UNIT-I

Exact Differential Equations:

Def: Let $\mathrm{M}(\mathrm{x}, \mathrm{y}) \mathrm{dx}+\mathrm{N}(\mathrm{x}, \mathrm{y}) \mathrm{dy}=0$ be a first order and first degree Differential Equation where $M \& N$ are real valued functions of x, y. Then the equation $M d x+N d y=0$ is said to be an exact Differential equation if a function f . \ni

$$
\mathrm{d}[\mathrm{f}(\mathrm{x}, \mathrm{y})]=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

Condition for Exactness: If $\mathrm{M}(\mathrm{x}, \mathrm{y}) \& \mathrm{~N}(\mathrm{x}, \mathrm{y})$ are two real functions which have continuous partial derivatives then the necessary and sufficient condition for the Differential equation $M d x+N d y=0$ is to be exact is that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Hence solution of the exact equation $\mathrm{M}(\mathrm{x}, \mathrm{y}) \mathrm{dx}+\mathrm{N}(\mathrm{x}, \mathrm{y}) \mathrm{dy}=0$. Is

$$
\begin{aligned}
& \int M d x \quad+\int N d y=c . \\
& (\mathrm{y} \text { constant }) \quad(\text { terms free from } \mathrm{x}) .
\end{aligned}
$$

PROBLEMS:

1)Solve $\left(1+e^{\frac{x}{4}}\right) \mathrm{dx}+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) \cdot \mathrm{dy}=0$

Sol: Hence

$$
\begin{aligned}
& \mathrm{M}=1+e^{\frac{x}{y}} \& \mathrm{~N}=e^{\underline{y}}\left(1-\frac{x}{y}\right) \\
& \left.\left.\frac{\partial M}{\partial y}=e^{\frac{x}{y}}\left(\frac{-x}{y^{2}}\right) \& \quad \frac{\partial N}{\partial x}=e^{\frac{x}{y}} \right\rvert\, \frac{-1}{y}\right)+\left(1-\frac{x}{y}\right) e^{\frac{x}{y}}\left(\frac{1}{y}\right) \\
& \frac{\partial M}{\partial y}=e^{\frac{x}{y}}\left(\frac{-x}{y^{2}}\right) \quad \& \quad \frac{\partial N}{\partial x}=e^{\frac{x}{y}}\left(\frac{-x}{y^{2}}\right) \\
& \quad \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \quad \text { equation is exact }
\end{aligned}
$$

General solution is

$$
\int M d x+\int N d y=\mathrm{c} .
$$

(y constant) (terms free from x)

$$
\begin{aligned}
& \int\left(1+e^{\frac{x}{y}}\right) d x+\int 0 d y=\mathrm{c} . \\
& =>x+\frac{\mathrm{e}^{\frac{\mathrm{x}}{y}}}{\frac{1}{\mathrm{y}}}=\mathrm{c} \\
& =>x+y e^{\frac{x}{y}}=\mathrm{C}
\end{aligned}
$$

2. $\left(e^{y}+1\right) . \cos \mathrm{dx}+e^{y} \sin x d y=0$.

Ans: $\left(e^{y}+1\right) . \sin \mathrm{x}=\mathrm{c} \quad \frac{\partial \mathrm{M}}{\partial y}=\frac{\partial N}{\partial x}=e^{x} \cos \mathrm{X}$
3. $(\mathrm{r}+\sin \theta-\cos \theta) d r+\mathrm{r}(\sin \theta+\cos \theta) \mathrm{d} \theta=0$.

Ans: $\quad \mathrm{r}^{2}+2 \mathrm{r}(\sin \theta+\cos \theta)=2 c$

$$
\frac{\partial M}{\partial r}=\frac{\partial N}{\partial \theta}=\sin \theta+\cos \theta .
$$

4. Solve $\left[y\left(1+\frac{1}{2}\right)+\cos y\right] d x+[x+\log x-x \sin y] d y=0$.

Sol: hence $\mathrm{M}=\mathrm{y}\left(1+\frac{1}{x}\right)+\cos \mathrm{y} N=x+\log \mathrm{x}-\mathrm{x} \sin \mathrm{y}$.

$$
\frac{\partial M}{\partial y}=1+\frac{1}{x}-\operatorname{siny} \quad \frac{\partial N}{\partial x}=1+\frac{1}{x}-\sin y
$$

$\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$ so the equation is exact
General sol $\int M d x+\int N d y$
$=\mathrm{c} .(\mathrm{y}$ constant) \quad (terms free from
$\mathrm{x})$

$$
\int\left[y+\frac{y}{\sim}+\cos y\right] d x \quad+\int o \cdot d y=\mathrm{c} .
$$

$\Rightarrow \mathrm{Y}(\mathrm{x}+\log \mathrm{x})+\mathrm{x} \cos \mathrm{y}=\mathrm{c}$.
5. $y \sin 2 x d x-\left(y^{2}+\cos x\right) . d y=0$.
6. $(\cos x-x \cos y) d y-(\sin y+(y \sin x)) d x=0$

Sol: $\quad N=\cos x-x \cos y \& M=-\sin y-y \sin x$

$$
\begin{aligned}
& \frac{\partial N}{\partial x}=-\sin \mathrm{x}-\cos \mathrm{y} \quad \frac{\partial M}{\partial y}=-\cos \mathrm{y}-\sin \mathrm{x} \\
& \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \Rightarrow \text { the equation is exact. }
\end{aligned}
$$

General sol $\int M d x+\int N d y$
$=\mathrm{c}$. (y constant) (terms free from
x)

$$
\begin{aligned}
& \Rightarrow \int(-\sin y-y \sin x) \cdot d x+\int o \cdot d y=c \\
& \Rightarrow-x \sin y+y \cos x=c \\
& \Rightarrow y \cos x-x \sin y=c .
\end{aligned}
$$

7. $\left(\sin \mathrm{x} \cdot \sin \mathrm{y}-\mathrm{x} \boldsymbol{e}^{y}\right) \mathrm{dy}=\left(e^{y}+\cos \mathrm{x}-\cos \mathrm{y}\right) \mathrm{dx}$

Ans: $x e^{y}+\sin x . \cos y=c$.
8. $\left(x^{2}+y^{2}-a^{2}\right) x d x+\left(x^{2}-y^{2}-b^{2}\right) \cdot y \cdot d y=0$

Ans: $x^{4}+2 x^{2} y^{2}-2 a^{2} x^{2}-2 b^{2} y^{2}=c$.

REDUCTION OF NON-EXACT DIFFERENTIAL EQUATIONS TO EXACT USING INTEGRATING FACTORS

Definition: If the Differential Equation $\mathrm{M}(\mathrm{x}, \mathrm{y}) \mathrm{dx}+\mathrm{N}(\mathrm{x}, \mathrm{y}) \mathrm{dy}=0$. Can be made exact by multiplying with a suitable function $u(x, y) \neq 0$. Then this function is called an Integrating factor(I.F).

Note: there may exits several integrating factors.

Some methods to find an I.F to a non-exact Differential Equation Mdx+N dy =0

Case -1: Integrating factor by inspection/ (Grouping of terms).

Some useful exact differentials

1. $d(x y) \quad=x d y+y d x$
2. $\mathrm{d}(\underset{y}{x})$
$=\frac{y d x-x d y}{y^{2}}$
3. $\mathrm{d}(\underset{\sim}{x})$
$=\frac{x d y-y d x}{x^{2}}$
4. $\mathrm{d}\left(\frac{x^{x}+y^{2}}{2}\right) \quad=\mathrm{xdx}+\mathrm{y} d \mathrm{y}$
5. $\mathrm{d}\left(\log \left(\frac{y}{x}\right)\right) \quad=\frac{x d y-y d x}{x y}$
6. $\mathrm{d}\left(\log \left(\frac{x}{y}\right)\right) \quad=\frac{y d x-x d y}{x y}$
7. $\mathrm{d}\left(\tan ^{-1}\left(\frac{x}{y}\right)\right)=\frac{y d x-x d y}{x^{2}+y^{2}}$
8. $\mathrm{d}\left(\tan ^{-1}\left(\frac{3}{x}\right)\right)=\frac{x d y-y d x}{x^{2}+y^{2}}$
9. $\mathrm{d}(\log (\mathrm{xy}))=\frac{x d y+y d x}{x y}$
10. $\mathrm{d}\left(\log \left(x^{2}+y^{2}\right)\right)=\frac{2(x d x+y d y)}{x^{2}+y^{2}}$
11. $\mathrm{d}\left(\frac{e^{x}}{y}\right) \quad=\frac{y e^{x} d x-e^{x} d y}{y^{2}}$

PROBLEMS:

1. Solve $\mathrm{xdx}+\mathrm{y} d \mathrm{y}+\frac{x d y-y d x}{x^{2}+y^{2}}=0$.

Sol: Given equation $\quad \mathrm{xdx}+\mathrm{ydy}+\frac{x d y-y d x}{x^{2}+y^{2}}=0$

$$
\mathrm{d}\left(\frac{x^{2}+y^{2}}{2}\right)+\mathrm{d}\left(\tan ^{-1}\left(\frac{y}{x}\right)\right)=0
$$

on Integrating

$$
\frac{x^{x}+y^{x}}{2}+\tan ^{-1}\left(\frac{y}{x}\right)=\mathrm{c} .
$$

2. Solve $\mathrm{y}\left(\mathrm{x}^{3} \cdot e^{x y}-y\right) \mathrm{dx}+\mathrm{x}\left(\mathrm{y}+\mathrm{x}^{3} \cdot e^{x y}\right) \mathrm{dy}=0$.

Sol: Given equation is on Regrouping
We get $\mathrm{yx}^{3} e^{x y} d x-y^{4} \mathrm{dx}+\mathrm{x}^{2} \mathrm{y} \mathrm{dy}+\mathrm{x}^{4} e^{x y} \mathrm{dy}=0$.

$$
\mathrm{X}^{3} e^{x y}(\mathrm{ydx}+\mathrm{xdy})+\mathrm{y}(\mathrm{xdy}-\mathrm{ydx})=0
$$

Dividing by x^{3}

$$
\begin{gathered}
e^{x y}(\mathrm{ydx}+\mathrm{xdy})+\left(\frac{y}{y}\right) \cdot\left(\frac{x d y-y d x}{\sim^{z}}\right)=0 \\
\mathrm{~d}\left(e^{x y}\right)+\left(\frac{y}{x}\right) \cdot \mathrm{d}+\left(\frac{y}{x}\right)=0
\end{gathered}
$$

on Integrating

$$
e^{x y}+1 / 2\left(\frac{y}{x}\right)^{2}=C \text { is required G.S. }
$$

3. $(1+x y) x d y+(1-y x) y d x=0$

Sol: given equation is $(1+x y) x d y+(1-y x) y d x=0$.

$$
(x d y+y d x)+x y(x d y-y d x)=0
$$

Divided by $x^{2} y^{2} \Rightarrow \quad\left(\frac{x d y+y d x}{x^{2} y^{2}}\right)+\left(\frac{x d y-y d x}{x y}\right)=0$

$$
\left(\frac{d(x y)}{x^{2} y^{2}}\right)+\frac{1}{y} \mathrm{dy}-\frac{1}{x} \mathrm{dx}=0 .
$$

On integrating $=>\frac{1}{\sim}+\log y-\log x=\log c$

$$
-\frac{1}{x y}-\log x+\log y=\log c
$$

4. Solve $y d x-x d y=a\left(x^{2}+y^{2}\right) d x$

Ans:

$$
\frac{y d x-x d y}{\left(x^{2}+y^{2}\right)}=\mathrm{adx}
$$

$$
\mathrm{d}\left(\tan ^{-1} \frac{\underline{y}}{x}\right)=\mathrm{adx}
$$

integrating on $\tan ^{-1} \frac{y}{x}=\mathrm{ax}+\mathrm{c}$

Method -2: If $\mathrm{M}(\mathrm{x}, \mathrm{y}) \mathrm{dx}+\mathrm{N}(\mathrm{x}, \mathrm{y}) \mathrm{dy}=0$ is a homogeneous differential equation and $\mathrm{Mx}+\mathrm{Ny} \neq 0$, then $\frac{1}{M x+N y}$ is an integrating factor of $\mathrm{Mdx}+\mathrm{Ndy}=0$.

1. Solve $x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$

Sol: $\quad x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$
Where $M=x^{2} y \quad \& N=\left(-x^{3}-y^{3}\right)$
Consider $\quad \frac{\partial M}{\partial y}=\mathrm{x}^{2} \& \quad \frac{\partial N}{\partial x}=-3 \mathrm{x}^{2}$

$$
\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \quad \text { equation is not exact }
$$

But given equation(1) is homogeneous D.Equation then
So $\mathrm{Mx}+\mathrm{Ny}=\mathrm{x}\left(\mathrm{x}^{2} \mathrm{y}\right)-\mathrm{y}\left(\mathrm{x}^{3}+\mathrm{y}^{3}\right)=-\mathrm{y}^{4} \neq 0$.

$$
\text { I.F }=\frac{1}{M x+N y}=\frac{-1}{y^{4}}
$$

Multiplying equation (1) by $\frac{-1}{y^{4}}$

$$
\begin{align*}
& =>\quad \frac{x^{2} y}{-y^{4}} \mathrm{dx}-\frac{x^{3}+y^{3}}{-y^{4}} \mathrm{dy}=0 \tag{2}\\
& =>\quad-\frac{x^{2}}{y^{3}} \mathrm{dx}-\frac{x^{3}+\mathrm{y}^{3}}{-\mathrm{y}^{4}} d y=0
\end{align*}
$$

This is of the form $M_{1} d x+N_{1} d y=0$

$$
\begin{aligned}
& \text { For } \mathrm{M}_{1}=\frac{-\mathrm{x} 2}{\mathrm{y}^{3}} \& \mathrm{~N}_{1}=\frac{\mathrm{x}^{3}+\mathrm{y}^{3}}{-\mathrm{y}^{4}} \\
\Rightarrow \quad & \frac{\partial M 1}{\partial y}=\frac{3 x^{2}}{y 4} \& \frac{\partial N 1}{\partial x}=\frac{3 \mathrm{x}^{2}}{-\mathrm{y}^{4}} \\
\Rightarrow \quad & \quad \frac{\partial M 1}{\partial y}=\frac{\partial N 1}{\partial x} \text { equation (2) is an exact D.equation. }
\end{aligned}
$$

General sol $\int M d x+\int N d y=\mathrm{c}$.
(y constant) (terms free from x in N)

$$
\begin{aligned}
& \Rightarrow \quad \int \frac{-x^{3}}{y^{8}} d x+\int \frac{1}{y} d y=\mathrm{c} . \\
& \Rightarrow \quad \frac{-x^{8}}{3 y^{8}}+\log |\mathrm{y}|=\mathrm{c} . / /
\end{aligned}
$$

2. Solve $y^{2} \mathrm{dx}+\left(x^{2}-x y-y^{2}\right) d y=0$

Ans: $(x-y) . y^{2}=c 1^{2}(x+y)$.
3. Solve $y\left(y^{2}-2 x^{2}\right) d x+x\left(2 y^{2}-x^{2}\right) d y=0$

Sol: it is the form Mdx $+\mathrm{Ndy}=0$

$$
\text { Where } \mathrm{M}=\mathrm{y}\left(y^{2}-2 x^{2}\right) \mathrm{N}=\mathrm{x}\left(2 y^{2}-x^{2}\right)
$$

Consider $\quad \frac{\partial M}{\partial y}=3 \mathrm{y}^{2}-2 \mathrm{x}^{2} \& \quad \frac{\partial N}{\partial x}=2 \mathrm{y}^{2}-3 \mathrm{x}^{2}$

$$
\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \quad \text { equation is not exact. }
$$

Since equation(1) is homogeneous D.Equation then

$$
\text { Consider } \begin{aligned}
\mathrm{Mx}+\mathrm{N} \mathrm{y}= & \mathrm{x}\left[\mathrm{y}\left(y^{2}-2 x^{2}\right)\right]+\mathrm{y}\left[\mathrm{x}\left(2 y^{2}-x^{2}\right)\right] \\
& =3 \mathrm{xy}\left(y^{2}-x^{2}\right) \neq 0 . \\
\Rightarrow \quad \text { I.F. }= & \frac{1}{3 \mathrm{xy}\left(y^{2}-x^{2}\right)}
\end{aligned}
$$

Multiplying equation (1) by $\frac{1}{3 x y\left(y^{2}-x^{2}\right)}$ we get

$$
=>\frac{y\left(y^{2}-x^{2}\right)}{3 x y\left(y^{2}-x^{2}\right)} d x+=\frac{x\left(y^{2}-x^{2}\right)}{3 x y\left(y^{2}-x^{2}\right)} \text { dy }=0
$$

=> now it is exact (check)

$$
\frac{\left(y^{2}-x^{2}\right)-x^{2}}{3 x y\left(y^{2}-x^{2}\right)} \quad \mathrm{dx}+\frac{y^{2}+\left(y^{2}-x^{2}\right)}{3 \mathrm{xy}\left(y^{2}-x^{2}\right)} \mathrm{dy}=0 .
$$

$$
\frac{d x}{x}-\frac{x d x}{y^{2}-x^{2}}+\frac{y d y}{y^{2}-x^{2}}+\frac{d y}{y}=0 .
$$

$$
\left(\frac{d x}{x}+\frac{d y}{y}\right)+\frac{2 y d y}{2\left(y^{2}-x^{2}\right)} \frac{2 x d x}{2\left(y^{2}-x^{2}\right)}=0
$$

$\log \mathrm{x}+\log \mathrm{y}+\frac{1}{2} \log \left(y^{2}-x^{2}\right)-\frac{1}{2} \log \left(y^{2}-x^{2}\right)=c \Rightarrow \mathrm{xy}=\mathrm{c}$
4. $\mathrm{r}\left(\theta^{2}+r^{2}\right) \mathrm{d} \theta-\theta\left(\theta^{2}+2 r^{2}\right) \mathrm{dr}=0$

Ans: $\frac{\theta^{z}}{\sim-z}+\log \theta+\log r^{2}=\mathrm{c}$.

Method- 3: If the equation $M d x+N d y=0$ is of the form $y . f(x y) . d x+x . g(x y) d y=0 \&$ $M x-N y \neq 0$ then $\frac{1}{M x-N y}$ is an integrating factor of $M d x+N d y=0$.

Problems:

1. solve $(x y \sin x y+\cos x y) y d x+(x y \sin x y-\cos x y) x d y=0$.

Sol: ($\mathrm{xy} \sin \mathrm{s} y+\cos x y) \mathrm{ydx}+(\mathrm{xy} \sin \mathrm{xy}-\cos x y) \mathrm{xdy}=0$

$$
\begin{align*}
& \Rightarrow \text { this is the form } y \cdot f(x y) \cdot d x+x \cdot g(x y) d y=0 . \tag{1}\\
& \Rightarrow \text { consider Mx-Ny }
\end{align*}
$$

Here $\mathrm{M}=(\mathrm{xy} \sin \mathrm{x} y+\cos \mathrm{xy}) \mathrm{y}$
$N=(x y \sin x y-\cos x y) x$
Consider Mx-Ny $=2 \mathrm{xycos} x \mathrm{y}$
Integrating factor $=\frac{1}{2 x y \operatorname{cosxy}}$

So equation (1) x I.F

$$
\begin{aligned}
& \Rightarrow \quad \frac{(x y \sin x y+\cos x y) x}{2 x y \cos x y} d x+\frac{(x y \sin x y+\cos x y) y}{2 x y \cos x y} d y=0 . \\
& \Rightarrow \quad\left(\mathrm{y} \tan \mathrm{xy}+\frac{1}{\mathrm{x}}\right) \mathrm{dx}+\quad\left(\mathrm{y} \tan \mathrm{xy}-\frac{1}{\mathrm{y}}\right) \mathrm{dy}=0 \\
& \Rightarrow \quad \mathrm{M}_{1} \mathrm{dx}+\mathrm{N}_{1} \mathrm{dx}=0
\end{aligned}
$$

Now the equation is exact.

General sol $\int \mathrm{M}_{1} \mathrm{dx}+\int \mathrm{N}_{1} \mathrm{dy}=\mathrm{c}$.
(y constant) (terms free from x in N_{1})

$$
\begin{aligned}
& \Rightarrow \int\left(y \tan x y+\frac{1}{x}\right) d x+\int \frac{-1}{y} d y=\mathrm{c} . \\
& \Rightarrow \frac{y \cdot \log |\operatorname{se\theta } x y|}{y}+\log \mathrm{x}+(-\log y)=\log \mathrm{c} \\
& \Rightarrow \log |\sec (\mathrm{xy})|+\log _{y}^{\frac{x}{y}}=\log \mathrm{c} . \\
& \Rightarrow \frac{x}{y} \cdot \operatorname{seexy}=\mathrm{c} .
\end{aligned}
$$

2. Solve $(1+x y) y d x+(1-x y) x d y=0$

$$
\begin{aligned}
\text { Sol : I.F } & =\frac{1}{2 x^{2} y^{2}} \\
& \left.\Rightarrow \int \frac{1}{2 x^{2} y}+\frac{1}{2 x}\right) d x+\int \frac{-1}{2 y} d y=\mathrm{c} \\
& \Rightarrow \frac{-1}{2 x y}+\frac{1}{2} \log \mathrm{x}-\frac{1}{2} \log \mathrm{y}=\mathrm{c} . \\
& \Rightarrow \frac{-1}{x y}+\log \left(\frac{x}{y}\right)=c^{1} \quad \text { where } \mathrm{c}^{1}=2 \mathrm{c} .
\end{aligned}
$$

3. Solve $(2 x y+1) y d x+\left(1+2 x y-x^{3} y^{3}\right) x d y=0$

Ans: $\log y+\frac{1}{x^{2} y^{2}}+\frac{1}{3 x^{5} y^{5}}=c$.
4. solve $\left(x^{2} y^{2}+x y+1\right) y d x+\left(x^{2} y^{2}-x y+1\right) x d y=0$

Ans: $x y-\frac{1}{x y}+\log \left(\frac{x}{y}\right)=\mathrm{c}$.

Method -4: If there exists a single variable function $\int \mathrm{f}(\mathrm{x}) \mathrm{dx}$ such that $\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}$ $=f(x)$, then I.F. of $M d x+N d y=0$ is e

PROBLEMS:

1. Solve $\left(3 x y-2 a y^{2}\right) d x+\left(x^{2}-2 a x y\right) d y=0$

Sol: given equation is the form $M d x+N d y=0$

$$
\begin{aligned}
& \Rightarrow \mathrm{M}=3 \mathrm{xy}-2 \mathrm{a} y^{2} \quad \& \mathrm{~N}=x^{2}-2 a x y \\
& \frac{\partial \mathrm{M}}{\partial y}=3 \mathrm{x}-4 \mathrm{ay} \& \quad \frac{\partial N}{\partial x}=2 \mathrm{x}-2 \mathrm{ay}
\end{aligned}
$$

$$
\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \quad \text { equation not exact }
$$

Now consider $\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=\frac{(3 \mathrm{x}-4 \mathrm{ay})-(2 \mathrm{x}-2 \mathrm{ay})}{(2 \mathrm{x}-2 \mathrm{ay})}$

$$
\Rightarrow \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=\frac{1}{x}=\mathrm{f}(\mathrm{x}) .
$$

$$
\Rightarrow \quad e^{\int \frac{1}{x} d x=\mathrm{x}} \text { is an Integrating factor of (1) }
$$

$$
\text { => equation (1) } \times \mathrm{I} . \mathrm{F}=\text { equation (1) } \mathrm{X} \times
$$

$$
\Rightarrow \frac{\left(3 x y-2 a y^{2}\right)}{1} \quad x d x+\frac{\left(x^{2}-2 a x y\right)}{1} \quad x d y=0
$$

$$
\Rightarrow\left(3 x^{2} y-2 a y^{2} x\right) d x+\left(x^{3}-2 a x^{2} y\right) d y=0
$$

It is the form $\mathrm{M}_{1} \mathrm{dx}+\mathrm{N}_{1} \mathrm{dy}=0$
General sol $\int \mathrm{M}_{1} \mathrm{dx}+\int \mathrm{N}_{1} \mathrm{dy}=\mathrm{c}$.

$$
\begin{aligned}
& =>\int\left(3 x^{2}-2 a y^{2} x\right) d x+\int o d y=\mathrm{c} \\
& =>\mathrm{x}^{3} \mathrm{y}-\mathrm{ax}^{2} \mathrm{y}^{2}=\mathrm{c} . / /
\end{aligned}
$$

2. Solve ydx-xdy+(1+x$\left.x^{2}\right) d x+x^{2} \sin y d y=0$

Sol : given equation is $\left(y+1+x^{2}\right) d x+\left(x^{2} \sin y-x\right) d y=0$.

So consider $\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{M}=\frac{(1-2 x \sin y-x)}{x^{2} \sin y-x}=\frac{-2 x \sin y-x)}{x^{2} \sin y-x}=\frac{-2}{x}$

$$
\text { I.F }=e^{\int g(y) d y}=e^{-2 \int \frac{1}{x} d x}=e^{-2 \log x}=\frac{1}{x^{2}}
$$

Equation (1) X I.F $\quad \Rightarrow \frac{y+1+x^{2}}{x^{2}} d x+\frac{x^{2} \sin y-x}{x^{2}} d y=0$
It is the form of $\mathrm{M} 1 \mathrm{dx}+\mathrm{N} 1 \mathrm{dy}=0$.

$$
\begin{aligned}
\text { Gen soln } \quad & =>\int\left(\frac{y}{x^{2}}+\frac{1}{x^{2}}+1\right) d x+\int \sin y d y=0 \\
& =>\frac{y}{x}-\frac{1}{x}+\mathrm{x}-\cos y=\mathrm{c} . \\
& =>x^{2}-y-1-x \cos y=c x . / /
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{M}=\mathrm{y}+1+x^{2} \quad \& \mathrm{~N}=x^{2} \sin y-x \\
& \frac{\partial M}{\partial y}=1 \quad \frac{\partial N}{\partial x}=2 \mathrm{x} \sin \mathrm{y}-1 \\
& \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}=>\text { the equation is not exact. }
\end{aligned}
$$

3. Solve $2 x y d y-\left(x^{2}+y^{2}+1\right) d x=0$

Ans: $-\mathrm{x}+\frac{y^{2}}{x}+\frac{1}{x}=c$.
4. Solve $\left(x^{2}+y^{2}\right) d x-2 x y d y=0$

Ans: $\quad x^{2}-y^{2}=c x$.

Method -5: For the equation $M d x+N d y=0$ if $\frac{\frac{\partial N}{\partial x} \frac{\partial M}{\partial y}}{M}=g(y)$ (is a function of y alone) then $e^{\int g(y) d y}$ is the Integrating factor of $\mathrm{Mdx}+\mathrm{N} \mathrm{dy}=0$.

Problems:

1. Solve $\left(3 x^{2} y^{4}+2 x y\right) d x+\left(2 x^{3} y^{3}-x^{2}\right) d y=0$

Sol: $\quad\left(3 x^{2} y^{4}+2 x y\right) d x+\left(2 x^{3} y^{3}-x^{2}\right) d y=0$

$$
\begin{equation*}
\text { Here } \mathrm{M} \mathrm{dx}+\mathrm{N} \mathrm{dy}=0 . \tag{1}
\end{equation*}
$$

Where $M=3 x^{2} y^{4}+2 x y \quad \& N=2 x^{3} y^{3}-x^{2}$

$$
\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \quad \text { equation (1) not exact. }
$$

So consider $\frac{\frac{\partial N}{\partial x} \frac{\partial M}{\partial y}}{M}=\frac{-2}{y}=\mathrm{g}(\mathrm{y})$

$$
\text { I.F }=e^{\int g(y) d y}=e^{-2 \int \frac{1}{y} d y}=e^{-2 \log y}=\frac{1}{y^{2}} .
$$

Equation (1) x I.F $\Rightarrow\left(\frac{3 x 2 y 4+2 x y}{y^{2}}\right) d x+\left(\frac{2 x 3 y 3-x 2}{y^{2}}\right) d y=0$
It is the form M1dx + N1 dy $=0$
General sol $\int M 1 d x+\int N 1 d y=\mathrm{c}$.
(y constant) (terms free from x in N 1)

$$
\begin{aligned}
& \Rightarrow \int\left(3 x^{2} y^{2}+\frac{2 x}{y}\right) d x+\int o d y=c . \\
& \Rightarrow \frac{3 x^{5} y^{2}}{3}+\frac{2 x^{2}}{2 y}=\mathrm{c} . \\
& \Rightarrow x^{3} y^{2}+\frac{x^{2}}{y}=\mathrm{c} . / /
\end{aligned}
$$

2. Solve $\left(x y^{3}+y\right) d x+2\left(x^{2} y^{2}+x+y^{4}\right) d y=0$

Sol: $\frac{\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)}{M}=\frac{\left(4 x y^{2}+2\right)-\left(3 x y^{2}+1\right)}{x y^{3}+y}=\frac{1}{y}=\mathrm{g}(\mathrm{y})$.

$$
\text { I.F }=e^{\int g(y) d y}=e^{\int \frac{1}{y} d y} \quad=\mathrm{y} .
$$

Gen sol: $\int(\mathrm{xy} 4+\mathrm{y} 2) d x+\int(2 \mathrm{y} 5) d y=c$

$$
\frac{x^{2} y^{4}}{2}+y^{2} \mathrm{x}+\frac{2 y^{6}}{6}=\mathrm{c}
$$

3. solve $\left(y^{4}+2 y\right) d x+\left(x y^{3}+2 y^{4}-4 x\right) d y=0$

Sol: $\frac{\left(\frac{\partial N}{\partial x} \frac{\partial M}{\partial y}\right)}{M}=\frac{\left(y^{3}-4\right)-\left(4 y^{3}+2\right)}{y^{4}+2 y}=\frac{-3}{y}=\mathrm{g}(\mathrm{y})$.

$$
\mathrm{I} . \mathrm{F}=e^{\int g(y) d y}=e^{-3 J \bar{y}^{a y}} \quad=\frac{1}{y^{s}}
$$

$$
\left(y+\frac{2}{y^{2}}\right) x+y^{2}=c . / /
$$

4 Solve $\left(3 x^{2} y^{4}+2 x y\right) d x+\left(2 x^{3} y^{3}-x^{2}\right) d y=0$
Ans: $x^{3} y^{3}+x^{2}=c y$
5. Solve $\left(y+y^{2}\right) d x+x y d y=0$

Ans: $x+x y=c$.
6. Solve $\left(x y^{3}+y\right) d x+2\left(x^{2} y^{2}+x+y^{4}\right) d y=0$.

Ans: $\left(x^{2}+y^{4}-1\right) e^{x^{2}}=c$.

LINEAR DIFFERENTIAL EQUATION'S OF FIRST ORDER:

Def: An equation of the form $\frac{d y}{d x}+P(x) \cdot y=Q(x)$ is called a linear differential equation of first order in y .
Working Rule: To solve the liner equation $\frac{d y}{d x}+P(x) \cdot y=Q(x)$
first find the Integrating factor I.F $=e^{\int p(x) d x}$
General solution is $\mathrm{y} \times \mathrm{I} . \mathrm{F}=\int Q(x) \times I . F . d x+c$
Note: An equation of the form $\frac{d x}{d y}+p(y) \cdot x=\mathrm{Q}(\mathrm{y})$ is called a linear Differential equation of first order in x .
Then Integrating factor $=e^{\int p(y) d y}$

$$
\text { Gen soln is }=x \mathrm{X} \text { I.F }=\int Q(y) \times \text { I.F. } d y+c
$$

PROBLEMS:

1. Solve $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$

Sol: $\left(1+\mathrm{y}^{2}\right) \frac{d x}{d y}=\left(\tan ^{-1} \mathrm{y}-\mathrm{x}\right)$

$$
\frac{d x}{d y}+\left(\frac{1}{1+y^{2}}\right) \cdot \mathrm{x}=\frac{\tan ^{-1}}{1+y^{2}}
$$

It is the form of $\frac{d x}{d y}+\mathrm{p}(\mathrm{y}) \cdot \mathrm{x}=\mathrm{Q}(\mathrm{y})$

$$
\begin{aligned}
& \text { I.F }=e^{\int p(x) d x}=e^{\int \frac{1}{1+y^{2}} d y}=e^{\tan ^{-1} y} \\
& \quad=>\text { Gen sol is } \quad \text { x. } e^{\tan ^{-1} y}=\int \frac{\tan ^{-1}}{1+y^{2}} \cdot e^{\tan ^{-1} y} d y+\mathrm{c} . \\
& \quad=>\text { x. } e^{\tan ^{-1} y}=\int \mathrm{t} \cdot e^{t} d t+c
\end{aligned}
$$

[put $\tan ^{-1} y=t$

$$
\begin{aligned}
& \left.\Rightarrow \frac{1}{1+y^{2}} d y=d t\right] \\
& \Rightarrow \mathrm{x} \cdot e^{\tan ^{-1} y}=\mathrm{t} \cdot e^{t} \cdot e^{t}+\mathrm{c} \\
& \Rightarrow \quad \mathrm{x} \cdot e^{\tan ^{-1} y}=\tan ^{-1} y \cdot e^{\tan ^{-1} y}-e^{\tan ^{-1} y}+\mathrm{c} \\
& \Rightarrow \mathrm{x}=\tan ^{-1} y-1+\mathrm{c} / e^{\tan ^{-1} y} \text { is the required solution }
\end{aligned}
$$

2. Solve $(x+y+1) \frac{d y}{d x}=1$.

Sol: g iven equation is $(\mathrm{x}+\mathrm{y}+1) \frac{d y}{d x}=1$.

$$
\Rightarrow \quad \frac{d x}{d y}-x=y+1
$$

It is of the form $\frac{d x}{d y}+\mathrm{p}(\mathrm{y}) \cdot \mathrm{x}=\mathrm{Q}(\mathrm{y})$
Where $p(y)=-1 ; Q(y)=1+y$
$=>$ I.F $=e^{\int p(y) d y}=e^{-\int d y}=e^{-y}$
Gen soln $=\mathrm{x}$ X I.F $=\int Q(y) \times I . F . d y+c$

$$
\begin{aligned}
& =>\mathrm{x} \cdot e^{-y}=\int(1+y) e^{-y} d y+c \\
& =>\mathrm{x} \cdot e^{-y}=\int e^{-y} d y+\int y e^{-y} d y+c \\
& =>\quad \mathrm{x} e^{-y}=-e^{-y}-\mathrm{y} \mathrm{x} e^{-y}-e^{-y}+\mathrm{c} \\
& =>\quad \mathrm{x} e^{-y}=-e^{-y}(2+y)+\mathrm{c} . / /
\end{aligned}
$$

3. Solve $y^{1}+y=e^{e^{x}}$

Sol: this is of the form $\frac{d y}{d x}+p(x) \cdot y=\mathrm{Q}(\mathrm{x})$
Where $\mathrm{p}(\mathrm{x})=1 \quad \mathrm{Q}(\mathrm{x})=e^{e^{x}}$

$$
\Rightarrow \quad \text { I.F }=e^{\int p(x) d x} \quad=e^{\int d x}=e^{x}
$$

Gen soln is is yxI.F $=\int Q(x) \times$ I.F. $d x+c$

$$
\Rightarrow \text { y. } e^{x}=\int e^{e^{x}} e^{x} d x+c
$$

$$
\begin{aligned}
& \Rightarrow \text { y. } e^{x}=\int e^{t} t d t+c \quad \text { put } e^{x}=t \\
& =>\text { y. } e^{x}=\mathrm{t} e^{t}-e^{t}+\mathrm{c} \quad e^{x} d x=d t \\
& \quad \Rightarrow \text { y. } e^{x}=e^{e^{x}}\left(e^{x}-1\right)+c .
\end{aligned}
$$

4. Solve $x . \frac{d y}{d x}+y=\log x$

Sol : this is of the form $\frac{d y}{d x}+p(x) y=\emptyset(x)$.

$$
\text { Where } \mathrm{p}(\mathrm{x})=\frac{1}{x} \& \quad \emptyset(x)=\frac{\log x}{x}
$$

$$
\begin{aligned}
& \text { i.e, } \frac{d y}{d x}+\frac{1}{x} \cdot \mathrm{y}=\frac{\log x}{x} \\
& \Rightarrow \quad \text { I.F }=e^{\int p(x) d x}=e^{\int \frac{1}{x} \frac{d x}{x}}=e^{\log x}=\mathrm{x} .
\end{aligned}
$$

Gen soln is is yxI.F $=\int Q(y) \times I . F . d y+c$

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{y} \cdot \mathrm{x}=\int \frac{\log x}{x} x d x+c \\
& \Rightarrow \mathrm{y} \cdot \mathrm{x}=\mathrm{x}(\log \mathrm{x}-1)+\mathrm{c} . / /
\end{aligned}
$$

5. Solve $\left(1+y^{2}\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0$.

Sol: Given equation is $\frac{d x}{d y}+\frac{x}{1+\mathrm{y} 2}=\frac{e^{\tan ^{-1} y}}{1+\mathrm{y}^{2}}$
It is of the form $\frac{d x}{d y}+\mathrm{p}(\mathrm{y}) \cdot \mathrm{x}=\mathrm{Q}(\mathrm{y})$
Where $p(y)=\frac{1}{1+\mathrm{y}^{2}} Q(\mathrm{y})=\frac{\mathrm{g}^{\tan ^{-1} y}}{1+\mathrm{y}^{2}}$.
I.F $=e^{\int p(y) d y}=e^{\int \frac{1}{1+y^{2}} d y}=e^{\tan ^{-1} y}$.

General solution is is $\times \times$ I.F $=\int Q(y) \times I . F . d y+c$.

$$
\begin{aligned}
& =>\mathrm{x} \cdot e^{\tan ^{-1} y} \cdot=\int \frac{e^{\tan ^{-1} y}}{1+y^{2}} e^{\tan ^{-1} y} \cdot \mathrm{dy}+\mathrm{c} \\
& =>\mathrm{x} \cdot e^{\tan ^{-1} y}=\int e^{t} e^{t} \cdot \mathrm{dt}+\mathrm{c}
\end{aligned}
$$

[Note: put $\tan ^{-1} y=\mathrm{t}$

$$
\begin{aligned}
& \left.=>\frac{1}{1+y^{2}} d y=\mathrm{dt}\right] \\
& =>\mathrm{x} \cdot e^{\tan ^{-1} y}=\int e^{2 t} \cdot \mathrm{dt}+\mathrm{c} \\
& \Rightarrow \mathrm{x} \cdot e^{\tan ^{-1} y}=\frac{e^{2 t}}{2}+\mathrm{c} \\
& =>\mathrm{x} \cdot e^{\tan ^{-1} y}=\frac{e^{2 \tan ^{-1} y}}{2}+\mathrm{c} / /
\end{aligned}
$$

6. solve $\frac{d y}{d x}+\frac{y}{x \log x}=\frac{\sin 2 x}{\log x}$

Ans: $y \log \mathrm{x}=\frac{-\cos 2 x}{2}+\mathrm{c}$.
7. $\frac{d y}{d x}+(\mathrm{y}-1) \cdot \operatorname{Cox}=e^{-\sin y} \cos ^{2} \mathrm{x}$

Ans: y. $e^{-\sin y}=\frac{x}{2}+\frac{\sin 2 x}{4}+e^{-\sin y}+\mathrm{c} / /$
8. $\frac{d y}{d x}+\frac{2 x}{1+\mathrm{x}^{2}} \cdot \mathrm{y}=\frac{1}{\left(1+x^{2}\right)^{2}} \quad$ given $\mathrm{y}=0$, where $\mathrm{x}=1$.

Ans: $y(1+x 2)=\tan ^{-1} x-\frac{\pi}{4}$
9. Solve $\frac{d y}{d x}-\frac{\tan y}{1+x}=(1+\mathrm{x}) e^{x}$. sec y

Sol: the above equation can be written as
Divided by sec $y \quad \Rightarrow \cos y \frac{d y}{d x}-\frac{\sin y}{1+x}=(1+\mathrm{x})-e^{x}$
Put $\quad \sin y=u$

$$
=>\cos y \frac{d y}{d x}=\frac{d u}{d x}
$$

D. Equation (1) is $\frac{d u}{d x}-\frac{1}{1+x} \cdot \mathrm{u}=(1+\mathrm{x}) e^{x}$

$$
\text { this is of the form } \frac{d u}{d x}+p(x) \cdot u=\mathrm{Q}(\mathrm{x})
$$

Where $\mathrm{p}(\mathrm{x})=\frac{-1}{1+x} \quad \mathrm{Q}(\mathrm{x})=(1+\mathrm{x}) e^{x}$

$$
\Rightarrow \quad \mathrm{I} . \mathrm{F}=e^{\int p(x) d x}=e^{\int \frac{-1}{1+x^{2}} d x}=e^{-\log (1+x)}=\frac{1}{1+x}
$$

Gen soln is is uxI.F $=\int Q(y) \times I . F . d y+c$

$$
\begin{aligned}
& \Rightarrow \text { u. } \frac{1}{1+x}=\int(1+x) e^{x} \frac{1}{1+x} d x+c \\
& \Rightarrow \text { u. } \frac{1}{1+x}=\int e^{x} d x+c \\
& \Rightarrow(\sin \mathrm{y}) \frac{1}{1+x}=e^{x}+\mathrm{c} \\
& \quad(\text { Or }) \\
& \Rightarrow \sin \mathrm{y}=(1+\mathrm{x}) e^{x}+\mathrm{c} \cdot(1+\mathrm{x}) \text { is required solution. }
\end{aligned}
$$

10. Solve $\frac{d y}{d x}-y \tan =\frac{\sin x \cdot \cos ^{2} x}{y^{2}}$

$$
\text { Ans : } y^{3} \cos ^{3} x=\frac{-\cos ^{6} x}{2}+\mathrm{c} .
$$

11. Solve $\frac{d y}{d x}-y x=y^{2} e^{\frac{x^{x}}{x}} \cdot \sin x$

Ans: $\frac{1}{y} e^{\frac{-x^{2}}{x}}=\cos x+\mathrm{c}$.
12.
$e^{x} \cdot \frac{d y}{d x}=2 \mathrm{xy}^{2}+\mathrm{y} e^{x}$
Ans: $\frac{1}{y} e^{x}=x^{2}+\mathrm{c}$.
13. $\frac{d y}{d x}+y \cos \mathrm{x}=y^{3} \sin \mathrm{x}$

Ans: : $\frac{1}{y^{2}}=(1+2 \sin x)+\mathrm{c} e^{2 \sin x}$

$$
\begin{equation*}
\frac{-1}{y^{2}} e^{-2 \sin x}=-(1+2 \sin x) e^{-2 \sin x}+c \tag{or}
\end{equation*}
$$

14. $\frac{d y}{d x}+y \cot x=y^{2} \sin ^{2} x \cos ^{2} x$

Ans: $y \sin x\left(c+\cos ^{3} x\right)=3$.
15. Solve $\frac{d y}{d x}=e^{x-y}\left(e^{x}-e^{y}\right)$

$$
\text { Ans: } e^{x} \cdot e^{e^{x}}=e^{e^{x}}\left(e^{x}-1\right)+c
$$

BERNOULI'S EOUATION:

(EOUATION'S REDUCIBLE TO LINEAR EOUATION)

Def: An equation of the form $\frac{d y}{d x}+\mathrm{p}(\mathrm{x}) \cdot \mathrm{y}=\mathrm{Q}(\mathrm{x}) y^{n}$ \qquad
Is called Bernoulli's Equation, where $\mathrm{p} \& \mathrm{Q}$ are function of x and n is a real constant.

Working Rule:

Case -1 : if $\mathrm{n}=1$ then the above equation becomes $\frac{d y}{d x}+\mathrm{p} . \mathrm{y}=\mathrm{Q}$.

$$
\Rightarrow \text { Gen soln of } \frac{d y}{d x}+(p-Q) y=0 \text { is }
$$

$\int \frac{d y}{d x}+\int(p-Q) d x=c$ by variable separation method.
Case -2: if $n \neq 1$ then divide the given equation (1) by y^{n}

$$
\begin{equation*}
\Rightarrow \quad y^{-n} \cdot \frac{d y}{d x}+\mathrm{p}(\mathrm{x}) \cdot y^{1-n}=\mathrm{Q} \tag{2}
\end{equation*}
$$

Then take $y^{1-n}=\mathrm{u}$

$$
(1-\mathrm{n}) y^{-n} \cdot \frac{d y}{d x}=\frac{d u}{d x}
$$

$$
\Rightarrow \quad y^{-n} \cdot \frac{d y}{d x}=\frac{1}{1-n} \frac{d u}{d x}
$$

Then equation (2) becomes

$$
\frac{1}{1-n} \frac{d u}{d x}+\mathrm{p}(\mathrm{x}) \cdot \mathrm{u}=\mathrm{Q}
$$

$\frac{d u}{d x}+(1-\mathrm{n}) \mathrm{p} \cdot \mathrm{u}=(1-\mathrm{n}) \mathrm{Q}$ which is linear and hence we can solve it.

Problems:

1. Solve $x \frac{d y}{d x}+y=x^{3} y^{6}$

Sol: given equation can be written as $\frac{d y}{d x}+\left(\frac{1}{x}\right) y=x^{2}+y^{6}$
Which is of the form $\frac{d y}{d x}+\mathrm{p}(\mathrm{x}) \cdot \mathrm{y}=\mathrm{Q} y^{n}$
Where $\mathbf{p}(\mathbf{x})=\frac{1}{*} \quad \mathrm{Q}(\mathrm{x})=x^{2} \quad \& \mathrm{n}=6$
Divided by $y^{2} \Rightarrow \frac{1}{y^{6}} \cdot \frac{d y}{d x}+\frac{1}{x} \frac{1}{y^{5}}=-x^{2}$

$$
\begin{align*}
& \text { Take } \frac{1}{y^{5}}=\mathrm{u} \tag{2}\\
\Rightarrow & \frac{-5}{y^{6}} \frac{d y}{d x}=\frac{d u}{d x} \tag{3}\\
\Rightarrow & \frac{1}{y^{6}} \frac{d y}{d x}=\frac{-1}{5} \frac{d u}{d x}
\end{align*}
$$

(3) in (2) $\Rightarrow \frac{d u}{d x}-\frac{5}{x} \mathrm{u}=-5 \mathrm{x}^{2}$

Which is a L.D equation in u

$$
\text { I.F }=e^{\int p(x) d x}=e^{-5 \int \frac{1}{x} d x}=e^{-5 \log x}=\frac{1}{x^{5}}
$$

$$
\begin{aligned}
& \text { Gensol } \Rightarrow \text { u .I.F }=\int Q(y) \times \text { I.F. } d y+c \\
& \text { u. } \frac{1}{x^{5}}=\int-5 \times 2 \cdot \frac{1}{x^{5}} d x+c \\
& \frac{1}{y^{5} x^{5}}=\frac{5}{2 x^{2}}+\mathrm{c} \text { (or) } \frac{1}{y^{5}}=\frac{5 x^{8}}{2}+\mathrm{c} x^{5}
\end{aligned}
$$

2. Solve $\frac{d y}{d x}\left(x^{2} y^{3}+x y\right)=1$

Sol: $\quad \frac{d x}{d y}-\mathrm{x} \cdot \mathrm{y}=x^{2} y^{3} \Rightarrow \frac{1}{x^{2}} \cdot \frac{d x}{d y}-\frac{1}{x} \cdot \mathrm{y}=y^{3}$
Put $\frac{1}{x}=\mathrm{u}$

$$
\begin{equation*}
\Rightarrow \frac{-1}{x^{2}} \cdot \frac{d x}{d y}=\frac{d u}{d x} \tag{2}
\end{equation*}
$$

(2) in (1) $\Rightarrow \quad-\frac{d u}{d x}-\quad$ u.y $=y^{3}$

$$
\text { (Or) } \frac{d u}{d x}+u . y=-y^{3} \text {. }
$$

Is a L.D Equation in ' u '

$$
\text { I.F }=e^{\int P(y) d y}=e^{\int y d y}=e^{-\frac{y^{2}}{z}}
$$

$$
\text { Gensol } \Rightarrow \mathrm{u} . \mathrm{I} . \mathrm{F}=\int Q(y) \times I . F . d y+c
$$

$$
\Rightarrow \mathrm{u} \cdot e^{-\frac{y^{z}}{z}}=\int y^{3} \cdot e^{-\frac{y^{z}}{z}} d y+\mathrm{c}
$$

$$
\Rightarrow \frac{e^{-\frac{y^{2}}{2}}}{x}=-2\left(\frac{y^{z}}{2}-1\right) \quad \cdot e^{-\frac{y^{2}}{z}}+\mathrm{c}
$$

$$
\mathrm{X}\left(2-y^{2}\right)+\mathrm{cx} e^{-\frac{y^{2}}{2}}=1
$$

(or)
3. Solve $\frac{d y}{d x}-\mathrm{y} \tan \mathrm{x}=y^{2} \sec \mathrm{x}$

Ans: \quad I.F $=e^{-\int \tan x d x}=e^{\int \log \cos x}=\cos x$

$$
\text { Gen sol } \frac{1}{y} \cos \mathrm{x}=-\mathrm{x}+\mathrm{c} .
$$

4. $\left(1-x^{2}\right) \frac{d y}{d x}+x y=y^{3} \sin ^{-1} \mathrm{x}$

Sol: given equation can be written as

$$
\frac{d y}{d x}+\frac{x}{1-x^{2}} \mathrm{y}=\frac{y^{\mathrm{s}}}{1-x^{2}} \sin ^{-1} \mathrm{X}
$$

Which is a Bernoulli's equation in ' y '
Divided by $y^{3} \Rightarrow \frac{1}{y^{3}} \cdot \frac{d y}{d x}+\frac{1}{y^{2}} \frac{x}{1-x^{2}}=\frac{\sin ^{-1} x}{1-x^{2}}$
Let $\quad \frac{1}{y^{2}}=\mathrm{u}$

$$
\begin{equation*}
\Rightarrow \frac{-2}{y^{n}} \frac{d y}{d x}=\frac{d u}{d x}=>\frac{1}{y^{\frac{1}{2}}} \frac{d y}{d x}=-\frac{1}{2} \frac{d u}{d x}- \tag{2}
\end{equation*}
$$

(2) in (1) $\Rightarrow-\frac{1}{2} \frac{d u}{d x}+\frac{x}{1-x^{2}} \cdot u=\frac{\sin ^{-1} x}{1-x^{2}}$

Which is a L.D equation in u

$$
\begin{aligned}
& \Rightarrow \text { I.F }=e^{\int p(x) d x}=e^{-\int \frac{2 x}{1-x^{2}} d x}=e^{\log \left(1-x^{2}\right)}=\left(1-x^{2}\right) \\
& \text { Gensol } \Rightarrow \text { u I.F }=\int Q(x) \times \text { I.F. } d x+c \\
& \quad \Rightarrow \frac{1}{y^{2}} \quad\left(1-x^{2}\right)=-\int \frac{2 \sin ^{-1} \mathrm{x}}{1-x^{2}}\left(1-x^{2}\right) d x+c \\
& \\
& =>\frac{\left(1-x^{2}\right)}{y^{2}}=-2\left[\mathrm{x} \sin ^{-1} \mathrm{x}+\sqrt{1-x^{2}}\right]+\mathrm{c}
\end{aligned}
$$

5. $e^{x} \frac{d y}{d x}=2 \mathrm{xy}^{2}+e^{x}$
y .Ans: $\frac{e^{x}}{y}=x^{2}+c$.

NEWTON'S LAW OF COOLING

STATEMENT: The rate of change of the temp of a body is proportional to the difference of the temp of the body and that of the surroundings medium.

Let ' θ ' be the temp of the body at time ' t ' and θo be the temp of its surroundings medium(usually air). By the Newton's low of cooling, we have

$$
\begin{gathered}
\frac{d \theta}{d t} \alpha(\theta-\theta o) \Rightarrow-\frac{d \theta}{d t}=\mathrm{k}(\theta-\theta o) \quad \mathrm{k} \text { is }+\mathrm{ve} \text { constant } \\
\Rightarrow \int \frac{d \theta}{(\theta-\theta o)} \cdot=-\mathrm{k} \int d t \\
\Rightarrow \log (\theta-\theta o)=-\mathrm{kt}+\mathrm{c} .
\end{gathered}
$$

If initially $\theta=\theta 1$ is the temp of the body at time $t=0$ then

$$
\begin{aligned}
& c=\log (\theta 1-\theta o) \Rightarrow \log (\theta-\theta o)=-k t+\log (\theta 1-\theta o) \\
& \Rightarrow \log \left(\frac{(\theta-\theta \circ)}{(\theta 1-\theta o)}\right)=-k t . \\
& \Rightarrow \frac{(\theta-\theta o)}{(\theta 1-\theta \circ)}=e^{-k t} \\
& \theta= \theta o+(\theta 1-\theta o) \cdot e^{-k t}
\end{aligned}
$$

Which gives the temp of the body at time ' t ' .

1. Find the O.T of the co focal and coaxial parabolas $r=\frac{2 \mathrm{a}}{1+\cos \theta}$

Ans: $\mathrm{r}=\frac{\mathrm{c}}{1-\cos \theta}$

Problems:

1 A body is originally at 80° and cools dowm to $60^{\circ} \mathrm{c}$ in 20 min . if the temp of the air is $40^{\circ} \mathrm{c}$. Find the temp of body after 40 min .

Sol: By Newton's low of cooling we have

$$
\begin{aligned}
& \frac{d \theta}{d t}=\mathrm{k}(\theta-\theta o) \quad \theta o \text { is the temp of the air. } \\
& \quad \Rightarrow \quad \int \frac{d \theta}{(\theta-40)}=-\mathrm{k} \int d t \quad \theta o=40^{\circ} \mathrm{c} \\
& \quad \Rightarrow \log (\theta-40)=-\mathrm{kt}+\log \mathrm{c} \\
& \quad \Rightarrow \log \left(\frac{\theta-40}{c}\right)=-\mathrm{kt}
\end{aligned}
$$

$$
\begin{align*}
& \Rightarrow \frac{\theta-40}{c}=e^{-k t} \\
& \Rightarrow \theta=40+c e^{-k t} \tag{1}
\end{align*}
$$

When $\mathrm{t}=0, \theta=80^{\circ} \mathrm{c} \Rightarrow 80=40+\mathrm{c}$
When $\mathrm{t}=20, \theta=60^{\circ} \mathrm{c} \Rightarrow 60=40+\mathrm{c} e^{-20 k}$

$$
\begin{gather*}
\text { Solving (2) \& (3) } \Rightarrow \mathrm{ce} e^{-20 k}=20 \tag{3}\\
\qquad \begin{array}{c}
\mathrm{C}=40 \quad \Rightarrow 40 e^{-2 k}=20 \\
\Rightarrow \quad \mathrm{k}=\frac{1}{20} \log 2
\end{array}
\end{gather*}
$$

When $\mathrm{t}=40^{\circ} \mathrm{c}=>$ equation (1) is $\theta=40+40 e^{-\left(\frac{1}{20} \log 2\right) 40}$

$$
\begin{aligned}
& =40+40 e^{-2 \log 2} \\
& =40+\left(40 \times \frac{1}{4}\right)
\end{aligned}
$$

$$
\Rightarrow \theta=50^{\circ} \mathrm{c}
$$

2. An object when temp is $75^{\circ} \mathrm{c}$ cools in an atmosphere of constant temp. $25^{\circ} \mathrm{c}$, at the rate k θ, θ being the excess temp of the body over that of the temp. If after 10 min , the temp of the object falls to $66^{\circ} \mathrm{c}$, find its temp after 20 min . also find the time required to cool down to $55^{\circ} \mathrm{c}$.

Sol : we will take one as unit of time.
It is given that $\quad \frac{d \theta}{d t}=-\mathrm{k} \theta$

$$
\Rightarrow \text { sol is } \theta=\mathrm{c} e^{-k t} .
$$

\qquad
Initially when $\mathrm{t}=0 \Rightarrow \theta=75^{\circ}-25^{\circ}=50^{\circ}$

$$
\begin{equation*}
\Rightarrow c=50^{\circ} \tag{2}
\end{equation*}
$$

When $\mathrm{t}=10 \mathrm{~min} \Rightarrow \theta=65^{\circ}-25^{\circ}=40^{\circ}$

$$
\begin{align*}
& \Rightarrow 40=50 e^{-10 k} \\
& \Rightarrow e^{-10 k}=\frac{4}{5}---- \tag{3}
\end{align*}
$$

The value of θ when $\mathrm{t}=20 \Rightarrow \theta=\mathrm{c} e^{-k t}$

$$
\begin{gathered}
\theta=50 e^{-20 k} \\
\theta=50\left(e^{-10 k}\right)^{2} \\
\theta=50\left(\frac{4}{5}\right)^{2}
\end{gathered}
$$

when $\mathrm{t}=20 \Rightarrow \theta=32^{\circ} \mathrm{c}$.
3. A body kept in air with temp $25^{\circ} c$ cools from $140^{\circ} \mathrm{c}$ to 80° in 20 min . Find when the body cools down in 35°.

Sol : here

$$
\begin{align*}
\theta_{\mathrm{O}}=25^{\circ} c & \Rightarrow \frac{d \theta}{(\theta-25)}=-\mathrm{k} \mathrm{dt} \\
& \Rightarrow \log (\theta-25)=-\mathrm{kt}+\mathrm{c} \tag{1}
\end{align*}
$$

When $\mathrm{t}=0, \theta=140^{\circ} \mathrm{c} \Rightarrow \log (115)=\mathrm{c}$
$\Rightarrow \mathrm{c}=\log (115)$.
$\Rightarrow \mathrm{kt}=-\log (\theta-25)+\log 115-$
When $\mathrm{t}=20, \theta=80^{\circ} \mathrm{c}$

$$
\begin{align*}
& \Rightarrow \log \left(80^{\circ} \mathrm{c}\right)=-20 \mathrm{k}+\log 115 \\
& \Rightarrow 20 \mathrm{k}=\log (115)-\log (55)--- \tag{3}
\end{align*}
$$

(2)/(3) $\Rightarrow \frac{k t}{20 k}=\frac{\log 115-\log (\theta-25)}{\log 115-\log 55}$

$$
\frac{t}{20}=\frac{\log 115-\log (\theta-25)}{\log 115-\log 55}
$$

$$
\text { When } \begin{aligned}
& \theta= 35^{\circ} \mathrm{c} \quad \\
& \Rightarrow \quad \frac{t}{20}=\frac{\log 115-\log (10)}{\log 115-\log 55} \\
& \Rightarrow \quad \frac{t}{20}=\frac{\log (11.5)}{\log \left(\frac{23}{12}\right)}=3.31 \\
& \Rightarrow \mathrm{t}=20 \times 3.31=66.2
\end{aligned}
$$

The temp will be $35^{\circ} \mathrm{c} \quad$ after 66.2 min .
4. If the temp of the air is $20^{\circ} \mathrm{c}$ and the temp of the body drops from $100^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{c}$ in 10 min . What will be the its temp after 20 min . When will be the temp $40^{\circ} \mathrm{c}$.

Sol: $\quad \log (\theta-20)=-k t+\log c$

$$
\begin{gathered}
\mathrm{c}=80^{0} \mathrm{c} \text { and } e^{-10 k}=\frac{3}{4} . \\
\mathrm{t}=\frac{10 \log \left(\frac{3}{4}\right)}{\log \left(\frac{\mathrm{3}}{4}\right)} .
\end{gathered}
$$

5. the temp of the body drops from $100^{\circ} \mathrm{c}$ to $75^{\circ} \mathrm{c}$ is temp in 10 min . When the surrounding air is at $20^{\circ} \mathrm{c}$ temp. What will be its temp after half an hour, when will the temp be $25^{\circ} \mathrm{c}$.

Sol:

$$
\begin{aligned}
& \frac{d \theta}{d t}=-\mathrm{k}(\theta-\theta o) \\
& \log (\theta-20)=-k t+\log \mathrm{c}
\end{aligned}
$$

when $\mathrm{t}=0, \theta=100^{\circ} \Rightarrow \mathrm{c}=80$

$$
\begin{aligned}
& \text { when } t=10, \theta=75^{\circ} \quad \Rightarrow \quad e^{-10 k}=\frac{11}{16} . \\
& \text { when } \mathrm{t}=30 \mathrm{~min} \quad \Rightarrow \theta=20+80\left(\frac{1331}{4096}\right)=46^{\circ} \mathrm{C}
\end{aligned}
$$

when ${ }^{\theta}={25^{\circ}}_{\mathrm{c}}^{\mathrm{c}}=>\mathrm{t}=10\left(\frac{\log 5-\log 80}{(\log 11-\log 6}\right)=74.86 \mathrm{~min}$

LAW OF NATURAL GROWTH OR DECAY

(STATEMENT: Let $x(t)$ or x be the amount of a substance at time ' t ' and let the substance be getting converted chemically. A law of chemical conversion states that the rate of change of amount $x(t)$ of a chemically changed substance is proportional to the amount of the substance available at that time

$$
\frac{d x}{d t} \quad \alpha \quad x \quad \text { (or) } \frac{d x}{d t}=-\mathrm{kt} ;(\mathrm{k}>0)
$$

Where k is a constant of proportionality
Note: In case of Natural growth we take

$$
\left.\frac{d x}{d t}=\mathrm{k} \cdot \mathrm{x}\right)
$$

PROBLEMS

1 The number N of bacteria in a culture grew at a rate proportional to N . The value of N was initially 100 and increased to 332 in one hour. What was the value of N after 1 hrs
Sol: The D. Equation to be solved is $\frac{d N}{d t}=\mathrm{kN}$

$$
\begin{align*}
& \Rightarrow \quad \frac{d N}{N}=\mathrm{kdt} \\
& \Rightarrow \quad \int \frac{d N}{N}=\int k d t \\
& \Rightarrow \quad \log \mathrm{~N}=\mathrm{kt}+\log \mathrm{e} \\
& \Rightarrow \quad \mathrm{~N}=\mathrm{c} e^{k t}-\cdots---- \tag{1}
\end{align*}
$$

When $\mathrm{t}=0 \sec , \mathrm{~N}=100 \Rightarrow 100=\mathrm{c} \Rightarrow \mathrm{c}=100$
When $\mathrm{t}=3600 \mathrm{sec}, \mathrm{N}=332 \Rightarrow 332=100 e^{3600 k}$

$$
\Rightarrow e^{3600 k}=\frac{332}{100}
$$

Now when $\mathrm{t}=\frac{3}{2}$ hors $=5400 \sec$ then $\mathrm{N}=$?

$$
\begin{aligned}
& \Rightarrow \mathrm{N}=100 e^{5400 k} \\
& \Rightarrow \mathrm{~N}=100\left[e^{3600 k}\right]^{\frac{\mathrm{y}}{2}} \\
& \Rightarrow \mathrm{~N}=100\left[\frac{332}{\frac{\mathrm{E}}{2}}\right]^{\frac{\mathrm{E}}{2}}=605 . \\
& \Rightarrow \mathrm{N}=605 .
\end{aligned}
$$

2. In a chemical reaction a given substance is being converted into another at a rate proportional to the amount of substance converted. If $\frac{1}{5}$ of the original amount has been transformed in 4 min , how much time will be required to transform one half.

Ans: $\mathrm{t}=13 \mathrm{mins}$.
3. The temp of cup of coffie is $92^{\circ} \mathrm{C}$. in which freshly period the room temp being $24^{\circ} \mathrm{C}$. in one min it was cooled to $80^{\circ} \mathrm{C}$. how long a period must elspse, before the temp of the cup becomes $65^{\circ} \mathrm{c}$.

Sol: : By Newton's Law of Cooling,

$$
\begin{align*}
& \frac{d \theta}{d t}=-\mathrm{k}(\theta-\theta o) ; \mathrm{k}>0 \\
& \quad \theta o=24^{\circ} \mathrm{c} \Rightarrow \log (\theta-24)=-\mathrm{kt}+\log \mathrm{c} \tag{1}
\end{align*}
$$

When $\quad \mathrm{t}=0 ; \quad \theta=92 \Rightarrow \mathrm{c}=68$
When $\mathrm{t}=1 ; \quad \theta=80^{\circ} \mathrm{c} \Rightarrow e^{k}=\frac{68}{56}$

$$
\Rightarrow \mathrm{k}=\log \left(\frac{68}{56}\right) .
$$

When $\theta=65^{\circ} \mathrm{c}, \mathrm{t}=$?
Ans: $\mathrm{t}=\frac{41}{56} \mathrm{~min}$.

RATE OF DECAY OR RADIO ACTIVE MATERIALS STATEMENT:

The disintegration at any instance is propositional to the amount of material present in it.
If u is the amount of the material at any time ' t ', then $\frac{d u}{d t}=-\mathrm{ku}$, where k is any constant $(\mathrm{k}$ $>0)$.

Problems:

1). if 30% of a radioactive substance disappears in 10days flow long will it take for 90% of it to disappear.

Ans: 64.5 days
2). In a chemical reaction a gives substance is being converted into another at a rate proportional to the amount of substance unconverted. If $\frac{1}{5}$ Of the original amount has been transformed to required to transform one-half.

Ans:

3 The radioactive material disintegrator at a rate proportional to its mass. When mass is 10 mgm , the rate of disintegration is 0.051 mg per day. how long will it take for the mass to be reduced from 10 mg to 5 mg .

Ans: 136 days.
4. uranium disintegrates at a rate proportional to the amount present at any instant . if ml and M2 are grms of uranium that are present at times T1 and T2 respectively find the half=cube of uranium.

Ans: $\quad \mathrm{T}=\frac{(T 2-T 1) \log 2}{\log \left(\frac{M 1}{M \mathrm{z}}\right)}$.
5. The rate at which bacteria multiply is proportional to the instance us number present. If the original number double in 2 hrs , in how many hours will it be triple.
Ans: $\frac{2 \log 3}{\log 2} \mathrm{hrs}$.
6. a) if the air is maintained at $30^{\circ} \mathrm{C}$ and the temp of the body cools from $80^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{c}$ in 12 min . find the temp of the body after 24 min .

Ans: $\quad 48^{\circ} \mathrm{C}$
b) If the air is maintained at $150^{\circ} \mathrm{C}$ and the temp of the body cools from $70^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ in 10 min . Find the temp after 30 min .

FIRST-ORDER DIFFERENTIAL EQUATIONS OF HIGHER DEGREE

Equations of the First-order and not of First Degree
First-Order Equations of Higher Degree Solvable for Derivative $\frac{d y}{d x}=p$
Equations Solvable for y
Equations Solvable for x
Equations of the First Degree in x and y - Lagrange and Clairant Equations
Exercises

Equations of the first-Order and not of First Degree

In this Chapter we discuss briefly basic properties of differential equations of first-order and higher degree. In general such equations may not have solutions. We confine ourselves to those cases in which solutions exist.

The most general form of a differential equation of the first order and of higher degree say of nth degree can be written as

$$
\begin{align*}
& \left(\frac{d y}{d x}\right)^{n}+a_{1}(x, y)\left(\frac{d y}{d x}\right)^{n-1}+a_{2}(x, y)\left(\frac{d y}{d x}\right)^{n-2}+\ldots \ldots \\
& \ldots \quad \ldots \ldots+a_{n-1}(x, y) \frac{d y}{d x}+a_{n}(x, y)=0 \tag{1}
\end{align*}
$$

or $\quad p^{n}+a_{1} p^{n-1}+a_{2} p^{n-2}+\ldots \ldots .+a_{n-1} p+a_{n}=0$
where $p=\frac{d y}{d x}$ and $a_{1}, a_{2}, \ldots, a_{n}$ are functions of x and y.
(1) can be written as
$F(x, y, p)=0$

First-Order Equations of Higher Degree Solvable for p

Let (2) can be solved for p and can be written as

$$
\left(p-q_{1}(x, y)\right)\left(p-q_{2}(x, y)\right) \ldots \ldots \ldots \ldots . . .\left(p-q_{n}(x, y)\right)=0
$$

Equating each factor to zero we get equations of the first order and first degree.
One can find solutions of these equations by the methods discussed in the previous chapter. Let their solution be given as:
$f_{i}\left(\mathrm{x}, \mathrm{y}, \mathrm{c}_{\mathrm{i}}\right)=0, \mathrm{i}=1,2,3$ \qquad .n

Therefore the general solution of (3.1) can be expressed in the form
$f_{1}(\mathrm{x}, \mathrm{y}, \mathrm{c}) f_{2}(\mathrm{x}, \mathrm{y}, \mathrm{c}) \ldots \ldots \ldots \mathrm{f}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}, \mathrm{c})=0$
where c in any arbitrary constant.

It can be checked that the sets of solutions represented by (3) and (4) are identical because the validity of (4) in equivalent to the validity of (3) for at least one i with a suitable value of c , namely $\mathrm{c}=\mathrm{C}_{\mathrm{i}}$

Example $1 \quad$ Solve $x y\left(\frac{d y}{d x}\right)^{2}+\left(x^{2}+y^{2}\right) \frac{d y}{d x}+x y=0$
Solution: This is first-order differential equation of degree 2. Let $p=\frac{d y}{d x}$
Equation (1) can be written as

$$
\begin{align*}
& x y p^{2}+\left(x^{2}+y^{2}\right) p+x y=0 \tag{2}\\
& (x p+y)(y p+x)=0
\end{align*}
$$

This implies that

$x p+y=0, y p+x=0$
By solving equations in (3) we get
$x y=c_{1} \quad$ and
$x^{2}+y^{2}=c_{2}$ respectively
$\left[x \frac{d y}{d x}+y=0\right.$ or $\frac{d y}{d x}+{ }^{1} y=0$, Integrating factor
$I(x)=e^{\int \frac{\int_{x}^{1} d x}{x}}=e^{\log x}$. This gives
$y . x=\int 0 . x d x+c_{1}$ or $\left.x y=c_{1}\right]$
$\left[y \frac{d y}{d x}+x=0\right.$, or $\quad y d y+x d x=0$
By integration we get $\frac{1}{2} y^{2}+\frac{1}{2} x^{2}=c$
or $\quad \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{C}_{2}, \mathrm{c}_{2}>0, \quad-\sqrt{c_{2}} \leq x \leq \sqrt{c_{2}}$]

The general solution can be written in the form

$$
\left(x^{2}+y^{2}-c_{2}\right)\left(x y-c_{1}\right)=0
$$

It can be seen that none of the nontrivial solutions belonging to $x y=c_{1}$ or $x^{2}+y^{2}=c_{2}$ is valid on the whole real line.

Equations Solvable for y

Let the differential equation given by $F(x, y, p)=0$ be solvable for y. Then y can be expressed as a function x and p , that is,

$$
\begin{equation*}
y=f(x, p) \tag{1}
\end{equation*}
$$

Differentiating (1) with respect to x we get

$$
\begin{equation*}
\frac{d y}{d x}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial p} \cdot \frac{d p}{d x} \tag{2}
\end{equation*}
$$

(2) is a first order differential equation of first degree in x and p. It may be solved by

$$
\begin{equation*}
\varphi(x, p, c)=0 \tag{3}
\end{equation*}
$$

The solution of equation (1) is obtained by eliminating p between (1) and (2). If elimination of p is not possible then (1) and (3) together may be considered parametric equations of the solutions of (1) with p as a parameter.

Example 2: Solve $\mathrm{y}^{2}-1-\mathrm{p}^{2}=0$

Solution: It is clear that the equation is solvable for y, that is

$$
\begin{equation*}
y=\sqrt{1+p^{2}} \tag{1}
\end{equation*}
$$

By differentiating (1) with respect to x we get

$$
\frac{d y}{d x}=\frac{1}{2} \frac{1}{\sqrt{1+p^{2}}} \cdot 2 p \frac{d p}{d x}
$$

or

$$
p=\frac{p}{\sqrt{1+p^{2}}} \frac{d p}{d x}
$$

or

$$
\begin{equation*}
\left.p_{\left\lfloor\left. 1-\frac{1}{\sqrt{1+p^{2}}} \frac{d p}{d x} \right\rvert\,=0\right.}^{\mid} \right\rvert\, \tag{2}
\end{equation*}
$$

(2) gives $\mathrm{p}=\mathrm{o}$ or $1-\frac{p}{\sqrt{1+p^{2}}} \frac{d p}{d x}=0$

By solving $\mathrm{p}=0$ in (1) we get

$$
y=1
$$

By $1-\frac{1}{\sqrt{1+\mathrm{p}^{2}}} \frac{\mathrm{dp}}{\mathrm{dx}}=0$
we get a separable equation in variables p and x .

$$
\frac{d p}{d x}=\sqrt{1+p^{2}}
$$

By solving this we get
$\mathrm{p}=\sinh (\mathrm{x}+\mathrm{c})$

By eliminating p from (1) and (3) we obtain
$y=\cosh (x+c)$
(4) is a general solution.

Solution $\mathrm{y}=1$ of the given equation is a singular solution as it cannot be obtained by giving a particular value to c in (4).

Equations Solvable for \mathbf{x}

Let equation $F(x, y, p)=0$ be solvable for x, that is $\mathrm{x}=\mathrm{f}(\mathrm{y}, \mathrm{p})$

Then as argued in the previous section for y we get a function Ψ such that

$$
\begin{equation*}
\Psi(\mathrm{y}, \mathrm{p}, \mathrm{c})=0 \tag{2}
\end{equation*}
$$

By eliminating p from (1) and (2) we get a general solution of $F(x, y, p)=0$.If elimination of p with the help of (1) and (1) is combursome then these equations may be considered parametric equations of the solutions of (1) with p as a parameter.

Example 3

Solve $x\left(\frac{d y}{d x}\right)^{3}-12 \frac{d y}{d x}-8=0$
Solution: Let $p=\frac{d y}{d x}$, then

$$
x^{3}-12 p-8=0
$$

It is solvable for x , that is,

$$
\begin{equation*}
x=\frac{12 p+8}{p 3}=\frac{12}{p^{2}}+\frac{8}{p^{3}} \tag{1}
\end{equation*}
$$

Differentiating (1) with respect to y, we get

$$
\begin{align*}
& \frac{\mathrm{dx}}{\mathrm{dy}}=-2 \frac{12}{\mathrm{p}^{3}} \frac{\mathrm{dp}}{\mathrm{dy}}-3 \frac{8}{\mathrm{p}^{4}} \frac{\mathrm{dp}}{\mathrm{dy}} \\
& \text { or } \frac{1}{\mathrm{p}}=-\frac{24}{\mathrm{p}^{3}} \frac{\mathrm{dp}}{\mathrm{dy}}-\frac{24}{\mathrm{p}^{4}} \frac{\mathrm{dp}}{\mathrm{dy}} \\
& \text { or } \mathrm{d} y=\left(-\frac{24}{p^{2}}-\frac{24}{p^{3}}\right) d p \\
& \text { or } y=+\frac{24}{p}+\frac{12}{p^{2}}+c \tag{2}
\end{align*}
$$

(1) and (2) constitute parametric equations of solution of the given differential equation.

Equations of the First Degree in \mathbf{x} and \mathbf{y} - Lagrange's and Clairaut's Equation.

Let Equation $F(x, y, p)=0 \quad$ be of the first degree in x and y, then

$$
\begin{equation*}
y=x \varphi_{1}(p)+\varphi_{2}(p) \tag{1}
\end{equation*}
$$

Equation (1) is known as Lagrange's equation.

If $\varphi_{1}(p)=p$ then the equation

$$
\begin{equation*}
y=x p+\varphi_{2}(p) \tag{2}
\end{equation*}
$$

is known as Clairaut's equation

By differentiating (1) with respect to x , we get

$$
\begin{align*}
& \frac{d y}{d x}=\varphi_{1}(p)+x \varphi^{\prime}(p) \frac{d p}{d x}+\varphi^{\prime}(p) \frac{d p}{d x} \\
& \text { or } p-\varphi_{1}(p)=\left(x \varphi^{\prime}(p)+\varphi_{2}^{\prime}(p)\right) \frac{d p}{d x} \tag{3}
\end{align*}
$$

From (3) we get

$$
\left(x+\varphi_{2}^{\prime}(p)\right) \frac{d p}{d x}=0 \quad \text { for } \varphi_{1}(p)=p
$$

This gives

$$
\begin{aligned}
& \frac{d p}{d x}=0 \text { or } \mathrm{x}+\varphi_{2}^{\prime}(\mathrm{p})=0 \\
& \frac{d p}{d x}=0 \text { gives } \mathrm{p}=\mathrm{c} \text { and }
\end{aligned}
$$

by putting this value in (2) we get

$$
\mathrm{y}=\mathrm{cx}+\varphi_{2}(\mathrm{c})
$$

This is a general solution of Clairaut's equation.

The elimination of p between
$x+\varphi_{2}^{\prime}(p)=0$ and (2) gives a singular solution.

If $\varphi_{1}(p) \neq p$ for any p, then we observe from (3) that
$\frac{d p}{d x} \neq 0$ everywhere. Division by
$\left[p-\varphi_{1}(p)\right] \frac{d p}{d x}$ in (3) gives

$$
\frac{d x}{d p}-\frac{\varphi_{1}^{\prime}}{p-\varphi_{1}(p)} x=\frac{\varphi_{2}^{\prime}(p)}{p-\varphi_{1}(p)}
$$

which is a linear equation of first order in x and thus can be solved for x as a function of p , which together with (1) will form a parametric representation of the general solution of (1)

Example 4 Solve $\left(\frac{d y}{d x}-1\right)\left(y-x \frac{d y}{d x}\right)=\frac{d y}{d x}$

Solution: Let $p=\frac{d y}{d x}$ then,

$$
(p-1)(y-x p)=p
$$

This equation can be written as

$$
y=x p+\frac{p}{p-1}
$$

Differentiating both sides with respect to x we get

$$
\left.\left.\frac{d p}{d x}\right|_{L x-} \frac{1}{(p-1)^{2}}\right|_{]}=0
$$

Thus either $\quad \frac{d p}{d x}=0$ or

$$
x-\frac{1}{(p-1)^{2}}=0
$$

$$
\frac{d p}{d x}=0 \text { gives } \mathrm{p}=\mathrm{c}
$$

Putting $\mathrm{p}=\mathrm{c}$ in the equation we get

$$
\begin{aligned}
& y=c x+\frac{c}{c-1} \\
& (y-c x)(c-1)=c
\end{aligned}
$$

which is the required solution.

Exercises

Solve the following differential equations

1. $\left(\frac{d y}{d x}\right)^{3}=\frac{d y}{d x} e^{2 x}$
2. $y(y-2) p^{2}-(y-2 x+x y) p+x=0$
3. $-\left(\frac{d y}{d x}\right)^{2}+4 y-x^{2}=0$
4. $\begin{aligned} & \left(\frac{d y}{d x}+y+x\right)\left(x^{d y}+y+x\right)(d y+2 x)=0 \\ & \left.\frac{d x}{d x}\right)(\overline{d x})\end{aligned}$
5. $y+x \frac{d y}{d x}-x^{4}\left(\frac{d y}{(\overline{d x}}\right)^{2}=0$
6. $\left(x \frac{d y}{d x}-y\right)\left(y \frac{d y}{d x}+x\right)=h \frac{2 d y}{d x}$
7. $y\left(\frac{d y}{d x}\right)^{2}+(x-y) \frac{d y}{d x}=x$
8. $x\left(\frac{d y}{d x}\right)^{2}-2 y \frac{d y}{d x}+a x=0$
9. $\left(\frac{d y}{d x}\right)^{2}=y-x$
10. $x y\left(y-x \frac{d y}{d x}\right)=x+y \frac{d y}{d x}$

Multiple choice

The order of $x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}-3 \mathrm{y}=\mathrm{x}$ is
a) 2
b) 3
c) 1
d) None

1) The order of $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}$ is
a) 2
b) 1
c) 3
d)None
2) The degree of Differential Equation $\left[\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}=\mathrm{a} \frac{d^{2} y}{d x^{2}}$ is
a) 3
b) 2
c) 1
d) 9
3) The degree of Differential Equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{4}=\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}$ is
a) 4
b) 3
c) 2
d) None
4) The general solution of $\frac{d y}{d x}=\mathrm{e}^{\mathrm{x}+\mathrm{y}}$ is
a) $\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{\mathrm{y}}=\mathrm{c}$ b)
b) $e^{x}+e^{-y}=c$
c) $\left.e^{-x}+e^{y}=c d\right) e^{-x}+e^{-y}=c$
5) Find the differential equation corresponding to $y=a e^{x}+b e^{2 x}+c e^{3 x}$
a) $y^{111}-6 y^{11}+11 y^{1}-6 y=0$
b) $y^{111}+y^{11}-3 y^{1}=0$
c) $y^{11}+2 y^{1}+y=0$
d) $y^{111}-2 y^{11}+3 y^{1}+y=0$
6) Find the differential equation of the family of curves $y=e^{x}(A \cos x+B \sin x)$
a) $y^{11}-2 y^{1}+3 y=0$
b) $y^{11}-3 y^{1}+y=0$
c) $y^{11} \quad-2 y^{1}+3 y=0$
d) None
7) Form the differential equation by eliminating the arbitary constant : $y^{2}=(x-c)$ 2
a) $\left(y^{1}\right)^{2}=1$
b) $y^{11}+2 y^{1}=2$
c) $\left(y^{1}\right)^{2}=0$
d) None
8) Find the differential equation of the family of parabolas having vertex at the origin and foci on y-axis
a) $x y^{1}=2 x$
b) $x y^{1}=2 y$
c) $x y^{1}=4 y$
d) None
9) Form the differential equation by eliminating the arbitary constant

$$
\tan x+\tan y=c
$$

a) $y_{1}\left(\tan y+\sec ^{2} x\right)=0$
b) $y_{1}\left(\tan y \sec ^{2} y\right)+\tan y \sec ^{2} x=0$
c) $y_{1}\left(\tan x \sec ^{2} x\right)+\operatorname{tany} \sec ^{2} y=0$
d) None
11) Obtain the differential equation of the family of ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
a) $x y y^{11}+x y^{1}=0$
b) $x y^{11}+x y=0$
c) $x y y^{11}+x\left(y^{1}\right)^{2}-y y^{1}=0$
d) None
12) The solution of the differential equation $\frac{d y}{d x}+\frac{y}{x}=x^{2}$ under the condition that $\mathrm{y}=1$ when $x=1$ is
a) $4 x y=x^{3}+3$
b) $4 x y=x^{4}+3$
c) $4 x y=y^{4}+3$
d) None
13) The family of straight lines passing through the origin is represented by the differential equation
a) $y d x+x d y=0$
b) $x d y-y d x=0$
c) $x d x+y d x=0$
d) $y d y-x d x=0$
14) The differential equation of a family of circles having the radius ' r ' and centre on the x - axis is
a) $\mathrm{y}^{2}\left[1+\left(\frac{d y}{d x}\right)^{2}\right]=\mathrm{r}^{2}$
b) $\mathrm{x}^{2}\left[1+\left(\frac{d y}{d x}\right)^{2}\right]=\mathrm{r}^{2}$
c) $\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\left[1+\left(\frac{d y}{d x}\right)^{2}\right]=\mathrm{r}^{2}$
d) $\mathrm{r}^{2}\left[1+\left(\frac{d y}{d x}\right)^{2}\right]=\mathrm{x}^{2}$
15) The differential equation satisfying the relation $x=A \cos (m t-\infty)$ is
a) $\frac{d x}{d t}=1-x^{2}$
b) $\frac{d^{2} x}{d t^{2}}=-\propto^{2} \mathrm{X}$
c) $\frac{d^{2} x}{d t^{2}}=-m^{2} \mathrm{x}$
d) $\frac{d x}{d t}=-m^{2} \mathrm{x}$
16) The equation $\frac{d y}{d x}+\frac{a x+h y+g}{h x+b y+f}=0$ is
a) Homogeneous
b) Variable separable
c) Exact
d) None
17) Find the differential equation of the family of cardioids $r=a(1+\cos \theta)$
a) $\frac{d r}{d \theta}+\mathrm{r} \sin \mathrm{x}=0$
b) $\frac{d r}{d \theta}+\mathrm{r} \tan \left(\frac{\theta}{2}\right)=0$
c) $\frac{d r}{d \theta} \quad+r \sin \left(\frac{\theta}{2}\right)=0$
d) None
18) The equation $\frac{d y}{d x}+\sqrt{\frac{1+y^{2}}{1+x^{2}}}=0$ is
a) Variable separableb) Exact
c) Homogeneous
d) None
19) The solution of the differential equation is $\frac{d y}{d x}=e^{(x-y)}+x^{2} e^{-y}$
a) $\mathrm{e}^{\mathrm{y}}=\frac{x^{\mathrm{a}}}{3}+\mathrm{e}^{\mathrm{x}}+\mathrm{c}$
b) $e^{y}=e^{x}+3 x+c$
c) $\mathrm{e}^{\mathrm{x}}=\frac{x^{\mathrm{a}}}{3}+\mathrm{e}^{\mathrm{y}}+\mathrm{c}$
d) None
20) The general solution of $\frac{d y}{d x}=(4 \mathrm{x}+\mathrm{y}+1)^{2}$ is
a) $\tan ^{-1}\left(\frac{4 x+y+1}{2}\right)=c$
b) $\frac{1}{2} \tan ^{-1}\left(\frac{4 x+y+1}{2}\right)=y+c$
c) $\frac{1}{2} \tan ^{-1}\left(\frac{4 x+y+1}{2}\right)=x+c$
d) None
21) The solution of of the Differential equation $\left(x^{2}+1\right) y_{1}+y^{2}+1=0, y(0)=1$ is
a) $\frac{\pi}{4}$
b) $\frac{\pi}{6}$
c) $\frac{\pi}{2}$
d) $\frac{\pi}{8}$
22) The solution of $\frac{y d x-x d y}{y^{2}}=0$ is
a) $x y=c$
b) $y=c x$
c) $x=c y$
d) $x=c y^{2}$
23) The general solution of $\frac{x d x+y d y}{x^{2}+y^{2}}=0$ is
a) $\log (x+y)=c$
b) $\log \left(x^{2}+y^{2}\right)=$ c c) $\log (x y)=$ c
d) None
24) The equation of the form $\frac{d y}{d x}+p(x) y=q(x)$ is
a) Homogeneous
b) Exact
c) Linear
d) None
25) Integral factor of $\frac{d y}{d x}+p(x) y=q(x)$ is
a) $e^{\int p d x}$
b) $e^{\int p d y}$
c) $e^{\int q d x}$
d) $e^{\int q d y}$
26) The general solution of $\frac{d y}{d x}+y \cot x=\cos x$ is
a) $y=\frac{1}{2} \sin x+c \cos x$
b) $y=\frac{1}{2} \cos x+c \sin x$
c) $y=\frac{1}{2} \sin x+c \operatorname{cosec} x$
d) None
27) The form of Bernoulli's Equation is
a) $\frac{d y}{d x}+\mathrm{px}=Q y^{n}$
b) $\frac{d y}{d x}+\mathrm{py}=Q x^{n}$
c) $\frac{d y}{d x}+Q y^{n}=p x$
d) $\frac{d y}{d x}+\mathrm{py}=Q y^{n}$
28) The equation of the form $M(x, y) d x+N(x, y) d y=0$ is called if $\frac{\partial m}{\partial y}=\frac{\partial n}{\partial x}$
a) Linear
b) Bernoulli's
c) Exact
d) Homogeneous
29) Integrating factor of the homogenous de $M d x+N d y=0$ is
a) $\frac{1}{\mathrm{Mx}-\mathrm{Ny}}$
b) $\frac{1}{M x+N y}$
c) $\frac{1}{N x-M y}$
d) None
30) If $\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)$ is a function of x alone say $\mathrm{f}(\mathrm{x})$ then the integrating factor of $\mathrm{Mdx}+\mathrm{Ndy}$ $=0$ is
a) $e^{\int f(x) d y}$
b) $e^{\int f(y) d y}$
c) $e^{\int f(x) d x}$
d) $e^{\int f(x) d y}$
31) The integrating factor of $\left(x^{2}-3 x y+2 y^{2}\right) d x+x(3 x-2 y) d y=c$ is
a) $\frac{1}{x^{2}}$
b) $\frac{1}{x^{5}}$
c) $\frac{1}{x}$
d) $\frac{1}{x^{3}}$
32) The given differential equation $y(x+y) d x+(x+2 y-1) d y=0$ is
a) Exact
b) Not Exact
c) We can't say
d) None

OBJECTIVE

1) The order of $x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}-3 y=x$ is \qquad .
2) The differential equation $\frac{d y}{d x}+\frac{y}{x}=y^{2} \times \sin \mathrm{x}$ is is \qquad .
3) The integrating factor of $\mathrm{x} \frac{d y}{d x}-\mathrm{y}=2 \mathrm{x}^{2} \operatorname{cosec} 2 \mathrm{x}$ is \qquad .
4) The integrating factor of $\left(1-x^{2}\right) y+x y=a x$ is \qquad .
5) The general solution of the differential equation $\frac{d y}{d x}=\frac{y}{x}+\tan \left(\frac{y}{x}\right)$ is \qquad .
6) The integrating factor of $\left(x^{2}-3 x y+2 y^{2}\right) d x+x(3 x-2 y) d y=c$ is \qquad .
7) The newton law of cooling is \qquad .
8) $M d x+N d y$ is exact if \qquad .
9) statement of law of Natural growth or decay is \qquad
10)Solution of linear differential equation of first order in y is (independent variable x) \qquad .
11)Bernoulli's equation is \qquad .
10))If $\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)$ is a function of y alone then the integrating factor is
11) The general solution of $\left(1+x^{2}\right) d y-\left(1+y^{2}\right) d x=0$ is \qquad .
12) The general solution of $\frac{d y}{d x}+x y=x$ is \qquad .
13) The integrating factor of the equation $y f_{1}(x y) d x+x f_{2}(x y) d y$ is \qquad .

UNIT-II

HOMOGENEOUS LINEAR EUATIONS (OR) CAUCHY'S EULAR EUATIONS

Definition: An equation of the form $\mathrm{P} 0 \mathrm{x}^{\mathrm{n}} \frac{d^{n} y}{d x^{n}}+\mathrm{P}_{1}(\mathrm{x}) \mathrm{x}^{\mathrm{n}-1} \cdot \frac{d^{n-1} y}{d x^{n-1}}+\cdots-\cdots-\cdots+\mathrm{P}_{\mathrm{n}}(\mathrm{x}) \cdot \mathrm{y}=$ Q(x)

Where $\mathrm{P}_{0}(\mathrm{x}) \mathrm{P}_{1}(\mathrm{x}), \mathrm{P}_{2}(\mathrm{x}), \mathrm{P}_{3}(\mathrm{x}) \ldots \ldots . . . \mathrm{P}_{\mathrm{n}}(\mathrm{x})$ are real constant ,
$\mathrm{Q}(\mathrm{x})$ (functions of x) continuous eq(1) of operator form is ($\mathrm{x}^{\mathrm{n}} \mathrm{D}^{\mathrm{n}}+\mathrm{P}_{1} \mathrm{x}^{\mathrm{n}-1} \mathrm{D}^{\mathrm{n}-1}+$ \qquad $\left.+P_{n}\right) y=Q(x)$ is called a linear differential equation of order n.

LINEAR DIFFERENTIAL EQUN' WITH CONSTANT COEFFICIENTS:

Def: An equation of the form $\frac{d^{n} y}{d x^{n}}+\mathrm{P}_{1} \cdot \frac{d^{n-1} y}{d x^{n-1}}+\mathrm{P}_{2} \cdot \frac{d^{n-2} y}{d x^{n-2}}+\ldots-\ldots+-\mathrm{P}_{\mathrm{n}} \cdot \mathrm{y}=\mathrm{Q}(\mathrm{x})$ where $P_{1}, P_{2}, P_{3}, \ldots \ldots P_{n}$, are real constants and $Q(x)$ is a continuous functions of x is called an L.D equation of order ' n ' with constant coefficients. Note:

1. operator $\mathrm{D}=\frac{d}{d x} ; \mathrm{D}^{2}=\frac{d^{2}}{d x^{2}}$; $D^{n}=\frac{d^{n}}{d x^{n}}$

$$
\mathrm{Dy}=\frac{d y}{d x} ; \mathrm{D}^{2} \mathrm{y}=\frac{d^{2} y}{d x^{2}}
$$

$$
\mathrm{D}^{\mathrm{n}} \mathrm{y}=\frac{d^{n} y}{d x^{n}}
$$

2. operator $\frac{1}{D} \mathrm{Q}=\int Q$ ie $\mathrm{D}^{-1} \mathrm{Q}$ is called the integral of Q .

To find the general solution of $f(D), y=0$:

Where $f(D)=D^{n}+P_{1} D^{n-1}+P_{2} D^{n-2}+--------+P_{n}$ is a polynomial in D.
Now consider the auxiliary equation : $\mathrm{f}(\mathrm{m})=0$
i.e $f(m)=m^{n}+P_{1} m^{n-1}+P_{2} m^{n-2}+--------+P_{n}=0$
where $\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}$ \qquad p_{n} are real constants.
Let the roots of $f(m)=0$ be $m_{1}, m_{2}, m_{3}, \ldots \ldots \ldots m_{n}$.
Depending on the nature of the roots we write the complementary function as follows:

Consider the following table

E.no	Roots of A.E f(m) =0	Complementary function(C.F)
1.	$\mathrm{m}_{1}, \mathrm{~m}_{2}, . . \mathrm{m}_{\mathrm{n}}$ are real and distinct.	
2.	$\mathrm{m}_{1}, \mathrm{~m}_{2}, . . \mathrm{m}_{\mathrm{n}}$ are $\ni: \mathrm{m}_{1}, \mathrm{~m}_{2}$ are equal and real(i.e repeated twice) \& the rest are real and different.	$Y_{c}=\left(c_{1}+c_{2} x\right) e^{m_{1} x}+c_{3} e^{m_{3} x}+\ldots+c_{n} e^{m_{1} x}$
3.	$\mathrm{m}_{1}, \mathrm{~m}_{2}, . . \mathrm{m}_{\mathrm{n}}$ are $\exists: \mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}$ are equal and real(i.e repeated thrice) \&the rest are real and different.	$Y_{c}=\left(c_{1}+c_{2} x+c_{3} x^{2}\right) e^{m_{1} x}+c_{4} e^{m_{4} x}+\ldots+c_{n} \mathrm{e}^{m_{n} x}$
4.	Two roots of A \& B are complex say $\alpha+i \beta$ $\alpha-\mathrm{i} \beta$ and rest are real and distinct.	$\begin{aligned} & \mathrm{Y}_{\mathrm{c}}=e^{\alpha x}\left(\mathrm{c}_{1} \cos \beta \mathrm{x}+\mathrm{c}_{2} \sin \beta \mathrm{x}\right)+\mathrm{c}_{3} \mathrm{e}^{\mathrm{m}_{3} \mathrm{x}}+\ldots+ \\ & \mathrm{c}_{\mathrm{n}} \mathrm{e}^{\mathrm{mnx}} \end{aligned}$
5.	If $\alpha \pm i \beta$ are repeated twice $\&$ rest are real and distinct	$\begin{aligned} & \left.\mathrm{Y}_{\mathrm{c}}=e^{\alpha x}\left[\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right) \cos \beta_{\mathrm{x}}+\left(\mathrm{c}_{3}+\mathrm{c}_{4} \mathrm{x}\right) \sin \beta_{\mathrm{x}}\right)\right]+ \\ & \mathrm{c}_{5} \mathrm{~m}_{5} \mathrm{x}+\ldots+\mathrm{c}_{\mathrm{n}} \mathrm{~m}_{\mathrm{n}} \mathrm{x} \end{aligned}$
6.	If $\alpha \pm i \beta$ are repeated thrice $\&$ rest are real and distinct	$\begin{aligned} & \mathrm{Y}_{\mathrm{c}}=e^{\alpha x}\left[\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}+\mathrm{c}_{3} \mathrm{x}^{2}\right) \cos \beta_{\mathrm{x}}+\left(\mathrm{c}_{4}+\mathrm{c}_{5} \mathrm{x}+\right.\right. \\ & \left.\left.\left.\mathrm{c}_{6} \mathrm{x}^{2}\right) \sin \beta_{\mathrm{x}}\right)\right]+\mathrm{c}_{7} \mathrm{~m}_{7} \mathrm{x}+\ldots \ldots \ldots .+\mathrm{c}_{\mathrm{n}} \mathrm{e}^{\mathrm{m}_{\mathrm{n}} \mathrm{x}} \end{aligned}$
7.	$\alpha \pm \mathrm{i} \beta$	$\mathrm{Y}_{\mathrm{c}}=e^{\alpha x}\left(\mathrm{c}_{1} \cos \beta_{\mathrm{x}}+\mathrm{c}_{2} \sin \beta_{\mathrm{x}}\right)$

Solve the following Differential equations :

1. $\frac{d^{3} y}{d x^{3}}-3 \frac{d y}{d x}+2 \mathbf{y}=\mathbf{0}$

Sol: Given equation is of the form $f(D) . y=0$
Where $f(D)=\left(D^{3}-3 D+2\right) Y=0$
Now consider the auxillary equation $\mathrm{f}(\mathrm{m})=0$

$$
\begin{aligned}
\mathrm{f}(\mathrm{~m})=\mathrm{m}^{3}-3 \mathrm{~m}+2=0 & \Rightarrow(\mathrm{~m}-1)(\mathrm{m}-1)(\mathrm{m}+2)=0 \\
& \Rightarrow \mathrm{~m}=1,1,-2
\end{aligned}
$$

Since m_{1} and m_{2} are equal and m_{3} is -2
We have $\mathrm{Y}_{\mathrm{c}}=\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right) \mathrm{e}^{\mathrm{x}}+\mathrm{c}_{3} \mathrm{e}^{-2 \mathrm{x}}$
2. $\left(D^{4}-2 D^{3}-3 D^{2}+4 D+4\right) Y=0$

Sol: Given $f(D)=\left(D^{4}-2 D^{3}-3 D^{2}+4 D+4\right) Y=0$
\Rightarrow A.equation $\mathrm{f}(\mathrm{m})=\left(\mathrm{m}^{4}-2 \mathrm{~m}^{3}-3 \mathrm{~m}^{2}+4 \mathrm{~m}+4\right)$
$\Rightarrow(\mathrm{m}+1)^{2}(\mathrm{~m}-2)^{2}=0$
$\Rightarrow \mathrm{m}=-1,-1,2,2$
$\Rightarrow Y_{c}=\left(c_{1}+c_{2} x\right) e^{-x}+\left(c_{3}+c_{4} x\right) e^{2 x}$

3. $\left(D^{4}+8 D^{2}+16\right) Y=0$

Sol: Given $f(D)=\left(D^{4}+8 D^{2}+16\right) Y=0$
Auxillary equation $\mathrm{f}(\mathrm{m})=\left(\mathrm{m}^{4}+8 \mathrm{~m}^{2}+16\right) \mathrm{Y}=0$
$\Rightarrow\left(\mathrm{m}^{2}+4\right)^{2}=0$
$\Rightarrow(\mathrm{m}+2 \mathrm{i})^{2}(\mathrm{~m}+2 \mathrm{i})^{2}=0$
$\Rightarrow \mathrm{m}=2 \mathrm{i}, 2 \mathrm{i},-2 \mathrm{i},-2 \mathrm{i}$
$\left.\mathrm{Y}_{\mathrm{c}}=e^{0 x}\left[\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right) \cos 2 \mathrm{x}+\left(\mathrm{c}_{3}+\mathrm{c}_{4} \mathrm{x}\right) \sin 2 \mathrm{x}\right)\right]$
4. $y^{11}+6 y^{1}+9 y=0 ; y(0)=-4, y^{1}(0)=14$

Sol: $\quad f(D) y=0 \Rightarrow\left(D^{2}+6 D+9\right) Y=0$
A.equation $\mathrm{f}(\mathrm{m})=0 \Rightarrow\left(\mathrm{~m}^{2}+6 \mathrm{~m}+9\right)=0$
$\Rightarrow \mathrm{m}=-3,-3$

$$
Y_{c}=\left(c_{1}+c_{2} x\right) e^{-3 x------------------>}(1)
$$

D. of (1) w.r.to $x \Rightarrow y^{1}=\left(c_{1}+c_{2} x\right)\left(-3 e^{-3 x}\right)+c_{2}\left(e^{-3 x}\right)$

Given $\mathrm{y}_{1}(0)=14 \quad \Rightarrow \mathrm{c}_{1}=-4 \& \mathrm{c}_{2}=2$
Hence we get $y=(-4+2 x)\left(e^{-3 x}\right)$
5. Solve $4 y^{111}+4 y^{11}+y^{1}=0$

Sol: equation $\mathrm{f}(\mathrm{m})=0$

$$
\begin{aligned}
& 4 m^{3}+4 m^{2}+m=0 \\
& m\left(4 m^{2}+4 m+1\right)=0 \\
& m(2 m+1)^{2}=0 \\
& m=0,-1 / 2,-1 / 2 \\
& y=c_{1}+\left(c_{2}+c_{3} x\right) e^{-x / 2}
\end{aligned}
$$

6. $\left(D^{2}-3 D+4\right) Y=0$

Sol: equation $\mathrm{f}(\mathrm{m})=0$

$$
\begin{aligned}
& \mathrm{m}^{2}-3 \mathrm{~m}+4=0 \\
& \mathrm{~m}=\frac{3 \pm \sqrt{9-16}}{2}=\frac{3 \pm i \sqrt{7}}{2} \\
& \propto \pm \beta=\frac{3 \pm i \sqrt{7}}{2} \\
& \mathrm{y}=e^{\frac{3}{2} x}\left(\mathrm{c}_{1} \cos \frac{\sqrt{7}}{2} \mathrm{x}+\mathrm{c}_{2} \sin \frac{\sqrt{7}}{2} \mathrm{x}\right)
\end{aligned}
$$

General solution of $f(D) \mathbf{v}=\mathbf{O}(\mathbf{x})$

Is given by $y=y_{c}+y_{p}$
i.e. $y=C . F+P . I$

Where the P.I consists of no arbitrary constants and P.I of $f(D) y=Q(x)$

Is evaluated as P.I $=\frac{1}{f(D)} . \mathrm{Q}(\mathrm{x})$
Depending on the type of function of $\mathrm{Q}(\mathrm{x})$.
P.I is evaluated as follows:

1. P.I of $f(D) y=Q(x)$ where $Q(x)=e^{a x}$ for $(a) \neq 0$

Case1: P.I $=\frac{1}{f(D)} \cdot \mathrm{Q}(\mathrm{x})=\frac{1}{f(D)} \mathrm{e}^{\mathrm{ax}}=\frac{1}{f(a)} \mathrm{e}^{\mathrm{ax}}$
Provided $f(a) \neq 0$
Case 2: If $f(a)=0$ then the above method fails. Then

$$
\text { if } f(D)=(D-a)^{k} \emptyset_{(D)}
$$

(i.e ' a ' is a repeated root k times).

Then P.I $=\frac{1}{\emptyset(a)} \mathrm{e}^{\mathrm{ax}} \cdot \frac{1}{k!} \mathrm{x}^{\mathrm{k}}$ provided $\emptyset(\mathrm{a}) \neq 0$
2) P.I of $f(D) y=Q(x)$ where $Q(x)=\sin$ ax or $Q(x)=\cos a x$ where ' a ' is constant then P.I $=\frac{1}{f(D)} . \mathbf{Q}(\mathbf{x})$.

Case 1: In $\mathrm{f}(\mathrm{D})$ put $\mathrm{D}^{2}=-\mathrm{a}^{2} \ni \mathrm{f}\left(-\mathrm{a}^{2}\right) \neq 0$ then P. $\mathrm{I}=\frac{1}{f(D)} \sin \mathrm{ax}$
Case 2: If $f\left(-a^{2}\right)=0$ then $D^{2}+a^{2}$ is a factor of $\emptyset\left(D^{2}\right)$ and hence it is a factor of $f(D)$.
Then let $f(D)=\left(D^{2}+a^{2}\right) \cdot f\left(D^{2}\right)$.
Then $\frac{1}{(\mathrm{D} 2+\mathrm{a} 2)}(\sin \mathrm{ax})=\frac{-x \cos a x}{2 a}$
\& $\frac{1}{(\mathrm{D} 2+\mathrm{a} 2)}(\cos \mathrm{ax})=\frac{x \sin a x}{2 a}$

1) P.I for $f(D) y=Q(x)$ where $Q(x)=x^{k}$ where k is a positive integer

Then express $f(\mathbf{D})=[1 \pm \emptyset(D)]$
Express $\frac{1}{f(D)}=\frac{1}{1 \pm \emptyset(D)}=[1 \pm \emptyset(D)]^{-1}$
Hence P. $I=\frac{1}{1 \pm \varnothing(D)} Q(x)$.

$$
=[1 \pm \emptyset(D)]^{-1} \cdot x^{\mathrm{k}}
$$

2) P.I of $f(D) y=Q(x)$ when $Q(x)=e^{a x} V$ where ' a ' is a constant and V is function of x. where $V=\sin$ ax or $\cos a x$ or x^{k}

Then P.I $=\frac{1}{f(n)} Q(x)$

$$
=\frac{1}{f(D)} \mathrm{e}^{\mathrm{ax}} \mathrm{~V}
$$

$$
=\mathrm{e}^{\mathrm{ax}}\left[\frac{1}{f(D+a)}(\mathrm{V})\right]
$$

$\& \frac{1}{f(D+a)} \mathrm{V}$ is evaluated depending on V .
3) P.I of $f(D) y=Q(x)$ when $Q(x)=x V$ where V is function of x.

Then P.I $=\frac{1}{f(D)} \mathbf{Q}(\mathbf{x})$

$$
\begin{aligned}
& =\frac{1}{f(D)} \times \mathrm{V} \\
& =\left[\mathrm{x}-\frac{1}{f(D)} \mathrm{f}^{\mathrm{l}}(\mathrm{D})\right] \frac{1}{f(D)} \mathrm{V}
\end{aligned}
$$

Formulae

1. $\frac{1}{1-D}=(1-\mathrm{D})^{-1}=1+\mathrm{D}+\mathrm{D}^{2}+\mathrm{D}^{3}+$
2. $\frac{1}{1+D}=(1+\mathrm{D})^{-1}=1-\mathrm{D}+\mathrm{D}^{2}-\mathrm{D}^{3}+$
3. $\frac{1}{(1-D)^{2}}=(1-D)^{-2}=1+2 D+3 D^{2}+4 D^{3}+$
4. $\frac{1}{(1+D)^{2}}=(1+D)^{-2}=1-2 D+3 D^{2}-4 D^{3}+$
5. $\frac{1}{(1-D)^{3}}=(1-D)^{-3}=1+3 D+6 D^{2}+10 D^{3}+$
6. $\frac{1}{(1+D)^{3}}=(1+D)^{-3}=1-3 D+6 D^{2}-10 D^{3}+$
I. HIGHER ORDER LINEAR DIFFERENTIAL EOUATIONS:
7. Find the Particular integral of $f(D) y=e^{a x}$ when $f(a) \neq 0$
8. Solve the D.E $\left(D^{2}+5 D+6\right) Y=e^{x}$
9. Solve $y^{11}+4 y^{1}+4 y=4 e^{3 x} ; y(0)=-1, y^{1}(0)=3$
10. Solve $y^{11}+4 y^{1}+4 y=4 \cos x+3 \sin x, y(0)=1, y^{1}(0)=0$
11. Solve $\left(D^{2}+9\right) y=\cos 3 x$
12. Solve $y^{111}+2 y^{11}-y^{1}-2 y=1-4 x^{3}$
13. Solve the D.E $\left(D^{3}-7 D^{2}+14 D-8\right) Y=e^{x} \cos 2 x$
14. Solve the D.E $\left(D^{3}-4 D^{2}-D+4\right) Y=e^{3 x} \cos 2 x$
15. Solve $\left(D^{2}-4 D+4\right) Y=x^{2} \sin x+e^{2 x}+3$
16. Solve $x^{2} D^{2}-x D+y=\log x$
17. Solve the D.E $\left(\mathrm{x}^{2} \mathrm{D}^{2}-3 \mathrm{xD}+1\right) \mathrm{y}=\frac{\log \mathrm{x} \cdot \sin (\log x)+1}{x}$
18. Apply the method of variation parameters to solve $\frac{d^{2} y}{d x^{2}}+\mathrm{y}=\operatorname{cosec} \mathrm{x}$
19. Solve $\frac{d x}{d t}=3 \mathrm{x}+2 \mathrm{y}, \frac{d y}{d t}+5 \mathrm{x}+3 \mathrm{y}=0$
20. Solve $\left(D^{2}+D-3\right) Y=x^{2} e^{-3 x}$
21. Solve $\left(D^{2}-D-2\right) Y=3 e^{2 x}, y(0)=0, y^{1}(0)=-2$

SOLUTIONS:

1) Particular integral of $\mathbf{f}(\mathbf{D}) \mathbf{y}=e^{a x}$ when $\mathbf{f}(\mathbf{a}) \neq \mathbf{0}$

Working rule:
Case (i):
In $f(D)$, put $D=a$ and Particular integral will be calculated.
Particular integral $=\frac{1}{f(D)} e^{a x}=\frac{1}{f(a)} e^{a x}$ provided $\mathrm{f}(\mathrm{a}) \neq 0$
Case (ii) :
If $f(a)=0$, then above method fails. Now proceed as below.
If $f(D)=(D-a)^{K} \phi(D)$
i.e. ' a ' is a repeated root k times, then

Particular integral $=\frac{e^{a x}}{\phi(\mathrm{a})} \cdot \frac{x^{k}}{k!}$ provided $\phi(\mathrm{a}) \neq 0$

2. Solve the Differential equation $\left(D^{2}+5 D+6\right) y=e^{x}$

Given equation is $\left(D^{2}+5 D+6\right) y=e^{x}$
Here $Q(x)=e^{x}$

$$
f(m)=\left(m^{2}+5 m+6\right)
$$

Auxiliary equation is $f(m)=m^{2}+5 m+6=0$

$$
\begin{aligned}
& \mathrm{m}^{2}+3 \mathrm{~m}+2 \mathrm{~m}+6=0 \\
& \mathrm{~m}(\mathrm{~m}+3)+2(\mathrm{~m}+3)=0 \\
& \mathrm{~m}=-2 \text { or } \mathrm{m}=-3
\end{aligned}
$$

the roots are real and distinct

$$
\begin{aligned}
& \text { C.F }=\mathrm{y}_{\mathrm{c}}=\mathrm{c}_{1} \mathrm{e}^{-2 \mathrm{x}}+\mathrm{c}_{2} \mathrm{e}^{-3 \mathrm{x}} \\
& \text { Particular Integral }=\mathrm{y}_{\mathrm{p}}=\frac{1}{f(D)} \cdot \mathrm{Q}(\mathrm{x}) \\
& \quad=\frac{1}{D 2+5 D+6} \mathrm{e}^{\mathrm{x}}=\frac{1}{(D+2)(D+3)} \mathrm{e}^{\mathrm{x}} \\
& \text { Put } \mathrm{D}=1 \text { in } \mathrm{f}(\mathrm{D})
\end{aligned}
$$

$$
\text { P.I. }=\frac{1}{(3)(4)} e^{x}
$$

Particular Integral $=y_{p}=\frac{1}{12} \cdot e^{x}$
General equation is $y=y c+y p$

$$
\mathrm{Y}=\mathrm{c}_{1} \mathrm{e}^{-3 \mathrm{x}}+\mathrm{c}_{2} \mathrm{e}^{-2 \mathrm{x}}+\frac{e^{x}}{12}
$$

3). Solve $y^{11}-4 y^{1}+3 y=4 e^{3 x}, y(0)=-1, y^{1}(0)=3$

Given equation is $y^{11}-4 y^{1}+3 y=4 e^{3 x}$
i.e. $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+3 \mathrm{y}=4 \mathrm{e}^{3 \mathrm{x}}$
it can be expressed as
$D^{2} y-4 D y+3 y=4 e^{3 x}$
$\left(D^{2}-4 D+3\right) y=4 e^{3 x}$
Here $Q(x)=4 e^{3 x} ; f(D)=D^{2}-4 D+3$
Auxiliary equation is $\mathrm{f}(\mathrm{m})=\mathrm{m}^{2}-4 \mathrm{~m}+3=0$
$\mathrm{m}^{2}-3 \mathrm{~m}-\mathrm{m}+3=0$
$\mathrm{m}(\mathrm{m}-3)-1(\mathrm{~m}-3)=0=>\mathrm{m}=3$ or 1
The roots are real and distinct.
C.F $=y_{c}=c_{1} e^{3 x_{1}}+\mathrm{c}_{2} \mathrm{e}^{\mathrm{x}----} \rightarrow$ (2)
P.I. $=\mathrm{y}_{\mathrm{p}}=\frac{1}{f(D)} \cdot \mathrm{Q}(\mathrm{x})$
$=\mathrm{y}_{\mathrm{p}}=\frac{1}{D^{2}-4 D+3} \cdot 4 \mathrm{e}^{3 \mathrm{x}}$
$=\mathrm{y}_{\mathrm{p}}=\frac{1}{(D-1)(D-3)} \cdot 4 \mathrm{e}^{3 \mathrm{x}}$
Put D=3
$y_{p}=\frac{4 \mathrm{xe} 3 \mathrm{x}}{(3-1)}=2 \mathrm{xe}^{3 \mathrm{x}}$
General solution is $y=y_{c}+y_{p}$
$y=c_{1} e^{3 x}+c_{2} e^{x}+2 x e^{3 x-----------------------} \rightarrow(3)$
Differentiating with respect to ' x '
$y^{1}=3 c_{1} e^{3 x}+c_{2} e^{x}+2 e^{3 x}+6 x e^{3 x}$
By data, $y(0)=-1, y^{1}(0)=3$
From (3), $-1=\mathrm{c}_{1}+\mathrm{c}_{2}$ \qquad \rightarrow (5)

From (4), $3=3 \mathrm{c}_{1}+\mathrm{c}_{2}+2$

$$
3 c_{1}+c_{2}=1-
$$

Solving (5) and (6) we get $c_{1}=1$ and $c_{2}=-2$

$$
y=-2 e^{x}+(1+2 x) e^{3 x}
$$

(4). Solve $y^{11}+4 y^{1}+4 y=4 \cos x+3 \sin x, y(0)=0, y^{1}(0)=0$

Sol: Given differential equation in operator form

$$
\left(D^{2}+4 \mathrm{D}+4\right) \mathrm{y}=4 \cos x+3 \sin x
$$

A. E is $\mathrm{m}^{2}+4 \mathrm{~m}+4=0$
$(\mathrm{m}+2)^{2}=0 \quad$ then $\mathrm{m}=-2,-2$
\therefore C.F is $\mathrm{y}_{\mathrm{c}}=\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right) e^{-2 x}$
P.I is $=y_{p}=\frac{4 \cos x+3 \sin x}{\left(D^{2}+4 \mathrm{D}+4\right)} \quad$ put $D^{2}=-1$
$\mathrm{y}_{\mathrm{P}}=\frac{4 \cos x+3 \sin x}{(4 \mathrm{D}+3)}=\frac{(4 \mathrm{D}-3)(4 \cos x+3 \sin x)}{(4 \mathrm{D}-3)(4 \mathrm{D}+3)}$
$=\frac{(4 \mathrm{D}-3)(4 \cos x+3 \sin x)}{16 D^{2}-9}$
Put $D^{2}=-1$
$\therefore \mathrm{y}_{\mathrm{p}}=\frac{(4 \mathrm{D}-3)(4 \cos x+3 \sin x)}{-16-9}$
$=\frac{-16 \sin x+12 \cos x-12 \cos x-9 \sin x)}{-25}=\frac{-25 \sin x}{-25}=\sin x$
\therefore general equation is $y=y_{c}+y_{p}$
$\mathrm{Y}=\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right) e^{-2 x}+\sin \mathrm{x}$
By given data, $\mathrm{y}(0)=0 \dot{\sim} \mathrm{c}_{1}=0$ and
Diff (1) w.r.. t. $y^{1}=\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right)(-2) e^{-2 x}+e^{-2 x}\left(\mathrm{c}_{2}\right)+\cos \mathrm{x}$
given $y^{1}(0)=0$
(2) $\Rightarrow-2 \mathrm{c}_{1}+\mathrm{c}_{2}+1=0 \quad \therefore \mathrm{c}_{2}=-1$
\therefore required solution is $y=-x e^{-2 x}+\sin x$

5. Solve $\left(D^{2}+9\right) y=\cos 3 x$

Sol:Given equation is $\left(D^{2}+9\right) y=\cos 3 x$
A.E is $m^{2}+9=0$
$\therefore \mathrm{m}= \pm 3 \mathrm{i}$
$\mathrm{Y}_{\mathrm{c}}=\mathrm{C} . \mathrm{F}=\mathrm{c}_{1} \cos 3 \mathrm{x}+\mathrm{c}_{2} \sin 3 \mathrm{x}$
$\mathrm{Y}_{\mathrm{c}}=\mathrm{P} . \mathrm{I}=\frac{\cos 3 x}{D^{2}+9}=\frac{\cos 3 x}{D^{2}+3^{2}}$
$=\frac{x}{2(3)} \sin 3 \mathrm{x}=\frac{x}{6} \sin 3 \mathrm{x}$

General equation is $y=y_{c}+y_{p}$
$Y=c_{1} \cos 3 x+c_{2} \cos 3 x+\frac{x}{6} \sin 3 x$
6. $y^{111}+2 y^{11}-y^{1}-2 y=1-4 x^{3}$

Sol:Given equation can be written as

$$
\begin{aligned}
& \left(D^{3}+2 D^{2}-\mathrm{D}-2\right) \mathrm{y}=1-4 X^{3} \\
& \text { A.E is }\left(m^{3}+2 m^{2}-\mathrm{m}-2\right)=0 \\
& \left(m^{2}-1\right)(\mathrm{m}+2)=0 \\
& m^{2}=1 \text { or } \mathrm{m}=-2 \\
& \mathrm{~m}=1,-1,-2 \\
& \text { C.F }=\mathrm{c}_{1} \quad+\mathrm{c}_{2} e^{-x}+\mathrm{c}_{3} e^{-2 x} \\
& \begin{aligned}
& \text { P.I }= \frac{1}{\left(D^{3}+2 D^{2}-\mathrm{D}-2\right)}\left(1-4 X^{3}\right) \\
&=\frac{-1}{2\left[1-\frac{\left(D^{3}+2 D^{2}-\mathrm{D}\right)}{2}\right]}\left(1-4 x^{3}\right) \\
& \quad= \frac{-1}{2}\left[1-\frac{\left(D^{3}+2 D^{2}-\mathrm{D}\right)}{2}\right]^{-1}\left(1-4 x^{3}\right) \\
&=\frac{-1}{2}[\left.1+\frac{\left(D^{3}+2 D^{2}-\mathrm{D}\right)}{2}+\frac{\left(D^{3}+2 D^{2}-\mathrm{D}\right)^{2}}{4}+\frac{\left(D^{3}+2 D^{2}-\mathrm{D}\right)^{3}}{8}+\ldots . .\right]\left(1-4 X^{3}\right) \\
& \quad= \frac{-1}{2}\left[1+\frac{1}{2}\left(D^{3}+2 D^{2}-\mathrm{D}\right)+\frac{1}{4}\left(D^{2}-4 D^{3}\right)+\frac{1}{8}\left(-D^{3}\right)\left(1-4 X^{3}\right)\right. \\
& \quad=\left.\frac{-1}{2}\left[1-\frac{5}{8}\left(D^{3}\right)+\frac{5}{4}\left(D^{2}\right)-\frac{1}{2} \mathrm{D}\right] 1-4\right) \\
& \quad=\frac{-1}{2}\left[(1-4 \quad)-\frac{5}{8}(-24)+\frac{5}{4}(-24 x)-\frac{1}{2}\left(-12 x^{2}\right)\right. \\
& \quad=\frac{-1}{2}\left[-4 x^{3}+6 x^{2}-30 \mathrm{x}+16\right]= \\
&=\left[2 x^{3}-3 x^{2}+15 \mathrm{x}-8\right]
\end{aligned}
\end{aligned}
$$

The general solution is
$\mathrm{y}=\mathrm{C} . \mathrm{F}+$ P.I
$\mathrm{y}=\mathrm{c}_{1} e^{x}+\mathrm{c}_{2} e^{-x}+\mathrm{c}_{3} e^{-2 x}+\left[2 x^{3}-3 x^{2}+15 \mathrm{x}-8\right]$
7. Solve $\left(D^{3}-7 D^{2}+14 \mathrm{D}-8\right) \mathbf{y}=e^{x} \cos 2 \mathrm{x}$

Given equation is
$\left(D^{3}-7 D^{2}+14 \mathrm{D}-8\right) \mathrm{y}=e^{x} \cos 2 \mathrm{x}$
A.E is $\left(m^{3}-7 m^{2}+14 m-8\right)=0$
$(m-1)(m-2)(m-4)=0$

Then $\mathrm{m}=1,2,4$

$$
=e^{x} \cdot \frac{1}{(16-\mathrm{D})} \cdot \cos 2 \mathrm{x}
$$

$$
=e^{x} \cdot \frac{16+D}{(16-\mathrm{D})(16+\mathrm{D})} \cdot \cos 2 \mathrm{x}
$$

$$
=e^{x} \cdot \frac{16+D}{256-D^{2}} \cdot \cos 2 x
$$

$$
=e^{x} \cdot \frac{16+D}{256-(-4)} \cdot \cos 2 x
$$

$$
=\frac{e^{x}}{260}(16 \cos 2 \mathrm{x}-2 \sin 2 \mathrm{x}) \quad \text { G.S. is } \mathrm{y}=\mathrm{y}_{\mathrm{c}}+\mathrm{y}_{\mathrm{p}}
$$

8. Solve $\left(D^{2}-4 D+4\right) y=x^{2} \sin x+e^{2 x}+3$

Sol:

$$
\begin{aligned}
& \text { Given }\left(D^{2}-4 \mathrm{D}+4\right) \mathrm{y}=x^{2} \sin x+e^{2 x}+3 \\
& \text { A.E is }\left(m^{2}-4 \mathrm{~m}+4\right)=0 \\
& (m-2)^{2}=0 \text { then } \mathrm{m}=2,2 \\
& \text { C.F. }=\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right) e^{2 x} \\
& \text { P.I }=\frac{x^{2} \sin x+e^{2 x}+3}{(D-2)^{2}}=\frac{1}{(D-2)^{2}}\left(x^{2} \sin x\right)+\frac{1}{(D-2)^{2}} e^{2 x}+\frac{1}{(D-2)^{2}}(3) \\
& \begin{aligned}
& \text { Now } \frac{1}{(D-2)^{2}}\left(x^{2} \sin x\right)=\frac{1}{(D-2)^{2}}\left(x^{2}\right) \quad\left(\mathrm{I} . \mathrm{P} \text { of } e^{i x}\right) \\
&=\operatorname{I.P} \text { of } \frac{1}{(D-2)^{2}}\left(x^{2}\right)\left(e^{i x}\right) \\
&=\operatorname{I.P} \text { of }\left(e^{i x}\right) \cdot \frac{1}{(D+i-2)^{2}}\left(x^{2}\right)
\end{aligned}
\end{aligned}
$$

On simplification, we get

$$
\begin{aligned}
& \frac{1}{(D+i-2)^{2}}\left(x^{2} \sin x\right)=\frac{1}{625}[(220 \mathrm{x}+244) \cos \mathrm{x}+(40 \mathrm{x}+33) \sin \mathrm{x}] \\
& \text { and } \frac{1}{(D-2)^{2}}\left(e^{2 x}\right)=\frac{x^{2}}{2}\left(e^{2 x}\right), \\
& \frac{1}{(D-2)^{2}}(3)=\frac{3}{4} \\
& \text { P.I }=\frac{1}{625}[(220 \mathrm{x}+244) \cos \mathrm{x}+(40 \mathrm{x}+33) \sin \mathrm{x}]+\frac{x^{2}}{2}\left(e^{2 x}\right)+\frac{3}{4} \\
& \mathrm{y}=\mathrm{y}_{\mathrm{c}}+\mathrm{y}_{\mathrm{p}} \\
& \mathrm{y}=\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right) e^{2 x}+\frac{1}{625}[(220 \mathrm{x}+244) \cos \mathrm{x}+(40 \mathrm{x}+33) \sin \mathrm{x}]+\frac{x^{2}}{2}\left(e^{2 x}\right)+\frac{3}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C.F }=\mathrm{c}_{1} e^{x}+\mathrm{c}_{2} e^{2 x}+\mathrm{c}_{3} e^{4 x} \\
& \text { P.I }=\frac{e^{x} \cos 2 x}{\left(D^{3}-7 D^{2}+14 \mathrm{D}-8\right)} \\
& =e^{x} \cdot \frac{1}{(D+1)^{3}-7(D+1)^{2}+14(D+1)-8} \cdot \cos 2 \mathrm{x} \\
& =e^{x} \cdot \frac{1}{\left(D^{3}-4 D^{2}+3 \mathrm{D}\right)} \cdot \cos 2 \mathrm{x} \\
& =e^{x} \cdot \frac{1}{(-4 D+3 \mathrm{D}+16)} \cdot \cos 2 \mathrm{x}
\end{aligned}
$$

10. Apply the method of variation of parameters to solve $\frac{d^{2} y}{d x^{2}}+\mathbf{y}=$ cosecx

Sol: Given equation in the operator form is $\left(D^{2}-+-1\right) y=-\epsilon \sec x$
A.E is $\left(m^{2}+1\right)=0$

The roots are complex conjugate numbers.
\therefore C.F. is $y_{c}=c_{1} \cos x+c_{2} \sin x$
Let $y_{p}=A \cos x+B \sin x$ be P.I. of (1)

$$
\mathrm{u} \frac{d v}{d x}-\mathrm{v} \frac{d u}{d x}=\cos ^{2} x+\sin ^{2} x=1
$$

A and B are given by
$\mathrm{A}=-\int \frac{v R}{u v^{1}-v u^{1}}=-\int \frac{\sin x \operatorname{cosec} x}{1} \mathrm{dx}=-\int d x=-\mathrm{x}$
$\mathrm{B}=\int \frac{v R}{u v^{1}-v u^{1}}=\int \cos x \cdot \operatorname{cosec} x d x=\int \cot x d x=\log (\sin \mathrm{x})$
$\therefore y_{p}=-x \cos x+\sin x . \log (\sin x)$
\therefore General solution is $y=y_{c}+y_{p}$.
$y=c_{1} \cos x+c_{2} \sin x-x \cos x+\sin x . \log (\sin x)$
11. Solve $\left(4 D^{2}-4 D+1\right) \mathbf{y}=100$

Sol: A.E is $\left(4 m^{2}-4 m+1\right)=0$

$$
\begin{aligned}
& (2 m-1)^{2}=0 \text { then } \mathrm{m}=\frac{1}{2} \cdot \frac{1}{2} \\
& \text { C.F }=\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right) e^{\frac{x}{2}} \\
& \text { P.I }=\frac{100}{\left(4 D^{2}-4 \mathrm{D}+1\right)}=\frac{100 e^{0 x}}{(2 \mathrm{D}-1)^{2}}=\frac{100}{(0-1)^{2}}=100
\end{aligned}
$$

Hence the general solution is $\mathrm{y}=\mathrm{C} . \mathrm{F}+\mathrm{P} . \mathrm{I}$

$$
\mathrm{y}=\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right) e^{\frac{x}{2}}+100
$$

HOMOGENEOUS L.E (OR) CAUCHY'S-EULAR
EQ'S:- An equation of the form
$p_{0} \cdot x^{n} \frac{d^{2} y}{d x^{2}}+p_{0} \cdot x^{n-1} \frac{d^{d^{n-1} y}}{d x^{n-1}}+---+p_{n} \cdot y=Q(x)-(1)$
Where $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots \ldots \ldots . \mathrm{P}_{\mathrm{n}}$ are real constants. $\mathrm{Q}(\mathrm{x})$ is a function of ' x ' is called $\mathrm{C}-\mathrm{E}$
$\mathrm{Eq}-(1)$ of the operator form is

$$
\left(x^{n} D^{n}+p_{1} x^{n-1} D^{n-1}+---+p_{n}\right) y=Q(x)-(2)
$$

Cauchy's linear differential equation can be transformed in to L.D.E. with constant coefficients by the change of independent variable with the substitution
Let $\mathrm{x}=\mathrm{e}^{\mathrm{Z}}$ so that $\mathrm{Z}=\log \mathrm{X}--$ (a)
$\frac{d z}{d x}=\frac{1}{x}$
(b)

Now

$$
\frac{d y}{d x}=\frac{d y}{d z} \cdot \frac{d z}{d x}
$$

$$
\therefore \frac{d y}{d c}=\frac{1}{x} \cdot \frac{d y}{d z}--(c) \quad \text { i.e., } x \cdot \frac{d y}{d x}=\frac{d y}{d z}---(c)
$$

Again
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(\frac{1}{x} \cdot \frac{d y}{d z}\right)$
$\frac{d^{2} x}{d x^{2}}=\frac{1}{x} \cdot \frac{d}{d x}\left(\frac{d y}{d z}\right)+\frac{d y}{d z} \cdot \frac{-1}{x^{2}}$
$=\frac{1}{x} \frac{d}{d}\left(\frac{d y}{d x}\right)-\frac{1}{x^{2}} \frac{d y}{d z}$
$=\frac{1}{x} \frac{d}{d x}\left(\frac{d y}{d z}\right)\left(\frac{d z}{d x}\right)-\frac{1}{x^{2}} \cdot \frac{d y}{d z}$

$$
\begin{aligned}
= & \frac{1}{x} \cdot \frac{d^{2} y}{d z^{2}} \cdot \frac{1}{x}-\frac{1}{x} \frac{d y}{d z} \\
& \frac{1}{x} \cdot\left(\frac{d^{2} y}{d z^{2}}-\frac{d y}{d x}\right)
\end{aligned}
$$

$\therefore x^{2} \frac{d^{2} y}{d x^{2}}=\frac{d^{2} y}{d z^{2}}-\frac{d y}{d z}-\quad$ (d)
Let us denote $\frac{d}{d x}=D \& \frac{d}{d z}=\theta$
(c) $\&(d)$ can be written as
$\mathrm{XD}=\theta ; \mathrm{x}^{2} \mathrm{D}^{2}=\theta(\theta-1)$
Llly, $\mathrm{x}^{3} \mathrm{D}^{3}=\theta(\theta-1)(\theta-2) ; \mathrm{x}^{4} \mathrm{D}^{4}=\theta(\theta-1)(\theta-2)(\theta-3)$
\& soon
Formula's $\mathrm{X} D$
$\mathrm{X}^{2} \mathrm{D}^{2}=(\theta-1)$
$\mathrm{X}^{3} \mathrm{D}^{3}=\theta(\theta-1)(\theta-2) \&$ Soon

Problem:

1. Solve
G.T $\left(x^{2} D^{2}-4 X D+6\right) y=(\log x)^{2-------}(1)$

This is a homogenous D.E
Let $x=e^{2}$ (or) $z=\log x$ then we have

$$
X^{2} D^{2}=\theta(\theta-1)
$$

$$
\text { XD= } \theta------(2)
$$

Now from (1),(2) we have

$$
=(\theta(\theta-1)-4 \theta+6) y=(\log x)^{2}
$$

$$
=\left(\theta^{2}-\theta-4 \theta+6\right) y=(\log x)^{2}
$$

$$
=\left(\theta^{2}-5 \theta+6\right) y=(\log x)^{2}
$$

$$
\left(\theta^{2}-5 \theta+6\right) y=Z^{2}
$$

This is in the form of $f(\theta) y=Q(z)$
:. The general solution is $Y=Y_{c}+Y_{p}$
To find Y_{c} :-

Take A.E $\mathrm{f}(\mathrm{m})=0$
$=m^{2}-5 m+6=0$
$=m^{2}-2 m-3 m+6=0$
$=m(m-2)-3(m-2)=0$
$=(\mathrm{m}-2)(\mathrm{m}-3)=0$
$:$. $m=2,3$
: . The complementary function is

$$
Y=Y_{c}=C_{1} e^{2 z}=C_{2} e^{3 z-\cdots-\cdots------}(a)
$$

To find $Y p$:-

Let

$$
\left(\theta^{2}-5 \theta+6\right) y=Z^{2}
$$

$$
Y=\frac{1}{\theta^{2}-5 \theta+6} \cdot Z^{2}
$$

Then

$$
=\frac{1}{6\left(1+\frac{\theta^{2}-5 \theta}{6}\right)} \cdot Z^{2}
$$

$$
=\frac{1}{6}\left(1-\left(\frac{\theta^{2}-5 \theta}{6}\right)+\frac{\left(\theta^{2}-5 \theta\right)^{2}}{36}\right) Z^{2}
$$

$$
=\frac{1}{6}\left(1-\frac{1}{6}(2-5.2 z)+\frac{1}{36}(0+25.2-0)\right)
$$

$$
=\frac{1}{6}\left(Z^{2}-\frac{2}{6}+\frac{10 Z}{6}+\frac{1}{36} .50\right)
$$

$$
=\frac{1}{6}\left(Z^{2}-\frac{1}{3}+\frac{5}{3} Z+\frac{25}{18}\right)
$$

$$
=\frac{1}{6}\left(Z^{2}+\frac{5}{3} Z+\frac{19}{18}\right)
$$

\therefore The particular integral $Y_{p}=\frac{1}{6}\left(Z^{2}+\frac{5}{3} Z+\frac{19}{18}\right)$-----(b)
\therefore. The general solution is
$\left.: . Y=C_{1} \mathrm{e}^{2 \log \mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{3 \log x+\frac{1}{6}((\log x} \quad 2\right)+\frac{5}{3} \log x+\frac{19}{18}$

$$
=C_{1}^{C} e^{\log x^{2}}+C e^{\log x^{2}}+{ }_{\overline{6}}^{1}\left((\log x)^{2}+{ }_{\overline{3}}^{5} \log x+{\underset{\overline{18}}{19})}_{19}\right)
$$

$$
\begin{aligned}
& \mathrm{Y}=C_{1} e^{2 z}+C e^{3 z}{ }_{6}^{1}\left({ }^{2}{ }^{2}{ }^{2}+\frac{5}{3} Z+\frac{19}{18}\right) \\
& \text { (: . from (a) (b)) }
\end{aligned}
$$

$$
=C 1 x 2+C 2 x 3+\frac{1}{6}\left((\log x)^{2}+\frac{5}{3} \log x+\frac{19}{18}\right.
$$

Which is the required solution
2. G.T $\left(\mathrm{x}^{2} \mathrm{D}^{2}-3 \mathrm{XD}+1\right)=\frac{\log x \cdot \sin (\log x)+1--}{x}$
(1)

This is a homoheneous L.D.E

Let $\mathrm{x}=\mathrm{e}^{\mathrm{z}}$ (or) $\mathrm{Z}=\log \mathrm{x}$ Then we have
$X^{2} D^{2}=\theta(\theta-1)$
$X D=\theta$ \qquad (a)

Now substituting (a) in (1) we get
$=(\theta(\theta-1)-3 \theta+1) y=\frac{\log x \cdot \sin (\log x)+1}{x}$
$=\left(\theta^{2}-\theta-3 \theta+1\right) y=\frac{Z \cdot \sin Z+1}{e^{Z}}$
$=\left(\theta^{2}-4 \theta+1\right) y=e^{-2} \cdot(Z \cdot \sin Z+1)$
This is in the form of $F(\theta) y=Q(Z)$
: . The general solution is $Y=Y_{c}+Y_{p}$

To find Y_{c} :-

Take A.E $f(m)=0$

$$
\begin{aligned}
& m^{2}-4 m+1=0 \\
& m=\frac{4 \pm \sqrt{16-4.1 .1}}{2.1} \\
& =\frac{4 \pm \sqrt{12}}{2} \\
& =\frac{4 \pm 2 \sqrt{3}}{2}=\frac{2(2 \pm \sqrt{3})}{2}
\end{aligned}
$$

$$
=2+\sqrt{3}, 2-\sqrt{3}
$$

: . The complementary function is $Y_{c}=e^{2 z}\left(C_{1} \cosh \sqrt{3 x}+C_{2} \sinh \sqrt{3 x}\right)$
(or)

$$
Y_{c}=C_{1} e^{(2+\sqrt{3}) Z}+C_{2} e^{(2-\sqrt{3}) Z}\left(a_{1}\right)
$$

To find Y_{p} :-

$$
\text { Let }\left(\theta^{2}-4 \theta+1\right) Y=e^{-z}(Z \sin Z+1)
$$

$Y=\frac{1}{\theta^{2}-4 \theta+1} \cdot e^{-Z}(Z \sin Z+1)$
Then
$Y_{p}=e^{-Z} \frac{1}{(\theta-1)^{2}-4(\theta-1)+1}(Z \cdot \sin Z+1)$
$=\mathrm{e}^{-\mathrm{z}} \frac{1}{\theta^{2}+1 \overline{1}^{2 \theta-4 \theta+4+1}} Z \sin Z+1$
$=e^{-z} \cdot \frac{1}{\theta^{2}-6 \theta+6} \cdot Z \sin Z+\frac{1}{\theta^{2}-6 \theta+6} \cdot e^{0 . Z}$
$=\mathrm{e}^{-z}\left\{\frac{1}{\theta^{2}-6 \theta+6} \cdot Z \operatorname{im} e^{i z}+\frac{1}{0-0+6} \cdot 1\right\}$
$=\mathrm{e}^{-2}\left\{\operatorname{im} e^{i z} \frac{1}{\left(\theta-1^{2}\right)-6(\theta+i)+6} \cdot Z+\frac{1}{6}\right\}$
$=\mathrm{e}^{-z}\left\{i m e^{i z} \frac{1}{\theta^{2}-1+2 \theta i-6 \theta-6 i+6} \cdot Z+-1 / 6\right\}$
$=\mathrm{e}^{-\mathrm{z}}\left\{i m e^{i z} \cdot \frac{1}{\theta^{2}-1+2 \theta i-6 \theta-6 i+} \cdot Z+\frac{1}{6}\right\}$
$=\mathrm{e}^{-\mathrm{z}}\left\{i m e^{i z} \cdot \frac{1}{(5-6 i)\left(1+\frac{\theta^{2}+2 \theta i-6 \theta}{5-6 i}\right)} \cdot Z+\frac{1}{6}\right\}$
$=\mathrm{e}^{-\mathrm{z}}\left\{i m e^{i z} \frac{1}{5-6 i}\left(1+\frac{\theta^{2}+2 \theta i-6 \theta}{5-6 i}\right) Z+\frac{1}{6}\right\}$
$=\mathrm{e}^{-Z}\left\{i m e^{i z} \frac{1}{5-6 i}\left(1-\frac{\theta^{2}+2 \theta i-6 \theta}{5-6 i}\right) Z+\frac{1}{6}\right\}$
$=\mathrm{e}^{-z}\left\{i m e^{i z} \frac{1}{5-6 i}\left(\frac{5-6 i-\theta^{2}-2 \theta i+6 \theta}{5-6 i}\right) Z+\frac{1}{6}\right\}$
$=\mathrm{e}^{-z}\left\{i m e^{i z} \frac{1}{(5-6 i)^{2}}\{5 z-i 6 z-0-2 i+6\}+\frac{1}{6}\right\}$
$=\mathrm{e}^{-2}\left\{\operatorname{im} e^{i z}\left(\frac{z(5-6 i)}{5-6 i^{2}}+\frac{6 Z}{(5-6 i)^{2}}\right)+\frac{1}{6}\right\}$
$=\mathrm{e}^{-z}\left\{\operatorname{im} e^{i z}\left(\frac{z}{5-6 i} * \frac{5+6 i}{5+6 i}+\frac{62}{25-35-60 i}\right)+\frac{1}{6}\right\}$
$=\mathrm{e}^{-z}\left\{\right.$ ime $\left.^{i z}\left(\frac{(5+6 i) z}{25+36}+\frac{6 z}{-11-60 i}\right)+\frac{1}{6}\right\}$
$=\mathrm{e}^{-2}\left\{i m e^{i z}\left(\frac{5 z+i 6 z}{6 i}+\frac{6-2 i}{-(11+60 i)} * \frac{11-60 i}{11-60 i}\right)+\frac{1}{6}\right\}$

$$
\begin{aligned}
& =\mathrm{e}^{-2}\left\{(\cos Z+i \sin Z)\left(\frac{5 Z}{61}+i \cdot \frac{6 z}{61}-\left(\frac{66-360 i-22 i-120}{3721}\right)\right)+\frac{1}{6}\right\} \\
& =\mathrm{e}^{-2}\left\{(\cos Z+i \sin Z)\left(\frac{5 Z}{61}+i \cdot \frac{6 Z}{61}-\left(\frac{-54-382 i}{3721}\right)\right)+\frac{1}{6}\right\}
\end{aligned}
$$

Compare in part we get

$$
\begin{aligned}
& =\mathrm{e}^{-\mathrm{z}}\left\{\frac{5}{61} Z \sin Z+\frac{6}{61} Z \cos Z+\frac{54}{3721} \sin Z+\frac{382}{3721} \cos Z+{\underset{6}{1}\}^{382}}^{=} \begin{array}{l}
e^{-z} \\
61
\end{array} 5 Z \sin Z+6 Z \cos Z+\frac{54}{61} \sin Z+\frac{382}{61} \cos Z+\underset{6}{1}\right\}
\end{aligned}
$$

: . The general solution is

$$
\begin{aligned}
& Y=C_{1} e^{(2+\sqrt{ } 3) \log x}+C_{2}^{e} e^{(2-\sqrt{3}) \log x}+\frac{e^{-\log x}}{\frac{51}{61}}\{5 \log x \cdot \sin (\log x)+6 \log x \cdot \cos (\log x)+ \\
& \left.\frac{54}{61} \sin (\log x)+\frac{382}{61} \cos (\log x)+\frac{1}{6}\right\}
\end{aligned}
$$

3. Solve $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+4 y=(1+x)^{2}$

Sol: This is a homogeneous L.D.E.

Given equation of operator from is

$$
\left(x^{2} D^{2}-3 x D+4\right) y=(1+x)^{2 \cdots-\cdots---}(2)
$$

Let $\mathrm{x}=e^{z}=>\mathrm{Z}=\log \mathrm{x}$ Then we have

$$
X D=; x^{2} D^{2}=\theta(\theta-1)---(a)
$$

Now substituting (a) in (2) we get

$$
\begin{aligned}
& \Rightarrow(\theta(\theta-1)-3 \theta+4 \theta) y=\left(1+e^{z}\right)^{2} \\
& \Rightarrow\left(\theta^{2}-\theta-3 \theta+4\right) y=1+e^{2 z}+2 e^{z} \\
& \Rightarrow\left(\theta^{2}-4 \theta+4\right) y=1+e^{2 z}+2 e^{z}
\end{aligned}
$$

This is in the form of $F(\theta) y=Q(z)$
\therefore. The general solution is $Y=Y_{c}+Y_{p}$

To find Y_{c} :-

Take A.E $\mathrm{f}(\mathrm{m})=0$
$\Rightarrow m^{2}-4 m+4=0$
$\Rightarrow m^{2}-2 m-2 m+4=0$
$\Rightarrow \quad m(m-2)-2(m-2)=0$
$\Rightarrow(m-2)(m-2)=0$
$\Rightarrow M=2,2$
: . The complementary function is
$\mathrm{Y}_{\mathrm{c}}=\left(C_{1}+C_{2} Z\right) e^{2 z}$
$=\left(C_{1}+C_{2} \log x\right) e^{2 \log x}$
$\therefore \mathrm{Y}_{\mathrm{c}}=\left(C_{1}+C_{2 \log x}\right) x^{2}$

To find Y_{p} :-

$$
\begin{aligned}
& \text { Let }\left(\theta^{2}-4 \theta+4\right) y=1+e^{2 z}+2 e^{z} \\
& \Rightarrow Y=\frac{1}{\theta^{2}-4 \theta+4} \cdot 1+e^{2 z}+2 e^{z}
\end{aligned}
$$

Then

$$
\begin{aligned}
Y_{p}= & \frac{1}{\theta^{2}-4 \theta+4} e^{0 . z}+\frac{1}{\theta^{2-4 \theta+4}} e^{2 z}+\frac{1}{\theta^{2-4 \theta+4}} \cdot 2 e^{1 \cdot z} \\
& =\frac{1}{0-0+4} \cdot 1+\frac{1}{4-8+4} e^{2 z}+\frac{1}{1-4+4} 2 e^{z} \\
& =\frac{1}{4}+\frac{z e^{2 z}}{2 \theta-4}+2 e^{z} \\
& =\frac{1}{4}+z \frac{e^{2 z}}{4-4}+2 e^{z} \\
= & \frac{1}{4}+z^{2} \frac{e^{2 z}}{2}+2 e^{z} \\
= & \frac{1}{4}+(\log x)^{2} \cdot \frac{1}{2} \cdot e^{2 \log x}+2 e^{\log x} \\
& =\frac{1}{4}+(\log x)^{2} \cdot \frac{1}{2 \cdot} \cdot x^{2}+2 \cdot x
\end{aligned}
$$

The general solution of (1) is $Y=Y_{c}+Y_{p}$
4. G.T
$\left(x^{2} D^{2}+4 x D+2\right) y=e^{x^{-------}(1)}$

This is a H.L.D.E.

Let $\mathrm{x}=\mathrm{e}^{\mathrm{z}}=>\mathrm{Z}=\log \mathrm{x} \& \frac{d}{d x}=D \& \frac{d}{d z}=\theta$ Then

We have

$$
\begin{equation*}
\mathrm{xD}=\theta ; x^{2} D^{2}=\theta(\theta-1) \tag{a}
\end{equation*}
$$

From (1) (a) we have
$\Rightarrow(\theta(\theta-1)+4 \theta+2) y=e^{e^{z}}$
$\Rightarrow\left(\theta^{2}-\theta+4 \theta+2\right) y=e^{e^{z}}$
$\Rightarrow\left(\theta^{2}+3 \theta+2\right) y=e^{e^{z}}$
This is in the form of $F(\theta) y=Q(Z)$
: . The general solution is $Y=Y_{c}+Y_{p}$

To find Y_{c} :-

Take A.E. F(m)=0

$$
\begin{aligned}
& \Rightarrow m^{2}+3 m+2=0 \\
& \Rightarrow m^{2}+2 m+m+2=0 \\
& \Rightarrow m(m+2)+1(m+2)=0 \\
& \Rightarrow(m+2)(m+1)=0 \\
& \Rightarrow m=-1,-2
\end{aligned}
$$

The complementary function is
$Y_{c}=C_{1} e^{-z}+C_{2} e^{-2 z}$

$$
=C_{1} e^{-\log x}+C_{2} e^{-2 \log x}
$$

: . $\mathrm{Y}_{\mathrm{c}}=C_{1} x^{-1}+C_{2} x^{-2}$

To find Y_{p} :-

$$
\text { Let }\left(\theta^{2}+3 \theta+2\right) y=e^{e^{z}}
$$

$Y=\frac{1}{\theta^{2}+3 \theta+2} \cdot e^{e^{z}}$
Then $Y_{p}=\frac{1}{(\theta+2)(\theta+1)} \cdot e^{e^{z}}$

$$
=\frac{1}{\theta+2}\left[\frac{1}{\theta+1} \cdot e^{e^{z}}\right]
$$

$$
\begin{aligned}
& \quad=\frac{1}{\theta+2}\left[e^{-z} \int e^{e^{z}} \cdot e^{z} \cdot d z\right] \\
& =\frac{1}{\theta+2}\left[e^{-z} \cdot e^{e^{z}}\right]
\end{aligned}
$$

$$
\left(\therefore \int e f(x) \cdot f(x) \cdot d x=e^{f(x)}\right)
$$

$=e^{-2 z} \int e^{-z} e^{e^{z}} e^{2 z} d z$
$=e^{-2 z} \int e^{e^{z}} e^{z} d z$
$=e^{-2 z} e^{e^{z}}$
$=e^{-2 \log x} \cdot e^{x}$
$=\frac{1}{x^{2}} \cdot e^{x}$

The general solution is $Y=Y_{c}+Y_{p}($ from (b) \&(c))
Home work :
Solve 1) $\left(x^{2} D^{2}-4 x D+6\right) y=x^{2}$
2) $\left(x^{2} D^{2}-x D+1\right) y=\log x$
3) $\left(x^{3} D^{3}+2 x^{2} D^{2}+2\right) y=10\left(x+\frac{1}{x} \quad \rightarrow\left(\right.\right.$ use $\left.x^{3} D^{3}=\theta(\theta-1)(\theta-2)\right)$
4) $\left(x^{3} D^{3}+3 x^{2} D^{2}+x D+8\right) y=65 \cos (\log x)$
5) $\left(x^{2} D^{2}-x D+2\right) y=x \log x$
6) $\frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}=\frac{12 \log x}{x^{2}}$

Ans: $x^{2} \cdot \frac{d^{2} y}{d x^{2}}+x \cdot \frac{d y}{d x}=12 \log \mathrm{x}$
i.e., $\left(x^{2} D^{2}+x D\right) y=12 \log x$
7) $\left(x^{2} D^{2}+x D+4\right) y=\log x \cdot \cos (2 \log x)$
8) $\left(x^{2} D^{2}-3 x D+1\right) y=\log x \cdot\left(\frac{\sin (\log x)+1}{x}\right)$

$$
\text { i.e., }\left(x^{2} D^{2}-3 \times D+1\right) y=\frac{\log x \cdot \sin (\log x)}{x}+\frac{\log x}{x}
$$

LEGENDRE'S LINEAR EQUATION :-

An equation of the form

$$
p_{0}(a+b x)^{n} \frac{d^{n} y}{d x^{n}}+(a+b x)^{n-1} p{ }_{1} \frac{d^{n-1} y}{d x^{n-1}}+--+p_{n} y=Q(x)
$$

Where $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}$ \qquad .P_{n} are constant $\& Q(x)$ is function of ' x ' is called LEGENDRE'S LINEAR EQUATION .

This can be solved by the substitution $a+b x=e^{z}$ (or) $\log (a+b x)=z$

1. G.T.
$(\mathrm{x}+1)^{2^{d^{2} y}} \frac{d x^{2}}{d x}-3(x+1) \frac{d y}{d x}+4 y=x^{2}+x+1----(1)$
This is a legendre's L.D.E
Put $x+1=u$
$\Rightarrow X=u-1$
$\Rightarrow d x=d u$
$\Rightarrow \frac{d u}{d x}=1$
$\therefore \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=\frac{d y}{d u} \cdot 1=\frac{d y}{d u}$
from (1)we have
$u^{2} \frac{d^{2} y}{d u^{2}}-3 u \frac{d y}{d u}+4 y=(u-1)^{2}+4$
$\Rightarrow\left(u^{2} D^{2}-3 u D+4\right) y=u^{2}+1-2 u+4$
$\Rightarrow\left(u^{2} D^{2}-3 u D+4\right) y=u^{2}-4+1$
Which is a homogeneous L.D.E ----(2)
Let $u=e^{z}$
$\mathrm{Z}=\log \mathrm{u}$ \& also $\frac{d}{d u}=D ; \frac{d}{d z}=\theta$
Then we have $U D=\theta$

$$
u^{2} D^{2}=\theta(\theta-1)
$$

From (2) we have

$$
\Rightarrow \quad(\theta(\theta-1)-3 \theta+4) y=e^{2 z}-e^{z}+1
$$

$$
\begin{aligned}
& \Rightarrow\left(\theta^{2}-\theta-3 \theta+4\right) y=e^{2 z}-e^{z}+1 \\
& \Rightarrow\left(\theta^{2}-4 \theta+4\right) y=e^{2 z}-e^{z}+1
\end{aligned}
$$

This is in the form of $\mathrm{F}(\theta) y=Q(Z)$

To find Y_{c} :

Take A.E $\mathrm{f}(\mathrm{m})=0$
$\rightarrow m^{2}-4 m+4=0$
$\rightarrow(m-2)^{2}=0$
$\rightarrow \quad m=2,2$
$\therefore C . F\left(y_{c}\right)=\left(C_{1}+C_{2} Z\right)^{2 z}$
$\therefore y_{c}=\left(C_{1}+C_{2} \log u\right) e^{2 \log u}$

$$
\begin{aligned}
& =\left(C_{1}+C_{2} \log (x+1)\right)(x+1)^{2} \\
& =\left(C_{1}+C_{2} \log (x+1)\right)(x+1)^{2}
\end{aligned}
$$

To find Y_{p} :

$$
\begin{aligned}
& \text { Let }\left(\theta^{2}-4 \theta+4\right) y=e^{2 z}-e^{z}+1 \\
& Y=\frac{1}{\theta^{2}-4 \theta+4} \cdot e^{2 z}-e^{z}+1
\end{aligned}
$$

Then $Y_{p}: \frac{1}{\theta^{2}-4 \theta+4} e^{2 z}-\frac{1}{\theta^{2}-4 \theta+4} \cdot e^{z}+\frac{1}{\theta^{2}-4 \theta+4 .} e^{0 . z}$

$$
\begin{gathered}
=\frac{1}{4-8+4} e^{2 z}-\frac{1}{1-4+4} e^{z}+\frac{1}{0-0+4} \cdot 1 \\
=\frac{z e^{2 z}}{2 \theta-4}-e^{z}+\frac{1}{4}
\end{gathered}
$$

$$
=\frac{z e^{2 z}}{4-4}-e^{z}+\frac{1}{4}
$$

$$
=\frac{z^{2} e^{2 z}}{2}-e^{z}+\frac{1}{4}
$$

$=\frac{(\log u)^{2} e^{2 \log u}}{2}-e^{\log u}+\frac{1}{4}$
$=\frac{(\log (u))^{2} \cdot e^{\log u^{2}}}{2}-u+\frac{1}{4}$
$\therefore Y_{p}=\frac{(\log u)^{2} \cdot e^{\log u^{2}}}{2}-u+\frac{1}{4}$
\therefore The general solution is $Y=Y_{c}+Y_{p}$

2) G.T

$(2 x-1)^{3} \frac{d^{3} y}{d x^{3}}+(2 x-1) \frac{d y}{d x}-2 \mathrm{y}=\mathrm{x}----(1)$
Eq (1) can be written as
$2^{3}\left(x-{ }_{2}^{1}\right)^{3} \frac{d^{3} y}{d x^{3}}+2\left(x-\frac{1}{{ }^{3}}\right)^{\frac{d y}{2}}-2 y=x$ \qquad
This is in the form of $p_{0 .}(a x+b)^{n} \frac{d n y}{d x^{2}}+p_{1 .}(a x+b)^{n-1} \frac{d n-1 y}{d x^{n-1}}+\cdots---p_{n} . y=Q(x)$
(or)
Which is a legendre's L.D.E.
Put $x-\frac{1}{2}=u \quad>\quad x=u+\frac{1}{2}$

$$
d x=d u
$$

From (2) we have

$$
\begin{equation*}
\Rightarrow 8 u^{d^{d^{3} y}}+2 u_{\overline{d u}}^{d y}-2 y=u+{ }_{\frac{d y}{2}}^{1} \tag{3}
\end{equation*}
$$

Which is a homogeneous L.D.E.
Put $\frac{d}{d u}=D ; \frac{d}{d z}=\theta ; u=e^{z} \quad \Rightarrow \theta Z=\log u$ Then
We have $u^{3} D^{3}=\theta(\theta-1)(\theta-2)$
$u D=\theta------$ (a$)$
from (3)\&(4)we have
$\Rightarrow\left(8 u^{3} D^{3}+2 u D-2\right) y=u+\frac{1}{2}$
$\Rightarrow(8 \theta(\theta-1)(\theta-2)+2 \theta-2) y=e^{z}+\frac{1}{2}$
$\Rightarrow\left(8 \theta\left(\theta^{2}-3 \theta+2\right)+2 \theta-2\right) y=e^{z}+\frac{1}{2}$
$\Rightarrow\left(8 \theta^{3}-24 \theta^{2}+16 \theta+2 \theta-2\right) y=e^{z}+\frac{1}{2}$
$\Rightarrow\left(8 \theta^{3}-24 \theta^{2}+18 \theta-2\right) y=e^{z}+\frac{1}{2}$
This is in the form of $\mathrm{F}(\theta) y=Q(Z)$
\therefore The general sol is $Y=Y_{c}+Y_{p}$

To Find Y_{c} : Take A.E $F(m)=0$
$\Rightarrow 8 m^{3}-24 m^{2}+18 m-2=0$
$\Rightarrow \quad m=1$ (or) $8 m^{2}-16 m+2=0$
$\Rightarrow \quad m=1($ or $) 8 m^{2}-16 m+2=0$
$\Rightarrow \quad m=1$ (or) $m=\frac{8 \pm \sqrt{64-4.4 .1}}{2.4}$

$$
\begin{aligned}
=\frac{8 \pm \sqrt{48}}{8} & =\frac{8 \pm \sqrt{4 \times 2 \times 2 \times 3}}{8} \\
& =\frac{8 \pm 4 \sqrt{3}}{8} \\
& =4 \frac{(2 \pm \sqrt{3})}{8} \\
& =1 \pm \frac{\sqrt{3}}{2}
\end{aligned}
$$

$\therefore \mathrm{Y}_{\mathrm{c}}=c_{1} e^{x}+e^{x}\left(C_{2} \cosh \frac{\sqrt{ }^{3}}{2} x+C_{3} \sin h \frac{\sqrt{ }^{3}-x}{2}\right)$
To Find $Y p$:
Let $\left(8 \theta^{3}-24 \theta^{2}-18 \theta-2\right) y=e^{z}+\frac{1}{2}$
$\Rightarrow \mathrm{Y}=\frac{1}{8 \theta^{3}-24 \theta^{2}-18 \theta-2} \cdot e^{+\frac{1}{2}} \cdot e^{0 \cdot z}$
Then $Y_{p}=\frac{1}{8.1-24.1-18.1-2} e^{Z}+\frac{1}{2} \cdot \frac{1}{0-0-0-2}$
$\Rightarrow \frac{1}{=36} \cdot e^{z}-\frac{1}{4}$
$\Rightarrow \frac{-1}{36} \cdot e^{\log \left(x-{ }_{2}\right)}-\frac{1}{4}$
$\Rightarrow \frac{-1}{36}\left(x-\frac{1}{2}\right)-\frac{1}{4}$
\therefore The general solution is $Y=Y_{c}+Y_{p}$
FILL IN THE BLANKS;

1 .The general solution of $\left(4 D^{2}+4 D+1\right) y=0$ is \qquad
2.The C.F of $(D+1)(D-2)^{2} y=e^{3 x}$ is
3.The P.I of $\frac{d^{3} y}{d x^{3}}+y=e^{-x}$ is
4.The P.I of $\left(D^{2}+a^{2}\right) y=\operatorname{cosax}$ is \qquad
5. The P.I of $\left(D^{2}-5 D+6\right) y=e^{2 x}$ is. \qquad
6. The P.I of $(D+1)^{2} y=x$ is
7. $\frac{1}{D^{2}+D+1} \operatorname{Sin} x=$
8. The P.I of $(\mathrm{D}-1)^{4} \mathrm{y}=\mathrm{e}^{x}$ is. \qquad
9. The value of $\frac{1}{D-2} \operatorname{Sinx}$ is \qquad
10. The value of $\frac{1}{D^{2}+4} \operatorname{Sin} 2 x$ is. \qquad
11. $\frac{1}{\bar{D}^{2}-1} e^{x}=$ \qquad
12. $\frac{1}{(D+2)}\left(x+e^{x}\right)=$
13. The C.F of the equation $\left(D^{3}-D\right) y=x$ is
14. The C.F of the equation $\left(D^{2}+4 D+5\right) y=13 e^{x}$ is
15.C.F of $(D-1)^{2} y=\operatorname{Sin} 2 x$ is
16.The equation $e^{4} d x+\left(x e^{y}+2 y\right) d y=0$ is
a.Homogeneous b.Variable Separable c. Exact d.Non homogeneous 17.P.I of $\left(D^{2}-2 D+1\right) y=C o s h x$ is

MULTIPLE CHOICE QUESTIONS;

1.The general solution of $\left(4 D^{2}+4 D+1\right) y=0$ is
a. $y=c_{1} e^{\frac{-x}{2}}+c_{2} e^{\frac{-x}{2}}$
b. $y=\left(c_{1} x+c_{2}\right) e^{\frac{-x}{2}}$
c. $y=c_{1} e^{\overline{1}}+c_{2} e^{\overline{2}}$
d. $y=\left(c_{1}+c_{2} x\right) e^{\overline{2}}$
2.The C.F of $(D+1)(D-2)^{2} y=e^{3 x}$ is
a. $\quad\left(c_{1}+c_{2} x\right) e^{-x}+c_{3} e^{3 x}$
b. $\left(c_{1}+c_{2} x\right) e^{2 x}+c_{3} e^{-x}$
c. $\quad c_{1} e^{-x}+c_{2} e^{2 x}$
d.None
3.P.I of $\left(D^{3}+1\right) y=e^{-x}$ is.
a. $x e^{\frac{-x}{3}} \quad$ b. $e^{\frac{-x}{3}}$ c. $-x e^{\frac{-x}{3}}$ d.None
4.The P.I of $\left(D^{2}+a^{2}\right) y=c o s a x$ is
$\begin{array}{lll}\text { a. }-\frac{x}{2 a} \cos a x & \text { b. } \frac{x}{2 a} \operatorname{sinax} c . x \cos a x & \text { d. } x \sin a x\end{array}$
5.The P.I of $\left(D^{2}-5 D+6\right) y=e^{2 x}$ is
$\begin{array}{lll}\text { a. }-x e^{2 x} & \text { b. } x e^{2 x} & \text { c. } e^{2 x} \\ \text { d. } 0\end{array}$
6.P.I of $(D+1)^{2} y=x$ is
a. x
b. x - 2
c. $(x+1)^{2}$
d. $(x+2)^{2}$
7. $\frac{1}{D^{2}+D+1} \sin x=$
$\begin{array}{lll}\text { a. } \sin x & \text { b. } \cos x & \text { c. } \frac{1}{3} \sin x d .1-\cos x\end{array}$
8. P.I I of $(D-1)^{4} y=e^{x}$ is \qquad
a. $\frac{x}{4} e^{x}$
b. $x^{4} e^{x}$
c. e^{x}
d. $\frac{e^{x}}{4}$
9.The value of $\frac{1}{D-2} \sin x$ is \qquad
a. $\frac{-1}{5}(\cos x+\sin x)$
b. $\frac{1}{5} \cos x$
c. $\frac{1}{5} \sin x$
d. $\frac{1}{5}(\cos x+\sin x)$
10. The value of $\frac{1}{D^{2}+4} \sin 2 x$ is. \qquad
a. $\frac{1}{5} \sin 2 x$
b. $\frac{-1}{5} \sin ^{2} x$
c. $\frac{1}{5} \cos 2 x$
d. $\frac{-1}{5} \cos 2 x$
11. $\frac{1}{D^{2}-1} e^{x}=$ \qquad
a. $\frac{1}{2} x e^{x}$
b. $\frac{-1}{2} x e^{x}$
c. $\frac{x^{2}}{2} e^{x} \quad$ d.None
12. $\frac{1}{D+2}\left(x+e^{x}\right)=$ \qquad
$\begin{array}{lll}\text { a. } \frac{-x}{4}-\frac{1}{16}+\frac{e^{x}}{3} & \text { b. } \frac{x}{4}+\frac{1}{16}-\frac{e^{x}}{3} & \text { c. } \frac{x}{4}-\frac{1}{16}+e^{x} \quad \text { d.None }\end{array}$
13.The C.F of the equation $\left(D^{3}-D\right) y=x$ is \qquad
a. $c_{1}+c_{2} x+c_{3} e^{x}$
b. $c_{1}+c_{2} e^{x}+c_{3} e^{-x}$
c. $\left(c_{1}+c_{2} x\right) e^{x}+c_{3} e^{-x}$
d.None
14.The C.F of $\left(D^{2}+4 D+5\right) y=13 e^{x}$ is \qquad
a. $e^{-2 x}\left(c_{1} \cos x+c_{2} \sin x\right) \quad$ b. $e^{2 x}\left(c_{1} \cos x+c_{2} \sin x\right)$
c. $e^{x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)$
d. None
15.C.F of $(D-1)^{2} y=\operatorname{Sin} 2 x$ is \qquad
a. $\left(c_{1}+c_{2} x\right) e^{x}$
b. $\left(c_{1}+c_{2} x\right) e^{-x}$
c. $c_{1} x+c_{2} e^{x}$

d.None

16.The substitution to transform homogeneous linear equation into a linear equation with constant coefficient is. \qquad
$\begin{array}{llll}\text { a. } x=e^{z} & \text { b. } z=e^{x} & \text { c. } x=\log z & \text { d. } x=y\end{array}$
17. By eliminating y from the simultaneous equation ($D-1$) $x+2 y=0$, ($D-3$) y - $5 x=0$ where
$D=\frac{d}{d t}$ the differential equation obtained is \qquad
a. $\left(D^{2}+4 D-13\right) x=0$
b. $\left(D^{2}-4 D+13\right) x=0$
c. $\left(D^{2}-4 D-13\right) x=0$
d. $\left(D^{2}+4 D+13\right) x=0$
18) If m_{1}, m_{2}, m_{3} are real and distinct roots then the complementary function is
(a) $c_{1} e^{(m 1 x+m 2 x+m 3 x)}$
(b) $c_{1} e^{m 1 x}+c_{1} e^{m 2 x}+c_{3} e^{m 3 x}$
(b)
(c) $c_{1} e^{m 1 x}+c_{2} e^{m 2 x}+c_{3} e^{m 3 x}$
(d) None
19) If $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}$ are roots are real \& equal and $\mathrm{m}_{4}, \mathrm{~m}_{5}$ are real and different Then complementary function is
(a) $c_{1} e^{m 1 x}+c_{2} e^{m 2 x}+\left(c_{3}+c_{4}\right) e^{m 3 x}$
(b) $\left(c_{1}+c_{2} x\right) e^{m 1 x}+c_{4} e^{m 3 x}+c_{5} e^{m 4 x}$
(c) $\left(c_{1}+c_{2} \mathrm{X}+\mathrm{c}_{3} \mathrm{X}^{2}+c_{4} \mathrm{X}^{3}\right) \mathrm{e}^{\mathrm{mlx}}$
(d) none
20) If two roots of auxiliary equation are complex say $\alpha+\mathrm{i} \beta, \alpha-\mathrm{i} \beta$ then the complementary function is
(a) $\left(\mathrm{c}_{1} \cos ^{\left.\propto_{\mathrm{x}}+\mathrm{c}_{2} \sin \beta_{\mathrm{x}}\right)}\right.$
(b) $e^{\propto \alpha x}\left(c_{1} \cos \beta \mathrm{x}+\mathrm{c}_{2} \sin \beta \mathrm{x}\right)$
(c). $e^{\omega x}\left[\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right) \cos \beta_{\mathrm{X}}+\left(\mathrm{c}_{3}+\mathrm{c}_{4} \mathrm{X}\right) \sin \beta_{\mathrm{x}}\right)$
(d) None

UNIT IV

vector Calculus and Vector Operators

INTRODUCTION

In this chapter, vector differential calculus is considered, which extends the basic concepts of differential calculus, such as, continuity and differentiability to vector functions in a simple and natural way. Also, the new concepts of gradient, divergence and curl are introduced.

DIFFERENTIATION OF A VECTOR FUNCTION

Let S be a set of real numbers. Corresponding to each scalar $t \varepsilon S$, let there be associated a unique vector \bar{f}. Then \bar{f} is said to be a vector (vector valued) function. S is called the domain of $\overline{f^{-}}$. We write $f^{-}=f(\overline{\mathrm{t}})$.

Let $\bar{i}, \bar{j}, \bar{k}$ be three mutually perpendicular unit vectors in three dimensional space. We can write $\bar{f}=\bar{f}(\mathrm{t})=f_{1}(t) \bar{i}+f_{2}(t) \bar{j}+f_{3}(t) \bar{k}$, where $f_{1}(t), f_{2}(t), f_{3}(t)$ are real valued functions (which are called components of \bar{f}). (we shall assume that i^{-}, j^{-}, \bar{k} are constant vectors).

1. Derivative:

Let \bar{f} be a vector function on an interval I and a $\in I$. Then $L t_{t \rightarrow a} \frac{\bar{f}(t)-\bar{f}(a)}{t-a}$, if exists, is called the derivative of f at a and is denoted by $f^{1}(\mathrm{a})$ or $\binom{d f}{d t}$ at $\mathrm{t}=\mathrm{a}$. We also say that \bar{f} is differentiable at $\mathrm{t}=\mathrm{a}$ if \bar{f}^{1} (a) exists.

2. Higher order derivatives

Let \bar{f} be differentiable on an interval I and $\bar{f}^{1}=\frac{d f}{d t}$ be the derivative of f. If $L t_{t \rightarrow a} \frac{\bar{f}^{1}(t)-\bar{f}^{1}(a)}{t-a}$ exists for every a $€ I_{1} \subset I$. It is denoted by $\bar{f}^{11}=\frac{d^{2} f}{d t^{2}}$.
Similarly we can define $f^{-111}(t)$ etc.

We now state some properties of differentiable functions (without proof)

(1) Derivative of a constant vector is \bar{a}.

If \bar{a} and b^{-}are differentiable vector functions, then
(2). $\frac{d}{d t}(\epsilon \pm b)=\frac{d \epsilon}{d t} \pm \frac{d b}{d t}$
(3). $\frac{d}{d t}(a t \cdot b)=\frac{d t}{d t} \cdot b+a t \cdot \frac{d b}{d t}$
(4). $\frac{d}{d t}(a \times b)=\frac{d \bar{a}}{d t} \times b+a \times \frac{d b}{d t}$
(5). If \bar{f} is a differentiable vector function and ϕ is a scalar differential function, then $\frac{d}{d t}(\phi f)=\phi \frac{d f}{d t}+\frac{d \phi}{d t} \bar{f}$
(6). If $\bar{f}=f_{1}(t) \bar{i}+f_{2}(t) \bar{j}+f_{3}(t) \bar{k}$ where $f_{1}(t), f_{2}(t), f_{3}(t)$ are cartesian components of the vector f, then $\frac{d f}{d t}=\frac{d f_{1}}{d t} i+\frac{d f_{2}}{d t} \dot{j}+\frac{d f_{3}}{d t} k$
(7). The necessary and sufficient condition for $f(\mathrm{t})$ to be constant vector function is $\frac{d f}{d t}=\sigma$.

3. Partial Derivatives

Partial differentiation for vector valued functions can be introduced as was done in the case of functions of real variables. Let \bar{f} be a vector function of scalar variables p, q, t. Then we write $\bar{f}=\bar{f}(p, q, t)$. Treating t as a variable and p, q as constants, we define

$$
L t_{\delta t \rightarrow 0} \frac{\bar{f}(p, q, t+\delta t)-\bar{f}(p, q, t)}{\delta t}
$$

if exists, as partial derivative of f w.r.t. t and is denot by $\frac{\partial f}{\partial t}$
Similarly, we can define $\frac{\partial \bar{f}}{\partial p}, \frac{\partial \bar{f}}{\partial q}$ also. The following are some useful results on partial differentiation.

4. Properties

1) $\frac{\partial}{\partial t}(\phi a)=\frac{\partial \phi}{\partial t} a+\phi \frac{\partial a}{\partial t}$
2). If λ is a constant, then $\frac{\partial}{\partial t}(\lambda a)=\lambda \frac{\partial a}{\partial t}$
3). If $\bar{c} \quad$ is a constant vector, then $\frac{\partial}{\partial t}(\phi e)=e \frac{\partial \phi}{\partial t}$
4). ${ }_{\frac{\partial}{\partial t}}(a- \pm b)=\frac{\partial a _}{\partial t} \frac{\partial b^{-}}{\partial t}$
5). $\frac{\partial}{\partial t}(a \cdot b)=\frac{\partial a{ }^{\partial t}}{\partial t} \cdot b+a \cdot \frac{\partial t}{\partial b-} \frac{\partial}{\partial t}$
6). ${ }_{\frac{\partial t}{\partial t}}^{\partial t}(a \times b)=\frac{\partial t}{\partial t} \times b+a-\times \frac{\partial b-}{\partial t}$
7). Let $\bar{f}=f_{1} \bar{i}+f_{2} \bar{j}+f_{3} \bar{k}$, where f_{1}, f_{2}, f_{3} are differential scalar functions of more then one variable, Then $\frac{\partial f}{\partial t}=\dot{i} \frac{\partial f_{1}}{\partial t}+\dot{j} \frac{\partial f_{2}}{\partial t}+k \frac{\partial f_{3}}{\partial t}$ (treating \dot{t}, \dot{j}, k as fixed directions)

5. Higher order partial derivatives

Let $f=f(p, q, t)$. Then $\begin{gathered}\partial^{2} f \\ \partial t^{2}\end{gathered}=\frac{\partial}{\partial t}\binom{\partial f}{\partial t}, \begin{aligned} & \partial^{2} f \\ & \partial p \partial t\end{aligned}=\frac{\partial}{\partial p}\binom{\partial f}{\partial t}$ etc.
6.Scalar and vector point functions: Consider a region in three dimensional space. To each point $p(x, y, z)$, suppose we associate a unique real number (called scalar) say ϕ. This $\phi(x, y, z)$ is called a scalar point function. Scalar point function defined on the region. Similarly if to each point $p(x, y, z)$ we associate a unique vector $\bar{f}(x, y, z), \bar{f}$ is called a vector point function.

Examples:

For example take a heated solid. At each point $\mathrm{p}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ of the solid, there will be temperature $\mathrm{T}(x, y, z)$. This T is a scalar point function.

Suppose a particle (or a very small insect) is tracing a path in space. When it occupies a position $\mathrm{p}(x, y, z)$ in space, it will be having some speed, say, v. This speed v is a scalar point function.

Consider a particle moving in space. At each point P on its path, the particle will be having a velocity \bar{v} which is vector point function. Similarly, the acceleration of the particle is also a vector point function.

In a magnetic field, at any point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ there will be a magnetic force $\bar{f}(x, y, z)$. This is called magnetic force field. This is also an example of a vector point function.

7. Tangent vector to a curve in space.

Consider an interval $[\mathrm{a}, \mathrm{b}]$.
Let $\mathrm{x}=\mathrm{x}(\mathrm{t}), \mathrm{y}=\mathrm{y}(\mathrm{t}), \mathrm{z}=\mathrm{z}(\mathrm{t}) \mathrm{be}$ continuous and derivable for $\mathrm{a} \leq \mathrm{t} \leq \mathrm{b}$.
Then the set of all points $(x(t), y(t), z(t))$ is called a curve in a space.
Let $\mathrm{A}=(\mathrm{x}(\mathrm{a}), \mathrm{y}(\mathrm{a}), \mathrm{z}(\mathrm{a}))$ and $\mathrm{B}=(\mathrm{x}(\mathrm{b}), \mathrm{y}(\mathrm{b}), \mathrm{z}(\mathrm{b}))$. These A, B are called the end points of the curve. If $\mathrm{A}=\mathrm{B}$, the curve in said to be a closed curve.

Let P and Q be two neighbouring points on the curve.
Let $\overline{O P}=\bar{r}(t), \overline{O Q}=\bar{r}(t+\delta t)=\bar{r}+\delta \bar{r} . T$ hen $\delta \bar{r}=\overline{O Q}-\overline{O P}=\overline{P Q}$
Then $\frac{\delta r}{\delta t}$ is along the vector PQ . As $\mathrm{Q} \rightarrow \mathrm{P}, \mathrm{PQ}$ and hence $\frac{P Q}{\delta t}$ tends to be along the tangent to the curve at P .

Hence $\underset{\delta t \rightarrow 0}{l t} \frac{\delta r}{\delta t}=\frac{d r}{d t}$ will be a tangent vector to the curve at P. (This $\frac{d r}{d t}$ may not be a unit vector)

Suppose arc length $\mathrm{AP}=\mathrm{s}$. If we take the parameter as the arc length parameter, we can observe that $\frac{d r}{d s}$ is unit tangent vector at P to the curve.

VECTOR DIFFERENTIAL OPERATOR

Def. The vector differential operator ∇ (read as del) is defined as
$\nabla \equiv \dot{i} \frac{\partial}{\partial x}+\bar{j} \frac{\partial}{\partial y}+\bar{k} \frac{\partial}{\partial z}$. This operator possesses properties analogous to those of ordinary vectors as well as differentiation operator. We will define now some quantities known as "gradient", "divergence" and "curl" involving this operator ∇. We must note that this operator has no meaning by itself unless it operates on some function suitably.

GRADIENT OF A SCALAR POINT FUNCTION

Let $\phi(x, y, z)$ be a scalar point function of position defined in some region of space. Then the vector function $i \frac{\partial \phi}{\partial x}+j \frac{\partial \phi}{\partial y}+k \frac{\partial \phi}{\partial z}$ is known as the gradient of ϕ or $\nabla \phi$

$$
\nabla \phi=\left(\dot{i} \frac{\partial}{\partial x}+\dot{f} \frac{\partial}{\partial y}+\frac{\partial x}{\partial z} \frac{\partial}{\partial z}\right) \phi=\dot{i}^{\partial \phi}+\dot{f} \begin{gathered}
\partial z \\
\partial x
\end{gathered} \frac{\partial k^{\partial \phi}}{\partial y}
$$

Properties:

(1) If f and g are two scalar functions then $\operatorname{grad}(f \pm g)=\operatorname{grad} f \pm \operatorname{grad} g$
(2) The necessary and sufficient condition for a scalar point function to be constant is that $\nabla \mathrm{f}=$ $\overline{0}$
(3) $\operatorname{grad}(\mathrm{fg})=f(\operatorname{grad} g)+g(\operatorname{grad} \mathrm{f})$
(4) If c is a constant, $\operatorname{grad}(\mathrm{c} f)=c(\operatorname{grad} f)$
(5) $\operatorname{grad} \left\lvert\,\left(\begin{array}{c}f \\ f \\ \mathcal{B}\end{array}\right)=\frac{g(\operatorname{grad} f)-f(\operatorname{grad} g)}{g^{2}}\right.,(g \neq 0)$
(6) Let $r=x i+y j+z k$. Then $d \bar{r}=d x i+d y \bar{j}+d z k$ if ϕ is any scalar point function, then
 $\begin{array}{ccc}\partial \phi & \partial \phi \quad \partial \phi & \left(\begin{array}{ccc}\partial \Phi & -\partial \Phi & \frac{\partial 子}{\partial \Psi}\end{array}\right)^{-}\end{array}$

DIRECTIONAL DERIVATIVE

Let $\phi(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be a scalar function defined throughout some region of space. Let this function have a value ϕ at a point P whose position vector referred to the origin O is $\overline{O P}=\bar{r}$. Let $\phi+\Delta \phi$ be the value of the function at neighbouring point Q . If $\overline{O Q}=\bar{r}+\Delta \bar{r}$. Let $\Delta \mathrm{r}$ be the length of $\Delta \bar{r}$
$\Delta \phi$

- gives a measure of the rate at which ϕ change when we move from P to Q . The limiting Δr
value of $\frac{\Delta \mathrm{L}}{\Delta \mathrm{r}}$ as $\Delta \mathrm{r} \rightarrow 0$ is called the derivative of ϕ in the direction of $\overline{P Q}$ or simply directional derivative of ϕ at P and is denoted by $\mathrm{d} \phi / \mathrm{dr}$.

Theorem 1: The directional derivative of a scalar point function ϕ at a point $P(x, y, z)$ in the direction of a unit vector \bar{e} is equal to $\bar{e} . \operatorname{grad} \phi=\bar{e} . \nabla \phi$.

Level Surface

If a surface $\phi(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{c}$ be drawn through any point $P(\bar{r})$, such that at each point on it, function has the same value as at P , then such a surface is called a level surface of the function ϕ through P.
e.g : equipotential or isothermal surface.

Theorem 2: $\nabla \phi$ at any point is a vector normal to the level surface $\phi(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{c}$ through that point, where c is a constant.

The physical interpretation of $\nabla \phi$

The gradient of a scalar function $\phi(\mathrm{x}, \mathrm{y}, \mathrm{z})$ at a point $P(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is a vector along the normal to the level surface $\phi(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{c}$ at P and is in increasing direction. Its magnitude is equal to the greatest rate of increase of ϕ. Greatest value of directional derivative of $\bar{\Phi}$ at a point $\mathbf{P}=|\boldsymbol{g r a d} \phi|$ at that point.

SOLVED PROBLEMS

1: If $a=x+y+z, b=x^{2}+y^{2}+z^{2}, c=x y+y z+z x$, prove that $[\operatorname{grad} a, \operatorname{grad} b, \operatorname{grad} c]=0$.
Sol:- Given $a=x+y+z$
There fore $\frac{\partial a}{\partial x}=1, \frac{\partial a}{\partial y}=1, \frac{\partial a}{\partial z}=1$
Grad $\mathrm{a}=\nabla \mathrm{a}=\sum^{\dot{i}} \frac{\partial a}{\partial x}=\dot{i}+\dot{j}+k$
Given $b=x^{2}+y^{2}+z^{2}$
Therefore $\frac{\partial b}{\partial x}=2 x, \frac{\partial b}{\partial y}=2 y, \frac{\partial b}{\partial z}=2 z$
$\operatorname{Grad} \mathrm{b}=\nabla \mathrm{b}=\dot{i} \frac{\partial b}{\partial x}+j \frac{\partial b}{\partial y}+z \frac{\partial b}{\partial z}=2 x \dot{i}+2 y \dot{j}+2 z k$

Again $c=x y+y z+z x$

Therefore $\frac{\partial c}{\partial x}=y+z, \frac{\partial c}{\partial y}=z+x, \frac{\partial c}{\partial z}=y+x$
Grad c $=\dot{i} \frac{\partial c}{\partial x}+\dot{f} \frac{\partial c}{\partial y}+z \frac{\partial c}{\partial z}=(y+z) \dot{i}+(z+x) \dot{j}+(x+y) k^{-}$
$[\operatorname{grad} \mathrm{a}, \operatorname{grad} \mathrm{b}, \operatorname{grad} \mathrm{c}]=\left|\begin{array}{lll}1 & 1 & 1 \\ 2 x & 2 y & 2 z \\ y+z & z+x & x+y\end{array}\right|=0$, (on simplification)
$[\operatorname{grad} a, \operatorname{grad} b, \operatorname{grad} c]=0$
2: Show that $\nabla[\mathrm{f}(\mathrm{r})]=\frac{f^{i}(r)}{r} \bar{r}$ where $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$.
Sol:- Since $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$, we have $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$
Differentiating w.r.t. ' x ' partially, we get
$2 \mathrm{r} \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r}$.Similarly $\frac{\partial r}{\partial y}=\frac{y}{r}, \frac{\partial r}{\partial z}=\frac{z}{r}$

Note : From the above result, $\nabla(\log r)=\frac{1}{r^{2}} r$
3: Prove that $\nabla\left(\mathrm{r}^{\mathrm{n}}\right)=\mathrm{nr}^{\mathrm{n}-2} \bar{r}$.
Sol:- Let $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$ and $\mathrm{r}=|\bar{r}|$. Then we have $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$ Differentiating w.r.t. x partially, we have
$2 \mathrm{r} \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r}$.Similarly $=\frac{\partial r}{\partial y}=\frac{y}{r}$ and $\frac{\partial r}{\partial z}=\frac{z}{r}$
$\nabla\left(\mathrm{r}^{\mathrm{n}}\right)=\sum \dot{i} \frac{\partial}{\partial x}\left(r^{n}\right)=\sum \dot{i} n r^{n-1} \frac{\partial r}{\partial x}=\sum \dot{t} n r^{n-1} \underline{\underline{x}}=n r^{n-2} \sum \dot{t} x=n r^{n-2}(r)$
Note : From the above result, we can have
(1). $\nabla\binom{1}{r}=-\underset{r^{3}}{r}$, taking $\mathrm{n}=-1(2) \operatorname{grad} \mathrm{r}=\stackrel{r}{\mp}$, taking $\mathrm{n}=1$

4: Find the directional derivative of $f=x y+y z+z x$ in the direction of vector $\bar{i}+2 \bar{j}+2 \bar{k}$ at the point (1,2,0).
Sol:- Given $f=x y+y z+z x$.

$$
\operatorname{Grad} \mathrm{f}=\dot{\bar{t}} \frac{\partial f}{\partial x}+\bar{j} \frac{\partial f}{\partial y}+\bar{z} \frac{\partial f}{\partial z}=(y+z) \bar{i}+(z+x) \bar{j}+(x+y) \bar{k}
$$

If \bar{e} is the unit vector in the direction of the vector $\bar{i}+2 \bar{j}+2 \bar{k}$, then

$$
\bar{e}=\frac{\bar{i}+2 \bar{j}+2 \bar{k}}{\sqrt{1^{2}+2^{2}+2^{2}}}=\frac{1}{3}(\bar{i}+2 \bar{j}+2 \bar{k})
$$

Directional derivative of f along the given direction $=\bar{e} . \nabla f$
$=\frac{1}{3}(\bar{i}+2 \bar{j}+2 k) \cdot[(y+z) \bar{i}+(z+x) \bar{j}+(x+y k)] a t(1,2,0)$
$=\frac{1}{3}[(y+z)+2(z+x)+2(x+y)](1,2,0)=\frac{10}{3}$

5: Find the directional derivative of the function $x y^{2}+\mathrm{yz}^{2}+\mathrm{zx} x^{2}$ along the tangent to the curve x $=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2}, \mathrm{z}=\mathrm{t}^{3}$ at the point $(1,1,1)$.
Sol: - Here $f=\mathrm{xy}^{2}+\mathrm{yz}^{2}+\mathrm{zx}^{2}$

$$
\begin{gathered}
\nabla f=\dot{i} \frac{\partial f}{}+j-\underline{\partial f}+k \underline{\underline{\partial} f}=\left(y^{2}+2 x z\right) i \neq\left(z^{2}+2 x y\right) j+\left(x^{2}+2 y z\right) k \\
\partial x \quad \partial z
\end{gathered}
$$

At $(1,1,1), \quad \nabla f=3 \bar{i}+3 \bar{j}+3 \bar{k}$
Let \bar{r} be the position vector of any point on the curve $\mathrm{x}=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2}, \mathrm{z}=\mathrm{t}^{3}$. then

$$
\begin{aligned}
& \bar{r}=x \bar{i}+y \bar{j}+z k=t i+t^{2} \bar{j}+t^{3} k \\
& \frac{\partial r}{\partial t}=\bar{t}+2 t \dot{j}+3 t^{2} \bar{k}=(i+2 \dot{j}+3 k) \text { at }(1,1,1)
\end{aligned}
$$

We know that $\frac{\partial r}{\partial t}$ is the vector along the tangent to the curve.
Unit vector along the tangent $=\bar{e} \epsilon=\frac{\bar{i}+2 \bar{j}+3 \bar{k}}{\sqrt{1+2^{2}+3^{2}}}=\frac{\bar{i}+2 \bar{j}+3 \bar{k}}{\sqrt{14}}$
Directional derivative along the tangent $=\nabla f . \bar{e}$

$$
=\frac{1}{\sqrt{14}}(\bar{i}+2 \bar{j}+3 \bar{k}) \cdot 3(\bar{i}+\bar{j}+\bar{k}) \frac{3}{\sqrt{14}}(1+2+3)=\frac{18}{\sqrt{14}}
$$

6: Find the directional derivative of the function $f=x^{2}-y^{2}+2 z^{2}$ at the point $P=(1,2,3)$ in the direction of the line $\overline{P Q}$ where $\mathrm{Q}=(5,0,4)$.

Sol:- The position vectors of P and Q with respect to the origin are $\overline{O P}=\bar{i}+2 \bar{j}+3 \bar{k}$ and $\overline{O Q}=5 \bar{i}+4 \bar{k}$

$$
\overline{P Q}=\overline{O Q}-\overline{O P}=4 \bar{i}-2 \bar{j}+\bar{k}
$$

Let \bar{e} be the unit vector in the direction of $\overline{P Q}$. Then $\bar{e}=\frac{4 \bar{i}-2 \bar{j}+\bar{k}}{\sqrt{21}}$ $\operatorname{grad} f=\dot{i} \frac{\partial f}{\partial x}+\frac{\partial f}{j} \frac{\partial}{\partial y}+\bar{k} \frac{\partial f}{\partial z}=2 x \bar{i}-2 y \bar{j}+4 z \bar{k}$
The directional derivative of f^{-}at $\mathrm{P}(1,2,3)$ in the direction of $\overline{P Q}=e^{-} . \nabla f$

$$
\begin{equation*}
=\frac{1}{\sqrt{21}}(4 \bar{i}-2 \bar{j}+\bar{k}) \cdot(2 x \bar{i}-2 y \bar{j}+4 z \bar{k}) \frac{1}{\sqrt{21}}(8 x+4 y+4 z)_{a t(1,2,3)}=\frac{1}{\sqrt{21}}(\tag{28}
\end{equation*}
$$

7: Find the greatest value of the directional derivative of the function $f=x^{2} y z^{3}$ at $(2,1,-1)$.

Sol: we have
$\operatorname{grad} f=\dot{\bar{t}} \frac{\partial f}{\partial x}+\bar{j} \frac{\partial f}{\partial y}+\frac{\partial f}{k} \frac{\partial f}{\partial z}=2 x y z^{3} i^{-}+x^{2} z^{3} \bar{j}+3 x^{2} y z^{2} \bar{k}=-4 \bar{i}-4 \bar{j}+12 \bar{k}$ at $(2,1,-1)$.
Greatest value of the directional derivative of $f=|\nabla f|=\sqrt{16+16+144}=4 \sqrt{11}$.

8: Find the directional derivative of $\mathrm{xyz}^{2}+\mathrm{xz}$ at $(1,1,1)$ in a direction of the normal to the surface $3 x y^{2}+y=z$ at $(0,1,1)$.
Sol:- Let $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \equiv 3 \mathrm{xy}{ }^{2}+\mathrm{y}-\mathrm{z}=0$
Let us find the unit normal e to this surface at $(0,1,1)$. Then

$$
\frac{\partial f}{\partial x}=3 y^{2}, \frac{\partial f}{\partial y}=6 x y+1, \frac{\partial f}{\partial z}=-1
$$

$\nabla f=3 \mathrm{y}^{2} \mathrm{i}+(6 \mathrm{xy}+1) \mathrm{j}-\mathrm{k}$
$(\nabla f)_{(0,1,1)}=3 \mathrm{i}+\mathrm{j}-\mathrm{k}=\bar{n}$
$\bar{e}=\frac{\bar{n}}{|\bar{n}|}=\frac{3 i+j-k}{\sqrt{9+1+1}}=\frac{3 i+j-k}{\sqrt{11}}$
Let $g(x, y, z)=x y z^{2}+x z$,then

$$
\frac{\partial g}{\partial x}=y z^{2}+z, \frac{\partial g}{\partial y}=x z^{2}, \frac{\partial g}{\partial z}=2 x y+x
$$

$\nabla g=\left(\mathrm{yz}^{2}+\mathrm{z}\right) \mathrm{i}+\mathrm{xz}^{2} \mathrm{j}+(2 \mathrm{xyz}+\mathrm{x}) \mathrm{k}$
And $[\nabla g]_{(1,1,1)}=2 \mathrm{i}+\mathrm{j}+3 \mathrm{k}$
Directional derivative of the given function in the direction of \bar{e} at $(1,1,1)=\nabla g . e^{-}$

$$
=(2 i+j+3 k) \cdot\left(\frac{3 i+j-k}{\sqrt{11}}\right)=\frac{6+1-3}{\sqrt{11}}=\frac{4}{\sqrt{11}}
$$

9: Find the directional derivative of $\mathbf{2 x y}+\mathbf{z}^{2}$ at $(\mathbf{1},-\mathbf{1}, 3)$ in the direction of $\bar{i}+2 \bar{j}+3 \bar{k}$.
Sol: Let $f=2 \mathrm{xy}+\mathrm{z}^{2}$ then $\frac{\partial f}{\partial x}=2 y, \frac{\partial f}{\partial y}=2 x, \frac{\partial f}{\partial z}=2 z$.
$\operatorname{grad} \mathrm{f}=\sum^{\frac{i}{i} \frac{\partial f}{\partial x}}=2 y \dot{t}+2 x \dot{j}+2 z \bar{k}$ and (grad f)at $(1,-1,3)=-2 \bar{i}+2 \bar{j}+6 \bar{k}$
given vector is $\bar{a}=\bar{i}+2 \bar{j}+3 \bar{k} \Rightarrow|\bar{a}|=\sqrt{1+4+9}=\sqrt{14}$
Directional derivative of f in the direction of \bar{a} is

$$
\frac{\bar{a} \cdot \nabla f}{|\bar{a}|}=\frac{(\bar{i}+2 \bar{j}+3 \bar{k})(-2 \bar{i}+2 \bar{j}+6 \bar{k}) .}{\sqrt{14}}=\frac{-2+4+18}{\sqrt{14}}=\frac{20}{\sqrt{14}}
$$

10: Find the directional derivative of $\phi=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ in the direction $2 \mathrm{i}-\mathrm{j}-2 \mathrm{k}$.
Sol:- Given $\phi=x^{2} y z+4 x z^{2}$

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=2 x y z+4 z^{2}, \underline{\partial \phi} \\
& \partial y
\end{aligned}=x^{2} z, \frac{\partial \phi}{\partial z}=x^{2} y+8 x z .
$$

Hence $\nabla \phi=\sum^{\dot{i}} \frac{\partial \phi}{\partial x}=\vec{i}\left(2 x y z+4 z^{2}\right)+\bar{j} x^{2} z+\bar{k}\left(x^{2} y+8 x z\right)$
$\nabla \phi$ at $(1,-2,-1)=\mathrm{i}(4+4)+\mathrm{j}(-1)+\mathrm{k}(-2-8)=8 \mathrm{i}-\mathrm{j}-10 \mathrm{k}$.
The unit vector in the direction $2 \mathrm{i}-\mathrm{j}-2 \mathrm{k}$ is

$$
\bar{a}=\frac{2 i-j-2 k .}{\sqrt{4+1+4}}=\frac{1}{3}(2 i-j-2 k)
$$

Required directional derivative along the given direction $=\nabla \phi \cdot \bar{a}$

$$
\begin{aligned}
& =(8 \mathrm{i}-\mathrm{j}-10 \mathrm{k}) .1 / 3(2 \mathrm{i}-\mathrm{j}-2 \mathrm{k}) \\
& =1 / 3(16+1+20)=37 / 3 .
\end{aligned}
$$

11: If the temperature at any point in space is given by $t=x y+y z+z x$, find the direction in which temperature changes most rapidly with distance from the point $(1,1,1)$ and determine the maximum rate of change.
Sol:- The greatest rate of increase of t at any point is given in magnitude and direction by $\nabla \mathrm{t}$.
We have $\nabla \mathrm{t}=\left(i_{i}^{-} \frac{\partial}{\partial x}+\bar{j} \frac{\partial}{\partial y}+\left.k^{-} \frac{\partial}{\partial z}\right|_{l}(x y+y z+z x)\right.$
$=\bar{i}(y+z)+\bar{j}(z+x)+\bar{k}(x+y)=2 \bar{i}+2 \bar{j}+2 \bar{k}$ at $(1,1,1)$
Magnitude of this vector is $\sqrt{2^{2}+2^{2}+2^{2}}=\sqrt{12}=2 \sqrt{3}$
Hence at the point $(1,1,1)$ the temperature changes most rapidly in the direction given by the vector $2 \bar{i}+2 \bar{j}+2 \bar{k}$ and greatest rate of increase $=2 \sqrt{3}$.
12: Findthe directional derivative of $\phi(x, y, z)=x^{2} y z+4 x z^{2}$ at the point $(1,-2,-1)$ in the direction of the normal to the surface $f(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x} \log \mathrm{z}-\mathrm{y}^{2}$ at $(-1,2,1)$.
Sol:- Given $\phi(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}^{2} \mathrm{yz}+4 \mathrm{xz}{ }^{2}$ at $(1,-2,-1)$ and $f(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x} \log \mathrm{z}-\mathrm{y}^{2}$ at $(-1,2,1)$

$$
\text { Now } \begin{aligned}
\nabla \phi & =\frac{\partial \phi}{\partial x} \bar{i}+\frac{\partial \phi}{\partial y} \dot{j}+\frac{\partial \phi}{\partial z} k \\
& =\left(2 x y z+4 z^{2}\right) i^{-}+\left(x^{2} z\right) \dot{j}+\left(x^{2} y+8 x z\right) k
\end{aligned}
$$

$(\nabla \phi)_{(1,-2,-1)}=\left[2(1)(-2)(-1)+4(-1)^{2}\right] i+\left[(1)^{2}(-1) j \overline{]}+\left[\left(1^{2}\right)(-2)+8(-1)\right] k----(1)\right.$

$$
=8 \bar{i}-\bar{j}-10 \bar{k}
$$

Unit normal to the surface
$f(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x} \log \mathrm{z}-\mathrm{y}^{2}$ is $\frac{\nabla f}{|\nabla f|}$
Now $\nabla f=\dot{i} \frac{\partial f}{\partial x}+\frac{\partial f}{\dot{j}} \frac{\partial}{\partial y}+\frac{\partial f}{k z}=\log z \dot{i}+(-2 y) \dot{\bar{J}}+\frac{x}{z} \bar{k}$
At $(-1,2,1), \nabla f=\log (1) \vec{\imath}-2(2) \vec{\jmath}+\frac{-1}{1} \stackrel{k}{k}=-4 \vec{j}-\stackrel{k}{k}$

$$
\frac{\nabla f}{|\nabla f|}=\frac{-4 \bar{j}-\bar{k} .}{\sqrt{16+1}}=\frac{-4 \bar{j}-\bar{k} .}{\sqrt{17}}
$$

Directional derivative $=\nabla \phi \cdot \frac{\nabla f}{|\nabla f|}$

$$
=(8 \bar{i}-\bar{j}-10 \bar{k}) \cdot \frac{-4 \bar{j}-\bar{k} .}{\sqrt{17}}=\frac{4+10}{\sqrt{17}}=\frac{14}{\sqrt{17}} .
$$

13: Find a unit normal vector to the given surface $x^{2} y+2 x z=4$ at the point $(2,-2,3)$.
Sol:- Let the given surface be $f=x^{2} y+2 \mathrm{xz}-4$
On differentiating,

$$
\frac{\partial f}{\partial x}=2 x y+2 z, \frac{\partial f}{\partial y}=x^{2}, \frac{\partial f}{\partial z}=2 x .
$$

$\operatorname{grad} f=\sum^{i} \frac{\partial f}{\partial x}=\bar{i}(2 x y+2 z)+{ }^{-} j x^{2}+2 x k$
$(\operatorname{grad} f)$ at $(2,-2,3)=\bar{i}(-8+6)+4 \bar{j}+4 \bar{k}=2 \bar{i}+4 \bar{j}+4 \bar{k}$
$\operatorname{grad}(f)$ is the normal vector to the given surface at the given point.
Hence the required unit normal vector $\frac{\nabla f}{|\nabla f|}=\frac{2(-\bar{i}+2 \bar{j}+2 \bar{k}) .}{2 \sqrt{1+2^{2}+2^{2}}}=\frac{-\bar{i}+2 \bar{j}+2 \bar{k}}{3}$
14: Evaluate the angle between the normal to the surface $x y=z^{2}$ at the points $(4,1,2)$ and $(3,3,-3)$.
Sol:- Given surface is $f(x, y, z)=x y-z^{2}$
Let \bar{n}_{1} and \bar{n}_{2} be the normal to this surface at $(4,1,2)$ and $(3,3,-3)$ respectively.
Differentiating partially, we get

$$
\frac{\partial f}{\partial x}=y, \frac{\partial f}{\partial y}=x, \frac{\partial f}{\partial z}=-2 z
$$

$\operatorname{grad} \mathrm{f}=y \bar{i}^{-}+x \bar{j}-2 z k^{-}$

$$
\begin{aligned}
& \bar{n}_{1}=(\operatorname{grad} f) \text { at }(4,1,2)=\bar{i}+4 \bar{j}-4 \bar{k} \\
& \bar{n}_{2}=(\operatorname{grad} f) \text { at }(3,3,-3)=3 \bar{i}+3 \bar{j}+6 \bar{k}
\end{aligned}
$$

Let θ be the angle between the two normal.

$$
\cos \theta=\frac{\overline{n_{1}} \cdot \overline{n_{2}}}{\left|\overline{n_{1}}\right|\left|\overline{n_{2}}\right|}=\frac{(i+4 j-4 k)}{\sqrt{1+16+16}} \cdot \frac{(3 i+3 j+6 k)}{\sqrt{9+9+36}}
$$

$$
\frac{(3+12-24)}{\sqrt{33} \sqrt{54}}=\frac{-9}{\sqrt{33} \sqrt{54}}
$$

15: Find a unit normal vector to the surface $x^{2}+y^{2}+2 z^{2}=26$ at the point $(2,2,3)$.
Sol:- Let the given surface be $f(x, y, z) \equiv x^{2}+y^{2}+2 z^{2}-26=0$. Then

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x, \frac{\partial f}{\partial y}=2 y, \frac{\partial f}{\partial z}=4 z . \\
& \operatorname{grad} \mathrm{f}=\sum^{i} \frac{\partial f}{\partial x}=2 \mathrm{xi}+2 \mathrm{yj}+4 \mathrm{zk}
\end{aligned}
$$

Normal vector at $(2,2,3)=[\nabla f]_{(2,2,3)}=4 \bar{i}+4 \bar{j}+12 \bar{k}$
Unit normal vector $=\frac{\nabla f}{|\nabla f|}=\frac{4(\bar{i}+\bar{j}+3 \bar{k})}{4 \sqrt{1}}=\frac{\bar{i}+\bar{j}+3 \bar{k}}{\sqrt{11}}$
16: Find the values of a and b so that the surfaces $a x^{2}-b y z=(a+2) x$ and $4 x^{2} y+z^{3}=4$ may intersect orthogonally at the point $(1,-1,2)$.
(or) Find the constants a and b so that surface $a x^{2}-b y z=(a+2) x$ will orthogonal to $4 x^{2} y+z^{3}=4$ at the point ($1,-1,2$).
Sol:- Let the given surfaces be $f(x, y, z)=a x^{2}-b y z-(a+2) x$
And $g(x, y, z)=4 x^{2} y+z^{3}-4-$
Given the two surfaces meet at the point $(1,-1,2)$.
Substituting the point in (1), we get
$\mathrm{a}+2 \mathrm{~b}-(\mathrm{a}+2)=0 \Rightarrow \mathrm{~b}=1$
Now $\frac{\partial f}{\partial x}=2 a x-(a+2), \frac{\partial f}{\partial y}=-b z$ and $\frac{\partial f}{\partial z}=-b y$.
$\nabla f=\sum^{i} \frac{\partial f}{\partial x}=[(2 \mathrm{ax}-(\mathrm{a}+2)] \mathrm{i}-\mathrm{bz}+\mathrm{bk}=(\mathrm{a}-2) \mathrm{i}-2 \mathrm{bj}+\mathrm{bk}$

$$
=(\mathrm{a}-2) \mathrm{i}-2 \mathrm{j}+\mathrm{k}=\bar{n}_{1}, \text { normal vector to surface } 1 .
$$

Also $\frac{\partial g}{\partial x}=8 x y, \frac{\partial g}{\partial y}=4 x^{2}, \frac{\partial g}{\partial z}=3 z^{2}$.
$\nabla \mathrm{g}=\sum^{\dot{i} \frac{\partial g}{\partial x}=8 \mathrm{xyi}+4 \mathrm{x}^{2} \mathrm{j}+3 \mathrm{z}^{2} \mathrm{k}, ~}$
$(\nabla \mathrm{g})_{(1,-1,2)}=-8 \mathrm{i}+4 \mathrm{j}+12 \mathrm{k}=\bar{n}_{2}$, normal vector to surface 2.
Given the surfaces $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}), \mathrm{g}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ are orthogonal at the point $(1,-1,2)$.
$[\bar{\nabla} f] \cdot[\nabla g]=0 \Rightarrow((a-2) \mathrm{i}-2 \mathrm{j}+\mathrm{k}) \cdot(-8 \mathrm{i}+4 \mathrm{j}+12 \mathrm{k})=0$
$\Rightarrow-8 a+16-8+12 \Rightarrow a=5 / 2$
Hence $a=5 / 2$ and $b=1$.

17: Find a unit normal vector to the surface $z=x^{2}+y^{2}$ at $(-1,-2,5)$
Sol:- Let the given surface be $\mathrm{f}=\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{z}$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x, \frac{\partial f}{\partial y}=2 y, \frac{\partial f}{\partial z}=-1 . \\
& \operatorname{grad} \mathrm{f}=\nabla f=\sum^{i} \frac{\partial f}{\partial x}=2 \mathrm{xi}+2 \mathrm{yj}-\mathrm{k} \\
& (\nabla f) \text { at }(-1,-2,5)=-2 \mathrm{i}-4 \mathrm{j}-\mathrm{k}
\end{aligned}
$$

∇f is the normal vector to the given surface.
Hence the required unit normal vector $=\frac{\nabla f}{|\nabla f|}=$

$$
\frac{-2 i-4 j-k}{\sqrt{(-2)^{2}+(-4)^{2}+(-1)^{2}}}=\frac{-2 i-4 j-k}{\sqrt{21}}=-\frac{1}{\sqrt{21}}(2 i+4 j+k)
$$

18: Find the angle of intersection of the spheres $x^{2}+y^{2}+z^{2}=29$ and $x^{2}+y^{2}+z^{2}+4 x-6 y-8 z-47=0$ at the point $(4,-3,2)$.
Sol:- Let $\mathrm{f}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-29$ and $\mathrm{g}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}+4 \mathrm{x}-6 \mathrm{y}-8 \mathrm{z}-47$
Then grad $\mathrm{f}=\dot{\bar{i}} \frac{\partial f}{\partial x}+\bar{j} \frac{\partial f}{\partial y}+\bar{k} \frac{\partial f}{\partial z}=2 x \bar{i}+2 y \bar{j}+2 z \bar{k}$ and
$\operatorname{grad} \mathrm{g}=(2 x+4) \bar{i}+(2 y-6) \bar{j}+(2 z-8) \bar{k}$
The angle between two surfaces at a point is the angle between the normal to the surfaces at that point.

Let $\bar{n}_{1}=(\operatorname{grad} f)$ at $(4,-3,2)=8 \bar{i}-6 \bar{j}+4 \bar{k}$

$$
\bar{n}_{2}=(\operatorname{grad} f) \text { at }(4,-3,2)=12 \bar{i}-12 \bar{j}-4 \bar{k}
$$

The vectors $\overline{n_{1}}$ and $\overline{n_{2}}$ are along the normal to the two surfaces at (4,-3,2). Let θ be the angle between the surfaces. Then
$\operatorname{Cos} \theta=\frac{\overline{n_{1}} \cdot \overline{n_{2}}}{\mid \overline{n_{1}| | \bar{n}_{2} \mid}}=\cdot \frac{152}{\sqrt{116} \sqrt{304}}$
$\therefore \theta=\cos ^{-1}\left(\sqrt{\frac{19}{29}}\right)$
19: Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$, and $z=x^{2}+y^{2}-3$ at point $(2,-1,2)$.
Sol:- Let $\phi_{1}=x^{2}+y^{2}+z^{2}-9=0$ and $\phi_{2}=x^{2}+y^{2}-z-3=0$ be the given surfaces. Then

$$
\nabla \phi_{1}=2 x i+2 y j+2 z k \text { and } \nabla \phi_{2}=2 x i+2 y j-k
$$

Let $\bar{n}_{1}=\nabla \phi_{1}$ at $(2,-1,2)=4 \mathrm{i}-2 \mathrm{j}+4 \mathrm{k}$ and

$$
\bar{n}_{2}=\nabla \phi_{2} \text { at }(2,-1,2)=4 \mathrm{i}-2 \mathrm{j}-\mathrm{k}
$$

The vectors $\overline{n_{1}}$ and $\overline{n_{2}}$ are along the normals to the two surfaces at the point $(2,-1,2)$. Let θ be the angle between the surfaces. Then

$$
\begin{aligned}
\operatorname{Cos} \theta & =\frac{\bar{n}_{1} \bar{n}_{2}}{\left|\bar{n}_{1} \bar{n}_{2}\right|}=\frac{(4 i-2 j+4 k)}{\sqrt{16+4+16}} \cdot \frac{(4 i-2 j-k)}{\sqrt{16+4+16}}=\frac{16+4-4}{6 \sqrt{21}}=\frac{16}{6 \sqrt{21}}=\frac{8}{3 \sqrt{21}} \\
\therefore \theta & =\cos ^{-1}\left(\frac{8}{3 \sqrt{21}}\right) .
\end{aligned}
$$

20: If \bar{a} is constant vector then prove that $\operatorname{grad}\left(\bar{a} \cdot \overrightarrow{r^{-}}\right)=\bar{a}$
Sol: Let $\bar{a}=a_{1} \bar{i}+a_{2} \bar{j}+a_{3} \bar{k}$, where $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}$ are constants.
$\bar{a}_{\partial} \cdot \bar{r}=\left(a_{1} \bar{i}+a_{\partial} \bar{j}+a_{3} \bar{k}\right) \cdot(x \bar{i} \underset{\partial}{y} \bar{j}+z \bar{k})=a_{1} x+a_{2} y+a_{3} z$
$\frac{\partial}{\partial x}($ a.r $)=a_{1}, \frac{a_{2}}{\partial y}($ a.r $)=a_{2}, \frac{\partial}{\partial z}($ a.k $)=a_{3}$
$\operatorname{grad}(\bar{a} \cdot \bar{r})=a_{1} \bar{i}+a_{2} \bar{j}+a_{3} \bar{k}=\bar{a}$
21: If $\nabla \phi=y z i^{-}+z x j^{-}+x y k$, find ϕ.
Sol:- We know that $\nabla \phi=\dot{i} \frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}+\frac{\partial f}{\partial y}$
Given that $\nabla \phi=y z i^{-}+z x j^{-}+x y k^{-}$
Comparing the corresponding coefficients, we have $\frac{\partial \phi}{\partial x}=y z, \frac{\partial \phi}{\partial y}=z x, \frac{\partial \phi}{\partial z}=x y$
Integrating partially w.r.t. $\mathrm{x}, \mathrm{y}, \mathrm{z}$, respectively, we get
$\phi=\mathrm{xyz}+\mathrm{a}$ constant independent of x .
$\phi=x y z+a$ constant independent of y.
$\phi=x y z+a$ constant independent of z.
Here a possible form of ϕ is $\phi=x y z+a$ constant.

DIVERGENCE OF A VECTOR

Let \bar{f} be any continuously differentiable vector point function. Then
$\bar{i} \cdot \frac{\partial \bar{f}}{\partial x}+\dot{j} \cdot \frac{\partial f}{\partial y}+\bar{k} \cdot \frac{\partial f}{\partial z}$ is called the divergence of \bar{f} and is written as div \bar{f}.

Hence we can write $\operatorname{div} \bar{f}$ as
$\operatorname{div} f^{-}=\nabla \cdot f^{-}$
This is a scalar point function.
Theorem 1: If the vector $f=f_{1} \dot{i}+f_{2} \dot{j}+f_{3} k$, then div $f=\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}$
Prof: Given $\overline{f^{-}}=f_{1 i}{ }^{-}+f_{2} \bar{j}+f_{3} k^{-}$
$\frac{\partial \bar{f}}{\partial x}=\bar{i} \frac{\partial f_{1}}{\partial x}+\bar{j} \frac{\partial f_{2}}{\partial x}+\bar{k} \frac{\partial f_{3}}{\partial x}$
Also i. $\frac{\partial f}{\partial x}=\frac{\partial f_{1}}{\partial x}$. Similarly $\bar{j} \cdot \frac{\partial \bar{f}}{\partial y}=\frac{\partial f_{2}}{\partial y}$ and $k \cdot \frac{\partial f}{\partial z}=\frac{\partial f_{3}}{\partial z}$

$$
(\partial f) \quad \partial f_{1}+\partial f_{2}+\partial f_{3}
$$

We have div $\bar{f}=\sum \bar{i}\left(\frac{-}{\partial x}\right)=\frac{\partial x}{}+\frac{\partial y}{}+\frac{\partial z}{}$
Note : If f - is a constant vector then $\frac{\partial f_{1}}{\partial x} \frac{\partial f_{2}}{\partial y}, \frac{\partial f_{3}}{\partial z}$ are zeros.
$\therefore \operatorname{div} \overline{f^{-}}=0$ for a constant vector \bar{f}.
Theorem 2: $\operatorname{div}(\bar{f} \pm \bar{g})=\operatorname{div} \bar{f} \pm \operatorname{div} \bar{g}$
Proof: $\operatorname{div}(f \pm \bar{g})=\sum^{i \cdot} \cdot \frac{\partial}{\partial x}(f \pm \bar{g})=\sum^{i \cdot} \frac{\partial}{\partial x}(f) \pm \sum^{i} \cdot \frac{\partial}{\partial x}(\bar{g})=\operatorname{div} \bar{f} \pm \operatorname{div} \bar{g}$.
Note: If ϕ is a-scalar function and f is a vector function, then

$$
\begin{aligned}
& =\sum^{(a . i)} \frac{\partial \phi}{\partial x} \text {. and }
\end{aligned}
$$

(ii). (a. $\nabla) f=\sum^{(a . i \bar{I})} \frac{\partial f}{\partial x}$. by proceeding as in (i) [simply replace ϕ by f^{-}in (i)].

SOLENOIDAL VECTOR

A vector point function \bar{f} is said to be solenoidal if $\operatorname{div} \overline{f^{-}}=0$.

Physical interpretation of divergence:

Depending upon \bar{f} in a physical problem, we can interpret $\operatorname{div} \bar{f}(=\nabla . \bar{f})$.
Suppose $\bar{F}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$ is the velocity of a fluid at a point $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and time ' t '. Though time has no role in computing divergence, it is considered here because velocity vector depends on time.

Imagine a small rectangular box within the fluid as shown in the figure. We would like to measure the rate per unit volume at which the fluid flows out at any given time. The divergence of \bar{F} measures the outward flow or expansions of the fluid from their point at any time. This gives a physical interpretation of the divergence.

Similar meanings are to be understood with respect to divergence of vectors f from other branches. A detailed elementary interpretation can be seen in standard books on fluid dynamics, electricity and magnetism etc.

SOLVED PROBLEMS

1: If $\bar{f}=x y^{2} \bar{i}+2 x^{2} y z \bar{j}-3 y z^{2} \bar{k}$ find $\operatorname{div} \bar{f}$ at $(1,-1,1)$.
Sol:- Given $f=x y^{2} i^{-}+2 x^{2} y z \bar{j}-3 y z^{2} k$.
Thendiv $f=\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}=\frac{\partial}{\partial x}\left(x y^{2}\right)+\frac{\partial}{\partial y}\left(2 x^{2} y z\right)+\frac{\partial}{\partial z}\left(-3 y z^{2}\right)=y^{2}+2 x^{2} z-6 y z$
$\left(\operatorname{div} f^{-}\right)$at $(1,-1,1)=1+2+6=9$

2: Find $\operatorname{div} f$ when $\operatorname{grad}\left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}\right)$
Sol:- Let $\phi=x^{3}+y^{3}+z^{3}-3 x y z$.
Then $\frac{\partial \phi}{\partial x}=3 x^{2}-3 y z, \frac{\partial \phi}{\partial y}=3 y^{2}-3 z x, \frac{\partial \phi}{\partial z}=3 z^{2}-3 x y$
$\operatorname{grad} \phi=i \frac{\partial \phi}{\partial x}+j \frac{\partial \phi}{\partial y}+k \frac{\partial \phi}{\partial z}=3\left[\left(x^{2}-y z\right) i^{-} \mp\left(y^{2}-z x\right) \dot{j}+\left(z^{2}-x y\right) k\right]$
$\operatorname{div} f=\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}=\frac{\partial}{\partial x}\left[3\left(x^{2}-y z\right)\right]+\frac{\partial}{\frac{}{\partial y}}\left[3\left(y^{2}-z x\right)\right]+\frac{\partial}{\frac{}{\partial z}}\left[3\left(z^{2}-x y\right)\right]$
$=3(2 x)+3(2 y)+3(2 z)=6(x+y+z)$
3: If $\bar{f}=(x+3 y) \bar{i}+(y-2 z) \bar{j}+(x+p z) \bar{k}$ is solenoidal, find P.
Sol:- Let $\bar{f}=(x+3 y) \bar{i}+(y-2 z) \bar{j}+(x+p z) \bar{k}=f_{1} \bar{i}+f_{2} \bar{j}+f_{3} \bar{k}$
We have $\frac{\partial f_{1}}{\partial x}=1, \frac{\partial f_{2}}{\partial y}=1, \frac{\partial f_{3}}{\partial z}=p$
$\operatorname{div} f=\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}=1+1+\mathrm{p}=2+\mathrm{p}$
since \bar{f} is solenoidal, we have div $\bar{f}=0 \Rightarrow 2+p=0 \Rightarrow p=-2$
4: Find $\operatorname{div} \bar{f}=r^{n} \bar{r}$. Find n if it is solenoidal?
Sol: Given $\bar{f}=r^{n} \bar{r}$. where $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$ and $r=|\bar{r}|$

We have $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$
Differentiating partially w.r.t. x , we get

$$
2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r}
$$

Similarly $\frac{\partial r}{\partial y}=\frac{y}{r}$ and $\frac{\partial r}{\partial z}=\frac{z}{r}$
$\bar{f}=\mathrm{r}^{\mathrm{n}}(x \bar{i}+y \bar{j}+z \bar{k})$

$$
\begin{aligned}
\operatorname{div} \begin{aligned}
\bar{f} & =\frac{\partial}{\partial x}\left(r^{n} x\right)+\frac{\partial}{\partial y}\left(r^{n} y\right)+\frac{\partial}{\partial z}\left(r^{n} z\right) \\
& =n r^{n-1} \frac{\partial r}{\partial x} x+r^{n}+n r^{n-1} \frac{\overline{\partial r}}{\partial y} y+r^{n}+n r^{n-1} \frac{\partial r}{\partial z} z+r^{n} \\
& \left.=n r{ }^{n-1}\left\lceil\frac{x^{2}}{r}+\frac{y^{2}}{r}+\frac{z^{2}}{r}\right\rfloor+3 r=n r \quad \frac{n}{n-1} r^{2}\right)^{n}+3 r^{\mathrm{n}}=n r^{\mathrm{n}}+3 \mathrm{r}^{\mathrm{n}}=(\mathrm{n}+3) \mathrm{r}^{\mathrm{n}}
\end{aligned}
\end{aligned}
$$

Let $\bar{f}=r^{n} \bar{r}$ be solenoidal. Then $\operatorname{div} f^{-}=0$

$$
(\mathrm{n}+3) \mathrm{r}^{\mathrm{n}}=0 \Rightarrow \mathrm{n}=-3
$$

5: Evaluate $\nabla \cdot\left(\frac{r}{\frac{r}{r^{3}}}\right)$ where $\underset{-}{r}=x i+y j+z k$ and $r=r|-|$
Sol:- We have

$$
\begin{aligned}
& \bar{r}=x \mathrm{x}+\mathrm{yj}+\mathrm{zk} \text { and } \mathrm{r}=\sqrt{x^{2}+y^{2}+z^{2}} \\
& \frac{\partial r}{\partial x}=\frac{x}{r} \frac{\partial r}{\partial}=\frac{y}{r}, \text { and } \frac{\partial r}{\partial z}=\frac{z}{r} \\
& \therefore \frac{r}{r^{3}}=r \cdot \mathrm{r}^{-3}=\mathrm{r}^{-3} x \mathrm{i}+\mathrm{r}^{-3} \mathrm{yj}+\mathrm{r}^{-3} \mathrm{zk}=f_{l} i+f_{2} j+f_{3} k
\end{aligned}
$$

Hence ∇.

$$
\left(\underset{r^{3}}{(-)}=\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}\right.
$$

We have $f_{1}=\mathrm{r}^{-3} x \Rightarrow \begin{aligned} & \overline{\partial f_{1}}=r^{-3} .1+x(-3) r^{-4} . \\ & \partial x\end{aligned} \quad \partial x$
$\begin{aligned} \therefore \frac{\partial f_{1}}{\partial x} & =r^{-3}-3 x r^{-4} \\ \nabla \overline{\partial x} & =r^{-3}-3 x^{2} r^{-5} \\ \nabla . & =\quad \partial f_{1}=3 r^{-3}-3 r^{-5} \quad x^{2}\end{aligned}$
$\left(\frac{-}{r^{3}}\right) \sum \overline{\partial x} \quad \sum$

$$
=3 r^{-3}-3 r^{-5} r^{2}=3 r^{-3}-3 r^{-3}=0
$$

6: Find div \bar{r} where $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$
Sol:- We have $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}=f_{1} \bar{i}+f_{2} \bar{j}+f_{3} \bar{k}$

$$
\operatorname{div} r=\frac{\partial f_{1}}{\partial x}+\frac{\partial f_{2}}{\partial y}+\frac{\partial f_{3}}{\partial z}=\frac{\partial}{\partial x}(x)+\frac{\partial}{\partial y}(y)+\frac{\partial}{\partial z}(z)=1+1+1=3
$$

CURL OF A VECTOR

Def: Let \bar{f} be any continuously differentiable vector point function. Then the vector function defined by $\bar{i} \times \frac{\partial \bar{f}}{\partial x}+\dot{j} \times \frac{\partial f}{\partial y}+\bar{k} \times \frac{\partial f}{\partial z}$ is called curl of \bar{f} and is denoted by curl \bar{f} or $(\nabla \mathrm{x} \bar{f})$.

$$
\partial f \quad \partial f \quad \partial f \quad(\quad \partial f)
$$

$\operatorname{Curl} \bar{f}=\bar{i} \times \frac{}{\partial x}+\bar{j} \times \frac{}{\partial y}+\bar{k} \times \frac{}{\partial z}=\sum\left(\bar{i} \times \frac{}{\partial x}\right)$
Theorem 1: If \bar{f} is differentiable vector point function given by $\bar{f}=f_{1} \bar{i}+f_{2} \bar{j}+f_{3} \bar{k}$ then

$$
\begin{aligned}
& =\left(\begin{array}{l}
\partial f_{2} k_{-} \partial f_{3} \\
\partial x-\frac{\partial x}{} \\
j
\end{array}\right)+\left(\frac{\partial f_{3}}{\partial y} \bar{i}-\frac{\partial f_{1}}{\partial y} \bar{k}\right)+\left(\frac{\partial f_{1}}{\partial z} j-\frac{\partial f_{2}}{\partial z} i\right) \\
& =i\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right)+j\left(\frac{\partial f_{1}}{\partial z}-\frac{\partial f_{3}}{\partial x}\right)+\vec{k}\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right)
\end{aligned}
$$

Note : (1) The above expression for curl \bar{f} can be remembered easily through the representation.

$$
\operatorname{curl} \bar{f}=\left|\begin{array}{ccc}
\bar{i} & \bar{j} & \bar{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \bar{\partial} \\
f_{1} & f_{2} & f_{3}
\end{array}\right|=\nabla \mathbf{x} \bar{f}
$$

Note (2) : If f^{-}is a constant vector then curl $\overline{f^{-}}=\bar{o}$.
Theorem 2: curl $(\bar{a} \pm \vec{b})=\operatorname{curl} \bar{a} \pm \operatorname{curl}^{-}$
Proof: $\operatorname{curl}(\bar{a} \pm \bar{b})=\sum \bar{i} \times \frac{\partial}{\partial x}(a \pm \bar{b})$

$$
\begin{aligned}
& =\sum i \times\left(\left.\frac{\partial \underline{a}}{\left(\frac{\partial x}{\partial x} \pm \frac{\partial b}{\partial x}\right)} \right\rvert\,=\sum i \times \frac{\partial \underline{a}}{\partial x} \pm \sum i x \frac{\partial b}{\partial x}\right. \\
& =\text { curl } \bar{a} \pm \operatorname{curl} \bar{b}
\end{aligned}
$$

1. Physical Interpretation of curl

If \bar{w} is the angular velocity of a rigid body rotating about a fixed axis and \bar{v} is the velocity of any point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ on the body, then $\bar{w}=1 / 2$ curl v^{-}. Thus the angular velocity of
rotation at any point is equal to half the curl of velocity vector. This justifies the use of the word "curl of a vector".

2. Irrotational Motion, Irrotational Vector

Any motion in which curl of the velocity vector is a null vector i.e curl $v=0$ is said to be Irrotational.

Def: A vector f^{-}is said to be Irrotational if curl $f^{-}=0$.
If \bar{f} is Irrotational, there will always exist a scalar function $\varphi(\mathrm{x}, \mathrm{y}, \mathrm{z})$ such that \bar{f} $=\operatorname{grad} \phi$. This ϕ is called scalar potential of \bar{f}.
It is easy to prove that, if $\bar{f}=\operatorname{grad} \phi$, then curl $\bar{f}=0$.
Hence $\nabla \mathrm{x} \bar{f}=0 \Leftrightarrow$ there exists a scalar function ϕ such that $f \overline{=} \nabla \phi$.
This idea is useful when we study the "work done by a force" later.

SOLVED PROBLEMS

1: If $\bar{f}=x y^{2} \bar{i}+2 x^{2} y z \bar{j}-3 y z^{2} \bar{k}$ find curl \bar{f} at the point $(1,-1,1)$.
Sol:- Let $\bar{f}=x y^{2} \bar{i}+2 x^{2} y z \bar{j}-3 y z^{2} \bar{k}$. Then

$$
\operatorname{curl} \bar{f}=\nabla \mathrm{x} \bar{f}=\left\lvert\, \begin{array}{lll}
\bar{i} & \bar{j} & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \partial \\
x y^{2} & 2 x^{2} y z & -3 y z^{2}
\end{array}\right.
$$

$i\left(\begin{array}{c}\partial \\ \partial y \\ \left(-3 y z^{2}\right)-\frac{\partial}{\partial z}\left(2 x^{2} y z\right)\end{array}\right)+j\left(\begin{array}{c}\partial \\ \partial z\end{array}\left(x y^{2}\right)-\frac{\partial}{\partial x}\left(-3 y z^{2}\right)\right)+k\left(\begin{array}{c}\partial \\ \partial x \\ \partial x\end{array}\left(2 x^{2} y z\right)-\frac{\partial}{\partial y}\left(x y^{2}\right)\right)$
$=\bar{i}\left(-3 z^{2}-2 x^{2} z\right)+\bar{j}(0-0)+\bar{k}(4 x y z-2 x y)=-\left(3 z^{2}+2 x^{2} y\right) \bar{i}+(4 x y z-2 x y) \bar{k}$
$=\operatorname{curl} \bar{f}$ at $(1,-1,1)=-\bar{i}-2 \bar{k}$.

2: Find curl f^{-}where $f^{-}=\operatorname{grad}\left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}\right)$
Sol:- Let $\phi=x^{3}+y^{3}+z^{3}-3 x y z$. Then
$\operatorname{grad} \phi=\sum^{\dot{i}} \frac{\partial \phi}{\partial x}=3\left(x^{2}-y z\right) \dot{i}+3\left(y^{2}-z x\right) \dot{j}+3\left(z^{2}-x y\right) k$
$\operatorname{curl} \operatorname{grad} \phi=\nabla \mathrm{x} \operatorname{grad} \phi=3\left|\begin{array}{lcc}\bar{i} & \bar{j} & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \partial \\ x^{2}-y z & y^{2}-z x & z^{2}-x y\end{array}\right|$

$$
\begin{aligned}
& \quad=3[\bar{i}(-x+x)-\bar{j}(-y+y)+\bar{k}(-z+z)]=\overline{0} \\
& \therefore \operatorname{curl} f^{-}=\overline{0} .
\end{aligned}
$$

Note: We can prove in general that curl $(\operatorname{grad} \phi)=\overline{0}$.(i.e) $\operatorname{grad} \phi$ is always irrotational.
3: Prove that if \bar{r} is the position vector of an point in space, then $\mathrm{r}^{\mathrm{n}} \bar{r}$ is Irrotational. (or) Show that
$\operatorname{curl}\left(r^{n} \vec{F}\right)=0$
Sol:- Let $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k} \quad$ and $\mathrm{r}=|\bar{r}| \quad \therefore \mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$.

Differentiating partially w.r.t. ' x ', we get

$$
2 r \frac{\partial r}{\overline{\partial x}}=2 x \Rightarrow \frac{\partial r}{\overline{\partial x}}=\frac{x}{r}
$$

$$
\text { Similarly } \frac{\partial r}{\partial y}=\frac{y}{r} \text {, and } \frac{\partial r}{\partial z}=\frac{z}{r}
$$

We have $r^{n} \bar{r}=r^{n}(x \bar{i}+y \bar{j}+z \bar{k})$

$$
\begin{aligned}
& \nabla \times\left(\mathrm{r}^{\mathrm{n}} \bar{r}\right)=\left|\begin{array}{lrc}
\bar{i} & \bar{j} & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \partial \\
x r^{n} & y r^{n} & z r^{n}
\end{array}\right| \\
& =\frac{i}{i}\left(\partial y \partial^{n}\left(r^{n} z\right)-\left.\frac{\partial}{\partial z}\left(r^{n} y\right)\right|_{+}+\frac{-(\partial}{j \varliminf_{\lambda_{7}}}\left(r^{n} x\right)-\left.\frac{\partial}{\partial x}\left(r^{n}\right)\right|_{+}+\frac{\bar{k}(\partial}{(\partial x}\left(r^{n} y\right)-\frac{\partial}{\partial y}\left(r^{n} x\right)\right) \\
& \left.=\frac{\left({ }^{n-1} \partial r \quad{ }^{n-1} \partial r\right\}}{i^{n}\{z n r \quad \overline{\partial y}-y n r \quad \overline{\partial z}}\right\}=n r^{n-1} \sum \bar{i}\left\{\left(z \left\lvert\,(\bar{r})-y\binom{(z))}{r}\right.\right\}\right. \\
& =n r^{n-2}[(z y-y z) \bar{i}+(x z-z x) \bar{j}+(x y-y z) \bar{k}] \\
& =n r^{n-2}[0 \bar{i}+0 j+0 \bar{k}]=n r^{\mathrm{n}-2}[\overline{0}]=\overline{0}
\end{aligned}
$$

Hence $\mathrm{r}^{\mathrm{n}} \bar{r}$ is Irrotational.
4: Prove that curl $\bar{r}=\overline{0}$
Sol:- Let $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$

$$
\operatorname{curl} r=\sum \dot{i} \times \frac{\partial}{\partial x}(x)=\sum(i x i)=\theta+\theta+\theta=\theta
$$

5: If $\underset{-}{a}$ is a constant vector, prove that curl $(\underset{-}{\operatorname{axr}})=-\underline{a}+{ }_{-}^{3 r}$ (a.r).

$$
\left(\overline{r^{3}}\right) \quad \overline{r^{3}}{\overline{r^{5}}}^{--}
$$

Sol:- We have $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$
$\frac{\partial \bar{r}}{\partial x}=\bar{i}, \frac{\partial \bar{r}}{\partial y}=\dot{f}, \frac{\partial x}{\partial z}=k$
If $|\bar{r}|=\mathrm{r}$ then $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$

Let $\bar{a}=a_{1} \bar{i}+a_{2} \bar{j}+a_{3} \bar{k}$. Then $\bar{i} \cdot \bar{a}=\mathrm{a}_{1}$, etc.
$\therefore i \times \partial(\underline{a} \times \underline{r})={ }_{-}^{\left(a-a_{1} i\right)}-{ }^{3 x}(x a-a r)$

$=\frac{3 a-a}{r^{3}}-\frac{3 a}{r^{5}}\left(r^{2}\right)+\frac{3 r}{r^{5}}\left(a_{1} x+a_{2} y+a_{3} z\right)$
$=\frac{2 \theta}{r^{3}}-\frac{3 \theta}{r^{3}}+\frac{3 r}{r^{5}}(r . a)=-\frac{\theta}{r^{3}}+\frac{3 r-}{r^{5}}(r . a)$

6: Show that the vector $\left(x^{2}-y z\right) \bar{i}+\left(y^{2}-z x\right) \bar{j}+\left(z^{2}-x y\right) \bar{k}$ is irrotational and find its scalar potential.
Sol: let $f=\left(x^{2}-y z\right) \bar{i}+\left(y^{2}-z x\right) \bar{j}+\left(z^{2}-x y\right) k$

$$
\text { Then curl } \bar{f}=\left|\begin{array}{lll}
l & \jmath & \underline{\partial} \\
\frac{\partial}{\partial x} & \underline{\partial} & \partial z \\
x^{2}-y z & y^{2}-z x & z^{2}-x y
\end{array}\right|=\sum \bar{i}(-x+x)=\overline{0}
$$

$\therefore \bar{f}$ is Irrotational. Then there exists ϕ such that $\bar{f}=\nabla \phi$.
$\Rightarrow i \frac{\partial \phi}{\partial x}+j \frac{\partial \phi}{\partial y}+k \frac{\partial \phi}{\partial z}=\left(x^{2}-y z\right) \dot{t}+\left(y^{2}-z x\right) j+\left(z^{2}-x y\right) k$
Comparing components, we get

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}=x^{2}-y z \Rightarrow \phi=\int\left(x^{2}-y z\right) d x=\frac{x^{3}}{3}-x y z+f_{1}(y, z) . \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial \phi}{\partial y}=y^{2}-z x \Rightarrow \phi=\frac{y^{3}}{3}-x y z+f_{2}(z, x) . . \tag{2}\\
& \frac{\partial \phi}{\partial z}=z^{2}-x y \Rightarrow \phi=\frac{z^{3}}{3}-x y z+f_{3}(x, y) \ldots \tag{3}
\end{align*}
$$

From (1), (2),(3), $\phi=\frac{x^{3}+y^{3}+z^{3}}{3}-x y z$
$\therefore \phi=\frac{1}{3}\left(x^{3}+y^{3}+z^{3}\right)-x y z+$ cons $\tan t$
Which is the required scalar potential.
7: Find constants a, b and c if the vector $f^{-}=$
$(2 x+3 y+a z) \bar{i}+(b x+2 y+3 z) \bar{j}+(2 x+c y+3 z) \bar{k}$ is Irrotational.
Sol:- Given $\bar{f}=(2 x+3 y+a z) i^{-}+(b x+2 y+3 z) \bar{j}+(2 x+c y+3 z) k$

If the vector is Irrotational then curl $f^{-}=0$
$\therefore 2-a=0 \Rightarrow a=2, b-3=0 \Rightarrow b=3, c-3=0 \Rightarrow c=3$
8: If $\mathrm{f}(\mathrm{r})$ is differentiable, show that $\operatorname{curl}\{\bar{r} \mathrm{f}(\mathrm{r})\}=\overline{0}$ where $\bar{r}=x \bar{i}^{-}+y \bar{j}+z k^{-}$.
Sol: $\mathrm{r}=\bar{r}=\sqrt{x^{2}+y^{2}+z^{2}}$
$\therefore \mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$
$\Rightarrow 2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r}$, similarly $\frac{\partial r}{\partial y}=\frac{y}{r}$, and $\frac{\partial r}{\partial z}=\frac{z}{r}$
$\operatorname{curl}\{\bar{r} \mathrm{f}(\mathrm{r})\}=\operatorname{curl}\{\mathrm{f}(\mathrm{r})(x \bar{i}+y \bar{j}+z \bar{k})\}=\operatorname{curl}(x . f(r) \bar{i}+y . f(r) \bar{j}+z . f(r) \bar{k})$
$\left.=\left|\begin{array}{lcc}\bar{i} & \bar{j} & \bar{k} \\ \underline{\partial} & \underline{\partial} & \underline{\partial} \\ \partial x & \partial y & \partial z \\ x f(r) & y f(r) & z f(r)\end{array}\right|=\sum \underline{i} \underline{\underline{\partial}}[z f(r)]-\underline{\partial}[y f(r)] \quad\right\rceil$

$=\overline{0}$.

9: If \bar{A} is irrotational vector, evaluate $\operatorname{div}\left(\overline{A \times} r^{-}\right)$where $r^{-}=x i^{-}+y j^{-}+z k$.
Sol:We have $\bar{r}=x i+y \bar{j}+z k$
Given \bar{A} is an irrotational vector
$\nabla \mathrm{x} \bar{A}=\overline{0}$
$\operatorname{div}(\bar{A} \times \bar{r})=\nabla \cdot(\bar{A} \times \bar{r})$

$$
\begin{align*}
& =\bar{r} \cdot(\nabla \mathrm{x} \bar{A})-\bar{A} \cdot(\nabla \mathrm{x} \bar{r}) \\
& =\bar{r} \cdot(\overline{0})-\bar{A} \cdot(\nabla \mathrm{x} \bar{r})[\text { using }(1)] \\
& =-\bar{A} \cdot(\nabla \mathrm{x} \bar{r}) \ldots .(2) \tag{2}
\end{align*}
$$

Now $\left.\nabla \mathrm{x} \bar{r}=\left|\begin{array}{lcc}\bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \partial & \frac{\partial}{\partial z} \\ -i\left(\frac{\partial}{\partial y} z-\frac{\partial}{\partial z} y\right) & = \\ x & y & z\end{array}\right|=-i\left(\frac{\partial}{\partial x} z-\frac{\partial}{\partial z} x\right)+k\left(\frac{\partial}{\partial x} y-\frac{\partial}{\partial y} x\right) \right\rvert\,=\underline{0}$
$\therefore \bar{A} \cdot(\nabla \mathrm{x} \bar{r})=0$
Hence $\operatorname{div}(\bar{A} \times \bar{r})=0$. [using (2) and (3)]

10: Find constants $\mathrm{a}, \mathrm{b}, \mathrm{c}$ so that the vector $\bar{A}=$
$(x+2 y+a z) \bar{i}+(b x-3 y-z) \bar{j}+(4 x+c y+2 z) \bar{k}$ is Irrotational. Also find ϕ such that $\bar{A}=$ $\nabla \phi$.

Sol: Given vector is $\bar{A}=(x+2 y+a z) \bar{i}+(b x-3 y-z) \bar{j}+(4 x+c y+2 z) k^{-}$
Vector \bar{A} is Irrotational $\Rightarrow \operatorname{curl} \bar{A}=\overline{0}$
$\Rightarrow\left|\begin{array}{llc}i & j & k \\ \partial & \partial & \partial \\ \partial x & \partial y & \partial z \\ x+2 y+a z & b x-3 y-z & 4 x+c y+2 z\end{array}\right|=\overline{0}$
$\Rightarrow(c+1) \bar{i}+(a-4) \bar{j}+(b-2) \bar{k}=\overline{0}$
$\Rightarrow(c+1) \bar{i}+(a-4) \bar{j}+(b-2) \bar{k}=0 \bar{i}+0 \bar{j}+0 \bar{k}$
Comparing both sides,
$c+1=0, a-4=0, b-2=0$
$c=-1, a=4, b=2$
Now $\bar{A}=(x+2 y+4 z) i^{-}+(2 x-3 y-z) j^{-}(4 x-y+2 z) k$, on substituting the values of a,b,c
we have $\bar{A}=\nabla \phi$.
$\Rightarrow A=(x+2 y+4 z) \dot{t}+(2 x-3 y-z) \dot{j}+(4 x-y+2 z) k=\bar{i} \frac{\partial \phi}{\partial x}+\bar{j} \frac{\partial \phi}{\partial y}+\bar{k} \frac{\partial \phi}{\partial z}$
Comparing both sides, we have

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=\mathrm{x}+2 \mathrm{y}+4 \mathrm{z} \Rightarrow \phi=\mathrm{x}^{2} / 2+2 \mathrm{xy}+4 \mathrm{zx}+f_{l}(\mathrm{y}, \mathrm{z}) \\
& \frac{\partial \phi}{\partial y}=2 \mathrm{x}-3 \mathrm{y}-\mathrm{z} \Rightarrow \phi=2 \mathrm{xy}-3 \mathrm{y}^{2} / 2-\mathrm{yz}+f_{2}(\mathrm{z}, \mathrm{x}) \\
& \frac{\partial \phi}{\partial z}=4 \mathrm{x}-\mathrm{y}+2 \mathrm{z} \Rightarrow \phi=4 \mathrm{xz}-\mathrm{yz}+\mathrm{z}^{2}+f_{3}(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

Hence $\phi=x^{2} / 2-3 y^{2} / 2+z^{2}+2 x y+4 z x-y z+c$
11: If ω is a constant vector, evaluate curl V where $\mathrm{V}=\omega \mathrm{x} \bar{r}$.

$$
\begin{aligned}
& =\sum \bar{i} \times[\overline{0}+\omega \times \bar{i}] \quad[\therefore \bar{a} \times(\bar{b} \times \bar{c})=(\bar{a} \cdot \bar{c}) \bar{b}-(\bar{a} \cdot \bar{b}) \cdot \bar{c}] \\
& =\sum \bar{i} \times(\omega \times \bar{i})=\sum[(i \cdot \bar{i}) \omega-(\bar{i} \cdot \omega) i \bar{i}]=\sum \omega-\sum(i . \bar{\omega}) i^{-}=3 \omega-\omega=2 \omega
\end{aligned}
$$

Assignments

1. If $f^{-}=\mathrm{e}^{\mathrm{x}+\mathrm{y}+\mathrm{z}}(\bar{i}+\bar{j}+k)$ find curl \bar{f}.
2. Prove that $\bar{f}=(y+z) \bar{i}+(z+x) \bar{j}+(x+y) \bar{k}$ is irrotational.
3. Prove that $\nabla \cdot(\bar{a} \times \bar{f})=-a$. $\operatorname{curl} \bar{f}$ where \bar{a} is a constant vector.
4. Prove that $\operatorname{curl}(\bar{a} \times \bar{r})=2 \bar{a}$ where \bar{a} is a constant vector.
5. If $\bar{f}=x^{2} y \bar{i}-2 z x \bar{j}+2 y z \bar{k}$ find (i) curl f^{-}(ii) curl curl f^{-}.

OPERATORS

Vector differential operator ∇

The operator $\nabla=\dot{i}_{\frac{\partial}{\partial x}}+\dot{j}^{\partial}+k^{\partial y} \frac{\partial}{\partial z}$ is defined such that $\nabla \phi=\bar{i} \frac{\partial \phi}{\partial x}+\bar{j} \frac{\partial \phi}{\partial y}+\bar{k} \frac{\partial \phi}{\partial z}$ where ϕ is a scalar point function.
Note: If ϕ is a scalar point function then $\nabla \phi=\operatorname{grad} \phi=\sum i \frac{\partial \phi}{\partial x}$
(2) Scalar differential operator $\bar{a} \cdot \nabla$

The operator $a \cdot \nabla=(a . i) \frac{\partial \phi}{\partial x}+(a . j) \frac{\partial \phi}{\partial y}+(a . k) \frac{\partial \phi}{\partial z}$ is defined such that
$(a . \nabla) \phi=(a . \dot{t}) \frac{\partial \phi}{\partial x}+(a . \dot{f}) \frac{\partial \phi}{\partial y}+(a . k) \underline{\partial \phi}$

$$
\partial x \quad \partial y \quad \partial z
$$

And $(a . \nabla) f=(a \cdot \dot{i}) \frac{\partial f}{\partial x}+(a . \dot{J}) \frac{\partial f}{\partial y}+(a \cdot \bar{k}) \frac{\partial f}{\partial z}$
(3). Vector differential operator $\bar{a} \times \nabla$

The operator $\boldsymbol{t} \times \nabla=(\boldsymbol{a} \times \dot{i}) \frac{\partial}{\partial x}+(\boldsymbol{t} \times j) \frac{\partial}{\partial y}+(\boldsymbol{t} \times \hat{k}) \frac{\partial}{\partial z}$ is defined such that
(i). $(a \times \nabla) \phi=(a \times i)^{\frac{\partial \phi}{}}+(a \times j)^{\frac{\partial \phi}{}}+(a \times k) \frac{\partial \phi}{\underline{\partial}}$
(ii). $(a \times \nabla) \cdot f=(a \times i) \cdot{ }^{\partial x}+(a \times \dot{j}) . \stackrel{\partial f}{\partial f}+(a \times k) . \stackrel{\partial z}{\partial f}$
(iii). $(a \times \nabla) \times f=(a \times \dot{i}) \times \frac{\partial f^{2}}{\partial x}+(a \times j) \times \frac{\partial y}{\partial f_{-}}+\left(a \times k \rightarrow \times \frac{\partial f-}{\partial z}\right.$
(4). Scalar differential operator ∇.

The operator $\nabla=\dot{i} \cdot \frac{\partial}{\partial x}+\dot{j} \cdot \frac{\partial}{\partial y}+k \cdot \frac{\partial}{\partial z}$ is defined such that $\nabla \cdot f=\dot{i} \cdot \frac{\partial f}{\partial x}+\dot{j} \cdot \frac{\partial f}{\partial y}+\dot{k} \cdot \frac{\partial f}{\partial z}$
Note: $\nabla . f$ is defined as $\operatorname{div} f$. It is a scalar point function.
(5). Vector differential operator $\nabla \mathrm{x}$

The operator $\nabla \mathrm{x}=\dot{\boldsymbol{i}} \times \frac{\partial}{\partial x}+\dot{j} \times \frac{\partial}{\partial y}+\vec{k} \times \frac{\partial}{\partial z}$ is defined such that

$$
\nabla \times f=i \times \frac{\partial f}{\partial x}+\dot{j} \times \frac{\partial f}{\partial y}+k \times \frac{\partial f}{\partial z}
$$

Note : $\nabla \mathrm{x} \bar{f}$ is defined as curl f^{-}. It is a vector point function.
(6). Laplacian Operator ∇^{2}

Thus the operator $\nabla^{2} \equiv \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ is called Laplacian operator.
Note : (i). $\nabla^{2} \phi=\nabla \cdot(\nabla \phi)=\operatorname{div}(\operatorname{grad} \phi)$
(ii). If $\nabla^{2} \phi=0$ then ϕ is said to satisfy Laplacian equation. This ϕ is called a harmonic function.

SOLVED PROBLEMS

1: Prove that div. $\left(\operatorname{grad} \mathrm{r}^{\mathrm{m}}\right)=\mathrm{m}(\mathrm{m}+1) \mathrm{r}^{\mathrm{m}-2}($ or $) \nabla^{2}\left(\mathrm{r}^{\mathrm{m}}\right)=\mathrm{m}(\mathrm{m}+1) \mathrm{r}^{\mathrm{m}-2}$ (or) $\nabla^{2}\left(\mathrm{r}^{\mathrm{n}}\right)=\mathrm{n}(\mathrm{n}+1) \mathrm{r}^{\mathrm{n}-2}$
Sol: Let $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$ and $\mathrm{r}=|\bar{r}|$ then $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$.
Differentiating w.r.t. ' x ' partially, wet get $2 \mathrm{r} \frac{\partial r}{\partial x}=2 \mathrm{x} \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{\bar{r}}$.
Similarly $\frac{\partial r}{\partial y}=\frac{y}{r}$ and $\frac{\partial r}{\partial z}=\frac{z}{r}$

Now $\operatorname{grad}\left(\mathrm{r}^{\mathrm{m}}\right)=\sum \underset{i}{\dot{i}} \stackrel{\underline{\partial}}{\partial x}\left(r^{m}\right)=\sum i m r^{m-1} \frac{\partial r}{\partial x}=\sum i m r^{m-1} \underline{x}=\sum i m r^{m-2} x$
$\therefore \operatorname{div}\left(\operatorname{grad} \mathrm{r}^{\mathrm{m}}\right)=\sum_{\partial x}^{\underline{\partial}}\left[m r^{m-2} x\right]=\mathrm{m} \sum_{\left[\begin{array}{c}\left\lceil(m-2) r^{m-3} \frac{\partial r}{} x+r^{m-2}\right\rceil \\ \partial x\end{array}\right]}$

$$
\begin{aligned}
& =\mathrm{m} \sum\left[(m-2) r^{m-4} x^{2}+r^{m-2}\right]=m\left[(m-2) r^{m-4} \sum x^{2}+\sum r^{m-2}\right] \\
& =\mathrm{m}\left[(\mathrm{~m}-2) \mathrm{r}^{\mathrm{m}-4}\left(\mathrm{r}^{2}\right)+3 \mathrm{r}^{\mathrm{m}-2}\right] \\
& =\mathrm{m}\left[(\mathrm{~m}-2) \mathrm{r}^{\mathrm{m}-2}+3 \mathrm{r}^{\mathrm{m}-2}\right]=\mathrm{m}\left[(\mathrm{~m}-2+3) \mathrm{r}^{\mathrm{m}-2}\right]=\mathrm{m}(\mathrm{~m}+1) \mathrm{r}^{\mathrm{m}-2} .
\end{aligned}
$$

Hence $\nabla^{2}\left(r^{m}\right)=m(m+1) r^{m-2}$
2: Show that $\nabla^{2}[f(\mathrm{r})]=\frac{d^{2} f}{d r^{2}}+\underset{r}{2} \frac{d f}{d r}=f^{11}(r)+\frac{2}{r} f^{1}(r)$ where $\mathrm{r}=r^{r} \mid$.
Sol: grad $[\mathrm{f}(\mathrm{r})]=\nabla f(\mathrm{r})=\sum i{ }^{i} \stackrel{\partial}{\partial}_{\partial x}[f(r)]=\sum i f^{1}(r) \frac{\partial r}{\partial x}=\sum i f^{1}(r) \frac{\underline{x}}{r}$
$\therefore \operatorname{div}[\operatorname{grad} f(\mathrm{r})]=\nabla^{2}[f(\mathrm{r})]=\nabla \cdot \nabla f(\mathrm{r})=\sum \underline{\partial}\left\lceil f^{1}(r)^{\underline{x}}\right\rceil$

$$
\begin{aligned}
& \frac{r}{\partial}\left[f^{1}(r) x\right]-f^{1}(r) x \frac{\partial}{\partial x}(r) \\
= & \sum \frac{\partial x}{r\left(f^{11}(r) \partial r r^{2}\right.} \underline{r x}^{2}+f^{1}(r)-f^{1}(r) x(x)\left(\frac{-}{r}\right) \\
= & \sum \frac{\left(r^{2}\right.}{r n}
\end{aligned}
$$

$$
=\frac{\sum^{\left.r f{ }^{11} \begin{array}{c}
x \\
(r) \\
r
\end{array}{ }^{-} x+r f(r)-f(r) x \right\rvert\,}(\underline{-}(x)}{r^{2}}
$$

$=\frac{\sum r f^{11}(r) \frac{x}{r} x+r f^{1}(r)-x^{2}}{r^{2}} \cdot \frac{f^{1}(r)}{r}$
$=\frac{\mathrm{f}^{11}(\mathrm{r})}{\mathrm{r}^{2}} \sum \mathrm{x}^{2}+\frac{1}{\mathrm{r}} \sum \mathrm{f}^{1}(\mathrm{r})-\frac{1}{\mathrm{r}^{3}} \mathrm{f}^{1}(\mathrm{r}) \sum \mathrm{x}^{2}$
$=f^{\mathrm{r}^{2}(r)}\left({ }^{2}\right)+{ }^{3}{ }^{1}()^{1}-1$
$=\frac{f^{11}(r)}{r^{2}}\left({ }_{r}^{2}\right)+{ }_{r} f_{r}{ }_{r}^{1}()_{r}^{3} f^{1}\left({ }_{r}\right)_{r}{ }^{2}$
$=f^{11}(r)+{ }_{-}^{2} f^{1}(r)$
3: If ϕ satisfies Laplacian equation, show that $\nabla \phi$ is both solenoidal and irrotational.
Sol: Given $\nabla^{2} \phi=0 \Rightarrow \operatorname{div}(\operatorname{grad} \phi)=0 \Rightarrow \operatorname{grad} \phi$ is solenoidal
We know that curl $(\operatorname{grad} \phi)=\overline{0} \Rightarrow \operatorname{grad} \phi$ is always irrotational.

4:Show that (i) $(\bar{a} . \nabla) \phi=\bar{a} . \nabla \phi$ (ii) $(\bar{a} . \nabla) \bar{r}=\bar{a}$.

Sol: (i). Let $\bar{a}=a_{1} \bar{i}+a_{2} \bar{j}+a_{3} k$. Then

$$
\begin{aligned}
& a . \nabla=\left(a \dot{i}+a_{2} \underset{j}{\dot{j}}+a_{3}^{k}\right) \cdot\left(\dot{i}^{\partial} \frac{\partial}{\partial x}+\dot{j} \frac{\partial}{\partial y}+k \frac{\partial}{\partial z}\right)=a \frac{\partial}{{ }_{1}}+a_{2} \frac{\partial}{\partial y}+a_{3} \frac{\partial}{\partial z} \\
& \therefore(A . \nabla) \phi=a_{1} \frac{\partial \phi}{\partial x}+a_{2} \frac{\partial \phi}{\partial y}+a_{3} \frac{\partial \phi}{\partial z}
\end{aligned}
$$

Hence $(\bar{a} \cdot \nabla) \phi=\bar{a} . \nabla \phi$
(ii). $\bar{r}=x \bar{i}^{-}+y \bar{j}+z k^{-}$

5: Prove that (i) ($\bar{f} \mathrm{x} \nabla) \cdot \bar{r}=0$
(ii). $(\bar{f} \mathrm{x} \nabla) \mathrm{x} \bar{r}=-2 \bar{f}$

Sol: (i) $(f \times \nabla) \cdot r=\sum(f \times i) \cdot \frac{\partial r}{\partial x}=\sum(f \times i) \cdot i=0$
(ii) $(f \times \nabla)=(f \times \dot{i}) \frac{\partial}{\partial x} \times(f \times j) \frac{\partial}{\partial y} \times(f \times k)^{\partial} \frac{\partial z}{\partial z}$

$$
\begin{aligned}
& (f \times \nabla) \times r=(f \times i) \times \frac{\partial x}{\partial x}+(f \times j) \times \frac{\partial k}{\partial y}+(f \times k) \times \frac{\partial k}{\partial z}=\sum(f \times i-) \times i-=\sum[(f . i) i-f-] \\
& =(\bar{f} . i) \bar{i}+(\bar{f} \cdot \bar{j}) \bar{j}+(\bar{f} \cdot \bar{k}) \bar{k}-3 \bar{f}=\bar{f}-3 \bar{f}=-2 \bar{f}
\end{aligned}
$$

6: Find div \bar{F}, where $\bar{F}=\operatorname{grad}\left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}\right)$
Sol: \quad Let $\phi=x^{3}+y^{3}+z^{3}-3 x y z$. Then

$$
\begin{aligned}
& \bar{F}=\operatorname{grad} \phi \\
& =\sum i \frac{\partial \phi}{\partial x}=3\left(x^{2}-y z\right) i-+3\left(y^{2}-z x\right) \dot{j}+3\left(x^{2}-x y\right) k=F i+F_{2} j+F_{3} k(\text { say })
\end{aligned}
$$

$$
\therefore \operatorname{div} F=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}=6 \mathrm{x}+6 \mathrm{y}+6 \mathrm{z}=6(x+y+z)
$$

$$
\text { i.e } \operatorname{div}\left[\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)\right]=\nabla^{2}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)=6(x+y+z) .
$$

7: If $f=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-\mathrm{n}}$ then find div $\operatorname{grad} f$ and determine n if $\operatorname{div} \operatorname{grad} f=0$.
Sol: \quad Let $f=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-\mathrm{n}}$ and $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$

$$
\begin{aligned}
& \mathrm{r}=\mathrm{r} \\
& \Rightarrow \mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \\
& \Rightarrow(\mathrm{r})=\left(\mathrm{r}^{2}\right)^{-\mathrm{n}}=\mathrm{r}^{-2 \mathrm{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \frac{\partial r_{-}}{\partial x}=i ; \frac{\partial r_{-}}{\partial y}=j \overline{,} \frac{\partial r_{-}}{\partial z}=k^{-}
\end{aligned}
$$

$$
\therefore f^{1}(\mathrm{r})=-2 \mathrm{n} \mathrm{r}^{-2 \mathrm{n}-1}
$$

and

$$
f^{11}(\mathrm{r})=(-2 \mathrm{n})(-2 \mathrm{n}-1) \mathrm{r}^{-2 \mathrm{n}-2}=2 \mathrm{n}(2 \mathrm{n}+1) \mathrm{r}^{-2 \mathrm{n}-2}
$$

We have div $\operatorname{grad} \mathrm{f}=\nabla^{2} f(\mathrm{r})=f^{11}(\mathrm{r})+^{2} / f^{1}(\mathrm{r})=(2 \mathrm{n})(2 \mathrm{n}+1) \mathrm{r}^{-2 \mathrm{n}-2}-4 \mathrm{n} \mathrm{r}^{-2 \mathrm{n}-2}$

$$
=r^{-2 n-2}[2 n(2 n+1-2)]=(2 n)(2 n-1) r^{-2 n-2}
$$

If div $\operatorname{grad} f(\mathrm{r})$ is zero, we get $\mathrm{n}=0$ or $\mathrm{n}=1 / 2$.
8: Prove that $\nabla \mathrm{x}\left(\frac{A \times \bar{r}}{r^{n}}\right)=\frac{(2-n) A}{r^{n}}+\frac{n(r . A) \bar{r}}{r^{n+2}}$.
Sol: We have $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$ and $\mathrm{r}=|\bar{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$

$$
\begin{aligned}
& \therefore \frac{\partial r}{\partial x}=i, \frac{\partial r}{\partial y}=\dot{j}, \frac{\partial r}{\partial z}=k \text { and } \\
& \mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \ldots \ldots \text { (1) }
\end{aligned}
$$

Diff. (1) partially,

$$
\begin{aligned}
& 2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r} \text {, similarly } \frac{\partial r}{\partial y}=\frac{y}{r} \text { and } \frac{\partial r}{\partial z}=\frac{z}{r} \\
& \nabla \mathrm{x}\left(\frac{A \times x}{r^{n}}\right)=\sum i-\times \frac{\partial}{\partial x}\left(\frac{(A \times x)}{r^{n}}\right)
\end{aligned}
$$

Now $\frac{\partial}{\partial x}\left(\frac{(A \times r)}{r^{n}}\right)=\bar{A} \times \frac{\partial}{\partial x}\left(\frac{r}{r^{n}}\right)=\bar{A} \times\left[\left.\left.\frac{\left\lceil r^{n} \dot{-}-v n r^{n-1}\right.}{r}\right|_{2 n} \right\rvert\, \frac{\partial r}{\partial x}\right.$

$$
\begin{array}{r}
\left.=\bar{A} \times\left\lfloor\frac{\left\lceil r^{n} i-n r^{n-2} x r_{-}\right\rceil}{r^{2 n}}\right\rfloor=\bar{A} \times\left|\frac{1}{\left\lfloor r^{n}\right.} \bar{i}-\frac{n}{r^{n+2}} x r\right|\right\rfloor \\
=\frac{\bar{A} \times \bar{i}}{r^{n}}-\frac{n}{r^{n+2}} \cdot x(\bar{A} \times \bar{r}) \\
\therefore \dot{i} \times \underset{\partial x}{\partial}\left(\frac{A \times \underline{r}))}{r^{n}}=\frac{i \times(A \times i)}{i x}-\frac{n x}{r^{n+2}} \underline{i} \times(\underline{A} \times r)\right. \\
\\
=\frac{(\bar{i} . \bar{i}) \bar{A}-(\bar{i} . \bar{A}) \bar{i}}{r^{n}}-\frac{n x}{r^{n+2}}[(\underline{i} . \underline{r}) A-(\underline{i} . A) \underline{r}]
\end{array}
$$

Let $A_{1} \bar{i}+A_{2} \bar{j}+A_{3} \bar{k}$. Then $\bar{i} \cdot \bar{A}=A_{1}$
$\therefore \dot{i} \times \underset{\partial x}{\partial x}\left(\frac{\partial(A \times \underline{r}))}{r^{n}}\right)=\left(r^{n}\right)-\underset{-}{\left(A-A_{1} \dot{i}\right)}{ }^{n x} \underset{r^{n+2}}{[x A-A r]}$
and $\sum i \times \frac{\partial}{\partial x}\left(\frac{(A \times r)}{r^{n}}\right)=\left.\sum\left(\frac{\left(A-A_{1} i\right)}{-r^{n}}\right)\right|^{-\frac{n x}{r^{n+2}}}[x \underline{A}-A r]$

$$
\begin{aligned}
& =\frac{3 \bar{A}-A}{r^{n}}-\frac{n}{r^{n+2}}\left[r^{2} A\right]+\frac{n r}{r^{n+2}}\left(A_{1} x+A_{2} y+A_{3} z\right) \\
& =\frac{2 \bar{A}}{r^{n}}-\frac{n}{r^{n}} \bar{A}+\frac{n \bar{r}}{r^{n+2}}(\text { A. } \cdot)=\frac{(2-n) A}{r^{n}}+\frac{n \bar{r}}{r^{n+2}}(\bar{A} \cdot \bar{r})
\end{aligned}
$$

Hence the result.

VECTOR IDENTITIES

Theorem 1: If \vec{a} is a differentiable function and ϕ is a differentiable scalar function, then prove that $\operatorname{div}(\phi \bar{a})=(\operatorname{grad} \phi) \cdot \bar{a}+\phi \operatorname{div} \bar{a}$ or $\nabla \cdot(\phi \vec{a})=(\nabla \phi) \cdot \bar{a}+\phi(\nabla \cdot \vec{a})$
Proof: $\operatorname{div}(\phi \pi)=\nabla .(\phi \pi)=\sum i . \frac{\partial}{\partial x}(\phi \bar{a})$

$$
\begin{aligned}
& =\sum \bar{i} .\left(\frac{\partial \phi}{\partial x} \bar{a}+\phi \frac{\partial \underline{a}}{\partial x}\right)=\sum\left|i . \frac{\partial \phi}{\partial x} \bar{a}\right|_{)}+\sum\left|i\left(\frac{\partial a}{i}\right)\right| \phi \\
& =\sum^{\left.\underline{i} \underline{\partial \phi}) \cdot \underline{a}+\left(\sum^{\underline{i}}-\partial a\right)^{\partial x}\right)} \phi=(\nabla \phi) \cdot \underline{a}+\phi(\nabla \cdot \underline{a})
\end{aligned}
$$

Theorem 2: Prove that curl $(\phi \bar{a})=(\operatorname{grad} \phi) \times \bar{a}+\phi \operatorname{curl} \bar{a}$
Proof : $\operatorname{curl}(\phi \bar{a})=\nabla \mathrm{x}(\phi \bar{a})=\sum i \times \frac{\underline{\partial}}{\partial}(\phi t)$

$$
\begin{aligned}
& =\nabla \phi \times \bar{a}+(\nabla \mathrm{x} \bar{a}) \phi=(\operatorname{grad} \phi) \mathrm{x} \bar{a}+\phi \operatorname{curl} \bar{a}
\end{aligned}
$$

Theorem 3: Prove that $\operatorname{grad}(\bar{a} \cdot \bar{b})=(\bar{b} . \nabla) \bar{a}+(\bar{a} . \nabla) \bar{b}+\bar{b} \times c u r l \bar{a}+\bar{a} \times c u r l \bar{b}$
Proof: Consider

$$
\begin{aligned}
& \underset{-\operatorname{curl}}{a \times \operatorname{curl}}(b)=a \times(\nabla \times b)=a \times \sum\left(i \times \frac{\partial b}{\partial x}\right) \\
& =\sum a \times\left(i \times \frac{\partial b}{\partial x}\right)
\end{aligned}
$$

$$
\begin{align*}
& \therefore a \times \text { curl } b=\sum i \left\lvert\,\left(\left.\left.\frac{\partial b}{a} \cdot \frac{\partial}{\partial x}\right|_{\mid} \right\rvert\,-(a . \nabla) b\right.\right. \tag{1}
\end{align*}
$$

(1) $+(2)$ gives

$$
\Rightarrow a * c u r l b \neq b \times \tau \text { curl } a+(a . \nabla) b+(b . \nabla) a=\sum i t\left(a . \frac{\partial b}{\partial x}+b . \frac{\partial \underline{a}}{\partial x}\right)
$$

$$
=\sum \bar{i} \frac{\underline{\partial}^{(}(a-b)}{\partial x}
$$

$$
=\nabla(\bar{a} \cdot \bar{b})=\operatorname{grad}(\bar{a} \cdot \bar{b})
$$

Theorem 4: Prove that $\operatorname{div}(\bar{a} \times \bar{b})=\bar{b} \cdot \operatorname{curl}(\bar{a}-\bar{a} . c u r l \bar{b}$
Proof: div $(\bar{a} \times b)=\sum \dot{\dot{\tau} \cdot-} \frac{\partial}{\partial x}(a \times b)=\sum i .\left(\begin{array}{l}\left.\frac{\partial \underline{a}}{\partial x} \times b+a \times \frac{\partial b}{\partial x}\right)\end{array}\right.$

Theorem 5 : Prove that $\operatorname{curl}(\bar{a} \times \bar{b})=\bar{a} \operatorname{div} \bar{b}-\bar{b} d i v \bar{a}+(\bar{b} . \nabla) \bar{a}-(\bar{a} . \nabla) \bar{b}$
Pr oof : $\operatorname{curl}(\underline{a} \times \underline{b})=\sum \underset{-}{i} \times \frac{\partial}{\partial x}(a \times b)=\sum \underset{-}{i} \times\left\lceil\frac{\partial a}{\partial x} \times b_{-}+a \times \frac{\partial b}{\partial x}\right\rceil$

Theorem 6: Prove that curl grad $\phi=0$.
Proof: Let ϕ be any scalar point function. Then

$$
\begin{aligned}
& \sum \underline{i} \underline{\times}\left(\frac{\partial \underline{a}}{\partial x} \times b\right)+\sum i \times\left(\underline{a} \times \frac{\partial b}{\partial x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(\bar{b} \cdot \nabla) \bar{a}-(\nabla \cdot \bar{a}) \bar{b}+(\nabla \cdot \bar{b}) \bar{a}-(\bar{a} \cdot \nabla) \bar{b} \\
& =(\nabla \cdot \bar{b}) \bar{a}-(\nabla \cdot \bar{a}) \bar{b}+(\bar{b} \cdot \nabla) \bar{a}-(\bar{a} \cdot \nabla) \bar{b} \\
& =\bar{a} \operatorname{div} \bar{b}-\bar{b} d i v \bar{a}+(\bar{b} \cdot \nabla) \bar{a}-(\bar{a} . \nabla) \bar{b}
\end{aligned}
$$

$$
\begin{aligned}
& =(\nabla \times \bar{a}) \cdot \bar{b}-(\nabla \times \bar{b}) \cdot \bar{a}=\bar{b} \cdot \bar{c} \text { url } \bar{a}-\bar{a} \cdot \text { curl } b
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{grad} \phi=i \frac{\partial \phi}{\partial x}+\dot{j} \frac{\partial \phi}{\partial y}+k \frac{\partial \phi}{\partial z} \\
\operatorname{curl}(\operatorname{grad} \phi)=\left|\begin{array}{ccc}
\bar{i} & \bar{j} & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} & \frac{\partial \phi}{\partial z}
\end{array}\right| \\
=\bar{i}\left(\frac{\partial^{2} \phi}{\partial y \partial z}-\frac{\partial^{2} \phi}{\partial z \partial y}\right)-j\left(\frac{\partial^{2} \phi}{\partial x \partial z}-\frac{\partial^{2} \phi}{\partial z \partial x}\right)-k\left(\frac{\partial^{2} \phi}{\partial x \partial y}-\frac{\partial^{2} \phi}{\partial y \partial x}\right)=0
\end{gathered}
$$

Note : Since $\operatorname{Curl}(\operatorname{grad} \phi)=\overline{0}$, we have $\operatorname{grad} \phi$ is always irrotational.
7. Prove that $\operatorname{div} \operatorname{curl} \bar{f}=0$

Proof : Let $\bar{f}=f_{1} \bar{i}+f_{2} \bar{j}+f_{3} \bar{k}$
$\therefore \operatorname{curl} \bar{f}=\nabla \times \bar{f}=\left|\begin{array}{lll}\bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_{1} & f_{2} & f_{3}\end{array}\right|$

$$
=\left(\begin{array}{l}
\left.\left.\partial f_{3}-\partial f_{2}\right)\left._{\left.\right|_{i-}}\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{1}}{\partial z}\right)\right|_{j}+\left.\binom{\partial f_{2}}{\partial z}\left(\frac{\partial f_{1}}{\partial x}\right)\right|_{k}\right)
\end{array}\right.
$$

\therefore div curl $f=\nabla \cdot(\nabla \times f)=\frac{\partial}{\partial x}\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right) \eta_{-} \frac{\partial y}{\partial y}\left(\frac{\partial f_{3}}{\partial x}-\frac{\partial f_{1}}{\partial z}\right) \|_{+} \frac{\partial z}{\partial z}\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y_{1}}\right)$
$=\frac{\partial^{2} f}{\partial x \partial y}--\frac{\partial^{2} f}{\partial x \partial z}-\frac{\partial^{2} f}{\partial y \partial x}+\frac{\partial^{2} f}{\partial y \partial z}+\frac{\partial^{2} f}{\partial z \partial x}-\frac{\partial^{2} f}{\partial z \partial y}=0$
Note: Since $\operatorname{div}(\operatorname{curl} \bar{f})=0$, we have $\operatorname{curl} \bar{f}$ is always solenoidal.

Theorem 8: If f and g are two scalar point functions, prove that $\operatorname{div}(f \nabla \mathrm{~g})=f \nabla^{2} \mathrm{~g}+\nabla f . \nabla \mathrm{g}$
Sol: Let f and g be two scalar point functions. Then
$\nabla g=\dot{i} \frac{\partial g}{\partial x}+\dot{j} \frac{\partial g}{\partial y}+k \frac{\partial g}{\partial z}$
Now

$$
\begin{aligned}
& f \nabla \mathrm{~g}=\bar{i} f \frac{\partial g}{\partial x}+\bar{j} f \frac{\partial g}{\partial y}+\bar{k} f \frac{\partial g}{\partial z} \\
& \therefore \nabla .(f \nabla \mathrm{~g})=\frac{\partial}{\partial x}\binom{\partial g}{f}+\frac{\partial x}{\partial x}(f \partial g)+\frac{\partial y}{\partial y}(f(f) \partial g)
\end{aligned}
$$

$$
\begin{aligned}
& =f\left(\frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial^{2} g}{\partial y^{2}}+\frac{\partial^{2} g}{\partial x^{2}}\right)+\left(\begin{array}{l}
\partial f \\
\partial x
\end{array} \frac{\partial g}{\partial x}+\frac{\partial f}{\partial y} \cdot \frac{\partial g}{\partial y}+\frac{\partial f}{\partial z} \frac{\partial g}{\partial z}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =f \nabla^{2} \mathrm{~g}+\nabla f . \nabla \mathrm{g}
\end{aligned}
$$

Theorem 9: Prove that $\nabla \mathrm{x}(\nabla \mathrm{x} \bar{a})=\nabla(\nabla \cdot \bar{a})-\nabla^{2} \bar{a}$.
Proof: $\nabla \mathrm{x}(\nabla \mathrm{x} a)=\sum^{\dot{\tau}} \times \frac{\partial}{\partial x}(\nabla \times \bar{a})$
Now $\underline{i} \times \frac{\partial}{\partial x}(\nabla \times \underline{a})=i \times \frac{\partial}{\partial x}\left(i \times \frac{\partial x}{\partial x}+j \times \frac{\partial \underline{a}}{\partial y}+\underline{k} \times \frac{\partial \underline{a}}{\partial z}\right)$
$\left.=-\overline{i \times\left(i \times \frac{\partial^{2} a}{\partial x^{2}}+\overline{j \times} \times \frac{\partial^{2} a}{\partial x \partial y}+k \times \partial^{2} a\right)} \partial x \partial z\right)$

$\left.=\binom{\left.\partial^{2} a\right)}{i . \partial x^{2}} \bar{i}-\frac{\partial^{2} a}{\partial x^{2}}+\left(\overline{i .} \frac{\partial^{2} a}{\partial x \partial y}\right) \right\rvert\, \bar{j}+\left(\bar{i} \cdot \frac{\partial^{2} a}{\partial x \partial z}\right) k \quad[\cdot i . i=1, i . j=i . k=0]$

$\therefore \sum \underset{-}{i} \times \frac{\partial}{\partial x}(\nabla \times a)=\nabla \sum^{i \cdot \frac{\partial \theta}{\partial x}-} \sum \begin{aligned} & \partial^{2} \theta \\ & \partial x^{2}\end{aligned}=\nabla(\nabla \cdot a)-\left(\begin{array}{l}\partial^{2} \theta \\ \partial x^{2}\end{array}+\frac{\partial^{2} \theta}{\partial y^{2}}+\frac{\partial^{2} t}{\partial z^{2}}\right)$
$\therefore \nabla \mathrm{x}(\nabla \mathrm{x} \bar{a})=\nabla(\nabla \cdot \bar{a})-\nabla^{2} \bar{a}$
i.e., curlcurl $\bar{a}=\operatorname{grad} \operatorname{div} \bar{a}-\nabla^{2} \bar{a}$

SOLVED PROBLEMS

1: Prove that $(\nabla f \mathrm{x} \nabla \mathrm{g})$ is solenoidal.
Sol: We know that $\operatorname{div}(\bar{a} \times \bar{b})=\bar{b} . c u r l ~ \bar{a}-\bar{a}$. curl $^{-}{ }^{-}$
Take $\overline{\mathrm{a}}=\nabla f$ and $\overline{\mathrm{b}}=\nabla \mathrm{g}$
Then $\operatorname{div}(\nabla \mathrm{fx} \nabla \mathrm{g})=\nabla \mathrm{g} . \operatorname{curl}(\nabla \mathrm{f})-\nabla \mathrm{f} . \operatorname{curl}(\nabla \mathrm{g})=0[\because$
$\therefore \nabla f \times \nabla g$ is solenoidal.

$$
\operatorname{curl}(\nabla f)=0=\operatorname{curl}(\nabla g)]
$$

2:Prove that (i) $\operatorname{div}\{(\bar{r} \times \bar{a}) \bar{b}\}=-2(\bar{b} \cdot \bar{a})$ (ii) $\operatorname{curl}\{(\bar{r} \cdot \bar{a}) \times b\}=\bar{b} \times \bar{a}$ where \bar{a} and \bar{b} are constant vectors.

Sol: (i)

$$
\begin{aligned}
& \operatorname{div}\{(\bar{r} \times \bar{a}) \times \bar{b}\}=\operatorname{div}[(\bar{r} . \bar{b}) \bar{a}-(\bar{a} . . \bar{b}) \bar{r}] \\
& =\operatorname{div}(\bar{r} . \bar{b}) \bar{a}-(\bar{a} . . \bar{b}) \bar{r} \\
& \quad=[(\bar{r} . \bar{b}) \operatorname{div} \bar{a}+\bar{a} . \operatorname{grad}(\bar{r} . \bar{b})]-[(\bar{a} . \bar{b}) \operatorname{div} \bar{r}+\bar{r} . \operatorname{grad}(\bar{a} . \bar{b})]
\end{aligned}
$$

We havediv $\bar{a}=0, \operatorname{div} \bar{r}=3, \operatorname{grad}(\bar{a} \cdot \bar{b})=0$
$\operatorname{div}\{(r \times \bar{a}) \times \bar{b}\}=0+\bar{a} . \operatorname{grad}(\bar{r} \cdot \bar{a})-3(\bar{a} \cdot \bar{a})$
$=\bar{a} \cdot \sum \frac{i \partial}{\partial x}(\vec{r} \cdot \vec{b})-3(\vec{a} \cdot \vec{b})$
$=\bar{a} \cdot \sum \bar{i} \frac{\partial \bar{r}}{\partial x} \cdot \bar{b}-3(\bar{a} \cdot \bar{b})$
$=\bar{a} \cdot \sum \bar{i}(\bar{i} \cdot \bar{b})-3(\bar{a} \cdot b)$
$=\bar{a} \cdot \bar{b}-3(\bar{a} \cdot \bar{b})=-2(\bar{a} \cdot \bar{b})$
$=-2(\bar{b} \cdot \vec{a})$
(ii) $\operatorname{curl}\{(\bar{r} \times \bar{a}) \times \bar{b}\}=\operatorname{curl}\left[(\bar{r} \cdot \vec{b}) \bar{a}-(\bar{a} \cdot \vec{b}) r^{-}\right\rceil$
$=\operatorname{curl}(\bar{r} \cdot \bar{b}) \bar{a}-\operatorname{curl}(\bar{a} \cdot \bar{b}) \bar{r}$
$=(r . \bar{b}) \operatorname{curl} \bar{a}+\operatorname{grad}(\bar{r} . \bar{b}) \times \bar{a}$
$=\overline{0}+\nabla(\bar{r} \cdot \bar{b}) \times \bar{a}(\because$ curl $\bar{a}=\overrightarrow{0})$
$=\bar{b} \times \bar{a}$ Since $\operatorname{grad}\left(\overline{r_{\cdot}} \bar{b}\right)=\bar{b}$
3: Prove that $\nabla \nabla .^{\underline{r}}=-2 \underline{r}$.
Sol: We have $\nabla \cdot\left(\begin{array}{l}(r) \bar{r}\end{array}\right) \quad \bar{r}^{3} \quad \partial(\underline{r})$

$$
\begin{aligned}
& \left.\left.=\sum i .\left[\begin{array}{ll}
1 & \partial r \\
r & \partial x+r
\end{array}\binom{-1}{r^{2}}\binom{x}{r}\right]=\sum i .\binom{1}{r}\right] \begin{array}{l}
r \\
r^{3} x
\end{array}\right) \\
& =\frac{1}{r} \sum i . i-\frac{1}{r^{3}} r^{2}=\frac{3}{r}-\frac{1}{r}=\frac{2}{r} \\
& \therefore \nabla\left[\nabla \cdot\left(\frac{\bar{r}}{r}\right)\right]=\sum i\left(\frac{\partial}{\partial x}\left(\frac{2}{r}\right)\right) \left\lvert\,=\sum i\left(\frac{-2}{r^{2}}\right)\left(\frac{\underline{x}}{r}\right)=\frac{-2}{r^{3}} \sum x i=\frac{-2 r}{r^{3}} .\right.
\end{aligned}
$$

4: Find $(\mathrm{Ax} \nabla) \phi$, if $\mathrm{A}=\mathrm{yz}^{2} \bar{i}-3 \mathrm{xz}^{2} \bar{j}+2 \mathrm{xyz} \bar{k}$ and $\phi=\mathrm{xyz}$.
Sol : We have

$$
\operatorname{Ax} \nabla=\left|\begin{array}{ccc}
\grave{\imath} & \bar{j} & \bar{k} \\
y z^{2} & -3 x z^{2} & 2 x y z \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}
\end{array}\right|
$$

$$
=i\left[\left[\left.\frac{\partial}{\partial x}\left(-3 x z^{2}\right)-\frac{\partial}{\partial y}(2 x y z)|-\dot{j}| \frac{\partial}{\lfloor\partial z}\left(y z^{2}\right)-\frac{\partial}{\partial x}(2 x y z) \right\rvert\,\right]+k\left[\left.\frac{\partial}{\partial y}\left(y z^{2}\right)-\frac{\partial}{\partial x}\left(-3 x z^{2}\right) \right\rvert\,\right.\right.
$$

$$
=\bar{i}(-6 \mathrm{xz}-2 \mathrm{xz})-\bar{j}(2 \mathrm{yz}-2 \mathrm{yz})+\bar{k}\left(\mathrm{z}^{2}+3 \mathrm{zz}^{2}\right)=-8 \mathrm{xz} \bar{i}-0 \bar{j}+4 \mathrm{z}^{2} \bar{k}
$$

$$
(\mathrm{Ax} \nabla) \phi,=\left(-8 x \mathrm{z} \bar{i}+4 \mathrm{z}^{2} \bar{k}\right) \mathrm{xyz}=-8 x^{2} y \mathrm{z}^{2} \bar{i}+4 \mathrm{xyz}^{3} \bar{k}
$$

Objective questions

1. $\nabla\left(\mathrm{r}^{\mathrm{n}}\right)=$ \qquad
$2 \nabla\left(\frac{1}{r}\right)=$ \qquad
2. the greatest value of the directional derivative of the function $f=x^{2} y z^{3}$ at $(2,1,-1)$ is \qquad
3. a unit normal vector to the surface $x^{2}+y^{2}+2 z^{2}=26$ at the point $(2,2,3)$ is. \qquad
4. a unit normal vector to the surface $z=x^{2}+y^{2}$ at $(-1,-2,5)$ is. \qquad
6 The vectors \bar{n}_{1} and \bar{n}_{2} are along the normals to the two surfaces .Let θ be the angle between the surfaces. Then $\operatorname{Cos} \theta=$ \qquad
5. If the vector $\bar{f}=f_{1} \bar{i}+f_{2} \bar{j}+f_{3} \bar{k}$, then $\operatorname{div} \bar{f}=$ \qquad
6. A vector point function \bar{f} is said to be solenoidal if div $\bar{f}=$ \qquad
7. if \bar{r} is the position vector of an point in space, then $\mathrm{r}^{\mathrm{n}} r$ is Irrotational then $\operatorname{curl}\left(\mathrm{r}^{\mathrm{n}} \bar{r}\right)=$ \qquad

Multiple choice questions

\therefore 1. : If $f=x y^{2} i^{-}+2 x^{2} y z j^{-}-3 y z^{2} k$ find curl f^{-}at the point $(1,-1,1)$.
\therefore a. $-\bar{i}-2 \bar{k} .{ }_{\text {b. }}$
b. c.
$-\bar{i}-2 \bar{k}$
d. $-\bar{i}-2 \bar{k}$.
\therefore 2. If $f=\left(x^{2}+y^{2}+z^{2}\right)^{-n}$ then find $\operatorname{div} \operatorname{grad} f$ and determine n if $\operatorname{div} \operatorname{grad} f=0$.
\therefore a. $n=0$ or $n=1 / 2$.b. $n=0$ or $n=1 / 2$.c. $n=0$ or $n=1 / 2$. d. $n=0$ or $n=1 / 2$.
\therefore 3. : Find div \bar{F}, where $\bar{F}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$
\therefore a. $6(x+y+z)$ b. $6(x+y+z)$ c. $6(x+y+z)$ d. $6(x+y+z)$
\therefore 4. $(\bar{f} \times \nabla) . r=$
\therefore a. 0 b. 1 c. 2 d. 3
$\therefore 5$. Find constants a, b and c if the vector $\bar{f}=$
$(2 x+3 y+a z) \bar{i}+(b x+2 y+3 z) \bar{j}+(2 x+c y+3 z) \bar{k}$ is Irrotational
$\therefore \quad a \cdot a=2 b=3, c=3 \quad b \cdot a=1, b=2, c=4 \quad c \cdot a=0, b=1, c=4$ d. $a=1, b=3, c=2$
\therefore 6. If $\bar{f}=(x+3 y) \bar{i}+(y-2 z) \bar{j}+(x+p z) \bar{k}$ is solenoidal, find P.
\therefore a.p=4 b. $p=-2$ c. $p=3$ d. $p=-3$
$\therefore \quad$ 7. If $\bar{f}=x y^{2} \bar{i}+2 x^{2} y z \bar{j}-3 y z^{2} \bar{k}$ find $\operatorname{div} \bar{f}$ at(1, $\left.-1,1\right)$.
$\begin{array}{lllll} & \text { a. } 6 & \text { b. } 7 & \text { c. } 8 \mathrm{~d} .9\end{array}$
$\therefore 8$. Find the directional derivative of $\phi=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ in the direction $2 i-j-2 k$.
\therefore a. $37 / 3$. B. $47 / 3$. C. $27 / 3$. D. $17 / 3$.
\therefore
9.
\therefore If If \bar{a} is constant vector then prove that $\operatorname{grad}\left(a^{-} \cdot r\right)=a^{-} a^{-}$is constant vector then $\operatorname{grad}\left(a^{-} . r^{-}\right.$)=
\therefore a. $\bar{a}^{\text {b. }} 0 \quad$ c. r d. 1
$\therefore 10$.
$\therefore \quad:$ Find the values of a and b so that the surfaces $a x^{2}-b y z=(a+2) x$ and $4 x^{2} y+z^{3}=4$ may intersect orthogonally at the point ($1,-1,2$).
$\therefore \quad a \cdot a-3 \cdot 5 b=1 \quad b \cdot a=2 \cdot 5, b=1 \quad c \cdot a=1, b=1 d . a=1, b=0$

UNIT-V

Vector Integration

Line integral:- (i) $\int_{c} F . d r$ is called Line integral of F along c
Note : Work done by F along a curve c is $\int_{c} F . d r$

PROBLEMS

1. If \bar{F} ($\mathrm{x}^{2}-27$) $\bar{i}-6 \mathrm{yz} \overline{\mathrm{j}}+8 \mathrm{xz}^{2} \overline{\mathrm{k}}$, evaluate $\int \overline{\bar{F}} . \mathrm{d} \mathrm{r}$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the Straight line from $(0,0,0)$ to $(1,0,0),(1,0,0)$ to $(1,1,0)$ and $(1,1,0)$ to $(1,1,1)$.

Solution : Given $F=\left(\mathrm{x}^{2}-27\right) i-6 y \mathrm{z} j+8 \mathrm{xz}^{2} \mathrm{k}$
Now $\overline{\mathrm{r}}=x \overline{\mathrm{i}}+\mathrm{y} \overline{\mathrm{j}}+z \bar{k} \Rightarrow d \overline{\mathrm{r}}=d x \bar{i}+d \mathrm{y} \overline{\mathrm{j}}+d z \overline{\mathrm{k}}$
$\therefore \quad F \cdot d \overline{\mathrm{r}}=\left(\mathrm{x}^{2}-27\right) \mathrm{dx}-(6 \mathrm{yz}) \mathrm{dy}+8 \mathrm{xz}^{2} \mathrm{dz}$
(i) Along the straight line from $\mathrm{O}=(0,0,0)$ to $\mathrm{A}=(1,0,0)$

Here $\mathrm{y}=0=\mathrm{z}$ and $\mathrm{dy}=\mathrm{dz}=0$. Also x changes from 0 to 1 .

$$
\therefore \int_{\mathrm{OA}} F . d \mathrm{r}=\int_{0}^{1}\left(\mathrm{x}^{2}-27\right) \mathrm{dx}=\left\lceil\frac{x^{3}}{3}-\left.27 x\right|_{\rfloor_{0}} ^{\rceil_{1}}=\frac{1}{3}-27=\frac{-80}{3}\right.
$$

(ii) Along the straight line from $\mathrm{A}=(1,0,0)$ to $\mathrm{B}=(1,1,0)$

Here $x=1, z=0 \Rightarrow d x=0, d z=0$. y changes from 0 to 1 .

$$
\therefore \int_{A B} \bar{F} \cdot \overline{d r}=\int_{y=0}(-6 y z) d y=0
$$

(iii) Along the straight line from $\mathrm{B}=(1,1,0)$ to $\mathrm{C}=(1,1,1)$ $x=1=y \Longrightarrow d x=d y=0$ and z changes from 0 to 1 .

$$
\begin{gathered}
\therefore \int_{\text {BC }}^{-} F . d \mathrm{r}=\int_{z=0}^{1} 8 x z^{2} d z=\int_{z=0}^{1} 8 x z^{2} d z=\left\lfloor\left.\frac{\left\lceil 8 z^{3}\right\rceil^{1}}{3}\right|^{1}=\frac{8}{3}\right. \\
(i)+(i i)+(i i i) \Rightarrow \int_{C} \bar{F} \cdot d \overline{\mathrm{r}}=\frac{88}{3}
\end{gathered}
$$

2. If $\bar{F}=\left(5 \mathrm{xy}-6 \mathrm{x}^{2}\right) \bar{i}+(2 \mathrm{y}-4 \mathrm{x}) \mathrm{j}$, evaluate $\int_{\uparrow} \bar{F} . d \overline{\mathrm{r}}$ along the curve C in xy -plane $\mathrm{y}=\mathrm{x}^{3}$ from $(1,1)$ to $(2,8)$.

Solution : Given $F=\left(5 \mathrm{xy}-6 \mathrm{x}^{2}\right) \bar{i}+(2 \mathrm{y}-4 \mathrm{x}) \overline{\mathrm{j}}$,
Along the curve $y=x^{3}, d y=3 x^{2} d x$

$$
\text { Hence } \int_{y=x^{3}}^{-} F \cdot d \mathrm{dr}=\int_{1}^{2}\left(6 x^{5}+5 x^{4}-12 x^{3}-6 x^{2}\right) d x
$$

$$
\begin{aligned}
& \left.=\left(6 \cdot \frac{x}{6}^{x^{6}}+5 \cdot \frac{x}{5}^{x^{5}}-12 \cdot \bar{x}_{4}^{x^{4}}-6 \cdot \frac{x^{3}}{4}\right) \right\rvert\,=\left(x^{6}+x^{5}-3 x^{4}-2 x^{3}\right)^{2} \\
& =16(4+2-3-1)-(1+1-3-2)=32+3=35
\end{aligned}
$$

3. Find the work done by the force $F=z i+x j+y k$, when it moves a particle along the arc of the curve $\bar{r}=\operatorname{cost} \bar{i}+\operatorname{sint} \bar{j}-\mathrm{t} k$ from $\mathrm{t}=0$ to $\mathrm{t}=2 \pi$

Solution : Given force $F=\mathrm{z} i+\mathrm{x} j+\mathrm{y}$ \bar{k} and the arc is $r=\operatorname{cost} i+\sin \mathrm{t} j-\mathrm{t} k$
i.e., $x=\operatorname{cost}, \mathrm{y}=\sin \mathrm{t}, \mathrm{z}=-\mathrm{t}$
$\therefore \mathrm{d} \overline{\mathrm{r}}=(-\sin \mathrm{t} \bar{i}+\operatorname{cost} \bar{j}-\bar{k}) \mathrm{dt}$
$\therefore \bar{F} \cdot \mathrm{~d} \overline{\mathrm{r}}=(-\mathrm{t} \bar{i}+\cos \mathrm{j} \bar{j}+\overline{\sin } \mathrm{t} k) \cdot(-\sin \mathrm{t} \bar{i}+\cos \mathrm{j} j-k) \mathrm{dt}=\left(\mathrm{t} \sin \mathrm{t}+\cos ^{2} \mathrm{t}-\sin \mathrm{t}\right) \mathrm{dt}$
Hence work done $=\int_{0}^{2 t} \bar{F} \cdot \mathrm{dr}=\int_{0}^{2 \pi}\left(\mathrm{t} \sin \mathrm{t}+\cos ^{2} \mathrm{t}-\sin \mathrm{t}\right) \mathrm{dt}$

$$
\begin{aligned}
& =[t(-\cos t)]_{0}^{2 \pi}-\int_{0}^{2 \pi}(-\sin t) d t+\int_{0}^{2 \pi} \frac{1+\cos 2 t}{2} d t-\int_{0}^{2 \pi} \sin t \mathrm{dt} \\
& =-2 \pi-(\cos t)_{0}^{2 \pi}+\frac{1}{2}\left(t+\frac{\sin 2 t}{2}\right)_{0}^{2 \pi}+(\cos t)_{0}^{2 \pi} \\
& =-2 \pi-(1-1)+\frac{1}{2}(2 \pi)+(1-1)=-2 \pi+\pi=-\pi
\end{aligned}
$$

Assignment

$$
\begin{aligned}
& \therefore \quad \bar{F}=\left(5 \mathrm{x}^{4}-6 \mathrm{x}^{2}\right) \bar{i}+\left(2 \mathrm{x}^{3}-4 \mathrm{x}\right) \mathrm{j},\left[\text { Putting } \mathrm{y}=\mathrm{x}^{3}\right. \text { in (1)] } \\
& d \overline{\mathrm{r}}=d x \overline{\bar{i}}+d y \overline{\mathrm{j}}=d x \overline{\bar{i}}+3 \mathrm{x}^{2} \mathrm{dx} \mathrm{j}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(5 x^{4}-6 x^{2}\right) d x+\left(2 x^{3}-4 x\right) 3 x^{3} d x \\
& =\left(6 x^{5}+5 x^{4}-12 x^{3}-6 x^{2}\right) d x
\end{aligned}
$$

1. Find $\int_{c} \bar{F}$. $\mathrm{d} \overline{\mathrm{r}}$ where $\bar{F}=\mathrm{x}^{2} \mathrm{y}^{2} \bar{i}+\mathrm{y} \bar{j}$ and the curve $\mathrm{y}^{2}=4 \mathrm{x}$ in the xy -plane from $(0,0)$ to $(4,4)$.
2. If ${ }_{F} \quad \overline{-}=3 \mathrm{xy} i-5 \mathrm{z} \bar{j}+10 \mathrm{x} \bar{k}$ evaluate $\int_{\text {© }} \bar{F} \cdot \mathrm{~d} \bar{r}$ along the curve $\mathrm{x}=\mathrm{t}^{2}+1, \mathrm{y}=2 \mathrm{t}^{2}, \mathrm{z}=\mathrm{t}^{3}$ from $\mathrm{t}=$ 1 to $\mathrm{t}=2$.
3. If $\bar{F}=\mathrm{y} \bar{i}+\mathrm{z} \bar{j}+\mathrm{x} k$, find the circulation of \bar{F} round the curve c where c is the circle x^{2} $+\mathrm{y}^{2}=1, \mathrm{z}=0$.
4. (i) If $\phi=x^{2} y z^{3}$, evaluate $\int_{c} \phi d r$ along the curve $\mathrm{x}=\mathrm{t}, \mathrm{y}=2 \mathrm{t}, \mathrm{z}=3 \mathrm{t}$ from $\mathrm{t}=0$ to $\mathrm{t}=1$.
(ii) If $\phi=2 x y^{2} z+x^{2} y$, evaluate $\int_{c} \phi d r$ where c is the curve $\mathrm{x}=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2}, \mathrm{z}=\mathrm{t}^{3}$ from $\mathrm{t}=0$ to $\mathrm{t}=1$.
5. (i) Find the work done by the force $F=\left(x^{2}-y z\right) \bar{i}+\left(y^{2}-z x\right) \bar{j}+\left(z^{2}-x y\right) \bar{k}$ in taking particle from $(1,1,1)$ to $(3,-5,7)$.
(ii) Find the work done by the force $\bar{F}=(2 y+3) \bar{i}+(z x) \bar{j}+(y z-x) \bar{k}$ when it moves a particle from the point $(0,0,0)$ to $(2,1,1)$ along the curve $\mathrm{x}=2 \mathrm{t}^{2}, \mathrm{y}=\mathrm{t}, \mathrm{z}=\mathrm{t}^{3}$

Surface integral: $\int_{S}^{-\bar{F}} \cdot \bar{n} d s$ is called surface integral.

PROBLEMS

1: Evaluate $\int \overline{\mathrm{F}}$.ndS where $\overline{\mathrm{F}}=\mathrm{zi}+\mathrm{xj} \quad 3 y^{2} z k$ and S is the surface $x^{2}+y^{2}=16$ included in the first octant between $\mathrm{z}=0$ and $\mathrm{z}=5$.
Sol. The surface S is $x^{2}+y^{2}=16$ included in the first octant between $z=0$ and $z=5$.
Let

$$
\phi=x^{2}+y^{2}=16
$$

$$
\partial \phi \quad-\partial \phi \quad-\partial \phi
$$

Then

$$
\nabla \phi=\mathrm{i} \frac{\psi}{\partial \mathrm{x}}+\mathrm{j} \frac{}{\partial \mathrm{y}}+\mathrm{k} \frac{\psi}{\partial \mathrm{z}}=2 \mathrm{xi}+2 \mathrm{yj}
$$

\therefore unit normal $\overline{\mathrm{n}}=\frac{\nabla \phi}{|\nabla \varphi|}=\frac{\mathrm{xi}+\mathrm{yj}}{4}\left(\because \mathrm{x}^{2}+\mathrm{y}^{2}=16\right)$
Let R be the projection of S on yz-plane
Then

$$
\int_{\mathrm{S}} \mathrm{~F} \cdot \mathrm{ndS}=\iint_{\mathrm{R}} \overline{\mathrm{~F}} \cdot \overline{\mathrm{n}} \frac{\mathrm{dydz}}{|\overline{\mathrm{n}} \cdot \overline{\mathrm{i}}|}
$$

Given $\quad \overline{\mathrm{F}}=\mathrm{zi}+\mathrm{xj} \quad 3 \mathrm{y}^{2} \mathrm{zk}$
$\therefore \quad \overline{\mathrm{F}} \cdot \overline{\mathrm{n}}=\frac{1}{4}(\mathrm{xz}+\mathrm{xy})$
and $\quad \overline{\mathrm{n}} . \mathrm{i}=\frac{\mathrm{x}}{4}$
In yz-plane, $x=0, y=4$
In first octant, y varies from 0 to 4 and z varies from 0 to 5 .

$$
\begin{aligned}
\int_{s}^{E} \mathrm{EndS} & =\int_{y=0}^{4} \int_{z=0}^{5}\left(\frac{x z+x y}{4}\right) \frac{d y d z}{\left|\frac{x}{4}\right|} \\
& =\int_{y=0}^{4} \int_{z=0}^{5}(y+z) d z d y \\
& =90 .
\end{aligned}
$$

2: If $\overline{\mathrm{F}}=\mathrm{zi}+\mathrm{xj} \quad 3 \mathrm{y}^{2} \mathrm{zk}$, evaluate $\int_{5} \overline{\mathrm{~F}} \cdot \bar{n} \mathrm{ndS}$ where S is the surface of the cube bounded by $\mathrm{x}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=0, \mathrm{y}=\mathrm{a}, \mathrm{z}=0, \mathrm{z}=\mathrm{a}$.

Sol. Given that S is the surface of the $\mathrm{x}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=0, \mathrm{y}=\mathrm{a}, \mathrm{z}=0, \mathrm{z}=\mathrm{a}$, and $\overline{\mathrm{F}}=\mathrm{zi}+$ $\mathrm{xj} \quad 3 \mathrm{y}^{2} \mathrm{zk}$ we need to evaluate $\int_{S}^{-} \mathrm{F} . \mathrm{ndS}$.

(i) For OABC

Eqn is $\mathrm{z}=0$ and $\mathrm{dS}=\mathrm{dxdy}$

$$
\begin{aligned}
\overline{\mathrm{n}} & =-\overline{\mathrm{k}} \\
\int_{s_{1}}^{\bar{F}} \overline{\mathrm{n}} \mathrm{ndS} & =\int_{\mathrm{x}=0}^{\mathrm{a}}{\underset{y}{y=0}}_{-\int_{0}^{a}}(\mathrm{yz}) \mathrm{dxdy}=0
\end{aligned}
$$

(ii) For PQRS

Eqn is $\mathrm{z}=\mathrm{a}$ and $\mathrm{dS}=\mathrm{dxdy}$

$$
\begin{aligned}
& \overline{\mathrm{n}}=\mathrm{k} \\
& \int_{s_{2}} \mathrm{~F} . \text { ndS }=\int_{x=0}^{a}\left(\int_{y=0}^{a} y(a) d y\right) d x=\frac{a^{4}}{2}
\end{aligned}
$$

(iii) For OCQR

Eqn is $\mathrm{x}=0$, and $\overline{\mathrm{n}}=-\overline{\mathrm{i}}, \mathrm{dS}=\mathrm{dydz}$

$$
\int_{S_{3}} \overline{\mathrm{~F}} . \mathrm{ndS}=\int_{y=0}^{a} \int_{z=0}^{a} 4 x z d y d z=0
$$

(iv) For ABPS

Eqn is $x=a$, and $\bar{n}=-\bar{i}, d S=d y d z$

$$
\int_{S_{3}}^{-\bar{F} . n d S}=\int_{y=0}^{a}\left(\int_{z=0}^{a} 4 a z d z\right) d y=2 a^{4}
$$

(v) For OASR

Eqn is $y=0$, and $\bar{n}=-\overline{\mathrm{j}}, \mathrm{dS}=\mathrm{dxdz}$

$$
\int_{S_{5}} \bar{F} \cdot n d S=\int_{y=0}^{a} \int_{z=0}^{a} y^{2} d z d x=0
$$

(vi) For PBCQ

Eqn is $y=a$, and $\overline{\mathrm{n}}=-\overline{\mathrm{j}}, \mathrm{dS}=\mathrm{dxdz}$

$$
\int_{S_{6}} \overline{\mathrm{~F} . \bar{n} \mathrm{C} S}=\int_{y=0}^{a} \int_{z=0}^{a} \mathrm{y}^{2} \mathrm{dzdx}=0
$$

From (i) - (vi) we get

$$
\int_{S_{6}} \overline{\mathrm{~F}} \cdot \bar{n} \mathrm{dS}=0+\frac{\mathrm{a}^{4}}{2}+0+2 a^{4}+0 \quad a 4=\frac{3 a^{4}}{2}
$$

VOLUME INTEGRALS

Let V be the volume bounded by a surface $r=f(\mathrm{u}, \mathrm{v})$. Let $F(r)$ be a vector point function define over V . Divide V into m sub-regions of volumes $\delta V_{1}, \delta V_{2}, \ldots . \delta V_{p \ldots . . .} \delta V_{m}$ Let $\mathrm{P}_{\mathrm{i}}\left(\bar{r}_{\mathrm{i}}\right)$ be a point in δV_{i}. Then form the sum $\mathrm{I}_{\mathrm{m}}=\sum_{i=1}^{m} \bar{F}\left(r_{i}\right) \delta V_{i}$. Let $\mathrm{m} \rightarrow \infty$ in such a way that δV_{i} shrinks to a point,. The limit of I_{m} if it exists, is called the volume integral of $F(r)$ in the region V is denoted by $\int_{V} F(r) d v$ or $\int_{V} F d v$.

Cartesian form : Let $F(r)=F_{1} i+F_{2} i+F_{3} k$ where $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$ are functions of $\mathrm{x}, \mathrm{y}, \mathrm{z}$. We know that
$d v=d x d y d z$. The volume integral given by
$\int_{V} F d v=\iiint\left(F_{1} i+F_{2} i+F_{3} k\right) \mathrm{dx} \mathrm{dy} \mathrm{dz}=i \iiint F_{1} \mathrm{dxdydz}+j \iiint F_{2} \mathrm{dxdydz}+k \iiint F_{3} \mathrm{dxdydz}$

SOLVED EXAMPLES

Example 1: If $\bar{F}=2 x z \bar{i}-x \bar{j}+y^{2} \bar{k}$ evaluate $\int_{V} \bar{F} d v$ where V is the region bounded by the surfaces $x=0, x=2, y=0, y=6, z=x^{2}, z=4$.

Solution: Given $\bar{F}=2 x z \bar{i}-x \bar{j}+y^{2} \bar{k} . \therefore$ The volume integral is $\int_{V} \bar{F} d v=\iiint\left(2 x z \bar{i}-x \bar{j}+y^{2} \bar{k}\right) d x d y d z$

$$
\begin{aligned}
& =\bar{i} \int_{x=0}^{2} \int_{y=0}^{6} \int_{z=x^{2}}^{4} 2 x z d x d y d z-\bar{j} \int_{x=0}^{2} \int_{y=0}^{6} \int_{z=r^{2}}^{4} x d x d y d z+\bar{k} \int_{x=0}^{2} \int_{y=0}^{6} \int_{z=x^{2}}^{4} y^{2} d x d y d z \\
& =\bar{i} \int_{x=0}^{2} \int_{y=0}^{6}\left[x z^{2}\right]_{x^{2}}^{4} d x d y-\bar{j} \int_{x=0}^{2} \int_{y=0}^{6}(x z)_{x^{2}}^{4} d x d y+\bar{k} \int_{x=0}^{2} \int_{y=0}^{6} y^{2}(z)_{x^{2}}^{4} d x d y \\
& =\bar{i} \int_{x=0}^{2} \int_{y=0}^{6} x\left(16-x^{4}\right) d x d y-\bar{j} \int_{x=0}^{2} \int_{y=0}^{6} x\left(4-x^{2}\right) d x d y-\bar{k} \int_{x=0}^{2} \int_{y=0}^{2} y^{2}\left(x^{2}-4\right) d x d y \\
& =\bar{i} \int_{x=0}^{2}\left(16 x-x^{5}\right)(y)_{0}^{6} d x-\bar{j} \int_{x=0}^{2}\left(4 x-x^{3}\right)(y)_{0}^{6} d x-\bar{k} \int_{x=0}^{2}\left(x^{2}-4\right)\left(\frac{y^{3}}{3}\right)_{0}^{6} d x \\
& =\bar{i}\left(8 x^{2}-\frac{x^{6}}{6}\right)_{0}^{2}(6)-\bar{j}\left(2 x^{2}-\frac{x^{4}}{4}\right)_{0}^{2}(6)-\bar{k}\left(4 x-\frac{x^{3}}{3}\right)_{0}^{2}\left(\frac{211}{3}\right) \\
& =128 \bar{i}-24 \bar{j}-384 \bar{k}
\end{aligned}
$$

Esample 2: If $\bar{F}=\left(2 x^{2}-3 z\right) \bar{i}-2 x y \bar{j}-4 x \bar{k}$ then evaluate $(i) \int_{V} \nabla \cdot \bar{F} d v$ and $(i i) \int_{V} \nabla \times \bar{F} d v$: V is the closed region bounded by $x=0, y=0, z=0,2 x+2 y+z=4$.
Solution : (i) $\nabla \cdot \bar{F}=\bar{i} \cdot \frac{\partial \bar{F}}{\partial x}+\bar{j} \cdot \frac{\partial \bar{F}}{\partial y}+\bar{k} \cdot \frac{\partial \bar{F}}{\partial z}=4 x-2 x=2 x$.
The limits are : $z=0$ to $z=4-2 x-2 y, y=0$ to $\frac{4-2 x}{2}$ (i.e.) $2-x$ and $x=0$ to $\frac{4}{2}$ (i.e.) 2

$$
\begin{aligned}
\therefore \int_{V} \nabla \cdot \bar{F} d v & =\int_{x=0}^{2} \int_{y=0}^{2-x 4-2 x-2 y} \int_{z=0}^{2} 2 x d x d y d z=\int_{x=0}^{2} \int_{y=0}^{2-x}(2 x)(z)_{0}^{4-2 x-2 y} d x d y \\
& =\int_{x=0}^{2-x} \int_{y=0}^{2-x} 2 x(4-2 x-2 y) d x d y=4 \int_{x=0}^{2-x} \int_{y=0}^{2-x}\left(2 x-x^{2}-x y\right) d x d y \\
& =4 \int_{0}^{2}\left(2 x y-x^{2} y-\frac{x y^{2}}{2}\right)_{0}^{2-x} d x=4 \int_{0}^{2}\left[\left(2 x-x^{2}\right)(2-x)-\frac{x}{2}(2-x)^{2}\right] d x \\
& =\int_{0}^{2}\left(2 x^{3}-8 x^{2}+8 x\right) d x=\left[\frac{x^{4}}{2}-\frac{8 x^{3}}{2}+4 x^{2}\right]_{0}^{2}=\frac{8}{3}
\end{aligned}
$$

(ii) $\nabla \times \bar{F}=\left|\begin{array}{ccc}\bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \cdot \frac{\bar{\partial}}{\partial y} & \frac{\partial}{\partial z} \\ 2 x^{2}-3 z & -2 x y & -4 x\end{array}\right|=\bar{j}-2 y \bar{k}$
$\therefore \int_{V} \nabla \times \bar{F} d \nu=\iiint_{V}(\bar{j}-2 y \bar{k}) d x d y d z=\int_{x=0}^{2} \int_{y=0}^{2-x}(\bar{j}-2 y \bar{k})(z)_{0}^{4-2 x-2 y} d x d y$
$=\int_{x=0}^{2} \int_{y=0}^{2-x}(\bar{j}-2 y \bar{k})(4-2 x-2 y) d x d y$
$=\int_{x=0}^{2} \int_{y=0}^{2-x}\left\{\bar{j}[(4-2 x)-2 y]-\bar{k}\left[(4-2 x) \cdot 2 y-4 y^{2}\right]\right\} d x d y$
$=\int_{x=0}^{2} \bar{j}\left[(4-2 x) y-y^{2}\right]_{0}^{2-x} d x-\bar{k} \int_{x=0}^{2}\left[(4-2 x) y^{2}-\frac{4 y^{3}}{3}\right]_{0}^{2-x} d x$

$$
\begin{aligned}
& =\bar{j} \int_{0}^{2}(2+x)^{2} d x-\bar{k} \int_{0}^{2} \frac{2}{3}(2-x)^{3} d x \\
& =\bar{j}\left[\frac{(2+x)^{3}}{-3}\right]_{0}^{2}-\frac{2 \bar{k}}{3}\left[\frac{(2-x)^{4}}{-4}\right]_{0}^{2}=\frac{8}{3}(\bar{j}-\bar{k})
\end{aligned}
$$

EX EXERCISE

(1) Evaluate $\iiint(2 x+y) d x$ where V is the closed region bounded by the cylinder $z=4-x^{2}$, and planes $x=0, y=0, y \neq 2$, and $z=0$.
(2) If $\phi=45 x^{2} y$ evaluate $\iiint_{V} \phi d v$ where V is the closed region bounded by the planes
$4 x+2 y+z=8, y=0, z=0$.
(3) Evaluate $\int_{V} \bar{F} d v$ when $\bar{F}=x \bar{i}+y \bar{j}+z \bar{k}$ and V is the region bounded by $x=0, y=0, y=6, z=4, z=x^{2}$,

ANSWERS

(1) $\frac{80}{3}$
(2) 128
(3) $24 \bar{i}+96 \bar{j}+\frac{384}{5} \bar{k}$

Vector Integral Theorems

Introduction

In this chapter we discuss three important vector integral theorems: (i) Gauss divergence theorem, (ii) Green's theorem in plane and (iii) Stokes theorem. These theorems deal with conversion of
(i) $\quad \int_{S} F . n$ ds into a volume integral where S is a closed surface.
(ii) $\quad \int_{C} F . d r$ into a double integral over a region in a plane when C is a closed curve in the plane and.
(iii) $\quad \int_{S}(\nabla \times A) \cdot n$ ds into a line integral around the boundary of an open two sided surface.

I. GAUSS'S DIVERGENCE THEOREM

(Transformation between surface integral and volume integral)

Let S be a closed surface enclosing a volume V . If F is a continuously differentiable vector point function, then

$$
\int_{v} d i v F d v=\int_{s} F . n \mathrm{~d} S
$$

When n is the outward drawn normal vector at any point of S.

SOLVED PROBLEMS

1) Verify Gauss Divergence theorem for $\bar{F}=\left(x^{3}-y z\right) \overline{\boldsymbol{z}}-2 x^{2} y \bar{J}+z \bar{k}$ taken over the surface of the cube bounded by the planes $\mathrm{x}=\mathrm{y}=\mathrm{z}=\mathrm{a}$ and coordinate planes.

Sol: By Gauss Divergence theorem we have
$\int_{5}^{\bar{F}} \overline{-} \cdot n d S=\int_{v} d i v \bar{F} d v$
RHS $=\int_{0}^{a} \int_{0}^{a} \int_{0}^{a}\left(3 x^{2}-2 x^{2}+1\right) d x d y d z=\int_{0}^{a} \int_{0}^{a} \int_{0}^{a}\left(x^{2}+1\right) d x d y d z=\int_{0}^{a} \int_{0}^{a}\left(\frac{x^{3}}{3}+x\right)_{0}^{a} d y d z$
$\int f \mid\left\lceil a^{3}+a\right\rceil d y d z={ }^{a}\left\lceil a^{3}+a\right\rceil(y)^{a} d z=\left(a^{3}+a\right) a^{a} d z=\left(a^{3}+a \mid\left(a^{2}\right)=a^{5}+a^{3}\right.$
$\left.\left.{ }_{00} \overline{\mathrm{~B}}^{\mathrm{3}} \quad \int_{\lfloor 3}\right\rfloor{ }^{0} \quad \overline{3}, \int \sqrt{3}\right) \quad \overline{3}$
Verification: We will calculate the value of $\int_{5}^{-} F . n d S$ over the six faces of the cube.
(i) For $S_{1}=$ PQAS; unit outward drawn normal $\bar{n}=\overline{1}$ $x=a ; d s=d y d z ; 0 \leq y \leq a, 0 \leq z \leq a$

$$
\begin{align*}
& \therefore \bar{F} \cdot n=x^{3}-y z=a^{3}-y z \sin c e x=a \\
& \therefore \int_{s_{1}} \int_{\overline{1}}^{-} F \cdot n d S=\int_{z=0}^{a} \int_{y=0}^{a}\left(a^{3}-y z\right) d y d z \\
& =\int_{z=0}^{a}\left[a^{3} y-\frac{y^{2}}{2} z\right]_{y=0}^{a} d z \\
& =\int_{z=0}^{a}\left(a^{4}-\frac{a^{2}}{2} z\right) d z \\
& =a^{5}-\frac{a^{4}}{4} \ldots \text { (2) } \tag{2}
\end{align*}
$$

(ii) For $S_{2}=$ OCRB; unit outward drawn normal $\bar{n}=-\bar{l}$
$\mathrm{x}=0 ; \mathrm{ds}=\mathrm{dy} \mathrm{dz} ; 0 \leq \mathrm{y} \leq \mathrm{a}, \mathrm{y} \leq \mathrm{z} \leq \mathrm{a}$
$\bar{F} \cdot \bar{n}=-\left(x^{3}-y z\right)=y z \operatorname{since} x=0$
$\iint_{S_{\mathrm{a}}} \int \bar{F} \cdot \bar{n} d S=\int_{z=0}^{a} \int_{y=0}^{a} y z d y d z=\int_{z=0}^{a}\left[\frac{y^{2}}{2}\right]_{y=0}^{a} z d z$
$=\frac{a^{2}}{2} \int_{z=0}^{a} z d z=\frac{a^{4}}{4} \ldots$ (3)
(iii) For $\mathrm{S}_{3}=\mathrm{RBQP} ; \mathrm{Z}=\mathrm{a} ; \mathrm{ds}=\mathrm{dxdy} ; \bar{n}=\bar{k}$
$0 \leq x \leq a, 0 \leq y \leq a$
$\bar{F} \cdot \bar{n}=z=a \operatorname{since} z=a$
$\therefore \int_{S_{3}} \int_{\bar{F}}^{\overline{-}} F n d S=\int_{y=0}^{a} \int_{x=0}^{a} a d x d y=a^{3 \cdots}(4$
(iv) For $\mathrm{S}_{4}=\mathrm{OASC} ; \mathrm{z}=0 ; \bar{n}=-\bar{k}, \mathrm{ds}=\mathrm{dxdy}$;
$0 \leq x \leq a, 0 \leq y \leq a$
F. $\bar{n}=-z=0$ since $z=0$
$\int_{S_{4}} \int_{\bar{F}} \bar{n} d S=0 \ldots$
(v) For $S_{5}=\operatorname{PSCR} ; \mathrm{y}=\mathrm{a} ; \bar{n}=\bar{\jmath}, \mathrm{ds}=\mathrm{dzdx}$;
$0 \leq x \leq a, 0 \leq z \leq a$
$\bar{F} \cdot \bar{n}=-2 x^{2} y=-2 a x^{2}$ since $y=a$
$\int_{S_{s}} \int \bar{F} \cdot \bar{n} d S=\int_{z=0}^{\infty} \int_{z=0}^{\infty}\left(-2 a x^{2}\right) d z d x$
$\int_{x=0}^{a}\left(-2 a x^{2} z\right)_{z=0}^{a} d x$
$=-2 a^{2}\left(\frac{x^{3}}{3}\right)_{0}^{a}=\frac{-2 a^{5}}{3} \ldots$
(vi) For $\mathrm{S}_{6}=$ OBQA; $\mathrm{y}=0 ; \bar{n}=-\bar{\jmath}, \mathrm{ds}=\mathrm{dzdx}$;
$0 \leq x \leq a, 0 \leq y \leq a$
$\bar{F} \cdot \bar{n}=2 x^{2} y=0$ since $y=0$
$\iint_{S_{E}} \bar{F} \cdot \bar{n} d S=0$

$$
\begin{aligned}
& \int_{S} \int_{S^{2}} \bar{F} \cdot \bar{n} d S=\int_{S_{1}} \int+\int_{S_{2}} \int+\int_{S_{\mathrm{s}}} \int+\int_{S_{4}} \int+\int_{S_{5}} \int+\int_{S_{6}} \int \\
& =a^{5}-\frac{a^{4}}{4}-\frac{a^{4}}{4}+a^{3}+0-\frac{2 a^{5}}{3}+0 \\
& =\frac{a^{5}}{3}+a^{3}=\iiint \sqrt{V} \cdot \bar{F} d v u \sin g(1)
\end{aligned}
$$

Hence Gauss Divergence theorem is verified

2.Compute $\int\left(a x^{2}+b y^{2}+c z^{2}\right) d S$ over the surface of the sphere $x^{2}+y^{2}+z^{2}=1$

Sol: By divergence theorem $\int_{5} \bar{F} \cdot \bar{n} d S=\int_{V} \bar{V} \cdot \bar{F} d v$
Given $\bar{F} \cdot \bar{n}=a x^{2}+b y^{2}+c z^{2} \cdot \operatorname{Let} \phi=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-1$
\therefore Normal vector \bar{n} to the surface ϕ is
$V \phi=\left(i \frac{\partial}{\partial x}+j \frac{\partial}{\partial y}+k \frac{\partial}{\partial y}\right)^{2}\left(x^{2}+y^{2}+z^{2}-1\right)=2(x i-+y j+z k)$
\therefore Unit normalvector $=\bar{n}=\frac{2(x \bar{i}+y \bar{j}+z \bar{k})}{2 \sqrt{x^{2}+y^{2}+z^{2}}}=x \bar{i}+y \bar{j}+z \bar{k} \quad$ Since $x^{2}+y^{2}+z^{2}=1$
$\therefore \bar{F} \cdot \bar{n}=\bar{F} \cdot(x \bar{i}+y \bar{j}+z \bar{k})=\left(a x^{2}+b y^{2}+c z^{2}\right)=(a x \bar{i}+b y \bar{j}+c z \bar{k}) \cdot(x \bar{i}+y \bar{j}+z \bar{k})$
i.e., $\bar{F}=a \bar{x} \bar{i}+b \bar{y} j+c \bar{z} k \nabla . \bar{F}=a+b+c$

Hence by Gauss Divergence theorem,
$\int_{S}\left(a x^{2}+b y^{2}+c z^{2}\right) d S=\int_{V}(a+b+c) d v=(a+b+c) V=\frac{4 \pi}{3}(a+b+c)$
[SInce $V=\frac{4 \pi}{3}$ is the volume of the sphere of wnit radius]
3)By transforming into triple integral, evaluate $\iint x^{3} d y d z+x^{2} y d z d x+x^{2} d x d y$ where S is the closed surface consisting of the cylinder $x^{2}+y^{2}=a^{2}$ and the circular discs $z=0$, $\mathrm{z}=\mathrm{b}$.
Sol: Here $F_{1}=x^{3}{ }_{,} F_{2}=x^{2} y_{,} F_{3}=x^{2} z$ and $\bar{F}=F_{1} \bar{\imath}+F_{2} \bar{\jmath}+F_{3} \bar{k}$
$\frac{\partial F_{1}}{\partial x}=3 x^{2}, \frac{\partial F_{2}}{\partial y}=x^{2}, \frac{\partial F_{3}}{\partial z}=x^{2}$
$\nabla \cdot F=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}=3 x^{2}+x^{2}+x^{2}=5 x^{2}$

By Gauss Divergence theorem,

$\therefore \iint_{s}\left(x^{3} d y d z+x^{2} y d z d x+x^{2} z d x d y=\iiint 5 x^{2} d x d y d z\right.$
$=5 \int_{-a}^{a} \int_{y=-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}}-x^{2}} \int_{=0}^{b} x^{2} d x d y d z$
$=20 \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \int_{z=0}^{b} x^{2} d x d y d z$ [Integrand is even function]
$=20 \int_{0}^{a \sqrt{a^{2}-x^{2}}} \int_{0}^{2} x^{2}(z)_{0}^{b} d x d y=20 b \int_{x=0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} x^{2} d x d y$
$=20 b \int_{x=0}^{a} x^{2}(y)_{0}^{\sqrt{a^{x}-x^{x}}} d x=20 b \int_{0}^{a} x^{2} \sqrt{a^{2}-x^{2}} d x$
$=20 b \int_{0}^{\frac{\pi}{2}} a^{2} \sin ^{2} \theta \sqrt{a^{2}-a^{2} \sin ^{2} \theta}(a \cos \theta d \theta)$
[Put $x=a \sin \theta \Rightarrow d x=a \cos \theta d \theta$ when $x=a \Rightarrow \theta=\frac{\pi}{2}$ and $x=0 \Rightarrow \theta=0$]
$=20 a^{4} b \int_{0}^{\frac{\pi}{2}} \sin ^{2} \theta \cos ^{2} \theta d \theta=5 a^{4} b \int_{0}^{\frac{\pi}{2}}(2 \sin \theta \cos \theta)^{2} d \theta=5 a^{4} b \int_{0}^{\frac{\pi}{2}} \frac{1-\cos 4 \theta}{2} d \theta$
$=\frac{5 a^{4} b}{2}\left[\theta-\frac{\sin 4 \theta}{4}\right]_{0}^{\pi / 2}=\frac{5 a^{4} b}{2}\left[\frac{\pi}{2}\right]=\frac{5}{4} \pi a^{4} b$

4: Applying Gauss divergence theorem, Prove that $\int \bar{r} \cdot \bar{n} d S=3 V$ or $\int \bar{r} \cdot d \bar{s}=3 V$
Sol: Let $\bar{r}=x \bar{x}+y \bar{j}+z \bar{k}$ we know that $\operatorname{div} \bar{r}=3$
By Gauss divergence theorem, $\int \bar{F} \cdot \overline{-} d S=\int_{v} d i v \bar{F} d v$
Take $\bar{F}=\bar{r}=>\int_{S} \bar{r} \cdot \bar{n} d S=\int_{V} 3 d V=3 V$. Hence the result

5: Show that $\int_{S}(a x \bar{l}+b y \bar{J}+c z \bar{k}) \cdot \bar{n} d S=\frac{4 \pi}{3}(a+b+c)$, where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=1$.
Sol: Take $\bar{F}=a x \bar{\imath}+b y \bar{\jmath}+c z \bar{k}$
$\operatorname{divF}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}=a+b+c$
By Gauss divergence theorem,
$\int_{S} \bar{F} \cdot \bar{n} d S=\int_{V} \bar{V} \cdot \bar{F} d V=(a+b+c) \int_{V} d V=(a+b+c) V$
We have $V=\frac{4}{3} \pi r^{3}$ for the sphere. Herer $=1$
$\therefore \int_{s} F \cdot \bar{n} d S=(a+b+c) \frac{4 \pi}{3}$
6: Using Divergence theorem, evaluate
$\iint_{S}(x d y d z+y d z d x+z d x d y)$, where $S: x^{2}+y^{2}+\mathrm{z}^{2}=\mathrm{a}^{2}$
Sol: We have by Gauss divergence theorem, $\int_{S}^{\bar{F}} \bar{F} n d S=\int_{V} d i v \bar{F} d v$
L.H.S can be written as $\int\left(F_{1} d y d z+F_{2} d z d x+F_{3} d x d y\right)$ in Cartesian form

Comparing with the given expression, we have $\mathrm{F}_{1}=\mathrm{x}, \mathrm{F}_{2}=\mathrm{y}, \mathrm{F}_{3}=\mathrm{z}$

Then $\operatorname{divF}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}=3$
$\therefore \int_{v} d i v \bar{F} d v=\int_{v} 3 d v=3 V$
Here V is the volume of the sphere with radius a.
$\therefore V=\frac{4}{3} \pi a^{3}$
Hence $\iint(x d y d z+y d z d x+z d x d y)=4 \pi a^{3}$
7: Apply divergence theorem to evaluate $\iint_{S}(x+z) d y d z+(y+z) d z d x+(x+y) d x d y \mathrm{~S}$ is the surface of the sphere $x^{2}+y^{2}+z^{2}=4$
Sol: Given $\iint_{s}(x+z) d y d z+(y+z) d z d x+(x+y) d x d y$
Here $\mathrm{F}_{1}=\mathrm{x}+\mathrm{z}, \mathrm{F}_{2}=\mathrm{y}+\mathrm{z}, \mathrm{F}_{3}=\mathrm{x}+\mathrm{y}$
$\frac{\partial F_{1}}{\partial x}=1, \frac{\partial F_{2}}{\partial y}=1, \frac{\partial F_{3}}{\partial z}=0$ and $\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}=1+1+0=2$
By Gauss Divergence theorem,
By Gauss Divergence theorem,
$\left.\iint_{s}^{F} F_{1} d y d z+F_{2} d z d x+F_{3} d x d y=\iiint \int_{V}^{(\underline{\partial x}}\binom{\partial F_{1}}{\left.\frac{\partial F_{2}}{}+\frac{\partial F_{3}}{}\right)} d x d y d z{ }^{\partial z}\right)$
$=\iiint 2 d x d y d z=2 \int_{W} d v=2 V$
$=2\left[\frac{4}{3} \pi(2)^{3}\right]=\frac{64 \pi}{3}$ [for the sphere, radius $\left.=2\right]$

8: Evaluate $\int_{S} \bar{F} . \bar{n} d s$, if $F=x y \bar{\imath}+z^{2} \bar{J}+2 y z \bar{k}$ over the tetrahedron bounded by $\mathrm{x}=0, \mathrm{y}=0$, $\mathrm{z}=0$ and the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=1$.
Sol: Given $\mathrm{F}=x y \bar{\imath}+z^{2} \bar{\jmath}+2 y z \bar{k}$, then div. $\mathrm{F}=\mathrm{y}+2 \mathrm{y}=3 \mathrm{y}$
$\therefore \int_{s}^{\bar{F}} \overline{-} n d S=\int_{v} d i v \bar{F} d v=\int_{x=0}^{1} \int_{y=0}^{1-x} \int_{z=0}^{1-x-y} 3 y d x d y d z$
$=3 \int_{x=0}^{1} \int_{y=0}^{1-x} y[z]_{0}^{1-x-y} d x d y=3 \int_{x=0}^{1} \int_{y=0}^{1-x} y(1-x-y) d x d y$
$=3 \int_{x=0}^{1}\left[\frac{y^{2}}{2}-\frac{x y^{2}}{2}-\frac{y^{3}}{3}\right]_{0}^{1-x} d x=3 \int_{0}^{1}\left[\frac{(1-x)^{2}}{2}-\frac{x(1-x)^{2}}{2}-\frac{(1-x)^{3}}{3}\right] d x$
$=3 \int_{0}^{1}\left[\frac{(1-x)^{3}}{2}-\frac{(1-x)^{3}}{3}\right] d x=3 \int_{0}^{1} \frac{(1-x)^{3}}{6} d x=\frac{3}{6}\left[\frac{-(1-x)^{4}}{4}\right]_{0}^{1}=\frac{1}{8}$
9: Use divergence theorem to evaluate $\iint_{S} \bar{F} . d \bar{S}$ where $\bar{F}=\mathrm{x}^{3} \mathrm{i}+\mathrm{y}^{3} \mathrm{j}+\mathrm{z}^{3} \mathrm{k}$ and S is the surface of the sphere $x^{2}+y^{2}+z^{2}=r^{2}$
Sol: We have
$\bar{V} \cdot \bar{F}=\frac{\partial}{\partial x}\left(x^{3}\right)+\frac{\partial}{\partial y}\left(\mathrm{y}^{3}\right)+\frac{\partial}{\partial z}\left(\mathrm{z}^{3}\right)=3\left(x^{2}+y^{2}+z^{2}\right)$
\therefore By divergence theorem,
$\bar{V} \cdot \bar{F} d V=\iint_{V} \int \bar{V} \cdot \bar{F} d V=\iiint_{v} 3\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$
$=3 \int_{r=0}^{a} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} r^{2}\left(r^{2} \sin \theta d r d \theta d \phi\right)$
[Changing into spherical polar coordinates $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta$]

$$
\begin{aligned}
& \iint_{S} \bar{F} \cdot d S=3 \int_{r=0}^{a} \int_{\theta=0}^{\pi} r^{4} \sin \theta\left[\int_{\phi=0}^{2 \pi} d \phi\right] d r d \theta \\
& =3 \int_{r=0}^{a} \int_{\theta=0}^{\pi} r^{4} \sin \theta(2 \pi-0) d r d \theta=6 \pi \int_{r=0}^{a} r^{4}\left|\int_{0}^{\pi} \sin \theta d \theta\right|_{0}^{\pi} d r \\
& =6 \pi \int_{r=0}^{a} r^{4}(-\cos \theta)_{0}^{\pi} d r=-6 \pi \int_{0}^{a} r^{4}(\cos \pi-\cos 0) d r \\
& =12 \pi \int_{0}^{a} r^{4} d r=12 \pi\left[\frac{r^{5}}{5}\right]_{0}^{\alpha}=\frac{12 \pi a^{5}}{5}
\end{aligned}
$$

10: Use divergence theorem to evaluate $\iint_{S} \bar{F} . \boldsymbol{d S}$ where $\bar{F}=\mathbf{4 x i}-\mathbf{2} \boldsymbol{y}^{2} \boldsymbol{j}+\boldsymbol{z}^{2} k$ and S is the surface bounded by the region $x^{2}+y^{2}=4, z=0$ and $z=3$.
Sol: We have
$\operatorname{div} \bar{F}=\nabla \cdot \bar{F}=\frac{\partial}{\partial x}(4 x)+\frac{\partial}{\partial y}\left(-2 y^{2}\right)+\frac{\partial}{\partial z}\left(\mathrm{z}^{2}\right)=4-4 y+2 z$

By divergence theorm,

$$
\begin{aligned}
& \iint_{S} \bar{F} \cdot d S=\iint_{V} \int \bar{V} \cdot \bar{F} d V \\
& =\int_{x=-2}^{2} \int_{y=-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{z=0}^{3}(4-4 y+2 z) d x d y d z \\
& =\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}}\left[(4-4 y) z+z^{2}\right]_{0}^{3} d x d y \\
& =\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}}[12(1-y)+9] d x d y \\
& =\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}}(21-12 y) d x d y \\
& =\int_{-2}^{2}\left[\int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} 21 d y-12 \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} y d y\right] d x \\
& =\int_{-2}^{2\lceil }\left|21 \times 2 \int_{0}^{\sqrt{4-x^{2}}} d y-12(0)\right| d x
\end{aligned}
$$

[Since the integrans in forst integral is even and in $2^{\text {nd }}$ integral it is on add function]
$=42 \int_{-2}^{2}(y)_{0}^{\sqrt{4-x^{2}}} d x$
$=42 \int_{-2}^{2} \sqrt{4-x^{2}} d x=42 \times 2 \int_{0}^{2} \sqrt{4-x^{2}} d x$
$=84\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2}$
$=84\left[0+2 \cdot \frac{\pi}{2}-0\right]=84 \pi$
11: Verify divergence theorem for $\overline{\boldsymbol{F}}=\boldsymbol{x}^{2} \boldsymbol{i}+\boldsymbol{y}^{2} \boldsymbol{j}+\boldsymbol{z}^{2} \boldsymbol{k}$ over the surface S of the solid cut off by the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{a}$ in the first octant.
Sol; By Gauss theorem, $\int_{s}^{\bar{F}} \overline{-} \cdot n d S=\int_{v} d i v \bar{F} d v$

Let $\phi=x+y+z-a$ be the given plane then

$\underline{\partial \phi}=1, \underline{\partial \phi}=1, \frac{\partial \phi}{\partial z}=1$
$\partial x \quad \partial y \quad \partial z$
$\therefore \operatorname{grad} \phi=\sum^{i} \frac{\partial \phi}{\partial x}=i+\vec{j}+\vec{k}$
Unit normal $=\frac{\operatorname{grad} \phi}{|\operatorname{grad} \phi|}=\frac{\bar{\imath}+\bar{\jmath}+\bar{k}}{\sqrt{3}}$
Let R be the projection of S on xy -plane
Then the equation of the given plane will be $x+y=a \Rightarrow y=a-x$
Also when $\mathrm{y}=0, \mathrm{x}=\mathrm{a}$

$$
\begin{aligned}
& \therefore \int_{s}^{\bar{F}} \bar{n} d S=\iint_{R} \frac{\bar{F} \cdot \bar{n} d x d y}{|\bar{n} \cdot \bar{k}|} \\
& =\int_{x=0}^{a} \int_{y=0}^{a-x} \frac{x^{2}+y^{2}+z^{2}}{\sqrt{3}} d x d y \\
& =\int_{0}^{a x} \int_{0}^{a-x}\left[2 x^{2}+2 y^{2}-2 a x+2 x y-2 a y+a^{2}\right] d x d y \\
& =\int_{y=0}^{a-x}\left[2 x^{2}+y^{2}+(a-x-y)^{2}\right] d x d y[\sin c e x+y+z=a] \\
& =\int_{x=0}^{a}\left[2 x^{2}(a-x)+\frac{2}{3}(a-x)^{2}+2 a x y-a y^{2}+a^{2} y\right]_{0}^{a-x} d x
\end{aligned}
$$

$$
\begin{equation*}
\therefore \int_{s} \overline{F . n} d S=\int_{0}^{a}\left(-\frac{5}{3} x^{3}+3 a x^{2}-2 a^{2} x+\frac{2}{3} a^{3}\right) d x=\frac{a^{4}}{4} \text {, on simplification. } \tag{1}
\end{equation*}
$$

Given $\bar{F}=x^{2} \bar{i}+y^{2} \bar{j}+z^{2} \bar{k}$
$\therefore \operatorname{div} \bar{F}=\frac{\partial}{\partial x}\left(x^{2}\right)+\frac{\partial}{\partial y}\left(y^{2}\right)+\frac{\partial}{\partial z}\left(z^{2}\right)=2(x+y+z)$
Now $\iiint d i v \bar{F} . d v=2 \int_{x=0}^{a} \int_{y=0}^{a-x} \int_{z=0}^{a-x-y}(x+y+z) d x d y d z$
$=2 \int_{\substack{a \\ \alpha=0}}^{a x=0, \infty} \int_{a-\infty}^{a-x}\left[z(x+y)+\frac{z^{2}}{2}\right]_{0}^{a-x-y} d x d y$
$=2 \int_{\substack{x=0 \\ a \\ a \\ a \\ a \\ a}}^{a x} \int_{0}^{a-x}(a-x-y)\left[x+y+\frac{a-x-y}{2}\right] d x d y$
$=\int_{x=0}^{a} \int_{y=0}^{\alpha-x}(a-x-y)[a+x+y] d x d y$
$=\int_{0}^{\infty} \int_{0}^{\alpha-x}\left[a^{2}-(x+y)^{2}\right] d y d x=\int_{0}^{\alpha a-x} \int_{0}^{\infty}\left(a^{2}-x^{2}-y^{2}-2 x y\right) d x d y$
$=\left.\int_{0}^{a}\left[a^{2} y-x^{2} y-\frac{y^{3}}{3}-x y^{2}\right]\right|_{0} ^{\alpha-x} d x$
$=\int_{0}^{a}(a-x)\left(2 a^{2}-x^{2}-a x\right) d x=\frac{a^{4}}{4} \ldots \ldots$
Hence from (1) and (2), the Gauss Divergence theorem is verified.
12. Verify divergence theorem for $2 \mathrm{x}^{2} \mathrm{y} \bar{i}-\mathrm{y}^{2} \bar{j}+4 \mathrm{xz} z^{2} \bar{k}$ taken over the region of first octant of the cylinder $\mathrm{y}^{2}+\mathrm{z}^{2}=9$ and $\mathrm{x}=2$.
(or) Evaluate $\iint_{s} \bar{F} \cdot n d S$, where $\bar{F}=2 \mathrm{x}^{2} \mathrm{y} \bar{i}-\mathrm{y}^{2} \bar{j}+4 \mathrm{xz}^{2} \bar{k}$ and S is the closed surface of the region in the first octant bounded by the cylinder $y^{2}+z^{2}=9$ and the planes $x=0, x=2, y=0, z=0$ Sol: Let $\bar{F}=2 \mathrm{x}^{2} \mathrm{y} \bar{i}-\mathrm{y}^{2} \bar{j}+4 \mathrm{xz}^{2} \bar{k}$
$\therefore \nabla . \bar{F}=\frac{\partial}{\partial x}\left(2 x^{2}\right)+\frac{\partial}{\partial y}\left(-y^{2}\right)+\frac{\partial}{\partial z}\left(4 x z^{2}\right)=4 x y-2 y+8 x z$

$$
\begin{aligned}
& \iint_{V} \int_{V} \bar{V} \cdot \bar{F} d v=\int_{x=0}^{2} \int_{y=0}^{3} \int_{z=0}^{\sqrt{9-y^{2}}}(4 x y-2 y+8 x z) d z d y d x \\
& =\int_{0}^{2} \int_{0}^{3}\left[(4 x y-2 y) z+8 x \frac{z^{2}}{2}\right]_{z=0}^{\sqrt{9-y^{2}}} d y d x \\
& =\int_{0}^{2} \int_{0}^{3}\left[(4 x y-2 y) \sqrt{9-y^{2}}+4 x\left(9-y^{2}\right)\right] d y d x \\
& =\int_{0}^{2} \int_{0}^{3}\left[(1-2 x)(-2 y) \sqrt{9-y^{2}}+4 x\left(9-y^{2}\right)\right] d y d x \\
& =\int_{0}^{2}\left\{\left[(1-2 x) \frac{\left(9-y^{2}\right)^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{3}+4 x\left(9 y-\frac{y^{3}}{3}\right)_{0}^{3}\right\} d x \\
& =\int_{0}^{2}\left\{\frac{2}{3}(1-2 x)[0-27]+4 x[27-9]\right\} d x=\int_{0}^{2}[-18(1-2 x)+72 x] d x \\
& \left.\Gamma-18\left(x-x^{2}\right)+72 \frac{x^{2}}{2}\right]_{0}^{2}=-18(2-4)+36(4)=36+144=180 \ldots(1) \\
& {[-1}
\end{aligned}
$$

Now we sall calculate $\int_{S} \bar{F} \cdot \bar{n} d s$ for all the five faces.

$$
\int_{s} \bar{F} \cdot \bar{n} d S=\int_{s_{1}} \bar{F} \cdot n d S+\int_{s_{2}} \bar{F} \cdot n d S+\ldots \ldots+\int_{s_{5}} \bar{F} \cdot \bar{n} d S
$$

Where S_{1} is the face OAB, S_{2} is the face CED, S_{3} is the face OBDE, S_{4} is the face OACE and S_{5} is the curved surface ABDC .
(i) On $S_{1}: x=0, \bar{n}=-i \therefore \bar{\therefore} \cdot \bar{n}=0$ Hence $\int_{s_{1}} \bar{F} . \bar{n} d S$
(ii) On $S_{2}: x=2, \bar{n}=i \therefore \bar{F} \cdot \bar{n}=8 y$
$\therefore \int_{s_{2}} \overline{F . n} d S=\int_{0}^{3} \sqrt{9} \int_{0}^{z^{-2}} 8 y d y d z=\int_{0}^{3} 8\left(\frac{y^{2}}{2}\right)_{0}^{\sqrt{9-z^{2}}} d z$
$=4 \int_{0}^{3}\left(9-z^{2}\right) d z=4\left(9 z-\frac{z^{3}}{3}\right)_{0}^{3}=4(27-9)=72$
(iii) On $S_{3}: y=0, \bar{n}=-j . \therefore \bar{F} . n=0$ Hence $\int_{s_{3}}^{\bar{F} . n d S}$
(iv)On $S_{4}: z=0, \bar{n}=-k . \quad \bar{F} \cdot \bar{n}=0 . \quad$ Hence $\int_{S_{4}} \bar{F} \cdot \bar{n} d s=0$
(v) On $S_{5}: y^{2}+z^{2}=9, \bar{n}=\frac{\nabla\left(y^{2}+z^{2}\right)}{\left|\nabla\left(y^{2}+z^{2}\right)\right|}=\frac{2 y \dot{j}+2 z k}{\sqrt{4 y^{2}+4 z^{2}}}=\frac{y \dot{j}+z k}{\sqrt{4 \times 9}}=\frac{y \dot{j}+z k}{3}$
$\bar{F} \cdot \bar{n}=\frac{-y^{3}+4 x z^{3}}{3}$ and $\overline{n \cdot k}=\frac{z}{3}=\frac{1}{3} \sqrt{9-y^{2}}$
Hence $\int_{S_{3}} \bar{F} \cdot \bar{n} d s=\iint_{R} \bar{F} \cdot \bar{n} \frac{d x a y}{\|\bar{n} \bar{k}\|}$ Where R is the projection of S_{5} on $x y$ - plane.
$=\int_{R} \int \frac{4 x z^{3}-y^{3}}{\sqrt{9-y^{2}}} d x d y=\int_{x=0}^{2} \int_{y=0}^{3}\left[4 x\left(9-y^{2}\right)-y^{3}\left(9-y^{2}\right)^{-\frac{1}{2}}\right] d y d x$
$=\int_{0}^{2} 72 x d x-18 \int_{0}^{2} d x=72\left(\frac{x^{2}}{2}\right)_{0}^{2}-18(x)_{0}^{2}=144-36=108$
Thus $\int_{S} \bar{F} \cdot \bar{n} d s=0+72+0+0+108=180$
Hence the Divergence theorem is verified from the equality of (1) and (2).

13: Use Divergence theorem to evaluate $\iint\left(x i+y \bar{j}+z^{2} k\right) \cdot \bar{n} d s$. Where S is the surface bounded by the cone $x^{2}+y^{2}=z^{2}$ in the plane $z=4$.
Sol: Given $\iint\left(x \bar{\imath}+y \bar{J}+z^{2} \bar{k}\right) \cdot \bar{n} . d s$ Where S is the surface bounded by the cone $x^{2}+y^{2}=z^{2}$
in the plane $\mathrm{z}=4$.
Let $\bar{F}=x \bar{\imath}+y \bar{\jmath}+z^{2} \bar{k}$
By Gauss Divergence theorem, we have
$\iint\left(x \bar{\imath}+y \bar{\jmath}+z^{2} \bar{k}\right) \cdot \bar{n} \cdot d s=\iiint_{W} \bar{V} \cdot \bar{F} d v$
Now $\nabla \cdot \bar{F}=\frac{\partial}{\partial x}(x)+\frac{\partial}{\partial y}(y)+\frac{\partial}{\partial z}\left(z^{2}\right)=1+1+2 z=2(1+z)$

On the cone, $x^{2}+y^{2}=z^{2}$ and $z=4 \Rightarrow x^{2}+y^{2}=16$
The limits are $z=0$ to $4, y=o$ to $\sqrt{16-x^{2}}, x=0$ to 4 .
 [putx $=4 \sin \theta \Rightarrow d x=4 \cos \theta d \theta$. Also $x=0 \Rightarrow \theta=0$ and $x=4 \Rightarrow \theta=\frac{\pi}{2}$]
$\therefore \iiint_{V} \nabla \cdot \bar{F} d v=96 \times 4 \int_{0}^{\frac{\pi}{2}-} 4 \sqrt{1-\sin ^{2} \theta} \cos \theta d \theta=96 \times 4 \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta$
$\iiint_{V} \bar{V} \cdot \bar{F} d v=96 X 4 \int_{0}^{\frac{\pi}{2}} 4 \sqrt{1-\sin ^{2} \theta} \cos \theta d \theta=96 X 4 \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta$
$=96 \times 4 \int_{0}^{\frac{\pi}{2}} \frac{1+\cos 2 \theta}{2} d \theta=96 \times 4 \int_{0}^{\frac{\pi}{2}}\left[\frac{1}{2}+\frac{\cos 2 \theta}{2}\right] d \theta$
$=384\left[\frac{1}{2} \theta+\frac{1}{2} \frac{\sin 2 \theta}{2}\right]_{0}^{\frac{\pi}{2}}=96 \pi$

14: Use Gauss Divergence theorem to evaluate $\iint_{S}\left(y z^{2} \overline{\bar{z}}+z x^{2} \bar{J}+2 z^{2} \bar{k}\right) \cdot d s$, where S
is the closed surface bounded by the $x y$-plane and the upper half of the sphere
$x^{2}+y^{2}+z^{2}=a^{2}$
above this plane.
Sol: Divergence theorem states that
$\iint_{S} \bar{F} \cdot d s=\iint_{V} \int \bar{V} \cdot \bar{F} d v$

Here $\nabla \cdot \bar{F}=\frac{\partial}{\partial x}\left(y z^{2}\right)+\frac{\partial}{\partial y}\left(z x^{2}\right)+\frac{\partial}{\partial z}\left(2 z^{2}\right)=4 z$
$\therefore \iint_{s} \bar{F} \cdot d s=\iiint_{V} 4 z d x d y d z$
Introducing spherical polar coordinates $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi$,
$z=r \cos \theta$ then $d x d y d z=r^{2} d r d \theta d \phi$
$\therefore \iint_{s} \bar{F} \cdot d s=4 \int_{r=0}^{a} \int_{=0}^{\pi} \int_{\phi=0}^{2 \pi}(r \cos \theta)\left(r^{2} \sin \theta d r d \theta d \phi\right)$
$=4 \int_{r=0}^{a} \int_{\theta=0}^{\pi} r^{3} \sin \theta \cos \theta\left[\int_{\phi=0}^{2 \pi} d \phi\right] d r d \theta$
$=4 . \int_{r=0}^{a} \int_{\theta=0}^{\pi /} r^{3} \sin \theta \cos \theta(2 \pi-0) d r d \theta$
$=4 \pi \int_{r=0}^{a} r^{3}\left[\int_{0}^{\pi} \sin 2 \theta d \theta\right] d r=4 \pi \int_{r=0}^{a} r^{3}\left(-\frac{\cos 2 \theta}{2}\right)_{0}^{\pi} d r$
$=(-2 \pi) \int_{0}^{\alpha} r^{3}(1-1) d r=0$

15: Verify Gauss divergence theorem for $\bar{F}=x^{3} \overline{\boldsymbol{\imath}}+y^{3} \bar{J}+z^{3} \bar{k}$ taken over the cube bounded by
$\mathrm{x}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=0, \mathrm{y}=\mathrm{a}, \mathrm{z}=0, \mathrm{z}=\mathrm{a}$.
Sol: We have $\bar{F}=x^{3} \bar{l}+y^{3} \bar{\jmath}+z^{3} \bar{k}$
$\nabla \cdot \bar{F}=\frac{\partial}{\partial x}\left(x^{3}\right)+\frac{\partial}{\partial y}\left(y^{3}\right)+\frac{\partial}{\partial z}\left(z^{3}\right)=3 x^{2}+3 y^{2}+3 z^{2}$
$\iint_{V} \int \bar{V} \cdot \bar{F} d v=\iint_{V} \int\left(3 x^{2}+3 y^{2}+3 z^{2}\right) d x d y d z$
$=3 \int_{z=0}^{a} \int_{y=0}^{a} \int_{x=0}^{a}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$
$=3 \int_{z=0}^{a} \int_{y=0}^{a}\left(\frac{x^{3}}{3}+x y^{2}+z^{2} x\right)_{0}^{a} d y d z$
$=3 \int_{z=0}^{a} \int_{y=0}^{a}\left(\frac{a^{3}}{a}+a y^{2}+a z^{2}\right) d y d z$
$=3 \int_{z=0}^{a}\left(\frac{a^{3}}{3} y+a \frac{y^{3}}{3}+a z^{2} y\right)_{0}^{a} d z$
$=3 \int_{0}^{a}\left(\frac{a^{4}}{3}+\frac{a^{4}}{3}+a^{2} z^{2}\right) d z=3 \int_{0}^{a_{0}}\left(\frac{2}{3} a^{4}+a^{2} z^{2}\right) d z$
$=3\left(\frac{2}{3} a^{4} z+a^{2} \cdot \frac{z^{3}}{3}\right)_{0}^{a}=3\left(\frac{2}{3} a^{5}+\frac{1}{3} a^{5}\right)$
$=3 a^{5}$
To evaluate the surface integral divide the closed surface S of the cube into 6 parts.
i.e., $\quad S_{1}$: The face DEFA $; S_{4}$: The face OBDC
S_{2} : The face AGCO ; S_{5} : The face GCDE
S_{3} : The face AGEF ; S_{6} : The face AFBO
$\iint_{s} \bar{F} \cdot \bar{n} d s=\iint_{S_{1}} \bar{F} \cdot \bar{n} d s+\iint_{S_{2}} \bar{F} \cdot \bar{n} d s+\cdots+\iint_{S_{0}} \bar{F} \cdot \bar{n} d s$

On S_{1}, we have $\bar{n}=\bar{l}_{1} x=a$
$\therefore \int_{s_{1}} \bar{F} \overline{-} . n d s=\int_{z=0}^{a} \int_{y=0}^{a}\left(a^{3} \bar{i}+y^{3} \bar{j}+z^{3} \bar{k}\right) \cdot \overline{i d y d z}$
$\iint_{s_{1}} \bar{F} \cdot \bar{n} d s=\int_{z=0}^{a} \int_{y=0}^{a}\left(a^{3} \bar{\imath}+y^{3} \bar{\jmath}+z^{3} \bar{k}\right) \cdot \overline{\bar{l}} d y d z$
$=\int_{z=0}^{a} \int_{y=0}^{a} a^{3} d y d z=a^{3} \int_{0}^{a}(y)_{0}^{a} d z$
$=a^{4}(z)_{0}^{a}=a^{5}$
On S_{2}, we have $\bar{n}=-\bar{l}, x=0$
$\int_{s_{2}} \int_{\bar{F}}^{\bar{F}} \overline{-} n d s=\int_{z=0}^{a} \int_{y=0}^{a}\left(y^{\overline{3}} j+z^{3} k\right) \cdot(-i) d y d z=0$
On S_{3}, we have $\bar{n}=\bar{\jmath}, y=a$
$\int_{s_{3}} \int_{\bar{F}} \overline{-} \cdot \overline{n d s}=\int_{z=0}^{a} \int_{x=0}^{a}\left(x^{3} \bar{i}+a^{3} \bar{j}+z^{3} \bar{k}\right) \cdot \bar{j} d x d z=a^{3} \int_{z=0}^{a} \int_{x=0}^{a} d x d z=a^{3} \int_{0}^{a} a d z=a^{4}(z)_{0}^{a}$
$=a^{5}$

$$
\text { On } S_{4} \text {, we have } \bar{n}=-\bar{j}_{y} y=0
$$

$\int_{S_{a}} \int_{z=0} \bar{F} \cdot \bar{n} d s=\int_{z=0}^{a} \int_{z=0}^{a}\left(x^{3} \bar{\imath}+z^{3} \bar{k}\right) \cdot(-\bar{\jmath}) d x d z=0$
On S_{5}, we have $\bar{n}=\bar{k}_{y} z=a$
$\int_{s_{s}} \int_{\bar{s}} \bar{F} d s=\int_{y=0}^{a} \int_{x=0}^{a}\left(x^{3} \bar{\imath}+y^{3} \bar{\jmath}+a^{3} \bar{k}\right) \cdot \bar{k} d x d y$
$=\int_{y=0}^{a} \int_{x=0}^{a} a^{3} d x d y=a^{3} \int_{0}^{a}(x)_{0}^{a} d y=a^{4}(y)_{0}^{a}=a^{5}$
On S_{6}, we have $\bar{n}=-\bar{k}_{y} z=0$
$\int_{s_{0}} \int_{\bar{\sigma}} \bar{F} \cdot \bar{n} d s=\int_{y=0}^{a} \int_{x=0}^{a}\left(x^{3} \bar{l}+y^{3} \bar{\jmath}\right) \cdot(-\bar{k}) d x d y=0$
Thus $\int_{S} \int_{S} \bar{F} \cdot \bar{n} d s=a^{5}+0+a^{5}+0+a^{5}+0=3 a^{5}$
Hence $\int_{S} \int_{V} \bar{F} \cdot \bar{n} d s=\iint_{V} \bar{V} \cdot \bar{F} d v$
\therefore The Gauss divergence theorem is verified.

Assignment

1. Evaluate $\iint_{a} x d y d z+y d z d x+z d x d y$ over $x^{2}+y^{2}+z^{2}=1$
2. Compute $\iint\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}\right)^{\frac{1}{z}} d S$ over the ellipsoid $a x^{2}+b y^{2}+c z^{2}=1$
(Hint: Volume of the ellipsoid, $\mathrm{V}=\frac{4 \pi}{3 \sqrt{a b z}}$)
3. Find $\int_{s} \bar{F}$. $\bar{n} d S$ where $\bar{F}=2 x^{2} \bar{l}-y^{2} \bar{\jmath}+4 \mathrm{xz} \bar{k}$ and S is the region in the first octant bounded by $y^{2}+z^{2}=9$ and $\mathrm{x}=0, \mathrm{x}=2$.
4. Find $\int_{s}\left(4 . x \bar{i}-2 y^{2} \bar{j}+z^{2} k\right) . \bar{n} d S$ Where S Is the region bounded by $x^{2}+y^{2}=4, \mathrm{z}=0$ and $\mathrm{z}=3$.
5. Verify divergence theorem for $\mathrm{F}=6 \mathrm{z} \bar{i}+(2 \mathrm{x}+\mathrm{y}) \bar{j}-\mathrm{x} \bar{k}$, taken over the region bounded by the surface of the cylinder $x^{2}+y^{2}=9$ included in $\mathrm{z}=0, \mathrm{z}=8, \mathrm{x}=0$ and $\mathrm{y}=0 . \quad[\mathrm{JNTU} 2007 \mathrm{~S}($ Set No.2)]

II. GREEN'S THEOREM IN A PLANE

(Transformation Between Line Integral and Surface Integral) [JNTU 2001S].

If S is Closed region in xy plane bounded by a simple closed curve C and if M and N are continuous functions of x and y having continuous derivatives in R , then
$\left.\int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \right\rvert\, d x d y$.
Where C is traversed in the positive(anti clock-wise) direction

SOLVED PROBLEMS
Verify Green's theorem in plane for $\oint\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the region bounded by $\mathrm{y}=\sqrt{x}$ and $\mathrm{y}=x^{2}$.

Solution: Let $\mathrm{M}=3 x^{2}-8 y^{2}$ and $\mathrm{N}=4 \mathrm{y}-6 \mathrm{xy}$. Then
$\frac{\partial M}{\partial y}=-16 y, \frac{\partial N}{\partial x}=-6 y$

We have by Green's theorem,
$\int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$.
Now $\iint_{R}\left(\begin{array}{l}\partial N-\frac{\partial M}{\partial x}-\frac{\partial y}{\partial y}\end{array}\right) d x d y=\iint_{R}(16 y-6 y) d x d y$

$$
\begin{aligned}
& =10 \iint_{R} y d x d y=10 \int_{x=0}^{1} \int_{y=x^{2}}^{\sqrt{x}} y d y d x=10 \int_{x=0}^{1}\left(\left.\frac{y^{2}}{2}\right|_{x 2} ^{\sqrt{x}} d x\right. \\
& =5 \int_{0}^{1}\left(x-x^{4}\right) d x=5\left(\frac{x^{2}}{2}-\frac{x^{5}}{5}\right)_{0}^{1}=5\left(\frac{1}{2}-\frac{1}{5}\right)=\frac{3}{2}
\end{aligned}
$$

....(1)
Verification:
We can write the line integral along c
$=\left[\right.$ line integral along $\mathrm{y}=x^{2}($ from O to A$)+\left[\right.$ line integral along $y^{2}=\mathrm{x}($ from A to O$\left.)\right]$ $=I_{1}+I_{2}$ (say)
Now $\quad I_{1}=\int_{x=0}^{1}\left\{\left[3 x^{2}-8\left(x^{2}\right)^{2}\right] d x+\left[4 x^{2}-6 x\left(x^{2}\right)\right] 2 x d x\right\}\left[\because y=x^{2} \Rightarrow \frac{d y}{d x}=2 x\right]$

And

$$
\begin{aligned}
& =\int_{0}^{1}\left(3 x^{3}+8 x^{3}-20 x^{4}\right) d x=-1
\end{aligned}
$$

$\therefore I_{1}+I_{2=-1+5 / 2=3 / 2}$.
From(1) and (2), we have $\int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$.
Hence the verification of the Green's theorem.

2: Evaluate by Green's theorem $\int_{c}(y-\sin x) d x+\cos x d y$ where C is the triangle enclosed by the lines $\mathrm{y}=0, \mathrm{x}=\frac{\pi}{2}, \pi y=2 x$.
Solution: Let $\mathrm{M}=\mathrm{y}-\sin x$ and $N=\cos x$ Then
$\frac{\partial M}{\partial y}=1$ and $\quad \frac{\partial N}{\partial x}=-\sin x$
\therefore By Green's theorem $\left.\int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \right\rvert\, d x d y$.

$$
\begin{aligned}
& \Rightarrow \int_{c}(y-\sin x) d x+\cos x d y=\iint_{R}(-1-\sin x) d x d y \\
& =-\int_{x=0}^{\pi / 2} \int_{y=0}^{\pi x}(1+\sin x) d x d y \\
& =-\int_{x=0}^{\pi / 2}(\sin x+1)[y]_{0}^{2 x / \pi} d x \\
& =\frac{-2}{\pi} \int_{x=0}^{\pi / 2} x(\sin x+1) d x \\
& =\frac{-2}{\pi}[x(-\cos x+x)]_{0}^{\pi}-\int_{0}^{\pi / 2} 1(-\cos x+x) d x \\
& =\frac{-2}{\pi}\left[x(-\cos x+x)+\sin x-\frac{x^{2}}{2}\right]_{0}^{\pi / 2} \\
& = \\
& \frac{-2}{\pi}\left[-x \cos x+\frac{x^{2}}{2}+\sin x\right]_{0}^{\pi / 2}=\frac{-2}{\pi}\left[\frac{\pi^{2}}{8}+1\right]=-\left(\frac{\pi}{4}+\frac{2}{\pi}\right)
\end{aligned}
$$

3: Evaluate by Green's theorem for $\oint_{0}\left(x^{2}-\cosh y\right) d x+(y+\sin x) d y$ where C is the rectangle with vertices $(0,0),(\pi, 0),(\pi, 1),(0,1)$.
Solution: Let $\mathrm{M}=x^{2}-\cosh y_{s} N=y+\sin x$

$$
\therefore \frac{\partial M}{\partial y}=-\sinh y \text { and } \frac{\partial W}{\partial x}=\cos x
$$

By Green's theorem,

$$
\begin{aligned}
& \text { By Green's theorem, } \left.\quad \int_{C} M d x+N d y=\iint_{R} \frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y \\
& \begin{array}{r}
\Rightarrow \int_{c}\left(x^{2}-\cosh y\right) d x+(y+\sin x) d y=\int_{R} \int_{0}(\cos x+\sinh y) d x d y \\
\left.\Rightarrow \oint_{c}\left(x^{2}-\cosh y\right) d x+G+\sin x\right) d y=\int_{a} \int(\cos x+\sinh
\end{array}
\end{aligned}
$$

$=\int_{x=0}^{\pi} \int_{y=0}^{1}(\cos x+\sinh y) d y d x=\int_{x=0}^{\pi}(y \cos x+\cosh y)_{0}^{1} d x$

$$
\begin{aligned}
& =\int_{x=0}^{\pi}(\cos x+\cosh 1-1) d x \\
& =\pi(\cosh 1-1)
\end{aligned}
$$

4: A Vector field is given by $\bar{F}=(\sin y) \bar{i}+x(1+\cos y) \bar{j}$
Evaluate the line integral over the circular path $x^{2}+y^{2}=a^{2}, \mathrm{z}=0$
(i) Directly (ii) By using Green's theorem

Solution: (i) Using the line integral

$$
\begin{aligned}
\oint_{c} \bar{F} \cdot d \bar{r}= & \oint_{c} F_{1} d x+F_{2} d y=\oint_{c} \sin y d x+x(1+\cos y) d y \\
& =\prod_{c} \sin y d x+x \cos y d y+x d y=\prod_{c} d(x \sin y)+x d y
\end{aligned}
$$

Given Circle is $x^{2}+y^{2}=a^{2}$. Take $\mathrm{x}=\mathrm{a} \cos \theta$ and $\mathrm{y}=\mathrm{a} \sin \theta$ so that $\mathrm{dx}=-\mathrm{a} \sin \theta d \theta$ and $\mathrm{dy}=\mathrm{a} \cos \theta \mathrm{d} \theta$ and $\theta=0 \rightarrow 2 \pi$
$\therefore \oint \bar{F} \cdot d \bar{r}=\int_{0}^{2 \pi} d[a \cos \theta \sin (a \sin \theta)]+\int_{0}^{2 \pi} a(\cos \theta) a \cos \theta d \theta$

$$
\begin{aligned}
& =[a \cos \theta \sin (a \sin \theta)]_{0}^{2 x}+4 a^{2} \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta \\
& =0+4 a^{2} \cdot \frac{1}{2} \cdot \frac{\pi}{2}=\pi a^{2}
\end{aligned}
$$

(ii) Using Green's theorem

Let $\mathrm{M}=\sin y$ and $\mathrm{N}=\mathrm{x}(1+\cos y)$. Then
$\frac{\partial M}{\partial y}=\cos y$ and $\quad \frac{\partial N}{\partial x}=(1+\cos y)$
By Green's theorem,

$$
\begin{aligned}
& \iint_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y \\
& \therefore \int_{c} \sin y d x+x(1+\cos y) d y=\iint_{R}(-\cos y+1+\cos y) d x d y=\iint_{R} d x d y \\
& \qquad=\int_{R} \int_{R} d A=A=\pi a^{2}\left(\because \text { area of circle }=\pi a^{2}\right)
\end{aligned}
$$

We observe that the values obtained in (i) and (ii) are same to that Green's theorem is verified.

Show that area bounded by a simple closed curve C is given by $\frac{1}{2} \oint x d y-y d x$ and hence find the area of
(i)The ellipse $\mathrm{x}=a \cos \theta, y=b \sin \theta$ (i.e) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(ii)The Circle $\mathrm{x}=\mathrm{a} \cos \theta, y=\operatorname{asin} \theta$ (i.e) $x^{2}+y^{2}=a^{2}$
Solution: We have by Green's theorem

$$
\int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

Here $\mathrm{M}=-\mathrm{y}$ and $\mathrm{N}=\mathrm{x}$ so that $\frac{\partial \mathrm{M}}{\partial y}=-1$ and $\frac{\partial \mathrm{\partial}}{\partial x}=1$
$\prod_{c} x d y-y d x=2 \int_{R} d x d y=2 A$ where A is the area of the surface.
$\therefore \frac{1}{2} \int x d y-y d x=A$
(i) For the ellipse $x=a \cos \theta$ and $y=b \sin \theta$ and $\theta=0 \rightarrow 2 \pi$
\therefore Area, $A=\frac{1}{2} \Phi x d y-y d x=\frac{1}{2} \int_{0}^{2 \pi}[(a \cos \theta)(b \cos \theta)-(b \sin \theta(-a \sin \theta))] d \theta$

$$
=\frac{1}{2} a b \int_{0}^{2 \pi}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) d \theta=\frac{1}{2} a b(\theta)_{0}^{2 \pi}=\frac{a b}{2}(2 \pi-0)=\pi a b
$$

(ii) Put $\mathrm{a}=\mathrm{b}$ to get area of the circle $\mathrm{A}=\pi a^{2}$

6: Verify Green's theorem for $\int_{c}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right]$, where C is bounded by $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=x^{2}$
Solution:By Green's theorem, we have

$$
\int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

Here $\mathrm{M}=\mathrm{xy}+\mathrm{y}^{2}$ and $\mathrm{N}=x^{2}$

The line $\mathrm{y}=\mathrm{x}$ and the parabola $\mathrm{y}=x^{2}$ intersect at $\mathrm{O}(0,0)$ and $\mathrm{A}(1,1)$
Now $\prod_{c} M d x+N d y=\int_{c_{1}} M d x+N d y+\int_{c_{2}} M d x+N d y \ldots \ldots$ (1)
Along C_{1} (i.e. $y=x^{2}$), the line integral is
$\int_{c_{1}} M d x+N d y=\int_{c_{1}}\left[x\left(x^{2}\right)+x^{4}\right] d x+x^{2} d\left(x^{2}\right) \int_{c}\left(x^{3}+x^{4}+2 x^{3}\right) d x=\int_{0}\left(3 x^{3}+x^{4}\right) d x$
$=\left(3 \cdot \frac{x^{4}}{4}+\frac{x^{5}}{5}\right)_{0}^{1}=\frac{3}{4}+\frac{1}{5}=\frac{19}{20}$

Along $C_{2}($ i.e. $y=x)$ from $(1,1)$ to $(0,0)$, the line integral is

$$
\begin{align*}
& \int_{c_{2}} M d x+N d y=\int_{c_{2}}\left(x \cdot x+x^{2}\right) d x+x^{2} d x[\because d y=d x] \\
&=\int_{e_{2}} 3 x^{2} d x=3 \int_{1}^{0} x^{2} d x=3\left(\frac{x^{3}}{3}\right)_{1}^{0}=\left(x^{3}\right)_{1}^{0}=0-1=-1 \tag{3}
\end{align*}
$$

From (1), (2) and (3), we have
$\int_{0} M d x+N d y=\frac{19}{20}-1=\frac{-1}{20}$

Now

$$
\begin{align*}
& \iint_{R}\left(\left.\frac{\partial N}{\partial x}-\frac{\partial M)}{\partial y} \right\rvert\, d x d y=\iint_{R}(2 x-x-2 y) d x d y\right. \\
& =\int_{0}^{1}\left[\left(x^{2}-x^{2}\right)-\left(x^{3}-x^{4}\right)\right] d x=\int_{0}^{1}\left(x^{4}-x^{3}\right) d x \\
& =\left(\frac{x^{5}}{5}+\frac{x^{4}}{4}\right)_{0}^{1}=\frac{1}{5}-\frac{1}{4}=\frac{-1}{20} \tag{5}
\end{align*}
$$

From (4) and(5), We have $\int_{c} M d x+N d y=\left.\iint_{R}^{(}\right|_{\partial x} ^{\partial N}\binom{\partial M}{\partial x}$ dxdy
Hence the verification of the Green's theorem.

7: Using Green's theorem evaluate $\int_{0}\left(2 x y-x^{2}\right) d x+\left(x^{2}+y^{2}\right) d y_{x}$ Where "C" is the closed curve of the region bounded by $\mathrm{y}=x^{2}$ and $y^{2}=x$

Solution:

The two parabolas $y^{2}=x$ and $y=x^{2}$ are intersecting at $\mathrm{O}(0,0)$, and $\mathrm{P}(1,1)$
Here $\mathrm{M}=2 \mathrm{xy}-x^{2}$ and $\mathrm{N}=x^{2}+y^{2}$
$\therefore \frac{\partial M}{\partial y}=2 x$ and $\frac{\partial N}{\partial x}=2 x$
Hence $\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}=2 x-2 x=0$
By Green's theorem $\int_{c} M d x+N d y=\iint_{R}\binom{\partial N}{(\partial x-\underline{\partial y})}_{\mathrm{dxdy}}$
i.e., $\int_{c}\left(2 x y-x^{2}\right) d x+\left(x^{2}+y^{2}\right) d y=\int_{x=0}^{1} \int_{y=x^{2}}^{\sqrt{x}}(0) d x d y=0$

Verify Green's theorem for $\int_{0}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$ where c is the region bounded by $\mathrm{x}=0, \mathrm{y}=0$ and $\mathrm{x}+\mathrm{y}=1$.

Solution: By Green's theorem, we have

Here $\mathrm{M}=3 x^{2}-8 y^{2}$ and $\mathrm{N}=4 \mathrm{y}-6 \mathrm{xy}$

$\therefore \frac{\partial M}{\partial y}=-16 y$ and $\frac{\partial N}{\partial x}=-6 y$
Now $\int_{C} M d x+N d y=\int_{O_{A}} M d x+N d y+\int_{A B} M d x+N d y+\int_{B C} M d x+N d y \ldots(1)$
Along $\mathrm{OA}, \mathrm{y}=0 \quad \therefore \mathrm{dy}=0$
$\int_{O A} M d x+N d y=\int_{0}^{1} 3 x^{2} d x=\left(\frac{x^{1}}{3}\right)_{0}^{1}=1$
Along $\mathrm{AB}, \mathrm{x}+\mathrm{y}=1 \therefore d y=-d x$ and $\mathrm{x}=1-\mathrm{y}$ and y varies from 0 to 1 .

$$
\begin{aligned}
& \int_{A B} M d x+N d y=\int_{0}\left[3(y-1)^{2}-8 y^{2}\right](-d y)+[4 y+6 y(y-1)] d y \\
& =\int_{0}^{1}\left(-5 y^{2}-6 y+3\right)(-d y)+\left(6 y^{2}-2 y\right) d y \\
& \quad=\int_{0}^{1}\left(11 y^{2}+4 y-3\right) d y=\left(11 \frac{y^{3}}{3}+4 \frac{y^{2}}{2}-3 y\right)_{0}^{1} \\
& \quad=\frac{11}{3}+2-3=\frac{8}{3}
\end{aligned}
$$

Along BO, $\mathrm{x}=0 \quad \therefore d x=0$ and limits of y are from 1 to 0
. $\int_{B O} M d x+N d y=\int_{1}^{0} 4 y d y=\left(4 \frac{y^{2}}{2}\right)_{1}^{0}=\left(2 y^{2}\right)_{0}^{1}=-2$
from (1), we have $\int_{0} M d x+N d y=1+\frac{8}{3}-2=\frac{5}{3}$
Now $\left.\left.\iint_{R}^{(}\right|^{\partial N}-\frac{\partial M}{\partial x}\right) d x d y=\int_{x=0}^{1-x} \int_{y=0}^{1-x}(-6 y+16 y) d x d y$

$$
\begin{aligned}
& =10 \int_{x=0}^{1}\left[\int_{y=0}^{1-x} y d y\right] d x=10 \int_{0}^{1}\left(\frac{y^{2}}{2}\right)_{0}^{1-x} d x \\
& =5 \int_{0}^{1}(1-x)^{2} d x=5\left[\frac{(1-x)^{3}}{-3}\right]_{0}^{1} \\
& =-\frac{5}{3}\left[(1-1)^{3}-(1-0)^{3}\right]=\frac{5}{3}
\end{aligned}
$$

From (2) and (3), we have $\left.\int_{c} M d x+N d y=\iint_{R}^{l} \left\lvert\, \frac{\partial N}{\partial x}-\frac{\partial M}{}\right.\right)^{3} \mid d x d y$
Hence the verification of the Green's Theorem.

9: Apply Green's theorem to evaluate $\oint_{0}\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$, where c is the boundary of the area enclosed by the x-axis and upper half of the circle $x^{2}+y^{2}=a^{2}$

Solution: Let $\mathrm{M}=2 x^{2}-y^{2}$ and $\mathrm{N}=x^{2}+y^{2}$ Then $\frac{\partial M}{\partial y}=-2 y$ and $\frac{\partial N}{\partial x}=2 x$

Figure
\therefore By Green'sTheorem, $\int_{{ }^{\prime}}^{\left.\int M d x+N d y=\iint_{\mid}^{(} \frac{\partial N}{\partial x}-\frac{\partial M}{}\right)}$
$\prod_{c}\left[\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right]=\iint_{R}(2 x+2 y) d x d y$
$=2 \iint_{R}(x+y) d y$

$$
=2 \int_{0}^{a} \int_{0}^{\pi} r(\cos \theta+\sin \theta) \cdot r d \theta d r
$$

[Changing to polar coordinates $(\mathrm{r}, \theta), \mathrm{r}$ varies from 0 to a and θ varies from 0 to π]
$\therefore \int_{c}\left[\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right]=2 \int_{0}^{a} r^{2} d r \int_{0}^{\pi}(\cos \theta+\sin \theta) d \theta$
$=2 \cdot \frac{a^{3}}{3}(1+1)=\frac{4 a^{5}}{3}$

10: Find the area of the Folium of Descartes $x^{3}+y^{3}=3 a x y(a>0)$ using Green's Theorem.

Solution: from Green's theorem, we have
$\int P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y$
By Green's theorem, Area $=\frac{1}{2} f(x d y-y d x)$
Considering the loop of folium Descartes $(\mathrm{a}>0)$

The point of intersection of the loop is $\left(\begin{array}{cc}3 a & 3 a \\ 2 & 2\end{array}\right) \Rightarrow t=1$
Along OA, t varies from 0 tol.

$$
\begin{aligned}
& =\frac{9 a^{2}}{2} \int_{0}^{1}\left[\frac{t^{8}\left(2-t^{3}\right)}{\left(1+t^{8}\right)^{3}}-\frac{t^{8}\left(1-2 t^{8}\right)}{\left(1+t^{8}\right)^{\mathrm{B}}}\right] d t=\frac{9 a^{8}}{2} \int_{0}^{1} \frac{2 t^{8}-t^{5}-t^{2}+2 t^{5}}{\left(1+t^{8}\right)^{3}} d t \\
& =\frac{9 a^{2}}{2} \int_{0}^{1} t^{t^{2}+t^{5}}\left(1+t^{3}\right)^{3} t t=\frac{9 a^{2}}{2} \int_{0}^{1} \frac{t^{2}\left(1+t^{3}\right)}{\left(1+t^{3}\right)^{3}} d t \\
& =\frac{9 a^{2}}{2} \int_{0}^{1} \frac{t^{x}}{\left(1+t^{3}\right)^{2}} d t\left[\text { Put } 1+t^{3}=x \Rightarrow 3 t^{2} d t=d x\right. \\
& \text { L.L. : } \mathrm{x}=1 \text {, U.L.: } \mathrm{x}=2] \\
& =\frac{9 a^{2}}{2} \int_{1} \frac{t^{2}}{x^{2}} \cdot \frac{d x}{3 t^{2}}=\frac{9 a^{2}}{6} \int_{\{ } \overline{x^{2}} d x=\frac{3 a^{2}}{4} s q . \text { units }(\mathrm{a}>0) .
\end{aligned}
$$

11: Verify Green's theorem in the plane for $\int_{C}\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y$

Where C is square with vertices $(0,0),(2,0),(2,2),(0,2)$.
Solution: The Cartesian form of Green's theorem in the plane is $\left.\int_{c} M d x+N d y=\iint_{R}^{(} \left\lvert\, \frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right.\right) \mid d x d y$
Here $\mathrm{M}=x^{2}-x y^{3}$ and $\mathrm{N}=y^{2}-2 x y$
$\therefore \frac{\partial M}{\partial y}=-3 x y^{2}$ and $\frac{\partial N}{\partial x}=-2 y$

Evaluation of $\int_{c}(M d x+N d y)$
To Evaluate $\int_{C}\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y$, we shall take C in four different segments viz (i) along $\mathrm{OA}(\mathrm{y}=0)$ (ii) along $\mathrm{AB}(\mathrm{x}=2)$ (iii) along $\mathrm{BC}(\mathrm{y}=2)$ (iv) along $\mathrm{CO}(\mathrm{x}=0)$.

(i) Along $\mathrm{OA}(\mathrm{y}=0)$

$\int_{C}\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y=\int_{0}^{2} x^{2} d x=\left(\frac{x^{3}}{3}\right)_{0}^{2}=\frac{8}{3}$
.....(1)
(ii) Along $\mathbf{A B}(x=2)$

$$
\begin{align*}
\int_{C}\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y=\int_{0}^{2}\left(y^{2}-4 y\right) d y & {[\because x=2, d x=0] } \\
& =\left(\frac{y^{5}}{3}-2 y^{2}\right)_{0}^{2}=\left(\frac{8}{3}-8\right)=8\left(-\frac{2}{3}\right)=-\frac{16}{3} \tag{2}
\end{align*}
$$

(iii) Along $\mathrm{BC}(\mathrm{y}=\mathbf{2})$
$\int_{C}\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y=\int_{2}^{0}\left(x^{2}-8 x\right) d x \quad[\because y=2, d y=0]$

$$
\begin{equation*}
=\left(\frac{x^{3}}{3}-4 x^{2}\right)^{2}=-\left(\frac{8}{3}-16\right)=\frac{40}{3} \cdots . \tag{3}
\end{equation*}
$$

(iv) Along $\mathbf{C O}(x=0)$

$$
\begin{equation*}
\int_{C}\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y=\int_{2}^{0} y^{2} d x \quad[\because x=0, d x=0]=\left(\frac{y^{5}}{3}\right)_{2}^{0}=-\frac{8}{3} \tag{4}
\end{equation*}
$$

Adding(1),(2),(3) and (4), we get
$\int_{c}\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y=\frac{8}{3}-\frac{16}{3}+\frac{40}{3}-\frac{8}{3}=\frac{24}{3}=8$
Evaluation of $\left.\iint_{R}^{(}\right|^{(\partial N}-\frac{\partial M)}{\partial x}-\frac{\partial y}{\partial y} d x d y$
Here x ranges from 0 to 2 and y ranges from 0 to 2 .

$$
\begin{align*}
\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y= & \int_{0}^{22}\left(-2 y+3 x y^{2}\right) d x d y \\
& =\int_{0}^{2}\left(-2 x y+\frac{3 x^{2}}{2} y^{2}\right)_{0}^{2} d y \\
& =\int_{0}^{3}\left(-4 y+6 y^{2}\right) d y=\left(-2 y^{2}+2 y^{3}\right)_{0}^{2} \\
& =-8+16=8 \tag{6}
\end{align*}
$$

From (5) and (6), we have
$\left.\int_{c} M d x+N d y=\int_{C_{R}}^{(} \left\lvert\, \frac{\partial N}{\partial x}-\frac{\partial M}{\partial}\right.\right) \mid d x d y$
Hence the Green's theorem is verified.

Assignments

(1) Evaluate $\Phi_{0}(3 x+4 y) d x+(2 x-3 y) d y$ where c is the circle $x^{2}+y^{2}=4$
(2) Verify Green's theorem in the plane for $\oint\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y$ where c is the square with vertices $(0,0),(2,0),(2,2)$ and $(0,2)$.
(3) Use Green's theorem to evaluate $\Phi_{0} x^{4}(1+y) d x+\left(y^{2}+x^{2}\right) d y$ where c is the square bounded by $\mathrm{y}= \pm 1$ and $x= \pm 1$.
(4) Find the area bounded by one arc of the cycloid $x=a(\theta-\sin \theta), y=a(1-\cos \theta), a>0$ and the x-axis.
(5) Find the area bounded by the hypocycloid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}, a>0$.
(6) Find $\mathfrak{f}\left(x^{2}+y^{2}\right) d x+3 x y^{2} d y$ where c is the circle $x^{2}+y^{2}=4$ in xy plane.
Answers
(1) -8π
(3) $\frac{8}{3}$
(4) $3 \pi a^{2}$
(5) $\frac{3 \pi a^{2}}{8}$
(6) 12π

III. STOKE'S THEOREM

(Transformation between Line Integral and Surface Integral)
[JNTU 2000]

Let S be a open surface bounded by a closed, non intersecting curve C . If \bar{F} is any differentieable vector point function then $\oint_{C} \bar{F} \cdot d \bar{r}=$
\int_{S} curl $\bar{F} . \bar{n} d s$ where c is traversed in the positive direction and \bar{n} is unit outward drawn normal at any point of the surface.

PROBLEMS

1: Prove by Stokes theorem, Curl grad $\phi=\overline{0}$
Solution: Let S be the surface enclosed by a simple closed curve C .
\therefore By Stokes theorem
$\int_{s}($ curl grand $\phi) \cdot \bar{n} d s=\int_{s}(\nabla \mathrm{x} \nabla \phi) \cdot \bar{n} d S=\oint_{C} \nabla \phi \phi d \bar{r}=\oint_{C} \nabla \phi \cdot d \bar{r}$

$$
\begin{aligned}
& =\int_{c}^{c} \left\lvert\, \frac{l \partial \phi}{\partial x}+\underline{j} \frac{\partial \phi}{\partial y}+\frac{k}{\partial z}-(i d x+j d y+k d z)\right. \\
& \left.=\int_{c}^{\partial z} \frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y+\frac{\partial \phi}{\partial z} d z\right)^{\prime} \rho \int d \phi=[\phi]_{p} \text { where P is any point }
\end{aligned}
$$

on C.
$\therefore \int$ curl grad $\phi \cdot \bar{n} d s=\overline{0} \Rightarrow \operatorname{curl} \operatorname{grad} \phi=\overline{0}$
2: prove that $\int_{s} \phi c u r l \bar{f} \cdot d S=\int_{c} \phi \bar{f} \cdot \overline{d r}-\int_{s} \operatorname{curlg} \operatorname{rad} \phi \times \bar{f} d S$
Solution: Applying Stokes theorem to the function $\phi \bar{f}$
$\int_{c} \phi \bar{f} \cdot d r=\int \operatorname{curl}(\phi \bar{f}) \cdot \bar{n} d s=\int_{s}(\operatorname{grad} \phi \times \bar{f}+\phi \operatorname{curl} \bar{f}) d s$
$\therefore \int_{c} \phi c u r l \bar{f} \cdot d s=\int_{c} \phi \bar{f} \cdot \overline{d r}-\int \nabla \phi \times \bar{f} \cdot d s$
3: Prove that $\oint_{c} \mathrm{f} \nabla f \cdot d \bar{r}=0$.
Solution: By Stokes Theorem,
$\prod_{c}(f \nabla f) \cdot \overline{d r}=\int_{s} \operatorname{curlf} \nabla \bar{f} \cdot \bar{n} d s=\int_{s}[f c u r l \nabla f+\nabla f \times \nabla f] \cdot \bar{n} d s$
$=\int \overline{0} \cdot \bar{n} d s=0[\because \operatorname{curl} \nabla f=\overline{0}$ and $\nabla f \times \nabla f=\overline{0}]$
4: Prove that $\prod_{c} f \nabla g \cdot d \bar{r}=\int(\nabla f \times \nabla g) \cdot \bar{n} d s$
Solution: By Stokes Theorem,

$$
\begin{aligned}
\bigoplus_{c}(f \nabla g \cdot d \bar{r})= & \int_{s}[\nabla \times(f \nabla g)] \bar{n} d s=\int_{s}[\nabla f \times \nabla g+f c u r \lg r a d g] \cdot \bar{n} d s \\
& =\int[\nabla f \times \nabla g] \cdot \bar{n} d s[\because \operatorname{curl}(\operatorname{gradg})=\overline{0}]
\end{aligned}
$$

5: Verify Stokes theorem for $\bar{F}=-y^{3} \bar{\imath}+x^{3} \bar{\jmath}$, Where S is the circular disc $x^{2}+y^{2} \leq 1, z=0$.
Solution: Given that $\bar{F}=-y^{3} \bar{l}+x^{3} \bar{j}$. The boundary of C of S is a circle in xy plane.
$x^{2}+y^{2} \leq 1, z=0$. We use the parametric co-ordinates $\mathrm{x}=\cos$
$\theta, y=\sin \theta, z=0,0 \leq \theta \leq 2 \pi$;
$d x=-\sin \theta d \theta$ and $d y=\cos \theta d \theta$
$\therefore \oint_{0} \bar{F} \cdot d r=\int_{0} F_{1} d x+F_{2} d y+F_{3} d z=\int_{0}-y^{3} d x+x^{3} d y$

$$
\begin{aligned}
& =\int_{0}^{2 \pi}\left[-\sin ^{3} \theta(-\sin \theta)+\cos ^{3} \theta \cos \theta\right] d \theta=\int_{0}^{2 \pi}\left(\cos ^{4} \theta+\sin ^{4} \theta\right) d \theta \\
& =\int_{0}^{2 \pi}\left(1-2 \sin ^{2} \theta \cos ^{2} \theta\right) d \theta=\int_{0}^{2 \pi} d \theta-\frac{1}{2} \int_{0}^{2 \pi}(2 \sin \theta \cos \theta)^{2} d \theta \\
& =\int_{0}^{2 \pi} d \theta-\frac{1}{2} \int_{0}^{2 \pi} \sin ^{2} 2 d \theta=(2 \pi-0)-\frac{1}{4} \int_{0}^{2 \pi}(1-\cos 4 \theta) d \theta \\
& =2 \pi+\left[-\frac{1}{4} \theta+\frac{1}{16} \sin 4 \theta\right]_{0}^{2 \pi}=2 \pi-\frac{2 \pi}{4}=\frac{6 \pi}{4}=\frac{3 \pi}{2}
\end{aligned}
$$

$\operatorname{Now} \nabla \times \bar{F}=\left|\begin{array}{ccc}\bar{l} & \bar{\jmath} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y^{3} & x^{3} & 0\end{array}\right|=\bar{k}\left(3 x^{2}+3 y^{2}\right)$
$\therefore \int_{s}(\nabla \times \bar{F}) \cdot \bar{n} d s=3 \int_{s}\left(x^{2}+y^{2}\right) \bar{k} \cdot \bar{n} d s$
We have $(\bar{k} . \bar{n}) d s=d x d y$ and R is the region on xy-plane
$\therefore \iint_{g}(\nabla \times \bar{F}) \cdot \bar{n} d s=3 \iint_{R}\left(x^{2}+y^{2}\right) d x d y$
Put $\mathrm{x}=\mathrm{r} \cos \emptyset, y=r \sin \emptyset: d x d y=r d r d \varnothing$
r is varying from 0 to 1 and $0 \leq \emptyset \leq 2 \pi$.
$\therefore \int(\nabla \times \bar{F}) . \bar{n} d s=3 \int_{\emptyset=0}^{2 \pi} \int_{r=0}^{1} r^{2} \cdot \operatorname{rdr} \mathrm{~d} \varnothing=\frac{3 \pi}{2}$
L.H.S=R.H.S.Hence the theorem is verified.

6: If $\bar{F}=y \bar{i}+(x-2 x z) \bar{j}-x y \bar{k}$, evaluate $\int_{s}(\nabla \times F) \cdot \bar{n} d s$. Where S is the surface of sphere $x^{2}+y^{2}+z^{2}=a^{2}$, above the $x y-$ plane.
Solution: Given $\bar{F}=y \bar{\imath}+(x-2 x z) \bar{\jmath}-x y \bar{k}$.
By Stokes Theorem,
$\int_{s}(\nabla \times \bar{F}) \cdot \bar{n} d s=\int_{c} \bar{F} \cdot \bar{r}=\int_{c} F_{1} d x+F_{2} d y+F_{3} d z=\int_{c} y d x+(x-2 x z) d y-x y d z$
Above the xy plane the sphere is $x^{2}+y^{2}+=a^{2}{ }_{s} z=0$
$\therefore \int_{0} \bar{F} \cdot d \bar{r}=\int_{0} y d x+x d y$.
Put $\mathrm{x}=\mathrm{a} \cos \theta, \mathrm{y}=\mathrm{a} \sin \theta$ so that $d x=-a \sin \theta d \theta, d y=a \cos \theta d \theta$ and $\theta=0 \rightarrow 2 \pi$

$$
\begin{aligned}
\int_{0} \bar{F} \cdot d \bar{r}=\int_{0}^{2 \pi}(a \sin \theta) & (-a \sin \theta) d \theta+(a \cos \theta)(a \cos \theta) d \theta \\
& =a^{2} \int_{0}^{2 \pi} \cos 2 \theta d \theta=a^{2}\left[\frac{[\sin 2 \theta}{2}\right]_{0}^{2 \pi}=\frac{a^{3}}{2}(0)=0
\end{aligned}
$$

7: Verify Stokes theorem for $\bar{F}=(2 x-y) \bar{\imath}-\dot{y} z^{2} \bar{\jmath}-y^{2} z \bar{k}$ over the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ bounded by the projection of the xy-plane.
Solution: The boundary C of S is a circle in xy plane i.e $x^{2}+y^{2}=1, \mathrm{z}=0$
The parametric equations are $\mathrm{x}=\cos \theta_{0} y=\sin \theta_{,} \theta=0 \rightarrow 2 \pi$
$\therefore d x=-\sin \theta d \theta_{,} d y=\cos \theta d \theta$
$\int F . d r=\int F_{1} d x+F_{2} d y+F_{5} d z=\int(2 x-y) d x-y z_{2} d y-y_{2} z d z$

$$
=\int_{0}(2 x-y) d x(\text { since } z=0 \text { and } d z=0)
$$

$=-\int_{0}^{2 \pi}(2 \cos \theta-\sin \theta) \sin \theta d \theta=\int_{0}^{2 \pi} \sin ^{2} \theta d \theta-\int_{0}^{2 \pi} \sin 2 \theta d \theta$

$$
=\int_{\theta=0}^{2 \pi} \frac{1-\cos 2 \theta}{2} d \theta-\int_{0}^{2 \pi} \sin 2 \theta d \theta=\left[\frac{1}{2} \theta-\frac{1}{4} \sin 2 \theta+\frac{1}{2} \cdot \cos 2 \theta\right]_{0}^{2 \pi}
$$

$$
=\frac{1}{2}(2 \pi-0)+0+\frac{1}{2} \cdot(\cos 4 \pi-\cos 0)=\pi
$$

Again $\nabla \times \bar{F}=\left|\begin{array}{ccc}\bar{l} & \bar{\jmath} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2 x-y & -y z^{2} & -y^{2} z\end{array}\right|=\bar{\imath}(-2 y z+2 y z)-\bar{\jmath}(0-0)+\bar{k}(0+1)=\bar{k}$
$\therefore \int_{S}(\nabla \times \bar{F}) \cdot \bar{n} d s=\int_{S} \bar{k} \cdot \bar{n} d s=\int_{R} \int d x d y$
Where R is the projection of S on xy plane and $\bar{k} \cdot \bar{n} d s=d x d y$

$$
\text { Now } \iint_{R} d x d y=4 \int_{x=0}^{1} \int_{y=0}^{\sqrt{1-x^{2}}} d y d x=4 \int_{x=0}^{1} \sqrt{1-x^{2}} d x=4\left[\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x\right]_{0}^{1}
$$

$$
=4\left[\frac{1}{2} \sin ^{-1} 1\right]=2 \frac{\pi}{2}=\pi
$$

\therefore The Stokes theorem is verified.

8: Verify Stokes theorem for the function $\bar{F}=x^{2} \bar{l}+x y \bar{j}$ integrated round the square in the plan $\mathrm{z}=0$ whose sides are along the lines $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{a}$.

Solution: Given $\bar{F}=x^{2} \bar{l}+x y \bar{\jmath}$

Fig. 13
By Stokes Theorem, $\int_{S}(\nabla \times \bar{F}) \cdot \bar{n} d s=\int_{c} \bar{F} \cdot \overline{-}$
Now $\nabla \times \bar{F}=\left|\begin{array}{ccc}\bar{\imath} & \bar{\jmath} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^{2} & x y & 0\end{array}\right|=\bar{k} \mathrm{y}$
L.H.S. $=\int_{S}(\nabla \times \bar{F}) \cdot \bar{n} d s=\int_{S} y(n \cdot \bar{k}) d s=\int_{s} y d x d y$
$\therefore \bar{n} . \bar{k} \cdot d s=d x d y$ and R is the region bounded for the square.
$\therefore \int_{S}(\nabla \times \bar{F}) \cdot \bar{n} d s=\int_{0}^{\alpha} \int_{0}^{\alpha} y d y d x=\frac{a^{s}}{2}$
R.H.S. $=\int_{C}^{\bar{F}} \cdot d r=\int_{C}\left(x^{2} d x+x y d y\right)$

But $\int \bar{F} \cdot d \bar{r}=\int_{O A} \bar{F} \cdot d \bar{r}+\int_{A B} \bar{F} \cdot d \bar{r}+\int_{B C} \bar{F} \cdot d \bar{r}+\int_{C O} \bar{F} \cdot d \bar{r}$
(i)Along $\mathrm{OA}: \mathrm{y}=0, \mathrm{z}=0, \mathrm{dy}=0, \mathrm{dz}=0$
$\therefore \int_{O A} \bar{F} \cdot d \bar{r}=\int_{0}^{a} x^{2} d x=\frac{a^{3}}{3}$
(ii) Along $\mathrm{AB}: \mathrm{x}=\mathrm{a}, \mathrm{z}=0, \mathrm{dx}=0, \mathrm{dz}=0$

$$
\int_{A B} \bar{F} \cdot d \bar{r}=\int_{0}^{a} a y d y=\frac{1}{2} a^{3}
$$

(iii) Along $\mathrm{BC}: \mathrm{y}=\mathrm{a}, \mathrm{z}=0, \mathrm{dy}=0, \mathrm{dz}=0$
$\therefore \int_{B C} \bar{F} \cdot d \bar{r}=\int_{a}^{0} 0 d x=\frac{1}{3} a^{3}$
(iv) Along CO: $\mathrm{x}=0, \mathrm{z}=0, \mathrm{dx}=0, \mathrm{dz}=0$
$\therefore \int_{c o} \bar{F} \cdot d \bar{r}=\int_{a}^{0} 0 d y=0$
Adding $\int_{0} \bar{F} \cdot d \bar{r}=\frac{1}{3} a^{3}+\frac{1}{2} a^{3}+\frac{1}{3} a^{3}+0=\frac{1}{2} a^{3}$
Hence the verification.
9: Apply Stokes theorem, to evaluate $\int_{c}(y d x+z d y+x d z)$ where c is the curve of intersection of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and $\mathrm{x}+\mathrm{z}=\mathrm{a}$.
Solution : The intersection of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and the plane $\mathrm{x}+\mathrm{z}=\mathrm{a}$. is a circle in the plane $\mathrm{x}+\mathrm{z}=\mathrm{a}$. with AB as diameter.
Equation of the plane is $\mathrm{x}+\mathrm{z}=\mathrm{a} \Rightarrow \frac{x}{a}+\frac{z}{a}=1$
$\therefore O A=O B=a$ i.e., $A=(a, 0,0)$ and $\mathrm{B}=(0,0, \mathrm{a})$
\therefore Length of the diameter $\mathrm{AB}=\sqrt{a^{2}+a^{2}+0}=\mathrm{a} \sqrt{2}$
Radius of the circle, $\mathrm{r}=\frac{\infty}{\sqrt{2}}$
Let $\bar{F} \cdot d \bar{r}=y d x+z d y+x d z \Longrightarrow \bar{F} \cdot d \bar{r}=\bar{F} \cdot(\bar{\imath} d x+\bar{\jmath} d y+\bar{k} d z)=y d x+z d y+x d z$
$\Rightarrow \bar{F}=y \bar{\imath}+z \bar{\jmath}+x \bar{k}$
$\therefore \operatorname{curl} \bar{F}=\left|\begin{array}{ccc}\bar{\imath} & \bar{\jmath} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & z & x\end{array}\right|=-(\bar{\imath}+\bar{\jmath}+\bar{k})$
Let \bar{n} be the unit normal to this surface. $\bar{n}=\frac{\nabla_{S}}{\left|\nabla_{S}\right|}$
Then $\mathrm{s}=\mathrm{x}+\mathrm{z}-\mathrm{a}, \quad \nabla S=i+\bar{k} \dot{n} \bar{n}=\frac{\nabla_{S}}{\| \nabla_{g} \mid}=\frac{\overline{\mathrm{T}}+\bar{k}}{\sqrt{2}}$
Hence $\oint_{0} \bar{F} \cdot d \bar{r}=\int$ curl $\bar{F} \cdot \bar{n} d s$ (by Stokes Theorem)

$$
\begin{aligned}
& =-\int(\bar{\imath}+\bar{\jmath}+\bar{k}) \cdot\left(\frac{\bar{\tau}+\bar{k}}{\sqrt{2}}\right) \mathrm{ds}=-\int\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right) d s \\
& =-\sqrt{2} \int_{S} d s=-\sqrt{2} S=-\sqrt{2}\left(\frac{\pi a^{2}}{2}\right)=\frac{\pi a^{\bar{z}}}{\sqrt{2}}
\end{aligned}
$$

10: Apply the Stoke's theorem and show that $\int_{S} \int$ curl $\bar{F} \cdot \bar{n} d \bar{s}=0$ where \bar{F} is any vector and $\mathrm{S}=x^{2}+y^{2}+z^{2}=1$
Solution: Cut the surface if the Sphere $x^{2}+y^{2}+z^{2}=1$ by any plane, Let S_{1} and S_{2} denotes its upper and lower portions a C , be the common curve bounding both these portions. $\therefore \int_{s} \operatorname{curl} \bar{F} \cdot d \bar{s}=\int_{s_{1}} \bar{F} \cdot d \bar{s}+\int_{s_{2}} \bar{F} . d \bar{s}$

Applying Stoke's theorem,

$$
\int_{s} \operatorname{curl} \overline{\bar{F}} \cdot d \bar{s}=\int_{s_{1}} \bar{F} \cdot d \bar{R}+\int_{s_{2}} \bar{F} \cdot d \bar{R}=0
$$

The $2^{\text {nd }}$ integral curl $\bar{F} . d \bar{s}$ is negative because it is traversed in opposite direction to first integral.

The above result is true for any closed surface S .
11: Evaluate by Stokes theorem $\oint_{0}(x+y) d x+(2 x-z) d y+(y+z) d z$ where C is the boundary of the triangle with vertices $(0,0,0),(1,0,0)$ and $(1,1,0)$.
Solution: Let $\bar{F} \cdot d \bar{r}=\bar{F} \cdot(\bar{\imath} d x+\bar{\jmath} d y+\bar{k} d z)=(x+y) d x+(2 x-z) d y+(y+z) d z$
Then $\bar{F}=(x+y) \bar{\imath}+(2 x-z) \bar{\jmath}+(y+z) \bar{k}$
By Stokes theorem, $\oint_{r} \bar{F} \cdot d \bar{r}=\iint_{\varepsilon} \operatorname{curl} \bar{F} \cdot \bar{n} d s$

Where S is the surface of the triangle OAB which lies in the xy plane. Since the z Co-ordinates of O, A and B Are zero. Therefore $\bar{n}=\bar{k}$. Equation of OA is $\mathrm{y}=0$ and that of $\mathrm{OB}, \mathrm{y}=\mathrm{x}$ in the xy plane.
$\therefore \operatorname{curl} \bar{F}=\left|\begin{array}{ccc}\bar{\imath} & \bar{\jmath} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x+y & 2 x-z & y+z\end{array}\right|=2 \bar{l}+\bar{k}$
$\therefore \operatorname{curl} \bar{F} \cdot \bar{n} \mathrm{ds}=\operatorname{curl} \bar{F} \cdot \bar{K} d x d y=d x d y$
$\therefore \oint_{0} \bar{F} \cdot d \bar{r}=\iint_{s} d x d y=\iint_{s} d A=A=$ area of the $\triangle O A B$

$$
=\frac{1}{2} \mathrm{OA} \times \mathrm{AB}=\frac{1}{2} \times 1 \times 1=\frac{1}{2}
$$

12: Use Stoke's theorem to evaluate \iint_{S} curl $\bar{F} \cdot \bar{n} d S$ over the surface of the paraboloid $z+x^{2}+y^{2}=1, z \geq 0$ where $\bar{F}=y \bar{\imath}+z \bar{\jmath}+x \bar{k}$.

Solution : By Stoke's theorem

$$
\begin{align*}
\int_{s} \operatorname{curl} \bar{F} \cdot d \bar{s} & =\prod_{c} \bar{F} \cdot d \bar{r}=\int_{c}(y \bar{i}+z \bar{j}+x \bar{k}) \cdot(\bar{i} d x+\bar{j} d y+\bar{k} d z) \\
& =\int_{c} y d x(\text { Since } \mathrm{z}=0, \mathrm{dz}=0) \ldots \ldots(1) \tag{1}
\end{align*}
$$

Where C is the circle $x^{2}+y^{2}=1$
The parametric equations of the circle are $\mathrm{x}=\cos \theta_{0} y=\sin \theta$
$\therefore d x=-\sin \theta d \theta$
Hence (1) becomes
$\int_{s} \operatorname{curl} \overline{\bar{F}} . d s=\int_{\theta=0}^{2 \pi} \sin \theta(-\sin \theta) d \theta=-\int_{\theta=0}^{2 \pi} \sin ^{2} \theta d \theta=-4 \int_{0}^{\frac{\pi}{2}} \sin ^{2} \theta d \theta=-4 \times \frac{1}{2} \times \frac{\pi}{2}=-\pi$
13: Verify Stoke's theorem for $\bar{F}=\left(x^{2}+y^{2}\right) \bar{\imath}-2 x y \bar{j}$ taken round the rectangle bounded by the lines $\mathrm{x}= \pm a_{,} y=0, y=b$.
Solution: Let $A B C D$ be the rectangle whose vertices are $(a, 0),(a, b),(-a, b)$ and $(-a, 0)$.
Equations of $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA are $\mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{b}, \mathrm{x}=-\mathrm{a}$ and $\mathrm{y}=0$.
We have to prove that $\oint_{0} \bar{F} \cdot d \bar{r}=\int_{S}$ curl $\bar{F} \cdot \bar{n} d s$

$$
\begin{align*}
\oint_{c} \bar{F} \cdot d \bar{r}= & \oint_{0}\left\{\left(x^{2}+y^{2}\right) \bar{\imath}-2 x y \bar{\jmath}\right\} \cdot\{\bar{d} d x+\bar{\jmath} d y\} \\
& =\oint_{C}\left(x^{2}+y^{2}\right) d x-2 x y d y \\
& =\int_{A B}+\int_{B 0}+\int_{C D}+\int_{D A} \tag{1}
\end{align*}
$$

(i) Along $\mathrm{AB}, \mathrm{x}=\mathrm{a}, \mathrm{dx}=0$

$$
\text { from (1), } \int_{A B}=\int_{y=0}^{b}-2 a y d y=-2 a\left[\frac{y^{2}}{2}\right]_{0}^{b}=-a b^{2}
$$

(ii) Along $\mathrm{BC}, \mathrm{y}=\mathrm{b}, \mathrm{dy}=0$

$$
\text { from (1), } \int_{B C}==_{x=a}^{x} f^{a}\left(x^{2}+b^{2}\right) d x=\left[\frac{\left\lceil x^{3}\right.}{\lfloor 3}+\left.b^{2} x\right|^{]_{x=a}^{a}}=\frac{-2 a^{3}}{3}-2 a b^{2}\right.
$$

(iii) Along $\mathrm{CD}, \mathrm{x}=-\mathrm{a}, \mathrm{dx}=0$

$$
\text { from (1), } \int_{C D}=\int_{y=b}^{0} 2 a y d y=\nsim a \left\lvert\, \frac{\left\lceil y^{2}\right.}{\bar{z}]_{y=b}^{0}}=-a b^{2}\right.
$$

(iv) Along DA, $\mathrm{y}=0, \mathrm{dy}=0$

$$
\text { from (1), } \int_{\text {DA }}=\int_{x=-a}^{x a} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{x=-a}^{a}=\frac{2 a^{3}}{3}
$$

(i) + (ii) + (iii) + (iv) gives

$$
\begin{equation*}
\therefore \oint_{c} \bar{F} \cdot d \bar{r}=-a b^{2}--\frac{-2 a^{8}}{3}-2 a b^{2}-a b^{2}+\frac{2 a^{8}}{3}=-4 a b^{2} \tag{2}
\end{equation*}
$$

Consider \int_{S} curl $\bar{F} \cdot \bar{n} d S$
Vector Perpendicular to the xy -plane is $\bar{n}=k$
\therefore curl $\bar{F}=\left|\begin{array}{ccc}\bar{l} & \bar{\jmath} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \left(x^{2}+y^{2}\right) & -2 x y & 0\end{array}\right|=4 y \bar{k}$
Since the rectangle lies in the xy plane,

$$
\bar{n}=\bar{k} \text { and ds }=\mathrm{dx} \mathrm{dy}
$$

$\int_{S} \operatorname{curl} \bar{F} . \bar{n} d S=\int_{S}-4 y \bar{k} . \bar{k} d x d y=\int_{x=-a}^{a} \int_{y=0}^{b}-4 y d x d y$

$$
\begin{align*}
& =\int_{y=0}^{b} \int_{x=-a}^{a}-4 y d x d y=4 \int_{y=0}^{b} y[x]_{-a}^{a} d y=-4 \int_{y=0}^{b} 2 a y d y \\
& =-4 a\left[y^{2}\right]_{y=0}^{b}=-4 a b^{2} \tag{3}
\end{align*}
$$

Hence from (2) and (3), the Stoke's theorem is verified.
14: Verify Stoke's theorem for $\bar{F}=(y-z+2) \bar{\imath}+(y z+4) \bar{\jmath}-x z \bar{k}$ where S is the surface of the cube $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0, \mathrm{x}=2, \mathrm{y}=2, \mathrm{z}=2$ above the xy plane.
Solution: Given $\bar{F}=(y-z+2) \bar{\imath}+(y z+4) \bar{\jmath}-x z \bar{k}$ where S is the surface of the cube.
$\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0, \mathrm{x}=2, \mathrm{y}=2, \mathrm{z}=2$ above the xy plane.
By Stoke's theorem, we have $\int c u r l \bar{F} \cdot \bar{n} d s=\int \bar{F} \cdot d \bar{r}$
$\nabla \times \bar{F}=\left|\begin{array}{ccc}\bar{\imath} & \bar{\jmath} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y-z+2 & y+4 & -x z\end{array}\right|=\bar{\imath}(0+y)-\bar{\jmath}(-z+1)+\bar{k}(0-1)=y \bar{\imath}-(1-z) \bar{\jmath}-\bar{k}$
$\therefore \nabla \times \bar{F} \cdot \bar{n}=\nabla \times \bar{F} \cdot k=(y \bar{\imath}-(1-z) \bar{\jmath}-\bar{k}) \cdot k=-1$
$\therefore \int \nabla \times \bar{F} \cdot \bar{n} \cdot d s=\int_{0}^{2} \int_{0}^{2}-1 d x d y(\because z=0, d z=0)=-4$
.....(1)

To find $\int \bar{F} . d \bar{r}$

$\int \bar{F} \cdot d \bar{r}=\int((y-z+2) \bar{\imath}+(y z+4) \bar{\jmath}-x z \bar{k}) \cdot(\mathrm{dx} \bar{\imath}+d y \bar{\jmath}+d z \bar{k})$ $=\int[(y-z+2) d x+(y z+4) d y-(x z) d z]$

Sis the surface of the cube above the xy-plane
$\therefore z=0 \Rightarrow d z=0$
$\therefore \int \bar{F} \cdot d \bar{r}=\int(y+2) d x+\int 4 d y$
Along $\overline{O A}, y=0, z=0, d y=0, d z=0, x$ change from 0 to 2 .
$\int_{0}^{2} 2 d x=2[x]_{0}^{2}=4$
Along $\overline{B C}, y=2, z=0, d y=0, d z=0, x$ change from 2 to 0 .
$\int_{2}^{0} 4 d x=4[x]_{2}^{0}=-8$
Along $\overline{A B}, x=2, z=0, d x=0, d z=0, y$ change from 0 to 2 .
$\int \bar{F} \cdot d \bar{r}=\int_{0}^{2} 4 d y=[4 y]_{0}^{2}=8$
Along $\overline{C O} x=0, z=0, d x=0, d z=0, y$ change from 2 to 0 .
. $\int_{2}^{0} 4 d y=-8$

Above the surface When $\mathrm{z}=2$
Along $0^{r} A^{r}, \int_{0}^{2} \bar{F} \cdot \overrightarrow{d r}=0$
Along $A^{v} B^{v}, x=2, z=2, d x=0, d z=0, y$ changes from 0 to 2
$\int_{0}^{2} F \cdot d \bar{r}=\int_{0}^{2}(2 y+4) d y=2\left\lfloor\overline{\left.y^{2}\right\rceil^{2}}\right\rfloor_{0}^{2}+4[y]_{0}^{2}=4+8=12$
Along $B^{\prime} C^{\prime}, y=2, z=2, d y=0, d z=0, \mathrm{x}$ changes from 2 to 0
$\int_{0}^{2} \bar{F} \cdot \overline{d r}=0$
Along $C^{\prime} D^{\prime}{ }_{s} x=0, z=2, d x=0, d z=0, y$ changes from 2 to 0 .
$\int_{2}^{0}(2 y+4)=2\left\lfloor\overline{\left.y^{2}\right\rceil^{0}}\right\rfloor_{2}+4[y]_{2}^{0}=-12$
$(2)+(3)+(4)+(5)+(6)+(7)+(8)+(9)$ gives
$\int_{C} \bar{F} \cdot d \bar{r}=4-8+8-8+0+12+0-12=-4$
By Stokes theorem, We have
$\int \bar{F}, d \bar{r}=\int c u r l \bar{F}, \bar{n} \mathrm{ds}=-4$
Hence Stoke's theorem is verified.

15: Verify the Stoke's theorem for $\bar{F}=y \bar{v}+z \bar{j}+x \bar{k}$ and surface is the part of the sphere $x^{2}+y^{2}+z^{2}=1$ above the xy plane.
Solution: Given $\bar{F}=y \bar{\imath}+z \bar{\jmath}+x \bar{k}$ over the surface $x^{2}+y^{2}+z^{2}=1$ is $x y$ plane.
We have to prove $\int_{C} \bar{F}, d \bar{r}=\iint_{s} C w r l \bar{F}, \bar{n} d s$
$\bar{F} \cdot d \bar{r}=.(\mathrm{y} \bar{\imath}+z \bar{\jmath}+x \bar{k}) \cdot(\mathrm{dx} \bar{\imath}+d y \bar{\jmath}+d z \bar{k})=\mathrm{ydx}+\mathrm{zdy}+\mathrm{xdz}$
$\int_{C}(y d x+z d y+x d z)=\int y d x($ in $x y$ plane $z=0, d z=0)$
Let $\mathrm{x}=\cos \theta_{y} y=\sin \theta \Rightarrow d x=-\sin \theta d \theta_{,} d y=\cos \theta d \theta$
$\therefore \int_{C} \bar{F} \cdot d \bar{r}=\int_{C} y \cdot d x=\int_{0}^{2 \pi} y d x \quad\left[\because x^{2}+y^{2}=1, z=0\right]$
$=\int_{0}^{2 \pi} \sin \theta(-\sin \theta) d \theta=-4 \int_{0}^{\pi / 2} \sin ^{2} \theta d \theta$
$=-4 \int_{0}^{\pi / 2} \frac{1-\cos 2 \theta}{2} d \theta=-4\left[\left(\frac{1}{2} \frac{\pi}{2}\right)-\frac{1}{4}(\sin \pi)\right]$
$=-4\left[\left(\frac{1}{2} \cdot \frac{\pi}{2}\right)-0\right]=-4\left[\frac{\pi}{4}\right]=-\pi$
$\operatorname{Curl} \bar{F}=\left|\begin{array}{ccc}\bar{\imath} & \bar{\jmath} & \bar{k} \\ \partial / \partial x & \partial / \partial y & \partial / \partial z \\ y & z & x\end{array}\right|=-(\bar{\imath}+\bar{\jmath}+\bar{k})$

Unit normal vector $\bar{n}=\frac{\nabla f}{|\sigma f|}=\frac{2 x \bar{x}+2 y \bar{j}+2 z \bar{k}}{\sqrt{4 x^{2}+4 y^{2}}+4 z^{2}}=\mathrm{x} \bar{\imath}+y \bar{\jmath}+z \bar{k}$
Substituting the spherical polar coordinates, we get
$\bar{n}=\sin \theta \cos \phi \bar{l}+\sin \theta \sin \phi \bar{J}+\cos \theta \bar{k}$
$\therefore \operatorname{Curl} \bar{F} \cdot \bar{n}=-(\sin \theta \cos \phi+\sin \theta \sin \phi+\cos \theta)$

$$
\begin{align*}
\iint \text { curl F.nds }= & \int_{\theta=0}^{\pi / 2 \pi} \\
& \int_{\phi=0}(\sin \theta \cos \phi+\sin \theta \sin \phi+\cos \theta) \sin \theta d \theta d \phi \\
& =-\int_{0}^{\pi / 2}[\sin \theta \sin \phi-\sin \theta \cos \phi+\phi \cos \theta]_{0}^{2 \pi} \sin \theta d \theta \\
& =-2 \pi \int_{0}^{\pi / 2} \cos \theta \sin \theta d \theta=-\pi \int_{0}^{\pi / 2} \sin 2 \theta d \theta=(-\pi)\left[\frac{-\cos 2 \theta}{2}\right]_{0}^{\pi / 2} \\
& =\frac{\pi}{2}(-1-1)=-\pi \tag{2}
\end{align*}
$$

From (1) and (2), we have
\int_{C} 雨tadke $=\iint_{\varepsilon} C$ url $\bar{F}, \bar{n} d s=-\pi$
's theorem is verified. - - over the box bounded by the planes
16: Verify Stoke's theorem for $F=\left(x^{2}-y^{2}\right) i+2 x y j$
$x=0, x=a, y=0, y=b$.

Solution :

Stoke"s theorem states that $\quad \int_{c}^{\bar{F}} \cdot \overline{-} \cdot \int_{s} C u r l \bar{F} . n d s$
Given $\bar{F}=\left(x^{2}-y^{2}\right) \bar{\imath}+2 x y \bar{\jmath}$
$\operatorname{Curl} \bar{F}=\left|\begin{array}{ccc}\bar{i} & \bar{j} & \bar{k} \\ \partial / \partial x & \partial / \partial y & \partial / \partial z \\ x^{2}-y^{2} & 2 x y & 0\end{array}\right|=\bar{i}(0,0)-\bar{j}(0,0)+\bar{k}(2 y+2 y)=4 y \bar{k}$
R.H.S $=\int_{s} C u r l \bar{F} \cdot \overline{n d s}=\int_{s} 4 y(\bar{k} \cdot \bar{n}) d s$

Let R be the region bounded by the rectangle
$(\bar{k}, \bar{n}) d s=d x d y$

$$
\begin{gathered}
\int_{s} \operatorname{Curl} \overline{F . n d s}=\int_{x=0}^{a} \int_{y=0}^{b} 4 y d x d y=\int_{x=0}\left\lceil 4 \frac{4}{2}\right]_{0}^{b} d x=2 b^{2} \int_{x=0}^{a} 1 d x \\
=2 b^{2}(x)_{0}^{a}=2 \mathrm{a} b^{2}
\end{gathered}
$$

To Calculate L.H.S

$$
\bar{F} \cdot d \bar{r}=\left(x^{2}-y^{2}\right) d x+2 x y d y
$$

Let $\mathrm{O}=(0,0), A=(\mathrm{a}, 0), B=(\mathrm{a}, \mathrm{b})$ and

$$
C=(0, b) \text { are the vertices of the rectangle. }
$$

(i)Along the line OA
$y=0 ; d y=0$, x ranges from 0 to a.
$\int_{O A} \bar{F} \cdot d \bar{r}=\int_{x=0}^{a x} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{0}^{a x}=\frac{a^{x}}{3}$
(ii) Along the line AB
$\mathrm{x}=\mathrm{a} ; \mathrm{dx}=0, \mathrm{y}$ ranges from 0 to b .
$\int_{A B} \bar{F} \cdot d \bar{r}=\int_{y=0}^{b}(2 x y) d y=\left[2 a \frac{y^{s}}{2}\right]_{0}^{b}=\mathrm{a}^{2}$
(iii)Along the line BC
$y=b ; d y=0$, x ranges from a to 0
$\int_{B C} \bar{F} . d \bar{r}=\int_{x=a}^{0}\left(x^{2}-y^{2}\right) d x=\left\{\frac{x^{3}}{3}-\left.b^{2} x\right|_{a} ^{\rceil^{0}}=0-\left(\frac{a^{3}}{3}-b^{2} a\right)\right.$
$=a b^{2}-\frac{a^{\pi}}{3}$
(iv) Along the line CO
$x=0, d x=0, y$ changes from b to 0
$\int_{C} \bar{F} \cdot d \bar{r}=\int_{y=b}^{0} 2 x y d y=0$
Adding these four values

$$
\int_{C O} \bar{F} \cdot d \bar{r}=\frac{a^{3}}{3}+a b^{2}+a b^{2}-\frac{a^{3}}{3}=2 a b^{2}
$$

L.H.S = R.H.S

Hence the verification of the stoke's theorem.
17: Verify Stoke's theorem for $\bar{F}=y^{2} \bar{\imath}-2 x y \bar{\jmath}$ taken round the rectangle bounded by $\mathrm{x}= \pm \mathrm{b}, \mathrm{y}=0, \mathrm{y}=\mathrm{a}$.

Solution:

$\operatorname{Curl} \bar{A}=\left|\begin{array}{ccc}\bar{\imath} & \bar{\jmath} & \bar{k} \\ \partial / \partial x & \partial / \partial y & \partial / \partial z \\ y^{2} & -2 x y & 0\end{array}\right|=-4 y \bar{k}$
For the given surface $\mathrm{S}, \bar{n}=\bar{k}$
$\therefore($ Curl $\bar{F}) \cdot \bar{n}=-4 y$
Now $\iint_{s}($ Curl $\bar{F}) \cdot \bar{n} d S=\iint_{s}-4 y d x d y$

$$
\begin{align*}
& =\int\left[\int_{y=0} L_{x=-b}-4 y d x\right] d y \\
& =\int_{0}^{a}[-4 x y]_{-b}^{b} d y \\
= & \int_{0}^{a x}-8 b y d y=\left[-4 b y^{2}\right]_{0}^{a}=-4 a^{2} b . \tag{1}
\end{align*}
$$

$\int_{C} \bar{F} \cdot d \bar{r}=\int_{D A}+\int_{A B}+\int_{B C}+\int_{C D}$
$\int \bar{F} \cdot d \bar{r}=y^{2} d x-2 x y d y$
Along DA, $\mathrm{y}=0, \mathrm{dy}=0 \Rightarrow \int_{D A} \bar{F} \cdot d \bar{r}=0(\because \bar{F} \cdot d r=0)$

Along $\mathrm{AB}, \mathrm{x}=\mathrm{b}, \mathrm{dx}=0$

$$
\int_{A B} \bar{F} \cdot d \bar{r}=\int_{y=0}^{\infty}-2 b y d y=\left[-b y^{2}\right]_{0}^{a}=-a^{2} b
$$

Along $\mathrm{BC}, \mathrm{y}=\mathrm{a}, \mathrm{dy}=0$

$$
\int_{B C} \bar{F} \cdot d \bar{r}=\int_{b}^{-b} a^{2} d x=-2 a^{2} b
$$

Along CD, $\mathrm{x}=-\mathrm{b}, \mathrm{dx}=0$

$$
\begin{align*}
& \int_{C D} \bar{F} \cdot d \bar{r}=\int_{a}^{0} 2 b y d y=\left[-b y^{2}\right]_{a}^{0}=-a^{2} b . \\
& \int_{C} \bar{F} \cdot d \bar{r}=0^{-a^{2} b-2 a^{2} b-a^{2} b=-4 a^{2} b} \tag{2}
\end{align*}
$$

From (1),(2) $\int_{C} \bar{F} \cdot d \bar{r}=\iint_{s}(C u r l \bar{F}) \cdot \bar{n} d S$
Hence the theorem is verified.

19: Using Stroke's theorem evaluate the integral $\int_{C} \bar{F} \cdot d \bar{r}$ where $\bar{F}=2 y^{2} \bar{l}+3 x^{2} \bar{\jmath}-(2 \mathrm{x}+\mathrm{z}) \bar{k}$ and C is the boundary of the triangle whose vertices are (0,0,0),(2,0,0),(2,2,0).

Solution:

$\operatorname{Curl} \bar{F}=\left|\begin{array}{ccc}\bar{\imath} & \bar{\jmath} & \bar{k} \\ \partial / \partial x & \partial / \partial y & \partial / \partial z \\ 2 y^{2} & 3 x^{2} & -2 \mathrm{x}-\mathrm{z}\end{array}\right|=2 \bar{\jmath}+(6 \mathrm{x}-4 \mathrm{y}) \bar{k}$

Since the z-coordinate of each vertex of the triangle is zero , the triangle lies in the xy-plane .
$\therefore \bar{n}=\mathrm{k}$
$\therefore(\operatorname{Curl} \bar{F}) \cdot \bar{n}=6 \mathrm{x}-4 \mathrm{y}$
Consider the triangle in xy-plane .
Equation of the straight line $O B$ is $y=x$.
By Stroke's theorem

$$
\int_{c} \bar{F} \cdot d \bar{r}=\iint_{s}(c u r l \bar{F}) \cdot \bar{n} d s
$$

$$
\begin{aligned}
& =\int_{x=0}^{2} \int_{y=0}^{y=x}(6 x-4 y) d x d y=\int_{x=0}^{2}\left[\int_{y=0}^{x}(6 x-4 y) d y\right] d x \\
& =\int_{x=0}^{2}\left[6 x y-2 y^{2}\right]_{0}^{x} d x=\int_{0}^{2}\left(6 x^{2}-2 x^{2}\right) d x \\
& =4\left[\frac{x^{3}}{3}\right]_{0}^{2}=\frac{32}{3}
\end{aligned}
$$

OBJECTIVE TYPE QUESTIONS

(1) For any closed surface $S, \iint_{s}(\operatorname{curl} \bar{F}) \cdot \overline{n d s}=$
(a) 0
(b) $2 \bar{F}$
(c) \bar{n}
(d) $\llbracket \bar{F} \cdot \overline{d r}$
(2) If S is any closed surface enclosing a volume V and $\bar{F}=x \bar{\imath}+2 y \bar{\jmath}+3 z \bar{k}$ then $\iint_{s} \bar{F} . n d s=$
(a) V
(b) 3 V
(c) 6 V
(d)None
(3) If $\bar{r}=x \bar{\imath}+y \bar{\jmath}+z \bar{k}$ then $\quad=\iint_{j} r \cdot d \bar{r}$
(a) 0
(b) \bar{r}
(c) x
(d) None
(4) $\int \bar{r} \times \bar{n} d S=$
(a) 0
(b) r
(c) 1
(d) None
(5) $\int_{s} \bar{r} \cdot \bar{n} d S=$
(a) V
(b) 3 V
(c) 4 V
(d) None
(6) If \bar{n} is the unit outward drawn normal to any closed surface then $\int_{s} \operatorname{div} \bar{n} d V=$
(a) S
(b) 2 S
(c) 3 S
(d) None
(7) $\lceil f \nabla f \cdot d r=$
(a) f
(b) 2 f
(c) 0
(d) None
(8) The value of the line integral $\int \operatorname{grad}(x+y-z) d \bar{r} \quad$ from $(0,1,-1)$ to $(1,2,0) \quad$ is
(a) -1
(b) 0
(c) 2
(d) 3
(9) A necessary and sufficient condition that the line integral $\int_{0} A \cdot d r=0$ for every closed curve c is that
(a) $\operatorname{div} \mathrm{A}=0$
(b)div $\mathrm{A} \neq 0$
(c) $\operatorname{curl} \mathrm{A}=0$
(d) curl $\mathrm{A} \neq 0$
(10) If $\bar{F}=\mathrm{axi}+\mathrm{byj}+\mathrm{czk}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are constants then $\iint \bar{F} \cdot \bar{n} d S$ where S is the surface of the unit sphere is
(a) 0
(b) $\frac{4}{3} \pi(a+b+c)$
(c) $\frac{4}{3} \pi(a+b+c)^{2}$
(d) none
(11) $\int_{V} D \times \bar{F} d v=$ \qquad
(a) $\int_{s} \bar{n} \times \bar{F} d s$
(b) 0
(c) V
(d) S
(12) $\int_{V} \phi \times d v=$ \qquad
(a) $\int \bar{n} \phi d s$
(b) 0
(c) V
(d) ϕ
(13) $\int f \circ g \cdot d \bar{r}=$ \qquad
(a) 0
(b) $\int_{S}(\nabla f \times \bar{F} D g)$
(c) \bar{r}
(d) S
(14) $\iint_{S} x d y d x+y d z d x+z d x d y$ where $\mathrm{S}: x^{2}+y^{2}+z^{2}=a^{2}$ as
(a) 4 p
(b) $\frac{4}{3} \pi a^{3}$
(c) $4 \pi a^{3}$
(d) 4π

ANSWERS

(1) d
(2) c
(3) a (4) a (5) b
(6) a
(7) c
(8) $\mathrm{d} \quad(9) \mathrm{c}$
(10) $\mathrm{b} \quad$ (11) a (12) a (13) b (14) c

