Q.P Code: 23PH102

Hall Ticket No.:

NARSIMHAREDDY ENGINEERING COLLEGE (UGC AUTONOMOUS)

I B.Tech I Semester (NR23) Regular Examination, January/February 2024

APPLIED PHYSICS

(Common to CSE, IT)

Maximum marks: 60

Note: • This question paper contains two parts, A and B

Time: 3 hours

- Part A is compulsory which carries 10 marks (10 sub questions are two from each unit carry 1 Marks). Answer all questions in Part A
- Part B Consists of 5 Units. Answer one question from each unit. Each question carries 10 Marks and may have a, b sub questions

Part-A Answer all questions

(10 Marks)

0.No	=											
0	a.	ь.		C		d.	0		ùo	7		-
Question	What are matter waves?	Mention a few drawbacks of the classical theory of the free	electron.	List out the majority and minority charge in n-type and p-type	semiconductors.	Draw CE, CB, and CC configurations of an n-p-n transistor.	Define electric dipole and dipole moment?	Mention a few applications of soft magnetic materials.	What is surface to volume ratio?	What are the various methods in the characterization of materials?	Differentiate between laser light and conventional light?	Why optical fiber communication is beneficial than traditional
N	-	_		_		_	_	-	_	_	_	_
CO	COI	COI		CO2		CO2	CO3	CO3	CO4	CO4	COS	COS
BL		12				L3		1.2	LI	LI	L2	LI

Part-B (50 Marks) Answer all the Units All Questions carry equal Marks

		4)		3)			2)		Q.No
5		a		Exp		Ъ.	2		0
b Draw the V - I characteristics of a PN junction diode.	p-type semiconductors.	a. Classify extrinsic semiconductors. Compare n-type and 6 CO2	IND	3) Explain Kronig – Penny Model.		b. Show that $\lambda = \frac{1.227}{\sqrt{V}} nm$	2) a. Explain the photoelectric effect.	ON	Question
N junction o		Compare	UNIT-II		OR			UNIT-I	
iode.		n-type							
		and							
4		6		10		S	5		×
4 CO2		CO2		10 CO1 L3		COI	COI		M CO BL
L3		1.4		L3		1.3	L2		BL

Page 1 of 2

	Ξ			10)			9)			8)			_	7)		_	6) a		Ь	5) a	
5	a.		Ç	î.		ь.	a.		ь.	2.			Ď.	a.		Ь.					
Derive expressions for them.	Define acceptance angle and numerical aperture.	OR	What are the applications of laser in the medical field.	Explain the construction and working of CO ₂ laser.	UNIT-V	Compare various characterization techniques.	What are the properties of nanomaterials?	OR	What are the applications of nanomaterials?	Explain any one method in the top-down approach.	UNIT-IV	with a neat diagram.	Explain the hysteresis behavior of ferromagnetic materials	What is hysteresis?	OR	Derive an expression for the internal field.	Define internal field?	UNIT-III	Derive expression for Hall voltage?	Write the statement of the Hall effect.	C.
00	2		w	7		On.	S		S	S			00	2		~	2		∞	2	
COS	CO5		CO5	COS	-61	CO4	CO4		CO4	CO4			CO3	CO3		CO3	CO3		CO2	CO2	
			L2			L3	L2		L2	L3			L3	L2		L3	L2		L4	L3	

--00000--

· Code: 23PH202

Hall

	cket	
	Zo	
-	_	
-		-
1	-	1
1		
1		

NARSIMHAREDDY ENGINEERING COLLEGE (UGC AUTONOMOUS)

1 B.Tech II Semester (NR23) Regular Examination, July 2024

(Common to CE, EEE, ME, ECE, CSE (CS), CSE (AI&ML)) APPLIED PHYSICS

Maximum marks: 60

ime: 3 hours ote: • This question paper contains two parts, A and B

Part A is compulsory which carries 10 marks (10 sub questions are two from each unit carry 1 Marks). Answer all questions in Part A

• Part B Consists of 5 Units. Answer one question from each unit. Each question

carries 10 Marks and may have a, b sub questions

(10 Marks)

Part-A

Part-B (50 Marks)

Answer all the Units All Questions carry equal Marks

100	II	4)	T	L		3)			2)	1	0.No	
2	11	5 4			b.	a.		b.	,a	1	-	
What to see	where is Hall effect? Describe an experimental setup to	Explain the principle and construction of Lizz.	Compare direct and indirect band gap semiconductors.	and semiconsocration UNIT-II	Choose any five directors based on the band theory of solids.	a. Show that the energy of purchases hetween conductors, insulators	frarticle in a ID box is quantised.	b. Identify the salient leature of since OR	energy in a blackbody spectrum.	briefly the distribution of 3 Co.	Question	
1	-	1	S	S		U	0		5		1	A
P	250	COS	CO2	CO2		100	000	1001	5 COI	100	201	M CO BL
page 1 of 2		1.4	LA	Lá		110	12	13	L3		3	70

measure the Hall voltage.

	10)	- 1	1	9)	b.	8)	1	Ģ	7) a	1 }	5	6) a.		6.
Explain the working of semiconductor tasser viscos. Discuss about fiber optic communication with suitable discream.	b. List the applications of fiber optics in various b.	-	b. Discuss various applications of UNIT-V	a. Justify why the surface of Nano materials?	b. Explain the working of the Control of the Contro	fabricati	Discuss about various botto	characteristic properties.	of Ferro electrics. Mhat are soft and hard magnetic materials? Give their	mportant properties	-1 +	polarizations. polarizations loop in Ferro magnet materials? What 5	elec	State the principle of solar cell? Discuss the construction of solar cell with neat sketch.
5	Ch	unic	7	S	Or -	S	U	-	5	-	- t		-	-
Cos	Č05	005	1 005	CO4	CO4	CO4	3	CO4	CO3	000	503	CO3	1	-
	1.2	L3	L2	1.3	LS	177		14	L4		L3	L3	\$ 5	2

--000000--

.P Code: 23PH102

	11211	17.71		
	LICKEL	Tining		
	140	7		
	-	-		-
-		-	-	-
	-			- Francisco
				-
1				
ŀ				-

NARSIMHAREDDY ENGINEERING COLLEGE (UGC AUTONOMOUS)

I B.Tech I Semester (NR23) Supplementary Examination, July 2024 APPLIED PHYSICS

(Common to CSE, IT)

ime: 3 hours

Maximum marks: 60

This question paper contains two parts, A and B
 Part A is compulsory which carries 10 marks (10 sub questions are two from each

unit carry I Marks). Answer all questions in Part A

· Part B Consists of 5 Units. Answer one question from each unit. Each question carries 10 Marks and may have a, b sub questions

(10 Marks)

Answer all questions

Q.No	0	Question Ouestion
() a.	123	Write an expression for Stefan-Boltzmann law?
	5	Find the minimum energy level for an electron in a 1-12 potential
		box.
	0	Draw Fermi (EF) energy level in intrinsic, p- type and n-types
		semiconductors.
	0	Distinguish between direct and indirect bandgap semiconductors?
_	0	Define dielectric nolarization Classify?
	5 5	Mention few applications of magnetic field sensors?
-	2 :	Classify the nanomaterials
-	- á	What are the adventages of nanomaterials?
-	. 11.	Wildt alle the agrantinger
		Define pumping?
	Ļ٠.	Calculate the acceptance angle of an optical liber of core and

Answer all the Units Ali Questions carry equal Marks Part-B

(50 Marks)

Q.No	0	Question UNIT-I
2)	2	a. Distinguish between electromagnetic wave and matter wave?
	5	Explain de Broglie's hypothesis.
	1	OR
	22	 a Discuss Drude – Lorentz's theory of free electrons.
1	cr.	 b. Classify solids based on energy bands.
		UNIT-II
4)	2	a. Compare direct and indirect band gap semiconductors
	5	

Page 1 of 2

b. E	11) a. L		b. L	10) a. E		aj aj	ь	9) a E		b. W	8) a Ex		b. Di	7) a. Ex		b. De	6) a De		COL	ь.	2) a. 144 B
Explain optical fiber communication system.	Label various parts of an optical fiber using a neat diagram.	OR	List the various methods in pumping.	Explain Einstein's coefficients.	UNIT-V	applications of nanomaterials.	What is the principle of the XRD method? Mention a few	Explain the ball milling method.	OR	What are the various applications of nanomaterials.	Explain quantum confinement and surface-to-volume ratio.	VI-TIN)	Distinguish between soft and hard magnetic materials.	Explain the domain theory of ferromagnetism.	OR	Deduce expression for Clausius - Mosotti equation.	Define electric dipole, dipole moment, and susceptibility.	UNIT-III	configuration of most suitable?	Which	-+
	1		C	- 10	3		S	U		4	. 6		U	U			1 3		-	7	+
0.05	COS	200	COS	000	000		CO4	CO4		CO4	CO4		COS	COS	200	003	COS			CO2	2
LJ	1 5	1	1.5	- 2			7.1	15		7.7	1 5	3	1.4	14	3	6.3	13			1.3	1 7

--000000--

Code No: 132AF

Time: 3 hours

3.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech I Year II Semester Examinations, May - 2019

APPLIED PHYSICS

(Common to CE, ME, MCT, AE, MIE, PTM, CEE, MSNT)

Max. Marks: 75 Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

1 0)	Define story of the last	(25 Marks)
1.a)	Define stress, strain and write their units.	[2]
b)	Define Poisson's ratio.	[2]
c)	What is the Sabine's formula? Explain	[3]
d)	What is acoustic quieting?	[2]
e)	What is Piezoelectric effect?	[2]
f)	What are the properties of ultrasonics?	[3]
g)	Explain dielectric constant & electrical susceptibility.	[2]
h)	Distinguish between Ferro-electricity and Piezoelectricity.	[3]
i)	What is Bohr magneton?	[2]
j)	Explain ferromagnetism.	[3]

PART-B

(50 Marks)

- What is the Torsional pendulum? Explain how it is used to determine the 2. rigidity modulus of a given wire. [10]
 - Derive the relation between three modules of elasticity.

Explain various factors affecting architectural acoustics and their remedies. 4.

- 5.a) What are the requisites for good acoustics?
 - Describe the method of measurement of sound absorption coefficient. b)

Explain how the ultrasonic waves produced with the help of piezoelectric method.[10] 6.

Describe in detail applications of ultrasonic waves 7.

[10]

8.a) Explain the electronic polarizability in atoms and obtain an expression for electronic polarizability in terms of the radius of the atom.

b) The radius of a gaseous atom is 0.062nm. Calculate the electronic polarizability of the gas and its relative permittivity. Given that the number of atoms of the gas is 2.7 × 10²⁵ per m³.

OR

9.a) Explain in detail the structure of BaTiO₃ and write its applications.

b) Derive an expression for ionic polarizability in an ionic solid. [5+5]

af magnatic

10.a) Explain the origin of magnetic moment and also explain classification of magnetic materials.

b) Describe Hysteresis behavior of ferromagnetic material.

[5+5]

OR

11.a) Describe the properties of superconductors.

b) What are important applications of superconductors? Explain in detail.

[4+6]

--00O00--

Code No: 151AE

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year I Semester Examinations, September/October - 2021 APPLIED PHYSICS

(Common to ECE, EIE, ECM, CSBS, CSE(AI&ML), CSE(IOT))

Time: 3 Hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

1.a) Show that the energies of a particle in a one dimensional potential box are quantized.

b) Find the probability of finding a particle between 0.35a and 0.65a where 'a' is the width of the box and particle is in the first excited state. [10+5]

2.a) Describe the Davisson and Germer's experimental for verification of matter waves.

Electrons are accelerated through 344 volts and are reflected from a crystal. The first reflection maximum occurs when glancing angle is 60° . Determine the spacing of the crystal. Given $h = 6.62 \times 10^{-34}$ Joule-sec, $e = 1.6 \times 10^{-19}$ C and $m_e = 9 \times 10^{31}$ kg. [10+5]

3.a) What is a PN-junction diode? Discuss the V-I characteristics of a diode in both the biasing conditions.

b) Explain advantage of Zener diode over P-N junction diode.

[10+5]

4.a) Explain the Hall effect in metal? Derive the formulae to determine Hall coefficient and mobility of electrons.

b) An n-type germanium sample has a donor density of 10^{21} /m³. It is arranged in a Hall experiment having magnetic field of 0.5T and the current density is 500 A/m². Find the Hall voltage if the sample is 3mm wide.

5.a) What is an LED? Explain the working of LED with a neat diagram.

b) Write a short note on solar cell.

[10+5]

6.a) What are semiconductor diode lasers? Describe the construction and working of a semiconductor laser with energy band diagram.

b) Discuss advantages of diode lasers over gas lasers.

[10+5]

7.a) Draw the block diagram of an optical fibre communication system and explain the function of each block.

b) Consider a fibre having a core of index 1.48, a cladding of index 1.46 and has a core diameter of 30 mm. Show that all rays making an angle less than 9.43° with the axis will propagate through the fibre. [10+5]

8.a) State and explain the basic laws of electromagnetism in their integral form.

b) Distinguish between conduction current and displacement current.

[10+5]

Sloundly to some not	

Code No: 152AE

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year II Semester Examinations, November/December - 2020 APPLIED PHYSICS

(Common to CSE, IT, ITE)

Time: 2 hours

b)

Max. Marks: 75

Answer any five questions All questions carry equal marks

What is Compton effect? Explain in detail. 1.a) Calculate the velocity and kinetic energy of an electron having wavelength of 0.21nm. b) [9+6] Discuss Born's interpretation of the wave function. 2.a) Derive the expression for de-Broglie's wavelength. [7+8]b) Discuss n-type semiconductors fermi level variation with respect to carrier concentration 3.a) and temperature. Derive an expression for carrier generation and recombination. [8+7] b) What is Hall effect? Derive an expression of Hall Coefficient. 4.a) Distinguish between n- type and p-type semiconductors. [9+6] b) 5.a) Write a note on Avalanche photodiode. What is a radiative and non-radiative recombination mechanism in semiconductors? b) [9+6] Describe in detail with a neat diagram LED construction and working principle. 6.a) [9+6] What are the characteristics of Solar cell? b) With necessary theory and energy level diagram explain the working of He-Ne gas laser. 7.a) Write a note on Losses associated with optical fibers. [9+6] b) Obtain an expression for the Internal field seen by an atom in an infinite array of atoms 8.a) subjected to an external field.

Write a note on ferromagnetic domains.

R18

Code No: 152AE

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year II Semester Examinations, September/October - 2021 APPLIED PHYSICS

(Common to EEE, CSE, IT, CSIT, ITE, CE(SE), CSE(CS), CSE(DS), CSE(Networks)) Max. Marks: 75

Time: 3 Hours

Answer any five questions All questions carry equal marks

1.a)	In detail describe Photoelectric effect.	
b)	Discuss Heisenberg's Uncertainty principle.	[7+8]
,		
2.a)	Write a note on Carrier generation and recombination.	
b)	Explain Photo-electric effect and Compton Effect in detail.	[7+8]
3.a)	Describe formation of depletion region in p-n junction diode.	
b)	Explain operation of principle of BJT.	
c)	What are the applications of p-n junction diode?	[6+6+3]
		51.53
4.	Explain about Zener diode with its characteristics.	[15]
		andring of
5.	What is Lasing action? Explain in detail. Discuss construction and w	Orking of
	semiconductor lasers with diagram.	[15]
	Will the It is the It is the It is a state of the Me les	er cyctem
6.	With suitable diagram explain construction and working principle of He-Ne las	[15]
	()'^	[15]
7.a)	What are losses associated with optical fibers? Explain in detail.	5= .03
b)	What is "total internal reflection"? Discuss about applications of Optical fibers	. [7+8]
	Di de la la la della del	of magnetic
8.	Discuss in detail about "Hysteresis loop". Mention some of the applications of	[15]
	materials.	[13]
		^
	00000	()_
		V7
		17