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Unit 1:
Probability 
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• Events and Event spaces

• Random variables

• Joint probability distributions

• Marginalization, conditioning, chain rule, 
Bayes Rule, law of total probability, etc.

• Structural properties

• Independence, conditional independence

• Mean and Variance



Sample space and Events
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• W : Sample Space, result of an experiment

• If you toss a coin twice W = {HH,HT,TH,TT}

• Event: a subset of W 

• First toss is head = {HH,HT}

• S: event space, a set of events:

• Closed under finite union and complements

• Entails other binary operation: union, diff, etc.

• Contains the empty event and W



Probability Measure
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• Defined over (W,S) s.t.

• P(a) >= 0 for all a in S

• P(W) = 1

• If a, b are disjoint, then 

• P(a U b) = p(a) + p(b)

• We can deduce other axioms from the above ones

• Ex: P(a U b) for non-disjoint event

 P(a U b) = p(a) + p(b) – p(a ∩ b)



Visualization
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• We can go on and define conditional 
probability, using the above visualization



Conditional Probability
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P(F|H) = Fraction of worlds in which H is true that also 
have F true
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Rule of total probability

P Mahendra Varma , Asst Professor 7

A

B1

B2B3

B4

B5

B6B7

( ) ( ) ( )=
ii

BAPBPAp |



Random Variable
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• Almost all the semester we will be dealing with RV

• Concise way of specifying attributes of outcomes

• Modeling students (Grade and Intelligence):

• W =  all possible students

• What are events

• Grade_A = all students with grade A

• Grade_B = all students with grade B

• Intelligence_High = … with high intelligence

• Very cumbersome

• We need “functions” that maps from W to an 
attribute space.

• P(G = A) = P({student ϵ W : G(student) = A})  



Random Variables
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W
High

low

A

B A+

I:Intelligence

G:Grade

P(I = high) = P( {all students whose intelligence is high})



Discrete Random Variables

• Random variables (RVs) which may take on only a countable number 
of distinct values

• E.g. the total number of tails X you get if you flip 100 coins

• X is a RV with arity k if it can take on exactly one value out of {x1, …, 
xk}

• E.g. the possible values that X can take on are 0, 1, 2, …, 100
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Probability of Discrete RV

• Probability mass function (pmf): P(X = xi)

• Easy facts about pmf
▪ Σi P(X = xi) = 1

▪ P(X = xi∩X = xj) = 0 if i ≠ j

▪ P(X = xi U X = xj) = P(X = xi) + P(X = xj) if i ≠ j

▪ P(X = x1 U X = x2 U … U X = xk) = 1 
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Unit 2:
Continuous Random Variables

• Probability density function (pdf) instead of probability mass function 
(pmf)

• A pdf is any function f(x) that describes the probability density in 
terms of the input variable x.
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Probability of Continuous RV

• Properties of pdf
▪  

▪  

• Actual probability can be obtained by taking the integral of pdf
▪ E.g. the probability of X being between 0 and 1 is 
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Cumulative Distribution Function

• FX(v) = P(X ≤ v)

• Discrete RVs
▪ FX(v) = Σvi P(X = vi)

• Continuous RVs
▪  

▪  
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Joint Probability Distribution
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• Random variables encodes attributes

• Not all possible combination of attributes are equally 
likely

• Joint probability distributions quantify this 

• P( X= x, Y= y) = P(x, y)  

• Generalizes to N-RVs

•  

•  
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Conditional Probability
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events



Bayes Rule
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• We know that P(rain) = 0.5

• If we also know that the grass is wet, then 
how this affects our belief about whether it 
rains or not?

 

P rain |wet( ) =
P(rain)P(wet | rain)

P(wet)

 

P x | y( )=
P(x)P(y | x)

P(y)



Bayes Rule cont.
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• You can condition on more variables
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Independence
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• X is independent of Y means that knowing Y 
does not change our belief about X.

• P(X|Y=y) = P(X)  

• P(X=x, Y=y) = P(X=x) P(Y=y)

• The above should hold for all x, y

• It is symmetric and written as X ⊥ Y



Independence

• X1, …, Xn are independent if and only if

• If X1, …, Xn are independent and identically distributed we say they 
are iid (or that they are a random sample) and we write
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 

P(X1 A1,...,Xn An ) = P X i Ai( )
i=1

n



X1, …, Xn ∼ P



CI: Conditional Independence
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• RV are rarely independent but we can still 
leverage local structural properties like 
Conditional Independence.

• X ⊥ Y | Z if once Z is observed, knowing the 
value of Y does not change our belief about X

• P(rain ⊥ sprinkler’s on | cloudy)

• P(rain ⊥ sprinkler’s on | wet grass)



Conditional Independence

• P(X=x | Z=z, Y=y) = P(X=x | Z=z) 
• P(Y=y | Z=z, X=x) = P(Y=y | Z=z) 
• P(X=x, Y=y | Z=z) = P(X=x| Z=z) P(Y=y| 

Z=z) 
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We call these factors : very useful concept !!



Mean and Variance

• Mean (Expectation): 
• Discrete RVs: 

• Continuous RVs:
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Mean and Variance

• Variance: 

• Discrete RVs:

• Continuous RVs: 

• Covariance:

• Covariance:
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 

Var(X) = E((X − )2)

Var(X) = E(X 2) − 2

 

Cov(X,Y ) = E((X − x )(Y − y )) = E(XY) − xy



Properties

• Mean
•  

•  

• If X and Y are independent, 

• Variance
•  

• If X and Y are independent,
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Some more properties

• The conditional expectation of Y given X when the value of X = x is:

• The Law of Total Expectation or Law of Iterated Expectation:
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Some more properties

• The law of Total Variance:
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 

Var(Y) =Var E(Y | X) + E Var(Y | X) 



Unit 3 : Distributions

• Normal distribution: X is continuous R,V

•  N(μ, σ2)

▪ E.g. the height of the entire population
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Common Distributions

• Uniform X U[1, …, N]
▪ X takes values 1, 2, … N

▪ P(X = i) = 1/N

▪ E.g. picking balls of different colors from a box

• Binomial X Bin(n, p)
▪ X takes values 0, 1, …, n

▪  

▪ E.g. coin flips
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UNIT 4 
Test of hypothesis

• Given observations from a model
• What (conditional) independence assumptions hold?   

• Structure learning

• If you know the family of the model (ex, multinomial), What are the value of 
the parameters: MLE, Bayesian estimation.

• Parameter learning
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Chi Square Test for Independence
(Example)

Republican Democrat Independent Total

Male 200 150 50 400

Female 250 300 50 600

Total 450 450 100 1000
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• State the hypotheses

H0: Gender and voting preferences are independent. 

Ha: Gender and voting preferences are not independent

• Choose significance level 

Say, 0.05



Chi Square Test for Independence

• Analyze sample data
• Degrees of freedom = 

 |g|-1 * |v|-1 = (2-1) * (3-1) = 2

• Expected frequency count =

Eg,v = (ng * nv) / n

Em,r = (400 * 450) / 1000 = 180000/1000 = 180
Em,d= (400 * 450) / 1000 = 180000/1000 = 180
Em,i = (400 * 100) / 1000 = 40000/1000 = 40
Ef,r = (600 * 450) / 1000 = 270000/1000 = 270
Ef,d = (600 * 450) / 1000 = 270000/1000 = 270
Ef,i = (600 * 100) / 1000 = 60000/1000 = 60
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Republican Democrat Independent Total

Male 200 150 50 400

Female 250 300 50 600

Total 450 450 100 1000



Chi Square Test for Independence

• Chi-square test statistic

• Χ2 = (200 - 180)2/180 + (150 - 180)2/180 + (50 - 40)2/40 + 

  (250 - 270)2/270 + (300 - 270)2/270 + (50 - 60)2/40

• Χ2 = 400/180 + 900/180 + 100/40 + 400/270 + 900/270 +

  100/60

• Χ2 = 2.22 + 5.00 + 2.50 + 1.48 + 3.33 + 1.67 = 16.2
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Republican Democrat Independent Total

Male 200 150 50 400

Female 250 300 50 600

Total 450 450 100 1000



Chi Square Test for Independence

• P-value
• Probability of observing a sample statistic as extreme as the test statistic

• P(X2 ≥ 16.2) = 0.0003

• Since P-value (0.0003) is less than the significance level (0.05), we 
cannot accept the null hypothesis

• There is a relationship between gender and voting preference
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UNIT 5:
CORRELATION AND REGRESSION 
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Definition Correlation is a statistical tool which studies the relationship b/w 2 variables & 

correlation analysis involves various methods & techniques used for studying & measuring the 

extent of the relationship b/w them. 

Two variables are said to be correlated if the change in one variable results in a corresponding 

change in the other. 

The Types of Correlation 

1) Positive and Negative Correlation: If the values of the 2 variables deviate in the same 

direction 
i.e., if the increase in the values of one variable results in a corresponding increase in the values 

of othervariable (or) if the decrease in the values of one variable results in a corresponding 

decrease in the values of other variable is called Positive Correlation. 

e.g. Heights & weights of the individuals If the increase (decrease) in the values of one variable 

results in a corresponding decrease (increase) in the values of other variable is called Negative 

Correlation. 

e.g, Price and demand of a commodity. 

 

2) Linear and Non-linear Correlation:The correlation betweentwo variables is said to be 

Linear if the corresponding to a unit change in one variable there is a constant change in the other 

variable over the entire range of the values (or) two variables𝑥, 𝑦are said to be linearly related if 

there exists a relationship of the form y = a + bx. 
e.g when the amount of output in a factory is doubled by doubling the number of workers. 

Two variables are said to be Non-linear or curvilinear if corresponding to a unit change 

in one variable the other variable doesnot change at a constant rate but at fluctuating rate. 

i.eCorrelation is said to be non-linear if the ratio of change is not constant. In other words, 

when all the points on the scatter diagram tend to lie near a smooth curve, the correlation is 

saidto be non-linear (curvilinear). 

 



1) Partial and Total correlation: The study of two 

variables excluding some other variablesis called Partial 

Correlation.

e.g. We study price and demand eliminating the supply. In 

Total correlation all the facts are taken into account.

e.g Price, demand &supply ,all are taken into account.

1) Simple and Multiple correlation:When we study only 

two variables, the relationship is described as Simple 

correlation.
E.g quantity of money and price level, demand and price.
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The following are scatter diagrams of Correlation.
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Rank Correlation Coefficient

Charles Edward Spearman found out the method of 

finding the Coefficient of correlation by ranks. 

This method is based on rank & is useful in dealing 

with qualitative characteristics such as morality, 

character,

 intelligence and beauty. Rank correlation is applicable 

to only to the individual observations.

formula: ρ = 6  ∑ D2
N(N2–1)
where :ρ - Rank Coefficient of correlation

D2- Sum of the squares of the differences of two ranks

N- Number of paired observations.
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Properties

•The value ofρlies between+1 and − 1.

•If ρ = 1, then there is complete agreement in the order of the ranks

  & the direction of the rank is same.

•Ifρ = −1, then there is complete disagreement in the order of the ranks &

 they are in opposite directions.
Equal or Repeated ranks

If any 2 or more items are with same value the in that case common ranks are

 given to repeated items.

 The common rank is the average of the ranks which these items 

would have assumed,

 if they were different from each other and the next item will get the rank next to

 ranks already assumed.

∑ D2+ 1 (m3–m)+ 1 (m3–m)….
Formula:ρ = 1 − 6{ 12 12 }
N3–N
where m =the number of items whose ranks are common.

N-Number of paired observations.

D2- Sum of the squares of the differences 
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REGRESSION

In regression we can estimate value of one variable 

with the value of the other variable 

which is known. The statistical method which helps us 

to estimate the unknown

 value of one variable from the known value of the 

related variable is called ‘Regression’.

 The line described in the average relationship b/w 2 

variables is known as Line of Regression.
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