression equations of Y on X from the data given below, taking deviations from actual means of X and Y. Price (Rs.) 10 12 13 12 16 15 Amount 40 38 43 45 37 43 Demanded	L3,L4	CO5	PO3
	b)	Fit a second-degree polynomial to the following data by the method of least squares x 10 12 15 23 10 y 14 17 23 25 21	L3	CO5	PO3
14	a)	Using the method of least square determine the constants a and b such that $y = ae^{bx}$ fits the following data.	L2,L3	CO5	PO2

													1	1	l
			X	0	0.5	1	1.5	2	2.5	5					
			У	0.10		5 2.15	9.15	40.35		0.75					
	b)	Calcula	te K	Carl Po	earsor	's corre	lation c	coefficie	ent f	or the	follo	wing	L2,L3	CO5	PO2
	·	paired of													
			Y	28		40 38 33 34		3 40 6 28	32	36	33				
		Whatir		11						36	38				
15		What inference would you draw from the estimate. Calculate coefficient of correlation between the marks obtained by a													PO3
13		batch of 100 students in Accountancy and statistics are given below.										•	L4,L5		103
		baten o				11 7 10000	intuitey	and sta	шы	cs are	<i>5</i> 1100	n ociow.			
				arks iı				arks in		-					
			Statistics		20-	30-	40-		0-	60-	Total		CO5		
					30	40	50	6	0	70	1 -				
			15-25		5	9	3	-		-	17				
				25-35			10	25	2		-	37			
			35-45			1	12	1		5	15 25				
				45-55 55-65			+	4	4		2	6			
			Total		5	20	44	2		7	100				
		10tai 3 20 44 24 7 100													
16		The foll	lowi	ing ar	e the	marks ob	otain <mark>ed</mark>	by 132	stuc	dents	in tes	t X and	L4,L5	CO5	PO3
		test Y.													
			X	v	30-40	40-50	0-50 50-60 60-70 70-80 Total		tal						
					30-40 2	5	3	0 00-7	70	70-80	10				
					1	8	12	6			27				
				-50	1	5	22	14		1	42				
				-60		2	16	9		2	29				
				-70		1	8	6		1	16				
				-80			2	4		2	8				
			To	tal	3	21	63	39		6	132				
		Calculate correlation coefficients and regression equations													

^{*} Blooms Taxonomy Level (BT) (L1 – Remembering; L2 – Understanding; L3 – Applying; L4 – Analyzing; L5 – Evaluating; L6 – Creating)

Course Outcomes (CO)Program Outcomes (PO)

Prepared By:

HOD

P MAHENDRA VARMA
ASSISTANT PROFESSOR
MATHEMATICS, H&S