NARASIMHA REDDY ENGINEERING COLLEGE

(Autonomous)

Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad Accredited by NAAC with A Grade, Accredited by NBA

QUESTION BANK

Course Title: Engineering Chemistry

Course Code: 23CH102

Regulation: NR23

Course Objectives:

- ❖ To bring adaptability to new developments in Engineering Chemistry and to acquire the skills required to become a perfect engineer.
- To include the importance of water in industrial usage, fundamental aspects of battery chemistry, significance of corrosion and its control to protect the structures.
- To provide fundamental knowledge on properties and applications of polymers & to learn about polymers in a particular application area.
- ❖ To impart knowledge about various types of fuels and their combustion.
- ❖ To acquire required knowledge about engineering materials like cement, smart materials and Lubricants.

Course Outcomes (CO's)

- The students are able to understand the basic properties of water and its usage in domestic and industrial purposes.
- Students will acquire the basic knowledge of electrochemical procedures related to corrosion and its control.
- Classify and characterize different polymer engineering materials and apply its knowledge to select suitable materials for specific applications.
- ❖ To be able to understand various types of fuels and the advantages of alternate fuels over conventional sources.
- They can predict potential applications of chemistry and practical utility in order to become good engineers and entrepreneurs.

<u>UNIT-I</u>

Water & It's Treatment

S.No	Questions	BT	CO	PO				
	Part – A (Short Answer Questions)							
1	Write the chemical reactions involved in the regeneration of exhausted resins.	L2	1	1				
2	Mention the common units used for expressing hardness of water.	L2	1	1				
3	Why is the calgon method better than other internal treatment methods?	L2	1	1				
4	Why does hard water consume a lot of soap?	L4	1	1				
5	Why is the presence of even a small amount of silica dangerous to the boilers?	L4	1	1				
6	Why do we express hard water in terms of calcium carbonate equivalents?	L2	1	1				
7	What happens when temporary hard water is boiled?	L2	1	1				
8	Why is calgon conditioning better than phosphate conditioning?	L3	1	1				
9	Differentiate between scale and sludge.	12	1	1				
10	Why should water from natural sources not be fed to boilers?	12	1	1				

<u> </u>		Part – B (Long Answer Questions)					
11	a)	Write a short note on caustic embrittlement.	L1	1	1		
	b)	Summarize the specifications for safe drinking water given by	L3	1	1		
		WHO. How does municipal water treatment meet the given					
		specifications?					
12	a)	Justify why the ion-exchange process is also called deionisation	L3	1	1		
		process.					
	b)	Identify the hardness causing salts and calculate the total,	L2	1	1		
		temporary and permanent hardness: H2SO4 - 24.09 mg/L					
		NaHCO3 - 124.56 mg/L Ca(HCO3)2 - 102.69 mg/L MgNO3 -					
		109.07 mg/L MgSO4 - 124.34 mg/L CaCl2 - 208.08 mg/L					
		K2SO4 - 275.67 mg/L CaSO4 - 206. 89 mg/L Mg(HCO3)2 -					
		189.11 mg/L NaCl- 231. 09 mg/L					
13	a)	Reverse osmosis is the finest filtration known. Justify	L3	1	1		

	b)	How can you determine if you are past breakpoint chlorination?	L2	1	1		
14	a)	What are the causes and problems due to scales and sludges?	L2	1	1		
		Discuss the methods for treatment of scales and sludges					
	b)	What is the principle of the EDTA method? Describe the	L1	1	1		
		estimation of hardness of water by EDTA method.					
15	a)	Explain different internal treatment methods used for boiler feed	L1	1	1		
		water.					
	b)	What is carbonate and noncarbonate hardness of water? List out	L1	1	1		
		various disadvantages of using hard water.					

<u>UNIT-II</u>

Battery Chemistry & Corrosion

1	enemistry & corrosion	T 0	_	
1.	How does fuel cell differ from battery.	L2	2	1
2	What are the four components of a lithium ion battery?	L2	2	1
3	Differentiate between primary battery and secondary battery.	L2	2	1
4	Formation of which types of metal oxide film causes rapid and continuous corrosion.	L2	2	1
5	What is galvanic corrosion?	L1	2	1
6	What is the effect of pH on corrosion?	L2	2	1
7	What are the basic requirements for commercial batteries?	L2	2	1
8	What are the applications of lithium ion batteries to electric vehicles?	L2	2	1
9	Corrosion of water filled steel tanks occurs below the waterline. Give a reason.	L2	2	1
10	What is the pilling bedworth rule?	L1	2	1
11	Write a short note on solar cells.	L1	2	1

1	a).	What is a battery? Explain the construction and working of zinc air batteries.	L1	2	1
	b).	Lithium ion batteries are the future of energy storage. Justify	L3	2	1
2	a)	Explain the working principle of hydrogen- oxygen fuel cells with reactions.	L1	2	1
	b)	Describe how iron or steel can be made corrosion resistant by cathodic protection methods.	L2	2	1
3	a)	Explain various factors affecting the rate of corrosion.	L1	2	1
	b)	Define fuel cell. Explain the construction and working of solid oxide fuel cells. Mention its advantages.	L2	2	1
4	a)	Define corrosion of metals. What are different types of corrosion? Explain the electrochemical theory of wet corrosion, giving its mechanism.	L1	2	1
	b)	Microbial fuel cells are considered as a source of sustainable energy. Explain?	L3	2	1
5	a)	Define corrosion. Explain oxidation corrosion and its mechanism. Discuss the role of nature of metal oxide formed in oxidation corrosion.	L1	2	1
	b)	How is steel protected cathodically? Discuss with impressed current cathodic protection method.	12	2	1

<u>UNIT-III</u>

Polymeric materials

S.No	Questions	BT	CO	PO
	Part – A (Short Answer Questions)			
1	Why thermosetting plastics cannot be reused and reshaped?	L3	3	1
2	What is the need for vulcanisation of raw rubber?	L3	3	1
3	List out the monomers of nylon 6:6.	L2	3	1
4	Teflon is an addition polymer, but it behaves somewhat like a thermosetting polymer. Give a reason.	L2	3	1
5	List out the applications of conducting polymers.	L2	3	1
6	List out the commonly used fibers in the following: a) GFRP b) CFRP c) AFRP	L1	3	1
7	What are dopants in conducting polymers. Give examples.	L2	3	1
8	What are biodegradable polymers used for?	L2	3	1
9	State the monomers used in making the following: a) PVC b) Teflon	L2	3	1
10	PVC is soft and flexible whereas bakelite is hard and brittle. Give reasons.	L3	3	1
	Part – B (Long Answer Questions)			
11 a)	Write a note on classification of polymers.	L1	3	1

	b)	Explain the conduction mechanism of trans polyacetylene.	L1	3	1
12	a)	Differentiate between addition and condensation polymerisation with suitable examples.	L2	3	1
	b)	Describe the method of preparation, properties and applications of the following a) Buna S b) Thiokol rubber	L1	3	1
13	a)	What is natural rubber? Explain why natural rubber needs vulcanisation. How it is carried out.	L2	3	1
	b)	Define the term plastic. Explain the properties and applications of the following a) PVC b) Teflon c) Bakelite	L2	3	1
14	a)	What are fiber reinforced plastics? Mention its types and applications.	L1	3	1
	b)	What are biodegradable polymers? Explain the advantages and applications of a) Poly lactic acid	L1	3	1

		b) Poly vinyl alcohol			
15	a)	What is fiber? Explain the properties and engineering	L2	3	1
		applications of the following			
		a) Nylon 6:6			
		b) Terylene			
	b)	Explain free radical addition polymerisation mechanism with	L1	3	1
		suitable example.			

<u>UNIT-IV</u>

Energy Sources

S.	No	Questions	BT	CO	PO
		Part – A (Short Answer Qu <mark>estion</mark> s)			
	1	What is meant by the calorific value of a fuel?	L2	4	1
	2	What are the characteristics of good quality of coal?	L2	4	1
	3	Gasoline containing tetraethyl lead is used in internal	L2	4	1
		combustion engines. Give reasons.			
	4	Why are gaseous fuels more advantageous than solid fuels?	L2	4	1
	5	What is the cracking of petroleum?	L1	4	1
	6	What are the advantages of biodiesel?	L2	4	1
	7	What is cetane value of a diesel fuel?	L2	4	1
	8	What are the different alternate fuels used? Why do we need	L2	4	1
		alternative fuels?			
	9	Distinguish gross and net calorific value of a fuel.	L2	4	1
1	10	What is LPG? What are its advantages?	L1	4	1
		Part – B (Long Answer Questions)			
11	a)	What are fuels? Give complete classification of fuels with	L1	4	1
		suitable examples.			
	b)	What is meant by cracking of petroleum? Explain the moving bed catalytic cracking method of obtaining gasoline.	L1	4	1
12	a)	Explain the proximate analysis of coal? How is it carried out?	L1	4	1
		Mention its significance.			
	b)	What is the significance of ultimate analysis of coal? How is this	L2	4	1
		analysis carried out in the laboratory?			
13	a)	Describe the manufacture of gasoline by Fischer-Tropsch	L1	4	1
		method.			
	b)	What is biodiesel? Explain the production of biodiesel from the	L2	4	1
		transesterification process. Mention the applications of biodiesel.			

14	a)	What is the principle of refining petroleum? Describe the fractional distillation process for refining petroleum. What are various fractions obtained from petroleum?	L2	4	1
	b)	Explain the term knocking in an IC engine? How is it related to chemical constitution? Explain octane number and cetane number.	L2	4	1
15	a)	Explain the advantages and applications of the following a) LPG	L1	4	1

	b) CNG			
b)	What is calorific value? What is the relationship between HCV and LCV? How calorific value can be calculated by Dulongs formula.	L2	4	1

<u>UNIT-V</u>

S.	No	Questions	BT	CO	PO
		Part – A (Short <mark>Ans</mark> wer Questions)			
	1	State the significance of the pour point of lubricants.	L2	5	1
	2	Why is lubricant needed?	L2	5	1
	3	What should be the flash point of a good lubricant?	L2	5	1
	4	What type of lubricants are suitable for thick film lubrication?	L2	5	1
	5	Define the soundness of a cement.	L2	5	1
	6	Who discovered cement and why it is called portland cement.	L2	5	1
	7	What is the role of gypsum in setting and hardening?	L2	5	1
	8	What is thermo responsive material?	L1	5	1
	9	What are the advantages of excess lime during manufacturing of cement?	L2	5	1
1	10	What are shape memory materials?	L1	5	1
		Part – B (Long Answer Questions)			
11	a)	Discuss the important properties of lubricants and indicate the significance of these properties.	L2	5	1
	b)	What is cement? Explain the composition of Portland cement.	L1	5	1
12	a)	Write the chemical reactions that take place during setting and hardening of portland cement	L1	5	1
	b)	Explain how lubricants work. Explain the mechanism of lubrication in detail	L2	5	1
13	a)	Define the term lubricant. Write a detailed note on classification of lubricants with suitable examples.	L1	5	1
	b)	Explain the term setting and hardening of cement. What are the compounds which contribute to the hardening?	L2	5	1
14	a)	What are shape memory materials? What are the applications of polyurethanes?	L1	5	1
	b)	What are thermoresponsive materials? Discuss the applications of polyacrylamide and poly vinyl amides.	L1	5	1

* **Blooms Taxonomy Level (BT)** (L1 – Remembering; L2 – Understanding; L3 – Applying; L4 – Analyzing; L5 – Evaluating; L6 – Creating)

Course Outcomes (CO)

Program Outcomes (PO)

Prepared By: R SATYAVATHI

