Code No: 126AK R13
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B. Tech 111 Year Il Semester Examinations, April - 2018
MICROPROCESSORS AND INTERFACING DEVICES
(Electrical and Electronics Engineering)
Tighe: 3gours Max. Marks: 75

Note: @uesﬂon paper contains two parts A and B.
ompulsory which carries 25 marks. Answer all questions in Part A. Part B

consists nits. Answer any one full question from each unit. Each question carries
10 mar @ &y have a, b, c as sub questions.

PART - A
(25 Marks)

l.a) Explain the diﬁerenc@e 8085 and 8086 microprocessors. [2]
b) List out the different Ml'@xode signals present in 8086 microprocessor in detail.

[3]
c) Define instruction. [2]
d) Define Addressing and what are @#ff: ypes of address mode. [3]

e) Define the terms maskable and Nori*maskableskqterrupt of 8086 Microprocessor. [2]
f) Write short notes on 4-phase Stepper Mot [3]
g) What is Serial and Parallel communicatio

in degall® [2]
antl Asynchronous communications in
detail. [3]

h) List out the few comparisons of Synchron
i) Explain the different applications if Microcontrollerm : [2]
J) List out the few features of 8051 Microcontroller in defa [3]

generation.
PART -B 7
N\ (50 Marks)

2.a) Define segmentation and list out the different Segmentation$, pre in 8086
Microprocessor in detail.
b) Draw and explain the different Registers along with its organizations in .

+5]
OR
3.a) Define Flag? Explain the different Flags present in 8086 microprocessor a
frame format.
b) Draw the Timing Diagram of Maximum mode Read operation and explain its

operation. [5+5]

4.a) Explain the different String manipulation instruction present in 8086 microprocessor in
detail.

b) Write an Assembly language program for Find the positive and negative numbers in an

8-hbit array. [5+5]

OR
5.a) List out the different Data transfer instructions present in 8086 Microprocessor and
explain each one in detail.
b) Write an Assembly language program for Find the Even and Odd numbers in an 8-bit
array. [5+5]

6.a)

7.

a bly code for it along with explanation.
b) frame format of BSR and 1/0 mode of 8255 PPI and explain each bit of in it.

8.a)

b)

9.a)

b)

10.a)

b)

11.3)

b)

What is DMA? Draw the internal architecture of 8257 DMA and explain its operation
in detail.
Draw the internal architecture of 8255 PPI and explain its operation along with mode of
operation. [5+5]
OR
aw the interfacing Diagram of A/D converter with 8086 Microprocessor and write an

[5+5]

List out ent serial communication standards? Explain the synchronous serial

communicagions with circuit diagram.
Define Trouble 3
Microprocessoy

et | [5+5]

OR
Draw the PIN diagra@ 2 serial commination and explain the function of each
pin in detail.
List out different meth munications and explain each one with example.

[5+5]
Draw the PIN diagram of 8051 I\/ﬂcrocontr and explain function of each pin in
detail.

Explain the following special function registers i il. [5+5]
() IEand IP (if) SCON
OR

Draw the internal RAM memory organization of 80 controller and explain its
operation.
How many 1I/O Ports present in 8051 Microcontroller Vthe function of each

Port in detail. [5+5]
<

---00000---

Code No: 126AK R13
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B. Tech 111 Year Il Semester Examinations, December - 2017
MICROPROCESSORS AND INTERFACING DEVICES
(Electrical and Electronics Engineering)
Timep»3 hours Max. Marks: 75

Note; uestion paper contains two parts A and B.
a is compulsory which carries 25 marks. Answer all questions in Part A. Part B
C

i 5 Units. Answer any one full question from each unit. Each question carries

10 K ay have a, b, ¢ as sub questions.
PART - A

0 (25 Marks)
l.a) What is the functi LE signal in minimum mode of 80867 [2]
b) How does 8086 MP i the pipeline process? [3]
c) Which instruction of 80 used for look up table manipulation? [2]
d) What is meant by LOC : t are uses of it? [3]
e) What is meant by interrupt vec@e f 80867 [2]
f) What are the advantages of DM B(%er? [3]
g) What is the function of SYNDET/BD signal 51? [2]
h) Compare and contrast IEEE 488 and SPI bus [3]
i) What is the function of timers and counte [2]
J) Write the advantage of 8051microcontrollerover the 8086 microprocessor. [3]

PART -B S

(50 Marks)
2.a) Describe the register organization of 8086 family microproegssor.
b) Explain how do you calculate effective physical address uSing%seg address and
offset. [5+5]
OR
3. Draw and explain operation of the each block for the maxi ode of
microprocessor with necessary time diagrams and explain the function ach signal
which is applicable in maximum mode operation of 8086. %
4.a) Explain the addressing modes for control transfer instructions.
b) Explain the significance of jump and loop instructions of 8086. [5+5]
OR
5. Explain the all assemblers and operators available in 8086 with suitable examples. [10]

6.a) Describe the interrupt request response of the 8086 in detailed.
b) Describe the procedure for interfacing of Analog to digital converter with 8086
microprocessor with relevant diagrams. [5+5]
OR
7.a) Draw and explain the internal architecture of 82509.
b) Describe the control word format of 8255 for 1/0 and BSR mode. [6+4]

8.a) Briefly explain the serial data transfer standards for interfacing of devices.

b) Explain the operation of IEEE 488 with neat block diagrams. [5+5]
OR

9.a) Draw and explain the synchronous mode transmitter and receiver data formats of

USART 8251.

tscuss briefly the concept of prototype and trouble shooting. [5+5]

10. @ e internal architecture of 8051 and explain the operation of each block. [10]
OR

11.a) Desceibethesigternal and external RAM organization of 8051 in detailed.
b) Explain fférent arithmetic instructions of 8051 in detailed. [5+5]
0 ---00000---

Code No: 126 AK

2.a)

3.2)

4.3)
b)

5.a)

b)

R13

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B. Tech 111 Year Il Semester Examinations, December - 2018
MICROPROCESSORS AND INTERFACING DEVICES

(Electrical and Electronics Engineering)

Max. Marks: 75

ion paper contains two parts A and B.
pulsory which carries 25 marks. Answer all questions in Part A. Part B
its. Answer any one full question from each unit. Each question carries
ay have a, b, c as sub questions.

PART - A
(25 Marks)
Draw the 8086 flag r [2]
What is the function of DA signals of 80867 [3]
Define assembler direction? [2]
Show the method to calculateeffee address in indexed addressing mode of 8086
with an example. N 7 ‘ [3]
Mention the advantages and disadva \\.go* direct memory access (DMA). [2]
Define interrupt services routine. [3]
What are serial data transfer schemes? \ [2]
Differentiate RS 232 and IEEE. [3]
List out the special functions of PORT-3 pins [2]
What are the differences between microprocessor ocontroller? [3]
PART -B \
(50 Marks)

List the addressing modes of 8086 and give example to each one®
Explain the function of the following instructions. [5+5]
(i) AAM (i) IDIV (iii) INTO
(iv) LOOP (V) LEA (vi) SAR
OR
Describe the steps that 8086 will take when it responds to an interrupt.
What is meant by nested interrupt? Explain with an example. [5

Draw the internal register diagram of 8086 and explain the function of each register.

Explain the function of following pins of 8086. [5+5]
i) DT/R
ii) READY
i) NMmI
OR

Discuss the function of maximum mode control bus signals and explain how they are
produced.
Explain the following pins of 8086. [5+5]

i) MN/MX i) TEST i) BHE iv) DEN

6.a) Draw the interfacing diagram of 8259 programmable interrupt controller to 8086
MICroprocessor.

Give the interrupt vector table details. [5+5]
OR

B velop hard ware and soft ware for interfacing an 8-bit ADC to 8086 processor.

[5+5]

[5+5]

Write a program to multiply MR AM location 3E4 by the number 12,. Put the

result in R4 and Rs registers. [5+5]

11.a) Explain the interrupts of 8051 with Pg d vector table.
b) Write a program to double the numb o and put the result in Rz and Ry.
[5+5]

---00000--- i

% Code No: 126AK R13

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
@ B. Tech 111 Year Il Semester Examinations, February/March - 2022

MICROPROCESSORS AND INTERFACING DEVICES
(Electrical and Electronics Engineering)
3ho

Time: Max. Marks: 75
Answer any five questions
All questions carry equal marks

[8+7]

2.a) Draw the 8086 microprocess ternal architecture and explain the operation of each

block.
b) Explain the importance of Qu@ [10+5]
3.a) Explain the data transfer instructi ples.
b) Write an Assemble language progr number of even and odd numbers in an
8- Bit array. [8+7]
4.a) Define assembler and explain the differe bler directives used in 8086

microprocessor.
b) Write an Assemble language program to find the su %@ares of first ten numbers.

\ [8+7]

i [7+8]
6.a) Draw a typical stepper motor interface with 8255 and explain.

b) Write about the different modes of operations in 8255. 8+7]

5.a) Explain memory mapped I/0 and 1/0 mapped I/O.
b) Give the internal block diagram of 8259A and present the ove

7.a) Draw the internal block diagram of 8251 USART and explain the functi

of e r?

block in detail. /

b) Explain the following terms in detail.
i) RS-232

ii) IEEE -488 [7+8] /O
8.a) Explain the timer and counter operations of 8051 Microcontroller. é

b) Write short notes on (i) PSW (ii) SCON (iii) PCON (iv) TMOD [7+8]

---00000---

Code No: 126AK R13
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B. Tech 111 Year Il Semester Examinations, June - 2022
MICROPROCESSOR AND INTERFACING DEVICES
(Electrical and Electronics Engineering)

Time:@8 hours Max. Marks: 75
Answer any five questions
0 All questions carry equal marks

la) Expl physical and logical memory organization of 8086.
b) With sui @r ample, explain how to calculate the physical address from an
instruction‘efg8086? [8+7]

2.a) State the signif' assembler directives in an assembly language program with
suitable examples.

b) What are the differe essing modes supported by 8086? Give explanation with
suitable examples. 0 [7+8]

3.a) Differentiate the features of 808@0 6 microprocessors.
b) Draw and explain the internal blo of 8086. [8+7]
.

4.a) Describe interrupt cycle of 8086 with n?y .
b) Write an assembly language prog @d the largest number from an

unordered array of 8-bit numbers.

O [8+7]
5.a) Explain the significance of communication devices. @

b) Explain the interfacing of an 8251 device to 8086 usin heral 1/0 method. [7+8]

\
6.a) Mention the salient features of basic 1/0O mode operation of 8
b) Explain output modes of 8279, programmable keyboard/displ 'nt@ [7+8]
7.a) What is DMA? State the sequence of operations performed by a contr@ller in a

DMA transfer operation.
b) With the help of a diagram, explain the different blocks of 8259. 8]

8. Draw and explain each block function from the architecture of 8051. [15]

---00000---

Code No: 126 AK

R13

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B. Tech I11 Year Il Semester Examinations, May - 2019

MICROPROCESSORS AND INTERFACING DEVICES
(Electrical and Electronics Engineering)
[gS*)urs Max. Marks: 75
Note: ™ T} @ estion paper contains two parts A and B.
Pait AVissgompulsory which carries 25 marks. Answer all questions in Part A. Part B
consistg of BUnits. Answer any one full question from each unit. Each question carries
10 marksgg@nd may have a, b, ¢ as sub questions.
PART - A
? (25 Marks)
1.a) Define Pipeline pr0C£ [2]
b) Draw the Flag registef o iCroprocessor. [3]
c) Define macro. [2]
d) List out the different Instructiom f s used in 8086 Microprocessor in detail. [3]
e) What is need of DMA? [2]
f) List out different ICW’s and OCW’s of 8259 PIC. [3]
g) Define trouble shooting. [2]
h) Define the terms Simplex, Half Duplex ard plex Communication standards.
[3]

1) Define Microcontroller? List out different 8-bit MiCrg€onttoller in detail. [2]
j) List out the few comparison of Microprocessor and C oller in detail. [3]
PART -B

\ (50 Marks)
2.a) Draw the internal architecture of 8086 Microprocessor and exp@on of each
block.
b) Explain the physical memory organization of 8086 Microprocessor Wi o%;}e.
5]
OR
3.a) Draw the pin diagram of Maximum mode of 8086 microprocessor and explai
function of each pin.
b) Draw the Minimum mode read operation timing diagram and explain its operatiorn”of
8086. [5+
4.a) Define addressing mode? List out the different Addressing modes used in 8086
Microprocessor and explain each addressing mode with one example.
b) Write an assembly Language program to find the largest number in an 8-bit array. [5+5]
OR
5.a) What is assembler directives? List out different assembler directives used in 8086

b)

Microprocessor in detail.
Write an assembly Language program to find Factorial of an 16-bit number. [5+5]

6.a) Draw the interfacing diagram of interfacing of a two 4K x 8 RAM and two 8K x 8
ROM with 8086 microprocessor along with memory maps.
b) Draw and Explain the concept of IC DAC 0808 along with interfacing diagram. [5+5]

OR
7 Draw the interrupt vector table of 8086 microprocessor and explain its importance.
) 4 Draw the internal architecture of 8259 PIC and explain its operation in detail. [5+5]

x_the internal architecture of 8251 USART and explain the function of each block

otes on IEEE -488 protocol in detail. [5+5]
OR

9.a) e different serial communication standards? Explain the Asynchronous serial
communich circuit diagram.
(

b) Explain thgfp how RS-232 is interfaced with Microprocessor with one
example. [5+5]

10.a) Draw the internal a e of 8051 microcontroller and explain its operation in
detail.
b) Explain the following Speci@i register in detail: [5+5]
(i) TCON (i) %

OR
11.a) Write short notes on following registers 0fg8051 microcontroller:
(i) PCON (ii) SCON (iii) PSW
b) List out different applications of 8051 MiCrg @ oller in detail. [8+2]

. Oa
<
&A

MICROPROCESSOR & MICROCONTROLLER

LECTURE NOTES

B.TECH
(Il YEAR — Il SEM)
(2017-18)

Prepared by:
Mr. K Murali Krishna, Associate Professor
Mrs. Vaidehi, Assistant Professor

Department of Electronics and Communication Engineering

MALLA REDDY COLLEGE
OF ENGINEERING & TECHNOLOGY

(Autonomous Institution — UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956
(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC — ‘A’ Grade - ISO 9001:2015 Certified)
Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad — 500100, Telangana State, India

B.Tech (ECE) R-15

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
Il Year B.Tech. ECE-Il Sem L T/P/D C

5 -/-/-4
(R15A0414) MICROPROCESSORS AND MICROCONTROLLERS

OBJECTIVES:

* To understand the basics of mlcruprocessors and microcontrollers architectures and its
functionalities

* To develop an in-depth understanding of the operation of microprocessors and
microcontrollers, machine language programming & interfacing techniques.

* To design and develop Microprocessor/ microcontroller based systems for real time applications
using low level language like ALP,

D

UNIT -I: ; ooa
8086 Architecture: Architecture of 8086, Register Organization, Programming Model, Memory E
addresses, Memory Segmentation, Physical Memory Organization, Signal descriptions of 8086- Common i
Function Signals, Minimum and Maximum mode signals, Timing diagrams.

UNIT -1I: 4

Instruction Set and Assembly Language Programming of 8086: Instruction formats, Addressing modes,

Instruction Set, Assembler Directives, Procedures, Macros, Simple Programs involving Logical, Branch

and Call Instructions, Sorting, Evaluating Arithmetic Expressuons String Manipulations.

UNIT -l

1/O Interface: 8255 PP, Various Modes of Operation and Interfacine to 8086, D/A and A/D Converte

stepper motor, Interfacing of DMA controller 8257

Interfacing with advanced devices: Memory Interfacing to 8086, Interrupt Structure of 8086, Vector

Interrupt Table, Interrupt Service Routine, architecture of 8259

Communication Interface: Serial Communication Standards, Serial Data Transfer Schemes, 8251 USART

Architecture and Interfacing.

UNIT -IV: i

Introduction to Microcontrollers: Overview of 8051 Microcontroller, Architecture, I/Q Ports, Memory

Organization, Addressing Modes and lnstructron set of 8051, Slmple Programs, memory interfacing to

8051 ;
UNIT -V:
8051 Real Time Control: Programming Timer Interrupts, Programming External Hardware
Interrupts, Programming the Serial Communication Interrupts, Programming 8051 Timers {md Counters
ARM Processor: Fundamentals, Registers , current program status register, pipeling;. t and-the

TEXT BOOKS:

1. D. V. Hall, Microprocessors and Interfacing, TMGH, 2nd Edition 2006.

2. Kenneth. J. Ayala, The 8051 Microcontroller, 3rd Ed., Cengage Learning.

3. ARM System Developer’s Guide: Designing and Optimizing System Software- Andrew N. Sloss,
Dominic Symes, Chris Wright, Elsevier Inc., 2007

REFERENCE BOOKS:

Malla Reddy College of Engineering and Technology (MRCET)

M.
S

Scanned by CamScanner

—s B.Tech (ECE) R-15

1. Advanced Microprocessors and Peripherals —
2006.

2. The 8051Microcontr
Pallavi, Pearson, 2009.
3. Micro Computer S
Gibson, PHI, 2nd Ed,

4. Microcontrollers and Application - Ajay. V. Deshmukh, TMGH, 2005,

A. K. Ray and K.M, Bhurchandani, TMH, 2nd Edition
ollers, Architecture and Programming and Applications -K.Uma Rao, Andhe

ystem 8086/8088 Family Architecture, Programming and Design - Liu and GA

OUTCOMES:

After going through this course the student will be able to
* The student will learn the internal
microprocessors/microcontrollers.
The student will learn hardware and software interaction and integration.
The students will learn the design of microprocessors/microcontrollers-based systems

organization of popular 8086/8051
[]

Malla Reddy College of Engineering and Technology (MRCET)

yo3

¥

Scanned by CamScanner

Unit |

8086 Architecture

Essence of the subject

 The microprocessor is the heart of the
computer and it is a hardware component.
Hence we being Electronics engineers, we
need to study this subject. This is the essence
of the subject.

* Various applications of microprocessor are

— Educational field, Medical field, scientific labs,
Banking sector etc.

Introduction to Microprocessors

* Intel introduced it’s 4 bit microprocessor 4004 in
1971 and it’s 8 bit microprocessor 8008 in 1972

* These microprocessors could not survive as
general purpose microprocessors because of
their design and performance limitations.

* Then the launch of a first general purpose 8 bit
microprocessor 8080 in 1974 by Intel is
considered to be the first major stepping stone
towards the development of advanced
MICroprocessors.

Introduction to Microprocessors cntd...

* The microprocessor 8085 followed by 8080, with a few
more added features to it’s architecture, which
resulted in a functionally complete microprocessor.

 The main limitations of 8-bit microprocessor were
— Low speed,

— Low memory addressing capability
— Limited number of general purpose registers
— Less powerful instruction set

e All these limitations lead to the launching of 8086
Microprocessor.

* |n the family of 16 bit microprocessors, Intel’s 8086 was
the first one to be launched in 1978.

Introduction to Microprocessors cntd...

 The 8086 microprocessor has a much more
powerful instruction set along with the
architectural developments which imparts
substantial programming flexibility and
improvement in speed over the 8-bit
MmICroprocessor.

* The peripheral chips designed earlier for 8085
were compatible with microprocessor 8086
with slight or no modifications.

Architecture of 8086

 The architecture of 8086 supports a 16 bit ALU, a set of
16 bit registers and provides the segmented memory
addressing capability, a rich instruction set, powerful
interrupt structure, fetched instruction queue for
overlapped fetching and execution etc.

* The internal block diagram, shown in Fig 1.2, describes
the overall organization of different units inside the

chip.
 The complete architecture of 8086 can be divided into
two parts.
— Bus interface unit
— Execution Unit

Architecture of 8086 cntd...

* The bus interface unit contains the circuit for
physical address calculations and a pre-
decoding instruction byte queue (6 bytes long)

* The bus interface unit makes the system’s bus

signals available for external interfacing of the
devices.

b 42»
=3
v
s A ess Luwives sion
1 machanE=m (adder)
N Instruction byte
E Suewe & bytes
= [=1
F
A os
C S5
€ s
L.)
N [= |
® 1]
- - JV» L
o Internal data bus >
- = = "} — -
E Decaoding
K 15 o e
C AN FY S Al
Y! ex [B8 BL
‘!, cx| cH cL
N| Dx| DH = oL ALU (18)
U Be l l__J
l;l b=1)
¥ D1
Register bank Flags (16) K
Timing amnd cnntrol
Circuit
Clock and control
signals

Fig. 1.2 8086 Architecture

Architecture of 8086 cntd...

* |[n other words, this unit is responsible for
establishing communications with external
devices and peripherals including memory via
the bus.

* As already stated, the 8086 addresses a
segmented memory. The complete physical
address which is 20 bits long is generated
using segment and offset registers, each 16 bit
long.

Architecture of 8086 cntd...

* For generating a physical address from
contents of these two registers, the content of
a segment register also called as segment
address is shifted left bit-wise four times and
to this result, content of an offset register also
called as offset address is added, to produce a
20 bit physical address.

Architecture of 8086 cntd...

* For example, if the segment address is 1005H and
the offset is 5555H, then the physical address is
calculated as below

segment address > 1005H
offset address =~ —> 5555H
Physical address = 1005 * 10 + 5555 = 155A5H

* Thus, the segment addressed by the segment
value 1005H can have offset values from 0000H
to FFFFH within it ie maximum 64 K locations may
be accommodated in the segment.

Architecture of 8086 cntd...

* Thus, the segment register indicates the base
address of a particular segment, while the offset
indicates the distance of the required memory
location in the segment from the base address.

* Since the offset is a 16-bit number, each segment
can have a maximum of 64k locations.

* The bus interface unit has a separate adder to
perform this procedure for obtaining a physical
address while addressing a memory

Architecture of 8086 cntd...

 The segment address value is to be taken from an
appropriate segment register depending upon whether
code, data or stack are to be accessed, while the offset
may be the content of IP, BX, SI, DI, SP, BP or an
immediate 16-bit value, depending upon the
addressing mode.

* |n case of 8085, once the op-code is fetched and
decoded, the external bus remains free for some time,
while processor internally executes the instruction.

 The time slot is utilized in 8086 to achieve the
overlapped fetch and execution cycles.

Architecture of 8086 cntd...

* While the fetched instruction is executed
internally, the external bus is used to fetch the
machine code of the next instruction and
arrange it in a queue known as pre-decoded
instruction byte queue. It is a 6 byte long,
first-in first-out structure.

* The instructions from the queue are taken for
decoding sequentially.

Architecture of 8086 cntd...

* Once a byte is decoded, the queue is
rearranged by pushing it out and the queue
status is checked for the possibility of the next
op-code fetch cycle.

* While the op-code is fetched by the interface
unit (BIU), the execution unit (EU) executes
the previously decoded instruction
concurrently.

 The BIU along with EU thus forms a pipeline.

Architecture of 8086 cntd...

* The bus interface unit, thus manages the
complete interface of execution unit with
memory and I/O devices, of-course, under the
control of the timing and control unit.

* The execution unit contains the register set of
8086 except segment register and IP.

* |t has a 16-bit ALU, able to perform arithmetic
and logical operation.

Architecture of 8086 cntd...

The 16-bit flag register reflects the results of
execution by the ALU.

The decoding unit decodes the op-code bytes
issued from the instruction byte queue.

The timing and control unit derives the necessary
control signals to execute the instruction op-code
received from the queue, depending upon the
information made available by the decoding
circuit.

The execution unit may pass the results to bus
interface unit for storing them in memory.

Register organization of 8086

8086 has a powerful set of registers known as
general purpose registers and special purpose
registers.

All of them are 16 bit registers.

The general purpose registers can be used as
either 8 bit registers or 16 bit registers.

They may be either used for holding data,
variables and intermediate results temporarily or
other purposes like a counter or for storing offset
address for some particular addressing modes
etc.

Register organization of 8086 cntd...

* The special purpose registers are used as
segment registers, pointers, index registers or as
offset storage registers for particular addressing
modes.

* The register set is categorized into four groups, as
follows:
— General data registers
— Segment registers
— Pointers and index registers
— Flag register

Register organization of 8086 cntd...

General data registers:

* Figure 1.1 shows the register organization of
8086.

* The registers AX, BX, CX and DX are the general
purpose 16 bit registers.

 AXis used as 16 bit accumulator 2 AH, AL

* AL can be used as an 8 bit accumulator for 8 bit
operations. This is the most important general
purpose register having multiple functions.

Register organization of 8086 cntd...

©
. r i
o [P A [e8| -
{37\\ Bu- L s |z e
VD £
x| e el DS (F’u%?s : D;_
DX DH‘\’DL‘\ =S | 90 |
Crimsnad D98 NTNSCM QMZMA N“Zﬂtﬂ V’“‘“‘h"ﬁ:’%
o B ;\@:!

Register organization of 8086 cntd...

e Usually L and H specify the lower and higher
bytes of a particular register.

 AX —accumulator,
BX — offset storage,
CX — counter,
DX — to store data

Register organization of 8086 cntd...

Segment Registers:

e Unlike 8085, the 8086 addresses segmented
memory.

* The complete 1 megabyte memory, which the
8086 addresses, is divided into 16 logical
segments.

* Each segment thus contains 64 k bytes of
memory.

Register organization of 8086 cntd...

* There are 4 segment registers, viz,
Code segment register (CS) = Code,
Data segment register (DS) =2 Data,
Extra segment register (ES) = Data,
Stack segment register (SS) = Stack related
data

 The CPU uses the stack for temporarily storing
important data.

Register organization of 8086 cntd...

 While addressing any location in the memory
bank, the physical address is calculated from
two parts, the first is segment address and the
second is offset.

 The segment registers contain 16 bit segment
base addresses, related to different segments

* Any of the pointers and index registers or BX
may contain the offset of the location to be
addressed

Register organization of 8086 cntd...

* The advantage of this scheme is that instead
of maintaining a 20 bit register for a physical
address, the processor just maintains two 16
bit registers which are within the word length
capacity of the machine.

* |t may be noted that all these segments are
logical segments

Register organization of 8086 cntd...

Pointers and Index registers:

* The pointers contain offset within the particular
segments.

 The pointers IP, BP and SP usually contain offsets
with in the code (IP), and stack (BP & SP)
segments.

* The index registers are used as general purpose
registers as well as for offset storage in case of
indexed, based indexed and relative based
indexed addressing modes

Register organization of 8086 cntd...

* The register Sl is generally used to store the
offset of the source data in data segment
while the register Dl is used to store the offset
of the destination in data or extra segment.

* The index registers are particularly useful for
string manipulations.

Register organization of 8086 cntd...

Flag Register:

 The 8086 flag register contents indicate the
results of computations in the ALU. It also

contains some flag bits to control the CPU
operation.

Programming Model

* Anassembly language program model of 8086 is as follows
ASSUME DS:DATA,CS:CODE
DATA SEGMENT

(Declaration of data variables, constants etc)

DATA ENDS
CODE SEGMENT
START:

MOV AX,DATA
MOV DS,AX

CODE ENDS
END START
END

Memory Addresses

* As 8086 has got 20 address lines, it’s

addressing capability is 1 M Byte memory
locations.

* The physical address is calculated from

segment address and offset address as given
below

Physical address=10*segment addr + offset addr

Memory Segmentation

The memory in an 8086 based system is
organized as segmented memory.

In this scheme, the complete physically available
memory may be divided into a number of logical
segments.

Each segment is 64 Kbytes in size and is
addressed by one of the segment register.

The 16 bit contents of the segment register
actually point to the starting location of a
particular segment.

Memory Segmentation cntd...

* To address a specific memory location within a
segment, we need an offset address.

 The offset address is also 16 bit long so that the
maximum offset value can be FFFFH, and the maximum
size of any segment is thus 64 K locations.

* To emphasize this segmented memory concept, we will
consider an example of a housing colony containing
say, 100 houses

— Numbering the houses sequentially
— Numbering the houses matrix wise (rows X columns)
10X 10

Memory Segmentation cntd...

In the second scheme, the efforts required for
finding the same house will be too less.

This second scheme in our example is analogous
to the segmented memory scheme, where the
addresses are specified in terms of segment
addresses analogous to rows and offset
addresses analogous to columns

The CPU 8086 is able to address 1 Mbytes of
physical memory.

The complete 1 Mbytes memory can be divided
into 16 segments, each of 64 Kbytes size.

Memory Segmentation cntd...

In the second scheme, the efforts required for
finding the same house will be too less.

This second scheme in our example is analogous
to the segmented memory scheme, where the
addresses are specified in terms of segment
addresses analogous to rows and offset
addresses analogous to columns

The CPU 8086 is able to address 1 Mbytes of
physical memory.

The complete 1 Mbytes memory can be divided
into 16 segments, each of 64 Kbytes size.

Memory Segmentation cntd...

* The offset address values are from 0O000H and
FFFFH so that the physical addresses range
from O0O000H to FFFFFH.

* |n the above said case, the segments are
called non-overlapping segments which are
shown in Figure 1.3a.

Memory Segmentation cntd...

* |n some cases, however, the segments are
overlapping.

e Suppose a segment starts at a particular
address and its maximum size can be 64

Kbytes

e But, if another segment starts before this 64
kbytes locations of the first segment, the two
segments are said to be overlapping segments

Memory Segmentation cntd...

 The area of memory from the start of the
second segment to the possible end of the

first segment is called an overlapped segment
area

* Figure 1.3b explains the phenomenon more
clearly.

Memory Segmentation cntd...

Memory Segmentation cntd...

The locations lying in the overlapped area may be addressed by the
same physical address generated from two different sets of
segment and offset addresses.

The main advantages of the segmented memory scheme are as
follows

— 1 Allows the memory capacity to be 1 Mbytes although the actual
addresses to be handled are of 16 bit size.

— 2 Allows the placing of the code, data, and stack portions of the same
program in different parts of memory for data and code protection.

— 3 Permits a program and/or its data to be put into different areas of
memory each time the program is executed ie provision for relocation
is done.

In the overlapped Area locations physical address

=CS1+ IP1 = CS2 + IP2 where + indicates the
procedure of physical address formation

Flag Register

8086 has a 16-bit flag register which is divided
into two parts, viz

— Condition code or status flags
— Machine control flags

* The condition code flag register is the lower byte

of the 16bit flag register along with the overflow
flag

* This flag is identical to the 8085 flag register with

an additional overflow flag, which is not present
in 8085

Flag Register cntd...

* This part of the flag register of 8086 reflects
the results of the operations performed by
ALU

* The control flag register is the higher byte of
the flag register of 8086.

* |t contains three flags, viz
— Direction flag (D)

— Interrupt flag (I)
— Trap flag (T)

Flag Register cntd...

\\4\’5\7.\\\0059 c D32

[xIx 1% ™% 1o 1p \xu—\gy_\xw\m T,

P] 1Yy FVG M@M}\Iq & 086 -

Flag Register cntd...

 T-Trapflag = When it is set, the processor enters the
single step execution mode

* |—Interrupt Flag = If this flag is set, the maskable
interrupts are recognized by the CPU, otherwise they
are ignored.

D - Direction flag = This flag is used by string
manipulations instruction. If this flag bit is 0, the string
is processed beginning from the lowest address to the
highest address ie auto increment mode. Otherwise,
the string is processed from the highest address
towards the lowest address ie auto decrement mode

Flag Register cntd...

* O-Overflow flag — this flag is set if an overflow
occurs ie if the result of a sighed operation is
large enough to be accommodated in a
destination register.

* For example, in case of the addition of two sighed
numbers, if the result overflows into the sign bit
ie the result is of more than 7 bits in size in case
of 8-bit sighed operations and more than 15 bits
in size in case of 16 bit sighed operations, then
overflow flag will be set.

Signal Descriptions of 8086

* The microprocessor 8086 is a 16 bit CPU
available in 3 clock rates 5,8 and 10 MHz,
packed in a 40 pin CERDIP or plastic package.

 The 8086 operates in single processor or

multiprocessor configurations to achieve high
performance.

* The pin configuration is shown in fig 1.5

TOCessors: 8086 /8088 4 - .
4) Architectures, Pin DPDhagrarms and Timang TDEagrams

AAS T STy TN BBor sar s st rac e S

s

)
:
! .

GND

el E 3 VO
AD RS i
¥ Sy |3 A\ nb.es
AD1’3 ; :

‘ '“‘}l

i

Signal Descriptions of 8086 cntd...

 Some of the pins serve a particular function in
minimum mode (single processor mode) and
others function in maximum mode (multi
processor mode) configuration

 The 8086 signals can be categorized in three

groups.

— Signals having common functions in minimum as well
as maximum mode

— Signals which have special functions for minimum
mode

— Signals which have special functions for maximum
mode.

Signal Descriptions of 8086 cntd...

* The following signal descriptions are common for
both the minimum and maximum modes.

AD15 - ADQO:

* These are the time multiplexed memory I/O
address and data lines

* Address remains on lines during T1 state, while
the data is available on the data bus during T2,
T3, Tw and T4.

e HereT1, T2, T3, T4 and Tw are the clock states of
a machine cycle.

Signal Descriptions of 8086 cntd...

* Tw is a wait state.

* These lines are active high and float to a tri-
state during interrupt acknowledge and local
bus hold acknowledge cycles.

A19/S6, A18/S5, A17/S4, A16/S3:

* These are the time multiplexed address and
status lines.

* During T1, these are the most significant
address lines for memory operations.

Signal Descriptions of 8086 cntd...

* During I/O operations, these lines are low.

* During memory or I/O operations, status
information is available on those lines for T2, T3,

Tw and T4.
* The status of the interrupt enable flag bit

(displayed on S5) is updated at the beginning of
each clock cycle.

* The S4 and S3 together indicate which segment
register is presently being used for memory
accesses, as shown in table 1.1.

Signal Descriptions of 8086 cntd..

* These lines float to tri-state off (tri-stated)
during the local bus hold acknowledge

* The status line S6 is always low (logical).

 The address bits are separated from the status
bits using latches controlled by the ALE signal

Signal Descriptions of 8086 cntd..

Alternate data
Stack

~ = O O

Code or none
data

R O = O

Signal Descriptions of 8086 cntd..

BHE/S7 — Bus High Enable/Status:

* The bus high enable signal is used to indicate the
transfer of data over the higher order (D15 — D8)
data bus as shown in Table 1.2

* It goes low for the data transfers over D15 — D8

and is used to derive chip selects of odd address
memory bank or peripherals.

 BHE is low during T1 for read, write and interrupt
acknowledge cycles, whenever a byte is to be
transferred on the higher byte of the data bus.

Signal Descriptions of 8086 cntd..

* The status information is available during T2,
T3 and T4.

* The signal is active low and is tri-stated during
“Hold”.

* |tis low during T1 for the first pulse of the
interrupt acknowledge cycle. S7 is not
currently used.

Signal Descriptions of 8086 cntd..

Table 1.2
0 0 Whole word
0 1 Upper byte from or

to odd address

1 0 Lower byte from or
to even address

1 1 None

Signal Descriptions of 8086 cntd..

RD - READ

* Read signal, when low, indicates the
peripherals that the processor is performing a
memory or |/O read operation.

* RDis active low and shows the state for T2,
T3, Tw of any read cycle.

* The signal remains tri-stated during the ‘HOLD
Acknowledge’

Signal Descriptions of 8086 cntd..

READY

* This is the acknowledgement from the slow devices or
memory that they have completed the data transfer.

* Thisis aninput signal to the 8086.
* This signal is active high.

INTR — Interrupt request

* Thisis alevel triggered input

* This is sampled during the last clock cycle of each
instruction to determine the availability of the request

* |f any interrupt request is pending the processor enters
the interrupt acknowledge cycle.

Signal Descriptions of 8086 cntd..

* This can be internally masked by resetting the
interrupt enable flag.

* This signal is active high.
TEST
* This input is examined by a ‘wait’ instruction.

* |f the TEST input goes low, execution will
continue, else, the processor remains in an
idle state.

Signal Descriptions of 8086 cntd..

NMI — Non-maskable Interrupt.

e This is an edge triggered input which causes a
type 2 interrupt.

 The NMl is not maskable internally by
software.

* A transition from low to high initiates the

interrupt response at the end of the current
Instruction.

Signal Descriptions of 8086 cntd..

RESET

* This input causes the processor to terminate the
current activity and start execution from FFFFOH

 The signal is active high and must be active for at least
four clock cycles.

CLK - Clock Input

* The clock input provides the basic timing for processor
operation and bus control activity.

* |t's an asymmetric square wave with 33% duty cycle.

* The range of frequency for different 8086 versions is
from 5 MHz to 10 MHz.

Signal Descriptions of 8086 cntd..

Vcc

e 8086 requires +5V power supply for the
operation of the internal circuit.

GND
* This is the ground for the internal circuit.
MN/MX.

* The logic level at this pin decides whether the
processor is to operate in either minimum (Single
processor) or maximum (multi processor) mode.

Signal Descriptions of 8086 cntd..

The following pin functions are for the minimum mode
operation of 8086.

M/1/O — Memory/IO

e This is a status line logically equivalent to S2 in the
maximum mode.

* Low —1/0O operation
High — Memory operation.

* This line becomes active in the previous T4 and
remains active till final T4 of the current cycle.

* |tis tri-stated during local bus “hold acknowledge”

Signal Descriptions of 8086 cntd..

INTA — Interrupt acknowledge

* This signal is used as a read strobe for interrupt
acknowledge cycles

* |n other words, when it goes low, it means that the
processor has accepted the interrupt.

e |tis active low during T2,T3 and Tw of each interrupt
acknowledge cycle.

ALE — Address Latch Enable

* This output signal indicates that availability of the valid
address on the address / data lines, and is connected to
latch enable input of latches

* This signal is active high and is never tri-stated.

Signal Descriptions of 8086 cntd..

DT/R — Data Transmit / Receive

* This output is used to decide the direction of data

flow through the transreceivers (bidirectional
buffers).

e Data transmission — signal is high.
data receiving — signal is low.

* Logically, this is equivalent to S1 in maximum
mode.

* |t's timing is the same as M/I/O.
* This is tri-stated during ‘hold acknowledge’

Signal Descriptions of 8086 cntd..

DEN — Data Enable

* This signal indicates the availability of valid data
over the address / data lines.

* |tis used to enable the transreceivers to separate

the data from the multiplexed address / data
signal.

e |tis active from the middle of T2 until the middle
of T4.

* DEN is tri-stated during hold acknowledge cycle

Signal Descriptions of 8086 cntd..

HOLD, HLDA - Hold, Hold Acknowledge

* When the HOLD line goes high, it indicates to the
processor that another master is requesting the bus
access.

 The processor, after receiving the HOLD request, issues
the HOLD acknowledge signal on HLDA pin, in the
middle of the next clock cycle after completing the
current bus cycle. At the same time, the processor
floats the local bus and control lines.

* When the processor detects the HOLD line low, it
lowers the HLDA signal.

Signal Descriptions of 8086 cntd..

The following pin functions are applicable for maximum mode
operation of 8086.

S2, S1, SO — status lines

 These are the status lines which indicate the type of
operation, being carried out by the processor.

 These become active during T4 of the previous cycle and
remain active during T1 and T2 of the current bus cycle.

* The status lines return to passive state during T3 of the
current bus cycle so that they may again become active for
the next bus cycle during T4.

 The various operations indicated by these status lines are
given in the table 1.3.

Signal Descriptions of 8086 cntd..

—

Table 1.3

Interrupt acknowledge
Read I/0O port

Write 1/O port

Halt

Code access
Read Memory
Write Memory

= = » O O O O
_ =, O O = = O O
- O B O —»r O +—» O

Passive

Signal Descriptions of 8086 cntd..

LOCK

* This output pin indicates that other system bus masters
will be prevented from gaining the system bus, while
LOCK signal is low.

 The LOCK signal is activated by the ‘LOCK’ prefix
instruction and remains active until the completion of
the next instruction.

* This floats to tri-state off during ‘hold acknowledge’

* When CPU is executing a critical instruction which
requires the system bus, the LOCK prefix instruction
ensure that other processors connected in the system
will not gain the control of the bus.

Signal Descriptions of 8086 cntd..

QS1, QS0 — Queue Status

* These lines give information about the status
of the code-prefetch queue.

* These are active during the CLK cycle after
which the queue operation is performed

* These lines indicate various operations as
indicated in the table 1.4.

Signal Descriptions of 8086 cntd..

Table 1.4
Qst QS0 |indication

No Operation

First byte of opcode from the queue

-~ = O O

0
1
0 Empty queue
1

Subsequent byte from the queue

* This simultaneous fetching and executing of

instructions is called pipe-lining. This results in
faster execution.

Signal Descriptions of 8086 cntd..

RQ/GTO0, RQ/GT1 — REQUEST/GRANT

 These pins are used by other local bus masters in
maximum mode, to force the processor to

release local bus at the end of processor’s current
bus cycle.

* Each of the pins is bidirectional with RQ/GTO
having the higher priority than RQ/GT1.

* The request and grant pulses are active low.

* RQ/GT pins have internal pull up resistors and
may be left unconnected.

1.

2.

Signal Descriptions of 8086 cntd..

The request/grant sequence is as follows.

A pulse one clock wide from another bus master requests the bus
access to 8086.

During T4 (current) and T1 (next) clock cycle, a pulse, one clock
wide, from 8086 to the requesting master, indicates that the 8086
has allowed the local bus to float and that it will enter the ‘hold
acknowledge’ state in the next clock cycle. The CPU’s BIU is likely
to be disconnected from the local bus of the system.

A one clock wide pulse from another master indicates to 8086
that the hold request is about to end and the 8086 may regain the
control of the local bus at the next clock cycle.

Thus each master to master exchange of the local bus is a
sequence of 3 pulses.

There must be at least one dead clock cycle after each bus
exchange.

Slgnal Descriptions of 8086 cntd..

From memory
Y

y

Decode 1St
byte of Opcode

A

y
Execute the Read 2nd Execute the
instruction by Opcode byte »| instruction by
accepting data from the queue accepting data
from the queue and decode it from the queue
s
Repeat the

procedure for
the successive
instructions

Fig. 1.6 The Queue Operation

Thus, each
master to . .
master exchange of the local bus is a sequence of 3 pulses. There mu

el camacaan o ol

Physical Memory Organization

* |n 8086, 1Mbyte memory is physically organized as an
odd bank and even bank, each of 512 Kbytes.

* Data byte with an even address is transferred on D7 —
DO while the data byte with an odd address is
transferred on D15 — D8 bus lines.

* |finstructions are fetched from memory as words,
different possibilities of these words are
— 1 Both the bytes may be data operands
— 2 Both the bytes may contain op-code bits

— 3 one of the bytes may be op-code while other may be
data

Physical Memory Organization cntd..

 The above possibilities are taken care by
internal decoder which creates signals and
sends those to Timing & Control Unit.

* This Timing and Control Unit generates the
signals which executes the instructions.

* While referring to word data, BIU requires one
or two memory cycles

— Starting byte at even address ------- One cycle
— Starting byte at odd address ------- two cycles

Physical Memory Organization cntd..

* Hence while initializing the stack, it should be
initialized at an even address for efficient

operation.

A map of an 8086 memory system starts at
OOOO0OOH and ends at FFFFFH.

Physical Memory Organization cntd..

8086
System

Dg — D15

Do - Dy

BHE =0
Odd address
bank
8-bit
Memory

@

g) B

Ag=0
Even address
bank
‘8-bit
Memory

@

Do-Dy

Higher
| byte

0\ Lower
byte

J

Fig. 1.7 Physical Memory Organization

Physical Memory Organization cntd..

* For accessing 16 bit data, both banks are to be
accessed where as to access only 8 bit data,
only one bank is accessed.

* Selection of memory banks depends on BHE
and AO.

BHE A0 Indication
Whole word
Upper byte from or to odd address

Lower byte from or to even address

R || OO
= O | = |O

None

Minimum Mode 8086 System and Timings

* |na minimum mode 8086 system, the
microprocessor 8086 is operated in minimum
mode by strapping it’s MN/MX pin to Logic 1.

* |In this mode, all the control signals are given out
by the microprocessor chip itself.

* There is a single microprocessor in the minimum
mode system.

* The remaining components in the system are
latches, transreceivers, clock generator, memory
and i/o devices.

Minimum Mode 8086 System and Timings cntd..

* Some type of chip selection logic may be required
for selecting memory or |/O devices, depending
upon the address map of the system.

* The latches are generally buffered output D-type
flip-flops, like 745373 or 8282.

* They are used for separating the valid address
from the multiplexed address/data signals and
are controlled by the ALE signal generated by
8086.

Minimum Mode 8086 System and Timings cntd..

Transreceivers are the bidirectional buffers and

sometimes they are cal
They are required to se

ed data amplifiers
narate the valid data from

the time multiplexed address / data signal.

They are controlled by two signals, namely, DEN

and DT/R.

The DEN signal indicates that the valid data is
available on the data bus, while DT/R indicates
the direction of data ie from or to the processor.

Minimum Mode 8086 System and Timings cntd..

The system contains memory for the monitor and
user program storage.

Usually EPROMSs are used for monitor storage
while RAMs for users program storage.

A system may contain |/O devices for
communication with the processor as well as
some special purpose I/O devices.

The clock generator (IC 8284) generates the clock
from the crystal oscillator and then shapes it to
make it more precise so that it can be used as an
accurate timing reference for the system.

Minimum Mode 8086 System and Timings cntd..

The clock generators also synchronizes some external
signals with the system clock

The general system organization is shown in Figure
1.13.

Since it has 20 address lines and 16 data lines the 8086
CPU requires 3 octal address latches and two octal data
buffers for the complete address and the data
separation.

The working of the minimum mode configuration
system can be better described in terms of the timing
diagrams rather than qualitatively describing the
operation.

Minimum Mode 8086 System and Timings cntd..

The op-code fetch and read cycles are similar

Hence, the timing diagram can be categorized in
two parts, the first is the timing diagram for read
cycle and second is the timing for write cycle

The read cycle begins in T1 with the assertion of
the address latch enable (ALE) signal and M/IO
signal

During the negative going edge of this signal, the
valid address is latched on the local bus

Minimum Mode 8086 System and Timings cntd..

The BHE and AO signals address low, high or both bytes

From T1 to T4, the M/IO signal indicates a memory or
|/O operation

At T2, the address is removed from the local bus and is
sent to the output. The bus is then tri-stated.

The read (RD) control signal is also activated in T2

This signal causes the addressed device to enable its
data bus drivers.

After RD goes low, the valid data is available on the
data bus.

Minimum Mode 8086 System and Timings cntd..

* The addressed device will drive the READY line
high.

* When the processor returns the read signal to
high level, the addressed device will again tri-
state its bus drivers. CS logic indicates chip
select logic and ‘e’ and ‘o’ suffixes indicate
even and odd address memory bank

* A write cycle also begins with the assertion of
ALE and the emission of the address.

Minimum Mode 8086 System and Timings cntd..

* The M/IO signal is again asserted to indicate a
memory or |/O operation.

* In T2, after sending the address in T1, the

processor sends the data to be written to the
addressed location.

The data remains on the bus until the middle of
T4 state.

The WR becomes active at the beginning of T2

(unlike RD is some what delayed in T2 to provide
time for floating.)

Minimum Mode 8086 System and Timings cntd..

* The BHE and AO signals are used to select the
proper byte or bytes of memory or I/O word
to be read or written as already discussed in
the signal description section of this chapter.

 The M/IO, RD and WR signals indicate the
types of data transfer as specified in Table 1.5

Minimum Mode 8086 System and Timings cntd..

o oo e

0 1 /O Read
0 1 0 |/O Write
1 0 1 Memory Read
1 1 0 Memory Write

— The Processors: 8086/8088—Architectures, Pin Diagrams and Timing Diagrams, — 23 |

Reset

Clk GEN.
RDY 8284
Reset Clk RDY

Y Y Y

Vee

Reset Clk Ready RD =
MN/MX M/IO >~ MWRR >
RD ~| DMUX IORD -
WR - IOWR >
8086 WE Ao - CS Logic [reiloy %g gﬁm
RS T3 , . —> CSe ROM
' H D
I : [csio CSo ROM 1
ALE ~ STB i Ao—Arg)
74373 i :
ADo—ADjs, Di Latches Qi :
A46/S3 — 2o0r3 '
A19/Se n cs
L > CS
DT/R DEN e Sens e co
CSo CSe CSo CSe IORD | IOWR
Xi _}_ e i _l__ b7 S
E Cs : Cs CS : Cs
>| Transceivers 3 -
‘ RAM ROM /{e]
| G 74245 : it Q
~ DR Yi’ RD WR | OF
o T ‘ ‘ i
Awt‘/ MRD MWR MRD
A P\:ﬁ £AS
Do—D1s

ey

Fig.1.13 Minimum Mode 8086 System

Advanced Microprocessors and Peripherals

CLK

I T1 I T2 ‘ T3 | Twl T4 I

ALE | \
ADD/STATUS BHE, Ao Af>< S s ><
Bus reserved
ADD/DATA A1s— Ao for data in Dim—Dlg = e

3l

il

zZ
__—

i

Fig.1.14(a) Read Cycle Timing Diagram for Minimum Mode

GLIS, =

ALE ——/—\
Add/Status >< BHE >< S;—-S3 >(

Add/Data >< Ai5—Ao >< Valid data D45 — Dg ><

o\ /
o \ /

DT/R -7 » . X

Fig. 1.14(b) Write Cycle Timing Diagram for Minimum Mode Operation

=

| |

R
esel Cik

Generator
RDY
Reset Clk RDY

[

ResetClk RDY
So
S,

S;

8086 BHE

Aqe/S3 —
A19/Sg

MN / MX

INTA
- 5, —= MRDC.
~S; g288 o= MY
=, Controller| _ IOWC
ALE 1wz
DT/R
T cs . §o RAM
Ao —| Logic [— CSeROM
L CSo ROM
| CSs 10
o — . =2l
E :
sSTB ' — .}
L E Ag 19
AP 2or3 Qi -
74373 '
- G Data
X buffers
= 74245
DIR a
(\w ESo —s‘i/ CSo CSe iORC
Y SR e
i i RD
| RAM ROM vo
S i
RD WR| OE . WR
MRDC MWTC MRDC IOWC
Do - D15

Fig. 1.15 Maximum Mode 8086 System

e el PO e [Y o A 6

g One bus cycle “—T—"
ALE / { et ey
. .r ; . '\
g Y ——t ————]
S; -5 Active }\ Inactive /!(Active

ADD/STATUS — BHE. Ajg—Ags >< S; — S, >_ A R e

ADD/DATA — — { Ais—Ag Dis—Dg Y —— — ——
o P e A B Do)-

MRDC \» /

DT/R
= / \
Fig. 1.16 (a) Memory Read Timing in Maximum Mode

ADDISTATUS X)(—“BHEX g, -6) Float

ADDDATA)X Ass—Ac X DATAOUT Dys—Do)
AD4s —ADg /

ANMWC or
AIOWC \ [

MWTC or
IOWC \ /

DT/R High

DEN . \ /

Fig. 1.16(b) Memory Write Timing in Maximum Mode

END of Unit |

UNIT I

Instruction Set & Assembly Language
Programming of 8086

Machine Language Instruction Formats

* A machine language instruction format has one or more
number of fields associated with it.

* The first field is called as operation code field or op-code
field, which indicates the type of operation to be
performed by the CPU

e The instruction format also contains other fields known as
operand fields

 The CPU executes the instruction using the information
which reside in these fields

* There are six general formats of instructions in 8086
instruction set.

 The length of an instruction may vary from 1 byte to 6
bytes. The instruction formats are described as follows

Machine Language Instruction Formats cntd..

1 One Byte Instruction:

* This format is only one byte long and may
have the implied data or register operands.

* The least significant 3-bits of the opcode are
used for specifying the register operand, if
any.

e Otherwise, all the 8 bits form an opcode and
the operands are implied

Machine Language Instruction Formats cntd..

2 Register to Register:
* This format is 2 bytes long

* The first byte of the code specifies the
operation code and width of the operand
specified by ‘W’ bit.

 The second byte of the code shows the

register operands and R/M field, as shown
below.

- CEETIE L

OPCODE

Machine Language Instruction Formats cntd..

* The register represented by the REG field is one
of the operands.

* The R/M field specifies another register or
memory location i.e. the other operand.

3 Register to/from memory with no displacement:

* This format is also 2 bytes long and similar to the

Register to Register format except for the MOD
field as shown.

CAE

OPCODE MOD REG

Machine Language Instruction Formats cntd..

 The MOD field shows the mode of addressing.
The MOD, R/M, REG and the ‘W’ fields are
decided in Table 2.2.

Table 2.2 Addressing Modes and the Corresponding MOD, REG and RIM Fields

| R il Memory Operands
| Operands No Displacement Displacement Displacement Register Operands
| | 8-bit 16-bit
. MoD 00 01 ' 10 11
RIM. ok i W=0 | W=I
000 (BX) + (SD) (BX)+(S)+D8 | (BX)+(SD+D16 | AL AX
g | Ex+@) | BX+@D+D8 | BX)+@D+DI6| CL | CX
00 | (BP)+(S) | (BP)+(ED+D8 | (BP+(SD+DI6 | DL DX
o @p+@) | BR)+@D+DS | BR+OD+DI6 | BL | BX
T (SD + D8 SD+DI6 | AH S
SRR S (DD + D8 (DI) + D16 CH Sk U pp
0 | D6 (BP)+D§ | (BP)+DI6 DH SI
e e (BX) + D8 BX)+DI6 | BH | DI

Note: 1. D§ and D16 represent § and 16 bit displacements respectively. '
2. The default segment for the addressing modes using BP and SP 1s SS. For all other addressing modes

the default segments are DS or ES.

Machine Language Instruction Formats cntd..

4 Register to/from Memory with Displacement:

* This type of instruction format contains 1 or 2
additional bytes for displacement along with 2
byte format of the register to/from memory

without displacement. The format is as shown
below.

—E-

OPCODE MOD

D7 DO D7 DO

Lower Byte of Displacement Higher Byte of Displacement

Machine Language Instruction Formats cntd..

5 Immediate Operand to Register:

* |n this format, the first byte as well as the
3-bits from the second byte which are used for
REG field in case of register to register format
are used for opcode.

* |t also contains one or two bytes of immediate
data. The complete instruction format is as
shown below.

CR—

OPCODE OPCODE

_

Lower Byte of DATA Higher Byte of DATA

Machine Language Instruction Formats cntd..

6 Immediate Operand to Memory with 16-bit
displacement:

* This type of instruction format requires 5 or 6
bytes for coding.

* The first 2 bytes contain the information
regarding OPCODE, MOD and R/M fields. The
remaining 4 bytes contain 2 bytes of
displacement and 2 bytes of data as shown.

AT

OPCODE MOD OPCODE
D7 DO D7 DO
Lower Byte of Higher Byte of
DISPLACEMENT DISPLACEMENT

Yy DO oy DO

Lower Byte of DATA Higher Byte of DATA

Addressing Modes of 8086

Addressing mode indicates a way of locating data or
operands.

Depending upon the data types used in the instruction and
the memory addressing modes, any instruction may belong
to one or more addressing modes, or some instruction may
not belong to any of the addressing modes

Thus addressing modes describe the types of operands and
the way they are accessed for executing an instruction.

According to the flow of instruction execution, the
instructions may be categorized as

— Sequential control flow instructions

— Control transfer instructions

Addressing Modes of 8086 cntd..

Sequential control flow instructions are the instructions
which after execution, transfer control to the next
instruction appearing immediately after it in the program.

For example, the arithmetic, logical, data transfer and
processor control instructions are sequential control flow
instructions.

The control transfer instructions, on the other hand,
transfer control to some predefined address or the address
somehow specified in the instruction, after their execution.

For example INT, CALL, RET and JUMP instructions fall
under this category

The addressing modes for sequential and control transfer
instructions are explained as follows.

Addressing Modes of 8086 cntd..

1 Immediate:

* |n this type of addressing, immediate data is a part of
instruction, and appears in the form of successive byte
or bytes

* Eg: MOV AX, O005H
2 Direct:

* |nthe direct addressing mode, a 16-bit memory
address (offset) is directly specified in the instruction
as a part of it.

 Eg: MOV AX,[5000H],
— Effective address= 10H*DS +5000H

Addressing Modes of 8086 cntd..

3 Register:

* |n the register addressing mode, the data is
stored in a register and it is referred using the
particular register

* All the registers, except IP, may be used in this
mode.

* Eg: MOV AX, BX

Addressing Modes of 8086 cntd..

4 Register Indirect:

 Some times, the address of the memory location which
contains data or operand is determined in an indirect way,
using the offset registers.

* This mode of addressing is known as register indirect mode

* |n this addressing mode, the offset address of data is in
either BX or Sl or DI register.

 The default segment is either DS or ES. The data is
supposed to be available at the address pointed to by the
content of any of the above registers in the default data
segment.

 Eg: MOV AX,[BX]
— Effective address is 10H*DS+[BX]

Addressing Modes of 8086 cntd..

5 Indexed:

* |n this addressing mode, offset of the operand is stored
in one of the Index registers.

* DS is the default segment for index registers Sl and DI

* |n the case of string instructions DS and ES are default
segments for Sl and DI respectively.

* This mode is a special case of the above discussed
register indirect addressing mode

e Eg: MOV AX,[SI]
— effective address is 10H*DS+[SI]

Addressing Modes of 8086 cntd..

6 Register Relative:

* |n this addressing mode, the data is available
at an effective address formed by adding an 8-
bit or 16-bit displacement with the content of
any one of the registers BX, BP, Sl and DI in the
default (either DS or ES) segment.

e Eg: MOV AX,50H[BX]
— Effective address is 10H*DS+50H+[BX]

Addressing Modes of 8086 cntd..

7 Based Indexed:

 The effective address of the data is formed, in
this addressing mode, by adding the content
of a base register (any one of BX or BP) to the
content of an index register (any one of Sl or

DI)
 The default segment register may be DS or ES
— Eg: MOV AX,[BX][SI]
 effective address is 10H*DS +[BX]+[SI]

Addressing Modes of 8086 cntd..

8 Relative Based Indexed:

* The effective address is formed by adding an
8-bit or 16-bit displacement with the sum of
contents of anyone of the base registers (BX or

BP) and any one of the index registers (S| or
Dl), in a default segment.

 Eg: MOV AX,50H[BX][SI]
— Effective address is 10H* DS+[BX]+[SI]+50H

Addressing Modes of 8086 cntd..

For the control transfer instructions, the addressing
modes depend upon whether the destination location
is within the same segment or in a different one.

It also depends upon the method of passing the
destination address to the processor.

Basically there are two addressing modes for the
control transfer instructions, viz, intersegment and
intrasegment addressing modes.

If the location to which the control is to be transferred
lies in a different segment other than the current one,
the mode is called intersegment mode.

Addressing Modes of 8086 cntd..

e |f the destination location lies in the same

segment, the mode is called intrasegment mode
—Intersegment -- direct
Modes for control -- indirect

Transfer instructions

—__intrasegment — direct
-- indirect

Fig 2.1 Addressing modes for control transfer
instructions

Addressing Modes of 8086 cntd..

9 Intrasegment Direct mode:

* Inthis mode, the address to which the control is to be
transferred lies in the same segment in which the
control transfer instruction lies and appears directly in
the instruction as an immediate displacement values.

* |n this addressing mode, the displacement is computed
relative to the content of the instruction pointer IP.

* The effective address to which the control will be
transferred is given by the sum of 8 or 16 bit
displacement and current content of IP.

Addressing Modes of 8086 cntd..

* |n case of Jump instruction, if the signed
displacement (d) is of 8 bits (ie -128 <d< +127)
we term it as short jump and if it is of 16bits
(ie -32768<d< +32767), it is termed as long
jump.

 Eg: JMP SHORT LABEL; LABEL lies with in -128
to +127 from the current IP content. Thus
SHORT LABEL is 8-bit sighed displacement.

Addressing Modes of 8086 cntd..

10 Intrasegment Indirect Mode:

* |n this mode, the displacement to which the
control is to be transferred, is in the same
segment in which the control transfer instruction
lies, but it is passed to the instruction indirectly.

 Here, the branch address is found as the content
of a register or a memory location.

* This addressing mode may be used in
unconditional branch instructions.

 Eg: JMP [BX] here the effective address is stored
in BX

Addressing Modes of 8086 cntd..

11 Intersegment Direct:

* In this mode, the address to which the control is
to be transferred is in a different segment.

* This addressing mode provides a means of
branching from one code segment to another
code segment.

e Here the CS an IP of the destination address are
specified directly in the instruction.

* Eg: JMP 5000H:2000H

Jump to effective address 2000H in segment
5000H

Addressing Modes of 8086 cntd..

12 Intersegment Indirect:

* |n this mode, the address to which the control is to be
transferred lies in a different segment and it is passed
to the instruction indirectly ie contents of a memory
block containing 4 bytes ie IP(LSB), IP(MSB), CS(LSB)
and CS(MSB) sequentially

* The starting address of the memory block may be
referred using any of the addressing modes, except
immediate mode.

e Eg:JMP [2000H] Jump to an address in other segment
specified at effective address 2000H in DS, that points
to the memory block as said above.

Instruction Set of 8086

Instruction set of
8086 Microprocessor

Programs — Arithmetic

1) Write an assembly language program to perform the ADDition of two 8 bit numbers using 8086.
Solution:
ASSUME CS: CODE, DS: DATA
DATA SEGMENT
NUM1 DB 12
NUM2 DB 18
SUM DB ?
DATA ENDS
CODE SEGMENT
START: MOV AX, DATA
MOV DS,AX
MOV AL, NUM1
ADD AL, NUM?2
MOV SUM, AL
INT O3H
CODE ENDS
END START
END.

Programs — Arithmetic cntd..

2) Write an ALP for ADDition of two 16 bit numbers using 8086
Solution:
ASSUME CS: CODE, DS: DATA
DATA SEGMENT
NUM1 DW 1234
NUM2 DW 4567
SUM DW?
DATA ENDS
CODE SEGMENT
START: MOV AX, DATA
MOV DS,AX
MOV AX, NUM1
ADD AX, NUM2
MOV SUM, AX
INT O3H
CODE ENDS
END START
END.

Programs — Arithmetic cntd..

3) Write an assembly language program to perform the SUBtract operation of two 8 bit numbers using
8086.

Solution:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

NUM1 DB 18

NUM2 DB 12

DIFF DB?

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA
MOV DS,AX
MOV AL, NUM1
SUB AL, NUM2
MOV DIFF, AL
INT O3H

CODE ENDS

END START

END.

Programs — Arithmetic cntd..

4) Write an assembly language program to perform the SUBtract operation of two 16 bit numbers using
8086.

Solution:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

NUM1 DW 1835

NUM2 DW 1735

DIFF DW?

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA
MOV DS,AX
MOV AX, NUM1
SUB AX, NUM?2
MOV DIFF, AX
INT O3H

CODE ENDS

END START

END.

Programs — Logical

1) Write an assembly language program to perform the AND operation between two 16 bit numbers
using 8086.

Solution:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

NUM1 DW 1234

NUM2 DW 1856

ANDRES DW ?

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA
MOV DS,AX
MOV AX, NUM1
AND AX, NUM2
MOV ANDRES, AX
INT O3H

CODE ENDS

END START

END.

Programs — Logical cntd..

2) Write an assembly language program to perform the OR operation of two 16 bit numbers using
8086.

Solution:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

NUM1 DW 1234

NUM2 DW 1898

ORRES DW ?

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA
MOV DS,AX
MOV AX NUM1
OR AX, NUM?2
MOV ORRES, AX
INT O3H

CODE ENDS

END START

END.

Programs - Branch

1) Write an ALP to find out the larger number between two 16 bit numbers using Jump instruction using 8086.
Solution:
ASSUME CS:CODE, DS:DATA
DATA SEGMENT
NUM1 DW1534
NUM2 DW 2078
LARGENUM DW?
DATA ENDS
CODE SEGMENT
START: MOV AX,DATA
MOV DS,AX
MOV AX,NUM1
CMP AX,NUM2
JC GO
MOV LARGENUM,AX
JMP EXIT
GO: MOV LARGENUM,NUM?2
EXIT: INTO3H
CODE ENDS
END START
END

Programs — Branch

2) Write an ALP to sort the given array of 16 bit numbers using 8086.
Solution:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

ARRAYNUM DW 2378H,4567H,3498H,1289H,4298H

COUNT EQU 0O5H

DATA ENDS

CODE SEGMENT

START: MOV AX,DATA

MOV DS,AX

MOV DX, COUNT -1 GO: INCSI
NXTITR:MOV CX,DX INC S|

MOV SI, OFFSET ARRAYNUM LOOP AGAIN
AGAIN:MOV AX,[SI] DEC DX

CMP AX,[SI+2] JNZ NXTITR

IC GO INT 03H

XCHG AX,[SI+2] CODE ENDS

XCHG AX.[SI] END START

END

cntd..

Programs — Call cntd..

Call Instruction: This instruction is used to call procedures or
Subroutines in the main program.

Procedure or Subroutine: it is a group of instructions, which is called in
the main program, to execute a common functionality many times.

How to pass parameters to a Procedure: There are many ways to pass
parameters to a Procedure. Those are

1) Using Global declared variable

2) Using registers of CPU architecture
3) Using memory locations (reserved)
4) Using a Stack

5) Using PUBLIC and EXTRN.

Programs — Call cntd..

Example 1: Using Global declared variable
ASSUME CS:CODE1,DS:DATA
DATA SEGMENT
NUMBER EUQ 77H GLOBAL
DATA ENDS
CODE SEGMENT
START: MOV AX,DATA
MOV DS,AX

MOV AX,NUMBER

CODE1 ENDS
ASSUME CS:CODE2
CODE2 SEGMENT

MOV AX,DATA

MOV DS,AX

MOV BX,NUMBER
CODE2 ENDS

END START

END

Programs — Call cntd..

Example 2: Using registers of CPU architecture
ASSUME CS:CODE
CODE SEGMENT
START: MOV AX,5555H
MOV BX,7272H

CALL PROCEDURE1

PROCEDURE PROCEDURE 1 NEAR
ADD AX,BX

RET
PROCEDURE1 ENDP
CODE ENDS
END START

Programs — Call cntd..

* Here the CPU registers, used in the main
program, are modified in the Procedure as the
same CPU registers are used here. Hence to
avoid this data loss, the register contents are
pushed on to a stack to save them.

At the end of the subroutine, this saved data
will be pop up from the stack and then return
to the main program so that there won’t be

any data loss.

Programs — Call cntd..

Example 3: Using memory locations
ASSUME CS:CODE,DS:DATA
DATA SEGMENT
NUM DB (55H)
COUNT EQU 10H
DATA ENDS
CODE SEGMENT
START: MOV AX,DATA
MOV DS,AX

CALL ROUTINE

PROCEDURE ROUTINE NEAR
MOV BX,NUM
MOV CX,COUNT

ROUTINE ENDP
CODE ENDS
END START
END

Programs — Call cntd..

Example4: Using Stack
ASSUME CS:CODE,SS:STACK
CODE SEGMENT
START: MOV AX,STACK
MOV SS,AX
MOV AX,5577H
MOV BX,2929H

PUSH AX

PUSH BX
CALL ROUTINE ; decrements sp by 2 (by 4 far routine)

PROCEDURE ROUTINE NEAR

MOV DX,SP
ADD SP,02

Programs — Call cntd..

POP BX
POP AX
MOV SP,DX

STACK SEGMENT
TACKDATA DB 200H DUP (?)
STACK ENDS

N

Programs — Call cntd..

Using PUBLIC & EXTRN:

* For passing parameters to procedures using
the PUBLIC & EXTRN directives , the data must
be declared PUBLIC (for all routines) in the

main routine and the same should be declared
EXTRN in the procedure.

* Thus, the main program can pass the PUBLIC
parameter to a procedure in which it is
declared EXTRN (external)

Programs — Call cntd..

Example 5: Using PUBLIC & EXTRN
ASSUME CS:CODE,DS:DATA
DATA SEGMENT
PUBLIC NUMBER EQU 200H
DATA ENDS
CODE SEGMENT
START: MOV AX,DATA
MOV DS,AX

CALL ROUTINE

PROCEDURE ROUTINE NEAR
EXTRN NUMBER
MOV AX,NUMBER

ROUTINE ENDP

Assembler Directives

 |tis adirection to the assembler but not the instruction

for 8086.
* The various assembler directives are given below.

* ASSUME:
— Itis used to tell the assembler the name of the logical
segment it should use for a specified segment
— Eg: ASSUME CS:CODE_HERE

ASSUME DS:DATA_HERE

— In MOV AX,[DX], it indicates that the memory location
referred to by [DX], is in the logical segment DATA_HERE.

Assembler Directives cntd...

* DB:
— Define byte or declare byte

— Reserves one byte in memory and initializes to the
value mentioned

— Eg: PRICES DB 49H,98H
NAME DB ‘MRCET’
TEMP_STORAGE DB 100 DUP(?)

— Reserves 100 bytes of storage in memory but initialization is
not done. Program instructions will load values into these
locations.

Pressure _storage DB 20H DUP(0) ;(initialized with 0)

Assembler Directives

DW : define word

DD : define double word
DQ : define quad word
DT : define ten bytes

END : Indicates end of the program
ENDP : indicates end of the procedure
Eg: SQUARE_ROOT PROC. ...
SQUARE_ROQOT ENDP
ENDS : End segment
Eg: CODE ENDS

cntd...

Assembler Directives cntd...

EQU : EQUATE
used to give a name to some value or symbol. This
name will be used in the program.
Eg: correction_factor EQU O3H
ADD AL, correction_factor

EVEN :

— Tells the assembler to increment the location counter to the
next even address if it is not already at an even address

INCLUDES : Include source code from file

NAME : used to give a specific name to each assembly
module when programs consisting of several modules are
written.

Assembler Directives cntd...

* ORG : ORIGINATE

— Used to set the location counter to a particular value.

* Eg: 1 ORG 2000H ; Sets the location counter to
2000H

— 2 0ORG S + 100 ; tells the assembler to increment the
value of the location counter by 100 from its current
value.

« SEGMENT: Indicates the start of a logical
segment. Eg: CODE SEGMENT.

Assembler Macros

* Procedure Vs Macros:

— Whenever we need to use a group of instructions several times
through out a program, there are two ways we can avoid having
to write the group of instructions each time we want to use it.

* Procedure
— Writing the group of instructions as a separate procedure

— Then we can just call the procedure whenever we need to
execute that group of instructions.

— Advantage: the machine codes for the group of instructions in
the procedure only have to be put in memory once

— So, less memory usage

— Disadvantage: need a stack and the overhead time is required
to call the procedure and return to the calling program.

Assembler Macros cntd...

* Macros:

When the repeated group of instructions is too short or not
appropriate to be written as a procedure, we use a macro.

A macro is a group of instructions we bracket and give a name to at
the start of our program.

Each time we “call” the macro in our program, the assembler will
insert the defined group of instructions in place of the “call”.

An important point here is that the assembler generates machine
codes for the group of instructions each time the macro is called.

Replacing the macro with the instructions it represents is commonly
called “expanding” the macro

Since the generated machine codes are right in-line with the rest of
program, the processor does not have to go off to a procedure and
return.

Assembler Macros cntd...

* Advantage: Therefore, using a macro avoids
the overhead time involved in calling and
returning from a procedure.

* Disadvantage: A disadvantage of generating
in-line code each time a macro is called is that
this will make the program take up more
memory than using a procedure

Assembler Macros cntd...

Defining and Calling a Macro without parameters:

— Before calling a procedure, you need to save all registers
on to stack. For this purpose you need to write many
instructions using PUSH command.

After executing the procedure you need to write many
pop instructions to retrieve the data

The above two cases adds more complexity to main
program and is therefore not appropriate

Two simple macros will solve the problem for us
Here’s how we write a macro to save all these registers

Assembler Macros cntd...

* PUSH_ALL MACRO
PUSH F
PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH BP
PUSH SI
PUSH DI
PUSH DS
PUSH ES
PUSH SS

ENDM

Assembler Macros cntd...

* The PUSH_ALL Macro statement identifies the
start of the Macro and gives the Macro a name.
The ENDM identifies the end of the Macro.

* Now this Macro is used in the procedure as given
below.
BREATH RATE PROC FAR
ASSUME CS:PROCEDURE, DS:PATIENT _PARAMETERS
PUSH_ALL ;Macro call
MOV AX,PATIENT PARAMETERS
MOV DS,AX ;Intialize data seg reg

Assembler Macros cntd...

* When the assembler assembles this program
section, it will replace PUSH_ALL with the
instruction that it represents and insert the
machine codes for these instructions in the
object code version of the program.

 The assembler listing tells you which lines
were inserted by a macro call by putting a + in
each program line inserted by a Macro call

Assembler Macros cntd...

* Asyou can see from the example here, using a Macro
makes the source program much more readable
because the source program does not have the long
series of Push instructions cluttering it up.

e Passing parameters to Macro:
— Dear Parent,

Your ward'’s (Roll No.) attendance percentage is given
below

Attendance: % (percentage)

Thank you,

Assembler Macros cntd...

 Example: To move ASCII character from one place to
another.

Source: SI, Destination: DI,

no. of characters to be moved = CX

MOVE _ASCII MACRO NUMBER,SOURCE,DEST
MOV CX,NUMBER
LEA SI,SOURCE
LEA DI,DEST
CLD

REP MOVSB

ENDM

Assembler Macros cntd...

 When we call the Macro, values from the calling

statement will be put in the instructions in place of the
dummies.

 Example: MOVE_ASCII
03DH,BLOCK_START,BLOCK_DEST

Then the assembler will expand the Macro as follows.
MOV CX,03DH

LEA SI,BLOCK_START

LEA DI,BLOCK_DEST
CLD

REP MOVSB

Instruction set of
8086 Microprocessor

Instructions

LABEL: INSTRUCTION ;, COMMENT
Address identifier Does not generate any machine code
« EX. START: MOV AX, BX , copy BX into AX

« There is a one-to-one relationship between assembly and
machine language instructions

« A compiled machine code implementation of a program
written in a high-level language results in inefficient code

 Two key benefits of assembly language
programming

— It takes up less memory

— |t executes much faster

The 8086 instructions are categorized into the following main types.
1. Data Copy/Transfer Instructions:

« These type of instructions are used to transfer data from source
operand to destination operand.

- Allthe store, move, load, exchange, input and output instructions
belong to this category.

2. Arithmetic and Logical instructions:

« Alltheinstructions performing arithmetic, logical, increment,
decrement, compare, and scan instructions belong to this
category

3. Branch Instructions:

« These instructions transfer control of execution to the specified
address.

 Allthe call, jump, interrupt and return instructions belong to this
class.

4. Loop Instructions:

If these instructions have REP prefix with CX used as count
register, they can be used to implement unconditional and
conditional loops.

The LOOP, LOOPNZ and LOOPZ instructions belong to this
category.

These are useful to implement different loop structures.

5. Machine Control Instructions:

These instructions control the machine status.
NOP, HLT, WAIT and LOCK instructions belong to this class.

6. Flag Manipulation Instructions:

All the instructions which directly affect the flag register, come
under this group of instructions.

Instructions like CLD, STD, CLI, STI, etc. belong to this category
of instructions.

7. Shift and Rotate Instructions:

« These instructions involve the bitwise shifting or rotation in either
direction with or without a count in CX.

8. String Instructions:

- These instructions involve various string manipulation operations
like load, move, scan, compare , store, etc.

« These instructions are only to be operated upon the strings.

Data Transfer Instructions - MOV

Mnemonic Meaning Format Operation Flags affected
MOV Move Mov D,S (S) = (D) None
| Destination [Source |
Memory Accumulator
Accumulator | Memory NO MOV
Register Register Memory Memory
Register Memory Immediate > Segment Register
Memory Register Segment Register » Segment Register
Register Immediate
Memory Immediate
Seqg reg Reg 16
Seq reg Mem 16
Reg 16 Seqg reg
Memory S Ex. MOV AL, BL -

Data Transfer Instructions - XCHG

Mnemonic

Meaning

Format

Operation

Flags affected

XCHG

Exchange

XCHG D,S

(S)= (D)

None

Accumulator | Reg 16

Memory Register
Register Register
Register Memory

Example: XCHG [1234h], BX

NO XCHG

MEMs
SEG REGs

Data Transfer Instructions — LEA, LDS, LES

Mnemo | Meaning Format Operation Flags
nic affected
LEA Load LEA Regl6,EA EA > [Regl6] None
Effective
Address

LDS Load LDS Regl1l6,MEM32 [MEM32] = [Regl6] None
Register
And DS [Mem32+2] > [DS]

LES Load LES Regl16,MEM32 [MEM32] = [Regl6] None
Register
and ES

[Mem32+2] = [ES]

LEA SI DATA (or)

The XLAT lnastruction

Mnemonic | Meaning | Format Operation Flags

XLAT Translate | XLAT | ([AL]+[BX]+[DS]0) - [AL] | None

Used to find out the codes in case of code conversion
problems, using look-up-table technique.

Example:
Assume [DS] = 0300H, [BX]=0100H, and [AL]=0DH
XLAT replaces contents of AL by contents of memory location with
PA=[DS]0 +[BX] +[AL]

= 03000H + 0100H + ODH = 0310DH
Thus
[0310DH] = [AL]

Arithmetic Instructions: ADD, ADC, INC, AAA, DAA

Mnemonic Meaning Format Operation Flags
affected
ADD Addition ADD D,S [S]+[D] => [D] ALL
carry > [CF]
ADC Add with ADC D,S [S]+[D]+[CF] => [D] ALL
carry carry => [CF]
INC Increment by INC D [D]+1 - [D] ALL but CY
one
DAA Decimal DAA Adjust AL for decimal ALL
adjust for Packed BCD
addition

11

Examples:

Ex.1 ADD AX,2
ADC AX,2

Ex.2 INC BX
INC WORD PTR [BX]

Ex.3 AL contains 25 (packed BCD)
BL contains 56 (packed BCD)

ADD AL, BL
DAA

12

Arithmetic Instructions — SUB, SBB, DEC, AAS, DAS, NEG

Mnemonic Meaning Format Operation Flags
affected
SUB Subtract | SUB D,S [D] - [S] =2 [D] All
Borrow =2 (CF)
SBB Subtract | SBB D,S [D] - [S] -[CF] =2 [D] All
with
borrow
DEC Decrement | DEC D [D]-1 = [D] All but CF
by one
NEG Negate NEG D All
DAS Decimal DAS Convert the result in AL to All
adjust for packed decimal format

subtraction

Examples: DAS

MOV BL, 28H

MOV AL, 83H

SUB AL,BL ; AL=5BH

DAS , adjust as AL=55H

14

Multiplication and Division, S(Source) — R8, R16, M8, M16

Mnemonic Meaning Format Operation Flags
affected
MUL Multiply MUL S [AL].S8 = AX ALL
(Unsign&d) [AX].S16 - DX, AX
DIV Division DIV S 1) Q([AX]/S8) > AL ALL
(Unsigned) R([AX]/S8) = AH
2) Q([DX, AX]/S16 - AX
R([DX, AX]/S16 = DX
IMUL Integer Multiply | IMUL S [AL].S8 = AX ALL
(Signed) [AX].S16 - DX, AX
IDIV Integer Division | IDIV S 1) Q([AX]/S8) > AL ALL
(Signed) R([AX]/S8) = AH
2) Q([DX, AX]/S16) =2 AX
R([DX, AX]/S16) > DX
CBW Convert signed | CBW | MSB of AL - All bits of No Flags
byte to word AH
CWD Convert signed | CWD | MSB of AX = All bits of No Flags

word to d. word

DX

15

Multiplication and Division

Multiplication Multiplicant Operand Result

(MUL or IMUL) (Multiplier)

Byte * Byte AL Register or AX
memaory

Word * Word AX Register or DX AX
memaory

Dword * Dword EAX Register or EDX EAX
Memory

Division Dividend Operand Quotient : Remainder

(DIV or IDIV) (Divisor)

Word / Byte AX Register or memory AL - AH

Dword / Word DXCAX Register or memory AX DX

Qword / Dword | EDX: EAX Register or Memory EAX - EDX

16

Multiplication and Division Examples

Ex1: Assume that each instruction starts from these values:
AL =85H, BL = 35H, AH =0H

1. MUL BL — AL .BL =85H * 35H = 1B89H — AX = 1B89H

2. IMULBL — AL .BL=2"SAL *BL =2"S (85H) * 35H
=7BH * 35H =1977/H— 2’s comp — E689H — AX.

3. DIVBL » ax =2089H_g, (85-02*35=1B) — Slenatel,
Bl SoH -

ANCH008EH; - OE Gl

4. |IDIV BL — = =
e~ [

17

Ex2: AL=F3H,BL=91H, AH =00H

M@l — AL * BL=F3H * 91H =89A3H — AX =89A3H

2., IMULBL — AL * BL=2"SAL*2’SBL =2’S (F3H) * 2’S(91H) =
ODH * 6EEE=0a:aiEsavs

Ax O00F3H OOF3H
= 2— (00F3 — 2*6F=15H)

3.IDIV BL — E: 2'S(91H) =
AH AL POS S o AH AL
15 02 NEG — 2's(02) = FEH—| 15 FE

R Q

4. DIV BL e 005 01—(F3-1*91=62) - =

| BL 9 : S

18

-

Ex3: AX=F000H, BX=9015H, DX= 0000H

DX

AX

1. MUL BX = FOOOH * 9015H =

8713

BOOO

2. IMUL BX = 2°S(FO00H) * 2°S(9015H) = 1000 * 6FEB =

FOOOH
15H

3. DIVBL =

2'S(FO00H) 1000H

4. IDIV BL
AAETES e e 15H

DX

AX

O6FE

BOOO

= B6DH — More than FFH — Divide Error.

= C3H > 7/F — Divide Error.

19

Ex4: AX=1250H, BL=90H

AX 1250H POS POS 1250H 1250H

F PIVBET R T To0H T NEG T 2SNEG 2s(9oH) | 7OH

= 29H (Q)

29H (POS) — 2'S (29H) = D7H —
60H D/H

Ax 1250H

2. DIVBL— — =

= 20H—1250-20%90 =50H — S0H 20H
BL 90H

20

Exercise:

1.
. Write a program to subtract a two 16 bit numbers

2
3.
4. Write a program to divide a 16 bit number by an 8-bit

Write a program to add two 16 bit numbers

Write a program to multiply two 16 bit numbers

number.

21

Logical Instructions

Mnemonic Meaning Format Operation Flags Affected
AND Logical AND | ANDD,S | (S)-(D)— (D) SF, ZF, PF
OR Logical Inclusive | ORD,S (S)+(D) — (D) SF, ZF, PF
OR
XOR Logical Exclusive | XORD,S | (S) @ (D)—(D) SF, ZF, PF
OR
NOT LOGICALNOT | NOTD (D) — (D) None
Destination Source
- : Destination
Register Register >
Register Memory Register
Memory Register Memory
Register Immediate
Memory Immediate
Accumulator Immediate
22

LoGICAL Instructions

s« AND

— Uses any addressing mode except memory-to-memory and
segment registers

— Especially used in clearing certain bits (masking)
XXXX XxXxXX AND 0000 1111 = 0000 xxxx
(clear the upper four bits)
— Examples: AND BL, OFH
AND AL, [345H]

* OR
— Used In setting certain bits
XXXX XxxX OR 0000 1111 = xxxx 1111
(Set the lower four bits)

23

- XOR

— Used In Inverting bits

xxxX XxxX XOR 0000 1111 = xxxxx’x’x’x’

-Example: Clear bits 0 and 1, set bits 6 and 7, invert bit 5 of

register CL.:
AND CL, OFCH ; 111100
OR:EIE=0C0H =% 1100 0000B
XORIEIE=020H &5 0010 0000B

 EXercise: Clear bits 3 and 6, set bits 1 and 4, invert bit O of register BL

24

Shift and Rotate Instructions

0 SHL/SAL: shift logical left/shift
arithmetic left

1 SHR: shift logical right

_1 SAR: shift arithmetic right

ROL: rotate left

ROR: rotate right

RCL: rotate left through carry

RCR: rotate right through carry

LD L O

25

Logical vs Arithmetic Shifts

* A logical shift fills the newly created bit position

with zero:

O—> o> o

CF

« An arithmetic shift fills the newly created bit

position with a copy of the number’s sign bit:

>

>

26

Shift Instructions

Mnemo | Meaning Format Operation Flags
-nic Affected
SAL/SH | Shift SAL/SHL D, Count | Shift the (D) left by the | All
L arithmetic number of bit positions
Left/shift equal to count and fill the
Logical left vacated bits positions on
the right with zeros
SHR Shift SHR D, Count Shift the (D) right by the | All
logical number of bit positions
right equal to count and fill the
vacated bits positions on
the left with zeros
Shift SAR D, Count Shift the (D) right by the | IF, DF & TF
SAR arithmetic number of bit positions
right equal to count and fill the
vacated bits positions on
the left with the original
27

most significant bit

Allowed operands

Destination Count
Register 1
Register CL
Memory 1
Memory CL

28

SHL

SAL

SHR

SAR

Target register or memory

«— | = .

e BE— -+ -

0 —» |
L, —

T

Si1zn Bat

SHL Instruction

« The SHL (shift left) instruction performs a logical
left shift on the destination operand, filling the

lowest bit with O.

CF

« Operand types:
SHL reg,imm8
SHL mem, imm8
SHL. reg,CL
SHL mem,CL

30

Fast Multiplication

Shifting left 1 bit multiplies a number by 2

mov dl,5 Before: | 00000101 |=5

shl d1,1 After. | 00001010 |=10

Shifting left n bits multiplies the operand by
2n
For example, 5 * 22 = 20

mov dl,5
shl d1,2 ; DL

20

31

Ex. Let AL=10H, what is AL after the

following code?
SHLAL, 1
MOV BL, AL
MOV CL,2
SHLAL,CL
ADD AL, BL

Exercise: Let AL=10H, what is AL after the
following code

1. SHLAL,1 2. SHLAL,1
MOV CL, AL MOV BL,AL
MOV CL,4 MOV .CLES
SHLAL,CL SHLAL,CL

ADD AL,BL ADD AL,BL

32

SHR Instruction

 The SHR (shift right) instruction performs a logical
right shift on the destination operand. The highest
bit position is filled with a zero.

CF

Shifting right n bits divides the operand by 2"

MOV DL, 80
SHR DI, 1 ; DL = 40
SHR DL, 2 ; DL = 10

33

SAR Instruction

 SAR (shift arithmetic right) performs a right
arithmetic shift on the destination operand.

An arithmetic shift preserves the number's sign.

MOV DL, -80
SAR DI, 1 ; DL = -40
SAR DL, 2 ; DL = -10

34

« Example:

1. Let AL=BOH, what is AL after the following code
SHR AL, 1
MOV BL, AL
MOV CL,2
SHR AL,CL
ADD AL, BL

Exercise:
Let AL=BOH, what is AL after the following code
1. SHR AL,1 2. SHR AL,1

MOV CL, AL MOV BL,AL

MOV CL,2 MOV CL,3

SHR AL,4 SHR AL,CL

ADD AL,BL ADD AL,BL

35

Rotate Instructions

Mnem | Meaning Format Operation Flags Affected
-onic

ROL Rotate ROL D,Count | Rotate the (D) left by the PF, SF, and

Left number of bit positions equal ZF are left
to Count. Each bit shifted out | unchanged
from the left most bit goes back
Into the rightmost bit position.

ROR Rotate ROR D,Count | Rotate the (D) right by the PF, SF, and

Right number of bit positions equal ZF are left
to Count. Each bit shifted out | unchanged
from the rightmost bit goes
back into the leftmost bit
position.

RCL Rotate RCL D,Count | Same as ROL except carry is PF, SF, and
Left attached to (D) for rotation. ZF are left
through unchanged
Carry

RCR Rotate RCR D,Count | Same as ROR except carry is PF, SF, and
right attached to (D) for rotation. ZF are left
through unchanged 36

Carry

ROL Instruction

« ROL (rotate) shifts each bit to the left

 The highest bit is copied into both the Carry
flag and into the lowest bit

* NO bits are |lost

CF

MOV Al1,11110000b

ROL Al,1 ; AL 11100001b

MOV D1, 3Fh
ROL D1,4 ; DL = F3h

ROR Instruction

ROR (rotate right) shifts each bit to the right

The lowest bit is copied into both the Carry flag and
Into the highest bit

No bits are lost

CF

MOV AL,11110000b
ROR AL,1 ; AL

01111000b

MOV DL, 3Fh
ROR DL, 4 ; DL = F3h

38

RCL Instruction

 RCL (rotate left thru carry) shifts each bit to the
left

 Copies the Carry flag to the least significant bit

 Copies the most significant bit to the Carry flag
CF

O ||« 0 4«0 4«0 ¢« 0 4«0 4«0 4«0 <0,

CLC ; CFE =0

MOV BL, 88H ; CF,BL = 0 10001000b
RCL BL,1 ; CF,BL = 1 00010000b
RCL BL,1 ; CF,BL = 0 00100001b

RCR Instruction

* RCR (rotate carry right) shifts each bit to the right
 Copies the Carry flag to the most significant bit
 Copies the least significant bit to the Carry flag

CF

A. > @ > @ > &> @ > @ > @ > @ > o
STC ; CEs= 1
MOV AH, 10H ; CF,AH = 00010000 1
RCR AH,1 ; CF,AH = 10001000 O

40

Rotate Instructions

Destination Count
Register 1
Register CL
Memory 1
Memory €=

41

Flag control instructions

MNEM- MEANING OPERATION Flags
ONIC Affected
CLC |[Clear Carry Flag | (CF) € O el
STC | Set Carry Flag (CF) €1 CF
CMC | Complement (CF) €« (CF) CF

Carry Flag
CLD |Clear Direction |(DF) < O
Flag S| & DI will be auto incremented while| DF
string instructions are executed.
STD | Set Direction (DF) € 1
Flag SI & DI will be auto decremented| DF
while string instructions are executed.
CLI Clear Interrupt (IF) €0 1=
Flag
STI Set Interrupt (IF) €1 I=

Flag

Compare Instruction, CMP

Mnemo | Meaning |Format Operation Flags
nic Affected

CMP Compare |CMP D,S [D] . [S] is used in | CF, AF, OF,

setting or resetting the | PR SF, ZF
flags

Allowed Operands

D _ S . ZF=1 Destination Source
Register Register
D] >[S , ZF=0, CF=0 Register Memory
D] < [S] - ZF=0, CF=1 Memory Register
1 = Register Immediate
Memory Immediate

Accumulator Immediate 43

Strings

 An array of bytes or words located In
memory

« Supported String Operations
—Copy (move, load)
—Search (scan)

—Store
—Compare

44

String Instruction Basics

« Source DS:SI, Destination ES:DI
— You must ensure DS and ES are correct

— You must ensure Sl and DI are offsets into DS
and ES respectively

— You must move the count to CX register before
executing the instruction

* Direction Flag (0 = Up, 1 = Down)
— CLD - Increment addresses (left to right)
— STD - Decrement addresses (right to left)

45

String Instructions

Instruction prefixes

Prefix Used with Meaning

REP MOVS Repeat while not end of string
STOS CX#0

Repeat while not end of string

REPE/REPZ |CMPS and strings are equal. CX#0
SCAS and ZF =1

REPNE/REP |CMPS Repeat while not end of string

and strings are not equal. CX #
2 SCAS | g'and ZF = 0 ; 4

Instructions

Mnemo- meaning format Operation Flags
Nic effect
-ed
MOVS Move string MOVSB/ | [[ES]O+[DI]] € [[DS]O+[SI]] |none
DS:SI MOVSW | S]] < [SI]+ 1 or 2
~ES:DI DI] € [DI]+ 1 or 2
CMPS Compare CMPSB/ | Set flags as per All
string CMPSW | [[ES]O+[DI]] - [[DS]O+[SI]] | Status
DS:SI SI] < [SI] 1 or 2 flags
—>ES:DI

DIl < [DIlj+£1or2

a7

Mnemo- meaning format Operation
Nic

SCAS Scan string | SCASB/ | Set flags as per

AX — ES:DI | SCASW |[AL or AX] — [[ES]O+[DI]]
[DI] € [Dl]£1o0r2

LODS Load string | LODSB/ |[AL or AX] < [[DS]O+[SI]]
DS:SI > AX | LODSW | [S[] €« [SI]+1 or 2

STOS Store string | STOSB/ | [[ES]O+[DI]] € [ALor AX]+ 1 or 2
ES:DI € AX | STOSW

[DI] € [DIj£1or2

48

Branch group of instructions

Branch iInstructions provide lot of convenience to the
programmer to perform operations selectively, repetitively

etc.
Branch group of instructions

Sl | g S

Conditional Uncondi- Iteration CALL Return
jumps tional Instructions instructions instructions

jump

49

SUBROUTINE & SUBROUTINE HANDILING INSTRUCTIONS

Main program

Subroutine A

/First Instruction
Call subroutine A

Next instruction

Return

Call subroutine A

Next instruction

50

A subroutine is a special segment of program that can be called for
execution from any point in a program.

An assembly language subroutine is also referred to as a “procedure”.

Whenever we need the subroutine, a single instruction is inserted in to
the main body of the program to call subroutine.

To branch a subroutine the value in the IP or CS and IP must be
modified.

After execution, we want to return the control to the instruction that
Immediately follows the one called the subroutine i.e., the original value
of IP or CS and IP must be preserved.

Execution of the instruction causes the contents of IP to be saved on
the stack. (this time [SP] < [SP] -2)

A new 16-bit (near-proc, mem16, regl6 i.e.,) value
which is specified by the instructions operand is loaded into IP.

Examples: CALL 1234H
CALL BX
CALL [BX]

51

— At starting CS and IP placed in a stack.

— New values are loaded in to CS and IP given by the
operand.

— After execution original CS, IP values placed as it is.

Far-proc
Memptr32

These two words (32 bits) are loaded directly into IP and
CS with execution at CALL instruction.

First 16 »> IP
Next 16 = CS

52

Mnem-
onic

Meaning

Format

Operation

Flags
Affected

CALL

Subroutine
call

CALL operand

Execution continues from
the address of the
subroutine specified by
the operand. Information
required to return back to
the main program such as
IP and CS are saved on
the stack.

none

Operand

Near-proc
Far — proc
Memptr 16
Regptr 16
Memptr 32

53

RETURN

Every subroutine must end by executing an instruction that returns control
to the main program. This is the return (RET) instruction.

By execution the value of IP or IP and CS that were saved In the stack to
be returned back to their corresponding regs. (this time (SP) < (SP)+2)

Mnem | Meaning | Format Operation Flags
-onic Affected
RET |Return RET or Return to the main|None
RET operand | Program by restoring [P
(and CS for far-proc). If
operands is present, it is
added to the contents of
SP.
Operand
None

Displ6

54

Loop Instructions

. These instructions are used to repeat a set of instructions several
times.

« Format: LOOP Short-Label
e QOperation: [CX] € [CX]-1

« Jump Is initialized to location defined by short label if CX#O.
otherwise, execute next sequential instruction.

* Instruction LOOP works w.r.t contents of CX. CX must be
preloaded with a count that represents the number of times the
loop is to be repeated.

« Whenever the loop is executed, contents at CX are first
decremented then checked to determine if they are equal to zero.

« If CX=0, loop is complete and the instruction following loop is
executed.

« If CX # 0, control returns to the instruction at the label specified in

the loop instruction. =

LOOP Instruction contd.

LOOP r8 , 18 Is 8-bit signed value.

It iIs a 2 byte instruction.

Used for backward jump only.

Maximum distance for backward jump is only 128 bytes.

LOOP AGAIN is almost same as: DEC CX
JNZ AGAIN

LOOP instruction does not affect any flags.

56

Mnemonic | meaning format Operation
LOOP Loop Loop short-label [CX] € [CX]-1
Jump to location given by
short-label if CX # 0
LOOPE/ |Loop while | LOOPE/LOOPZ [CX] € [CX]-1
LOOPZ equall |00p short-label Jump to location given by
while zero short-label if CX # 0 and
ZF=1
LOOPNE/ | Loop while | LOOPNE/LOOPNZ |[CX] < [CX]-1
LOOPNZ | notequal/ |short-label Jump to location given by
loop while short-label if CX # 0 and
not zero ZF=0

S7

Control flow and JUMP instructions

Unconditional Jump
l Part 1
JMP AA
Part 2
Part 3
il AA XXXX
JMP

JMP Operand

> Unconditional JMP

Skipped part

-

«<— Next instruction

58

Unconditional Jump

Unconditional Jump Instruction

Near Jump or Far Jump or
| }
Intra segment Jump Inter segment Jump

(Jump within the segment) (Jump to a different segment)

Operands
Short label

Near label
Far label «—— Inter Segment Jump
Memptrl6
Regptrl6
memptr32 <— Inter Segment Jump

59

Conditional Jump

'\No
condition

Part 1

Jcc AA

Part 2

» XXXX

7

YES

\ 4

Part 3
AA XXXX

<« Conditional Jump

Skipped part

«<— Next instruction

60

Conditional Jump instructions

Conditional Jump instructions in 8086 are just 2 bytes long. 1-byte
opcode followed by 1-byte signed displacement (range of -128 to
+127).

Conditional Jump Instructions

Jumps based on Jumps based on
a single flag more than one flag

61

Conditional Jump Instructions

Mnemonic : Jcc

Meaning : Conditional Jump

Format : Jcc operand

Operation : If condition is true jump to the address specified by operand.

Otherwise the next instruction is executed.

Flags affected : None

62

TYPES

Mnemonic meaning condition
JA Above CF=0 or ZF=0
JAE Above or Equal CF=0
JB Below CF=1
JBE Below or Equal CF=1or ZF=1
JC Carry CF=1
JCXZ CX register is Zero [CF or ZF]=0
JE Equal ZF=1
JG Greater ZF=0 and SF=0F
JGE Greater or Equal Neither SF=0 nor OF=0
JL Less Neither SF=1 nor OF=1

Mnemonic

meaning

condition

JLE Less or Equal ZF=1 or neither SF nor OF is 1
JNA Not Above CF =1or Zf=1

JNAE Not Above nor Equal [CF=1

JNB Not Below CF=0

JNBE Not Below nor Equal [CF=0and ZF =0

JNC Not Carry CF=0

JNE Not Equal ZF=0

JNG Not Greater [[SF XOR OF] or ZF]=1

JNGE Not Greater nor Equal | Neither SF=1 nor OF=1

JNL Not Less Neither SF=0 nor OF=0

64

Mnemonic meaning condition

JNLE Not Less nor Equal ZF = 0 or both SF and OF are not
0

JNO Not Overflow OF=0

JNP Not Parity PF=0

JNZ Not Zero ZF=0

JNS Not Sign SF =

JO Overflow OF =

JP Parity PF =

JPE Parity Even PF =

JPO Parity Odd PF =

JS Sign SF =

JZ Zero ZF =

65

Jumps Based on a single flag

JZ r8 ;Jump if zero flag set to 1 (Jump if result is zero)

JNZ r8 ;Jump if Not Zero (Z flag = O i.e. result is nonzero)

JS r8 ;Jump if Sign flag set to 1 (result is negative)

JNS r8 ;Jump if Not Sign (result is positive)

JC r8 ;Jump if Carry flag setto 1

JNC r8 ;Jump if No Carry ggs;z iinnxcj:ufﬁr;%
JP r8 ;Jump if Parity flag set to 1 (Parity is even)

JNP 8 ;Jump if No Parity (Parity is odd)

JO r8 ;Jump if Overflow flag set to 1 (result is wrong)

JNO 8 ;Jump if No Overflow (result is correct)

66

JZ r8 ; JE (Jump if Equal) also means same.

JNZ r8 ; INE (Jump if Not Equal) also means same.

JC r8;JB (Jump if below) and JNAE (Jump if Not Above
or Equal) also mean same.

JNC r8 ;JAE (Jump if Above or Equal) and JNB (Jump if
Not Above) also mean same.

JZ,JINZ, JC and JNC used after arithmetic operation

JE, JNE, JB, JNAE, JAE and JNB are used after a
compare operation.

JP r8 ; JPE (Jump if Parity Even) also means same.

JNP r8 ; JPO (Jump if Parity Odd) also means same.

67

Examples for JE or JZ instruction

Ex. for forward jump (Only examples for JE given)

Should be
<=127
bytes

SAME:

CMP SlI, DI

JE SAME

ADD CX, DX

SUB BX, AX

‘Executed if Z=0

(if SI not equal to DI)

‘ExecutedifZ=1
(if SI = DI)

68

Examples for JE or JZ instruction

Ex. for backward jump

Should be

<=128
bytes

. BACK:

SUB BX, AX

CMP SI, DI

JE BACK

ADD CX, DX

rexecutedifZ=1
(if SI = DI)

;executedif Z=0
(if SI not equal to DI)

69

Jumping beyond -128 to +1277

Requirement Then do this!

CMP SlI, DI CMP SlI, DI

JE SAME JNE NEXT
What if ¢ ADD CX, DX JMP SAME
;;tze; NEXT: | ADD CX, DX

SAME: | SUB BX, AX

SAME: | SUB BX, AX

\

Range for JIMP (unconditional jump) can be +21> = + 32K JMP instruction
discussed in detail later

Jerms used in comparison

Above and Below used for comparing Unsigned nos.
Greater than and less than used with signed numbers.
All Intel microprocessors use this convention.

95H is above 65H Unsigned comparison - True
95H is less than 65H Signed comparison - True
95H is negative, 65H is positive

65H is below 95H Unsigned comparison - True
65H is greater than 95H Signed comparison - True

4l

Jump on multiple flags

Conditional Jumps based on more than one flag are used after a CMP
(compare) instruction.

JBE or Jump if Below or Equal
JNA Jump if Not Above
Jump if No Jump if EX.
Cy=10RZ=1 Cy=0AND Z=0 CMP BX, CX
Below OR Equal Surely Above JBE BX_BE

BX_ BE (BX is Below or Equal) is a symbolic location
72

Jump on multiple flags contd.

JNBE or Jump if Not (Below or Equal)
JA Jump if Above
Jump if No Jump if EX.
Cy=0AND Z=0 Cy=10RZ=1 CMP BX, CX
Surely Above Below OR Equal JA BXabove

BXabove (BX is above) is a symbolic location

73

Jump on multiple flags contd

JLE or Jump if Less than OR Equal
ING Jump if Not Greater than
Jump if No Jump if
S=1ANDV=0 S=0ANDV=0
(surely negative) (surely positive)
OR(S=0ANDV=1) OR(S=1ANDV=1)
(wrong answer positive!) (wrong answer negative!)
OR Z =1 (equal) AND Z = 0 (not equal)
.,e.SXORV=10RZ=1 .,e. SXORV=0ANDZ=0

74

Jump on multiple flags contd.

JNLE or Jump if Not (Less than OR Equal)
JG Jump if Greater than
Jump if No Jump if
S=0ANDV =0 S=1ANDV=0
(surely positive) (surely negative)
OR(S=1ANDV=1) OR(S=0ANDV=1)
(wrong answer negative!) (wrong answer positive!)
AND Z = 0 (not equal) OR Z =1 (equal)

.,e. SXORV=0ANDZ=0 .,e. SXORV=10RZ=1

75

Jump on multiple flags conta.

JLor Jump if Less than
JNGE Jump if Not (Greater than OR Equal)
Jump if No Jump if

S=1ANDV=0
(surely negative)
OR(S=0ANDV=1)
(wrong answer positive!)

.,e. SXORV =1
When S = 1, result cannot be O

S=0ANDV=0
(surely positive)
OR(S=1ANDV=1)
(wrong answer negative!)

.,e. SXORV =0
When S = 0, result can be 0

76

Jump on multiple flags conta.

JNL or Jump if Not Less than
JGE Jump if Greater than OR Equal
Jump if No Jump if

S=0ANDV=0
(surely positive)
OR(S=1ANDV=1)
(wrong answer negative!)

.e. SXORV =0
When S =0, result can be O

S=1ANDV=0
(surely negative)
OR(S=0ANDV=1)
(wrong answer positive!)

.,e. SXORV =1
When S = 1, result cannot be O

77

Near Jurp

Near Jum
l P ﬁ

Direct Jump Indirect Jump

| (common) (uncommon)
Short Jump Long Jump

2 bytes 3 bytes 2 or.more. bytes
Starting with FFH
EB r8 E9rl6 Range: complete
segment
range + 2/ range +21°

3 Near Jump and 2 Far Jump instructions have the same mnemonic
JMP but different opcodes

78

Short Jump

2 byte (EB r8) instruction Range: -128 to +127 bytes

Backward jump: Assembler knows the quantum of jump.
Generates Short Jump code if <=128 bytes is the required jump
Generates code for Long Jump if >128 bytes is the required jump

Forward jump: Assembler doesn’'t know jump quantum in pass 1.
Assembler reserves 3 bytes for the forward jump instruction.

If jump distance turns out to be >128 bytes, the instruction is
coded as E9 r16 (E9H = Long jump code).

If jump distance becomes <=128 bytes, the instruction is coded as
EB r8 followed by code for NOP (E8H = Short jump code).

79

Short Jump contd.

SHORT Assembler Directive

Assembler generates only 2 byte Short Jump code for forward jump, if the

SHORT assembler directive is used.

Programmer should ensure that the
Jump distance is <=127 bytes

A

SAME:

JMP SHORT

SAME

MOV CX, DX

80

Long Jump

3-byte (E9 r16) instruction Range: -32768 to +32767 bytes

Long Jump can cover entire 64K bytes of Code segment
CS:0000H

Long Jump can CS:8000H JMP FRWD
handle it as jump ' :

guantum is <=32767
\

FRWD = CS:FFFFH

Long Jump contd.

It can cover entire 64K bytes of Code segment

Long Jump can
handle it as jump
guantum is
<=32768

(

BKWD = CS:0000H

CS:8000H

CS:FFFFH

JMP BKWD

82

Long Jump or Short Jump?

Can be treated
as a small
(20H) backward
branch!

FRWD=

CS:0000H

CS:000DH
CS:0010H

CS:FFFOH
CS:FFFFH

JMP FRWD

Jump distance
=FFEOH. Too
very long

forward jump

83

Long Jump or Short Jump?

Can be treated
as a small
(20H) forward
branch!

CS:0000H

BKWD\: CS:0010H

=

CS:FFFOH
CS:FFFFH

JMP BKWD

Jump distance
=FFEOH. Too
very long

‘backward jump

84

Intra segment indirect Jump

Near Indirect Jump is uncommon.
Instruction length: 2 or more bytes
Range: complete segment

Ex.1: JMP DX

If DX = 1234H, branches to CS:1234H
1234H is not signed relative displacement

Ex. 2: IMP wordptr 2000H[BX]

BX | 1234H DS:3234H | 567/8H

DS:3236H | AB22H

Branches to

CS:5678H

85

Far Jump

Far Jump

l

Direct Jump
(common)

5 bytes
EA,2 byte offset, 2 byte segment

Range: anywhere

S

Indirect Jump
(uncommon)

2 or more bytes
Starting with FFH
Range: anywhere

3 Near Jump and 2 Far Jump instructions have the same mnemonic

JMP but different opcodes

86

Inter segrment Direct Jump

Also called Far Direct Jump
It is the common inter segment jump scheme

It is a 5 byte instruction
1 byte opcode (EAH)

2 byte offset value

2 byte segment value

Ex. JMP Far ptr LOC

87

Inter segment Indirect Jump

Instruction length depends on the way jump location is
specified
It can be a minimum of 2 bytes

Ex. JIMP DWORD PTR 2000H[BX]

88

Inter segment Indirect Jump

Also called Far Indirect Jump

It is not commonly used

Instruction length is a minimum of 2 bytes.
It depends on the way jump location is specified
Ex. JIMP DWORD PTR 2000H[BX]

BX| 1234H

DS:3234H| 5678H

DS:3236H| ABCDH

Branches to
ABCDH:5678H

It is a 4-byte instruction

89

Machine control instructions

HLT instruction — HALT processing

the HLT instruction will cause the 8086 to stop fetching and executing
instructions. The 8086 will enter a halt state. The only way to get the processor
out of the halt state are with an interrupt signal on the INTR pin or an interrupt
signal on NMI pin or a reset signal on the RESET input.

NOP instruction

this instruction simply takes up three clock cycles and does no
processing. After this, it will execute the next instruction. This instruction is
normally used to provide delays in between instructions.

ESC instruction

whenever this instruction executes, the microprocessor does NOP or
access a data from memory for coprocessor. This instruction passes the
information to 8087 math processor. Six bits of ESC instruction provide the
opcode to coprocessor.

when 8086 fetches instruction bytes, co-processor also picks up these
bytes and puts in its queue. The co-processor will treat normal 8086
instructions as NOP. Floating point instructions are executed by 8087 and
during this 8086 will be in WAIT.

90

Machine control instructions contd

LOCK instruction

this is a prefix to an instruction. This prefix makes sure that during
execution of the instruction, control of system bus is not taken by other
microprocessor.

In multiprocessor systems, individual microprocessors are connected
together by a system bus. This Is to share the common resources. Each
processor will take control of this bus only when it needs to use common
resource.

the lock prefix will ensure that in the middle of an instruction, system
bus is not taken by other processors. This is achieved by hardware signal
‘LOCK’ available on one of the CPU pin. This signal will be made active
during this instruction and it is used by the bus control logic to prevent
others from taking the bus.

~once this instruction is completed, lock signal becomes inactive and
microprocessors can take the system bus.

WAIT instruction

this instruction takes 8086 to an idle condition. The CPU will not do
any processing during this. It will continue to be in idle state until TEST pin
of 8086 becomes low or an interrupt signal is received on INTR or NMI. On
valid interrupt, ISR is executed and processor enters the idle state again.

91

End of Unit I

Unit [l

1/0O Interface
Interfacing with Advanced devices
Communication Interface

1/0O Interface

8255 PPI

8255

DAC and ADC Converters

DAC and ADC:

™

M3L8 8255 ADC & DAC.pdf

Stepper Motor and 8257:

Microsoft Office
Word Document

Interfacing with Advanced
Devices

Memory Interfacing to 8086:

&

D:\College\
MP & MQ\2017-1¢

Interrupts:

Microsoft Office
werPoint Presentat

8259:

Microsoft Office
Word Document

Serial Communication Interface

Microsoft Office
Word Document

PIO 8255 (cont..)

e The parallel input-output port chip 8255 isalso called as
programmable peripheral input-output port. The Intel’s
8255 is designed for use with Intel’ s 8-bit, 16-bit and
higher capability microprocessors. It has 24 input/output
lines which may be individually programmed in two
groups of twelve lines each, or three groups of eight lines.
The two groups of /O pins are named as Group A and
Group B. Each of these two groups contains a subgroup of
eight 1/O lines called as 8-bit port and another subgroup of
four lines or a4-bit port. Thus Group A contains an 8-bit
port A along with a 4-bit port. C upper.

M Krishna kumar MAM/M3/LU9¢e/V 1/2004

PIO 8255 (cont..)

e Theport A lines are identified by symbols PA ,-PA- while
the port C lines are identified as PC,-PC.. Similarly, Group
B contains an 8-bit port B, containing lines PB,-PB-, and a
4-pbit port C with lower bits PC,- PC,. The port C upper
and port C lower can be used in combination as an 8-bit
port C.

e Both the port C are assigned the same address. Thus one
may have either three 8-bit 1/O ports or two 8-bit and two
4-bit ports from 8255. All of these ports can function
Independently either as input or as output ports. This can
be achieved by programming the bits of an internal register
of 8255 called as control word register (CWR).

M Krishna kumar MAM/M3/LU9¢e/V 1/2004 2

PIO 8255 (cont..)

 Theinternal block diagram and the pin configuration of
8255 are shown in fig.

e The 8-bit data bus buffer is controlled by the read/write
control logic. The read/write control logic manages all of
the internal and external transfers of both data and control
words.

« RD, WR, A, A,and RESET are the inputs provided by the
microprocessor to the READ/ WRITE control logic of
8255. The 8-hit, 3-state bidirectional buffer is used to

Interface the 8255 interna data bus with the external
system data bus.

M Krishna kumar MAM/M3/LU9¢e/V 1/2004 3

PIO 8255 (cont..)

e Thisbuffer receives or transmits data upon the execution
of Input or output instructions by the microprocessor. The
control words or status information is also transferred
through the buffer.

e Thesignal description of 8255 are briefly presented as
follows:

 PA-PA, Theseare eight port A lines that acts as either
latched output or buffered input lines depending upon the
control word loaded into the control word register.

 PC_-PC, : Upper nibble of port C lines. They may act as
either output latches or input buffers lines.

M Krishna kumar MAM/M3/LU9¢e/V 1/2004

PIO 8255 (cont..)

e This port also can be used for generation of handshake
lines in mode 1 or mode 2.

o PC,;-PC,: These are the lower port C lines, other details
are the same as PC,-PC, lines.

 PB,-PB-: These arethe eight port B lines which are used
as latched output lines or buffered input lines in the same
way as port A.

* RD: Thisistheinput line driven by the microprocessor
and should be low to indicate read operation to 8255.

« WR: Thisisan input line driven by the microprocessor. A
low on this line indicates write operation.

M Krishna kumar MAM/M3/LU9¢e/V 1/2004

PIO 8255 (cont..)

e CS: Thisisachip select line. If thisline goeslow, it
enables the 8255 to respond to RD and WR signals,
otherwise RD and WR signal are neglected.

* A;-A,: These are the address input lines and are driven by
the microprocessor. These lines A;-A, with RD, WR and
CS from the following operations for 8255. These address
lines are used for addressing any one of the four registers,
;agl three ports and a control word register as given in table

ow.

* In case of 8086 systems, if the 8255 isto be interfaced
with lower order data bus, the A, and A, pins of 8255 are
connected with A, and A, respectively.

M Krishna kumar MAM/M3/LU9¢e/V 1/2004 6

RD WR cS A, A, Input (Read) cycle
0 1 0 0 0 Port A to Data busg
0 1 0 0) 1 Port B to Data bus
0 1 0 1 0 Port C to Data bug
0 1 0 1 1 CWR to Data bus

RD WR cS A, A, Output (Write) cycle
1 0 0 0) 0 Data busto Port A
1 0 0 0) 1 Data busto Port B
1 0 0 1 0 Data busto Port C
1 0 0 1 1 Data busto CWR

RD WR cS A, A, Function
X X 1 X X Data bustristated
1 1 0 X X Data bustristated

M Krishna kumar

Control Word Register

MAM/M3/LU9e/V 1/2004

PO 8255.

e D,-D-: These are the data bus lines those carry data or
control word to/from the microprocessor.

e RESET : A logic high on this line clears the control word
register of 8255. All ports are set as input ports by default
after reset.

M Krishna kumar MAM/M3/LU9¢e/V 1/2004

Block Diagram of 8255 (Architecture)
(cont..)

It has a 40 pins of 4 groups.
Data bus buffer

Read Write control logic
Group A and Group B controls
Port A, Band C

Data bus buffer: Thisis atristate bidirectional buffer
used to interface the 8255 to system databus. Datais
transmitted or received by the buffer on execution of
Input or output instruction by the CPU.

. Control word and status information are also transferred
through this unit.

it b o e N e R

M Krishna kumar MAM/M3/LU9¢e/V 1/2004

Block Diagram of 8255 (Architecture)
(cont..)

 Read/Write control logic: This unit accepts control
signals (RD, WR) and also inputs from address bus and
Issues commands to individual group of control blocks
(Group A, Group B).

|t hasthefollowing pins.

a) CS-—Chipsdect: A low onthis PIN enables the
communication between CPU and 8255.

b) RD (Read)— A low on this pin enables the CPU to read
the data in the ports or the status word through data bus
buffer.

M Krishna kumar MAM/M3/LU9e/V 1/2004 10

Block Diagram of 8255 (Architecture)
(cont..)

c) WR (Write) : A low on this pin, the CPU can write
data on to the ports or on to the control register through
the data bus buffer.

d) RESET: A high on this pin clears the control register
and all ports are set to the input mode

e) Ayand A, (Addresspins): These pinsin conjunction
with RD and WR pins control the selection of one of the
3 ports.

e Group A and Group B controls: These block receive
control from the CPU and issues commands to their
respective ports.

M Krishna kumar MAM/M3/LU9e/V 1/2004 11

Block Diagram of 8255 (Architecture)
(cont..)

e Group A - PA and PCU (PC,—PC,)

 GroupB - PCL (PC;—PC))

e Control word register can only be written into no read
operation of the CW register is allowed.

« a)Port A: Thishas an 8 bit latched/buffered O/P and 8
bit input latch. It can be programmed in 3 modes — mode O,
mode 1, mode 2.

b) Port B: This has an 8 bit latched / buffered O/P and 8
bit input latch. It can be programmed in mode O, model.

M Krishna kumar MAM/M3/LU9e/V 1/2004 12

Block Diagram of 8255 (Architecture).

c) Port C : Thishas an 8 bit latched input buffer and 8 bit
out put latched/buffer. This port can be divided into two 4
bit ports and can be used as control signals for port A and

port B. it can be programmed in mode O.

M Krishna kumar MAM/M3/LU9e/V 1/2004 13

Modes of Operation of 8255 (cont..)

e These are two basic modes of operation of 8255. |/0O mode
and Bit Set-Reset mode (BSR).

* In1/O mode, the 8255 ports work as programmable 1/O
ports, while in BSR mode only port C (PC,-PC-) can be
used to set or reset itsindividual port bits.

e Under the I/O mode of operation, further there are three
modes of operation of 8255, so as to support different
types of applications, mode O, mode 1 and mode 2.

M Krishna kumar MAM/M3/LU9e/V 1/2004 14

Modes of Operation of 8255 (cont..)

« BSR Mode: In this mode any of the 8-bits of port C can be
set or reset depending on D, of the control word. The bit to
be set or reset is selected by bit select flags D, D, and D,
of the CWR asgiven intable.

e |/OModes:

a) Mode O (Basic /0O mode): Thismode isalso called as
basi ¢ input/output mode. This mode provides ssimple input
and output capabilities using each of the three ports. Data
can be simply read from and written to the input and output
ports respectively, after appropriate initialisation.

M Krishna kumar MAM/M3/LU9e/V 1/2004 15

w

N
O
[EEN

Selected bitsof port C

PR RPROOOCO| O

N P O

o b

PRPROORFROO| T
(o]

RPORFRPORFRPROERLO
A AT ATATAAY

\]

M Krishna kumar

BSR Mode: CWR Format

MAM/M3/LU9e/V /2004

16

PAG6 — PA7Y
» PC4-PCY7/

——» PCO-PC3

— > PBO-PB7

PA
8 PC
2
S PCL
5

PB
All Output

M Krishna kumar

ModeO

MAM/M3/LU9e/V /2004

PA PA
8 PCU——
2 PC
5 PCL—
5
PB|—+PB,—PB,

Port A and Port C acting as
O/P. Port B acting as | /P

17

Modes of Operation of 8255 (cont..)

. The salient features of this mode are as listed below:

1. Two 8-hit ports (port A and port B)and two 4-bit ports
(port C upper and lower) are available. The two 4-bit
ports can be combinedly used as athird 8-bit port.

2. Any port can be used as an input or output port.
Output ports are latched. Input ports are not latched.

4. A maximum of four ports are available so that overall 16
|/O configuration are possible.

« All these modes can be selected by programming a
register internal to 8255 known as CWR.

W

M Krishna kumar MAM/M3/LU9e/V 1/2004 18

Modes of Operation of 8255 (cont..)

« The control word register has two formats. The first format
Isvalid for 1/0O modes of operation, i.e. modes 0, mode 1
and mode 2 while the second format is valid for bit
set/reset (BSR) mode of operation. These formats are
snown in following fig.

D, Det it De oDyt By e D50 Dy o By
1 X X X
0- Reset
O-for BSR mode Bit select flags 1- Set

D,, D,, D, arefrom 000 to 111 for bits PC, TO PC,

/O Mode Control Word Register Format and
BSR Mode Control Word Register Format

M Krishna kumar MAM/M3/LU9e/V 1/2004 19

PA;—1 40— pa,
PA,— o 39— PA,
PA;—3 38— PA,
i 4 37
RD—5 36— WR
CS—6 35— Reset
GR'D— 7 gvg e Bo
e eI
Ao — S 32— D,
PC, | [t
PC, _1(1) 8255A 35| Bj
PCs—15 29— D,
PC,—13 28— D,
PC,—14 27— D,
PC, —15 26— Vcc
PC,—i16 25— PB,
PC;—17 24— PB,
PBy —18 23— PB,
PB; —19 22— pB,
PB, —20 21— pp,

8255A Pin Configuration

M Krishna kumar

MAM/M3/LU9e/V /2004

20

< >PAsPA
DD — > T
CS - <> PC,-PC,
RESER 2 & &
255A
8255 "> PCyPC,
AO
A < >PByPB,
RD .
Vcce
e ; GND
Signals of 8255

M Krishna kumar MAM/M3/LU9e/V 1/2004

21

o,

Data bus
Buffer

A 4

A

@

"RD—s
WR —»

Ayg—
Al —

RESETF—

READ/

WRITE
Control

Logic

CS

A

M Krishna kumar

A 4

@ v @ PA-PA.
Group A -— Group A @
control Port A(8) |«
J Group A PC.-P
i Port C C—>
8 bit int data bus) upper(4) |
Group B : PC%'P
(—J PortC
Lower(4) [
PB--P
GrouplB ¢ Group B <:7>
contro — Port B(8) L.

Block Diagram of 8255

MAM/M3/LU9e/V /2004

22

D, Dg D D, D, D, D, D,
Mode for PA PC U Mode PB PC L
| Port A for PB
M cgge Set flag
1- actiye
0- BSR mode
Group - A Group - B
PCu LInput PCL 1 Input
0 Output >
L 0 Output
1 Input p 1 Input
L PA 0Output | ' ; b
M ode 00 —mode 0 0 Output
Solect 01-mode 1 ; Mode 0 mode- 0
of PA 10 —mode 2 Select 1 mode- 1

Control Word For mat of 8255

M Krishna kumar MAM/M3/LU9e/V 1/2004

23

Modes of Operation of 8255 (cont..)

b) Mode 1. (Strobed input/output mode) In this mode the
handshaking control the input and output action of the
specified port. Port C lines PC,-PC,, provide strobe or
handshake lines for port B. This group which includes port
B and PC,-PC, is called as group B for Strobed data
Input/output. Port C lines PC,-PC. provide strobe lines for
port A. Thisgroup including port A and PC,-PC. from
group A. Thus port C is utilized for generating handshake
signals. The salient features of mode 1 are listed as
follows:

M Krishna kumar MAM/M3/LU9e/V 1/2004 24

Modes of Operation of 8255 (cont..)

1. Two groups—group A and group B are available for
strobed data transfer.

2. Each group contains one 8-bit data I/O port and one 4-bit
control/data port.

3. The 8-bit data port can be either used as input and output
port. The inputs and outputs both are latched.

4. Out of 8-hbit port C, PC,-PC, are used to generate control
signals for port B and PC,;-PC. are used to generate
control signalsfor port A. the lines PC,, PC, may be
used as independent data lines.

M Krishna kumar MAM/M3/LU9e/V 1/2004 25

Modes of Operation of 8255 (cont..)

* The control signals for both the groups in input and output
modes are explained as follows:

| nput control signal definitions (mode 1):

e STB(Strobeinput) — If thislinesfalsto logic low level,
the data available at 8-bit input port isloaded into input
|atches.

o |IBF (Input buffer full) —If thissignal risesto logic 1, it
Indicates that data has been loaded into latches, 1.e. it
works as an acknowledgement. IBF isset by alow on STB
and is reset by the rising edge of RD input.

M Krishna kumar MAM/M3/LU9e/V 1/2004 26

Modes of Operation of 8255 (cont..)

 INTR (Interrupt request) — This active high output signal
can be used to interrupt the CPU whenever an input device
requests the service. INTR isset by ahigh STB pinand a
high at IBF pin. INTE isan internal flag that can be
controlled by the bit set/reset mode of either PC,(INTE,)
or PC,(INTER) as shown in fig.

 INTRIsreset by afalling edge of RD input. Thus an
external input device can be request the service of the
processor by putting the data on the bus and sending the
strobe signal.

M Krishna kumar MAM/M3/LU9e/V 1/2004 27

Modes of Operation of 8255 (cont..)

Output control signal definitions (mode 1) :

e OBF (Output buffer full) — This status signal, whenever
fallsto low, indicates that CPU has written data to the
specified output port. The OBF flip-flop will be set by a
rising edge of WR signal and reset by alow going edge at
the ACK Input.

« ACK (Acknowledgeinput) — ACK signal actsas an
acknowledgement to be given by an output device. ACK
signal, whenever low, informs the CPU that the data
transferred by the CPU to the output device through the
port is received by the output device.

M Krishna kumar MAM/M3/LU9e/V 1/2004 28

Modes of Operation of 8255 (cont..)

 INTR (Interrupt request) — Thus an output signal that can
be used to interrupt the CPU when an output device
acknowledges the data received from the CPU. INTR is set
when ACK, OBF and INTE are 1. It isreset by afalling
edge on WR input. The INTEA and INTEB flags are
controlled by the bit set-reset mode of PC; and PC,
respectively.

M Krishna kumar MAM/M3/LU9e/V 1/2004 29

| nput control signal definitionsin

Mode 1

10 |1

0

1/0

X[XX

DD 0 D, DD D Dy

INTE,

1 - Input
0 - Qutput
For PC,—-PC,
PA,— pal/ PB,—PB; {
PC}— stB, [NIE PC,|»STB,
' PC+—TBF, ! PC1+—1BF,
"PCo—INTR
{PCs—INTR, St
PC,—PCk—|/0
RD

Mode 1 Control Word Group A

/P

M Krishna kumar

Mode 1 Control Word Group B
/P

MAM/M3/LU9e/V /2004 30

STB

|BF

INTR

RD

DATA from

Peripherat —— -

M Krishna kumar

Mode 1 Strobed Input Data Transfer

MAM/M3/LU9e/V /2004

3k

OBF

INTR

ACK

Data OP to

/.

Port

M Krishna kumar

Mode 1 Strobed Data Output

MAM/M3/LU9e/V /2004

32

Output control signal definitions Mode 1

110 |10 |[/O0/X |X X 1| X [X|X | X]1]0 X
D, by Ds D, D; D, D; D, D, by Ds D, D; D, D; D,
1 - Input
0 - Qutput
For PC,—PC.
PA,— PAl PB, —
PB,
INTE, PCl— opg | INTEg PC,|—+OBF,
T PCe—ACK, T PC,[~—ACK,
PC,—
PCs—>INTR, o TINTR,
WR—» PC,—PCg—/0
Mode 1 Control Word Group A Mode 1 Control Word Group B

M Krishna kumar MAM/M3/LU9e/V 1/2004 33

Modes of Operation of 8255 (cont..)

« Mode 2 (Strobed bidirectional 1/O): This mode of
operation of 8255 is also called as strobed bidirectional
1/0O. This mode of operation provides 8255 with an
additional features for communicating with a peripheral
device on an 8-bit data bus. Handshaking signals are
provided to maintain proper data flow and synchronization
between the data transmitter and receiver. The interrupt
generation and other functions are similar to mode 1.

* In thismode, 8255 is abidirectional 8-bit port with
handshake signals. The RD and WR signals decide
whether the 8255 is going to operate as an input port or
output port.

M Krishna kumar MAM/M3/LU9e/V 1/2004 34

Modes of Operation of 8255 (cont..)

. The Salient features of Mode 2 of 8255 are listed as
follows:

1. Thesingle 8-bit port in group A isavailable.

2. The8-bit port isbidirectional and additionally a 5-bit
control port isavailable.

3. Threel/Olinesare available at port C.(PC, — PC,)
4. Inputs and outputs are both latched.

5. The5-bit control port C (PC,;-PC,) is used for
generating / accepting handshake signals for the 8-bit
data transfer on port A.

M Krishna kumar MAM/M3/LU9e/V 1/2004 35

Modes of Operation of 8255 (cont..)

e Control signal definitionsin mode 2:

e INTR — (Interrupt request) Asin mode 1, this control
signal is active high and is used to interrupt the
microprocessor to ask for transfer of the next data byte
to/from it. Thissignal is used for input (read) aswell as
output (write) operations.

o Control Signalsfor Output operations:

 OBF (Output buffer full) — Thissignal, when falls to low
level, indicates that the CPU has written data to port A.

M Krishna kumar MAM/M3/LU9e/V 1/2004 36

Modes of Operation of 8255 (cont..)

e ACK (Acknowledge) This control input, when fallsto
logic low level, acknowledges that the previous data byte
IS received by the destination and next byte may be sent by
the processor. This signal enables the internal tristate
buffers to send the next data byte on port A.

« INTEL (A flag associated with OBF) This can be
controlled by bit set/reset mode with PC,.

e Control signalsfor input operations :

o STB (Strobeinput) A low onthislineis used to strobe in
the data into the input latches of 8255.

M Krishna kumar MAM/M3/LU9e/V 1/2004 37

Modes of Operation of 8255 (cont..)

e |IBF (Input buffer full) When the data is |loaded into input
buffer, thissignal risesto logic ‘1. This can be used as an
acknowledge that the data has been received by the
receiver.

« Thewaveformsin fig show the operation in Mode 2 for
output as well as input port.

 Note: WR must occur before ACK and STB must be
activated before RD.

M Krishna kumar MAM/M3/LU9e/V 1/2004 38

WR

OBF

INTR

N\

/

Mode 2 Bidirectional Data Transfer

M Krishna kumar MAM/M3/LU9e/V 1/2004 39

Modes of Operation of 8255 (cont..)

« Thefollowing fig shows a schematic diagram containing
an 8-bit bidirectional port, 5-bit control port and the
relation of INTR with the control pins. Port B can either be
set to Mode O or 1 with port A(Group A) isin Mode 2.

 Mode 2 isnot available for port B. The following fig
shows the control word.

e TheINTR goeshigh only if either IBF, INTE2, STB and
RD go high or OBF, INTE1, ACK and WR go high. The
port C can be read to know the status of the peripheral
device, in terms of the control signals, using the normal
|/O Instructions.

M Krishna kumar MAM/M3/LU9e/V 1/2004 40

D7 D6 D5 D4 D3 D2 Dl DO
1 1 X X X (210 | 170 | 1/0
| _ | A A
1/0 mode Port B mode
0-mode 0
Port A 1- mode 1 szl_ PCo
de 2 - Input
o 0 - Qutput
Port B
1- 1/P
0-O/P

M ode 2 control word

M Krishna kumar

MAM/M3/LU9e/V /2004

41

PC,

) PC,
« INTE 1 PC,
L«—JINTE2 PC,
RD —)
) PC.
WR—
Mode 2 pins

M Krishna kumar MAM/M3/LU9e/V 1/2004

*INTR

42

Interfacing Analog to Digital Data
Converters

e Inmost of the cases, the PIO 8255 is used for interfacing
the analog to digital converters with microprocessor.

« We have already studied 8255 interfacing with 8086 as an
|/O port, in previous section. This section we will only
emphasize the interfacing techniques of analog to digital
converters with 8255.

e Theanalog to digital convertersistreaded as an input
device by the microprocessor, that sends an initialising
signal to the ADC to start the analogy to digital data
conversation process. The start of conversation signal isa
pulse of a specific duration.

M Krishhna Kumar MAM/M3/LU9g/V 1/2004

Interfacing Analog to Digital Data
Converters (cont..)

e The process of analog to digital conversion isaslow
process, and the microprocessor has to wait for the digital
datatill the conversion is over. After the conversionis
over, the ADC sends end of conversion EOC signal to
Inform the microprocessor that the conversion is over and
the result isready at the output buffer of the ADC. These
tasks of issuing an SOC pulseto ADC, reading EOC signal
from the ADC and reading the digital output of the ADC
are carried out by the CPU using 8255 1/O ports.

M Krishhna Kumar MAM/M3/LU9g/V 1/2004 2

Interfacing Analog to Digital Data
Converters (cont..)

e Thetime taken by the ADC from the active edge of SOC
pulse till the active edge of EOC signal is called as the
conversion delay of the ADC.

It may range any where from afew microseconds in case
of fast ADC to even afew hundred milliseconds in case of
slow ADCs.

e Theavailable ADC in the market use different conversion
technigques for conversion of analog signal to digitals.
Successive approximation techniques and dual slope
Integration techniques are the most popular techniques
used in the integrated ADC chip.

M Krishhna Kumar MAM/M3/LU9g/V 1/2004

Interfacing Analog to Digital Data
Converters (cont..)

e Genera agorithm for ADC interfacing contains the
following steps:

Ensure the stability of analog input, applied to the ADC.
|ssue start of conversion pulseto ADC

Read end of conversion signal to mark the end of
CONVersion processes.

4. Read digital data output of the ADC as equivalent digital
output.

M Krishhna Kumar MAM/M3/LU9g/V 1/2004

Interfacing Analog to Digital Data
Converters (cont..)

« Anaog input voltage must be constant at the input of the
ADC right from the start of conversion till the end of the
conversion to get correct results. This may be ensured by a
sample and hold circuit which samples the analog signal
and holds it constant for a specific time duration. The

microprocessor may issue a hold signal to the sample and
hold circuit.

 If the applied input changes before the compl ete
conversion process is over, the digital equivalent of the
analog input calculated by the ADC may not be correct.

M Krishhna Kumar MAM/M3/LU9g/V 1/2004 5

Interfacing Analog to Digital Data
Converters (cont..)

ADC 0808/0809 :

 Theanaogtodigital converter chips 0808 and 0809 are 8-
bit CMOS, successive approximation converters. This
technigue is one of the fast techniques for analog to digital
conversion. The conversion delay is 100us at a clock
frequency of 640 KHz, which is quite low as compared to
other converters. These converters do not need any
external zero or full scale adjustments as they are already
taken care of by internal circuits. These converters
Internally have a 3:8 analog multiplexer so that at atime
eight different analog conversion by using address lines -

M Krishhna Kumar MAM/M3/LU9g/V 1/2004

Interfacing Analog to Digital Data
Converters (cont..)

ADD A, ADD B, ADD C. Using these address inputs,
multichannel data acquisition system can be designed
using asingle ADC. The CPU may drive these lines using
output port lines in case of multichannel applications. In
case of single input applications, these may be hardwired
to select the proper input.

e There are unipolar analog to digital converters, i.e. they are
able to convert only positive analog input voltage to their
digital equivalent. These chips do no contain any internal
sample and hold circuit.

M Krishhna Kumar MAM/M3/LU9g/V 1/2004 7

M Krishhna Kumar

Analog I/P
selected

Addresslines

B

>

1 /Py
| /P4
1 /P
| /P
| /P4
| /Ps
| /Psg
| /P~

o o O O

T

O O

= O O

R O - O

R O B+~ O

Fig

MAM/M3/LU9g/\V/ 1/2004

Interfacing Analog to Digital Data
Converters (cont..)
 |If one needs a sample and hold circuit for the conversion

of fast signal into equivalent digital quantities, it hasto be
externally connected at each of the analog inputs.

e Vcc Supply pins +5V

e GND GND

o Vref + Reference voltage positive +5 Volts
maximum.

o Vref - Reference voltage negative OVolts
minimum.

M Krishhna Kumar MAM/M3/LU9g/V 1/2004

Interfacing Analog to Digital Data
Converters (cont..)

e |/P,—l/P; Analog inputs

« ADDAB,C Address lines for selecting analog
Inputs.

e O,-0, Digital 8-bit output with O, MSB and
O, LSB

« SOC Start of conversion signal pin

« EOC End of conversion signal pin

« OE Output latch enable pin, if high enables
output

« CLK Clock input for ADC

M Krishhna Kumar MAM/M3/LU9g/V 1/2004 10

I/P 3
1/P,4
I/P5

I/Pg

1I/P

M Krishhna Kumar

SOC

MAM/ME@@zom

11

> >

DC

DC

o—» SOC CLOCK
/P 0 I I
(_rm==d
/P 1 ’EQC
2 | C_on_trol an_d
/Py Timing unit
and S.A.R.
|/ P3 8 Channel
Analog L —
Multiplexer =
/P — | 8-bit
-bi
b o/pP Eeamp g T
Latch L5 3007
|/ PH 256 R 7 i)
5 Register [2%
|adder and
o » e Switch tree
1/Pg 1
it I I o/P
| /P 7 Enable
\ Vrwef+ Vref _
0B A

Address Lines

Block Diagram of ADC 0808 / 0809

M Krishhna Kumar MAM/M3/LU9g/V 1/2004 12

START

ALE

EOCC

OE

I e e T RS S SR S e g AR

Timing Diagram of ADC 0808

M Krishhna Kumar MAM/M3/LU9g/V 1/2004 13

Interfacing Analog to Digital Data
Converters (cont..)

« Example: Interfacing ADC 0808 with 8086 using 8255
ports. Use port A of 8255 for transferring digital data
output of ADC to the CPU and port C for control signals.
Assume that an analog input is present at /P, of the ADC
and a clock input of suitable frequency is available for
ADC.

 Solution: The analog input I/P, is used and therefore
address pins A,B,C should be 0,1,0 respectively to select
I/P,. The OE and ALE pins are already kept at +5V to
select the ADC and enable the outputs. Port C upper acts
as the input port to receive the EOC signal while port C
lower acts as the output port to send SOC to the ADC.

M Krishhna Kumar MAM/M3/LU9g/V 1/2004 14

Interfacing Analog to Digital Data
Converters (cont..)

* Port A actsasa8-bit input data port to receive the digital
data output from the ADC. The 8255 control word is
written as follows:

D.D,D:D,D;D, D, D,
10011000
 Therequired ALPisasfollows:
MOV AL, 98h Jinitialise 8255 as
OuUT CWR, AL ;discussed above.
MOV AL, 02h ,Select |/P, as analog
OUT Port B, AL ;input.

M Krishhna Kumar MAM/M3/LU9g/V 1/2004 15

Interfacing Analog to Digital Data

MOV
OuUT
MOV
OuUT
MOV
OuUT

WAIT: IN
RCR
JNC
IN

HLT

M Krishhna Kumar

Converters (cont..)

AL, O0Oh ;Glve start of conversion
Port C, AL ; pulsetothe ADC
AL, 01h
Port C, AL
AL, 00h
Port C, AL
AL, Port C ;Check for EOC by
, reading port C upper and
WAIT ;rotating through carry.
AL,PortA ;If E(l)_C read digital equivalent
N

; Stop.

MAM/M3/LU9g/V 1/2004 16

:

|ORD

|IOWR

8255

Vref +

Vref +

M Krishhna Kumar

MAM/M3/LU9g/\V/ 1/2004

B e
+5V =
+5V | Vce « Clock up
PA,—PA, < 0,-0,
« Analog
PC, |« EOC ADC /P
Voltage
PC, B > 0808 LY
OE GND [«
. ALE ol e
S A B C ey
PB,
PB,
PB,
Interfacing 0808 with 8086

17

Interfacing Digital To Analog
Converters (cont..)

INTERFACING DIGITAL TO ANALOG CONVERTERS. The
digital to analog converters convert binary number into
their equivalent voltages. The DAC find applicationsin
areas like digitally controlled gains, motors speed controls,
programmable gain amplifiers etc.

AD 7523 8-bit Multiplying DAC : Thisisa 16 pin DIP,
multiplying digital to analog converter, containing R-2R
ladder for D-A conversion along with single pole double

thrown NM OS switches to connect the digital inputs to the
ladder.

M Krishhna Kumar MAM/M3/LU9g/V 1/2004 18

OUT ; 1 16
OUT 2 15
GND 3 14
MSB B; 4 13
AD 7523

B, 5 12

Bs 6 11

B, 7 10

Bs 8 9

Pin Diagram of AD 7523

M Krishhna Kumar MAM/M3/LU9g/V 1/2004

Vref in

V +
NC

NC

19

Interfacing Analog to Digital Data
Converters (cont..) =

9 11

2R I:zl R7 R
- VO

Fig:

M Krishhna Kumar MAM/M3/LU9g/V 1/2004 20

Interfacing Digital To Analog
Converters (cont..)

e Thepin diagram of AD7523 is shown in fig the supply
range isfrom +5V to +15V, while Vref may be any where
between -10V to +10V. The maximum analog output
voltage will be any where between -10V to +10V, when all
the digital inputs are at logic high state.

o Usually azener is connected between OUT1 and OUT2 to
save the DAC from negative transients. An operational
amplifier is used as a current to voltage converter at the
output of AD to convert the current out put of AD to a
proportional output voltage.

M Krishhna Kumar MAM/M3/LU9g/V 1/2004 21

Interfacing Digital To Analog
Converters (cont..)

« |t aso offersadditional drive capability to the DAC output.
An external feedback resistor acts to control the gain. One
may not connect any external feedback resistor, if no gain
control is reguired.

« EXAMPLE: Interfacing DAC AD7523 with an 8086 CPU

running at 8MH., and write an assembly language program
to generate a sawtooth waveform of period 1ms with

Vmax 5V.

e Solution: Fig showsthe interfacing circuit of AD 74523
with 8086 using 8255. program gives an ALP to generate a
sawtooth waveform using circuit.

M Krishhna Kumar MAM/M3/LU9g/V 1/2004 22

ASSUME
CODE
START:

AGAIN:
BACK :

M Krishhna Kumar

Example (cont..)

CS.CODE

SEGMENT

MOV AL,80h ;make all ports output
OUT CW, AL

MOV AL,00h ,start voltage for ramp
OUT PA,AL

INC AL

CMP AL, OFFh

JB BACK

JMP AGAIN

CODE ENDS

END START

MAM/M3/LU9g/\V/ 1/2004

23

8255A

M Krishhna Kumar

~ VZ

+5V +10V
15 14
16
RFB
MSB | 4 3
E OUT1
LSB 2
11 OUT2
AD7523
GND
3

Fig: Interfacing of AD7523

MAM/M3/LU9g/\V/ 1/2004

24

Interfacing Analog to Digital Data
Converters (cont..)

 Inthe above program, port A isinitialized as the output
port for sending the digital data asinput to DAC. The ramp
starts from the OV (analog), hence AL starts with OOH. To
Increment the ramp, the content of AL isincreased during
each execution of loop till it reaches F2H.

o After that the saw tooth wave again starts from OOH, i.e.
OV (analog) and the procedure is repeated. The ramp period
given by this program is precisely 1.000625 ms. Here the
count F2H has been calculated by dividing the required
delay of 1ms by the time required for the execution of the
loop once. The ramp slope can be controlled by calling a
controllable delay after the OUT instruction.

M Krishhna Kumar MAM/M3/LU9g/V 1/2004 25

Stepper Motor Interfacing:
A stepper motor is a device used to obtain an accurate position control of rotating shafts.
It employs rotation of its shaft in terms of steps, rather than continuous rotation as in
case of AC or DC motors. To rotate the shaft of the stepper motor, a sequence of pulses
IS needed to be applied to the windings of the stepper motor, in a proper sequence.
The number of pulses required for one complete rotation of the shaft of the stepper
motor is equal to its number of internal teeth on its rotor. The stator teeth and the rotor
teeth lock with each other to fix a position of the shaft.
With a pulse applied to the winding input, the rotor rotates by one teeth position or an
angle x. The angle x may be calculated as:

X:3600/no. of rotor teeth
After the rotation of the shaft through angel X, the rotor locks itself with the next tooth in
the sequence on the internal surface of stator.

The internal schematic of a typical stepper motor with four windings is shown in fig.1.

The stepper motors have been designed to work with digital circuits. Binary level pulses
of 0-5V are required at its winding inputs to obtain the rotation of shafts. The sequence
of the pulses can be decided, depending upon the required motion of the shaft.

Fig.1 shows a typical winding arrangement of the stepper motor.
Fig.2 shows conceptual positioning of the rotor teeth on the surface of rotor, for a six
teeth rotor.

Fig.1 Internal schematic of a four winding stepper motor

Fig.2 Winding arrangement of a stepper motor.

S

TN
U=

s Lo

\ /

AN \Q/
e
N

Fig.3 Stepper motor rotor

The circuit for interfacing a winding Wn with an 1/O port is given in fig.4. Each
of the windings of a stepper motor needs this circuit for its interfacing with the output
port. A typical stepper motor may have parameters like torque 3 Kg-cm, operating

voltage 12V, current rating 0.2 A and a step angle 1.8O i.e. 200 steps/revolution (number

of rotor teeth).
A simple schematic for rotating the shaft of a stepper motor is called a wave scheme. In

this scheme, the windings Wa, Wb, Wc and Wd are applied with the required voltages
pulses, in a cyclic fashion. By reversing the sequence of excitation, the direction of

rotation of the stepper motor shaft may be reversed.

Table.1 shows the excitation sequences for clockwise and anticlockwise rotations.
Another popular scheme for rotation of a stepper motor shaft applies pulses to two
successive windings at a time but these are shifted only by one position at a time. This

scheme for rotation of stepper motor shaft is shown in table2.

AN &
{ el
L f
Pa
—ANVVW T ‘L
From O/P 5 e A
port S 1
S
< 1

Fig.4 interfacing stepper motor winding.

Table.1 Excitation sequence of a stepper motor using wave switching scheme.
Motion step A B C D
1 1 0 0 0
2 0 1 0 0
Clock 3 0 0 1 0
Wise Direction 4 0 0 0 1
5 1 0 0 0
1 1 0 0 0
Anti clock 2 0 0 0 !
Direction 4 0 1 0 0
5 1 0 0 0

Table.2 An alternative scheme for rotating stepper motor shaft

Motion step A B C D
1 0 0 1 1
2 0 1 1 0
Clock wise 3 1 1 0 0
Direction 4 1 0 0 1
5 0 0 1 1
1 0 0 1 1
Anti clock 2 ! 0 0 !
wise 3 1 1 0 0
Direction 4 0 1 1 0
5 0 0 0 0

8527 DMA Controller

The 8527 controller has four independent channels each of which contains an address register
and a counter. The counter decrements as each byte transfer occur, and forces termination of the
DMA operation after the last transfer. The controller increments the address registers after each
operation, so that successive data transfers are made at contiguous ascending addresses. The
arbiter resolves conflicts among the channels for access to memory. Two methods have been
used in this chip to make the chip useful in a variety of different applications. In one mode the
channels have a fixed priority and conflicts are resolved according to the priority, for example,
Channel 0 has highest priority and Channel 3 lowest. The second mode is a rotating priority
scheme in which priority rankings are the four cycle shifts of 0-1-2-3, when a channel is granted
access to the bus the priority ranking shifts cyclically to place the channel in the lowest priority
position for the next arbitration cycle.

DACK OL
':,.:"IRHI'\,RI ':::‘ DRG0

8 DACK 1 L
Microprocessor bus EJE 1 Channel 1 DRG 1
Fa E =
7 e e
_ VO READ L - DACK 2 L
e
_ VOWRITE L Channel 2 | pRO 2

et rerer—

| DACKIL
Channel 3 | DRO A

. MEM BEAD L
.
Eg < MEMWRITEL | contral signal
8) intarpratar and
ES _ HRO genematar
f
oF ML H I
28y _ TC
&

Figure 5-4: Structure of the 18527 DMA controller

The chip has four signals associated with the READ and WRITE operation. MEM READ L and
MEM WRITE L are signals produced by DMA controller to exercise memory. The two signals
I/0 READ L and I/O WRITE L are bidirectional, they are inputs from the microprocessor when
the microprocessor sends commands to the 8257 and reads back the 8257 status. During the 1/0
operation these signals are output from the 8257 and are functionally opposite to the memory
signals. The 8257 takes control of the bus by exercising HALT (HRQ) and receives back the
"go-ahead" signal on HALT ACKNOWLEDGE (HLDA).

Two signals produced by the DMA controller can be used by the 1/0O port to assist in controlling
the transfer process. One signal TC--terminal count--is asserted during the last cycle of a DMA
block. This can be used to describe a DMA mode on an 1/O port or to reset the port's internal
state to indicate the end of a transfer. The second--MARK--is inserted when the remaining
count on a channel became a multiple of 128--providing a convenient timing signal for an
external device.

Register Organization of 8257

Table 8257 Register Selection

Register Byte Address Inputs F/L Bl-Direciional Data Bus
- M A A A b, b, b, b, D, D, D Dy
CH-0 DMA Address LSB 0 0 o0 0 A, Ay Ag Ay A A A A
MSB 0 0 0 0 1 A, A, A, A, A, Ay A, A,
CH-0 Terminal Count LSB 0 0 0 1 0 G G ¢ C ¢ G ¢ G
MSB O 0 0O 1] Rd Wr C, C, C, Cp, C G
CH-1 DMA Address LSB 0O 0 1 0 0 A, Ay Ay Ay Ay A A A
MSB 0 0 1 0 1 AI\ .»’\“ A“ A, r\“ '\IU '\v A‘
CH-1 Terminal Count LSB 0 0 1 1 0 G ¢ ¢ C G G C G
MSB 0 0 1 | 1 Rd Wr C, C, C, C, C C;
CH-2 DMA Address LSB 0O 1 0 0 0 A, Ag Ay A Ay A, A A
MSB 0 1 0 0 1 Ay A, A, A, A, AL A A
CH-2 Terminal Count LSB 0 1 0 1 0 ¢, ¢ G C C G C G
MSB 0 1 0 1 | Rd Wr C, C, C, Co G G
CH-3 DMA Address LSB o 1~1-..0 0 A, A s Ay Ay A AL A
MSB 0 | 1 0 1 f\l‘ A“ \1_| A, Ay '\IU A, Ay
CH-3 Terminal Count LSB 0 1 1 1 0 C, G C C C C C G
MSB 0 1 1 1 I Rd Wr C, C, C, C, G G(
MODE SET — 1 0 0 0 0 ALL. TCS EW RP EN3 EN2 ENl1 ENO
(Programme only)
STATUS (Read only) — 1 0 0 0 0 0 0 0 UP TC3 TC2 TCI TCO

The 8257 performs the DMA operation over four independent DMA channels.Each of four
channels of 8257 has a pair of two 16-bit registers, viz. DMA address register and terminal count
register.There are two common registers for all the channels, namely, mode set register and
status register. Thus there are a total of ten registers. The CPU selects one of these ten registers
using address lines Ao-A3. Table shows how the Ao-A3 bits may be used for selecting one of
these registers.

DMA Address Register

Each DMA channel has one DMA address register. The function of this register is to store the
address of the starting memory location, which will be accessed by the DMA channel. Thus the
starting address of the memory block which will be accessed by the device is first loaded in the
DMA address register of the channel. The device that wants to transfer data over a DMA

channel, will access the block of the memory with the starting address stored in the DMA
Address Register.

Terminal Count Register

Each of the four DMA channels of 8257 has one terminal count register (TC). This 16-bit
register isused for ascertaining that the data transfer through a DMA channel ceases or stops after
the required number of DMA cycles. The low order 14-bits of the terminal count register are
initialised with the binary equivalent of the number of required DMA cycles minus one.After
each DMA cycle, the terminal count register content will be decremented by one and finally it
becomes zero after the required number of DMA cycles are over. The bits 14 and 15 of this
register indicate the type of the DMA operation (transfer). If the device wants to write data into
the memory, the DMA operation is called DMA write operation. Bit 14 of the register in this
case will be set to one and bit 15 will be set to zero. Table gives detail of DMA operation
selection and corresponding bit configuration of bits14 and 15 of the TC register.

Table DMA Operation Selection Using A /RD and A, /WR

Bir 15 Bit 14 Type of DMA Operation
0 0 Verify DMA Cycle
0 | Write DMA Cycle
I 0 Read DMA Cycle
I ! (Hiegal)

Mode Set Register

The mode set register is used for programming the 8257 as per the requirements of the system.
The function of the mode set register is to enable the DMA channels individually and also to set
the various modes of operation.The DMA channel should not be enabled till the DMA address
register and the terminal count register contain valid information, otherwise, an unwanted DMA
request may initiate a DMA cycle, probably destroying the valid memory data. The bits Do-D3
enable one of the four DMA channels of 8257. for example, if Do is ‘1°, channel 0 is enabled. If
bit 4 is set, rotating priority is enabled, otherwise, the normal, i.e. fixed priority is enabled.

O O DO O 0 0 Dy Dy

i e L .
Enables Auto Load — | | —— Enables Channel 0
Enables TC Stop —-I | = Enables Channel 1
Enables Extended Wrte | Enables Chamnel 2
Erabes Roatng Py ' Erabies Chane

Fig. Bit Definiions of the Mode Set Register

If the TC STOP bit is set, the selected channel is disabled after the terminal count condition is
reached, and it further prevents any DMA cycle on the channel. To enable the channel again, this
bit must be reprogrammed. If the TC STOP bit is programmed to be zero, the channel is not
disabled, even after the count reaches zero and further request are allowed on the same channel.
The auto load bit, if set, enables channel 2 for the repeat block chaining operations, without
immediate software intervention between the two successive blocks. The channel 2 registers are
used as usual, while the channel 3 registers are used to store the block reinitialisation parameters,
i.e. the DMA starting address and terminal count. After the first block is transferred using DMA,
the channel 2 registers are reloaded with the corresponding channel 3 registers for the next block
transfer, if the update flag is set. The extended write bit, if set to ‘1°, extends the duration of
MEMW and IOW signals by activating them earlier, this is useful in interfacing the peripherals
with different access times. If the peripheral is not accessed within the stipulated time, it is
expected to give the ‘NOT

READY’ indication to 8257, to request it to add one or more wait states in the DMA CYCLE.
The mode set register can only be written into.

Status Register
The status register of 8257 is shown in figure. The lower order 4-bits of this register contain the

terminal count status for the four individual channels. If any of these bits is set, it indicates that
the specific channel has reached the terminal count condition.

O O O O Dy 0 O D
| |
|

| [
| | L TC Status Channel 0
! TC Status Chamnel 1
Update Fag | TC Status Channe 2
TC Status Channel 3

If 1, the respective channel has reached the terminal count condition,

These bits remain set till either the status is read by the CPU or the 8257 is reset. The update flag
is not affected by the read operation. This flag can only be cleared by resetting 8257 or by
resetting the auto load bit of the mode set register. If the update flag is set, the contents of the
channel 3 registers are reloaded to the corresponding registers of channel 2 whenever the channel
2 reaches a terminal count condition, after transferring one block and the next block is to be
transferred using the autoload feature of 8257. The update flag is set every time, the channel 2
registers are loaded with contents of the channel 3 registers. It is cleared by the completion of the
first DMA cycle of the new block. This register can only read.

Data Bus Buffer, Read/Write Logic, Control Unit and Priority Resolver

The 8-bit. Tristate, bidirectional buffer interfaces the internal bus of 8257 with the external
system bus under the control of various control signals. In the slave mode, the read/write logic
accepts the 1/0 Read or I/0O Write signals, decodes the Ao-A3 lines and either writes the contents
of the data bus to the addressed internal register or reads the contents of the selected register
depending upon whether IOW or IOR signal is activated. In master mode, the read/write logic
generates the IOR and IOW signals to control the data flow to or from the selected peripheral.
The control logic controls the sequences of operations and generates the required control signals
like AEN, ADSTB, MEMR,MEMW, TC and MARK along with the address lines A4-A7, in
master mode. The priority resolver resolves the priority of the four DMA channels depending
upon whether normal priority or rotating priority is programmed.

Signal Description of 8257

IOR o 1 40 b A-
Iowed 2 39 b Ag
MEMR o 3 g b Ag
MEMW o 4 AT P Ay
MARK — 5 I spP TC
READY o 6 IS P A,
HLDA o 7 3P A
ADSTB o B 33b A,
AENHS 9 32 P Ag
HRQ g 10 31 b Veo
Ssd 1 B257 0k oo
CLK of 12 29 P Dy
RESET g 13 28 2 Dy
DACKZ o 14 27 P D5
DACK3 o 15 26 P Dy
DRQ, = 16 25 P DACKD
DRQy o 17 24 > DACK1
DRQ, = 18 23 P Ds
DRQy = 19 22 P Dg
GND = 20 21 P Dy

Pin Diagram of 8257

DRQo-DRQ3 : These are the four individual channel DMA request inputs, used by the
peripheral devices for requesting the DMA services. The DRQo has the highest priority while
DRQ3 has the lowest one, if the fixed priority mode is selected.

DACKo0-DACKS : These are the active-low DMA acknowledge output lines which inform the
requesting peripheral that the request has been honoured and the bus is relinquished by the CPU.
These ines may act as strobe lines for the requesting devices.

Do-D7: These are bidirectional, data lines used to interface the system bus with the internal data
bus of 8257. These lines carry command words to 8257 and status word from 8257, in slave
mode, i.e. under the control of CPU. The data over these lines may be transferred in both the
directions. When the 8257 is the bus master (master mode, i.e. not under CPU control), it uses
Do-D7 lines to send higher byte of the generated address to the latch. This address is further
latched using ADSTB signal. the address is transferred over Do-D7 during the first clock cycle
of the DMA

cycle. During the rest of the period, data is available on the data bus.

IOR: This is an active-low bidirectional tristate input line that acts as an input in the slave
mode. In slave mode, this input signal is used by the CPU to read internal registers of 8257.this
line acts output in master mode. In master mode, this signal is used to read data from a peripheral
during a memory write cycle.

IOW : This is an active low bidirection tristate line that acts as input in slave mode to load the
contents of the data bus to the 8-bit mode register or upper/lower byte of a 16-bit DMA address
register or terminal count register. In the master mode, it is a control output that loads the data to
a peripheral during DMA memory read cycle (write to peripheral).

CLK: Thisis a clock frequency input required to derive basic system timings for the internal
operation of 8257.

RESET : This active-high asynchronous input disables all the DMA channels by clearing the
mode register and tristates all the control lines.

A0-A3: These are the four least significant address lines. In slave mode, they act as input which
selects one of the registers to be read or written. In the master mode, they are the four least
significant memory address output lines generated by 8257.

CS: This is an active-low chip select line that enables the read/write operations from/to 8257, in
slave mode. In the master mode, it is automatically disabled to prevent the chip from getting
selected (by CPU) while performing the DMA operation.

A4-AT : This is the higher nibble of the lower byte address generated by 8257 during the master
mode of DMA operation.

READY': This is an active-high asynchronous input used to stretch memory read and write
cycles of 8257 by inserting wait states. This is used while interfacing slower peripherals..

HRQ: The hold request output requests the access of the system bus. In the noncascaded 8257
systems, this is connected with HOLD pin of CPU. In the cascade mode, this pin of a slave is
connected with a DRQ input line of the master 8257, while that of the master is connected with
HOLD input of the CPU.

HLDA : The CPU drives this input to the DMA controller high, while granting the bus to the
device. This pin is connected to the HLDA output of the CPU. This input, if high, indicates to the
DMA controller that the bus has been granted to the requesting peripheral by the CPU.

MEMR: This active —low memory read output is used to read data from the addressed memory
locations during DMA read cycles.

MEMW : This active-low three state output is used to write data to the addressed memory
location during DMA write operation.

ADST : This output from 8257 strobes the higher byte of the memory address generated by the
DMA controller into the latches.

AEN: This output is used to disable the system data bus and the control the bus driven by the
CPU, this may be used to disable the system address and data bus by using the enable input of
the bus drivers to inhibit the non-DMA devices from responding during DMA operations. If the
8257 is 1/0 mapped, this should be used to disable the other 1/0

devices, when the DMA controller addresses is on the address bus.

TC: Terminal count output indicates to the currently selected peripherals that the present DMA
cycle is the last for the previously programmed data block. If the TC STOP bit in the mode set
register is set, the selected channel will be disabled at the end of the DMA cycle. The TC pin is
activated when the 14-bit content of the terminal count register of the selected channel becomes
equal to zero. The lower order 14 bits of the terminal count register are to be programmed with a
14-bit equivalent of (n-1), if n is the desired number of DMA cycles.

MARK : The modulo 128 mark output indicates to the selected peripheral that the current DMA
cycle is the 128th cycle since the previous MARK output. The mark will be activated after each
128 cycles or integral multiples of it from the beginning if the data block (the first DMA cycle),
if the total number of the required DMA cycles (n) is

completely divisible by 128.

Vce:
This is a +5v supply pin required for operation of the circuit.

GND :

This is a return line for the supply (ground pin of the IC).

Interfacing 8257 with 8086

Once a DMA controller is initialised by a CPU property, it is ready to take control of
the system bus on a DMA request, either from a peripheral or itself (in case of
memory-tomemory transfer). The DMA controller sends a HOLD request to the CPU
and waits for the CPU to assert the HLDA signal. The CPU relinquishes the control
of the bus before asserting the HLDA signal.

A conceptual implementation of the system is shown in Figure

MEMORY

o

_M.C_f PERIPHERAL

CPU -0
c \ C
HLD HLDA °\ \ [—‘
\&
/ // p .
i L
Ay’
/ /
D :)
DMA Co
CONTROLLER DACK
DRQ

A~ Address Bus
B—Data Bus
C—Control Bus

Once the HLDA signal goes high, the DMA controller activates the DACK signal to
the requesting peripheral and gains the control of the system bus. The DMA
controller is the sole master of the bus, till the DMA operation is over. The CPU
remains in the HOLD status (all of its signals are tristate except HOLD and HLDA),
till the DMA controller is the master of the bus.

In other words, the DMA controller interfacing circuit implements a switching
arrangement for the address, data and control busses of the memory and peripheral
subsystem from/to the CPU to/from the DMA controller.

Interface (cont..)

* We have four common types of memory:

e Read only memory (ROM)

e Flash memory (EEPROM)

o Static Random access memory (SARAM)

e Dynamic Random access memory (DRAM).

* Pin connections common to all memory devices are: The
address input, data output or input/outputs, selection input
and control input used to select aread or write operation.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Interface (cont..)

e Addressconnections. All memory devices have address
Inputs that select a memory location within the memory
device. Addressinputs are labeled from Ajto A,.

« Data connections: All memory devices have a set of data
outputs or input/outputs. Today many of them have bi-
directional common 1/O pins.

o Selection connections. Each memory device has an input,
that selects or enables the memory device. This kind of
Input Is most often called a chip select (CS.), chip enable
(CE) or smply select ((S) input.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

5 Ao Oo e
A, O, OUTPUT OR
ADDRESS =~ — ~ INPUT/OUTPUT
CONNECTION A, o, CONNECTION
Fy AN ON -

SELECT READ
MEMORY COMPONENT ILLUSTRATING THE ADDRESS, DATA AND
CONTROL CONNECTIONS

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Interface (cont..)

« RAM memory generally has at |east one CS or S input and
ROM at least one CE.

o If the CE, CS, Sinput is active the memory device perform
the read or write.

o If it isinactive the memory device cannot perform read or
write operation.

« If more than one CS connection is present, all most be
active to perform read or write data.

e Control connections: A ROM usually has only one control
Input, while a RAM often has one or two control inputs.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Interface (cont..)

e The control input most often found on the ROM isthe
output enable (OE) or gate (G), this allows data to flow
out of the output data pins of the ROM.

« |f OE and the selected input are both active, then the
output is enable, if OE isinactive, the output is disabled at
Its high-impedance state.

« The OE connection enables and disables a set of three-state

buffer located within the memory device and must be
active to read data.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Interface (cont..)

A RAM memory device has either one or two control
Inputs. If there is one control input it is often called R/W.

e Thispin selects aread operation or awrite operation only
If the deviceis selected by the selection input (CS).

« |f the RAM hastwo control inputs, they are usually |abeled
WE or W and OE or G.

e (WE) write enable must be active to perform a memory
write operation and OE must be active to perform a
memory read operation.

e When these two controls WE and OE are present, they
must never be active at the same time.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Interface (cont..)

« The ROM read only memory permanently stores programs
and data and data was always present, even when power Is
disconnected.

e Itisalso caled asnonvolatile memory.

« EPROM (erasable programmable read only memory) is
also erasable iIf exposed to high intensity ultraviolet light
for about 20 minutes or less, depending upon the type of
EPROM.

* We have PROM (programmable read only memory)

e RMM (read mostly memory) isalso called the flash
memory.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Interface (cont..)

e Theflash memory isalso called as an EEPROM
(electrically erasable programmable ROM), EAROM
(electrically alterable ROM), or aNOVROM
(nonvolatile ROM).

e These memory devices are electrically erasable in the
system, but require more time to erase than a normal
RAM.

« EPROM contains the series of 27XXX contains the
following part numbers: 2704(512 * 8), 2708(1K * 8),
2716(2K * 8), 2732(4K * 8), 2764(8K * 8),

27128(16K * 8) etc..

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Interface (cont..)

* Each of these parts contains address pins, eight data
connections, one or more chip selection inputs (CE) and an
output enable pin (OE).

e Thisdevice contains 11 address inputs and 8 data outputs.

e If both the pin connection CE and OE are at logic 0, data
will appear on the output connection . If both the pins are
not at logic O, the data output connections remains at their
high impedance or off state.

» Toread datafrom the EPROM Vpp pin must be placed at a
logic 1.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

© 0O N oo o A W N P

=
o

11

12

24
23
22
21
20

19 e

18
17
16
15
14

13

~ PDIPGM
E il {o®

PIN CONFIGURATION OF 2716 EPROM

M. Krishna Kumar

MM/M3/LU8/V 172004

M. Krishna Kumar

Pin Names

Ao—A10 ADDRESSES

PD/PGM POWER DOWN/PROGRAM

CS CHIP SELECT

Og-O; OUT PUTS

MM/M3/LU8/V 172004

VCcCco

GND

Vppe

CS
PD/ PGM

CHIP SELECT
POWER DOWN
AND PROGRAM
LOGIC

DATA OUTPUTS

Op—C |

Heao

O

Ao - AlO

O

ADDRESS
INPUTS

Y
DECODER

OUTPUT
BUFFERS

OO0 00

M. Krishna Kumar

X
DECODER

Y-GATING

BLOCK DIAGRAM

MM/M3/LU8/V 172004

16,386 BI T
CELL
MATRIX

Interface (cont..)

o Static RAM memory device retain datafor aslong as DC
power is applied. Because no special action isrequired to
retain stored data, these devices are called as static
memory. They are also called volatile memory because
they will not retain data without power.

e The main difference between a ROM and RAM isthat a
RAM iswritten under normal operation, while ROM is
programmed outside the computer and is only normally

read.

 The SRAM stores temporary data and is used when the
size of read/write memory isrelatively small.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

© 0O N o o B~ wWw N PP

=
o

11
12

24

23
22
21
20

19—

18
17
16
15
14

13

M. Krishna Kumar

PIN CONFIGURATION OF TMS

4016 SRAM

MM/M3/LU8/V 172004

Ao~ A 10 ADDRESSES
W WRITE ENABLE
S CHIP SELECT
DATAIN /
DQy-DQg DATA OUT
B OUT PUT
G ENABLE
Vss GROUND
Vcc toV
SUPPLY

M. Krishna Kumar

PIN NAMES

MM/M3/LU8/V 172004

| nterface.

* Thecontrol inputs of thisRAM are slightly different from
those presented earlier. The OE pinislabeled G, the CS
pin S and the WE pin W.

e This4016 SRAM device has 11 address inputs and 8 data
|nput/output connections.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Static RAM Interfacing (cont..)

e The semiconductor RAM are broadly two types — static
RAM and dynamic RAM.

« The semiconductor memories are organised as two
dimensional arrays of memory locations.

 For example 4K * 8 or 4K byte memory contains 4096
locations, where each locations contains 8-bit data and
only one of the 4096 |locations can be selected at atime.
Once alocation is selected all the bitsin it are accessible
using a group of conductors called Data bus.

e For addressing the 4K bytes of memory, 12 address lines
are required.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Static RAM Interfacing (cont..)

e Ingenera to address a memory location out of N memory
locations, we will require at least n bits of address, I.e. n
address lineswheren = Log, N.

e Thusif the microprocessor has n addresslines, thenitis
able to address at the most N locations of memory, where
2"=N. If out of N locations only P memory locations are to
be interfaced, then the least significant p address lines out
of the available nlines can be directly connected from the
microprocessor to the memory chip while the remaining
(n-p) higher order address lines may be used for address
decoding as inputs to the chip selection logic.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Static RAM Interfacing (cont..)

« Thememory address depends upon the hardware circuit
used for decoding the chip select (CS). The output of
the decoding circuit is connected with the CS pin of the
memory chip.

« Thegeneral procedure of static memory interfacing with
8086 Is briefly described as follows:

1. Arrangethe available memory chip so asto obtain 16-
bit data bus width. The upper 8-bit bank is called as odd
address memory bank and the lower 8-bit bank is called
as even address memory bank.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Static RAM Interfacing (cont..)

2. Connect available memory address lines of memory chip
with those of the microprocessor and also connect the
memory RD and WR inputs to the corresponding
processor control signals. Connect the 16-bit data bus of
the memory bank with that of the microprocessor 8086.

3. Theremaining address lines of the microprocessor, BHE
and A, are used for decoding the required chip select
signals for the odd and even memory banks. The CS of
memory is derived from the o/p of the decoding circuit.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Static RAM Interfacing.

 Asagood and efficient interfacing practice, the address
map of the system should be continuous as far as possible,
|.e. there should not be no windows in the map and no fold
back space should be allowed.

* A memory location should have a single address
corresponding to it, i.e. absolute decoding should be
preferred and minimum hardware should be used for
decoding.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Dynamic RAM (cont..)

 Whenever alarge capacity memory isrequired in a
microcomputer system, the memory subsystem is generally
designed using dynamic RAM because there are various
advantages of dynamic RAM.

e E.g. higher packing density, lower cost and less power
consumption. A typical static RAM cell may reguire six
transistors while the dynamic RAM cell requires only a
transistors along with a capacitor. Hence it is possible to
obtain higher packaging density and hence low cost units
are available.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Dynamic RAM (cont..)

e Thebasic dynamic RAM cell uses a capacitor to store the
charge as arepresentation of data. This capacitor is
manufactured as a diode that is reverse-biased so that the
storage capacitance comes into the picture. This storage
capacitance is utilized for storing the charge representation
of data but the reverse-biased diode has |eakage current
that tends to discharge the capacitor giving rise to the
possibility of dataloss. To avoid this possible data loss, the
data stored in adynamic RAM cell must be refreshed after
afixed time interval regularly. The process of refreshing
the datain RAM is called as Refresn cycle.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Dynamic RAM (cont..)

* Therefresh activity issimilar to reading the data from each
and every cell of memory, independent of the requirement
of microprocessor. During this refresh period all other
operations related to the memory subsystem are suspended.
Hence the refresh activity causes loss of time, resulting in
reduce system performance.

e However keeping in view the advantages of dynamic
RAM, like low power consumption, high packaging
density and low cost, most of the advanced computing
system are designed using dynamic RAM, at the cost of
operating speed.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Dynamic RAM (cont..)

A dedicated hardware chip called as dynamic RAM
controller is the most important part of the interfacing
circuit.

« TheRefresh cycleisdifferent from the memory read
cycle in the following aspects.

1. Thememory addressis not provided by the CPU address
bus, rather it is generated by arefresh mechanism
counter called as refresh counter.

2. Unlike memory read cycle, more than one memory chip
may be enabled at atime so as to reduce the number of
total memory refresh cycles.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Dynamic RAM (cont..)

3. The dataenable control of the selected memory chip is
deactivated, and datais not allowed to appear on the
system data bus during refresh, as more than one
memory units are refreshed simultaneously. Thisisto
avoid the data from the different chips to appear on the
bus simultaneously.

4. Memory read is either a processor initiated or an external
bus master initiated and carried out by the refresh
mechanism.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Dynamic RAM (cont..)

e Dynamic RAM is available in units of several kilobitsto
megabits of memory. This memory is arranged internally
In atwo dimensional matrix array so that it will haven
rows and m columns. The row address n and column
address m are important for the refreshing operation.

o For example, atypical 4K bit dynamic RAM chip has an
Internally arranged bit array of dimension 64 * 64 , i.e. 64
rows and 64 columns. The row address and column
address will require 6 bits each. These 6 bits for each row
address and column address will be generated by the
refresh counter, during the refresh cycles.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Dynamic RAM (cont..)

e A completerow of 64 cellsisrefreshed at atimeto
minimizes the refreshing time. Thus the refresn counter
needs to generate only row addresses. The row address are
multiplexed, over lower order address lines.

e Therefresh signals act to control the multiplexer, i.e. when
refresh cycle isin process the refresh counter puts the row
address over the address bus for refreshing. Otherwise, the
address bus of the processor is connected to the address
bus of DRAM, during normal processor initiated activities.

o A timer, called refresh timer, derives a pulse for refreshing
action after each refresh interval.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Dynamic RAM (cont..)

» Refresh interval can be qualitatively defined as the time for
which a dynamic RAM cell can hold data charge level
practically constant, i.e. no dataloss takes place.

e Suppose the typical dynamic RAM chip has 64 rows, then
each row should be refresned after each refresh interval or
In other words, all the 64 rows are to refreshed in asingle
refresh interval.

« Thisrefresh interval depends upon the manufacturing
technology of the dynamic RAM cell. It may range
anywhere from 1msto 3ms.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Dynamic RAM (cont..)

o Letusconsider 2msasatypical refresh timeinterval.
Hence, the frequency of the refresh pulses will be
calculated as follows:

e Refresh Time(perrow) t =(2* 10-3)/ 64.

« Refresh Frequency f,=64/(2* 10-3)=32* 103Hz.

e Thefollowing block diagram explains the refreshing logic
and 8086 interfacing with dynamic RAM.

e Eachchipisof 16K * 1-bit dynamic RAM cell array. The
system contains two 16K byte dynamic RAM units. All the
address and data lines are assumed to be available from an
8086 microprocessor system.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Dynamic RAM (cont..)

» The OE pin controls output data buffer of the memory
chips. The CE pins are active high chip selects of memory
chips. Therefresh cycle starts, if the refresh output of the
refresh timer goes high, OE and CE also tend to go high.

e The high CE enables the memory chip for refreshing,
while high OE prevents the data from appearing on the
data bus, as discussed in memory refresn cycle. The 16K *
1-bit dynamic RAM has an internal array of 128*128 cells,
requiring 7 bits for row address. The lower order seven
lines A,-A are multiplexed with the refresh counter output
AigAse:

M. Krishna Kumar MM/M3/LUS8/V 1/2004

>A7_A15
—> 16K*1| |16K*1 |16K*1| 16K*1|[16K* || 16K*1] | 16K*1 |16K*1
At] A | U I I I S | N O
OlEC(|)CO|C (l)ECOlECOlc (l)ECO|C
CE,
A7—A19 A7_A13
; =2 16K*1 ||16K*1 |16K*1 16K*1| |[16K*1| |16K*1] |16K*1| |16K*1
AG_AO
Cl)ECE |OE 'Q_EC-leC ?EC Dl—ECF:leC QE CF
7 bit it
Acm‘g\ bus
—7| MUX ﬁ
2 id .
| |
Ag CE, CE,
Address
—\Ref. Add|sqerg tF?e”&‘h Deciding logic
ﬁ/Counter Imex N T 5
1B s A
Totransrecelvers

M. Krishna Kumar

Dynamic RAM Refreshing Logic

MM/M3/LU8/V 172004

+12V| CLlK
X/OP, X,JCLK
el D 16K /64K
AH,-AH,
e OUT, - OUT,
ADDRESS Address O/P
—> AL ,-AL
External refresh request |netrq RAS, -RAS,
Protected Chip Select PCS 8203

Read request RD CAS
Write request WR WE

SAC XACK

—»

Write enable
—

System Ack#owledge TranL(er Acknowledge

Fig : Dynamic RAM controller

M. Krishna Kumar

MM/M3/LU8/V 172004

Vce +5V

RAS 2164 D

A 4

— I CAS

Y
o
=
—

WE

Fig : 1- bit Dynamic RAM

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Dynamic RAM (cont..)

« Thepin assignment for 2164 dynamic RAM isasin
abovefig.

« TheRASand CAS arerow and column address strobes
and are driven by the dynamic RAM controller outputs.
A, —A- lines are the row or column address lines, driven
by the OUT, — OUT, outputs of the controller. The WE
pin indicates memory write cycles. The D, and D¢
pins are data pins for write and read operations
respectively.

 Inpractical circuits, the refreshing logic is integrated
Inside dynamic RAM controller chips like 8203, 8202,
8207 etc.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Dynamic RAM (cont..)

e Intel’s 8203 isadynamic RAM controller that support 16K
or 64K dynamic RAM chip. This selection is done using
pin 16K/64K. If it is high, the 8203 is configured to control
16K dynamic RAM, elseit controls 64K dynamic RAM.
The address inputs of 8203 controller accepts address lines
A;to A onlinesAL,-AL, and AH,-AH-.

 TheA,linesis used to select the even or odd bank. The
RD and WR signals decode whether the cycle is a memory
read or memory write cycle and are accepted as inputs to
8203 from the microprocessor.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Dynamic RAM (cont..)

« The WE signal specifies the memory write cycle and is not
output from 8203 that drives the WE input of dynamic
RAM memory chip. The OUT,— OUT-, set of eight pinsis
an 8-bit output bus that carries multiplexed row and
column addresses are derived from the address lines A ;-
A, accepted by the controller on its inputs AL ,-AL -, and
AH,-AH-.

« Anexternal crystal may be applied between X, and X,
pins, otherwise with the OP, pin a +12V, aclock signal
may be applied at pin CLK.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Dynamic RAM (cont..)

« The PCS pin accepts the chip select signal derived by an
address decoder. The REFREQ pin is used whenever the
memory refresh cycle isto beinitiated by an external
signal.

« The XACK signal indicates that data is available during a
read cycle or it has been written if it iIsawrite cycle. It can
be used as a strobe for data latches or as aready signal to
the processor.

 The SACK output signal marks the beginning of a memory
access cycle.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Dynamic RAM (cont..)

e |f amemory request is made during a memory refresh
cycle, the SACK signal isdelayed till the starring of
memory read or write cycle.

» Following fig shows the 8203 can be used to control a
256K bytes memory subsystem for a maximum mode 8086
MI Croprocessor system.

e This design assumes that data and address busses are
Inverted and latched, hence the inverting buffers and
Inverting latches are used (8283-inverting buffer and
8287- inverting latch).

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Bus 1D, ;
6288 REAL L »8288 High
BUS |READ 'WR . ~
SO_SZ ﬁ i o XCIEVE @7 Byte
8284A CTRLR \WRiFTE BHE Wriite
B 5 T |
7 ALE ADR 73 RD WE
8086 o i AD A 127 \ 4 \ 4
RDY | BHE! Ao [ao0s WR 8203
ADy—ADy 8283 Ao, Fvlbecoper PGS [~YMEMORY
A~ A19\)’ ILATCH AO"A:‘19 ! CA 2164 256K
— TP — : \DDR ADDR |[BYTES
BHE T e ; ')N OUT—)
gl | eoer —— L7, b,
READY ' : hiers || [XACK SAQK
INPUTS s D A | e
15 [YXCEIVER : :
I DG | L~
~ | A DATADATA | K 1o
T (7] | LATCH
8267
ARG , . | AXCIEVER
e XACK LGS
: . WR
Fig: Interfacing 2164 Using 8203 XACK

M. Krishna Kumar

MM/M3/LU8/V 172004

Dynamic RAM.

e Most of the functions of 8208 and 8203 are similar but
8208 can be used to refresh the dynamic RAM using DMA
approach. The memory system is divided into even and
odd banks of 256K bytes each, as required for an 8086
system.

« Theinverted AACK output of 8208 latches the A, and
BHE signals required for selecting the banks. If the |atched
bank select signal and the WE/PCLK output of 8208 both

become low. It indicates a write operation to the respective
bank.

M. Krishna Kumar MM/M3/LUS8/V 1/2004

Interrupts of 8086

Dictionary meaning of “Interrupt”

While the CPU is executing a program, an
Interrupt breaks the normal sequence of
execution of instructions, diverts its execution to
some other program called Interrupt Service
Routine (ISR).

After executing ISR, the control is transferred
back again to the main program which was being
executed at the time of interruption

Interrupt with in an interrupt is called nested
interrupt.

Interrupts of 8086 cntd..

* Whenever a number of devices interrupt a
CPU at a time and if the processor is able to
handle them properly, it is said to have
multiple interrupt processing capability
Eg: 8085 — 5 interrupts can be handled
simultaneously.

* |n case of 8086, two types of interrupts are
there: NMI - Non maskable Interrupt

INTR — maskable by using the IF flag.

Interrupts of 8086 cntd..

* INTR is of 256 types varying from 00 to FFH
(00 — 255).

* |f more than one type of INTR interrupt occurs
at a time, then an external chip called

programmable Interrupt Controller is required
to handle them.

* Interrupt - external [Hardware]

internal [Software]

Interrupts of 8086 cntd..

* External interrupt is generated outside the
orocessor. Eg: Key board

* Internal interrupt is generated internally by the
0rocessor circuit.
Eg: divide by zero, overflow, INT instruction.

* Suppose an external device interrupts the CPU at
the interrupt pin, either NMl or INTR of 8086,
while the CPU is executing an instruction of a
program, the sequence is as follows:

Interrupts of 8086 cntd..

Sequence
— Completes the execution of the current instruction
— |P is incremented to point to the next instruction.

— CPU acknowledges using INTA immediately if interrupt is
NMI or TRAP etc.

— Otherwise (INT req.), checks for IF flag.
IF =1 - interrupt is serviced

=0 - ignored

* Note that responses to NMI, TRAP etc are independent
of IF flag.

* Once interrupt is serviced, IF flag will be set to zero

Interrupts of 8086 cntd..

* The third source of an interrupt is some error

condition produced in the 8086 by the execution
of an instruction.

Eg: divide by zero, overflow etc.

* At the end of each instruction cycle, the 8086
checks to see if any interrupt has been requested.

* If an interrupt has been requested, the 8086

responds to the interrupt by stepping through the
following series of major actions.

Interrupts of 8086 cntd..

it decrements the stack pointer by 2 and pushes the flag
register on to the stack

It disables the 8086 INTR interrupt input by clearing the
interrupt flag (IF) in the flag register.

It resets the TRAP flag (TF) in the flag register.

It decrements the stack pointer by 2 and pushes the
current code segment register contents on to the stack.

It decrements the stack pointer again by 2 and pushes the
current instruction pointer contents on to the stack.

It does an indirect far jump to the start of the procedure
you wrote to respond to the interrupt.

Interrupts of 8086 cntd..

Fig 8.1 summarizes these steps in diagram
form
An IRET instruction at the end of the

interrupt-service procedure returns
execution to the main program.

7
@IN LINE \

INTERRUPT
FIREAERAN SERVICE
PUSH FLAGS PROCEDURE
CLEAR IF / PUSH
CLEAR TF REGISTERS
PUSH CS
PUSH IP

FETCH ISR ADDRESS

\ POP IP
POP CS
e

POP FLAGS ' \ POP REGISTERS
IRET

L

Fig. 8.1 8086 interruptresponse,

Interrupts of 8086 cntd..

How to get to the interrupt procedure

The starting address of the Interrupt service
procedure is to be stored in CS & IP.

To get this starting address, it requires 4 memory
locations

In an 8086 system the first 1 Kbytes of memory
from OO000H to O03FFH, is set aside as a table for
storing the starting addresses of interrupt service
procedures

1 Kbytes = 4 memory locations X 256 interrupt
types

Interrupts of 8086 cntd..

The starting address of an Interrupt Service Procedure
is often called the interrupt vector or interrupt pointer,
so the table is referred to as the interrupt-vector table
or interrupt pointer table

Fig 8.2 shows the interrupt-vector table in memory
IP value = Lower word CS value = higher word

Each double word interrupt vector is identified by a
number from 0 to 255 which is called as the TYPE of
the interrupt.

When the 8086 responds to a particular type interrupt,
it automatically multiplies the type by 4 to produce the
desired address in vector table.

s Ny,

~ 3FFH TYPE 255 POINTER: -
== AVAILABLE
3FCH { 2
AVAILABLE INTERRUPT y I T
POINTERS (224) TYPE 33 POINTER:
SR (AVAILABLE)
e TYPE 32 POINTER: ==
. 080H (AVAILABLE)
O7FH | TYPE 31 POINTER: |
(RESERVED)
RESERVED INTERRUPT 4 .
POINTERS {(27) - T
= TYPE 5 POINTER: !
L o14aH (RESERVED)
= TYPE 4 POINTER: ¥
OO (OVERFLOW)
i s, TYPE 3 POINTER: |
COCH 1-BYTE INT INSTRUCTION
DEDICATED INTERRUPT o TYPE 2 POINTER: 4
POINTERS (5) 0081 MNON-MASKABLE
= TYPE 1 POINTER: =1
1 o0o0aH SINGLE-STEP
CS BASE ADDRESS Lo TYPE 0 POINTER: =
IP OFFSET | (A DIVIDE ERROR
000H

K —~— 16 BITS ——
/

Fig. 8.2 BOEE interrupt-pointer rable.

Types of Interrupts

TYPE 0 — Divide by Zero
* |t's a divide by zero error interrupt.

* DIV, IDIV
16 bit unsighned -2 quotient = AL
8 bit unsigned remainder = AH

32 bit unsigned -2 quotient = AX
16 bit unsigned remainder = DX

Types of Interrupts cntd..

* Divide by zero gives result which can not be fit
in the destination register, hence it causes

interrupt type O.
* Since type 0 can not be disabled in any way,
we have to take care of this in two ways.

— Check not to divide by zero

— Through interrupt service procedure (better
method)

Types of Interrupts cntd..

TYPE 1, Single Step Interrupt
e Used for debugging

* Normal procedure

 The trap flag is reset when the 8086 does a
TYPE 1 interrupt, so the single step mode will

be disabled during the interrupt service
procedure.

Types of Interrupts cntd..

TYPE 2 — Non Maskable
e Equivalent to NMI

* Normal procedure

* Eg: Pressure sensor on a large steam boiler
connected to the NMl input.

— System Power failure
TYPE 3 — Break Point
* |tis break point interrupt

Types of Interrupts cntd..

TYPE 4 — Overflow
* |tis overflow error interrupt
* Normal procedure
* Solutions are
Jump Overflow —JO Routine with in the main
program
Interrupt Overflow — Separate service routine
* OF=0-> INTO=NOP
OF =1 - INTO = TYPE 4 Interrupt
Software Interrupts — Types 0 thru 255
 Eg: INT 38

Types of Interrupts cntd..

INTR Interrupts
e |tis maskable
e CLI & STl instructions

* Disabling INTR input at start of INTR Interrupt
Service Procedure avoids interrupting itself
continuously.

Priority of 8086 Interrupts

N [

DIVIDE ERROR, INT n, INTO HIGHEST
NMI
INTR LOWEST

Programmable Interrupt Controller 8259A

« If we are working with an 8086, we have a problem here because the 8086 has only two
interrupt inputs, NMI and INTR.

« If we save NMI for a power failure interrupt, this leaves only one interrupt for all the other
applications. For applications where we have interrupts from multiple source, we use an
external device called a priority interrupt controller (PIC) to the interrupt signals into a
single interrupt input on the processor.

Architecture and Signal Descriptions of 8259A

» The architectural block diagram of 8259A is shown in figl. The functional explication
of each block is given in the following text in brief.

* Interrupt Request Register (RR): The interrupts at IRQ input lines are handled by
Interrupt Request internally. IRR stores all the interrupt request in it in order to serve
them one by one on the priority basis.

* In-Service Register (ISR): This stores all the interrupt requests those are being
served, i.e. ISR keeps a track of the requests being served.

‘IS‘]'IX‘ INT,

D.-D Data Bas |& o~ Control Logic
Buffer *
RD s Read/ 0 4
WE—a| Write ooy Tnterrupt [+
A, s Logic IN Service| | Priority Request | IR,
- Register (=% Resolver }— Resister [®
= ISR IRR :
P
CAS, —»fCascade Iy 4 + -
CAS,——»Buffer/ "
CAS:_ ._Comp‘amtor . ~——] Interrupt Mask Register
SP/EN — e
Internal Bus

Fig:1 82504 Block Diagram

Tl Priority Resolver : This unit determines the priorities of the interrupt requests appearing
simultaneously. The highest priority is selected and stored into the corresponding bit of

ISR during INTA pulse. The IR0 has the highest priority while the IR7 has the lowest
one, normally in fixed priority mode. The priorities however may be altered by
programming the 8259A in rotating priority mode.

Interrupt Mask Register (IMR) : This register stores the bits required to mask the
interrupt inputs. IMR operates on IRR at the direction of the Priority Resolver.
Interrupt Control Logic: This block manages the interrupt and interrupt
acknowledge signals to be sent to the CPU for serving one of the eight interrupt
requests. This also accepts the interrupt acknowledge (INTA) signal from CPU that
causes the 8259A to release vector address on to the data bus.

Data Bus Buffer : This tristate bidirectional buffer interfaces internal

8259A bus to the microprocessor system data bus. Control words, status and vector
information pass through data buffer during read or write operations.

Read/Write Control Logic: This circuit accepts and decodes commands from the
CPU. This block also allows the status of the 8259A to be transferred on to the data
bus.

Cascade Buffer/Comparator: This block stores and compares the ID’s all the 8259A
used in system. The three 1/0 pins CASO-2 are outputs when the 8259A is used as a
master. The same pins act as inputs when the 8259A is in slave mode. The 8259A in
master mode sends the ID of the interrupting slave device on these lines. The slave thus
selected, will send its preprogrammed vector address on the data bus during the next
INTA pulse.

CS: This is an active-low chip select signal for enabling RD and WR operations

of 8259A. INTA function is independent of CS.

WR : This pin is an active-low write enable input to 8259A. This enables it to accept
command words from CPU.

RD : This is an active-low read enable input to 8259A. A low on this line enables
8259A to release status onto the data bus of CPU.

D0-D7 : These pins from a bidirectional data bus that carries 8-bit data either to
control word or from status word registers. This also carries interrupt vector
information.

CASO — CAS2 Cascade Lines : A signal 8259A provides eight vectored interrupts. If
more interrupts are required, the 8259A is used in cascade mode. In cascade mode, a
master 8259A along with eight slaves 8259A can provide upto 64 vectored interrupt
lines. These three lines act as select lines for addressing the slave 8259A.

PS/EN : This pin is a dual purpose pin. When the chip is used in buffered mode, it can
be used as buffered enable to control buffer transreceivers. If this is not used in
buffered mode then the pin is used as input to designate whether the chip is used as a
master (SP =1) or slave (EN = 0).

INT : This pin goes high whenever a valid interrupt request is asserted. This is used to
interrupt the CPU and is connected to the interrupt input of CPU.

IR0 — IR7 (Interrupt requests) :These pins act as inputs to accept interrupt request to
the CPU. In edge triggered mode, an interrupt service is requested by raising an IR pin

from a low to a high state and holding it high until it is acknowledged, and just by
latching it to high level, if used in level triggered mode.

Pin Diagram
[l 28— Vee
WR_—2 27— Ay
RD—|3 26— INTA
D, 4 25 IRs
Ds—|5 24 IR
Ds 6 23| IRs
Dy—|7 22 IR,
) I 8259A 21 IR,
D, 9 20— IR,
D;—110 19— IR,
Dy — {11 18| IR,
CAS—{12 17— INT
CAS; {13 16— SP/EN
GND__{14 15— CAS;

Fig : 8259 Pin Diagram

INTA (Interrupt acknowledge): This pin is an input used to strobe-in 8259A interrupt

vector data on to the data bus. In conjunction with CS, WR and RD pins, this selects the
different operations like, writing command words, reading status word, etc.

The device 8259A can be interfaced with any CPU using either polling or interrupt. In
polling, the CPU keeps on checking each peripheral device in sequence to ascertain if
it requires any service from the CPU. If any such service request is noticed, the CPU
serves the request and then goes on to the next device in sequence.

After the entire peripheral device are scanned as above the CPU again starts from first
device.

This type of system operation results in the reduction of processing speed because most
of the CPU time is consumed in polling the peripheral devices.

In the interrupt driven method, the CPU performs the main processing task till it is
interrupted by a service requesting peripheral device.

The net processing speed of these type of systems is high because the CPU serves the
peripheral only if it receives the interrupt request

If more than one interrupt requests are received at a time, all the requesting peripherals
are served one by one on priority basis.

This method of interfacing may require additional hardware if number of peripherals to
be interfaced is more than the interrupt pins available with the CPU.

SERIAL COMMUNICATION

INTRODUCTION

Serial communication is common method of transmitting data between a computer and a
peripheral device such as a programmable instrument or even another computer. Serial
communication transmits data one bit at a time, sequentially, over a single communication line
to a receiver. Serial is also a most popular communication protocol that is used by many
devices for instrumentation. This method is used when data transfer rates are very low or the
data must be transferred over long distances and also where the cost of cable and
synchronization difficulties makes parallel communication impractical. Serial communication
is popular because most computers have one or more serial ports, so no extra hardware is
needed other than a cable to connect the instrument to the computer or two computers together.

SERIAL AND PARALLEL TRANSMISSION

Let us now try to have a comparative study on parallel and serial communications to
understand the differences and advantages & disadvantages of both in detail.

We know that parallel ports are typically used to connect a PC to a printer and are rarely
used for other connections. A parallel port sends and receives data eight bits at a time over
eight separate wires or lines. This allows data to be transferred very quickly. However, the
setup looks more bulky because of the number of individual wires it must contain. But, in the
case of a serial communication, as stated earlier, a serial port sends and receives data, one bit at
a time over one wire. While it takes eight times as long to transfer each byte of data this way,
only a few wires are required. Although this is slower than parallel communication, which
allows the transmission of an entire byte at once, it is simpler and can be used over longer
distances. So, at first sight it would seem that a serial link must be inferior to a parallel one,
because it can transmit less data on each clock tick. However, it is often the case that, in
modern technology, serial links can be clocked considerably faster than parallel links, and
achieves a higher data rate.

| 1 |
)] [
| Time
| |) S
| o L 1- bit
¥ i o 1 o 2 vy
Source L |, Destination Source A Lhed.d Destination
| 1 |
9 4
: Sgnal Reference
n-1 -1
Signal reference Signal refecence

n=8 16 32

Parallel Transmission Serial Transmission

SERIAL DATA TRANSMISSION MODES

When data is transmitted between two pieces of equipment, three communication modes
of operation can be used.

Simplex: In a simple connection, data is transmitted in one direction only. For example,
from a computer to printer that cannot send status signals back to the computer.

Half-duplex: In a half-duplex connection, two-way transfer of data is possible, but only in
one direction at a time.

Full duplex: In a full-duplex configuration, both ends can send and receive data
simultaneously, which technique is common in our PCs.

SERIAL DATA TRANSFER SCHEMS

Like any data transfer methods, Serial Communication also requires coordination between the
sender and receiver. For example, when to start the transmission and when to end it, when one
particular bit or byte ends and another begins, when the receiver's capacity has been exceeded,
and so on. Here comes the need for synchronization between the sender and the receiver. A
protocol defines the specific methods of coordinating transmission between a sender and
receiver. For example a serial data signal between two PCs must have individual bits and bytes
that the receiving PC can distinguish. If it doesn't, then the receiving PC can't tell where one
byte ends and the next one begin or where one bit ends and begins. So the signal must be
synchronized in such a way that the receiver can distinguish the bits and bytes as the transmitter
intends them to be distinguished.

There are two ways to synchronize the two ends of the communication.
1. Synchronous data transmission
2. Asynchronous data transmission

Synchronous Data Transmission

The synchronous signaling methods use two different signals. A pulse on one signal
line indicates when another bit of information is ready on the other signal line.

In synchronous transmission, the stream of data to be transferred is encoded and sent
on one line, and a periodic pulse of voltage which is often called the "clock™ is put on
another line, that tells the receiver about the beginning and the ending of each bit.

1) Synchronous Transmission: -

Transmitter sends bits on falling edge of the clock
Receiver reads bits on rising edge of the clock

Yy ¥ | | | | | | |
Clock —
| | | | | | | | |
| | | | | | I |
Data | | | |
c61
(e 61ED Bit7 | | | | | | | BitD
Bits 0 by : 1 I 0 I 0 I 0 I 0 : 1

I I I I I
INote: - Matry ssmchronous protocols send MISE first

Advantages: The only advantage of synchronous data transfer is the Lower overhead and
thus, greater throughput, compared to asynchronous one.
Disadvantages:

Slightly more complex
Hardware is more expensive

Asynchronous data transmission

The asynchronous signaling methods use only one signal. The receiver uses transitions on
that signal to figure out the transmitter bit rate (known as auto baud) and timing. A pulse from
the local clock indicates when another bit is ready. That means synchronous transmissions use
an external clock, while asynchronous transmissions are use special signals along the
transmission medium. Asynchronous communication is the commonly prevailing
communication method in the personal computer industry, due to the reason that it is easier to
implement and has the unique advantage that bytes can be sent whenever they are ready, a no
need to wait for blocks of datatoaccumulate.

2) Asynchronous Transmission: -

Transmitter uses an internal clock when to determine when to send each bit

|
|
l Receiver detects the falling edge of the start bit and then uses its internal |
| clock to read the following bits
|
l |
l | | | | | |
— I I I i —
,Data Y v | | | |
61 | | |
l
startbit | Bito | | | | | , |Bit7 stophit
| | l | | I |
Bits I [1 | 0 I 0 | 0 | 0 | 1 I 1 I 0 |
I | I
l l | Note: - Asynchronous protocols send L3E first |
Advantages:

|
Simple and doesn't require much synchronization on both communication sides.

u
The timing is not as critical as for synchronous transmission; therefore hardware can be
made cheaper.

Set-up is very fast, so well suited for applications where messages are generated at
irregular intervals, for example data entry from the keyboard.

Disadvantages:

One of the main disadvantages of asynchronous technigue is the large relative
overhead, where a high proportion of the transmitted bits are uniquely for control
purposes and thus carry no useful information.

8251-PROGRAMMABLE COMMUNICATION INTERFACE
(USART-Universal Synchronous/Asynchronous Receiver/Transmitter)

INTRODUCTION

A USART s also called a programmable communications interface (PCI). When
information is to be sent by 8086 over long distances, it is economical to send it on a single
line. The 8086 has to convert parallel data to serial data and then output it. Thus lot of
microprocessor time is required for such a conversion.

Similarly, if 8086 receives serial data over long distances, the 8086 has to internally convert
this into parallel data before processing it. Again, lot of time is required for such a

conversion. The 8086 can delegate the job of conversion from serial to parallel and vice
versa to the 8251A USART used in the system.

The Intel8251A is the industry standard Universal Synchronous/Asynchronous
Receiver/Transmitter (USART), designed for data communications with Intel
microprocessor families such as 8080, 85, 86 and

88. The 8251A converts the parallel data received from the processor on the D7-0 data pins
into serial data, and transmits it on TxD (transmit data) output pin of 8251A. Similarly, it
converts the serial data received on RxD (receive data) input into parallel data, and the
processor reads it using the data pins D7-0.

FEATURES

n
Compatible with extended range of Intel microprocessors.
It provides both synchronous and asynchronous data transmission.
Synchronous 5-8 bit characters.
Asynchronous 5-8 bit characters.
It has full duplex, double buffered transmitter and receiver.
Detects the errors-parity, overrun and framing errors.
All inputs and outputs are TTL compatible.
Available in 28-pin DIP package.

PIN DIAGRAM
(= I = 28 1 D,
o,]2 27 1] Dg
Axp [] 3 26 |1 Vec
GND [] 4 25 [] AXC
o, (s 24 [] DTR
D, (16 2a [] ATS
D 17 22] osR
D, 18 B251A 21 [] RESET
T®C [9o 20 [] CLK
wr [w0 19 [] TxD
cs [1 18 [] THEMPTY
oD [] 12 17 [1 €75
RD [] 13 16 [] SYNDET/BD
RxRDY [14 15 [] TXRDY

ARCHITECTURE

The 8251A is a USART (Universal Synchronous Asynchronous Receiver Transmitter) for
serial data communication. As a peripheral device of a microcomputer system, the 8251
receives parallel data from the CPU and transmits serial data after conversion. This device

also receives serial data from the outside and transmits parallel data to the CPU after
conversion. The internal block diagram of 8251A is shown in fig below.

Y

Data bus Transmit
buffer - TxD
D R G E— S

DT'DD

Reset ————e|

Clock —— o] - = TxRDY

— Read/write

C/D ——=1 " control Tm"f'“l" = TxEAMTY
RD —=q logic contro
WR — od — D T xC

CS ?
DSR ———=q | Receive
’ @q—ﬂ Modem l<: buffer ~—— RxD

TS q control S—P)

RTS =

——= R x RDY
Receive
Internal il R x C

hus control

|- = SYNDET/
"LJ BRK DET

Fig. 5.7 Block diagram of 8251

Fig. 5.7 shows the block diagram of 8251 A. The block diagram shows all the elements of a
programmable chip; it includes the interfacing signals, the control register and the status register. The
functions of various blocks are described below:

(A) Data bus buffer: This 3-state, bidirectional buffer is used to interface the 8251A to the system data
bus. Data is transmitted or received by the buffer upon execution of input and output instruction of the
CPU Command words and status information are also transferred through the data bus buffer. The
command, status and data in and data out are separate 8-bit registers to provide double buffering.

The functional block accepts inputs form the control bus and generates control signals for overall
device operation. It contains the control word register and command word register that store the various
control formats for the device functional definition.

(B) Read/Write logic and Registers:

This section includes R/W control logie, six input signals, control logie, and three buffer
registers; data register,control register and status register. The input signals to control
logic are as follows:

RESET: A high on this input forces the 82514 into an idle mode. The device will remain
at idle until a new set of control words is written into the 8251A to program its functional
definition,

A command reset operation also puis the device into the idle state.

CLK (Clock): The CLEK input is used to generate internal device timing and is normally

connected to the phase 2 (TTL) output of the Clock Generator, No external inputs or
outputs are referenced to CLK but the frequency of CLK must be greater than 30 times

the Receiver or Transmilter daia bit rates.
WR (Write): A "low" on this input informs the 8251A that the CPU is writing data or
control words to the 8251A,

RD (Rend): A "low" on this input informs the 8251A that the CPU is reading data or
status information fram the 82511_% .

o | rp | WR | cs|
0 0 I 0 _BI,H data-data bus
L _u I__ 0| Hl?llll:lf.'llLI-I-H?ﬂhxldilitl
i 0 l‘ i 0 Status-data bug
- | -.. '| q_;._. I _u._ -:I:Eél_lilh-UI-EﬂnH.';I.
_ox pov pov | o |Databusisale |
® % ® i Dot bl.lh?ilﬁ‘ﬂ

C/D (Control/Data): This input, in conjuction with the WR and RD inpuis informs the
8251A that the word on the Data bus is either a data character, control word or status
information.

1 = CONTROL/STATUS; 0 = DATA

cs (Chip Select) : A "low" on this input selects the 8251A. No reading or writing will
occur unless the device is selected. When C5 is high, the Data Bus is in the float state and
RD and WR have no effect on the chip.

(C) Modem Conirol:

The 8251A has a set of control inputs and outputs that can be used to simplify the interface
to almost any modem, The modem control signals are general purpose in nature and can
be used for functions other than modem control, If necessary.

DSR (Data Sei Ready) : The DSR input signal is a general-purpose, 1-bit inverting input
port. Its condition can be tested by the CPU using a Status Read operation. The DSR
input is normally used to test modem condition such as Data Set Ready.

DTR (Data Terminal Ready): The DTR output signal is a general-purpose, 1-bit
inverting output port. It can be set "low" by programming the appropriate bit in the
Command instruction word. The DTR output signal is normally used for modem control
such as Data Terminal Ready.

RTS (Request to Send): The RTS output signal is a general-purpose, 1-bit inverting
output port, It can be set "low" by programming the appropriate bit in the Command
instruction word, The RTS output signal is normally used for modem control such as
Reg, oat to send.

CTS (Clear to Send): A "low” on this input enables the 8251A to transmit serial data if
the T'x Enable bit in the Command byte is%t to a "one”, if either a Tx Enable off or CTS
off condition oceurs while the T= is in operation, the Tx= will transmit all the data in the

USART, written prior to T= Disable command before shutting down,
{D) Transmitter Buffer:

The transmitter Buffer accepts parallel data from the Data Bus Buffer, converts it to a
serial bit stream, inserts the appropriate characters or bits (based on the communication
technique) and outputs a composite serial stream of data on the TxD output pin on the

falling edge of T x C. The transmitter will begin transmission upon being enabled, if CTS =
0. The T x C line will be held in the marking state immediately upon a master Reset or
when Tx Enable or CTS is off or the transmitter is empty.

(E) Transmitter Control:

The Transmitter Control manages all activities associated with the transmission of serial
data. It accepts and issues signals both externally and internally to accomplish this
function.

T x RDY (Transmitter Ready): This output signals the CPU that the transmitter is ready
to accept a data character, The T x RDY output pin can be used as an interrupt to the
system, since it is masked by T x Enable; or, for Polled operation, the CPU can check T
x RDY using a Status Read operation. T x RDY is automatically reset by the leading edge
of WR when a data character is loaded from the CPU.

T x E (Transmitter Empty): When the 8251A has no character to send, the T x empty
will go high. It resets upon receiving a character from CPU if the transmitter is enableds
Tx empty remains high when the transmitter is disabled. T x Empty can be used to indicate
the end of transmission node, so that the CPU knows when to turn around in the
half-duplex operation mode. :

In the synchronous mode, a high on this output indicates that a character has not been
loaded and the SYNC character or characters are about to be are being transmitted as
filters. T x Empty does not go low when the Sync characters are being shifted out,

T x C (Transmitter Clock): The Transmitter Clock control the rate at which the character
is to be transmitted, In the Synchronous transmission mode, the Baud Rate (1x) is equal
to the T x C frequency. In Asynchronous transmission mode, the baud rate is a fraction
of the actual T x C frequency. A portion of the mode instruction selects this factor it can

be 1,1/160r 1/64 the Tx C.

For example
If Baud rate equals 220 Baud

TXC equals 220 Hz in the 1x mode.

TXC equals 3.52 KHz in the 16x mode.

TXC equals 14.08 KHz in the 64x mode.

The falling edge of TXC shifts the serial data out of the 8251A.

(F) Receiver Buffer:

The Receiver accepts serial data, converts this serial input to parallel format checks for
bits or characters that are unique to the communication technique and sends an
"assembled" character to the CPU. Serial data is input to R x D pin, and is clocked in on
this rising edge of Rx C.

(G) Receiver Control:

This functional block shown in Fig. manages all receiver - related activities which consists
of the following features.

The R x D initialization circuits prevents the 8251A from mistaking and unused input line
for an active low data line in the break condition. Before starting to receive serial characters
on the R x D line, a valid ‘1’ must first be detected after a chip master reset. Once this
has been determined, a search for a valid low bit (start bit) is enabled. This feature is only
active in the asynchronous mode, and is only done once for each master reset.

The false start bit detection circuit prevents false starts due to a transient noise
spike by first detecting the falling edge and then strobing the nominal center of the
start (R x D = low).

Parity error detection sets the corresponding status bit.

The framing error status bit is set if the stop bit is absent at the end of the data byte
(asynchronous mode).
R x RDY (Receiver Ready) : This output indicates the the 8251A contains a character
that is ready to be input to the CPU. R x RDY can be connected to the interrupt structure
of the CPU or, for polled operation, the CPU can check the condition of R x RDY using
a status read operation.

R x Enable, when off, holds R x RDY in the reset condition. For asynchronous mode, to
set R x RDY, the receiver must be enabled to sense a start bit and a complete character
must be assembled and transferred to the data output register.

Failure to read the received character from the R x Data output register prior to the
assembly of the next R x data character will set overrun condition error and the previous
character will be written over and lost. If the R x data is being read by the CPU when the
internal transfer is occurring, overrun error will be set and the old character will be lost.

R x C (Recelver Clock) : The receiver clock controls the rate at which the character is to
be received. In synchronous mode, the baud rate (1) is equal to the actual frequency of
R x C. In asynchronous mode, the baud rate is a fraction of the actual R x € frequency.
A portion of the mode instruction selects this factor: 1, 1/16 of 1/64 the Rx C.

For Example:

Baud rate equals 200 baud, if
R x C equals 200 Hz in the 1 = mode.
R x C equals 3200 Hz in the 16 = mode.

R x C equals 128 KHz in the 64 = mode,

SYNDET (SYNC Detect/BRKDET Break Detect): This is used in Synchronous Mode
for SYNDET and may be used as either input or output, programmable through the
Control Word, It is reset to output mode low upon RESET, When used as an output
(internal Syne mode), the SYNDET pin will go "high" to indicate that the 8251A has
located the SYMNC character in the Receive mode, If the 8251A is programmed to use
double Sync characters (bi-sync), then SYNDET will go "high" in the middle of the last
bit of the second Syne character SYNDET is automatically reset upon a status Read
operation,

When used as an input (external SYNC detect mode), a positive going signal will cause
the B251A to start assembling data characters on the rising edge of the next R x C, Once
in SYNC, the "high" input signal can be removed. When External SYNC Detect is
programmed, mnternal SYNC Detect is disabled.

BREAK (Asyne Mode Only): This output will go high whenever the recelver remains low
through two consecutive stop bit sequences (including the start bits, data bits, and parity
bits); Break Detect may also be read as a Status bit, It is reset only upon a master chip
Reset of R = Data returning to a "one" state,

8251A USART INTERFACING WITH 8086

/-‘}-VCC' Ve
ol i e
0,-D; |
A——N 0 TAD i
Ay B 4 C! 5 RRD - -

8086 % l———b e usarT |
RESET————3 RESET

cloek grequenc
CLA a2 CLK — K j
. RXxC pe——l 160 1z

GND —-L‘ Gﬂﬁ.i— ,

PROGRAMMING THE 8251A

Prior to starting a data transmission or reception, the 8251A must be loaded with a set of
control words generated by the microprocessor. These control signals define the complete
functional definition of the 8251A and must immediately follow a reset operation (internal or
external). The control words are split into two formats.

1. Mode instruction
2. Command instruction

Mode instruction: Mode instruction is used for setting the function of the 8251A. Mode
instruction will be in "wait for write" at either internal reset or external reset. That is, the
writing of a control word after resetting will be recognized as a "mode instruction.”

Items set by mode instruction are as follows:
e Synchronous/asynchronous mode
e Stop bit length (asynchronous mode)
e Character length
e Parity bit
 Baud rate factor (asynchronous mode)
e Internal/external synchronization (synchronous mode)
e Number of synchronous characters (Synchronous mode)
The bit configuration of mode instruction format is shown in Figures below. In the case of
synchronous mode, it is necessary to write one-or two byte sync characters. If sync characters

were written, a function will be set because the writing of sync characters constitutes part of
mode instruction.

S, | S, EP [PEN{ Ly | L, | B, 3,-|

BAUD RATE FACTOR

— Q 1 a 1

0 0 1 1

Y

SYNC
Mone | (0 [ex) | teax)

CHARACTER LENGTH
- o 1 0 y

«| O 0 ! 1

6 7 8

5
BITS | BITS | BITS | BITS
_ PARITY ENABLE

1 ENABLE O : DISABLE

o EVENPARITY GENERATION/CHECK
1=EVEN 0-00D

NUMBER OF STOP BITS

- 0 1 0 1
— 0 Q 1 1

"4 2

7
INVALID| g7 | giTs BITS |

Fig. Mode instruction format, Asynchronous mode

IHE‘B ESD | EF |FFN| L, L, (& cII

CHARACTER LENGTH

o 1 0 1
- 0 o 1 i
5 & | 7 | =

BITS | BITS | 8iTs | BITS

= PFARITY LNADLL
{1 = ENABLE)
i0 = DISABLE)

= EVEN PARITY GENEMATION/CHECK
1= EVERN
0=000D

w—msa= EXTERNAL SYNC DETECT
1= BYNDET 1S AN INPUT
O = SYNDET IS AN OUTPUT

SINGLE CHARACTER S¥YNC
1= SINGLE SYNC CHARACTER

0= DOUBLE SYNC CHABACTER

Command Instruction: Command is used for setting the operation of the 8251. It is possible
to write a command whenever necessary after writing a mode instruction and sync

characters.

Items to be set by command are as follows:
e Transmit Enable/Disable
 Receive Enable/Disable
¢ DTR, RTS Output of data.
* Resetting of error flag.
e Sending to break characters
e Internal resetting
e Hunt mode (synchronous mode)

LEH 1R RTS ER |SBRK R-EIDTR T-FNI

TRANSMIT ENABLE
1 = enabie
0 =~ disabie

DATA TERMINAL
READY

“high”" will force DTR
oulput to zero

RECEIVE ENABLE
1 = snable
0 = chsable

-

SEND BREAK
CHARACTER
1 = forces TxO “low"
0 = normal Operaton

ERROR RESET

1 = reset error flags
PE, OE FE

REQUEST TO SEND
“high’” witl force RTS
outpul to rero

INTERNAL RESET
“high' returns B2514A 10
Mode Instruction Format

ENTER HUNT MODE*
1 - enable search lor Sync
Characters

P —— e ey e ———— e e AT i) [pr——— pr——

Status Word: It is possible to see the internal status of the 8251 by reading a status word.
The format of status word is shown below.

D, D¢ Dg D, D, D,)

pSA | Seey FE OF PE | Txemprv| RxRDY | TxRDY
| S—
Note 1

SAME DEFINITIONS AS 170 PINS

PARITY ERROR

The PE flag i1s set when a parity
error 1s detected . It ;s reset by
the ER bit of the Command
Instruction PE does not inhibit
operation of the B251A

OVERRUN ERROR

The OE flag 1s set when the CPU
does not read a character helfare
the next one becomes available

FRAMING ERROR {(Async onty|

The FE flag 1s set when a valhid
S UL 1 NOL geTECTEO at The

end of every character -

Sae - N - eh ~ b

1

DATA SET READLY Indicates
that the DSR s at a zero levei

v

Fig. Status word

RECOMMENDED STANDARD -232C (RS-232C)

RS-232 (Recommended standard-232) is a standard interface approved by the Electronic
Industries Association (EIA) for connecting serial devices. In other words, RS-232 is a long-
established standard that describes the physical interface and protocol for relatively low-speed
serial data communication between computers and related devices. RS-232 is the interface that
your computer uses to talk to and exchange data with your modem and other serial devices. The
serial ports on most computers use a subset of the RS-232C standard.

RS-232C is defined as the “Interface between data terminal equipment and data
communications equipment using serial binary data exchange.” This definition defines data
terminal equipment (DTE) as the computer, while data communications equipment (DCE) is
the modem. A modem cable has pin-to-pin connections, and is designed to connect a DTE
device to a DCE device. In addition to communications between computer equipment over
telephone lines, RS-232C is now widely used for direct connections between data acquisition
devices and computer systems. RS-232C cables are commonly available with 4, 9 or 25-pin
wiring. The 25-pin cable connects every pin; the 9-pin cables do not include many of the
uncommonly used connections; 4-pin cables provide the bare minimum connections, and have
jumpers to provide “handshaking” for those devices that require it.

In RS-232, user data is sent as a time-series of bits. Both synchronous and asynchronous
transmissions are supported by the standard. In addition to the data circuits, the standard
defines a number of control circuits used to manage the connection between the DTE and
DCE. Each data or control circuit only operates in one direction, which is, signaling from a
DTE to the attached DCE or the reverse. Since transmit data and receive data are separate
circuits, the interface can operate in a full duplex manner, supporting concurrent data flow in
both directions.

The RS-232 standard defines the voltage levels that correspond to logical one and logical zero
levels for the data transmission and the control signal lines. Valid signals are either in the
range of +3 to +15 volts for logic 0 or the range -3 to -15 volts for logic 1, the range between -
3 to +3 volts is not a valid RS-232 level. For data transmission lines (TxD, RxD and their
secondary channel equivalents) logic one is defined as a negative voltage, the signal condition
is called "mark." Logic zero is positive and the signal condition is termed "space.” The 9-pin
RS-232C standard is shown in figure below.

RS-232 DB-9 Male Pinout

PIN 1: Data Carrier Detect
PIN 2: Receive Data

RI PIN 3: Transmit Data

cts PIN 4: Data Terminal Ready
PIN 5: Signal Ground
PIN 6: Data Set Ready

psrk PIN 7: Request to Send
PIN 8: Clear to Send
PIN 9: Ring Indicator

GND

0@(7

®

DTR

TxD
RTS

RxD

OO
@0

http://en.wikipedia.org/wiki/Time-series
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Full_duplex

End of Unit Il

p

%,

No: 126AK R13

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B. Tech 111 Year Il Semester Examinations, November/December - 2020
MICROPROCESSORS AND INTERFACING DEVICES
(Electrical and Electronics Engineering)

Time: rs Max. Marks: 75

3.2)
b)

4.a)
b)
5.a)
6.a)
b)
7.a)

b)

Answer any five questions
All questions carry equal marks

Discuss t ction of pins corresponding to minimum mode of 8086 microprocessor.
[15]

Draw the architégture®of 8086 and then explain each block in detail. [15]

List out the different Q sfer instructions present in 8086 and explain each one.

Write an Assembly langUage pra@gam to find the number of positive and negative
numbers in an 8-bit array of 10Q ««@ [8+7]

Write an ALP to convert a four digit cimal number to decimal number.

Explain the instructions related to string\gperaiens. [7+8]
Draw the internal architecture of 8255 PP¥an laig its operation.

Explain about static memories. [12+3]

Draw the frame format of BSR and 1/0 mode of 5 PP
Sketch and explain the interface of PIC 8259 to the 8086

explain each bit of it.
g@processor in minimum

mode. [7+8]
List out the different serial communication standards. Also, re serial and parallel
data communications.

Discuss the basic concepts of IEEE -488 protocols. [9+6]

List and explain different addressing modes of 8051 microcontroller wit @ les.

---00000---

Q.

<

