

Code No: 126AK

 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech III Year II Semester Examinations, April - 2018

 MICROPROCESSORS AND INTERFACING DEVICES
(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B

consists of 5 Units. Answer any one full question from each unit. Each question carries

10 marks and may have a, b, c as sub questions.

PART - A

(25 Marks)

1.a) Explain the difference between 8085 and 8086 microprocessors. [2]

b) List out the different Minimum mode signals present in 8086 microprocessor in detail.

[3]

 c) Define instruction. [2]

 d) Define Addressing and what are different types of address mode. [3]

 e) Define the terms maskable and Non-maskable Interrupt of 8086 Microprocessor. [2]

 f) Write short notes on 4-phase Stepper Motor. [3]

 g) What is Serial and Parallel communications in detail? [2]

 h) List out the few comparisons of Synchronous and Asynchronous communications in

detail. [3]

 i) Explain the different applications if Microcontroller in present generation. [2]

 j) List out the few features of 8051 Microcontroller in detail. [3]

PART - B

(50 Marks)

2.a) Define segmentation and list out the different Segmentations present in 8086

Microprocessor in detail.

 b) Draw and explain the different Registers along with its organizations in detail. [5+5]

OR

3.a) Define Flag? Explain the different Flags present in 8086 microprocessor along with

frame format.

b) Draw the Timing Diagram of Maximum mode Read operation and explain its

operation. [5+5]

4.a) Explain the different String manipulation instruction present in 8086 microprocessor in

detail.

b) Write an Assembly language program for Find the positive and negative numbers in an

8-bit array. [5+5]

OR

5.a) List out the different Data transfer instructions present in 8086 Microprocessor and

explain each one in detail.

b) Write an Assembly language program for Find the Even and Odd numbers in an 8-bit

array. [5+5]

R13

used paper 25-04-2018

6.a) What is DMA? Draw the internal architecture of 8257 DMA and explain its operation

in detail.

b) Draw the internal architecture of 8255 PPI and explain its operation along with mode of

operation. [5+5]

OR

7.a) Draw the interfacing Diagram of A/D converter with 8086 Microprocessor and write an

assembly code for it along with explanation.

 b) Draw the frame format of BSR and I/O mode of 8255 PPI and explain each bit of in it.

[5+5]

8.a) List out the different serial communication standards? Explain the synchronous serial

communications with circuit diagram.

b) Define Trouble shooting? List out different software debugging tools present in

Microprocessor in detail. [5+5]

OR

9.a) Draw the PIN diagram of RS-232 serial commination and explain the function of each

pin in detail.

 b) List out different methods of data communications and explain each one with example.

 [5+5]

10.a) Draw the PIN diagram of 8051 Microcontroller and explain function of each pin in

detail.

 b) Explain the following special function registers in detail. [5+5]

 (i) IE and IP (ii) SCON

OR

11.a) Draw the internal RAM memory organization of 8051 Microcontroller and explain its

operation.

b) How many I/O Ports present in 8051 Microcontroller and explain the function of each

Port in detail. [5+5]

---ooOoo---

used paper 25-04-2018

Code No: 126AK

 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech III Year II Semester Examinations, December - 2017

 MICROPROCESSORS AND INTERFACING DEVICES
(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B

consists of 5 Units. Answer any one full question from each unit. Each question carries

10 marks and may have a, b, c as sub questions.

PART - A

(25 Marks)

1.a) What is the function of ALE signal in minimum mode of 8086? [2]

 b) How does 8086 MP implements the pipeline process? [3]

 c) Which instruction of 8086 can be used for look up table manipulation? [2]

 d) What is meant by LOCK prefix? What are uses of it? [3]

 e) What is meant by interrupt vector table of 8086? [2]

 f) What are the advantages of DMA controller? [3]

 g) What is the function of SYNDET/BD signal of 8251? [2]

 h) Compare and contrast IEEE 488 and SPI bus. [3]

 i) What is the function of timers and counters? [2]

 j) Write the advantage of 8051microcontroller over the 8086 microprocessor. [3]

PART - B

(50 Marks)

2.a) Describe the register organization of 8086 family microprocessor.

b) Explain how do you calculate effective physical address using segment address and

offset. [5+5]

OR

3. Draw and explain operation of the each block for the maximum mode of

microprocessor with necessary time diagrams and explain the function of each signal

which is applicable in maximum mode operation of 8086. [10]

4.a) Explain the addressing modes for control transfer instructions.

 b) Explain the significance of jump and loop instructions of 8086. [5+5]

OR

5. Explain the all assemblers and operators available in 8086 with suitable examples. [10]

6.a) Describe the interrupt request response of the 8086 in detailed.

b) Describe the procedure for interfacing of Analog to digital converter with 8086

microprocessor with relevant diagrams. [5+5]

OR

7.a) Draw and explain the internal architecture of 8259.

 b) Describe the control word format of 8255 for I/O and BSR mode. [6+4]

R13

used paper 15-12-2017

8.a) Briefly explain the serial data transfer standards for interfacing of devices.

 b) Explain the operation of IEEE 488 with neat block diagrams. [5+5]

OR

9.a) Draw and explain the synchronous mode transmitter and receiver data formats of

USART 8251.

 b) Discuss briefly the concept of prototype and trouble shooting. [5+5]

10. Draw the internal architecture of 8051 and explain the operation of each block. [10]

OR

11.a) Describe the internal and external RAM organization of 8051 in detailed.

 b) Explain the different arithmetic instructions of 8051 in detailed. [5+5]

---ooOoo---

used paper 15-12-2017

Code No: 126AK

 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech III Year II Semester Examinations, December - 2018

 MICROPROCESSORS AND INTERFACING DEVICES
(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B

consists of 5 Units. Answer any one full question from each unit. Each question carries

10 marks and may have a, b, c as sub questions.

PART - A

(25 Marks)

1.a) Draw the 8086 flag register format. [2]

 b) What is the function of HOLD and HLDA signals of 8086? [3]

 c) Define assembler direction. [2]

 d) Show the method to calculate effective address in indexed addressing mode of 8086

with an example. [3]

 e) Mention the advantages and disadvantages of direct memory access (DMA). [2]

 f) Define interrupt services routine. [3]

 g) What are serial data transfer schemes? [2]

 h) Differentiate RS 232 and IEEE. [3]

 i) List out the special functions of PORT-3 pins of 8051 mc. [2]

 j) What are the differences between microprocessor and microcontroller? [3]

PART - B

(50 Marks)

2.a) List the addressing modes of 8086 and give example to each one.

 b) Explain the function of the following instructions. [5+5]

 (i) AAM (ii) IDIV (iii) INT0

 (iv) LOOP (v) LEA (vi) SAR

OR

3.a) Describe the steps that 8086 will take when it responds to an interrupt.

 b) What is meant by nested interrupt? Explain with an example. [5+5]

4.a) Draw the internal register diagram of 8086 and explain the function of each register.

 b) Explain the function of following pins of 8086. [5+5]

 i) DT/ R

 ii) READY

 iii) NMI

OR

5.a) Discuss the function of maximum mode control bus signals and explain how they are

produced.

 b) Explain the following pins of 8086. [5+5]

 i) MN/ MX ii) TEST iii) BHE iv) DEN

R13

JNTUH USED 24-12-18AM

used paper 24-12-2018 AM

6.a) Draw the interfacing diagram of 8259 programmable interrupt controller to 8086

microprocessor.

 b) Give the interrupt vector table details. [5+5]

OR

7.a) Develop hard ware and soft ware for interfacing an 8-bit ADC to 8086 processor.

b) Interface an 8-bit DAC to 8086 and write a program to generate 1 KHz square wave at

the DAC output. [5+5]

8.a) Describe internal architecture of IEEE-488.

b) Discuss the concept of prototype and trouble shooting. [5+5]

OR

9.a) What is the need for conversion of TTL to RS232C. With the help of diagram explain

the conversion.

 b) Assuming the contents of the mode register of 8251 are 00010100, determine the

 character and message formats of the 8251 serial communication. [5+5]

10.a) Draw the port 0 structure of 8051 mc and explain.

b) Write a program to multiply the data in RAM location 3EH by the number 12H. Put the

result in R4 and R5 registers. [5+5]

OR

11.a) Explain the interrupts of 8051 with priority and vector table.

 b) Write a program to double the number in register R0 and put the result in R3 and R4.

 [5+5]

---ooOoo---

JNTUH USED 24-12-18AM

used paper 24-12-2018 AM

Code No: 126AK

 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech III Year II Semester Examinations, February/March - 2022

 MICROPROCESSORS AND INTERFACING DEVICES
(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 75

Answer any five questions

All questions carry equal marks

- - -

1.a) Draw the flag register of 8086 microprocessor and explain the function of each flag.

b) Draw the minimum mode pin diagram and explain the function of each pin in detail.

[8+7]

2.a) Draw the 8086 microprocessor internal architecture and explain the operation of each

block.

 b) Explain the importance of Queue in BIU unit. [10+5]

3.a) Explain the data transfer instructions with examples.

b) Write an Assemble language program to find number of even and odd numbers in an

8- Bit array. [8+7]

4.a) Define assembler and explain the different assembler directives used in 8086

microprocessor.

 b) Write an Assemble language program to find the sum of squares of first ten numbers.

[8+7]

5.a) Explain memory mapped I/O and I/O mapped I/O.

 b) Give the internal block diagram of 8259A and present the overview of it. [7+8]

6.a) Draw a typical stepper motor interface with 8255 and explain.

 b) Write about the different modes of operations in 8255. [8+7]

7.a) Draw the internal block diagram of 8251 USART and explain the function of each

block in detail.

 b) Explain the following terms in detail.

 i) RS-232

ii) IEEE -488 [7+8]

8.a) Explain the timer and counter operations of 8051 Microcontroller.

 b) Write short notes on (i) PSW (ii) SCON (iii) PCON (iv) TMOD [7+8]

---ooOoo---

R13
used paper feb/m

ar-2022 jntuh

Code No: 126AK

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

 B. Tech III Year II Semester Examinations, June - 2022

MICROPROCESSOR AND INTERFACING DEVICES
(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 75

Answer any five questions

All questions carry equal marks

- - -

1.a) Explain the physical and logical memory organization of 8086.

b) With suitable example, explain how to calculate the physical address from an

instruction of 8086? [8+7]

2.a) State the significance of assembler directives in an assembly language program with

suitable examples.

b) What are the different addressing modes supported by 8086? Give explanation with

suitable examples. [7+8]

3.a) Differentiate the features of 8085 and 8086 microprocessors.

 b) Draw and explain the internal block diagram of 8086. [8+7]

4.a) Describe interrupt cycle of 8086 with neat diagram.

b) Write an assembly language program to find the largest number from an

unordered array of 8-bit numbers. [8+7]

5.a) Explain the significance of communication devices.

 b) Explain the interfacing of an 8251 device to 8086 using peripheral I/O method. [7+8]

6.a) Mention the salient features of basic I/O mode operation of 8255.

 b) Explain output modes of 8279, programmable keyboard/display interface. [7+8]

7.a) What is DMA? State the sequence of operations performed by a DMA controller in a

DMA transfer operation.

 b) With the help of a diagram, explain the different blocks of 8259. [7+8]

8. Draw and explain each block function from the architecture of 8051. [15]

---ooOoo---

R13

used paper june-2022

Code No: 126AK

 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech III Year II Semester Examinations, May - 2019

 MICROPROCESSORS AND INTERFACING DEVICES
(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B

consists of 5 Units. Answer any one full question from each unit. Each question carries

10 marks and may have a, b, c as sub questions.

PART - A

(25 Marks)

1.a) Define Pipeline process? [2]

 b) Draw the Flag register of 8086 microprocessor. [3]

 c) Define macro. [2]

 d) List out the different Instruction formats used in 8086 Microprocessor in detail. [3]

 e) What is need of DMA? [2]

 f) List out different ICW’s and OCW’s of 8259 PIC. [3]

 g) Define trouble shooting. [2]

 h) Define the terms Simplex, Half Duplex and Full Duplex Communication standards.

[3]

 i) Define Microcontroller? List out different 8-bit Microcontroller in detail. [2]

 j) List out the few comparison of Microprocessor and Microcontroller in detail. [3]

PART - B

(50 Marks)

2.a) Draw the internal architecture of 8086 Microprocessor and explain the function of each

block.

 b) Explain the physical memory organization of 8086 Microprocessor with one example.

 [5+5]

OR

3.a) Draw the pin diagram of Maximum mode of 8086 microprocessor and explain the

function of each pin.

b) Draw the Minimum mode read operation timing diagram and explain its operation of

8086. [5+5]

4.a) Define addressing mode? List out the different Addressing modes used in 8086

Microprocessor and explain each addressing mode with one example.

 b) Write an assembly Language program to find the largest number in an 8-bit array. [5+5]

OR

5.a) What is assembler directives? List out different assembler directives used in 8086

Microprocessor in detail.

 b) Write an assembly Language program to find Factorial of an 16-bit number. [5+5]

R13

used paper 16-05-19 PM

6.a) Draw the interfacing diagram of interfacing of a two 4K × 8 RAM and two 8K × 8

ROM with 8086 microprocessor along with memory maps.

 b) Draw and Explain the concept of IC DAC 0808 along with interfacing diagram. [5+5]

OR

7.a) Draw the interrupt vector table of 8086 microprocessor and explain its importance.

 b) Draw the internal architecture of 8259 PIC and explain its operation in detail. [5+5]

8.a) Draw the internal architecture of 8251 USART and explain the function of each block

in detail.

 b) Write short notes on IEEE -488 protocol in detail. [5+5]

 OR

9.a) List out the different serial communication standards? Explain the Asynchronous serial

communications with circuit diagram.

b) Explain the procedure how RS-232 is interfaced with Microprocessor with one

example. [5+5]

10.a) Draw the internal architecture of 8051 microcontroller and explain its operation in

detail.

 b) Explain the following Special function register in detail: [5+5]

 (i) TCON (ii) TMOD

OR

11.a) Write short notes on following registers of 8051 microcontroller:

 (i) PCON (ii) SCON (iii) PSW

 b) List out different applications of 8051 Microcontroller in detail. [8+2]

---ooOoo---

used paper 16-05-19 PM

MICROPROCESSOR & MICROCONTROLLER

LECTURE NOTES

B.TECH
(III YEAR – II SEM)

(2017-18)

Prepared by:

Mr. K Murali Krishna, Associate Professor
Mrs. Vaidehi, Assistant Professor

Department of Electronics and Communication Engineering

MALLA REDDY COLLEGE
OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)
Recognized under 2(f) and 12 (B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)
Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India

Scanned by CamScanner

Scanned by CamScanner

Unit I

8086 Architecture

Essence of the subject

• The microprocessor is the heart of the
computer and it is a hardware component.
Hence we being Electronics engineers, we
need to study this subject. This is the essence
of the subject.

• Various applications of microprocessor are

– Educational field, Medical field, scientific labs,
Banking sector etc.

Introduction to Microprocessors

• Intel introduced it’s 4 bit microprocessor 4004 in
1971 and it’s 8 bit microprocessor 8008 in 1972

• These microprocessors could not survive as
general purpose microprocessors because of
their design and performance limitations.

• Then the launch of a first general purpose 8 bit
microprocessor 8080 in 1974 by Intel is
considered to be the first major stepping stone
towards the development of advanced
microprocessors.

Introduction to Microprocessors cntd…

• The microprocessor 8085 followed by 8080, with a few
more added features to it’s architecture, which
resulted in a functionally complete microprocessor.

• The main limitations of 8-bit microprocessor were
– Low speed,
– Low memory addressing capability
– Limited number of general purpose registers
– Less powerful instruction set

• All these limitations lead to the launching of 8086
microprocessor.

• In the family of 16 bit microprocessors, Intel’s 8086 was
the first one to be launched in 1978.

Introduction to Microprocessors cntd…

• The 8086 microprocessor has a much more
powerful instruction set along with the
architectural developments which imparts
substantial programming flexibility and
improvement in speed over the 8-bit
microprocessor.

• The peripheral chips designed earlier for 8085
were compatible with microprocessor 8086
with slight or no modifications.

Architecture of 8086

• The architecture of 8086 supports a 16 bit ALU, a set of
16 bit registers and provides the segmented memory
addressing capability, a rich instruction set, powerful
interrupt structure, fetched instruction queue for
overlapped fetching and execution etc.

• The internal block diagram, shown in Fig 1.2, describes
the overall organization of different units inside the
chip.

• The complete architecture of 8086 can be divided into
two parts.
– Bus interface unit
– Execution Unit

Architecture of 8086 cntd…

• The bus interface unit contains the circuit for
physical address calculations and a pre-
decoding instruction byte queue (6 bytes long)

• The bus interface unit makes the system’s bus
signals available for external interfacing of the
devices.

Architecture of 8086 cntd…

• In other words, this unit is responsible for
establishing communications with external
devices and peripherals including memory via
the bus.

• As already stated, the 8086 addresses a
segmented memory. The complete physical
address which is 20 bits long is generated
using segment and offset registers, each 16 bit
long.

Architecture of 8086 cntd…

• For generating a physical address from
contents of these two registers, the content of
a segment register also called as segment
address is shifted left bit-wise four times and
to this result, content of an offset register also
called as offset address is added, to produce a
20 bit physical address.

Architecture of 8086 cntd…

• For example, if the segment address is 1005H and
the offset is 5555H, then the physical address is
calculated as below

segment address  1005H
offset address  5555H

Physical address = 1005 * 10 + 5555 = 155A5H
• Thus, the segment addressed by the segment

value 1005H can have offset values from 0000H
to FFFFH within it ie maximum 64 K locations may
be accommodated in the segment.

Architecture of 8086 cntd…

• Thus, the segment register indicates the base
address of a particular segment, while the offset
indicates the distance of the required memory
location in the segment from the base address.

• Since the offset is a 16-bit number, each segment
can have a maximum of 64k locations.

• The bus interface unit has a separate adder to
perform this procedure for obtaining a physical
address while addressing a memory

Architecture of 8086 cntd…

• The segment address value is to be taken from an
appropriate segment register depending upon whether
code, data or stack are to be accessed, while the offset
may be the content of IP, BX, SI, DI, SP, BP or an
immediate 16-bit value, depending upon the
addressing mode.

• In case of 8085, once the op-code is fetched and
decoded, the external bus remains free for some time,
while processor internally executes the instruction.

• The time slot is utilized in 8086 to achieve the
overlapped fetch and execution cycles.

Architecture of 8086 cntd…

• While the fetched instruction is executed
internally, the external bus is used to fetch the
machine code of the next instruction and
arrange it in a queue known as pre-decoded
instruction byte queue. It is a 6 byte long,
first-in first-out structure.

• The instructions from the queue are taken for
decoding sequentially.

Architecture of 8086 cntd…

• Once a byte is decoded, the queue is
rearranged by pushing it out and the queue
status is checked for the possibility of the next
op-code fetch cycle.

• While the op-code is fetched by the interface
unit (BIU), the execution unit (EU) executes
the previously decoded instruction
concurrently.

• The BIU along with EU thus forms a pipeline.

Architecture of 8086 cntd…

• The bus interface unit, thus manages the
complete interface of execution unit with
memory and I/O devices, of-course, under the
control of the timing and control unit.

• The execution unit contains the register set of
8086 except segment register and IP.

• It has a 16-bit ALU, able to perform arithmetic
and logical operation.

Architecture of 8086 cntd…

• The 16-bit flag register reflects the results of
execution by the ALU.

• The decoding unit decodes the op-code bytes
issued from the instruction byte queue.

• The timing and control unit derives the necessary
control signals to execute the instruction op-code
received from the queue, depending upon the
information made available by the decoding
circuit.

• The execution unit may pass the results to bus
interface unit for storing them in memory.

Register organization of 8086

• 8086 has a powerful set of registers known as
general purpose registers and special purpose
registers.

• All of them are 16 bit registers.
• The general purpose registers can be used as

either 8 bit registers or 16 bit registers.
• They may be either used for holding data,

variables and intermediate results temporarily or
other purposes like a counter or for storing offset
address for some particular addressing modes
etc.

Register organization of 8086 cntd…

• The special purpose registers are used as
segment registers, pointers, index registers or as
offset storage registers for particular addressing
modes.

• The register set is categorized into four groups, as
follows:
– General data registers

– Segment registers

– Pointers and index registers

– Flag register

Register organization of 8086 cntd…

General data registers:

• Figure 1.1 shows the register organization of
8086.

• The registers AX, BX, CX and DX are the general
purpose 16 bit registers.

• AX is used as 16 bit accumulator  AH, AL

• AL can be used as an 8 bit accumulator for 8 bit
operations. This is the most important general
purpose register having multiple functions.

Register organization of 8086 cntd…

Register organization of 8086 cntd…

• Usually L and H specify the lower and higher
bytes of a particular register.

• AX – accumulator,
BX – offset storage,
CX – counter,
DX – to store data

Register organization of 8086 cntd…

Segment Registers:

• Unlike 8085, the 8086 addresses segmented
memory.

• The complete 1 megabyte memory, which the
8086 addresses, is divided into 16 logical
segments.

• Each segment thus contains 64 k bytes of
memory.

Register organization of 8086 cntd…

• There are 4 segment registers, viz,
Code segment register (CS)  Code,
Data segment register (DS)  Data,
Extra segment register (ES)  Data,
Stack segment register (SS)  Stack related
data

• The CPU uses the stack for temporarily storing
important data.

Register organization of 8086 cntd…

• While addressing any location in the memory
bank, the physical address is calculated from
two parts, the first is segment address and the
second is offset.

• The segment registers contain 16 bit segment
base addresses, related to different segments

• Any of the pointers and index registers or BX
may contain the offset of the location to be
addressed

Register organization of 8086 cntd…

• The advantage of this scheme is that instead
of maintaining a 20 bit register for a physical
address, the processor just maintains two 16
bit registers which are within the word length
capacity of the machine.

• It may be noted that all these segments are
logical segments

Register organization of 8086 cntd…

Pointers and Index registers:

• The pointers contain offset within the particular
segments.

• The pointers IP, BP and SP usually contain offsets
with in the code (IP), and stack (BP & SP)
segments.

• The index registers are used as general purpose
registers as well as for offset storage in case of
indexed, based indexed and relative based
indexed addressing modes

Register organization of 8086 cntd…

• The register SI is generally used to store the
offset of the source data in data segment
while the register DI is used to store the offset
of the destination in data or extra segment.

• The index registers are particularly useful for
string manipulations.

Register organization of 8086 cntd…

Flag Register:

• The 8086 flag register contents indicate the
results of computations in the ALU. It also
contains some flag bits to control the CPU
operation.

Programming Model

• An assembly language program model of 8086 is as follows
ASSUME DS:DATA,CS:CODE
DATA SEGMENT
. (Declaration of data variables, constants etc)
.
DATA ENDS
CODE SEGMENT
START:
MOV AX,DATA
MOV DS,AX
.
.
CODE ENDS
END START
END

Memory Addresses

• As 8086 has got 20 address lines, it’s
addressing capability is 1 M Byte memory
locations.

• The physical address is calculated from
segment address and offset address as given
below

Physical address=10*segment addr + offset addr

Memory Segmentation

• The memory in an 8086 based system is
organized as segmented memory.

• In this scheme, the complete physically available
memory may be divided into a number of logical
segments.

• Each segment is 64 Kbytes in size and is
addressed by one of the segment register.

• The 16 bit contents of the segment register
actually point to the starting location of a
particular segment.

Memory Segmentation cntd…

• To address a specific memory location within a
segment, we need an offset address.

• The offset address is also 16 bit long so that the
maximum offset value can be FFFFH, and the maximum
size of any segment is thus 64 K locations.

• To emphasize this segmented memory concept, we will
consider an example of a housing colony containing
say, 100 houses
– Numbering the houses sequentially

– Numbering the houses matrix wise (rows X columns)

10 X 10

Memory Segmentation cntd…

• In the second scheme, the efforts required for
finding the same house will be too less.

• This second scheme in our example is analogous
to the segmented memory scheme, where the
addresses are specified in terms of segment
addresses analogous to rows and offset
addresses analogous to columns

• The CPU 8086 is able to address 1 Mbytes of
physical memory.

• The complete 1 Mbytes memory can be divided
into 16 segments, each of 64 Kbytes size.

Memory Segmentation cntd…

• In the second scheme, the efforts required for
finding the same house will be too less.

• This second scheme in our example is analogous
to the segmented memory scheme, where the
addresses are specified in terms of segment
addresses analogous to rows and offset
addresses analogous to columns

• The CPU 8086 is able to address 1 Mbytes of
physical memory.

• The complete 1 Mbytes memory can be divided
into 16 segments, each of 64 Kbytes size.

Memory Segmentation cntd…

• The offset address values are from 0000H and
FFFFH so that the physical addresses range
from 00000H to FFFFFH.

• In the above said case, the segments are
called non-overlapping segments which are
shown in Figure 1.3a.

Memory Segmentation cntd…

• In some cases, however, the segments are
overlapping.

• Suppose a segment starts at a particular
address and its maximum size can be 64
Kbytes

• But, if another segment starts before this 64
kbytes locations of the first segment, the two
segments are said to be overlapping segments

Memory Segmentation cntd…

• The area of memory from the start of the
second segment to the possible end of the
first segment is called an overlapped segment
area

• Figure 1.3b explains the phenomenon more
clearly.

Memory Segmentation cntd…

Memory Segmentation cntd…

• The locations lying in the overlapped area may be addressed by the
same physical address generated from two different sets of
segment and offset addresses.

• The main advantages of the segmented memory scheme are as
follows
– 1 Allows the memory capacity to be 1 Mbytes although the actual

addresses to be handled are of 16 bit size.
– 2 Allows the placing of the code, data, and stack portions of the same

program in different parts of memory for data and code protection.
– 3 Permits a program and/or its data to be put into different areas of

memory each time the program is executed ie provision for relocation
is done.

• In the overlapped Area locations physical address
=CS1+ IP1 = CS2 + IP2 where + indicates the

procedure of physical address formation

Flag Register

• 8086 has a 16-bit flag register which is divided
into two parts, viz
– Condition code or status flags

– Machine control flags

• The condition code flag register is the lower byte
of the 16bit flag register along with the overflow
flag

• This flag is identical to the 8085 flag register with
an additional overflow flag, which is not present
in 8085

Flag Register cntd…

• This part of the flag register of 8086 reflects
the results of the operations performed by
ALU

• The control flag register is the higher byte of
the flag register of 8086.

• It contains three flags, viz
– Direction flag (D)

– Interrupt flag (I)

– Trap flag (T)

Flag Register cntd…

Flag Register cntd…

• T - Trap flag When it is set, the processor enters the
single step execution mode

• I – Interrupt Flag  If this flag is set, the maskable
interrupts are recognized by the CPU, otherwise they
are ignored.

• D – Direction flag  This flag is used by string
manipulations instruction. If this flag bit is 0, the string
is processed beginning from the lowest address to the
highest address ie auto increment mode. Otherwise,
the string is processed from the highest address
towards the lowest address ie auto decrement mode

Flag Register cntd…

• O – Overflow flag – this flag is set if an overflow
occurs ie if the result of a signed operation is
large enough to be accommodated in a
destination register.

• For example, in case of the addition of two signed
numbers, if the result overflows into the sign bit
ie the result is of more than 7 bits in size in case
of 8-bit signed operations and more than 15 bits
in size in case of 16 bit signed operations, then
overflow flag will be set.

Signal Descriptions of 8086

• The microprocessor 8086 is a 16 bit CPU
available in 3 clock rates 5,8 and 10 MHz,
packed in a 40 pin CERDIP or plastic package.

• The 8086 operates in single processor or
multiprocessor configurations to achieve high
performance.

• The pin configuration is shown in fig 1.5

Signal Descriptions of 8086 cntd…

• Some of the pins serve a particular function in
minimum mode (single processor mode) and
others function in maximum mode (multi
processor mode) configuration

• The 8086 signals can be categorized in three
groups.
– Signals having common functions in minimum as well

as maximum mode
– Signals which have special functions for minimum

mode
– Signals which have special functions for maximum

mode.

Signal Descriptions of 8086 cntd…

• The following signal descriptions are common for
both the minimum and maximum modes.

AD15 – AD0:
• These are the time multiplexed memory I/O

address and data lines
• Address remains on lines during T1 state, while

the data is available on the data bus during T2,
T3, Tw and T4.

• Here T1, T2, T3, T4 and Tw are the clock states of
a machine cycle.

Signal Descriptions of 8086 cntd…

• Tw is a wait state.

• These lines are active high and float to a tri-
state during interrupt acknowledge and local
bus hold acknowledge cycles.

A19/S6, A18/S5, A17/S4, A16/S3:

• These are the time multiplexed address and
status lines.

• During T1, these are the most significant
address lines for memory operations.

Signal Descriptions of 8086 cntd…

• During I/O operations, these lines are low.

• During memory or I/O operations, status
information is available on those lines for T2, T3,
Tw and T4.

• The status of the interrupt enable flag bit
(displayed on S5) is updated at the beginning of
each clock cycle.

• The S4 and S3 together indicate which segment
register is presently being used for memory
accesses, as shown in table 1.1.

Signal Descriptions of 8086 cntd..

• These lines float to tri-state off (tri-stated)
during the local bus hold acknowledge

• The status line S6 is always low (logical).

• The address bits are separated from the status
bits using latches controlled by the ALE signal

Signal Descriptions of 8086 cntd..

S4 S3 Indications

0 0 Alternate data

0 1 Stack

1 0 Code or none

1 1 data

Signal Descriptions of 8086 cntd..

BHE/S7 – Bus High Enable/Status:

• The bus high enable signal is used to indicate the
transfer of data over the higher order (D15 – D8)
data bus as shown in Table 1.2

• It goes low for the data transfers over D15 – D8
and is used to derive chip selects of odd address
memory bank or peripherals.

• BHE is low during T1 for read, write and interrupt
acknowledge cycles, whenever a byte is to be
transferred on the higher byte of the data bus.

Signal Descriptions of 8086 cntd..

• The status information is available during T2,
T3 and T4.

• The signal is active low and is tri-stated during
“Hold”.

• It is low during T1 for the first pulse of the
interrupt acknowledge cycle. S7 is not
currently used.

Signal Descriptions of 8086 cntd..

Table 1.2

BHE A0 Indication

0 0 Whole word

0 1 Upper byte from or
to odd address

1 0 Lower byte from or
to even address

1 1 None

Signal Descriptions of 8086 cntd..

RD – READ

• Read signal, when low, indicates the
peripherals that the processor is performing a
memory or I/O read operation.

• RD is active low and shows the state for T2,
T3, Tw of any read cycle.

• The signal remains tri-stated during the ‘HOLD
Acknowledge’

Signal Descriptions of 8086 cntd..

READY
• This is the acknowledgement from the slow devices or

memory that they have completed the data transfer.
• This is an input signal to the 8086.
• This signal is active high.
INTR – Interrupt request
• This is a level triggered input
• This is sampled during the last clock cycle of each

instruction to determine the availability of the request
• If any interrupt request is pending the processor enters

the interrupt acknowledge cycle.

Signal Descriptions of 8086 cntd..

• This can be internally masked by resetting the
interrupt enable flag.

• This signal is active high.

TEST

• This input is examined by a ‘wait’ instruction.

• If the TEST input goes low, execution will
continue, else, the processor remains in an
idle state.

Signal Descriptions of 8086 cntd..

NMI – Non-maskable Interrupt.

• This is an edge triggered input which causes a
type 2 interrupt.

• The NMI is not maskable internally by
software.

• A transition from low to high initiates the
interrupt response at the end of the current
instruction.

Signal Descriptions of 8086 cntd..

RESET
• This input causes the processor to terminate the

current activity and start execution from FFFF0H
• The signal is active high and must be active for at least

four clock cycles.
CLK – Clock Input
• The clock input provides the basic timing for processor

operation and bus control activity.
• It’s an asymmetric square wave with 33% duty cycle.
• The range of frequency for different 8086 versions is

from 5 MHz to 10 MHz.

Signal Descriptions of 8086 cntd..

Vcc

• 8086 requires +5V power supply for the
operation of the internal circuit.

GND

• This is the ground for the internal circuit.

MN/MX.

• The logic level at this pin decides whether the
processor is to operate in either minimum (Single
processor) or maximum (multi processor) mode.

Signal Descriptions of 8086 cntd..

The following pin functions are for the minimum mode
operation of 8086.

M/I/O – Memory/IO

• This is a status line logically equivalent to S2 in the
maximum mode.

• Low – I/O operation

High – Memory operation.

• This line becomes active in the previous T4 and
remains active till final T4 of the current cycle.

• It is tri-stated during local bus “hold acknowledge”

Signal Descriptions of 8086 cntd..

INTA – Interrupt acknowledge
• This signal is used as a read strobe for interrupt

acknowledge cycles
• In other words, when it goes low, it means that the

processor has accepted the interrupt.
• It is active low during T2,T3 and Tw of each interrupt

acknowledge cycle.
ALE – Address Latch Enable
• This output signal indicates that availability of the valid

address on the address / data lines, and is connected to
latch enable input of latches

• This signal is active high and is never tri-stated.

Signal Descriptions of 8086 cntd..

DT/R – Data Transmit / Receive
• This output is used to decide the direction of data

flow through the transreceivers (bidirectional
buffers).

• Data transmission – signal is high.
data receiving – signal is low.

• Logically, this is equivalent to S1 in maximum
mode.

• It’s timing is the same as M/I/O.
• This is tri-stated during ‘hold acknowledge’

Signal Descriptions of 8086 cntd..

DEN – Data Enable

• This signal indicates the availability of valid data
over the address / data lines.

• It is used to enable the transreceivers to separate
the data from the multiplexed address / data
signal.

• It is active from the middle of T2 until the middle
of T4.

• DEN is tri-stated during hold acknowledge cycle

Signal Descriptions of 8086 cntd..

HOLD, HLDA – Hold, Hold Acknowledge

• When the HOLD line goes high, it indicates to the
processor that another master is requesting the bus
access.

• The processor, after receiving the HOLD request, issues
the HOLD acknowledge signal on HLDA pin, in the
middle of the next clock cycle after completing the
current bus cycle. At the same time, the processor
floats the local bus and control lines.

• When the processor detects the HOLD line low, it
lowers the HLDA signal.

Signal Descriptions of 8086 cntd..

The following pin functions are applicable for maximum mode
operation of 8086.

S2, S1, S0 – status lines
• These are the status lines which indicate the type of

operation, being carried out by the processor.
• These become active during T4 of the previous cycle and

remain active during T1 and T2 of the current bus cycle.
• The status lines return to passive state during T3 of the

current bus cycle so that they may again become active for
the next bus cycle during T4.

• The various operations indicated by these status lines are
given in the table 1.3.

Signal Descriptions of 8086 cntd..

Table 1.3

S2 S1 S0 Indication

0 0 0 Interrupt acknowledge

0 0 1 Read I/O port

0 1 0 Write I/O port

0 1 1 Halt

1 0 0 Code access

1 0 1 Read Memory

1 1 0 Write Memory

1 1 1 Passive

Signal Descriptions of 8086 cntd..

LOCK
• This output pin indicates that other system bus masters

will be prevented from gaining the system bus, while
LOCK signal is low.

• The LOCK signal is activated by the ‘LOCK’ prefix
instruction and remains active until the completion of
the next instruction.

• This floats to tri-state off during ‘hold acknowledge’
• When CPU is executing a critical instruction which

requires the system bus, the LOCK prefix instruction
ensure that other processors connected in the system
will not gain the control of the bus.

Signal Descriptions of 8086 cntd..

QS1, QS0 – Queue Status

• These lines give information about the status
of the code-prefetch queue.

• These are active during the CLK cycle after
which the queue operation is performed

• These lines indicate various operations as
indicated in the table 1.4.

Signal Descriptions of 8086 cntd..

Table 1.4

• This simultaneous fetching and executing of
instructions is called pipe-lining. This results in
faster execution.

QS1 QS0 Indication

0 0 No Operation

0 1 First byte of opcode from the queue

1 0 Empty queue

1 1 Subsequent byte from the queue

Signal Descriptions of 8086 cntd..

RQ/GT0, RQ/GT1 – REQUEST/GRANT
• These pins are used by other local bus masters in

maximum mode, to force the processor to
release local bus at the end of processor’s current
bus cycle.

• Each of the pins is bidirectional with RQ/GT0
having the higher priority than RQ/GT1.

• The request and grant pulses are active low.
• RQ/GT pins have internal pull up resistors and

may be left unconnected.

Signal Descriptions of 8086 cntd..

• The request/grant sequence is as follows.
1. A pulse one clock wide from another bus master requests the bus

access to 8086.
2. During T4 (current) and T1 (next) clock cycle, a pulse, one clock

wide, from 8086 to the requesting master, indicates that the 8086
has allowed the local bus to float and that it will enter the ‘hold
acknowledge’ state in the next clock cycle. The CPU’s BIU is likely
to be disconnected from the local bus of the system.

3. A one clock wide pulse from another master indicates to 8086
that the hold request is about to end and the 8086 may regain the
control of the local bus at the next clock cycle.

• Thus each master to master exchange of the local bus is a
sequence of 3 pulses.

• There must be at least one dead clock cycle after each bus
exchange.

Signal Descriptions of 8086 cntd..

Physical Memory Organization

• In 8086, 1Mbyte memory is physically organized as an
odd bank and even bank, each of 512 Kbytes.

• Data byte with an even address is transferred on D7 –
D0 while the data byte with an odd address is
transferred on D15 – D8 bus lines.

• If instructions are fetched from memory as words,
different possibilities of these words are
– 1 Both the bytes may be data operands

– 2 Both the bytes may contain op-code bits

– 3 one of the bytes may be op-code while other may be
data

Physical Memory Organization cntd..

• The above possibilities are taken care by
internal decoder which creates signals and
sends those to Timing & Control Unit.

• This Timing and Control Unit generates the
signals which executes the instructions.

• While referring to word data, BIU requires one
or two memory cycles
– Starting byte at even address ------- One cycle

– Starting byte at odd address ------- two cycles

Physical Memory Organization cntd..

• Hence while initializing the stack, it should be
initialized at an even address for efficient
operation.

• A map of an 8086 memory system starts at
00000H and ends at FFFFFH.

Physical Memory Organization cntd..

Physical Memory Organization cntd..

• For accessing 16 bit data, both banks are to be
accessed where as to access only 8 bit data,
only one bank is accessed.

• Selection of memory banks depends on BHE
and A0.

BHE A0 Indication

0 0 Whole word

0 1 Upper byte from or to odd address

1 0 Lower byte from or to even address

1 1 None

Minimum Mode 8086 System and Timings

• In a minimum mode 8086 system, the
microprocessor 8086 is operated in minimum
mode by strapping it’s MN/MX pin to Logic 1.

• In this mode, all the control signals are given out
by the microprocessor chip itself.

• There is a single microprocessor in the minimum
mode system.

• The remaining components in the system are
latches, transreceivers, clock generator, memory
and i/o devices.

Minimum Mode 8086 System and Timings cntd..

• Some type of chip selection logic may be required
for selecting memory or I/O devices, depending
upon the address map of the system.

• The latches are generally buffered output D-type
flip-flops, like 74LS373 or 8282.

• They are used for separating the valid address
from the multiplexed address/data signals and
are controlled by the ALE signal generated by
8086.

Minimum Mode 8086 System and Timings cntd..

• Transreceivers are the bidirectional buffers and
sometimes they are called data amplifiers

• They are required to separate the valid data from
the time multiplexed address / data signal.

• They are controlled by two signals, namely, DEN
and DT/R.

• The DEN signal indicates that the valid data is
available on the data bus, while DT/R indicates
the direction of data ie from or to the processor.

Minimum Mode 8086 System and Timings cntd..

• The system contains memory for the monitor and
user program storage.

• Usually EPROMs are used for monitor storage
while RAMs for users program storage.

• A system may contain I/O devices for
communication with the processor as well as
some special purpose I/O devices.

• The clock generator (IC 8284) generates the clock
from the crystal oscillator and then shapes it to
make it more precise so that it can be used as an
accurate timing reference for the system.

Minimum Mode 8086 System and Timings cntd..

• The clock generators also synchronizes some external
signals with the system clock

• The general system organization is shown in Figure
1.13.

• Since it has 20 address lines and 16 data lines the 8086
CPU requires 3 octal address latches and two octal data
buffers for the complete address and the data
separation.

• The working of the minimum mode configuration
system can be better described in terms of the timing
diagrams rather than qualitatively describing the
operation.

Minimum Mode 8086 System and Timings cntd..

• The op-code fetch and read cycles are similar

• Hence, the timing diagram can be categorized in
two parts, the first is the timing diagram for read
cycle and second is the timing for write cycle

• The read cycle begins in T1 with the assertion of
the address latch enable (ALE) signal and M/IO
signal

• During the negative going edge of this signal, the
valid address is latched on the local bus

Minimum Mode 8086 System and Timings cntd..

• The BHE and A0 signals address low, high or both bytes

• From T1 to T4, the M/IO signal indicates a memory or
I/O operation

• At T2, the address is removed from the local bus and is
sent to the output. The bus is then tri-stated.

• The read (RD) control signal is also activated in T2

• This signal causes the addressed device to enable its
data bus drivers.

• After RD goes low, the valid data is available on the
data bus.

Minimum Mode 8086 System and Timings cntd..

• The addressed device will drive the READY line
high.

• When the processor returns the read signal to
high level, the addressed device will again tri-
state its bus drivers. CS logic indicates chip
select logic and ‘e’ and ‘o’ suffixes indicate
even and odd address memory bank

• A write cycle also begins with the assertion of
ALE and the emission of the address.

Minimum Mode 8086 System and Timings cntd..

• The M/IO signal is again asserted to indicate a
memory or I/O operation.

• In T2, after sending the address in T1, the
processor sends the data to be written to the
addressed location.

• The data remains on the bus until the middle of
T4 state.

• The WR becomes active at the beginning of T2
(unlike RD is some what delayed in T2 to provide
time for floating.)

Minimum Mode 8086 System and Timings cntd..

• The BHE and A0 signals are used to select the
proper byte or bytes of memory or I/O word
to be read or written as already discussed in
the signal description section of this chapter.

• The M/IO, RD and WR signals indicate the
types of data transfer as specified in Table 1.5

Minimum Mode 8086 System and Timings cntd..

M / IO RD DEN Transfer Type

0 0 1 I/O Read

0 1 0 I/O Write

1 0 1 Memory Read

1 1 0 Memory Write

END of Unit I

UNIT II

Instruction Set & Assembly Language
Programming of 8086

Machine Language Instruction Formats

• A machine language instruction format has one or more
number of fields associated with it.

• The first field is called as operation code field or op-code
field, which indicates the type of operation to be
performed by the CPU

• The instruction format also contains other fields known as
operand fields

• The CPU executes the instruction using the information
which reside in these fields

• There are six general formats of instructions in 8086
instruction set.

• The length of an instruction may vary from 1 byte to 6
bytes. The instruction formats are described as follows

Machine Language Instruction Formats cntd..

1 One Byte Instruction:

• This format is only one byte long and may
have the implied data or register operands.

• The least significant 3-bits of the opcode are
used for specifying the register operand, if
any.

• Otherwise, all the 8 bits form an opcode and
the operands are implied

Machine Language Instruction Formats cntd..

2 Register to Register:

• This format is 2 bytes long

• The first byte of the code specifies the
operation code and width of the operand
specified by ‘w’ bit.

• The second byte of the code shows the
register operands and R/M field, as shown
below.

• D7 D1 D0

OPCODE W

D7 D6 D5 D4 D3 D2 D1 D0

11 REG R/M

Machine Language Instruction Formats cntd..

• The register represented by the REG field is one
of the operands.

• The R/M field specifies another register or
memory location i.e. the other operand.

3 Register to/from memory with no displacement:

• This format is also 2 bytes long and similar to the
Register to Register format except for the MOD
field as shown.

D7 D1 D0

OPCODE W

D7 D6 D5 D4 D3 D2 D1 D0

MOD REG R/M

Machine Language Instruction Formats cntd..

• The MOD field shows the mode of addressing.
The MOD, R/M, REG and the ‘W’ fields are
decided in Table 2.2.

Machine Language Instruction Formats cntd..

4 Register to/from Memory with Displacement:

• This type of instruction format contains 1 or 2
additional bytes for displacement along with 2
byte format of the register to/from memory
without displacement. The format is as shown
below.

D7 D1 D0

OPCODE W

D7 D6 D5 D4 D3 D2 D1 D0

MOD REG R/M

D7 D0

Lower Byte of Displacement

D7 D0

Higher Byte of Displacement

Machine Language Instruction Formats cntd..

5 Immediate Operand to Register:

• In this format, the first byte as well as the
3-bits from the second byte which are used for
REG field in case of register to register format
are used for opcode.

• It also contains one or two bytes of immediate
data. The complete instruction format is as
shown below.

D7 D1 D0

OPCODE W

D7 D6 D5 D4 D3 D2 D1 D0

11 OPCODE R/M

D7 D0

Lower Byte of DATA

D7 D0

Higher Byte of DATA

Machine Language Instruction Formats cntd..

6 Immediate Operand to Memory with 16-bit
displacement:

• This type of instruction format requires 5 or 6
bytes for coding.

• The first 2 bytes contain the information
regarding OPCODE, MOD and R/M fields. The
remaining 4 bytes contain 2 bytes of
displacement and 2 bytes of data as shown.

D7 D6 D5 D4 D3 D2 D1 D0

MOD OPCODE R/M

D7 D1 D0

OPCODE W

D7 D0

Lower Byte of
DISPLACEMENT

D7 D0

Higher Byte of
DISPLACEMENT

D7 D0

Lower Byte of DATA

D7 D0

Higher Byte of DATA

Addressing Modes of 8086

• Addressing mode indicates a way of locating data or
operands.

• Depending upon the data types used in the instruction and
the memory addressing modes, any instruction may belong
to one or more addressing modes, or some instruction may
not belong to any of the addressing modes

• Thus addressing modes describe the types of operands and
the way they are accessed for executing an instruction.

• According to the flow of instruction execution, the
instructions may be categorized as
– Sequential control flow instructions
– Control transfer instructions

Addressing Modes of 8086 cntd..

• Sequential control flow instructions are the instructions
which after execution, transfer control to the next
instruction appearing immediately after it in the program.

• For example, the arithmetic, logical, data transfer and
processor control instructions are sequential control flow
instructions.

• The control transfer instructions, on the other hand ,
transfer control to some predefined address or the address
somehow specified in the instruction, after their execution.

• For example INT, CALL, RET and JUMP instructions fall
under this category

• The addressing modes for sequential and control transfer
instructions are explained as follows.

Addressing Modes of 8086 cntd..

1 Immediate:
• In this type of addressing, immediate data is a part of

instruction, and appears in the form of successive byte
or bytes

• Eg: MOV AX, 0005H
2 Direct:
• In the direct addressing mode, a 16-bit memory

address (offset) is directly specified in the instruction
as a part of it.

• Eg: MOV AX,[5000H],
– Effective address= 10H*DS +5000H

Addressing Modes of 8086 cntd..

3 Register:

• In the register addressing mode, the data is
stored in a register and it is referred using the
particular register

• All the registers, except IP, may be used in this
mode.

• Eg: MOV AX, BX

Addressing Modes of 8086 cntd..

4 Register Indirect:
• Some times, the address of the memory location which

contains data or operand is determined in an indirect way,
using the offset registers.

• This mode of addressing is known as register indirect mode
• In this addressing mode, the offset address of data is in

either BX or SI or DI register.
• The default segment is either DS or ES. The data is

supposed to be available at the address pointed to by the
content of any of the above registers in the default data
segment.

• Eg: MOV AX,[BX]
– Effective address is 10H*DS+[BX]

Addressing Modes of 8086 cntd..

5 Indexed:

• In this addressing mode, offset of the operand is stored
in one of the Index registers.

• DS is the default segment for index registers SI and DI

• In the case of string instructions DS and ES are default
segments for SI and DI respectively.

• This mode is a special case of the above discussed
register indirect addressing mode

• Eg: MOV AX,[SI]
– effective address is 10H*DS+[SI]

Addressing Modes of 8086 cntd..

6 Register Relative:

• In this addressing mode, the data is available
at an effective address formed by adding an 8-
bit or 16-bit displacement with the content of
any one of the registers BX, BP, SI and DI in the
default (either DS or ES) segment.

• Eg: MOV AX,50H[BX]

– Effective address is 10H*DS+50H+[BX]

Addressing Modes of 8086 cntd..

7 Based Indexed:

• The effective address of the data is formed, in
this addressing mode, by adding the content
of a base register (any one of BX or BP) to the
content of an index register (any one of SI or
DI)

• The default segment register may be DS or ES
– Eg: MOV AX,[BX][SI]

• effective address is 10H*DS +[BX]+[SI]

Addressing Modes of 8086 cntd..

8 Relative Based Indexed:

• The effective address is formed by adding an
8-bit or 16-bit displacement with the sum of
contents of anyone of the base registers (BX or
BP) and any one of the index registers (SI or
DI), in a default segment.

• Eg: MOV AX,50H[BX][SI]

– Effective address is 10H* DS+[BX]+[SI]+50H

Addressing Modes of 8086 cntd..

• For the control transfer instructions, the addressing
modes depend upon whether the destination location
is within the same segment or in a different one.

• It also depends upon the method of passing the
destination address to the processor.

• Basically there are two addressing modes for the
control transfer instructions, viz, intersegment and
intrasegment addressing modes.

• If the location to which the control is to be transferred
lies in a different segment other than the current one,
the mode is called intersegment mode.

Addressing Modes of 8086 cntd..

• If the destination location lies in the same
segment, the mode is called intrasegment mode

Intersegment -- direct

Modes for control -- indirect

Transfer instructions

intrasegment – direct

-- indirect

Fig 2.1 Addressing modes for control transfer
instructions

Addressing Modes of 8086 cntd..

9 Intrasegment Direct mode:

• In this mode, the address to which the control is to be
transferred lies in the same segment in which the
control transfer instruction lies and appears directly in
the instruction as an immediate displacement values.

• In this addressing mode, the displacement is computed
relative to the content of the instruction pointer IP.

• The effective address to which the control will be
transferred is given by the sum of 8 or 16 bit
displacement and current content of IP.

Addressing Modes of 8086 cntd..

• In case of Jump instruction, if the signed
displacement (d) is of 8 bits (ie -128 <d< +127)
we term it as short jump and if it is of 16bits
(ie -32768<d< +32767), it is termed as long
jump.

• Eg: JMP SHORT LABEL; LABEL lies with in -128
to +127 from the current IP content. Thus
SHORT LABEL is 8-bit signed displacement.

Addressing Modes of 8086 cntd..

10 Intrasegment Indirect Mode:
• In this mode, the displacement to which the

control is to be transferred, is in the same
segment in which the control transfer instruction
lies, but it is passed to the instruction indirectly.

• Here, the branch address is found as the content
of a register or a memory location.

• This addressing mode may be used in
unconditional branch instructions.

• Eg: JMP [BX] here the effective address is stored
in BX

Addressing Modes of 8086 cntd..

11 Intersegment Direct:
• In this mode, the address to which the control is

to be transferred is in a different segment.
• This addressing mode provides a means of

branching from one code segment to another
code segment.

• Here the CS an IP of the destination address are
specified directly in the instruction.

• Eg: JMP 5000H:2000H
Jump to effective address 2000H in segment
5000H

Addressing Modes of 8086 cntd..

12 Intersegment Indirect:
• In this mode, the address to which the control is to be

transferred lies in a different segment and it is passed
to the instruction indirectly ie contents of a memory
block containing 4 bytes ie IP(LSB), IP(MSB), CS(LSB)
and CS(MSB) sequentially

• The starting address of the memory block may be
referred using any of the addressing modes, except
immediate mode.

• Eg: JMP [2000H] Jump to an address in other segment
specified at effective address 2000H in DS, that points
to the memory block as said above.

Instruction Set of 8086

1

Instruction set of

8086 Microprocessor

Programs – Arithmetic

1) Write an assembly language program to perform the ADDition of two 8 bit numbers using 8086.
Solution:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT
NUM1 DB 12
NUM2 DB 18
SUM DB ?
DATA ENDS
CODE SEGMENT
START: MOV AX, DATA

MOV DS,AX
MOV AL, NUM1
ADD AL, NUM2
MOV SUM, AL
INT 03H

CODE ENDS
END START
END.

Programs – Arithmetic cntd..

2) Write an ALP for ADDition of two 16 bit numbers using 8086
Solution:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT
NUM1 DW 1234
NUM2 DW 4567
SUM DW ?
DATA ENDS
CODE SEGMENT
START: MOV AX, DATA

MOV DS,AX
MOV AX, NUM1
ADD AX, NUM2
MOV SUM, AX
INT 03H

CODE ENDS
END START
END.

Programs – Arithmetic cntd..

3) Write an assembly language program to perform the SUBtract operation of two 8 bit numbers using
8086.

Solution:
ASSUME CS: CODE, DS: DATA
DATA SEGMENT
NUM1 DB 18
NUM2 DB 12
DIFF DB ?
DATA ENDS
CODE SEGMENT
START: MOV AX, DATA

MOV DS,AX
MOV AL, NUM1
SUB AL, NUM2
MOV DIFF, AL
INT 03H

CODE ENDS
END START
END.

Programs – Arithmetic cntd..

4) Write an assembly language program to perform the SUBtract operation of two 16 bit numbers using
8086.

Solution:
ASSUME CS: CODE, DS: DATA
DATA SEGMENT
NUM1 DW 1835
NUM2 DW 1735
DIFF DW ?
DATA ENDS
CODE SEGMENT
START: MOV AX, DATA

MOV DS,AX
MOV AX, NUM1
SUB AX, NUM2
MOV DIFF, AX
INT 03H

CODE ENDS
END START
END.

Programs – Logical

1) Write an assembly language program to perform the AND operation between two 16 bit numbers
using 8086.

Solution:
ASSUME CS: CODE, DS: DATA
DATA SEGMENT
NUM1 DW 1234
NUM2 DW 1856
ANDRES DW ?
DATA ENDS
CODE SEGMENT
START: MOV AX, DATA

MOV DS,AX
MOV AX, NUM1
AND AX, NUM2
MOV ANDRES, AX
INT 03H

CODE ENDS
END START
END.

Programs – Logical cntd..

2) Write an assembly language program to perform the OR operation of two 16 bit numbers using
8086.

Solution:
ASSUME CS: CODE, DS: DATA
DATA SEGMENT
NUM1 DW 1234
NUM2 DW 1898
ORRES DW ?
DATA ENDS
CODE SEGMENT
START: MOV AX, DATA

MOV DS,AX
MOV AX NUM1
OR AX, NUM2
MOV ORRES, AX
INT 03H

CODE ENDS
END START
END.

Programs - Branch

1) Write an ALP to find out the larger number between two 16 bit numbers using Jump instruction using 8086.
Solution:
ASSUME CS:CODE, DS:DATA
DATA SEGMENT
NUM1 DW1534
NUM2 DW 2078
LARGENUM DW?
DATA ENDS
CODE SEGMENT
START: MOV AX,DATA

MOV DS,AX
MOV AX,NUM1
CMP AX,NUM2
JC GO
MOV LARGENUM,AX
JMP EXIT

GO: MOV LARGENUM,NUM2
EXIT: INT 03H
CODE ENDS
END START
END

Programs – Branch cntd..

2) Write an ALP to sort the given array of 16 bit numbers using 8086.

Solution:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

ARRAYNUM DW 2378H,4567H,3498H,1289H,4298H

COUNT EQU 05H

DATA ENDS

CODE SEGMENT

START: MOV AX,DATA

MOV DS,AX

MOV DX, COUNT -1 GO: INC SI

NXTITR:MOV CX,DX INC SI

MOV SI, OFFSET ARRAYNUM LOOP AGAIN

AGAIN:MOV AX,[SI] DEC DX

CMP AX,[SI+2] JNZ NXTITR

JC GO INT 03H

XCHG AX,[SI+2] CODE ENDS

XCHG AX.[SI] END START

END

Programs – Call cntd..

Call Instruction: This instruction is used to call procedures or
Subroutines in the main program.

Procedure or Subroutine: it is a group of instructions, which is called in
the main program, to execute a common functionality many times.

How to pass parameters to a Procedure: There are many ways to pass
parameters to a Procedure. Those are

1) Using Global declared variable
2) Using registers of CPU architecture
3) Using memory locations (reserved)
4) Using a Stack
5) Using PUBLIC and EXTRN.

Programs – Call cntd..

Example 1: Using Global declared variable
ASSUME CS:CODE1,DS:DATA
DATA SEGMENT
NUMBER EUQ 77H GLOBAL
DATA ENDS
CODE SEGMENT
START: MOV AX,DATA

MOV DS,AX
.
.

MOV AX,NUMBER
.

CODE1 ENDS
ASSUME CS:CODE2
CODE2 SEGMENT

MOV AX,DATA
MOV DS,AX
MOV BX,NUMBER

CODE2 ENDS
END START
END

Programs – Call cntd..

Example 2: Using registers of CPU architecture
ASSUME CS:CODE
CODE SEGMENT
START: MOV AX,5555H

MOV BX,7272H
.
.

CALL PROCEDURE1
.
.
.

PROCEDURE PROCEDURE 1 NEAR
.
.

ADD AX,BX
.
.

RET
PROCEDURE1 ENDP
CODE ENDS
END START

Programs – Call cntd..

• Here the CPU registers, used in the main
program, are modified in the Procedure as the
same CPU registers are used here. Hence to
avoid this data loss, the register contents are
pushed on to a stack to save them.

• At the end of the subroutine, this saved data
will be pop up from the stack and then return
to the main program so that there won’t be
any data loss.

Programs – Call cntd..

Example 3: Using memory locations
ASSUME CS:CODE,DS:DATA
DATA SEGMENT
NUM DB (55H)
COUNT EQU 10H
DATA ENDS
CODE SEGMENT
START: MOV AX,DATA

MOV DS,AX
.
.

CALL ROUTINE
.
.

PROCEDURE ROUTINE NEAR
MOV BX,NUM
MOV CX,COUNT

.
ROUTINE ENDP
CODE ENDS
END START
END

Programs – Call cntd..

Example4: Using Stack
ASSUME CS:CODE,SS:STACK
CODE SEGMENT
START: MOV AX,STACK

MOV SS,AX
MOV AX,5577H
MOV BX,2929H

.
PUSH AX
PUSH BX
CALL ROUTINE ; decrements sp by 2 (by 4 far routine)

.

.
PROCEDURE ROUTINE NEAR

.

.
MOV DX,SP
ADD SP,02

Programs – Call cntd..

POP BX
POP AX
MOV SP,DX

.

.

.
STACK SEGMENT
STACKDATA DB 200H DUP (?)
STACK ENDS

Programs – Call cntd..

Using PUBLIC & EXTRN:

• For passing parameters to procedures using
the PUBLIC & EXTRN directives , the data must
be declared PUBLIC (for all routines) in the
main routine and the same should be declared
EXTRN in the procedure.

• Thus, the main program can pass the PUBLIC
parameter to a procedure in which it is
declared EXTRN (external)

Programs – Call cntd..

Example 5: Using PUBLIC & EXTRN
ASSUME CS:CODE,DS:DATA
DATA SEGMENT
PUBLIC NUMBER EQU 200H
DATA ENDS
CODE SEGMENT
START: MOV AX,DATA

MOV DS,AX
.
.

CALL ROUTINE
.
.

PROCEDURE ROUTINE NEAR
EXTRN NUMBER

MOV AX,NUMBER
.
.

ROUTINE ENDP

Assembler Directives

• It is a direction to the assembler but not the instruction
for 8086.

• The various assembler directives are given below.

• ASSUME:
– It is used to tell the assembler the name of the logical

segment it should use for a specified segment

– Eg: ASSUME CS:CODE_HERE

ASSUME DS:DATA_HERE

– In MOV AX,[DX], it indicates that the memory location
referred to by [DX], is in the logical segment DATA_HERE.

Assembler Directives cntd…

• DB:
– Define byte or declare byte

– Reserves one byte in memory and initializes to the
value mentioned

– Eg: PRICES DB 49H,98H
NAME DB ‘MRCET’

TEMP_STORAGE DB 100 DUP(?)
– Reserves 100 bytes of storage in memory but initialization is

not done. Program instructions will load values into these
locations.

Pressure_storage DB 20H DUP(0) ;(initialized with 0)

Assembler Directives cntd…

• DW : define word
• DD : define double word
• DQ : define quad word
• DT : define ten bytes

• END : Indicates end of the program
• ENDP : indicates end of the procedure

Eg: SQUARE_ROOT PROC …
SQUARE_ROOT ENDP

• ENDS : End segment
Eg: CODE ENDS

Assembler Directives cntd…

• EQU : EQUATE
used to give a name to some value or symbol. This

name will be used in the program.
Eg: correction_factor EQU 03H

ADD AL, correction_factor
• EVEN :

– Tells the assembler to increment the location counter to the
next even address if it is not already at an even address

• INCLUDES : Include source code from file
• NAME : used to give a specific name to each assembly

module when programs consisting of several modules are
written.

Assembler Directives cntd…

• ORG : ORIGINATE

– Used to set the location counter to a particular value.

• Eg: 1 ORG 2000H ; Sets the location counter to
2000H

– 2 ORG $ + 100 ; tells the assembler to increment the
value of the location counter by 100 from its current
value.

• SEGMENT: Indicates the start of a logical
segment. Eg: CODE SEGMENT.

Assembler Macros

• Procedure Vs Macros:
– Whenever we need to use a group of instructions several times

through out a program, there are two ways we can avoid having
to write the group of instructions each time we want to use it.

• Procedure
– Writing the group of instructions as a separate procedure
– Then we can just call the procedure whenever we need to

execute that group of instructions.
– Advantage: the machine codes for the group of instructions in

the procedure only have to be put in memory once
– So, less memory usage
– Disadvantage: need a stack and the overhead time is required

to call the procedure and return to the calling program.

Assembler Macros cntd…

• Macros:
– When the repeated group of instructions is too short or not

appropriate to be written as a procedure, we use a macro.
– A macro is a group of instructions we bracket and give a name to at

the start of our program.
– Each time we “call” the macro in our program, the assembler will

insert the defined group of instructions in place of the “call”.
– An important point here is that the assembler generates machine

codes for the group of instructions each time the macro is called.
– Replacing the macro with the instructions it represents is commonly

called “expanding” the macro
– Since the generated machine codes are right in-line with the rest of

program, the processor does not have to go off to a procedure and
return.

Assembler Macros cntd…

• Advantage: Therefore, using a macro avoids
the overhead time involved in calling and
returning from a procedure.

• Disadvantage: A disadvantage of generating
in-line code each time a macro is called is that
this will make the program take up more
memory than using a procedure

Assembler Macros cntd…

• Defining and Calling a Macro without parameters:
– Before calling a procedure, you need to save all registers

on to stack. For this purpose you need to write many
instructions using PUSH command.

• After executing the procedure you need to write many
pop instructions to retrieve the data

• The above two cases adds more complexity to main
program and is therefore not appropriate

• Two simple macros will solve the problem for us

• Here’s how we write a macro to save all these registers

Assembler Macros cntd…

• PUSH_ALL MACRO
PUSH F
PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH BP
PUSH SI
PUSH DI
PUSH DS
PUSH ES
PUSH SS

ENDM

Assembler Macros cntd…

• The PUSH_ALL Macro statement identifies the
start of the Macro and gives the Macro a name.
The ENDM identifies the end of the Macro.

• Now this Macro is used in the procedure as given
below.
BREATH_RATE PROC FAR

ASSUME CS:PROCEDURE, DS:PATIENT_PARAMETERS

PUSH_ALL ;Macro call

MOV AX,PATIENT_PARAMETERS

MOV DS,AX ;Intialize data seg reg

Assembler Macros cntd…

• When the assembler assembles this program
section, it will replace PUSH_ALL with the
instruction that it represents and insert the
machine codes for these instructions in the
object code version of the program.

• The assembler listing tells you which lines
were inserted by a macro call by putting a + in
each program line inserted by a Macro call

Assembler Macros cntd…

• As you can see from the example here, using a Macro
makes the source program much more readable
because the source program does not have the long
series of Push instructions cluttering it up.

• Passing parameters to Macro:
– Dear Parent,

Your ward’s (Roll No.) attendance percentage is given
below

Attendance: % (percentage)

Thank you,

Assembler Macros cntd…

• Example: To move ASCII character from one place to
another.

Source: SI, Destination: DI,
no. of characters to be moved = CX

MOVE _ASCII MACRO NUMBER,SOURCE,DEST
MOV CX,NUMBER
LEA SI,SOURCE
LEA DI,DEST
CLD

REP MOVSB
ENDM

Assembler Macros cntd…

• When we call the Macro, values from the calling
statement will be put in the instructions in place of the
dummies.

• Example: MOVE_ASCII
03DH,BLOCK_START,BLOCK_DEST

Then the assembler will expand the Macro as follows.
MOV CX,03DH
LEA SI,BLOCK_START
LEA DI,BLOCK_DEST
CLD

REP MOVSB

1

Instruction set of

8086 Microprocessor

2

Instructions

LABEL: INSTRUCTION ; COMMENT
Address identifier Does not generate any machine code

• Ex. START: MOV AX, BX ; copy BX into AX

• There is a one-to-one relationship between assembly and

machine language instructions

• A compiled machine code implementation of a program

written in a high-level language results in inefficient code

3

• Two key benefits of assembly language

programming

– It takes up less memory

– It executes much faster

4

The 8086 instructions are categorized into the following main types.

1. Data Copy/Transfer Instructions:

• These type of instructions are used to transfer data from source
operand to destination operand.

• All the store, move, load, exchange, input and output instructions
belong to this category.

2. Arithmetic and Logical instructions:

• All the instructions performing arithmetic, logical, increment,
decrement, compare, and scan instructions belong to this
category

3. Branch Instructions:

• These instructions transfer control of execution to the specified
address.

• All the call, jump, interrupt and return instructions belong to this
class.

5

4. Loop Instructions:

• If these instructions have REP prefix with CX used as count
register, they can be used to implement unconditional and
conditional loops.

• The LOOP, LOOPNZ and LOOPZ instructions belong to this
category.

• These are useful to implement different loop structures.

5. Machine Control Instructions:

• These instructions control the machine status.

• NOP, HLT, WAIT and LOCK instructions belong to this class.

6. Flag Manipulation Instructions:

• All the instructions which directly affect the flag register, come
under this group of instructions.

• Instructions like CLD, STD, CLI, STI, etc. belong to this category
of instructions.

6

7. Shift and Rotate Instructions:

• These instructions involve the bitwise shifting or rotation in either
direction with or without a count in CX.

8. String Instructions:

• These instructions involve various string manipulation operations
like load, move, scan, compare , store, etc.

• These instructions are only to be operated upon the strings.

7

Mnemonic Meaning Format Operation Flags affected

MOV Move Mov D,S (S)  (D) None

Data Transfer Instructions - MOV

Destination Source

Memory Accumulator

Accumulator Memory

Register Register

Register Memory

Memory Register

Register Immediate

Memory Immediate

Seg reg Reg 16

Seg reg Mem 16

Reg 16 Seg reg

Memory Seg reg

NO MOV

Memory

Immediate

Segment Register

Memory

Segment Register

Segment Register

EX: MOV AL, BL

8

Data Transfer Instructions - XCHG

Mnemonic Meaning Format Operation Flags affected

XCHG Exchange XCHG D,S (S) (D) None

Destination Source

Accumulator Reg 16

Memory Register

Register Register

Register Memory

Example: XCHG [1234h], BX

NO XCHG

MEMs

SEG REGs

9

Data Transfer Instructions – LEA, LDS, LES

Mnemo

nic

Meaning Format Operation Flags

affected

LEA Load

Effective

Address

LEA Reg16,EA EA  [Reg16] None

LDS Load

Register

And DS

LDS Reg16,MEM32 [MEM32]  [Reg16]

[Mem32+2]  [DS]

None

LES Load

Register

and ES

LES Reg16,MEM32 [MEM32]  [Reg16]

[Mem32+2]  [ES]

None

LEA SI DATA (or) MOV SI Offset DATA

10

The XLAT Instruction

Mnemonic Meaning Format Operation Flags

XLAT Translate XLAT ([AL]+[BX]+[DS]0)  [AL] None

Used to find out the codes in case of code conversion

problems, using look-up-table technique.

Example:

Assume [DS] = 0300H, [BX]=0100H, and [AL]=0DH

XLAT replaces contents of AL by contents of memory location with

PA=[DS]0 +[BX] +[AL]

= 03000H + 0100H + 0DH = 0310DH

Thus

[0310DH]  [AL]

11

Arithmetic Instructions: ADD, ADC, INC, AAA, DAA

Mnemonic Meaning Format Operation Flags

affected

ADD Addition ADD D,S [S]+[D]  [D]

carry  [CF]

ALL

ADC Add with

carry

ADC D,S [S]+[D]+[CF]  [D]

carry  [CF]

ALL

INC Increment by

one

INC D [D]+1  [D] ALL but CY

DAA Decimal

adjust for

addition

DAA Adjust AL for decimal

Packed BCD

ALL

12

Examples:

Ex.1 ADD AX,2

ADC AX,2

Ex.2 INC BX

INC WORD PTR [BX]

Ex.3 AL contains 25 (packed BCD)

BL contains 56 (packed BCD)

ADD AL, BL

DAA

25

+ 56

7B 81

13

Arithmetic Instructions – SUB, SBB, DEC, AAS, DAS, NEG

Mnemonic Meaning Format Operation Flags

affected

SUB Subtract SUB D,S [D] – [S]  [D]

Borrow  (CF)

All

SBB Subtract

with

borrow

SBB D,S [D] – [S] – [CF]  [D] All

DEC Decrement

by one

DEC D [D] - 1  [D] All but CF

NEG Negate NEG D All

DAS Decimal

adjust for

subtraction

DAS Convert the result in AL to

packed decimal format

All

14

Examples: DAS

MOV BL, 28H

MOV AL, 83H

SUB AL,BL ; AL=5BH

DAS ; adjust as AL=55H

Multiplication and Division, S(Source) – R8, R16, M8, M16

•

15

Mnemonic Meaning Format Operation Flags

affected

MUL Multiply

(Unsigned)

MUL S [AL].S8  AX

[AX].S16  DX, AX

ALL

DIV Division

(Unsigned)

DIV S 1) Q([AX]/S8)  AL

R([AX]/S8)  AH

2) Q([DX, AX]/S16  AX

R([DX, AX]/S16  DX

ALL

IMUL Integer Multiply

(Signed)

IMUL S [AL].S8  AX

[AX].S16  DX, AX

ALL

IDIV Integer Division

(Signed)

IDIV S 1) Q([AX]/S8)  AL

R([AX]/S8)  AH

2) Q([DX, AX]/S16)  AX

R([DX, AX]/S16)  DX

ALL

CBW Convert signed

byte to word

CBW MSB of AL  All bits of

AH

No Flags

CWD Convert signed

word to d. word

CWD MSB of AX  All bits of

DX

No Flags

16

Multiplication and Division

17

Multiplication and Division Examples

Ex1: Assume that each instruction starts from these values:

AL = 85H, BL = 35H, AH = 0H

1. MUL BL → AL . BL = 85H * 35H = 1B89H → AX = 1B89H

2. IMUL BL → AL . BL = 2’S AL * BL = 2’S (85H) * 35H

= 7BH * 35H = 1977H→ 2’s comp → E689H → AX.

3. DIV BL → = = 02 (85-02*35=1B) →

4. IDIV BL → = =

1BH

H

35

0085

02

AH AL

BL

AX

BL

AX

H

H

35

0085

1B 02

AH AL

18

Ex2: AL = F3H, BL = 91H, AH = 00H

1. MUL BL → AL * BL = F3H * 91H = 89A3H → AX = 89A3H

2. IMUL BL → AL * BL = 2’S AL * 2’S BL = 2’S (F3H) * 2’S(91H) =

0DH * 6FH = 05A3H → AX.

3.IDIV BL → = = = 2→ (00F3 – 2*6F=15H)
BL

AX

)91('2

300

HS

HF

FH

HF

6

300

AH AL

15 02

R Q

NEG
NEG

POS
 → 2‟s(02) = FEH→

AH AL

15 FE→

4. DIV BL → = = 01→(F3-1*91=62) →
BL

AX

H

HF

91

300 AH AL

62 01

R Q

19

Ex3: AX= F000H, BX= 9015H, DX= 0000H

1. MUL BX = F000H * 9015H =

DX AX

8713 B000

2. IMUL BX = 2’S(F000H) * 2’S(9015H) = 1000 * 6FEB =

DX AX

06FE B000

3. DIV BL = = B6DH → More than FFH → Divide Error.
H

HF

15

000

4. IDIV BL → = = C3H > 7F → Divide Error.
H

HFS

15

)000('2

H

H

15

1000

20

Ex4: AX= 1250H, BL= 90H

1. IDIV BL → = = = = =
BL

AX

H

H

90

1250

NEG

POS

sNEG

POS

'2)90('2

1250

Hs

H

H

H

70

1250

= 29H (Q) → (1250 – 29 * 70) = 60H (REM)

29H (POS) → 2‟S (29H) = D7H →
R Q

60H D7H

2. DIV BL → = = 20H→1250-20*90 =50H →
BL

AX

H

H

90

1250 R Q
50H 20H
AH AL

Exercise:
1. Write a program to add two 16 bit numbers

2. Write a program to subtract a two 16 bit numbers

3. Write a program to multiply two 16 bit numbers

4. Write a program to divide a 16 bit number by an 8-bit

number.

21

22

Mnemonic Meaning Format Operation Flags Affected

AND

OR

XOR

NOT

Logical AND

Logical Inclusive

OR

Logical Exclusive

OR

LOGICAL NOT

AND D,S

OR D,S

XOR D,S

NOT D

(S) · (D) → (D)

(S)+(D) → (D)

(S) (D)→(D)

_

(D) → (D)

SF, ZF, PF

SF, ZF, PF

SF, ZF, PF

None

+

Logical Instructions

Destination Source

Register

Register

Memory

Register

Memory

Accumulator

Register

Memory

Register

Immediate

Immediate

Immediate

Destination

Register

Memory

23

LOGICAL Instructions

• AND

– Uses any addressing mode except memory-to-memory and
segment registers

– Especially used in clearing certain bits (masking)

xxxx xxxx AND 0000 1111 = 0000 xxxx

(clear the upper four bits)

– Examples: AND BL, 0FH

AND AL, [345H]

• OR

– Used in setting certain bits

xxxx xxxx OR 0000 1111 = xxxx 1111

(Set the lower four bits)

24

• XOR
– Used in Inverting bits

xxxx xxxx XOR 0000 1111 = xxxxx’x’x’x’

-Example: Clear bits 0 and 1, set bits 6 and 7, invert bit 5 of

register CL:

AND CL, 0FCH ; 1111 1100B

OR CL, 0C0H ; 1100 0000B

XOR CL, 020H ; 0010 0000B

• Exercise: Clear bits 3 and 6, set bits 1 and 4, invert bit 0 of register BL

25

Shift and Rotate Instructions

SHL/SAL: shift logical left/shift

arithmetic left

 SHR: shift logical right

 SAR: shift arithmetic right

 ROL: rotate left

 ROR: rotate right

 RCL: rotate left through carry

 RCR: rotate right through carry

26

Logical vs Arithmetic Shifts

• A logical shift fills the newly created bit position

with zero:

CF

0

• An arithmetic shift fills the newly created bit

position with a copy of the number’s sign bit:

CF

27

Mnemo

-nic

Meaning Format Operation Flags

Affected

SAL/SH

L

SHR

SAR

Shift

arithmetic

Left/shift

Logical left

Shift

logical

right

Shift

arithmetic

right

SAL/SHL D, Count

SHR D, Count

SAR D, Count

Shift the (D) left by the

number of bit positions

equal to count and fill the

vacated bits positions on

the right with zeros

Shift the (D) right by the

number of bit positions

equal to count and fill the

vacated bits positions on

the left with zeros

Shift the (D) right by the

number of bit positions

equal to count and fill the

vacated bits positions on

the left with the original

most significant bit

All

All

IF, DF & TF

Shift Instructions

28

Allowed operands

Destination Count

Register

Register

Memory

Memory

1

CL

1

CL

29

30

SHL Instruction

• The SHL (shift left) instruction performs a logical

left shift on the destination operand, filling the

lowest bit with 0.

CF

0

• Operand types:

SHL reg,imm8

SHL mem,imm8

SHL reg,CL

SHL mem,CL

31

Fast Multiplication

mov dl,5

shl dl,1

Shifting left 1 bit multiplies a number by 2

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1 = 5

= 10

Before:

After:

mov dl,5

shl dl,2 ; DL = 20

Shifting left n bits multiplies the operand by

2n

For example, 5 * 22 = 20

32

Ex. Let AL=10H, what is AL after the

following code?
SHL AL, 1

MOV BL, AL

MOV CL,2

SHL AL,CL

ADD AL, BL

Exercise: Let AL=10H, what is AL after the

following code

1. SHL AL,1 2. SHL AL,1

MOV CL, AL MOV BL,AL

MOV CL,4 MOV CL,3

SHL AL,CL SHL AL,CL

ADD AL,BL ADD AL,BL

33

SHR Instruction

• The SHR (shift right) instruction performs a logical

right shift on the destination operand. The highest

bit position is filled with a zero.

CF

0

MOV DL,80

SHR DL,1 ; DL = 40

SHR DL,2 ; DL = 10

Shifting right n bits divides the operand by 2n

34

SAR Instruction

• SAR (shift arithmetic right) performs a right

arithmetic shift on the destination operand.

CF

An arithmetic shift preserves the number's sign.

MOV DL,-80

SAR DL,1 ; DL = -40

SAR DL,2 ; DL = -10

• Example:

1. Let AL=B0H, what is AL after the following code

SHR AL, 1

MOV BL, AL

MOV CL,2

SHR AL,CL

ADD AL, BL

Exercise:

Let AL=B0H, what is AL after the following code

1. SHR AL,1 2. SHR AL,1

MOV CL, AL MOV BL,AL

MOV CL,2 MOV CL,3

SHR AL,4 SHR AL,CL

ADD AL,BL ADD AL,BL

35

36

Rotate Instructions

Mnem

-onic

Meaning Format Operation Flags Affected

ROL Rotate

Left

ROL D,Count Rotate the (D) left by the

number of bit positions equal

to Count. Each bit shifted out

from the left most bit goes back

into the rightmost bit position.

PF, SF, and

ZF are left

unchanged

ROR Rotate

Right

ROR D,Count Rotate the (D) right by the

number of bit positions equal

to Count. Each bit shifted out

from the rightmost bit goes

back into the leftmost bit

position.

PF, SF, and

ZF are left

unchanged

RCL Rotate

Left

through

Carry

RCL D,Count Same as ROL except carry is

attached to (D) for rotation.

PF, SF, and

ZF are left

unchanged

RCR Rotate

right

through

Carry

RCR D,Count Same as ROR except carry is

attached to (D) for rotation.

PF, SF, and

ZF are left

unchanged

37

ROL Instruction

• ROL (rotate) shifts each bit to the left

• The highest bit is copied into both the Carry
flag and into the lowest bit

• No bits are lost

CF

MOV Al,11110000b

ROL Al,1 ; AL = 11100001b

MOV Dl,3Fh

ROL Dl,4 ; DL = F3h

38

ROR Instruction

• ROR (rotate right) shifts each bit to the right

• The lowest bit is copied into both the Carry flag and
into the highest bit

• No bits are lost

CF

MOV AL,11110000b

ROR AL,1 ; AL = 01111000b

MOV DL,3Fh

ROR DL,4 ; DL = F3h

39

RCL Instruction

• RCL (rotate left thru carry) shifts each bit to the

left

• Copies the Carry flag to the least significant bit

• Copies the most significant bit to the Carry flag

CF

CLC ; CF = 0

MOV BL,88H ; CF,BL = 0 10001000b

RCL BL,1 ; CF,BL = 1 00010000b

RCL BL,1 ; CF,BL = 0 00100001b

40

RCR Instruction

• RCR (rotate carry right) shifts each bit to the right

• Copies the Carry flag to the most significant bit

• Copies the least significant bit to the Carry flag

STC ; CF = 1

MOV AH,10H ; CF,AH = 00010000 1

RCR AH,1 ; CF,AH = 10001000 0

CF

41

Destination Count

Register

Register

Memory

Memory

1

CL

1

CL

Rotate Instructions

42

Flag control instructions

MNEM-

ONIC

MEANING OPERATION Flags

Affected

CLC Clear Carry Flag (CF)  0 CF

STC Set Carry Flag (CF)  1 CF

CMC Complement

Carry Flag
(CF)  (CF)l CF

CLD Clear Direction

Flag

(DF)  0

SI & DI will be auto incremented while

string instructions are executed.

DF

STD Set Direction

Flag

(DF)  1

SI & DI will be auto decremented

while string instructions are executed.

DF

CLI Clear Interrupt

Flag

(IF)  0 IF

STI Set Interrupt

Flag

(IF)  1 IF

43

Compare Instruction, CMP

Mnemo

nic

Meaning Format Operation Flags

Affected

CMP Compare CMP D,S [D] – [S] is used in

setting or resetting the

flags

CF, AF, OF,

PF, SF, ZF

[D] = [S] ; ZF=1

[D] > [S] ; ZF=0, CF=0

[D] < [S] ; ZF=0, CF=1

Allowed Operands

Destination Source

Register Register

Register Memory

Memory Register

Register Immediate

Memory Immediate

Accumulator Immediate

44

Strings

• An array of bytes or words located in

memory

• Supported String Operations

– Copy (move, load)

– Search (scan)

– Store

– Compare

45

String Instruction Basics

• Source DS:SI, Destination ES:DI

– You must ensure DS and ES are correct

– You must ensure SI and DI are offsets into DS

and ES respectively

– You must move the count to CX register before

executing the instruction

• Direction Flag (0 = Up, 1 = Down)

– CLD - Increment addresses (left to right)

– STD - Decrement addresses (right to left)

46

String Instructions

Instruction prefixes

Prefix Used with Meaning

REP

REPE/REPZ

REPNE/REP

NZ

MOVS

STOS

CMPS

SCAS

CMPS

SCAS

Repeat while not end of string

CX ≠ 0

Repeat while not end of string

and strings are equal. CX ≠ 0

and ZF = 1

Repeat while not end of string

and strings are not equal. CX ≠

0 and ZF = 0

47

Instructions

Mnemo-

Nic

meaning format Operation Flags

effect

-ed

MOVS Move string

DS:SI

ES:DI

MOVSB/

MOVSW

[[ES]0+[DI]]  [[DS]0+[SI]]

[SI]  [SI] ± 1 or 2

[DI]  [DI] ± 1 or 2

none

CMPS Compare

string

DS:SI

ES:DI

CMPSB/

CMPSW

Set flags as per

[[ES]0+[DI]] – [[DS]0+[SI]]

[SI]  [SI] ± 1 or 2

[DI]  [DI] ± 1 or 2

All

status

flags

48

Mnemo-

Nic

meaning format Operation

SCAS Scan string

AX – ES:DI

SCASB/

SCASW

Set flags as per

[AL or AX] – [[ES]0+[DI]]

[DI]  [DI] ± 1 or 2

LODS Load string

DS:SI  AX

LODSB/

LODSW

[AL or AX]  [[DS]0+[SI]]

[SI]  [SI] ± 1 or 2

STOS Store string

ES:DI  AX

STOSB/

STOSW

[[ES]0+[DI]]  [AL or AX] ± 1 or 2

[DI]  [DI] ± 1 or 2

49

Branch group of instructions

Branch instructions provide lot of convenience to the

programmer to perform operations selectively, repetitively

etc.

Branch group of instructions

Conditional

jumps

Uncondi-

tional

jump

Iteration

instructions

CALL

instructions

Return

instructions

50

SUBROUTINE & SUBROUTINE HANDILING INSTRUCTIONS

Call subroutine A

Next instruction

Call subroutine A

Next instruction

Main program

Subroutine A

First Instruction

Return

51

 A subroutine is a special segment of program that can be called for

execution from any point in a program.

 An assembly language subroutine is also referred to as a “procedure”.

 Whenever we need the subroutine, a single instruction is inserted in to

the main body of the program to call subroutine.

 To branch a subroutine the value in the IP or CS and IP must be

modified.

 After execution, we want to return the control to the instruction that

immediately follows the one called the subroutine i.e., the original value

of IP or CS and IP must be preserved.

 Execution of the instruction causes the contents of IP to be saved on

the stack. (this time [SP]  [SP] -2)

 A new 16-bit (near-proc, mem16, reg16 i.e., Intra Segment) value

which is specified by the instructions operand is loaded into IP.

 Examples: CALL 1234H

CALL BX

CALL [BX]

52

• Inter Segment

– At starting CS and IP placed in a stack.

– New values are loaded in to CS and IP given by the
operand.

– After execution original CS, IP values placed as it is.

Far-proc

Memptr32

These two words (32 bits) are loaded directly into IP and

CS with execution at CALL instruction.

First 16  IP

Next 16  CS

53

Mnem-

onic

Meaning Format Operation Flags

Affected

CALL Subroutine

call

CALL operand Execution continues from

the address of the

subroutine specified by

the operand. Information

required to return back to

the main program such as

IP and CS are saved on

the stack.

none

Operand

Near-proc

Far – proc

Memptr 16

Regptr 16

Memptr 32

54

RETURN

• Every subroutine must end by executing an instruction that returns control

to the main program. This is the return (RET) instruction.

• By execution the value of IP or IP and CS that were saved in the stack to

be returned back to their corresponding regs. (this time (SP) (SP)+2)

Mnem

-onic

Meaning Format Operation Flags

Affected

RET Return RET or

RET operand

Return to the main

program by restoring IP

(and CS for far-proc). If

operands is present, it is

added to the contents of

SP.

None

Operand

None

Disp16

55

Loop Instructions

• These instructions are used to repeat a set of instructions several

times.

• Format: LOOP Short-Label

• Operation: [CX]  [CX]-1

• Jump is initialized to location defined by short label if CX≠0.

otherwise, execute next sequential instruction.

• Instruction LOOP works w.r.t contents of CX. CX must be

preloaded with a count that represents the number of times the

loop is to be repeated.

• Whenever the loop is executed, contents at CX are first

decremented then checked to determine if they are equal to zero.

• If CX=0, loop is complete and the instruction following loop is

executed.

• If CX ≠ 0, control returns to the instruction at the label specified in

the loop instruction.

56

General format : LOOP r8 ; r8 is 8-bit signed value.

It is a 2 byte instruction.

Used for backward jump only.

Maximum distance for backward jump is only 128 bytes.

LOOP AGAIN is almost same as: DEC CX

JNZ AGAIN

LOOP instruction does not affect any flags.

LOOP Instruction contd.

57

Mnemonic meaning format Operation

LOOP Loop Loop short-label [CX]  [CX] – 1

Jump to location given by

short-label if CX ≠ 0

LOOPE/

LOOPZ

Loop while

equal/ loop

while zero

LOOPE/LOOPZ

short-label

[CX]  [CX] – 1

Jump to location given by

short-label if CX ≠ 0 and

ZF=1

LOOPNE/

LOOPNZ

Loop while

not equal/

loop while

not zero

LOOPNE/LOOPNZ

short-label

[CX]  [CX] – 1

Jump to location given by

short-label if CX ≠ 0 and

ZF=0

58

Unconditional Jump

Part 1

JMP AA
Unconditional JMP

Skipped part

Part 3

AA XXXX

Part 2

Next instruction

Control flow and JUMP instructions

JMP  unconditional jump

JMP Operand

59

Unconditional Jump

Unconditional Jump Instruction

Near Jump or Far Jump or

Intra segment Jump Inter segment Jump

(Jump within the segment) (Jump to a different segment)

Is limited to the address with in

the current segment. It is achieved

by modifying value in IP

Permits jumps from one code

segment to another. It is

achieved by modifying CS and IP

Operands

Short label

Near label

Far label

Memptr16

Regptr16

memptr32

Inter Segment Jump

Inter Segment Jump

60

Conditional Jump

Part 1

Jcc AA Conditional Jump

Skipped part

Part 2

XXXX

Part 3

AA XXXX

condition

YES

NO

Next instruction

61

Conditional Jump instructions

Conditional Jump instructions in 8086 are just 2 bytes long. 1-byte

opcode followed by 1-byte signed displacement (range of –128 to

+127).

Conditional Jump Instructions

Jumps based on

a single flag

Jumps based on

more than one flag

62

Conditional Jump Instructions

Mnemonic : Jcc

Meaning : Conditional Jump

Format : Jcc operand

Operation : If condition is true jump to the address specified by operand.

Otherwise the next instruction is executed.

Flags affected : None

63

Mnemonic meaning condition

JA Above CF=0 or ZF=0

JAE Above or Equal CF=0

JB Below CF=1

JBE Below or Equal CF=1 or ZF=1

JC Carry CF=1

JCXZ CX register is Zero [CF or ZF]=0

JE Equal ZF=1

JG Greater ZF=0 and SF=OF

JGE Greater or Equal Neither SF=0 nor OF=0

JL Less Neither SF=1 nor OF=1

TYPES

64

Mnemonic meaning condition

JLE Less or Equal ZF=1 or neither SF nor OF is 1

JNA Not Above CF =1 or Zf=1

JNAE Not Above nor Equal CF = 1

JNB Not Below CF = 0

JNBE Not Below nor Equal CF = 0 and ZF = 0

JNC Not Carry CF = 0

JNE Not Equal ZF = 0

JNG Not Greater [[SF XOR OF] or ZF]=1

JNGE Not Greater nor Equal Neither SF=1 nor OF=1

JNL Not Less Neither SF=0 nor OF=0

65

Mnemonic meaning condition

JNLE Not Less nor Equal ZF = 0 or both SF and OF are not

0

JNO Not Overflow OF = 0

JNP Not Parity PF = 0

JNZ Not Zero ZF = 0

JNS Not Sign SF = 0

JO Overflow OF = 1

JP Parity PF = 1

JPE Parity Even PF = 1

JPO Parity Odd PF = 0

JS Sign SF = 1

JZ Zero ZF = 1

66

Jumps Based on a single flag

JZ r8 ;Jump if zero flag set to 1 (Jump if result is zero)

JNZ r8 ;Jump if Not Zero (Z flag = 0 i.e. result is nonzero)

JS r8 ;Jump if Sign flag set to 1 (result is negative)

JNS r8 ;Jump if Not Sign (result is positive)

JC r8 ;Jump if Carry flag set to 1

JNC r8 ;Jump if No Carry

JP r8 ;Jump if Parity flag set to 1 (Parity is even)

JNP r8 ;Jump if No Parity (Parity is odd)

JO r8 ;Jump if Overflow flag set to 1 (result is wrong)

JNO r8 ;Jump if No Overflow (result is correct)

There is no jump

based on AC flag

67

JZ r8 ; JE (Jump if Equal) also means same.

JNZ r8 ; JNE (Jump if Not Equal) also means same.

JC r8 ;JB (Jump if below) and JNAE (Jump if Not Above

or Equal) also mean same.

JNC r8 ;JAE (Jump if Above or Equal) and JNB (Jump if

Not Above) also mean same.

JZ, JNZ, JC and JNC used after arithmetic operation

JE, JNE, JB, JNAE, JAE and JNB are used after a

compare operation.

JP r8 ; JPE (Jump if Parity Even) also means same.

JNP r8 ; JPO (Jump if Parity Odd) also means same.

68

Examples for JE or JZ instruction

Ex. for forward jump (Only examples for JE given)

CMP SI, DI

JE SAME

Should be

<=127

bytes

ADD CX, DX ;Executed if Z = 0

: (if SI not equal to DI)

:

SAME: SUB BX, AX ;Executed if Z = 1

(if SI = DI)

69

Examples for JE or JZ instruction

Ex. for backward jump

BACK: SUB BX, AX ; executed if Z = 1

Should be

<= 128

bytes

: (if SI = DI)

:

CMP SI, DI

JE BACK

ADD CX, DX ;executed if Z = 0

(if SI not equal to DI)

70

Jumping beyond -128 to +127?

Requirement Then do this!

CMP SI, DI CMP SI, DI

JE SAME JNE NEXT

What if

>127

bytes

ADD CX, DX JMP SAME

: NEXT: ADD CX, DX

: :

SAME: SUB BX, AX :

SAME: SUB BX, AX

Range for JMP (unconditional jump) can be +215 = + 32K JMP instruction

discussed in detail later

71

Terms used in comparison

Above and Below used for comparing Unsigned nos.

Greater than and less than used with signed numbers.

All Intel microprocessors use this convention.

95H is above 65H Unsigned comparison - True

95H is less than 65H Signed comparison - True

95H is negative, 65H is positive

65H is below 95H Unsigned comparison - True

65H is greater than 95H Signed comparison - True

72

Jump on multiple flags

Conditional Jumps based on more than one flag are used after a CMP

(compare) instruction.

JBE or

JNA

Jump if Below or Equal

Jump if Not Above

Jump if No Jump if Ex.

Cy = 1 OR Z= 1 Cy = 0 AND Z = 0 CMP BX, CX

Below OR Equal Surely Above JBE BX_BE

BX_BE (BX is Below or Equal) is a symbolic location

73

Jump on multiple flags contd.

JNBE or

JA

Jump if Not (Below or Equal)

Jump if Above

Jump if No Jump if Ex.

Cy = 0 AND Z= 0 Cy = 1 OR Z = 1 CMP BX, CX

Surely Above Below OR Equal JA BXabove

BXabove (BX is above) is a symbolic location

74

Jump on multiple flags contd.

JLE or

JNG

Jump if Less than OR Equal

Jump if Not Greater than

Jump if No Jump if

S = 1 AND V = 0

(surely negative)

OR (S = 0 AND V = 1)

(wrong answer positive!)

OR Z = 1 (equal)

i.e. S XOR V = 1 OR Z = 1

S = 0 AND V = 0

(surely positive)

OR (S = 1 AND V = 1)

(wrong answer negative!)

AND Z = 0 (not equal)

i.e. S XOR V = 0 AND Z = 0

75

Jump on multiple flags contd.

JNLE or

JG

Jump if Not (Less than OR Equal)

Jump if Greater than

Jump if No Jump if

S = 0 AND V = 0

(surely positive)

OR (S = 1 AND V = 1)

(wrong answer negative!)

AND Z = 0 (not equal)

i.e. S XOR V = 0 AND Z = 0

S = 1 AND V = 0

(surely negative)

OR (S = 0 AND V = 1)

(wrong answer positive!)

OR Z = 1 (equal)

i.e. S XOR V = 1 OR Z = 1

76

Jump on multiple flags contd.

JL or

JNGE

Jump if Less than

Jump if Not (Greater than OR Equal)

Jump if No Jump if

S = 1 AND V = 0

(surely negative)

OR (S = 0 AND V = 1)

(wrong answer positive!)

i.e. S XOR V = 1

When S = 1, result cannot be 0

S = 0 AND V = 0

(surely positive)

OR (S = 1 AND V = 1)

(wrong answer negative!)

i.e. S XOR V = 0

When S = 0, result can be 0

77

Jump on multiple flags contd.

JNL or

JGE

Jump if Not Less than

Jump if Greater than OR Equal

Jump if No Jump if

S = 0 AND V = 0

(surely positive)

OR (S = 1 AND V = 1)

(wrong answer negative!)

i.e. S XOR V = 0

When S = 0, result can be 0

S = 1 AND V = 0

(surely negative)

OR (S = 0 AND V = 1)

(wrong answer positive!)

i.e. S XOR V = 1

When S = 1, result cannot be 0

78

Near Jump

Near Jump

Direct Jump

(common)

Indirect Jump

(uncommon)

Short Jump Long Jump

2 or more bytes

Starting with FFH

Range: complete

segment

2 bytes 3 bytes

EB r8 E9 r16

range + 27 range +215

3 Near Jump and 2 Far Jump instructions have the same mnemonic

JMP but different opcodes

79

Short Jump

2 byte (EB r8) instruction Range: -128 to +127 bytes

Backward jump: Assembler knows the quantum of jump.

Generates Short Jump code if <=128 bytes is the required jump

Generates code for Long Jump if >128 bytes is the required jump

Forward jump: Assembler doesn‟t know jump quantum in pass 1.

Assembler reserves 3 bytes for the forward jump instruction.

If jump distance turns out to be >128 bytes, the instruction is

coded as E9 r16 (E9H = Long jump code).

If jump distance becomes <=128 bytes, the instruction is coded as

EB r8 followed by code for NOP (E8H = Short jump code).

80

Short Jump contd.

SHORT Assembler Directive

Assembler generates only 2 byte Short Jump code for forward jump, if the

SHORT assembler directive is used.

JMP SHORT SAME

Programmer should ensure that the

Jump distance is <=127 bytes

:

:

SAME: MOV CX, DX

81

Long Jump

3-byte (E9 r16) instruction Range: -32768 to +32767 bytes

Long Jump can cover entire 64K bytes of Code segment

CS:0000H

Long Jump can

handle it as jump

quantum is <=32767

CS:8000H JMP FRWD

:

:

FRWD = CS:FFFFH

82

Long Jump contd.

It can cover entire 64K bytes of Code segment

Long Jump can

handle it as jump

quantum is

<=32768

BKWD = CS:0000H

CS:8000H JMP BKWD

:

:

CS:FFFFH

83

Long Jump or Short Jump?

Can be treated

as a small

(20H) backward

branch!

CS:0000H :

: Jump distance

=FFE0H. Too

very long

forward jump

CS:000DH JMP FRWD

CS:0010H :

:

FRWD= CS:FFF0H

CS:FFFFH

84

Long Jump or Short Jump?

Can be treated

as a small

(20H) forward

branch!

CS:0000H :

: Jump distance

=FFE0H. Too

very long

backward jump

BKWD= CS:0010H :

:

JMP BKWD

CS:FFF0H

CS:FFFFH

85

Intra segment indirect Jump

Near Indirect Jump is uncommon.

Instruction length: 2 or more bytes

Range: complete segment

Ex.1: JMP DX

If DX = 1234H, branches to CS:1234H

1234H is not signed relative displacement

Ex. 2: JMP wordptr 2000H[BX]

BX 1234H DS:3234H 5678H Branches to

DS:3236H AB22H CS:5678H

86

Far Jump

Far Jump

Direct Jump

(common)

Indirect Jump

(uncommon)

5 bytes

2 or more bytes

Starting with FFH

Range: anywhere

EA,2 byte offset, 2 byte segment

Range: anywhere

3 Near Jump and 2 Far Jump instructions have the same mnemonic

JMP but different opcodes

87

Inter segment Direct Jump

Also called Far Direct Jump

It is the common inter segment jump scheme

It is a 5 byte instruction

1 byte opcode (EAH)

2 byte offset value

2 byte segment value

Ex. JMP Far ptr LOC

88

Inter segment Indirect Jump

Instruction length depends on the way jump location is

specified

It can be a minimum of 2 bytes

Ex. JMP DWORD PTR 2000H[BX]

89

Inter segment Indirect Jump

Also called Far Indirect Jump

It is not commonly used

Instruction length is a minimum of 2 bytes.

It depends on the way jump location is specified

Ex. JMP DWORD PTR 2000H[BX]

BX 1234H Branches to

ABCDH:5678H

DS:3234H 5678H It is a 4-byte instruction

DS:3236H ABCDH

90

Machine control instructions

HLT instruction – HALT processing

the HLT instruction will cause the 8086 to stop fetching and executing
instructions. The 8086 will enter a halt state. The only way to get the processor
out of the halt state are with an interrupt signal on the INTR pin or an interrupt
signal on NMI pin or a reset signal on the RESET input.

NOP instruction

this instruction simply takes up three clock cycles and does no
processing. After this, it will execute the next instruction. This instruction is
normally used to provide delays in between instructions.

ESC instruction

whenever this instruction executes, the microprocessor does NOP or
access a data from memory for coprocessor. This instruction passes the
information to 8087 math processor. Six bits of ESC instruction provide the
opcode to coprocessor.

when 8086 fetches instruction bytes, co-processor also picks up these
bytes and puts in its queue. The co-processor will treat normal 8086
instructions as NOP. Floating point instructions are executed by 8087 and
during this 8086 will be in WAIT.

91

Machine control instructions contd

LOCK instruction

this is a prefix to an instruction. This prefix makes sure that during
execution of the instruction, control of system bus is not taken by other
microprocessor.

in multiprocessor systems, individual microprocessors are connected
together by a system bus. This is to share the common resources. Each
processor will take control of this bus only when it needs to use common
resource.

the lock prefix will ensure that in the middle of an instruction, system
bus is not taken by other processors. This is achieved by hardware signal
„LOCK‟ available on one of the CPU pin. This signal will be made active
during this instruction and it is used by the bus control logic to prevent
others from taking the bus.

once this instruction is completed, lock signal becomes inactive and
microprocessors can take the system bus.

WAIT instruction

this instruction takes 8086 to an idle condition. The CPU will not do
any processing during this. It will continue to be in idle state until TEST pin
of 8086 becomes low or an interrupt signal is received on INTR or NMI. On
valid interrupt, ISR is executed and processor enters the idle state again.

End of Unit II

Unit III

I/O Interface

Interfacing with Advanced devices

Communication Interface

I/O Interface

8255 PPI

8255

DAC and ADC Converters

DAC and ADC:

Stepper Motor and 8257:

Interfacing with Advanced
Devices

Memory Interfacing to 8086:

Interrupts:

8259:

Serial Communication Interface

M Krishna kumar MAM/M3/LU9e/V1/2004 1

PIO 8255 (cont..)
• The parallel input-output port chip 8255 is also called as

programmable peripheral input-output port. The Intel’s
8255 is designed for use with Intel’s 8-bit, 16-bit and
higher capability microprocessors. It has 24 input/output
lines which may be individually programmed in two
groups of twelve lines each, or three groups of eight lines.
The two groups of I/O pins are named as Group A and
Group B. Each of these two groups contains a subgroup of
eight I/O lines called as 8-bit port and another subgroup of
four lines or a 4-bit port. Thus Group A contains an 8-bit
port A along with a 4-bit port. C upper.

M Krishna kumar MAM/M3/LU9e/V1/2004 2

• The port A lines are identified by symbols PA0-PA7 while
the port C lines are identified as PC4-PC7. Similarly, Group
B contains an 8-bit port B, containing lines PB0-PB7 and a
4-bit port C with lower bits PC0- PC3. The port C upper
and port C lower can be used in combination as an 8-bit
port C.

• Both the port C are assigned the same address. Thus one
may have either three 8-bit I/O ports or two 8-bit and two
4-bit ports from 8255. All of these ports can function
independently either as input or as output ports. This can
be achieved by programming the bits of an internal register
of 8255 called as control word register (CWR).

PIO 8255 (cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 3

• The internal block diagram and the pin configuration of
8255 are shown in fig.

• The 8-bit data bus buffer is controlled by the read/write
control logic. The read/write control logic manages all of
the internal and external transfers of both data and control
words.

• RD, WR, A1, A0 and RESET are the inputs provided by the
microprocessor to the READ/ WRITE control logic of
8255. The 8-bit, 3-state bidirectional buffer is used to
interface the 8255 internal data bus with the external
system data bus.

PIO 8255 (cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 4

• This buffer receives or transmits data upon the execution
of input or output instructions by the microprocessor. The
control words or status information is also transferred
through the buffer.

• The signal description of 8255 are briefly presented as
follows :

• PA7-PA0: These are eight port A lines that acts as either
latched output or buffered input lines depending upon the
control word loaded into the control word register.

• PC7-PC4 : Upper nibble of port C lines. They may act as
either output latches or input buffers lines.

PIO 8255 (cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 5

• This port also can be used for generation of handshake
lines in mode 1 or mode 2.

• PC3-PC0 : These are the lower port C lines, other details
are the same as PC7-PC4 lines.

• PB0-PB7 : These are the eight port B lines which are used
as latched output lines or buffered input lines in the same
way as port A.

• RD : This is the input line driven by the microprocessor
and should be low to indicate read operation to 8255.

• WR : This is an input line driven by the microprocessor. A
low on this line indicates write operation.

PIO 8255 (cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 6

• CS : This is a chip select line. If this line goes low, it
enables the 8255 to respond to RD and WR signals,
otherwise RD and WR signal are neglected.

• A1-A0 : These are the address input lines and are driven by
the microprocessor. These lines A1-A0 with RD, WR and
CS from the following operations for 8255. These address
lines are used for addressing any one of the four registers,
i.e. three ports and a control word register as given in table
below.

• In case of 8086 systems, if the 8255 is to be interfaced
with lower order data bus, the A0 and A1 pins of 8255 are
connected with A1 and A2 respectively.

PIO 8255 (cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 7

Input (Read) cycleRD WR CS A1 A0
Port A to Data bus
Port B to Data bus
Port C to Data bus
CWR to Data bus

0
1
0

1 000
0
0
0 11

1
1
1
1

00
0
0

Output (Write) cycleRD WR CS A1 A0
Data bus to Port A
Data bus to Port B
Data bus to Port C
Data bus to CWR

0
1
0

000
0
0
0 11

1
00

0
0

1
1
1
1

FunctionRD WR CS A1 A0
Data bus tristated
Data bus tristated

X
X

X1X
1 X0

X
1

Control Word Register

M Krishna kumar MAM/M3/LU9e/V1/2004 8

• D0-D7 : These are the data bus lines those carry data or
control word to/from the microprocessor.

• RESET : A logic high on this line clears the control word
register of 8255. All ports are set as input ports by default
after reset.

PIO 8255.

M Krishna kumar MAM/M3/LU9e/V1/2004 9

Block Diagram of 8255 (Architecture)
(cont..)

• It has a 40 pins of 4 groups.
1. Data bus buffer
2. Read Write control logic
3. Group A and Group B controls
4. Port A, B and C
• Data bus buffer: This is a tristate bidirectional buffer

used to interface the 8255 to system databus. Data is
transmitted or received by the buffer on execution of
input or output instruction by the CPU.

• Control word and status information are also transferred
through this unit.

M Krishna kumar MAM/M3/LU9e/V1/2004 10

• Read/Write control logic: This unit accepts control
signals (RD, WR) and also inputs from address bus and
issues commands to individual group of control blocks
(Group A, Group B).

• It has the following pins.
a) CS – Chipselect : A low on this PIN enables the

communication between CPU and 8255.
b) RD (Read) – A low on this pin enables the CPU to read

the data in the ports or the status word through data bus
buffer.

Block Diagram of 8255 (Architecture)
(cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 11

c) WR (Write) : A low on this pin, the CPU can write
data on to the ports or on to the control register through
the data bus buffer.

d) RESET: A high on this pin clears the control register
and all ports are set to the input mode

e) A0 and A1 (Address pins): These pins in conjunction
with RD and WR pins control the selection of one of the
3 ports.

• Group A and Group B controls : These block receive
control from the CPU and issues commands to their
respective ports.

Block Diagram of 8255 (Architecture)
(cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 12

• Group A - PA and PCU (PC7 –PC4)
• Group B - PCL (PC3 – PC0)
• Control word register can only be written into no read

operation of the CW register is allowed.
• a) Port A: This has an 8 bit latched/buffered O/P and 8

bit input latch. It can be programmed in 3 modes – mode 0,
mode 1, mode 2.
b) Port B: This has an 8 bit latched / buffered O/P and 8

bit input latch. It can be programmed in mode 0, mode1.

Block Diagram of 8255 (Architecture)
(cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 13

c) Port C : This has an 8 bit latched input buffer and 8 bit
out put latched/buffer. This port can be divided into two 4
bit ports and can be used as control signals for port A and
port B. it can be programmed in mode 0.

Block Diagram of 8255 (Architecture).

M Krishna kumar MAM/M3/LU9e/V1/2004 14

Modes of Operation of 8255 (cont..)

• These are two basic modes of operation of 8255. I/O mode
and Bit Set-Reset mode (BSR).

• In I/O mode, the 8255 ports work as programmable I/O
ports, while in BSR mode only port C (PC0-PC7) can be
used to set or reset its individual port bits.

• Under the I/O mode of operation, further there are three
modes of operation of 8255, so as to support different
types of applications, mode 0, mode 1 and mode 2.

M Krishna kumar MAM/M3/LU9e/V1/2004 15

• BSR Mode: In this mode any of the 8-bits of port C can be
set or reset depending on D0 of the control word. The bit to
be set or reset is selected by bit select flags D3, D2 and D1
of the CWR as given in table.

• I/O Modes :
a) Mode 0 (Basic I/O mode): This mode is also called as
basic input/output mode. This mode provides simple input
and output capabilities using each of the three ports. Data
can be simply read from and written to the input and output
ports respectively, after appropriate initialisation.

Modes of Operation of 8255 (cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 16

D3 D2 D1 Selected bits of port C

0

1

D00 0
0 0
0 01

1

0 1 1
1
1

0 0
0 1

1 1 0
1 1

D1
D2
D3
D4
D5
D6
D7

BSR Mode : CWR Format

M Krishna kumar MAM/M3/LU9e/V1/2004 17

8
2
5
5

8
2
5
5

PA

PCU

PCL

PB

PA

PCU

PCL

PB

PA6 – PA7

PC4 – PC7

PC0-PC3

PB0 – PB7

All Output Port A and Port C acting as
O/P. Port B acting as I/P

PA

PC

PB0 – PB7

Mode 0

M Krishna kumar MAM/M3/LU9e/V1/2004 18

• The salient features of this mode are as listed below:
1. Two 8-bit ports (port A and port B)and two 4-bit ports

(port C upper and lower) are available. The two 4-bit
ports can be combinedly used as a third 8-bit port.

2. Any port can be used as an input or output port.
3. Output ports are latched. Input ports are not latched.
4. A maximum of four ports are available so that overall 16

I/O configuration are possible.
• All these modes can be selected by programming a

register internal to 8255 known as CWR.

Modes of Operation of 8255 (cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 19

• The control word register has two formats. The first format
is valid for I/O modes of operation, i.e. modes 0, mode 1
and mode 2 while the second format is valid for bit
set/reset (BSR) mode of operation. These formats are
shown in following fig.

D6D7 D0D1D2D3D4D5

1 X X X

0-for BSR mode Bit select flags
0- Reset

1- Set

I/O Mode Control Word Register Format and
BSR Mode Control Word Register Format

D3, D2, D1 are from 000 to 111 for bits PC0 TO PC7

Modes of Operation of 8255 (cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 20

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

PB3

PB4

PB5

PB6

PB7

Vcc
D7

D6

D5

D4

D3

D2

D1

D0

Reset
WR
PA7

PA6

PA5

PA4

PB2

PB1

PB0

PC3

PC2

PC1

PC0

PC4

PC5

PC6

PC7

A0

A1

GND
CS
RD

PA0

PA1

PA2

PA3

8255A

8255A Pin Configuration

M Krishna kumar MAM/M3/LU9e/V1/2004 21

8255A

D0-D7

CS
RESET

A0

A1

RD

WR GND

Vcc

PB0-PB7

PC0-PC3

PC4-PC7

PA0-PA7

Signals of 8255

M Krishna kumar MAM/M3/LU9e/V1/2004 22

Block Diagram of 8255

D0-D7 Data bus
Buffer

1

READ/
WRITE
Control
Logic

RD
WR

A0
A1

RESET

CS

Group B
control

Group A
control

Group A
Port A(8)

Group A
Port C
upper(4)

Group B
Port C
Lower(4)

Group B
Port B(8)

2

3 4

8 bit int data bus

PB7-PB0

PC0-PC3

PC7-PC4

PA0-PA7

M Krishna kumar MAM/M3/LU9e/V1/2004 23

Control Word Format of 8255

Group - B

PCL

PB

Mode
Select

1 Input
0 Output
1 Input
0 Output

0 mode- 0
1 mode- 1

D0D1D2D3D4D6 D5D7

Mode for
Port A

PA PC U Mode
for PB

PB PC L

Mode
Select
of PA

00 – mode 0
01 – mode 1
10 – mode 2

PA
1 Input
0 Output

Group - A

PC u 1 Input
0 Output

Mode Set flag
1- active
0- BSR mode

M Krishna kumar MAM/M3/LU9e/V1/2004 24

b) Mode 1: (Strobed input/output mode) In this mode the
handshaking control the input and output action of the
specified port. Port C lines PC0-PC2, provide strobe or
handshake lines for port B. This group which includes port
B and PC0-PC2 is called as group B for Strobed data
input/output. Port C lines PC3-PC5 provide strobe lines for
port A. This group including port A and PC3-PC5 from
group A. Thus port C is utilized for generating handshake
signals. The salient features of mode 1 are listed as
follows:

Modes of Operation of 8255 (cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 25

1. Two groups – group A and group B are available for
strobed data transfer.

2. Each group contains one 8-bit data I/O port and one 4-bit
control/data port.

3. The 8-bit data port can be either used as input and output
port. The inputs and outputs both are latched.

4. Out of 8-bit port C, PC0-PC2 are used to generate control
signals for port B and PC3-PC5 are used to generate
control signals for port A. the lines PC6, PC7 may be
used as independent data lines.

Modes of Operation of 8255 (cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 26

• The control signals for both the groups in input and output
modes are explained as follows:

Input control signal definitions (mode 1):
• STB(Strobe input) – If this lines falls to logic low level,

the data available at 8-bit input port is loaded into input
latches.

• IBF (Input buffer full) – If this signal rises to logic 1, it
indicates that data has been loaded into latches, i.e. it
works as an acknowledgement. IBF is set by a low on STB
and is reset by the rising edge of RD input.

Modes of Operation of 8255 (cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 27

• INTR (Interrupt request) – This active high output signal
can be used to interrupt the CPU whenever an input device
requests the service. INTR is set by a high STB pin and a
high at IBF pin. INTE is an internal flag that can be
controlled by the bit set/reset mode of either PC4(INTEA)
or PC2(INTEB) as shown in fig.

• INTR is reset by a falling edge of RD input. Thus an
external input device can be request the service of the
processor by putting the data on the bus and sending the
strobe signal.

Modes of Operation of 8255 (cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 28

Output control signal definitions (mode 1) :
• OBF (Output buffer full) – This status signal, whenever

falls to low, indicates that CPU has written data to the
specified output port. The OBF flip-flop will be set by a
rising edge of WR signal and reset by a low going edge at
the ACK input.

• ACK (Acknowledge input) – ACK signal acts as an
acknowledgement to be given by an output device. ACK
signal, whenever low, informs the CPU that the data
transferred by the CPU to the output device through the
port is received by the output device.

Modes of Operation of 8255 (cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 29

• INTR (Interrupt request) – Thus an output signal that can
be used to interrupt the CPU when an output device
acknowledges the data received from the CPU. INTR is set
when ACK, OBF and INTE are 1. It is reset by a falling
edge on WR input. The INTEA and INTEB flags are
controlled by the bit set-reset mode of PC6 and PC2
respectively.

Modes of Operation of 8255 (cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 30

D0D1D2D3D4D5D6D7

1 1 1/000 X X X

Mode 1 Control Word Group A
I/P

Mode 1 Control Word Group B
I/P

PB0 – PB7

INTEB PC2
PC1

PC0 INTR
A

IBFB

STBB

I/O

INTRA

IBFA

STBA
INTEA

PA0 – PA7

RD

PC3

PC5

PC4

PC6 – PC7

1 - Input
0 - Output

For PC6 – PC7

D0D1D2D3D4D5D6D7

1 1 1X X X X X

RD

Input control signal definitions in
Mode 1

M Krishna kumar MAM/M3/LU9e/V1/2004 31

DATA from
Peripheral

RD

INTR

STB

IBF

Mode 1 Strobed Input Data Transfer

M Krishna kumar MAM/M3/LU9e/V1/2004 32

Data OP to
Port

ACK

INTR

OBF

WR

Mode 1 Strobed Data Output

M Krishna kumar MAM/M3/LU9e/V1/2004 33

D0D1D2D3D4D5D6D7

1 1 1/000 X X X

Mode 1 Control Word Group A Mode 1 Control Word Group B

PB0 –
PB7

INTEB PC1
PC2

PC0 INTRB

ACKB

OBFB

I/O

INTRA

ACKA

OBF
A

INTEA

PA0 – PA7

WR

PC3

PC6

PC7

PC4 – PC5

1 - Input
0 - Output

For PC4 – PC5

D0D1D2D3D4D5D6D7

1 1 0X X X X X

Output control signal definitions Mode 1

M Krishna kumar MAM/M3/LU9e/V1/2004 34

• Mode 2 (Strobed bidirectional I/O): This mode of
operation of 8255 is also called as strobed bidirectional
I/O. This mode of operation provides 8255 with an
additional features for communicating with a peripheral
device on an 8-bit data bus. Handshaking signals are
provided to maintain proper data flow and synchronization
between the data transmitter and receiver. The interrupt
generation and other functions are similar to mode 1.

• In this mode, 8255 is a bidirectional 8-bit port with
handshake signals. The RD and WR signals decide
whether the 8255 is going to operate as an input port or
output port.

Modes of Operation of 8255 (cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 35

• The Salient features of Mode 2 of 8255 are listed as
follows:

1. The single 8-bit port in group A is available.
2. The 8-bit port is bidirectional and additionally a 5-bit

control port is available.
3. Three I/O lines are available at port C.(PC2 – PC0)
4. Inputs and outputs are both latched.
5. The 5-bit control port C (PC3-PC7) is used for

generating / accepting handshake signals for the 8-bit
data transfer on port A.

Modes of Operation of 8255 (cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 36

• Control signal definitions in mode 2:
• INTR – (Interrupt request) As in mode 1, this control

signal is active high and is used to interrupt the
microprocessor to ask for transfer of the next data byte
to/from it. This signal is used for input (read) as well as
output (write) operations.

• Control Signals for Output operations:
• OBF (Output buffer full) – This signal, when falls to low

level, indicates that the CPU has written data to port A.

Modes of Operation of 8255 (cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 37

• ACK (Acknowledge) This control input, when falls to
logic low level, acknowledges that the previous data byte
is received by the destination and next byte may be sent by
the processor. This signal enables the internal tristate
buffers to send the next data byte on port A.

• INTE1 (A flag associated with OBF) This can be
controlled by bit set/reset mode with PC6.

• Control signals for input operations :
• STB (Strobe input) A low on this line is used to strobe in

the data into the input latches of 8255.

Modes of Operation of 8255 (cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 38

• IBF (Input buffer full) When the data is loaded into input
buffer, this signal rises to logic ‘1’. This can be used as an
acknowledge that the data has been received by the
receiver.

• The waveforms in fig show the operation in Mode 2 for
output as well as input port.

• Note: WR must occur before ACK and STB must be
activated before RD.

Modes of Operation of 8255 (cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 39

Data from 8085 Data towards
8255

RD

Data bus

IBF

STB

ACK

INTR

OBF

WR

Mode 2 Bidirectional Data Transfer

M Krishna kumar MAM/M3/LU9e/V1/2004 40

• The following fig shows a schematic diagram containing
an 8-bit bidirectional port, 5-bit control port and the
relation of INTR with the control pins. Port B can either be
set to Mode 0 or 1 with port A(Group A) is in Mode 2.

• Mode 2 is not available for port B. The following fig
shows the control word.

• The INTR goes high only if either IBF, INTE2, STB and
RD go high or OBF, INTE1, ACK and WR go high. The
port C can be read to know the status of the peripheral
device, in terms of the control signals, using the normal
I/O instructions.

Modes of Operation of 8255 (cont..)

M Krishna kumar MAM/M3/LU9e/V1/2004 41

D0D1D2D3D4D5D6D7

1 X XX 1 1/0 1/0 1/0

1 - Input
0 - Output

PC2 – PC0

1/0 mode

Port A
mode 2

Port B mode
0-mode 0
1- mode 1

Port B
1- I/P
0-O/P

Mode 2 control word

M Krishna kumar MAM/M3/LU9e/V1/2004 42

WR

RD

PC3

PC7
PC6

PC4

PC5

INTE 1

I/O

IBF

STB

ACK

OBF

INTR

PA0-PA7

INTE 2

3

Mode 2 pins

M Krishhna Kumar MAM/M3/LU9g/V1/2004 1

Interfacing Analog to Digital Data
Converters

• In most of the cases, the PIO 8255 is used for interfacing
the analog to digital converters with microprocessor.

• We have already studied 8255 interfacing with 8086 as an
I/O port, in previous section. This section we will only
emphasize the interfacing techniques of analog to digital
converters with 8255.

• The analog to digital converters is treaded as an input
device by the microprocessor, that sends an initialising
signal to the ADC to start the analogy to digital data
conversation process. The start of conversation signal is a
pulse of a specific duration.

M Krishhna Kumar MAM/M3/LU9g/V1/2004 2

• The process of analog to digital conversion is a slow
process, and the microprocessor has to wait for the digital
data till the conversion is over. After the conversion is
over, the ADC sends end of conversion EOC signal to
inform the microprocessor that the conversion is over and
the result is ready at the output buffer of the ADC. These
tasks of issuing an SOC pulse to ADC, reading EOC signal
from the ADC and reading the digital output of the ADC
are carried out by the CPU using 8255 I/O ports.

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 3

• The time taken by the ADC from the active edge of SOC
pulse till the active edge of EOC signal is called as the
conversion delay of the ADC.

• It may range any where from a few microseconds in case
of fast ADC to even a few hundred milliseconds in case of
slow ADCs.

• The available ADC in the market use different conversion
techniques for conversion of analog signal to digitals.
Successive approximation techniques and dual slope
integration techniques are the most popular techniques
used in the integrated ADC chip.

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 4

• General algorithm for ADC interfacing contains the
following steps:

1. Ensure the stability of analog input, applied to the ADC.
2. Issue start of conversion pulse to ADC
3. Read end of conversion signal to mark the end of

conversion processes.
4. Read digital data output of the ADC as equivalent digital

output.

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 5

• Analog input voltage must be constant at the input of the
ADC right from the start of conversion till the end of the
conversion to get correct results. This may be ensured by a
sample and hold circuit which samples the analog signal
and holds it constant for a specific time duration. The
microprocessor may issue a hold signal to the sample and
hold circuit.

• If the applied input changes before the complete
conversion process is over, the digital equivalent of the
analog input calculated by the ADC may not be correct.

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 6

ADC 0808/0809 :
• The analog to digital converter chips 0808 and 0809 are 8-

bit CMOS, successive approximation converters. This
technique is one of the fast techniques for analog to digital
conversion. The conversion delay is 100µs at a clock
frequency of 640 KHz, which is quite low as compared to
other converters. These converters do not need any
external zero or full scale adjustments as they are already
taken care of by internal circuits. These converters
internally have a 3:8 analog multiplexer so that at a time
eight different analog conversion by using address lines -

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 7

ADD A, ADD B, ADD C. Using these address inputs,
multichannel data acquisition system can be designed
using a single ADC. The CPU may drive these lines using
output port lines in case of multichannel applications. In
case of single input applications, these may be hardwired
to select the proper input.

• There are unipolar analog to digital converters, i.e. they are
able to convert only positive analog input voltage to their
digital equivalent. These chips do no contain any internal
sample and hold circuit.

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 8

Analog I/P
selected

Address lines

AC B

I / P 0

I / P 1

I / P 2

I / P 3

I / P 4

I / P 5

I / P 6

I / P 7

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Fig

M Krishhna Kumar MAM/M3/LU9g/V1/2004 9

• If one needs a sample and hold circuit for the conversion
of fast signal into equivalent digital quantities, it has to be
externally connected at each of the analog inputs.

• Vcc Supply pins +5V
• GND GND
• Vref + Reference voltage positive +5 Volts

maximum.
• Vref _ Reference voltage negative 0Volts

minimum.

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 10

• I/P0 –I/P7 Analog inputs
• ADD A,B,C Address lines for selecting analog

inputs.
• O7 – O0 Digital 8-bit output with O7 MSB and

O0 LSB
• SOC Start of conversion signal pin
• EOC End of conversion signal pin
• OE Output latch enable pin, if high enables

output
• CLK Clock input for ADC

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 11

M Krishhna Kumar MAM/M3/LU9g/V1/2004 12

O/P
Latch

O/P
Enable

8-bit
O/P

EOC

CLOCKSOC

Control and
Timing unit
and S.A.R.

256 R
Register

ladder and
Switch tree

V ref + V ref _

8 Channel
Analog

Multiplexer

ABC

I / P 0

I / P 1

I / P 2

I / P 3

I / P 4

I / P 5

I / P 6

I / P 7

Block Diagram of ADC 0808 / 0809
Address Lines

M Krishhna Kumar MAM/M3/LU9g/V1/2004 13

CLOCK

START

ALE

EOC

OE

O / P

Timing Diagram of ADC 0808

M Krishhna Kumar MAM/M3/LU9g/V1/2004 14

• Example: Interfacing ADC 0808 with 8086 using 8255
ports. Use port A of 8255 for transferring digital data
output of ADC to the CPU and port C for control signals.
Assume that an analog input is present at I/P2 of the ADC
and a clock input of suitable frequency is available for
ADC.

• Solution: The analog input I/P2 is used and therefore
address pins A,B,C should be 0,1,0 respectively to select
I/P2. The OE and ALE pins are already kept at +5V to
select the ADC and enable the outputs. Port C upper acts
as the input port to receive the EOC signal while port C
lower acts as the output port to send SOC to the ADC.

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 15

• Port A acts as a 8-bit input data port to receive the digital
data output from the ADC. The 8255 control word is
written as follows:

D7 D6 D5 D4 D3 D2 D1 D0
1 0 0 1 1 0 0 0

• The required ALP is as follows:
MOV AL, 98h ;initialise 8255 as
OUT CWR, AL ;discussed above.
MOV AL, 02h ;Select I/P2 as analog
OUT Port B, AL ;input.

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 16

MOV AL, 00h ;Give start of conversion
OUT Port C, AL ; pulse to the ADC
MOV AL, 01h
OUT Port C, AL
MOV AL, 00h
OUT Port C, AL

WAIT: IN AL, Port C ;Check for EOC by
RCR ; reading port C upper and
JNC WAIT ;rotating through carry.
IN AL, Port A ;If EOC, read digital equivalent

;in AL
HLT ;Stop.

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 17

Interfacing 0808 with 8086

CS

D0 – D7

8255

ADC
0808

Vref +

Clock up

Analog
I/P
Voltage

CA B

GND

ALE

OE

+5V

EOC

SOC

Vref +

+ 5 V

+ 5 V Vcc

O7 – O0

A2

A1

Reset

IORD

IOWR PB2

PB1

PB0

PA7 – PA0

PC7

PC0

M Krishhna Kumar MAM/M3/LU9g/V1/2004 18

Interfacing Digital To Analog
Converters (cont..)

INTERFACING DIGITAL TO ANALOG CONVERTERS: The
digital to analog converters convert binary number into
their equivalent voltages. The DAC find applications in
areas like digitally controlled gains, motors speed controls,
programmable gain amplifiers etc.

AD 7523 8-bit Multiplying DAC : This is a 16 pin DIP,
multiplying digital to analog converter, containing R-2R
ladder for D-A conversion along with single pole double
thrown NMOS switches to connect the digital inputs to the
ladder.

M Krishhna Kumar MAM/M3/LU9g/V1/2004 19

OUT 1

OUT 2

GND

MSB B1

B2

B3

B4

B5 B6

B7

B8

RFB

Vref in

V +

NC

NC

LSB

AD 7523

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

 Pin Diagram of AD 7523

M Krishhna Kumar MAM/M3/LU9g/V1/2004 20

2R

R2 R4 R6 R8

2R2R2R2R2R R1 R3 R5
R7

D1 D2 D3D0

+

-
V0

+5V
(MSB)

LSB

Fig:

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 21

• The pin diagram of AD7523 is shown in fig the supply
range is from +5V to +15V, while Vref may be any where
between -10V to +10V. The maximum analog output
voltage will be any where between -10V to +10V, when all
the digital inputs are at logic high state.

• Usually a zener is connected between OUT1 and OUT2 to
save the DAC from negative transients. An operational
amplifier is used as a current to voltage converter at the
output of AD to convert the current out put of AD to a
proportional output voltage.

Interfacing Digital To Analog
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 22

• It also offers additional drive capability to the DAC output.
An external feedback resistor acts to control the gain. One
may not connect any external feedback resistor, if no gain
control is required.

• EXAMPLE: Interfacing DAC AD7523 with an 8086 CPU
running at 8MHZ and write an assembly language program
to generate a sawtooth waveform of period 1ms with
Vmax 5V.

• Solution: Fig shows the interfacing circuit of AD 74523
with 8086 using 8255. program gives an ALP to generate a
sawtooth waveform using circuit.

Interfacing Digital To Analog
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 23

ASSUME CS:CODE
CODE SEGMENT
START: MOV AL,80h ;make all ports output

OUT CW, AL
AGAIN: MOV AL,00h ;start voltage for ramp
BACK : OUT PA, AL

INC AL
CMP AL, 0FFh
JB BACK
JMP AGAIN
CODE ENDS
END START

Example (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 24

MSB

LSB
V0

8255A

CS

+

-

AD7523

GND

+5V +10V

VZ

OUT1

OUT2

RFB

3

11

4 1

2

16

1415

PA0

PA7

Fig: Interfacing of AD7523

M Krishhna Kumar MAM/M3/LU9g/V1/2004 25

• In the above program, port A is initialized as the output
port for sending the digital data as input to DAC. The ramp
starts from the 0V (analog), hence AL starts with 00H. To
increment the ramp, the content of AL is increased during
each execution of loop till it reaches F2H.

• After that the saw tooth wave again starts from 00H, i.e.
0V(analog) and the procedure is repeated. The ramp period
given by this program is precisely 1.000625 ms. Here the
count F2H has been calculated by dividing the required
delay of 1ms by the time required for the execution of the
loop once. The ramp slope can be controlled by calling a
controllable delay after the OUT instruction.

Interfacing Analog to Digital Data
Converters (cont..)

Stepper Motor Interfacing:

 A stepper motor is a device used to obtain an accurate position control of rotating shafts.
It employs rotation of its shaft in terms of steps, rather than continuous rotation as in
case of AC or DC motors. To rotate the shaft of the stepper motor, a sequence of pulses
is needed to be applied to the windings of the stepper motor, in a proper sequence.

 The number of pulses required for one complete rotation of the shaft of the stepper
motor is equal to its number of internal teeth on its rotor. The stator teeth and the rotor
teeth lock with each other to fix a position of the shaft.

 With a pulse applied to the winding input, the rotor rotates by one teeth position or an
angle x. The angle x may be calculated as:

X=360
0
/no. of rotor teeth

 After the rotation of the shaft through angel x, the rotor locks itself with the next tooth in

the sequence on the internal surface of stator.
 The internal schematic of a typical stepper motor with four windings is shown in fig.1.



 The stepper motors have been designed to work with digital circuits. Binary level pulses

of 0-5V are required at its winding inputs to obtain the rotation of shafts. The sequence

of the pulses can be decided, depending upon the required motion of the shaft.



 Fig.1 shows a typical winding arrangement of the stepper motor.

 Fig.2 shows conceptual positioning of the rotor teeth on the surface of rotor, for a six
teeth rotor.

Fig.1 Internal schematic of a four winding stepper motor

























Fig.2 Winding arrangement of a stepper motor.


























Fig.3 Stepper motor rotor

  The circuit for interfacing a winding Wn with an I/O port is given in fig.4. Each

of the windings of a stepper motor needs this circuit for its interfacing with the output

port. A typical stepper motor may have parameters like torque 3 Kg-cm, operating


voltage 12V, current rating 0.2 A and a step angle 1.8
0
 i.e. 200 steps/revolution (number

of rotor teeth).

 A simple schematic for rotating the shaft of a stepper motor is called a wave scheme. In

this scheme, the windings Wa, Wb, Wc and Wd are applied with the required voltages

pulses, in a cyclic fashion. By reversing the sequence of excitation, the direction of

rotation of the stepper motor shaft may be reversed.


 Table.1 shows the excitation sequences for clockwise and anticlockwise rotations.

Another popular scheme for rotation of a stepper motor shaft applies pulses to two

successive windings at a time but these are shifted only by one position at a time. This

scheme for rotation of stepper motor shaft is shown in table2.













Fig.4 interfacing stepper motor winding.

Table.1 Excitation sequence of a stepper motor using wave switching scheme.

Motion step A B C D

 1 1 0 0 0

 2 0 1 0 0

Clock

3 0 0 1 0

Wise Direction

4 0 0 0 1

 5 1 0 0 0

 1 1 0 0 0

Anti clock
2 0 0 0 1

3 0 0 1 0 wise
4 0 1 0 0 Direction

 5 1 0 0 0

Table.2 An alternative scheme for rotating stepper motor shaft

Motion step A B C D

 1 0 0 1 1

 2 0 1 1 0

Clock wise 3 1 1 0 0

Direction

4 1 0 0 1

 5 0 0 1 1

 1 0 0 1 1

Anti clock
2 1 0 0 1

3 1 1 0 0
wise

4 0 1 1 0 Direction

 5 0 0 0 0

8527 DMA Controller

The 8527 controller has four independent channels each of which contains an address register

and a counter. The counter decrements as each byte transfer occur, and forces termination of the

DMA operation after the last transfer. The controller increments the address registers after each

operation, so that successive data transfers are made at contiguous ascending addresses. The

arbiter resolves conflicts among the channels for access to memory. Two methods have been

used in this chip to make the chip useful in a variety of different applications. In one mode the

channels have a fixed priority and conflicts are resolved according to the priority, for example,

Channel 0 has highest priority and Channel 3 lowest. The second mode is a rotating priority

scheme in which priority rankings are the four cycle shifts of 0-1-2-3, when a channel is granted

access to the bus the priority ranking shifts cyclically to place the channel in the lowest priority

position for the next arbitration cycle.

Figure 5-4: Structure of the i8527 DMA controller

The chip has four signals associated with the READ and WRITE operation. MEM READ L and

MEM WRITE L are signals produced by DMA controller to exercise memory. The two signals

I/O READ L and I/O WRITE L are bidirectional, they are inputs from the microprocessor when

the microprocessor sends commands to the 8257 and reads back the 8257 status. During the I/O

operation these signals are output from the 8257 and are functionally opposite to the memory

signals. The 8257 takes control of the bus by exercising HALT (HRQ) and receives back the

"go-ahead" signal on HALT ACKNOWLEDGE (HLDA).

Two signals produced by the DMA controller can be used by the I/O port to assist in controlling

the transfer process. One signal TC--terminal count--is asserted during the last cycle of a DMA

block. This can be used to describe a DMA mode on an I/O port or to reset the port's internal

state to indicate the end of a transfer. The second--MARK--is inserted when the remaining

count on a channel became a multiple of 128--providing a convenient timing signal for an

external device.

Register Organization of 8257

The 8257 performs the DMA operation over four independent DMA channels.Each of four

channels of 8257 has a pair of two 16-bit registers, viz. DMA address register and terminal count

register.There are two common registers for all the channels, namely, mode set register and

status register. Thus there are a total of ten registers. The CPU selects one of these ten registers

using address lines Ao-A3. Table shows how the Ao-A3 bits may be used for selecting one of

these registers.

DMA Address Register

Each DMA channel has one DMA address register. The function of this register is to store the

address of the starting memory location, which will be accessed by the DMA channel. Thus the

starting address of the memory block which will be accessed by the device is first loaded in the

DMA address register of the channel. The device that wants to transfer data over a DMA

channel, will access the block of the memory with the starting address stored in the DMA

Address Register.

Terminal Count Register

Each of the four DMA channels of 8257 has one terminal count register (TC). This 16-bit

register isused for ascertaining that the data transfer through a DMA channel ceases or stops after

the required number of DMA cycles. The low order 14-bits of the terminal count register are

initialised with the binary equivalent of the number of required DMA cycles minus one.After

each DMA cycle, the terminal count register content will be decremented by one and finally it

becomes zero after the required number of DMA cycles are over. The bits 14 and 15 of this

register indicate the type of the DMA operation (transfer). If the device wants to write data into

the memory, the DMA operation is called DMA write operation. Bit 14 of the register in this

case will be set to one and bit 15 will be set to zero. Table gives detail of DMA operation

selection and corresponding bit configuration of bits14 and 15 of the TC register.

Mode Set Register

The mode set register is used for programming the 8257 as per the requirements of the system.

The function of the mode set register is to enable the DMA channels individually and also to set

the various modes of operation.The DMA channel should not be enabled till the DMA address

register and the terminal count register contain valid information, otherwise, an unwanted DMA

request may initiate a DMA cycle, probably destroying the valid memory data. The bits Do-D3

enable one of the four DMA channels of 8257. for example, if Do is ‘1’, channel 0 is enabled. If

bit 4 is set, rotating priority is enabled, otherwise, the normal, i.e. fixed priority is enabled.

If the TC STOP bit is set, the selected channel is disabled after the terminal count condition is

reached, and it further prevents any DMA cycle on the channel. To enable the channel again, this

bit must be reprogrammed. If the TC STOP bit is programmed to be zero, the channel is not

disabled, even after the count reaches zero and further request are allowed on the same channel.

The auto load bit, if set, enables channel 2 for the repeat block chaining operations, without

immediate software intervention between the two successive blocks. The channel 2 registers are

used as usual, while the channel 3 registers are used to store the block reinitialisation parameters,

i.e. the DMA starting address and terminal count. After the first block is transferred using DMA,

the channel 2 registers are reloaded with the corresponding channel 3 registers for the next block

transfer, if the update flag is set. The extended write bit, if set to ‘1’, extends the duration of

MEMW and IOW signals by activating them earlier, this is useful in interfacing the peripherals

with different access times. If the peripheral is not accessed within the stipulated time, it is

expected to give the ‘NOT

READY’ indication to 8257, to request it to add one or more wait states in the DMA CYCLE.

The mode set register can only be written into.

Status Register

The status register of 8257 is shown in figure. The lower order 4-bits of this register contain the

terminal count status for the four individual channels. If any of these bits is set, it indicates that

the specific channel has reached the terminal count condition.

These bits remain set till either the status is read by the CPU or the 8257 is reset. The update flag

is not affected by the read operation. This flag can only be cleared by resetting 8257 or by

resetting the auto load bit of the mode set register. If the update flag is set, the contents of the

channel 3 registers are reloaded to the corresponding registers of channel 2 whenever the channel

2 reaches a terminal count condition, after transferring one block and the next block is to be

transferred using the autoload feature of 8257. The update flag is set every time, the channel 2

registers are loaded with contents of the channel 3 registers. It is cleared by the completion of the

first DMA cycle of the new block. This register can only read.

Data Bus Buffer, Read/Write Logic, Control Unit and Priority Resolver

The 8-bit. Tristate, bidirectional buffer interfaces the internal bus of 8257 with the external

system bus under the control of various control signals. In the slave mode, the read/write logic

accepts the I/O Read or I/O Write signals, decodes the Ao-A3 lines and either writes the contents

of the data bus to the addressed internal register or reads the contents of the selected register

depending upon whether IOW or IOR signal is activated. In master mode, the read/write logic

generates the IOR and IOW signals to control the data flow to or from the selected peripheral.

The control logic controls the sequences of operations and generates the required control signals

like AEN, ADSTB, MEMR,MEMW, TC and MARK along with the address lines A4-A7, in

master mode. The priority resolver resolves the priority of the four DMA channels depending

upon whether normal priority or rotating priority is programmed.

Signal Description of 8257

DRQo-DRQ3 : These are the four individual channel DMA request inputs, used by the

peripheral devices for requesting the DMA services. The DRQo has the highest priority while

DRQ3 has the lowest one, if the fixed priority mode is selected.

DACKo-DACK3 : These are the active-low DMA acknowledge output lines which inform the

requesting peripheral that the request has been honoured and the bus is relinquished by the CPU.

These ines may act as strobe lines for the requesting devices.

Do-D7: These are bidirectional, data lines used to interface the system bus with the internal data

bus of 8257. These lines carry command words to 8257 and status word from 8257, in slave

mode, i.e. under the control of CPU. The data over these lines may be transferred in both the

directions. When the 8257 is the bus master (master mode, i.e. not under CPU control), it uses

Do-D7 lines to send higher byte of the generated address to the latch. This address is further

latched using ADSTB signal. the address is transferred over Do-D7 during the first clock cycle

of the DMA

cycle. During the rest of the period, data is available on the data bus.

IOR: This is an active-low bidirectional tristate input line that acts as an input in the slave

mode. In slave mode, this input signal is used by the CPU to read internal registers of 8257.this

line acts output in master mode. In master mode, this signal is used to read data from a peripheral

during a memory write cycle.

IOW : This is an active low bidirection tristate line that acts as input in slave mode to load the

contents of the data bus to the 8-bit mode register or upper/lower byte of a 16-bit DMA address

register or terminal count register. In the master mode, it is a control output that loads the data to

a peripheral during DMA memory read cycle (write to peripheral).

CLK: This is a clock frequency input required to derive basic system timings for the internal

operation of 8257.

RESET : This active-high asynchronous input disables all the DMA channels by clearing the

mode register and tristates all the control lines.

Ao-A3: These are the four least significant address lines. In slave mode, they act as input which

selects one of the registers to be read or written. In the master mode, they are the four least

significant memory address output lines generated by 8257.

CS: This is an active-low chip select line that enables the read/write operations from/to 8257, in

slave mode. In the master mode, it is automatically disabled to prevent the chip from getting

selected (by CPU) while performing the DMA operation.

A4-A7 : This is the higher nibble of the lower byte address generated by 8257 during the master

mode of DMA operation.

READY: This is an active-high asynchronous input used to stretch memory read and write

cycles of 8257 by inserting wait states. This is used while interfacing slower peripherals..

HRQ: The hold request output requests the access of the system bus. In the noncascaded 8257

systems, this is connected with HOLD pin of CPU. In the cascade mode, this pin of a slave is

connected with a DRQ input line of the master 8257, while that of the master is connected with

HOLD input of the CPU.

HLDA : The CPU drives this input to the DMA controller high, while granting the bus to the

device. This pin is connected to the HLDA output of the CPU. This input, if high, indicates to the

DMA controller that the bus has been granted to the requesting peripheral by the CPU.

MEMR: This active –low memory read output is used to read data from the addressed memory

locations during DMA read cycles.

MEMW : This active-low three state output is used to write data to the addressed memory

location during DMA write operation.

ADST : This output from 8257 strobes the higher byte of the memory address generated by the

DMA controller into the latches.

AEN: This output is used to disable the system data bus and the control the bus driven by the

CPU, this may be used to disable the system address and data bus by using the enable input of

the bus drivers to inhibit the non-DMA devices from responding during DMA operations. If the

8257 is I/O mapped, this should be used to disable the other I/O

devices, when the DMA controller addresses is on the address bus.

TC: Terminal count output indicates to the currently selected peripherals that the present DMA

cycle is the last for the previously programmed data block. If the TC STOP bit in the mode set

register is set, the selected channel will be disabled at the end of the DMA cycle. The TC pin is

activated when the 14-bit content of the terminal count register of the selected channel becomes

equal to zero. The lower order 14 bits of the terminal count register are to be programmed with a

14-bit equivalent of (n-1), if n is the desired number of DMA cycles.

MARK : The modulo 128 mark output indicates to the selected peripheral that the current DMA

cycle is the 128th cycle since the previous MARK output. The mark will be activated after each

128 cycles or integral multiples of it from the beginning if the data block (the first DMA cycle),

if the total number of the required DMA cycles (n) is

completely divisible by 128.

Vcc :
This is a +5v supply pin required for operation of the circuit.

GND :

This is a return line for the supply (ground pin of the IC).

Interfacing 8257 with 8086

Once a DMA controller is initialised by a CPU property, it is ready to take control of

the system bus on a DMA request, either from a peripheral or itself (in case of

memory-tomemory transfer). The DMA controller sends a HOLD request to the CPU

and waits for the CPU to assert the HLDA signal. The CPU relinquishes the control

of the bus before asserting the HLDA signal.

A conceptual implementation of the system is shown in Figure

Once the HLDA signal goes high, the DMA controller activates the DACK signal to

the requesting peripheral and gains the control of the system bus. The DMA

controller is the sole master of the bus, till the DMA operation is over. The CPU

remains in the HOLD status (all of its signals are tristate except HOLD and HLDA),

till the DMA controller is the master of the bus.

In other words, the DMA controller interfacing circuit implements a switching

arrangement for the address, data and control busses of the memory and peripheral

subsystem from/to the CPU to/from the DMA controller.





M. Krishna Kumar MM/M3/LU8/V1/2004

Interface (cont..)

• We have four common types of memory:
• Read only memory (ROM)
• Flash memory (EEPROM)
• Static Random access memory (SARAM)
• Dynamic Random access memory (DRAM).
• Pin connections common to all memory devices are: The

address input, data output or input/outputs, selection input
and control input used to select a read or write operation.

M. Krishna Kumar MM/M3/LU8/V1/2004

• Address connections: All memory devices have address
inputs that select a memory location within the memory
device. Address inputs are labeled from A0 to An.

• Data connections: All memory devices have a set of data
outputs or input/outputs. Today many of them have bi-
directional common I/O pins.

• Selection connections: Each memory device has an input,
that selects or enables the memory device. This kind of
input is most often called a chip select (CS), chip enable
(CE) or simply select (S) input.

Interface (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

CS OE

A0

A1

A2

AN

O0

O1

O2

ON

WRITEWE

SELECT READ
MEMORY COMPONENT ILLUSTRATING THE ADDRESS, DATA AND

,
CONTROL CONNECTIONS

ADDRESS
CONNECTION

OUTPUT OR
INPUT/OUTPUT
CONNECTION

M. Krishna Kumar MM/M3/LU8/V1/2004

• RAM memory generally has at least one CS or S input and
ROM at least one CE.

• If the CE, CS, S input is active the memory device perform
the read or write.

• If it is inactive the memory device cannot perform read or
write operation.

• If more than one CS connection is present, all most be
active to perform read or write data.

• Control connections: A ROM usually has only one control
input, while a RAM often has one or two control inputs.

Interface (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

• The control input most often found on the ROM is the
output enable (OE) or gate (G), this allows data to flow
out of the output data pins of the ROM.

• If OE and the selected input are both active, then the
output is enable, if OE is inactive, the output is disabled at
its high-impedance state.

• The OE connection enables and disables a set of three-state
buffer located within the memory device and must be
active to read data.

Interface (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

• A RAM memory device has either one or two control
inputs. If there is one control input it is often called R/W.

• This pin selects a read operation or a write operation only
if the device is selected by the selection input (CS).

• If the RAM has two control inputs, they are usually labeled
WE or W and OE or G.

• (WE) write enable must be active to perform a memory
write operation and OE must be active to perform a
memory read operation.

• When these two controls WE and OE are present, they
must never be active at the same time.

Interface (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

• The ROM read only memory permanently stores programs
and data and data was always present, even when power is
disconnected.

• It is also called as nonvolatile memory.
• EPROM (erasable programmable read only memory) is

also erasable if exposed to high intensity ultraviolet light
for about 20 minutes or less, depending upon the type of
EPROM.

• We have PROM (programmable read only memory)
• RMM (read mostly memory) is also called the flash

memory.

Interface (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

• The flash memory is also called as an EEPROM
(electrically erasable programmable ROM), EAROM
(electrically alterable ROM), or a NOVROM
(nonvolatile ROM).

• These memory devices are electrically erasable in the
system, but require more time to erase than a normal
RAM.

• EPROM contains the series of 27XXX contains the
following part numbers : 2704(512 * 8), 2708(1K * 8),
2716(2K * 8), 2732(4K * 8), 2764(8K * 8),
27128(16K * 8) etc..

Interface (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

• Each of these parts contains address pins, eight data
connections, one or more chip selection inputs (CE) and an
output enable pin (OE).

• This device contains 11 address inputs and 8 data outputs.
• If both the pin connection CE and OE are at logic 0, data

will appear on the output connection . If both the pins are
not at logic 0, the data output connections remains at their
high impedance or off state.

• To read data from the EPROM Vpp pin must be placed at a
logic 1.

Interface (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

1

2

3

4

5

6

7

8

9

10

11

12 13

14

24

23

22

21

20

19

18

17

16

15

PIN CONFIGURATION OF 2716 EPROM

A7

A6

A5

A4

A3

A2

A1

A0

O0

O1

O2

GND O3

O4

O5

O6

O7

PD/PGM

A10

CS

Vpp

A9

A8

Vcc

M. Krishna Kumar MM/M3/LU8/V1/2004

A0 –A10

PD/PGM

CS

O0-O7 OUT PUTS

CHIP SELECT

POWER DOWN PROGRAM /

ADDRESSES

Pin Names

M. Krishna Kumar MM/M3/LU8/V1/2004

Vcc

Vpp
GND

CHIP SELECT
POWER DOWN
AND PROGRAM
LOGIC

Y
DECODER

X
DECODER

16,386 BIT
CELL
MATRIX

Y-GATING

OUTPUT
BUFFERS

DATA OUTPUTS
O0 – O7

A0 - A10
ADDRESS
INPUTS

PD / PGM
CS

BLOCK DIAGRAM

M. Krishna Kumar MM/M3/LU8/V1/2004

• Static RAM memory device retain data for as long as DC
power is applied. Because no special action is required to
retain stored data, these devices are called as static
memory. They are also called volatile memory because
they will not retain data without power.

• The main difference between a ROM and RAM is that a
RAM is written under normal operation, while ROM is
programmed outside the computer and is only normally
read.

• The SRAM stores temporary data and is used when the
size of read/write memory is relatively small.

Interface (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

1

2

3

4

5

6

7

8

9

10

11

12 13

14

24

23

22

21

20

19

18

17

16

15

PIN CONFIGURATION OF TMS
4016 SRAM

A7
A6

A5
A4
A3
A2
A1
A0

DQ1
DQ2
DQ3
Vss DQ4

DQ5

DQ6

DQ7

DQ8

S

A10

G

W

A9

A8

VCC

M. Krishna Kumar MM/M3/LU8/V1/2004

A 0 – A 10
_

W

S

DQ 0 _ DQ 8
DATA IN /

DATA OUT

CHIP SELECT

WRITE ENABLE

ADDRESSES

PIN NAMES

G
OUT PUT
ENABLE

Vss GROUND

Vcc + 5 V
SUPPLY

M. Krishna Kumar MM/M3/LU8/V1/2004

• The control inputs of this RAM are slightly different from
those presented earlier. The OE pin is labeled G, the CS
pin S and the WE pin W.

• This 4016 SRAM device has 11 address inputs and 8 data
input/output connections.

Interface.

M. Krishna Kumar MM/M3/LU8/V1/2004

Static RAM Interfacing (cont..)

• The semiconductor RAM are broadly two types – static
RAM and dynamic RAM.

• The semiconductor memories are organised as two
dimensional arrays of memory locations.

• For example 4K * 8 or 4K byte memory contains 4096
locations, where each locations contains 8-bit data and
only one of the 4096 locations can be selected at a time.
Once a location is selected all the bits in it are accessible
using a group of conductors called Data bus.

• For addressing the 4K bytes of memory, 12 address lines
are required.

M. Krishna Kumar MM/M3/LU8/V1/2004

• In general to address a memory location out of N memory
locations, we will require at least n bits of address, i.e. n
address lines where n = Log2 N.

• Thus if the microprocessor has n address lines, then it is
able to address at the most N locations of memory, where
2n=N. If out of N locations only P memory locations are to
be interfaced, then the least significant p address lines out
of the available n lines can be directly connected from the
microprocessor to the memory chip while the remaining
(n-p) higher order address lines may be used for address
decoding as inputs to the chip selection logic.

Static RAM Interfacing (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

• The memory address depends upon the hardware circuit
used for decoding the chip select (CS). The output of
the decoding circuit is connected with the CS pin of the
memory chip.

• The general procedure of static memory interfacing with
8086 is briefly described as follows:

1. Arrange the available memory chip so as to obtain 16-
bit data bus width. The upper 8-bit bank is called as odd
address memory bank and the lower 8-bit bank is called
as even address memory bank.

Static RAM Interfacing (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

2. Connect available memory address lines of memory chip
with those of the microprocessor and also connect the
memory RD and WR inputs to the corresponding
processor control signals. Connect the 16-bit data bus of
the memory bank with that of the microprocessor 8086.

3. The remaining address lines of the microprocessor, BHE
and A0 are used for decoding the required chip select
signals for the odd and even memory banks. The CS of
memory is derived from the o/p of the decoding circuit.

Static RAM Interfacing (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

• As a good and efficient interfacing practice, the address
map of the system should be continuous as far as possible,
i.e. there should not be no windows in the map and no fold
back space should be allowed.

• A memory location should have a single address
corresponding to it, i.e. absolute decoding should be
preferred and minimum hardware should be used for
decoding.

Static RAM Interfacing.

M. Krishna Kumar MM/M3/LU8/V1/2004

Dynamic RAM (cont..)

• Whenever a large capacity memory is required in a
microcomputer system, the memory subsystem is generally
designed using dynamic RAM because there are various
advantages of dynamic RAM.

• E.g. higher packing density, lower cost and less power
consumption. A typical static RAM cell may require six
transistors while the dynamic RAM cell requires only a
transistors along with a capacitor. Hence it is possible to
obtain higher packaging density and hence low cost units
are available.

M. Krishna Kumar MM/M3/LU8/V1/2004

• The basic dynamic RAM cell uses a capacitor to store the
charge as a representation of data. This capacitor is
manufactured as a diode that is reverse-biased so that the
storage capacitance comes into the picture. This storage
capacitance is utilized for storing the charge representation
of data but the reverse-biased diode has leakage current
that tends to discharge the capacitor giving rise to the
possibility of data loss. To avoid this possible data loss, the
data stored in a dynamic RAM cell must be refreshed after
a fixed time interval regularly. The process of refreshing
the data in RAM is called as Refresh cycle.

Dynamic RAM (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

• The refresh activity is similar to reading the data from each
and every cell of memory, independent of the requirement
of microprocessor. During this refresh period all other
operations related to the memory subsystem are suspended.
Hence the refresh activity causes loss of time, resulting in
reduce system performance.

• However keeping in view the advantages of dynamic
RAM, like low power consumption, high packaging
density and low cost, most of the advanced computing
system are designed using dynamic RAM, at the cost of
operating speed.

Dynamic RAM (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

• A dedicated hardware chip called as dynamic RAM
controller is the most important part of the interfacing
circuit.

• The Refresh cycle is different from the memory read
cycle in the following aspects.

1. The memory address is not provided by the CPU address
bus, rather it is generated by a refresh mechanism
counter called as refresh counter.

2. Unlike memory read cycle, more than one memory chip
may be enabled at a time so as to reduce the number of
total memory refresh cycles.

Dynamic RAM (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

3. The data enable control of the selected memory chip is
deactivated, and data is not allowed to appear on the
system data bus during refresh, as more than one
memory units are refreshed simultaneously. This is to
avoid the data from the different chips to appear on the
bus simultaneously.

4. Memory read is either a processor initiated or an external
bus master initiated and carried out by the refresh
mechanism.

Dynamic RAM (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

• Dynamic RAM is available in units of several kilobits to
megabits of memory. This memory is arranged internally
in a two dimensional matrix array so that it will have n
rows and m columns. The row address n and column
address m are important for the refreshing operation.

• For example, a typical 4K bit dynamic RAM chip has an
internally arranged bit array of dimension 64 * 64 , i.e. 64
rows and 64 columns. The row address and column
address will require 6 bits each. These 6 bits for each row
address and column address will be generated by the
refresh counter, during the refresh cycles.

Dynamic RAM (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

• A complete row of 64 cells is refreshed at a time to
minimizes the refreshing time. Thus the refresh counter
needs to generate only row addresses. The row address are
multiplexed, over lower order address lines.

• The refresh signals act to control the multiplexer, i.e. when
refresh cycle is in process the refresh counter puts the row
address over the address bus for refreshing. Otherwise, the
address bus of the processor is connected to the address
bus of DRAM, during normal processor initiated activities.

• A timer, called refresh timer, derives a pulse for refreshing
action after each refresh interval.

Dynamic RAM (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

• Refresh interval can be qualitatively defined as the time for
which a dynamic RAM cell can hold data charge level
practically constant, i.e. no data loss takes place.

• Suppose the typical dynamic RAM chip has 64 rows, then
each row should be refreshed after each refresh interval or
in other words, all the 64 rows are to refreshed in a single
refresh interval.

• This refresh interval depends upon the manufacturing
technology of the dynamic RAM cell. It may range
anywhere from 1ms to 3ms.

Dynamic RAM (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

• Let us consider 2ms as a typical refresh time interval.
Hence, the frequency of the refresh pulses will be
calculated as follows:

• Refresh Time (per row) tr = (2 * 10 -3) / 64.
• Refresh Frequency fr = 64 / (2 * 10 -3) = 32 * 103 Hz.
• The following block diagram explains the refreshing logic

and 8086 interfacing with dynamic RAM.
• Each chip is of 16K * 1-bit dynamic RAM cell array. The

system contains two 16K byte dynamic RAM units. All the
address and data lines are assumed to be available from an
8086 microprocessor system.

Dynamic RAM (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

• The OE pin controls output data buffer of the memory
chips. The CE pins are active high chip selects of memory
chips. The refresh cycle starts, if the refresh output of the
refresh timer goes high, OE and CE also tend to go high.

• The high CE enables the memory chip for refreshing,
while high OE prevents the data from appearing on the
data bus, as discussed in memory refresh cycle. The 16K *
1-bit dynamic RAM has an internal array of 128*128 cells,
requiring 7 bits for row address. The lower order seven
lines A0-A6 are multiplexed with the refresh counter output
A10-A16.

Dynamic RAM (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

Ref. Add
Counter

Refresh
Refresh
timer

To transreceivers

A15 A14

CE1 CE2
Address
Deciding logic

7 bit
bus
MUX

A7 – A13

CE1

CE2

A0-A6

OE CE OE CE OE CE OE CE OE CE OE CE OE CE OE CE

16K*1 16K*1 16K*1 16K*
1

16K*1 16K*1 16K*1

16K*116K*116K*116K*116K*116K*116K*116K*1

16K*1

OE CE OE CE CE OE CE OE CE OE CE OE CE CEOE OE

A7 – A13

A6 – A0

A7 – A13

A6 – A0

Ar0
–
Ar6

Dynamic RAM Refreshing Logic

M. Krishna Kumar MM/M3/LU8/V1/2004

ADDRESS

+12 V CLK

B0

X0/OP2 X1/CLK
Vcc

16K/64K

OUT7 – OUT0
Address O/P

RAS1 – RAS0

CAS

WE
XACKSACK

WR
RD

PCS

Refrq.

AL0 -AL7

AH0 -AH7

External refresh request

Protected Chip Select

Read request
Write request

Bank Select

Write enable

System Acknowledge Transfer Acknowledge

Fig : Dynamic RAM controller

8203

M. Krishna Kumar MM/M3/LU8/V1/2004

WE

CAS

RAS

A0 – A7

Vcc +5V

Din

Dout

2164

Fig : 1- bit Dynamic RAM

M. Krishna Kumar MM/M3/LU8/V1/2004

• The pin assignment for 2164 dynamic RAM is as in
above fig.

• The RAS and CAS are row and column address strobes
and are driven by the dynamic RAM controller outputs.
A0 –A7 lines are the row or column address lines, driven
by the OUT0 – OUT7 outputs of the controller. The WE
pin indicates memory write cycles. The DIN and DOUT
pins are data pins for write and read operations
respectively.

• In practical circuits, the refreshing logic is integrated
inside dynamic RAM controller chips like 8203, 8202,
8207 etc.

Dynamic RAM (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

• Intel’s 8203 is a dynamic RAM controller that support 16K
or 64K dynamic RAM chip. This selection is done using
pin 16K/64K. If it is high, the 8203 is configured to control
16K dynamic RAM, else it controls 64K dynamic RAM.
The address inputs of 8203 controller accepts address lines
A1 to A16 on lines AL0-AL7 and AH0-AH7.

• The A0 lines is used to select the even or odd bank. The
RD and WR signals decode whether the cycle is a memory
read or memory write cycle and are accepted as inputs to
8203 from the microprocessor.

Dynamic RAM (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

• The WE signal specifies the memory write cycle and is not
output from 8203 that drives the WE input of dynamic
RAM memory chip. The OUT0 – OUT7 set of eight pins is
an 8-bit output bus that carries multiplexed row and
column addresses are derived from the address lines A1-
A16 accepted by the controller on its inputs AL0-AL7 and
AH0-AH7.

• An external crystal may be applied between X0 and X1
pins, otherwise with the OP2 pin at +12V, a clock signal
may be applied at pin CLK.

Dynamic RAM (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

• The PCS pin accepts the chip select signal derived by an
address decoder. The REFREQ pin is used whenever the
memory refresh cycle is to be initiated by an external
signal.

• The XACK signal indicates that data is available during a
read cycle or it has been written if it is a write cycle. It can
be used as a strobe for data latches or as a ready signal to
the processor.

• The SACK output signal marks the beginning of a memory
access cycle.

Dynamic RAM (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

• If a memory request is made during a memory refresh
cycle, the SACK signal is delayed till the starring of
memory read or write cycle.

• Following fig shows the 8203 can be used to control a
256K bytes memory subsystem for a maximum mode 8086
microprocessor system.

• This design assumes that data and address busses are
inverted and latched, hence the inverting buffers and
inverting latches are used (8283-inverting buffer and
8287- inverting latch).

Dynamic RAM (cont..)

M. Krishna Kumar MM/M3/LU8/V1/2004

XACK

XACK

XACK

OTHER
READY
INPUTS

8284A

RDY

AD0 –
AD15

AD0 – AD15A16 – A19

BHE

8086

S0-S2

8288
BUS
CTRLR

ALE

8267
XCEIVER

8283
LATCH

D0-D15

A0-A19

A0

BHE

WRITE

READ

System
Bus

8288
XCIEVER

8205
DECODER

8267
XCIEVER

DATA
LATCH
CS

8267
XCIEVER

CS
WR

DATA

D0-D15

MEMORY
2164 256K
BYTES

D0 D1

16

16

A1-
A16

A12-
A19

A0

RD

WR
BHE

D
A
T
A

ADR-
AD

RD

WR
PCS

ADDR
IN

XACK SACK

8203

WE

ADDR
OUT

CAS

High
Byte
Write

Fig : Interfacing 2164 Using 8203

M. Krishna Kumar MM/M3/LU8/V1/2004

• Most of the functions of 8208 and 8203 are similar but
8208 can be used to refresh the dynamic RAM using DMA
approach. The memory system is divided into even and
odd banks of 256K bytes each, as required for an 8086
system.

• The inverted AACK output of 8208 latches the A0 and
BHE signals required for selecting the banks. If the latched
bank select signal and the WE/PCLK output of 8208 both
become low. It indicates a write operation to the respective
bank.

Dynamic RAM.

Interrupts of 8086

• Dictionary meaning of “Interrupt”
• While the CPU is executing a program, an

Interrupt breaks the normal sequence of
execution of instructions, diverts its execution to
some other program called Interrupt Service
Routine (ISR).

• After executing ISR, the control is transferred
back again to the main program which was being
executed at the time of interruption

• Interrupt with in an interrupt is called nested
interrupt.

Interrupts of 8086 cntd..

• Whenever a number of devices interrupt a
CPU at a time and if the processor is able to
handle them properly, it is said to have
multiple interrupt processing capability
Eg: 8085 – 5 interrupts can be handled
simultaneously.

• In case of 8086, two types of interrupts are
there: NMI – Non maskable Interrupt

INTR – maskable by using the IF flag.

Interrupts of 8086 cntd..

• INTR is of 256 types varying from 00 to FFH
(00 – 255).

• If more than one type of INTR interrupt occurs
at a time, then an external chip called
programmable Interrupt Controller is required
to handle them.

• Interrupt  external [Hardware]

internal [Software]

Interrupts of 8086 cntd..

• External interrupt is generated outside the
processor. Eg: Key board

• Internal interrupt is generated internally by the
processor circuit.
Eg: divide by zero, overflow, INT instruction.

• Suppose an external device interrupts the CPU at
the interrupt pin, either NMI or INTR of 8086,
while the CPU is executing an instruction of a
program, the sequence is as follows:

Interrupts of 8086 cntd..

Sequence
– Completes the execution of the current instruction

– IP is incremented to point to the next instruction.

– CPU acknowledges using INTA immediately if interrupt is
NMI or TRAP etc.

– Otherwise (INT req.), checks for IF flag.
IF =1  interrupt is serviced

=0  ignored

• Note that responses to NMI, TRAP etc are independent
of IF flag.

• Once interrupt is serviced, IF flag will be set to zero

Interrupts of 8086 cntd..

• The third source of an interrupt is some error
condition produced in the 8086 by the execution
of an instruction.
Eg: divide by zero, overflow etc.

• At the end of each instruction cycle, the 8086
checks to see if any interrupt has been requested.

• If an interrupt has been requested, the 8086
responds to the interrupt by stepping through the
following series of major actions.

Interrupts of 8086 cntd..

1. it decrements the stack pointer by 2 and pushes the flag
register on to the stack

2. It disables the 8086 INTR interrupt input by clearing the
interrupt flag (IF) in the flag register.

3. It resets the TRAP flag (TF) in the flag register.
4. It decrements the stack pointer by 2 and pushes the

current code segment register contents on to the stack.
5. It decrements the stack pointer again by 2 and pushes the

current instruction pointer contents on to the stack.
6. It does an indirect far jump to the start of the procedure

you wrote to respond to the interrupt.

Interrupts of 8086 cntd..

• Fig 8.1 summarizes these steps in diagram
form

• An IRET instruction at the end of the
interrupt-service procedure returns
execution to the main program.

Interrupts of 8086 cntd..

How to get to the interrupt procedure
• The starting address of the Interrupt service

procedure is to be stored in CS & IP.
• To get this starting address, it requires 4 memory

locations
• In an 8086 system the first 1 Kbytes of memory

from 00000H to 003FFH, is set aside as a table for
storing the starting addresses of interrupt service
procedures

• 1 Kbytes  4 memory locations X 256 interrupt
types

Interrupts of 8086 cntd..

• The starting address of an Interrupt Service Procedure
is often called the interrupt vector or interrupt pointer,
so the table is referred to as the interrupt-vector table
or interrupt pointer table

• Fig 8.2 shows the interrupt-vector table in memory
• IP value  Lower word CS value  higher word
• Each double word interrupt vector is identified by a

number from 0 to 255 which is called as the TYPE of
the interrupt.

• When the 8086 responds to a particular type interrupt,
it automatically multiplies the type by 4 to produce the
desired address in vector table.

Types of Interrupts

TYPE 0 – Divide by Zero

• It’s a divide by zero error interrupt.

• DIV, IDIV
16 bit unsigned  quotient = AL

8 bit unsigned remainder = AH

32 bit unsigned  quotient = AX

16 bit unsigned remainder = DX

Types of Interrupts cntd..

• Divide by zero gives result which can not be fit
in the destination register, hence it causes
interrupt type 0.

• Since type 0 can not be disabled in any way,
we have to take care of this in two ways.

– Check not to divide by zero

– Through interrupt service procedure (better
method)

Types of Interrupts cntd..

TYPE 1, Single Step Interrupt

• Used for debugging

• Normal procedure

• The trap flag is reset when the 8086 does a
TYPE 1 interrupt, so the single step mode will
be disabled during the interrupt service
procedure.

Types of Interrupts cntd..

TYPE 2 – Non Maskable

• Equivalent to NMI

• Normal procedure

• Eg: Pressure sensor on a large steam boiler
connected to the NMI input.

– System Power failure

TYPE 3 – Break Point

• It is break point interrupt

Types of Interrupts cntd..

TYPE 4 – Overflow
• It is overflow error interrupt
• Normal procedure
• Solutions are

Jump Overflow – J0 Routine with in the main
program

Interrupt Overflow – Separate service routine
• OF = 0  INTO = NOP

OF = 1  INTO = TYPE 4 Interrupt
Software Interrupts – Types 0 thru 255
• Eg: INT 38

Types of Interrupts cntd..

INTR Interrupts

• It is maskable

• CLI & STI instructions

• Disabling INTR input at start of INTR Interrupt
Service Procedure avoids interrupting itself
continuously.

Priority of 8086 Interrupts

Interrupt Priority

DIVIDE ERROR, INT n, INTO HIGHEST

NMI

INTR LOWEST

Programmable Interrupt Controller 8259A

• If we are working with an 8086, we have a problem here because the 8086 has only two
interrupt inputs, NMI and INTR.

• If we save NMI for a power failure interrupt, this leaves only one interrupt for all the other

applications. For applications where we have interrupts from multiple source, we use an

external device called a priority interrupt controller (PIC) to the interrupt signals into a

single interrupt input on the processor.

Architecture and Signal Descriptions of 8259A

• The architectural block diagram of 8259A is shown in fig1. The functional explication
of each block is given in the following text in brief.

• Interrupt Request Register (RR): The interrupts at IRQ input lines are handled by

Interrupt Request internally. IRR stores all the interrupt request in it in order to serve

them one by one on the priority basis.
• In-Service Register (ISR): This stores all the interrupt requests those are being

served, i.e. ISR keeps a track of the requests being served.


















































 Priority Resolver : This unit determines the priorities of the interrupt requests appearing

simultaneously. The highest priority is selected and stored into the corresponding bit of

ISR during INTA pulse. The IR0 has the highest priority while the IR7 has the lowest

one, normally in fixed priority mode. The priorities however may be altered by

programming the 8259A in rotating priority mode.
 Interrupt Mask Register (IMR) : This register stores the bits required to mask the

interrupt inputs. IMR operates on IRR at the direction of the Priority Resolver.
 Interrupt Control Logic: This block manages the interrupt and interrupt

acknowledge signals to be sent to the CPU for serving one of the eight interrupt

requests. This also accepts the interrupt acknowledge (INTA) signal from CPU that

causes the 8259A to release vector address on to the data bus.
 Data Bus Buffer : This tristate bidirectional buffer interfaces internal

8259A bus to the microprocessor system data bus. Control words, status and vector
information pass through data buffer during read or write operations.

 Read/Write Control Logic: This circuit accepts and decodes commands from the

CPU. This block also allows the status of the 8259A to be transferred on to the data

bus.
 Cascade Buffer/Comparator: This block stores and compares the ID’s all the 8259A

used in system. The three I/O pins CASO-2 are outputs when the 8259A is used as a

master. The same pins act as inputs when the 8259A is in slave mode. The 8259A in

master mode sends the ID of the interrupting slave device on these lines. The slave thus

selected, will send its preprogrammed vector address on the data bus during the next

INTA pulse.
 CS: This is an active-low chip select signal for enabling RD and WR operations

of 8259A. INTA function is independent of CS.
 WR : This pin is an active-low write enable input to 8259A. This enables it to accept

command words from CPU.
 RD : This is an active-low read enable input to 8259A. A low on this line enables

8259A to release status onto the data bus of CPU.
 D0-D7 : These pins from a bidirectional data bus that carries 8-bit data either to

control word or from status word registers. This also carries interrupt vector

information.
 CAS0 – CAS2 Cascade Lines : A signal 8259A provides eight vectored interrupts. If

more interrupts are required, the 8259A is used in cascade mode. In cascade mode, a

master 8259A along with eight slaves 8259A can provide upto 64 vectored interrupt

lines. These three lines act as select lines for addressing the slave 8259A.
 PS/EN : This pin is a dual purpose pin. When the chip is used in buffered mode, it can

be used as buffered enable to control buffer transreceivers. If this is not used in

buffered mode then the pin is used as input to designate whether the chip is used as a

master (SP =1) or slave (EN = 0).
 INT : This pin goes high whenever a valid interrupt request is asserted. This is used to

interrupt the CPU and is connected to the interrupt input of CPU.
 IR0 – IR7 (Interrupt requests) :These pins act as inputs to accept interrupt request to

the CPU. In edge triggered mode, an interrupt service is requested by raising an IR pin

from a low to a high state and holding it high until it is acknowledged, and just by

latching it to high level, if used in level triggered mode.

Pin Diagram 






































INTA (Interrupt acknowledge): This pin is an input used to strobe-in 8259A interrupt

vector data on to the data bus. In conjunction with CS, WR and RD pins, this selects the

different operations like, writing command words, reading status word, etc.

 The device 8259A can be interfaced with any CPU using either polling or interrupt. In

polling, the CPU keeps on checking each peripheral device in sequence to ascertain if

it requires any service from the CPU. If any such service request is noticed, the CPU

serves the request and then goes on to the next device in sequence.

 After the entire peripheral device are scanned as above the CPU again starts from first

device.

 This type of system operation results in the reduction of processing speed because most

of the CPU time is consumed in polling the peripheral devices.

 In the interrupt driven method, the CPU performs the main processing task till it is

interrupted by a service requesting peripheral device.

 The net processing speed of these type of systems is high because the CPU serves the

peripheral only if it receives the interrupt request
 If more than one interrupt requests are received at a time, all the requesting peripherals

are served one by one on priority basis.
 This method of interfacing may require additional hardware if number of peripherals to

be interfaced is more than the interrupt pins available with the CPU.



SERIAL COMMUNICATION

INTRODUCTION

Serial communication is common method of transmitting data between a computer and a

peripheral device such as a programmable instrument or even another computer. Serial

communication transmits data one bit at a time, sequentially, over a single communication line

to a receiver. Serial is also a most popular communication protocol that is used by many

devices for instrumentation. This method is used when data transfer rates are very low or the

data must be transferred over long distances and also where the cost of cable and

synchronization difficulties makes parallel communication impractical. Serial communication

is popular because most computers have one or more serial ports, so no extra hardware is

needed other than a cable to connect the instrument to the computer or two computers together.

SERIAL AND PARALLEL TRANSMISSION

Let us now try to have a comparative study on parallel and serial communications to
understand the differences and advantages & disadvantages of both in detail.

We know that parallel ports are typically used to connect a PC to a printer and are rarely

used for other connections. A parallel port sends and receives data eight bits at a time over

eight separate wires or lines. This allows data to be transferred very quickly. However, the

setup looks more bulky because of the number of individual wires it must contain. But, in the

case of a serial communication, as stated earlier, a serial port sends and receives data, one bit at

a time over one wire. While it takes eight times as long to transfer each byte of data this way,

only a few wires are required. Although this is slower than parallel communication, which

allows the transmission of an entire byte at once, it is simpler and can be used over longer

distances. So, at first sight it would seem that a serial link must be inferior to a parallel one,

because it can transmit less data on each clock tick. However, it is often the case that, in

modern technology, serial links can be clocked considerably faster than parallel links, and

achieves a higher data rate.





























SERIAL DATA TRANSMISSION MODES

When data is transmitted between two pieces of equipment, three communication modes
of operation can be used.

Simplex: In a simple connection, data is transmitted in one direction only. For example,
from a computer to printer that cannot send status signals back to the computer.

Half-duplex: In a half-duplex connection, two-way transfer of data is possible, but only in
one direction at a time.

Full duplex: In a full-duplex configuration, both ends can send and receive data
simultaneously, which technique is common in our PCs.

SERIAL DATA TRANSFER SCHEMS

Like any data transfer methods, Serial Communication also requires coordination between the

sender and receiver. For example, when to start the transmission and when to end it, when one

particular bit or byte ends and another begins, when the receiver's capacity has been exceeded,

and so on. Here comes the need for synchronization between the sender and the receiver. A

protocol defines the specific methods of coordinating transmission between a sender and

receiver. For example a serial data signal between two PCs must have individual bits and bytes

that the receiving PC can distinguish. If it doesn't, then the receiving PC can't tell where one

byte ends and the next one begin or where one bit ends and begins. So the signal must be

synchronized in such a way that the receiver can distinguish the bits and bytes as the transmitter

intends them to be distinguished.

There are two ways to synchronize the two ends of the communication.

1. Synchronous data transmission
2. Asynchronous data transmission

Synchronous Data Transmission

The synchronous signaling methods use two different signals. A pulse on one signal
line indicates when another bit of information is ready on the other signal line.

In synchronous transmission, the stream of data to be transferred is encoded and sent
on one line, and a periodic pulse of voltage which is often called the "clock" is put on
another line, that tells the receiver about the beginning and the ending of each bit.




















































Advantages: The only advantage of synchronous data transfer is the Lower overhead and

thus, greater throughput, compared to asynchronous one.

Disadvantages:

 Slightly more complex

 Hardware is more expensive

Asynchronous data transmission

The asynchronous signaling methods use only one signal. The receiver uses transitions on

that signal to figure out the transmitter bit rate (known as auto baud) and timing. A pulse from

the local clock indicates when another bit is ready. That means synchronous transmissions use

an external clock, while asynchronous transmissions are use special signals along the

transmission medium. Asynchronous communication is the commonly prevailing

communication method in the personal computer industry, due to the reason that it is easier to

implement and has the unique advantage that bytes can be sent whenever they are ready, a no

need to wait for blocks of data to a c c u m u l a t e .





















































Advantages:

 Simple and doesn't require much synchronization on both communication sides.


 The timing is not as critical as for synchronous transmission; therefore hardware can be
made cheaper.



 Set-up is very fast, so well suited for applications where messages are generated at
irregular intervals, for example data entry from the keyboard.




Disadvantages:

One of the main disadvantages of asynchronous technique is the large relative
overhead, where a high proportion of the transmitted bits are uniquely for control
purposes and thus carry no useful information.

8251-PROGRAMMABLE COMMUNICATION INTERFACE

(USART-Universal Synchronous/Asynchronous Receiver/Transmitter)

INTRODUCTION

A USART is also called a programmable communications interface (PCI). When

information is to be sent by 8086 over long distances, it is economical to send it on a single
line. The 8086 has to convert parallel data to serial data and then output it. Thus lot of

microprocessor time is required for such a conversion.

Similarly, if 8086 receives serial data over long distances, the 8086 has to internally convert

this into parallel data before processing it. Again, lot of time is required for such a

conversion. The 8086 can delegate the job of conversion from serial to parallel and vice

versa to the 8251A USART used in the system.

The Intel8251A is the industry standard Universal Synchronous/Asynchronous

Receiver/Transmitter (USART), designed for data communications with Intel

microprocessor families such as 8080, 85, 86 and
88. The 8251A converts the parallel data received from the processor on the D7-0 data pins

into serial data, and transmits it on TxD (transmit data) output pin of 8251A. Similarly, it

converts the serial data received on RxD (receive data) input into parallel data, and the

processor reads it using the data pins D7-0.

FEATURES

 Compatible with extended range of Intel microprocessors.


 It provides both synchronous and asynchronous data transmission.

 Synchronous 5-8 bit characters.

 Asynchronous 5-8 bit characters.

 It has full duplex, double buffered transmitter and receiver.

 Detects the errors-parity, overrun and framing errors.

 All inputs and outputs are TTL compatible.

 Available in 28-pin DIP package.


PIN DIAGRAM

 

ARCHITECTURE

The 8251A is a USART (Universal Synchronous Asynchronous Receiver Transmitter) for

serial data communication. As a peripheral device of a microcomputer system, the 8251

receives parallel data from the CPU and transmits serial data after conversion. This device

also receives serial data from the outside and transmits parallel data to the CPU after

conversion. The internal block diagram of 8251A is shown in fig below.




Fig. 5.7 shows the block diagram of 8251 A. The block diagram shows all the elements of a

programmable chip; it includes the interfacing signals, the control register and the status register. The

functions of various blocks are described below:

(A) Data bus buffer: This 3-state, bidirectional buffer is used to interface the 8251A to the system data

bus. Data is transmitted or received by the buffer upon execution of input and output instruction of the

CPU Command words and status information are also transferred through the data bus buffer. The

command, status and data in and data out are separate 8-bit registers to provide double buffering.

The functional block accepts inputs form the control bus and generates control signals for overall

device operation. It contains the control word register and command word register that store the various

control formats for the device functional definition.



























































































































































































For example

If Baud rate equals 220 Baud
TXC equals 220 Hz in the 1x mode.
TXC equals 3.52 KHz in the 16x mode.
TXC equals 14.08 KHz in the 64x mode.
The falling edge of









































































TXC shifts the serial data out of the 8251A.





























































































8251A USART INTERFACING WITH 8086











































PROGRAMMING THE 8251A

Prior to starting a data transmission or reception, the 8251A must be loaded with a set of
control words generated by the microprocessor. These control signals define the complete
functional definition of the 8251A and must immediately follow a reset operation (internal or
external). The control words are split into two formats.

1. Mode instruction
2. Command instruction

Mode instruction: Mode instruction is used for setting the function of the 8251A. Mode

instruction will be in "wait for write" at either internal reset or external reset. That is, the
writing of a control word after resetting will be recognized as a "mode instruction."

Items set by mode instruction are as follows:
• Synchronous/asynchronous mode
• Stop bit length (asynchronous mode)
• Character length
• Parity bit
• Baud rate factor (asynchronous mode)
• Internal/external synchronization (synchronous mode)
• Number of synchronous characters (Synchronous mode)

The bit configuration of mode instruction format is shown in Figures below. In the case of

synchronous mode, it is necessary to write one-or two byte sync characters. If sync characters

were written, a function will be set because the writing of sync characters constitutes part of

mode instruction.



































































Fig. Mode instruction format, Asynchronous mode


































































Command Instruction: Command is used for setting the operation of the 8251. It is possible

to write a command whenever necessary after writing a mode instruction and sync
characters.

Items to be set by command are as follows:

• Transmit Enable/Disable
• Receive Enable/Disable
• DTR, RTS Output of data.
• Resetting of error flag.
• Sending to break characters
• Internal resetting
• Hunt mode (synchronous mode)













































































































Status Word: It is possible to see the internal status of the 8251 by reading a status word.
The format of status word is shown below.














































































Fig. Status word









RECOMMENDED STANDARD -232C (RS-232C)

RS-232 (Recommended standard-232) is a standard interface approved by the Electronic

Industries Association (EIA) for connecting serial devices. In other words, RS-232 is a long-

established standard that describes the physical interface and protocol for relatively low-speed

serial data communication between computers and related devices. RS-232 is the interface that

your computer uses to talk to and exchange data with your modem and other serial devices. The

serial ports on most computers use a subset of the RS-232C standard.

RS-232C is defined as the “Interface between data terminal equipment and data

communications equipment using serial binary data exchange.” This definition defines data

terminal equipment (DTE) as the computer, while data communications equipment (DCE) is

the modem. A modem cable has pin-to-pin connections, and is designed to connect a DTE

device to a DCE device. In addition to communications between computer equipment over

telephone lines, RS-232C is now widely used for direct connections between data acquisition

devices and computer systems. RS-232C cables are commonly available with 4, 9 or 25-pin

wiring. The 25-pin cable connects every pin; the 9-pin cables do not include many of the

uncommonly used connections; 4-pin cables provide the bare minimum connections, and have

jumpers to provide “handshaking” for those devices that require it.

In RS-232, user data is sent as a time-series of bits. Both synchronous and asynchronous

transmissions are supported by the standard. In addition to the data circuits, the standard
defines a number of control circuits used to manage the connection between the DTE and

DCE. Each data or control circuit only operates in one direction, which is, signaling from a
DTE to the attached DCE or the reverse. Since transmit data and receive data are separate

circuits, the interface can operate in a full duplex manner, supporting concurrent data flow in
both directions.

The RS-232 standard defines the voltage levels that correspond to logical one and logical zero

levels for the data transmission and the control signal lines. Valid signals are either in the

range of +3 to +15 volts for logic 0 or the range -3 to -15 volts for logic 1, the range between -

3 to +3 volts is not a valid RS-232 level. For data transmission lines (TxD, RxD and their

secondary channel equivalents) logic one is defined as a negative voltage, the signal condition

is called "mark." Logic zero is positive and the signal condition is termed "space." The 9-pin

RS-232C standard is shown in figure below.
























http://en.wikipedia.org/wiki/Time-series
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Full_duplex

End of Unit III

Code No: 126AK

 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech III Year II Semester Examinations, November/December - 2020

 MICROPROCESSORS AND INTERFACING DEVICES
(Electrical and Electronics Engineering)

Time: 2 hours Max. Marks: 75

Answer any five questions

All questions carry equal marks

- - -

1. Discuss the function of pins corresponding to minimum mode of 8086 microprocessor.

 [15]

2. Draw the architecture of 8086 and then explain each block in detail. [15]

3.a) List out the different Data transfer instructions present in 8086 and explain each one.

b) Write an Assembly language program to find the number of positive and negative

numbers in an 8-bit array of 100 words. [8+7]

4.a) Write an ALP to convert a four digit hexadecimal number to decimal number.

 b) Explain the instructions related to string operations. [7+8]

5.a) Draw the internal architecture of 8255 PPI and explain its operation.

 b) Explain about static memories. [12+3]

6.a) Draw the frame format of BSR and I/O mode of 8255 PPI and explain each bit of it.

 b) Sketch and explain the interface of PIC 8259 to the 8086 microprocessor in minimum

 mode. [7+8]

7.a) List out the different serial communication standards. Also, compare serial and parallel

data communications.

 b) Discuss the basic concepts of IEEE -488 protocols. [9+6]

8. List and explain different addressing modes of 8051 microcontroller with examples.

 [15]

---ooOoo---

R13

JNTUH USED PAPERS NOV 2020

