IX. Old Question Papers

Code No: 152AH
JAWAHARLAL NEHRU TECHNOL
B.Tech I Year II Semester (Spec
ENGINEERIN
(Commen to
b) Diflerentiatg Between:
i) Concurgent andgeon-concurrent forces
ii) Coplanar and non-coplanar forces
iii) Momentor forteg and couple.
2. Three cylinders wechin 100 N each and of 80 mm diameter are placed in a channet of 180 mm width ishown below figure 1. Determine the reactions exerted by a) the cylinder A on B at the point of contact and b) the cylinder B on the base and on the
wall.
$[7+8]$

3. The efficiency of a screw jack will be maximum for raising a load W , if $a=-45^{\circ}-2$.

4.a) Define the terms moment of inertia and radius of gyration.
b) Prove that the moment of area of any plane figure about a line passing through its centroid is zero. [7+8]
5. Derive an equation for mass moment of inertia of circular plate of radius ' $R$ ' and thickness ' $I$ ' about its diameter.
6.a) A car accelerates uniformly from a speed of $30 \mathrm{Km} / \mathrm{Hr}$ to a speed of $75 \mathrm{Km} / \mathrm{Hr}$ in 5 secs. Determine the acceleration of the car and the distance traveled by the car during 5 secs.
b) State the law of conservation of momentum. [10+5]
7. Two blocks of weight 150 N and 50 N are connected by a string and passing over a frictionless pulley as shown in figure 2. Predict the acceleration of blocks A and B and the tension in the string.

8. Two weights 800 N and 200 N arepennected by a thread and they move along a rough horizontal plane under the action of if force of 400 N applied to the 800 N weight as shown in figure 3. The coefficient of frigtion between the sliding surface of the weights and the plane is 0.3 . Using Alembert apmeciple, determine the acceleration of the weight and tension in the Thread.



b) The body shown in figure 2 is acted upon by four forces. Determine the resultant.

3.a) Concurrent forges 3P, 7P and 5P act respectively along three directions, which are parallel to the side of an equilateral triangle taken in order. Determine the magnitude and direction of the resultant.
b) What do you understand by resultant of a force system and which are the methods used for determining the retulting of coplanar concurrent force system? Four forces having maguitudes of $20 \mathrm{~N}, 40 \mathrm{~N}, 60 \mathrm{~N}$ and 80 N respectively, are acting along the four sides ( 1 m each), of a square $A B C D$ talken in order, as shown in figure 3 . Determine the magnitude and direction of the resultant force.


Figure: 3
4.a) What is the characteristics of frictional force? Describe the laws of coulomb friction, explaining the concept of equilibrium of bodies involving dry friction.
b) Two equal bodies $A$ and $B$ of weight ' $W$ ' each are placed on a rough inclined plane The bodies are connected by a light string. If $\mu_{A}=1 / 2$ and $\mu_{B}=1 / 3$, show that thebodies will be both on the point of motion when the plane is inclined at $\tan ^{-1}(5 / 12)$.

## OR

a) Explain the principles of operation of a screw-jack with a neat sketch
b) A body of weight 100 N rests on a rough horizontal surface $(\mu=0.3)$ and is acted upon by a force applied at an angle of $30^{\circ}$ to the horizontal. What force is required to just cause the body to slide over the surface?
[5+5]
6.a) Determine the distance of the center of gravity of a homogeneous truncated right circular cone from the plane of the base if the radius of the base is $r_{1}$ the radius of the top $r_{2}$ and the altitude of the trumcated portion $h$.
b) Determine the mass moment of inertia of a solid right circular cylinder of umiform density with respect to its centroidal diameter the radius of the cylinder is R and its length is H .
[5+5]

OR
7.a) Derive an expression to determine the moment of inertia of a semi circle about its diametric base.
b) Determine the $y$ coordinate of the centroid of a uniform triangular lamina as shown in Figure 4.

8. Derive the expression formmats moment of inertia of prism along three axes.
9. Discuss about the expression for finding mass moment of inertia of a cylinder of radius $\mathbf{R}$ and height $h$ about its base.
10.a) A body moves along a straight line and its acceleration ' $a$ ' which varies with time ' $t$ ' is given by $a=6-4 t$. Five seconds after the start of pbservation, the velocity is $18 \mathrm{~m} / \mathrm{s}$. The distance moved by the body 8 sec after tile start of observation of motion from origin is 75 m . Determine
i) The acceleration, velocity and distance from the originat the start of observation.
ii) The time after the start of observation at which the velocity becomes zero and the distance travelled from the origin.
b) A man weighing 90 kg stands in a boat 50 that he is 6 fr from pier on the shore. He walks 2.4 m in the boat toward the pier and then stops. How far from the yier will he be at the end of this time? The boat weighs 120 kg and there is assumed to be no friction between it and water.

OR
11.a) A vehicle accelerates a glider of 125 kg mass from rest to a speed of $50 \mathrm{~km} / \mathrm{hr}$. Make calculations for the work done on the glider by the vehicle. What change would oecur in the kinetic energy of the glider if subsequently its velocity reduces to $20 \mathrm{~km} / \mathrm{br}$ on the application of brakes?
b) A stone is dropped into a well and falls vertically with constant acceleration $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$. The soumd of inpact of the stone on the bottom of the well is heard 6.5 sec after it is dropped. If the velocity of sound is $340 \mathrm{~m} / \mathrm{s}$, find the depth of the well. $[5+5]$



## X. Question Papers (CIA \& SEE)

## Continuous Internal Assessment Questions

## Assignment I:

1. A rod $A B$ of weight 200 N is supported by a cable BD and the corner of wall and floor surfaceas shown in fig. Find the reaction at A and tension in the cord.

2. Reduce the system of forces shown in fig. to a force - couple system at A

3. A semi-circular area is removed from the trapezoid as shown in Fig. Determine the centroid of the remaining area.

4. Determine the co-ordinates of the C.G. of the area $O A B$ shown in Fig., if the curve $O B$ represents the equation of a parabola, given by $y=\mathrm{kx}^{2}$ in which $\mathrm{OA}=6$ units and $\mathrm{AB}=4$ units.

5. Determine the polar moment of inertia of I-section shown in Fig.


## Assignment II:

1. Derive the expression for Mass Moment of Inertia of a Right Circular Cone of Base Radius R, Height H and Mass $M$ about its Axis.
2. A bus moving along a curved road with a constant speed of 45 kmph decelerates at a constant rate to a halt in 10 secs. Determine a total acceleration at the instant the brake is applied. Radius of curvature is 100 m .
3. A body of 3 kg mass is suspended by an extensible string of 1 m length. It is rotated in a circular path of 0.5 m radius as shown in fig. Determine the tension in the string and the constant speed of the body.

4. A ball of 100 g mass is projected up with a velocity of $20 \mathrm{~m} / \mathrm{s}$. It hits a ceiling that is 10 m above the point of projection. If $e=3 / 4$, determine the speed of ball as it descends to the point of projection. If the impact duration is $1 / 150^{\text {th }}$ of a second, determine the impulsive force.
5. A body of mass 5 kg is tied to an inextensible string. Determine the work done by the external agent on the body, if (i) it is lowered down at a constant speed through a distance of 3 m , (ii) if it is lowered down at a constant acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$ through the same distance, (iii) if it is lifted up at a constant velocity by a distance of 3 m , (iv) if it is lifted up at a constant acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$ by the same distance.

## XI. Tutorial sheets

C1.1 Four forces act on a $700 \mathrm{~mm} \times 375 \mathrm{~mm}$ plate as shown in fig. a) Determine the resultant of these forces
b) Locate the two points where the line of action of the resultant intersects the edge of plate.


C1.2 A crane shown in figure is required to lift a load of $\mathrm{W}=10 \mathrm{KN}$. Find the forces in themembers AB and CB


C2.1 A screw-jack is used to lift a load of 5 kN . The jack has screw with square threads having two threads per 12 mm length. If the co-efficient of friction between the nut and the screw is 0.08 and outer dia. of the screw is 60 mm , find the force required at the end of the 600 mm long lever to lift the load

C2.2 Using the analytical method, determine the centre of gravity of the plane uniform lamina shown in Fig.


C3.1 Find the moment of inertia of the area shown shaded in Fig., about edge AB.


C3.2 From the prism of dimensions $40 \mathrm{cmX} 30 \mathrm{cmX10} \mathrm{~cm}$, a block of dimensions $10 \mathrm{cmX15} \mathrm{cmX} 10 \mathrm{~cm}$ is removed as shown. Determine the mass moment of inertia of the remaining block about axis $\mathrm{CC}_{1}$ and $\mathrm{AA}_{1}$. Take density of material to be $1250 \mathrm{~kg} / \mathrm{m}^{3}$.


C4.1 The driver of the car moving at the constant speed of 36 kmph sees the signal turning red when he is 50 m from the signal. The reaction time of the driver i.e., the time interval between the perception of a signal to stop and the application of brakes is 0.7 s . If the car begins to decelerate at a constant rate upon the application of brakes, determine (i) the minimum deceleration of the car required to bring it to a halt just before the signal, (ii) time taken to bring the car to a halt.

C4.2 Find the expressions for the acceleration of the system shown in fig. and the tension in the string. If $\mathrm{m}_{1}=2 \mathrm{~kg}, \mathrm{~m}_{2}=1 \mathrm{~kg}, \theta=30^{\circ}$ and $\mu=0.2$ for all contact surfaces, determine the pulleys and masses and friction less and the string is inextensible.


C5.1 A body of mass 5 kg is tied to an inextensible string. Determine the work done by the external agent on the body, if (i) it is lowered down at a constant speed through a distance of 3 m , (ii) if it is lowered down at a constant acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$ through the same distance, (iii) if it is lifted up at a constant velocity by a distance of 3 m , (iv) if it is lifted up at a constant acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$ by the same distance.

C5.2 A ball of 100 g mass is projected up with a velocity of $20 \mathrm{~m} / \mathrm{s}$. It hits a ceiling that is 10 m above the point of projection. If $e=3 / 4$, determine the speed of ball as it descends to the point of projection. If the impact duration is $1 / 150^{\text {th }}$ of a second, determine the impulsive force.

