

NARASIMHA REDDY ENGINEERING COLLEGE

(Autonomous) Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad Accredited by NAAC with A Grade, Accredited by NBA

ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

Course Title : POWER ELECTRONICS

Course Code : 23EE501

Regulation : NR23

Course Objectives

- To Design/develop suitable power converter for efficient control or conversion of
- power in drive applications
- To Design / develop suitable power converter for efficient transmission and

utilization of power in power system applications.

Course Outcomes (CO's)

- CO1 Apply the basic operation and characteristics of various power semiconductor devices and intelligent power module.
- CO2 Design AC/DC rectifier circuit
- CO3 Evaluate chopper circuits
- CO4 Examine three phase inverter circuits
- CO5 Create AC voltage controller circuits

<u>UNIT–I</u>

Power Switching Devices

S.No	Questions	BT	CO	PO				
	Part – A (Short Answer Questions)							
1	Define latching current of SCR.	L1	CO1	PO1				
2	What are the different methods to turn on the thyristor?	L1	CO1	PO1				
3	What are the parameters involved in switching loss of power	L1	CO1	PO1				
	device?							
4	Why are IGBT becoming popular in their application to controlled	L1	CO1	PO1				
	converters?							
5	Write down the applications of IGBT?	L1	CO1	PO1				
6	What are the advantages of MOSFET?	L1	CO1	PO1				

7	Define the term pinch off voltage of MOSFET	L1	CO1	PO1
8	Define latching and holding current of SCR.	L1	CO1	PO1

	9	What is meant by commutation and write down its types.	L1	CO1	PO1		
	10	Compare MOSF <mark>ET</mark> and BJT?	L1	CO1	PO1		
Part – B (Long Answer Questions)							
11	a)	Describe the curr <mark>ent co</mark> mmutation technique to turn off the SCR	L2	CO1	PO1,		
		with neat sketch and waveforms.			PO2		
	b)	Explain the concept of series and parallel connections of SCRs	L2	CO1	PO1, PO2		
12	a)	Explain the operation of IG <mark>BT with</mark> the help of neat structural	L1	CO1	PO1		
		diagram and suitable wave forms.					
	b)	Explain the operation of two transistor analogy	L2	CO1	PO1,		
					PO2, PO3		
13	a)	With neat sketch explain the turn on and turn off characteristic of	L2	CO1	PO1,		
		SCR.			PO2, PO3		
	b)	Discuss in detail the static and switching characteristic of power	L2	CO1	PO1,		
		IGBT.			PO2		
14	a)	Explain the switching performance of BJT with relevant	L2	CO1	PO1,		
		waveforms indicating clearly the turn-on, turn-off times and their			PO2		
		components					
	b)	Explain the switching characteristics of power IGBT with neat	L2	CO1	PO1		
		circuit diagram and waveforms.					
15	a)	Explain the switching performance of MOSFET with relevant	L2	CO1	PO1,		
		waveforms indicating clearly the turn-on, turn-off times and their			102		
		components					
	b)	Compare and contrast the performance characteristics of IGBT	L1	CO1	PO1		
		and MOSFET					
16	a)	Explain the switching performance of SCR with relevant	L2	CO1	PO1		
		waveforms indicating clearly the turn-on, turn-off times and their components			, PO2		
		components.			, PO3		
	b)	Draw the basic structure of an IGBT and explain its operation	L2	CO1	PO1		

UNIT-II

AC-DC Converters (Phase Controlled Rectifiers)

S.No	Questions	BT	CO	PO		
Part – A (Short Answer Questions)						
1	Mention some of the applications of controlled rectifier.	L1	CO2	PO		
				1		
2	Give any two differences single phase full and semi converter?	L1	CO2	PO		
				1		

3	What is dual converter?	L1	CO2	PO 1
4	What is the function of freewheeling diodes in controlled rectifier?	L1	CO2	PO 1
5	What is commutation angle or overlap angle?	L1	CO2	PO 1
6	What is meant by input power factor in controlled rectifier?	L1	CO2	PO 1
7	What is meant by rectification mode in single phase fully controlled converter?	L1	CO2	PO 1
8	What is the difference between half controlled & fully controlled bridge rectifier?	L1	CO2	PO 1
9	Why is power factor of semi converter better than full converter?	L1	CO2	PO 1
10	What is the effect of source impedance on the performance converter?	L1	CO2	PO 1
			·	

	Part – B (Long Answer Questions)						
11	a)	A 230v,50hz supply is connected to load resistance of 120hm through half controlled rectifier, if the firing angle is 60 degree determine,	L1	CO2	PO1		
		(i) Average output voltage					
		(ii) Ratio of rectification					
		(iv) TUF					
	b)	Describe the effect of source inductance on the performance of a	L2	CO2	PO1		
		single phase full converter indicating clearly the conduction of			, PO2		
		various thyristors during one cycle. Derive the expression for its output voltage.					
12	a)	A single phase full bridge converter is connected to 'R' load. The	L2	CO2	PO1		
		source voltage is of 230 V, 50 Hz. The average load current is of 10					
		A. For $R = 20 \Omega$ find the firing angle.					
	b)	Explain the principle of operation of single phase dual converter	L2	CO2	PO1		
		with neat power circuit diagram.			, PO2		
13	a)	Describe the operation of a single phase two pulse bridge converter	L2	CO2	PO1		
		using 4 SCR'S using RLE load with relevant waveforms.			, PO2		
	b)	Explain the operation of a single phase full bridge converter with	L1	CO2	PO1		
		RL load for continuous and discontinuous load currents.		~~•	D.o.1		
14	a)	Describe the operation of a single phase two pulse bridge converter	L1	CO2	PO1		
	1 \	using 4 SCR'S using RL load with relevant waveforms.	T 1	<u> </u>	DO1		
	b)	A 220v, Ikw R load is supplied by 220v,50Hz source through 1¢ fully controlled converter. Determine the following for 800w	LI	02	POI		
		output.					
		A) average output voltage b) rms value of i/p current c)					
		fundamental component of input current d) displacement factor.					

15	a)	Explain the working of a three phase full converter with 'R' load for the firing angles of 60° and 90°.	L2	CO2	PO1 , PO2
	b)	Explain the operation of 3 phase half controlled converter with neat waveforms. also derive an expression for the average output voltage	L1	CO2	PO1
16	a)	A single phase semi converter is operated from 120 V 50 Hz ac supply. The load current with an average value Ide is continuous and ripple free firing angle $\alpha = \pi/6$. Determine i. Displacement factor ii. Harmonic factor of input current iii. Input power factor.	L2	CO2	PO1 , PO2
	b)	Explain the operation of sin <mark>gle ph</mark> ase half controlled rectifier with inductive load	L1	CO2	PO1

UNIT-III DC-DC Converters (Chopper/SMPS)

S.No	Questions	BT	CO	PO				
Part – A (Short Answer Questions)								
1	What are the applications of dc chopper?	L1	CO3	PO1				
2	What is meant by step-up and step-down chopper?	L1	CO3	PO1				
3	What are the two types of control strategies?	L1	CO3	PO1				

	4	What is meant by FM control in a dc chopper?	L1	CO3	PO1
	5	What are the disadvantages of FM control?	L1	CO3	PO1
	6	Write down the expression for the average output voltage for step	L1	CO3	PO1
		down and step up chopper.			
	7	Differentiate between constant frequency & variable frequency	L1	CO3	PO1
		control			
	8	What are the advantages of SMPS over phase controlled	L1	CO3	PO1
		rectifiers?			
	9	Define current limit control in DC–DC converter?	L1	CO3	PO1
1	10	Distinguish between time ratio control and current limit control?	L1	CO3	PO1
		Part – B (Long Answer Questions)			
11	a)	A step-up chopper has input voltage of 220 V and output voltage	L1	CO3	PO1
		of 660 V. If the non-conducting time of thyristor chopper is 100			
		μ s, compute the pulse width of output voltage. Incase pulse width			
		is halved for constant frequency operation, find the new output			
		voltage.			
	b)	Explain the various modes of operation of Boost DC-DC	L1	CO3	PO1
		converter with necessary waveforms.			
12	a)	Explain the working of Buck–Boost converter with sketch and	L1	CO3	PO1
		waveforms and also drive the expression for output voltage			

	1 \		т 1	CO2	DO1
	b)	Discuss the principle of operation of DC-DC step up chopper with		COS	POI
		suitable waveform. Derive an expression for its average DC			
		output voltage.			
13	a)	Discuss the principle of operation of DC-DC step down chopper	L1	CO3	PO1
		with suitable waveform. Derive an expression for its average DC			
		output voltage.			
	b)	A step-down dc chopper has a resistive load of $R = 15\Omega$ and input	L3	CO3	PO1
		voltage $E_{dc} = 200$ V. When the chopper remains ON, its voltage			PO2
		drop is 2.5 for a duty cycle of 0.5. Calculate			, PO3
		(1) Average and r.m.s value of output voltage			
		(2) Power delivered to the load.		~~~	
14	a)	Draw the circuit of Buck-Boost regulator and explain its working	L1	CO3	POI
		principle with necessary waveform in detail.			
	b)	Draw the circuit of buck regulator and explain its working	L1	CO3	PO1
		principle with necessary waveforms.			
15	a)	Write short notes on switch mode power supply	L1	CO3	PO1
	b)	Explain the various modes of operation of Boost DC-DC	L1	CO3	PO1
		converter with necessary waveforms.			
16	a)	A dc chopper input voltage of 200v and resistive load of $R = 8\Omega$	L2	CO3	PO1,
		resistance Voltage drop across thyristor is 2v and chopping	r.		r02
		frequency 800 Hz the duty cycle is 0.5. Calculate			
		(1) Average and r.m.s value of output voltage			
		(2) Chopper efficiency and input resistance by the			
		source.			
	b)	Draw the circuit of buck regulator and explain its working	L3	CO3	PO1
		principle with necessary waveforms.			,
					PO2
					, PO3

UNIT-IV AC-DC Inverters

S.	No	Questions	BT	CO	PO
		Part – A (Short Answer Questions)	_		-
	1	What are the applications of an inverter?	L1	CO4	PO 1
2	2	What is meant by forced commutation?	L1	CO4	PO 1
	3	Why thyristors are not preferred for inverters?	L1	CO4	PO 1
4	4	Why diodes should be connected in ant parallel with the thyristors in inverter circuits?	L1	CO4	PO 1
4	5	How is the inverter circuit classified based on commutation circuitry?	L1	CO4	PO 1
(6	What is meant by PWM control?	L1	CO4	PO 1
	7	What are the advantages of PWM control?	L1	CO4	PO 1
8	8	What are the disadvantages of the harmonics present in the inverter system?	L1	CO4	PO 1
9	9	What are the methods of reduction of harmonic content?	L1	CO4	PO 1
1	0	What are the different types of PWM methods for voltage control within inverter?	L1	CO4	PO 1
		Part – B (Long Answer Questions)			
11	a)	With a neat sketch and output voltage waveforms, explain the working of three phase bridge inverter in 180 degree mode of operation.	L1	CO4	PO 1
	b)	Describe the working of a $1-\varphi$ full bridge inverter using R load with relevant circuit and waveforms.	L2	CO4	PO1 , PO2
12	a)	With a neat sketch and output voltage waveforms, explain the working of three phase bridge inverter in 120 degree mode of operation.	L1	CO4	PO 1
	b)	Describe the working of a $1-\varphi$ half bridge inverter using RL load with relevant circuit and waveforms.	L1	CO4	PO 1
13	a)	What is PWM? List the various PWM techniques and explain any one of them	L1	CO4	PO 1
	b)	Describe the working of a $1-\varphi$ full bridge inverter using RL load with relevant circuit and waveforms.	L1	CO4	PO 1
14	a)	Explain the following PWM techniques used in inverter. a. Sinusoidal PWM b. Multiple PWM.	L1	CO4	PO 1
	b)	Describe the working of a $1-\varphi$ half bridge inverter using R load with relevant circuit and waveforms.	L1	CO4	PO 1
15	a)	Describe the working of a $1-\varphi$ half bridge inverter using R& RL load with relevant circuit and waveforms.	L1	CO4	PO 1

	b)	What is PWM? List the various PWM techniques and explain any	L1	CO4	PO
		one of them			1
16	a)	Describe the working of a 1-φ full bridge inverter using R& RL	L1	CO4	PO
		load with relevant circuit and waveforms.			I
	b)	Explain the following PWM techniques used in inverter.	L1	CO4	PO
		a. Sinusoidal PWM			1
		b. Multiple PWM.			

S.	No	Questions	BT	CO	PO
Part – A (Short Answer Questions)					
	1	What is Integral cycle or ON-OFF control?	L1	CO5	PO1
	2	What is the formula for duty cycle in ON-OFF control method?	L1	CO5	PO1
3		What is meant by cyclo-converter?	L1	CO5	PO1
4		What are the disadvantages of continuous gating signal?	L1	CO5	PO1
	5	What are the applications of phase controlled converter or ac	L1	CO5	PO1
		voltage controllers?			
	6	What are the types of ac voltage controller?	L1	CO5	PO1
7		What are the two types of cyclo-converters?	L1	CO5	PO1
8		What is meant by step-up and step down cyclo-converters?	L1	CO5	PO1
	9	What is meant by positive converter group in a cyclo converter?	L1	CO5	PO1
1	10	What are the applications of cyclo-converter	L1	CO5	PO1
Part – B (Long Answer Questions)					
11	a)	Explain the operation of 1- φ AC voltage controller with RL load.	L1	CO5	PO1
	b)	Explain the opera <mark>tion of</mark> 1φ to 1φ step up cyclo converter with	L1	CO5	PO1
		power circuit and waveforms.			
12	a)	Explain the operation of 1ϕ to 1ϕ step down cyclo converter with	L1	CO5	PO1
		power circuit and waveforms.			
	b)	A 1- φ sinusoidal AC voltage controller has input voltage 230v.	L2	CO5	PO1,
		50Hz and a load of R=15 Ω . For 6 cycles ON and 4 cycles OFF			PO2
		determine. i) rms output voltage ii) input PF iii) avg & rms	5		
		thyristor			
10		currents.	т 1	C05	DO1
13	a)	Describe the operation of single phase ac voltage controller with the hole of voltage and overant waveform. Also derive the		COS	POI
		expression for average value of the output voltage			
	b)	Explain the operation of $1 - \omega AC$ voltage controller with R load	L1	CO5	PO1
14	a)	A resistive load of 50 is fed through a 1 ϕ full wave AC voltage	L1	CO5	PO1
1	<i>u)</i>	controller from 230v 50Hz source. If firing angle of thyristor is			
		120 degree Find the rms output voltage input power factor and			
		average current of the stor			
	b)	Explain the operation of 1 d to 1 d step up cyclo converter with	L1	CO5	PO1
	0)	nower circuit and waveforms	_		
15	a)	$A_{1-\alpha}$ sinusoidal AC voltage controller has input voltage 230v	L1	CO5	PO1
15	<i>a)</i>	50Hz and its feeding resistive load of 100 hms if firing angle of			
		thyristor is 110 degree. Find i) rms output voltage ii) input PF iii)			
		avg & rms thyristor currents			
	b)	Explain the operation of TRIAC with the help of neat structural	L1	CO5	PO1
		diagram and suitable wave forms.			
16	a)	Discuss in detail the static and switching characteristic of TRIAC	L1	CO5	PO1
	b)	Explain the operation of 1ϕ to 1ϕ step down cyclo converter with	L1	CO5	PO1
		power circuit and waveforms.			

<u>UNIT-V</u> AC-AC Converters

* Blooms Taxonomy Level (BT) (L1 – Remembering; L2 – Understanding; L3 – Applying;L4 – Analyzing; L5 – Evaluating; L6 – Creating) Course Outcomes (CO)

Program Outcomes (PO)

Prepared By: Mrs. CH PRASANNA Assisstant Professor (Dept. of EEE)

