UNIT -1
THE 8086 MICROPROCESSORS

* A microprocessor is an electronic component that is used by a
computer to do its work. It i1s a central processing unit on a
single integrated circuit chip containing millions of very small
components including transistors, resistors, and diodes that
work together.

/ Microprocessor \

Input | Output
Device Control Unit Device

& Register Array j

ALU

Evolution of Microprocessor

Processor | Introduced in | Data Bus Memory address | Clock signal
capability

4004 1971 4 bit 1KB

8008 1972 8 bit, 40 pin 16KB

8080 1973 8 bit 64KB

8085 1976 8 bit, 40 pin 64KB 8-6 MHz

8086 1988 16bit up, 40 pm | IMB 5-10MHz

80286 1982 16 bit up, 68 pm | 16MB 6-12.5MHz

80386 1985 32bit, 132 pin | 4GB 22-33MHz

80486 1989 32bit, 168 pin | 4GB 26-100MHz

Pentium | 1993 32bit, 168 pin | 4GB 100-150MHz

Microprocessor

Micro Controller

Read-Write
Memaory

Read-Only
Memory

Microprocessor is heart of Computer system.

Micro Controller is a heart of embedded system.

It is just a processor. Memory and 1/0O components
have to be connected externally

Micro controller has external processor along with
internal memory and i/0O components

Since memory and I/0 has 1o be connected externally,
the circuit becomes large.

Since memory and 1/0 are present internally, the
circuit is small.

Cannot be used in compact systems and hence
inefficient

Can be used in compact systems and hence it is an
efficient technique

Cost of the entire system increases

Cost of the entire system is low

Due to external components, the entire power
consumption is high. Hence it is not suitable to used
with devices running on stored power like batteries.

Since external components are low, total power
consumption is less and can be used with devices
running on stored power like batteries.

Most of the microprocessors do not have power saving
features

Most of the micro controllers have power saving modes
like idle mode and power saving mode. This helps to
reduce power consumption even further.

Since memory and 1/O components are all external,
each instruction will need external operation, hence it
is relatively slower.

Since components are internal, most of the operations
are internal instruction, hence speed is fast.

Microprocessor have less number of registers, hence
more operations are memory based.

Micro controller have more number of registers, hence
the programs are easier to write.

Microprocessors are based on von Neumann
model/architecture where program and data are stored
in same memory module

Micro controllers are based on Harvard architecture
where program memory and Data memory are separate

Mainly used in personal computers

Used mainly in washing machine, MP3 players

UNIT 1
THE 8086 MICROPROCESSOR

Introduction to 8086 — Microprocessor
architecture — Addressing modes - Instruction
set and assembler directives — Assembly
language programming - Modular
Programming - Linking and Relocation - Stacks
- Procedures — Macros — Interrupts and
interrupt service routines — Byte and String
Manipulation.

UNIT 1

THE 8086 MICROPROCESSOR

FEATURES OF 8086

 The 8086 is a 16 bit processor.

 The 8086 has a 16 bit Data bus.

* The 8086 has a 20 bit Address bus.

* Direct addressing capability 1 M Byte of Memory (2%°)
* |t provides fourteen 16-bit register.

24 Operand addressing modes.

* Four general-purpose 16-bit registers: AX, BX, CX, DX
e Available in 40pin Plastic Package and Lead Chip.

8086 MICROPROCESSOR ARCHITECTURE

Memory
BIU
(Bus Interface Unit) | |
G
G——— | 5
" NSNS
LR
Eo Segment 3
5 .
1= registers 2
DS 1
IE <Instruction |~ —m™—4~
pointer | Control
—TTT =" T——""7""7"= = Linit
EU \
{(Execution unit) ’ i\
z
General AH AL
puUTrpOSE —3 BH BL
registers ZH L
e DH DL
Fointers —}{ =P >
BE
Index 3-{ Elll >
registers ——l

the 8086 processor are partitioned logically into
two processing units

* Bus Interface Unit (BIU)

The BIU fetches instructions, reads data from
memory and ports, and writes data to memory
and |/O ports.

e Execution Unit (EU)

EU receives program instruction codes and data
from the BIU, executes these instructions and
stores the results either in the general registers or
output them through the BIU. EU has no
connections to the system buses.

The BIU contains

* Segment registers

* |Instruction pointer

* |nstruction queue

The EU contains

* ALU

* General purpose registers
* Index registers

* Pointers

* Flag register

General Purpose Registers

All general registers of the 8086 microprocessor can be
used for arithmetic and logic operations.

* Accumulator register (AX)

Accumulator can be used for I/O operations and string
manipulation.

e Base register (BX)

BX register usually contains a data pointer used for
based, based indexed or register indirect addressing.

* Countregister (CX)

Count register can be used as a counter in string
manipulation and shift/rotate instructions.

e Dataregister (DX)
Data register can be used as a port numberin I/O

operations.

NRCM

your roots to success...

Segment Registers:

Most of the registers contain data/instruction offsets within
64 KB memory segment. There are four different 64 KB
segments for instructions, stack, data and extra data.

 Code segment (CS)

The CS register is automatically updated during FAR JUMP,
FAR CALL and FAR RET instructions.

* Stack segment (SS)
SS register can be changed directly using POP instruction.
* Datasegment (DS)

DS register can be changed directly using POP and LDS
instructions.

e Extra segment (ES)

ES register can be changed directly using POP and LES
instructions.

Pointer Registers
Stack Pointer (SP)
It is a 16-bit register pointing to program stack.

Base Pointer (BP)

It is a 16-bit register pointing to data in the stack segment.
BP register is usually used for based, based indexed or
register indirect addressing.

Index Registers

Source Index (SI)

It is a 16-bit register. Sl is used for indexed, based indexed
and register indirect addressing, as well as a source data
address in string manipulation instructions.

Destination Index (DI)

It is a 16-bit register. DIl is used for indexed, based indexed
and register indirect addressing, as well as a destination
data address in string manipulation instructions.

Instruction Pointer (IP)

It is a 16-bit register. The operation is same as the
program counter. The IP register is updated by
the BIU to point to the address of the next
instruction. Programs do not have direct access
to the IP, but during execution of a program the IP
can be modified or saved and restored from the

stack.

Flag register

It is a 16-bit register containing nine 1-bit flags:
 Six status or condition flags (OF, SF, ZF, AF, PF, CF)
* Three control flags (TF, DF, IF)

Overflow Flag (OF) - set if the result is too large positive number,
or is too small negative number to fit into destination operand.

Sign Flag (SF) - set if the most significant bit of the result is set.
Zero Flag (ZF) - set if the result is zero.

Auxiliary carry Flag (AF) - set if there was a carry from or borrow
to bits 0-3 in the AL register.

Parity Flag (PF) - set if parity (the number of “1” bits) in the low-
order byte of the result is even.

Carry Flag (CF) - set if there was a carry from or borrow to the
most significant bit during last result calculation.

Trap or Single-step Flag (TF) - if set then single-step interrupt will
occur after the next instruction.

Direction Flag (DF) - if set then string manipulation instructions
will auto-decrement index registers. If cleared then the index
registers will be auto-incremented.

Interrupt-enable Flag (IF) - setting this bit enables maskable

interrupts.

NRCM

your roots to success...

AH AL Accumulator (AX)
BH EL Base (BX)
CH CL Count (CX)
DH DL Data (DX)
SP Stack Pointer
BP Base Pointer
51 Source Index
DI Destination Index
CSs Code Segment
D5 Data Segment
55 Stack Segment
ES Extra Segment
| P Instruction Pointer
‘ OF DF SF AF PF CF |Flags

Instruction Queue

The instruction queue is a First-In-First-out (FIFO)
group of registers where 6 bytes of instruction
code is pre-fetched from memory ahead of time.
It is being done to speed-up program execution
by overlapping instruction fetch and execution.
This mechanism is known as PIPELINING.

ALU

It is a 16 bit register. It can add, subtract,
increment, decrement, complement, shift
numbers and performs AND, OR, XOR operations.

Control unit
The control unit in the EU directs the internal

operations like x5, wr » m/i0

Instruction Set
* Data moving instructions.

* Arithmeticinstructions - add, subtract, increment,
decrement, convert byte/word and compare.

* Logicinstructions - AND, OR, exclusive OR,
shift/rotate and test.

* String manipulation instructions - load, store,
move, compare and scan for byte/ word.

 Control transfer instructions - conditional,
unconditional, call subroutine and return from
subroutine.

* [nput/Output instructions.

* Otherinstructions - setting/clearing flag bits, stack
operations, software interrupts, etc.

Addressing modes

Implied - the data value/data address is implicitly associated with the
instruction.

Register - references the data in a register or in a register pair.

Immediate - the data is provided in the instruction.
Direct - the instruction operand specifies the memory address where data is
located.

Register indirect - instruction specifies a register containing an address,
where data is located. This addressing mode works with Sl, DI, BX and BP
registers.

Based - 8-bit or 16-bit instruction operand is added to the contents of a
base register (BX or BP), the resulting value is a pointer to location where
data resides.

Indexed - 8-bit or 16-bit instruction operand is added to the contents of an
index register (Sl or DI), the resulting value is a pointer to location where
data resides.

Based Indexed - the contents of a base register (BX or BP) is added to the
contents of an index register (Sl or DI), the resulting value is a pointer to
location where data resides.

Based Indexed with displacement - 8-bit or 16-bit instruction operand is
added to the contents of a base register (BX or BP) and index register (S| or
Dl), the resulting value is a pointer to location where data resides.

Interrupts

Hardware interrupts

Maskable and non-maskable interrupts
Software interrupts

ADDRESSING MODES

An addressing mode is the way the 8086 identifies the operands for
the instruction. All instructions that access the data use one or
more of the addressing modes.

The memory address of an operand consists of two components
1.Starting address of the memory segment

2.0ffset

When an operand is stored in a memory location, how for the
operand’s memory location is within a memory segment from the

starting address of the segment, is called Offset or Effective
Address (EA).

The 8086 uses 20 bit memory address. The segment register gives
16 MSBs of the starting address of the memory segment. The BIU
generates 20 bit starting address of the memory segment by
shifting the content of the segment register left by 4 bits. In other
words it puts 4 zeros in 4 LSB positions.

Memory Address = Starting address of the memory segment +
Offset

The 8086 has the following addressing modes:
* Register Addressing Mode

* Immediate Addressing Mode

* Direct Addressing Mode

* Register Indirect Addressing Mode
* Base Addressing Mode

* |Indexed Addressing Mode

* Based Indexed Addressing Mode

e String Addressing Mode

* |/O Port Addressing Mode

* Relative Addressing Mode

* Implied Addressing Mode

Register Addressing Mode

* Both source and destination operands are
registers. The operand sizes must match. MOV
destination, source

 Examples:

« MOV AL, AH

« MOV AX, BX

Immediate Addressing Mode

 The data operand is supplied as part of the
instruction. The immediate operand can only be a
source.

 Examples:
MOV CH, 3AH
e MOV DX, 0C1A5H

Direct Addressing Mode

One of the operands is a memory location, given by a
constant offset.

In this mode the 16 bit effective address (EA) is taken
directly from the displacement field of the instruction.

Examples:
MOV AX,[1234 H]
MOV DL, [3BD2 Hj,

Register Indirect Addressing Mode

One of the operands is a memory location, with the
offset given by one of the BP, BX, SI, or DI registers.

Example:
MOV [BX], CL
MOV DL, [BX]

Base Addressing Mode

* |In this mode EA is obtained by adding a
displacement (signed 8 bit or unsigned 16 bit)
value to the contents of BX or BP. The segment
registers used are DS and SS.

* Example:
« MOV AX, [BP + 200]
Indexed Addressing Mode

* The operand’s offset is the sum of the content of
an index register Sl or DI and an 8-bit or 16-bit
displacement.

 Example:
* MOV AH, [DlI]

Based Indexed Addressing Mode

* |In this mode, the EA is computed by adding a base
register (BX or BP), an index register (Sl or DI) and a
displacement (unsigned 16 bit or sign extended 8

bit)
 Example:
« MOV AX, [BX+SI+ 1234 H]
e MOV CX, [BP][SI] + 4
String Addressing Mode

 Theinstruction is a string instruction, which uses
index registers implicitly to access memory.

 Example:
 MOVSB
 MOVSW

/O Port Addressing Mode

* The destination or source of the data is an |I/O port.
Either direct port addressing (including an 8-bit port
address) or indirect addressing (DX must contain the
port address) may be used.

 Examples:

* IN AX, 50H ; Direct

e OUT DX, AL ; Indirect
Relative Addressing Mode

* In this mode, the operand is specified as a signed 8
bit displacement, relative to PC(Program Counter).

 Examples:
 JMP 0200 H
 JNCSTART

Implied Addressing Meode
* [nstructions using this mode have no operands.

 Examples:
 CLC, STC, CMC

INSTRUCTION SET

* |ntel 8086 has approximately 117 instructions. These
instructions are used to transfer data between
registers, register to memory, memory to register or
register to |/O ports and other instructions are used for
data manipulation.

* Butin Intel 8086 operations between memory to
memory is not permitted. These instructions are
classified in to six-groups as follows.

1.Data Transfer Instructions

2.Arithmetic Instructions

3.Bit Manipulation Instructions

4.String Instructions

5.Program Execution Transfer Instructions
6.Processor Control Instructions

Data Transfer Instructions
1.MOV

MOV destination, source

This (Move) instruction transfers a byte or a word
from the source operand to the destination
operand.

(DEST)e (SRC)
DEST = Destination
SRC = Source
Example :

MOV AX, BX

MOV AX, 2150H

* MOV AL, [1135]

2.PUSH

PUSH Source

This instruction decrements SP (stack pointer)
by 2 and then transfers a word from the
source operand to the top of the stack now
pointed to by stack pointer.

(SP) «(SP)—2
((SP)+1 : (SP))< (SRC)
Example :

PUSH SI

PUSH BX

AX=32F5H
SP=2004H

Instruction
PUSH AX

Stack
Segment

32

ES

2007

2006

2005

2004 —» Current SP
2003 —» SP-1
2002 e SpP-2
2001

2000

3.POP

POP destination

This instruction transfers the word at the
current top of stack (pointed to by SP) to the
destination operand and then increments SP
by 2, pointing to the new top of the stack.

(DEST)< ((SP)+1:(SP))
(SP)<(SP) + 2
Example :

POP DX

POP DS

LAHF
* Load Register AH from Flags

* This instruction copies Sign flag(S), Zero flag (2),
Auxiliary flag (AC), Parity flag (P) and Carry flag

(C) of 8086 into bits 7, 6, 4, 2 and O respectively,
of register AH

(AH)« | § | Z | X |AC| X | P | X | C

SAHF

* Store Register AH into Flags
 This instruction transfers bits 7, 6, 4, 2 and O from
register AHinto S, Z, AC, P and C flags

respectively, thereby replacing the previous
values. |

‘S‘Z‘K‘M“‘P‘K‘C‘{—@H}

XCHG
e XCHG destination, source

 This (Exchange) instruction switches the contents of the source and
destination operands.

(Temp) «— (DEST)
(DEST) «— (SRC)
(SRC)«— (Temp)
HNUOCHG AN BX
NCOCHG BL., AL

XLAT
* XLATtable

e This (Translate) instruction replaces a byte in the AL register with a byte
from a 256-byte, user-coded translation table. XLAT is useful for
translating characters from one code to another.

* AlL<((BX) +(AL))
 Example :

e XLAT ASCII_TAB

e XLAT Table_3

LEA

 LEA destination, source

e This (Load Effective Address) instruction transfers the offset of the
source operand (memory) to the destination operand (16-bit
general register).

 (REG)€EA
 Example:

 LEA BX, [BP] [DI]

e LEASI, [BX + 02AF H]
LDS

 LDS destination, source

* This (Load pointer using DS) instruction transfers a 32-bit pointer
variable from the source operand (memory operand) to the
destination operand and register DS.

« (REG)<€ (EA)

« (DS)e (EA+2)
 Example :

e LDSSI, [6AC1H]

LES
 LESdestination, source

* This (Load pointer using ES) instruction transfers a 32-bit pointer variable from the
source operand (memory operand) to the destination operand and register ES.

* (REG) < (EA)
* (ES)« (EA+2)
 Example:

« LESDI, [BX]

 [INaccumulator, port

* This (Input) instruction transfers a byte or a word from an input port to the
accumulator (AL or AX).

« (DEST)<«(SRC)
* Example :

* IN AX, DX
* INAL, 062H
ouT

 OUT port, accumulator
* This (Output) instruction transfers a byte or a word from the accumulator (AL or AX)
to an output port.

 (DEST)e=(SRC)
« Example :
« OUTDX, AL

* OUT31, AX

NRCM

your roots to success...

Arithmetic Instructions
ADD

ADD destination, source

This (Add) instruction adds the two operands (byte or word) and stores
the result in destination operand.

(DEST) < (DEST) + (SRC)
Example :

ADD CX, DX

ADD AX, 1257 H

ADD BX, [CX]

ADC

ADC destination, source

This (Add with carry) instruction adds the two operands and adds one if
carry flag (CF) is set and stores the result in destination operand.

(DEST) € (DEST) + (SRC) + 1
Example :

ADC AX, BX

ADCAL, 8

ADC CX, [BX]

SUB
 SUB destination, source

e This (Subtract) instruction subtracts the source operand from the
destination operand and the result is stored in destination operand.

 (DEST)e (DEST)— (SRC)
e Example :

« SUBAX, 6541 H

 SUB BX, AX

e SUBSI, 5780 H

SBB

 SBBdestination, source

* This (Subtract with Borrow) instruction subtracts the source from the
destination and subtracts 1 if carry flag (CF) is set. The result is stored
in destination operand.

 (DEST)e (DEST) — (SRC) -1
 Example :

 SBB BX, CX

* SBB AX, 2

CMP
e CMP destination, source

* This (Compare) instruction subtracts the source from the
destination, but does not store the result.

 (DEST)—-(SRC)
 Example:

« CMP AX, 18

e CMP BX, CX
INC

* INC destination

* This (Increment) instruction adds 1 to the destination
operand (byte or word).

 (DEST)< (DEST)+1
e Example:
 INCBL

 INCCX

DEC
e DEC destination

* This (Decrement) instruction subtracts 1 from the
destination operand. (DEST)< (DEST) -1

 Example :
 DECBL

« DECAX

NEG

 NEG destination

* This (Negate) instruction subtracts the destination
operand from 0 and stores the result in destination.
This forms the 2’s complement of the number.

 (DEST)<« 0 — (DEST)
e Example :
* NEG AX

* NEGCL

NRCM

your roots to success...

DAA

* This (Decimal Adjust for Addition) instruction converts the
binary result of an ADD or ADC instruction in AL to packed
BCD format.

DAS

* This (Decimal Adjust for Subtraction) instruction converts
the binary result of a SUB or SBB instruction in AL to packed
BCD format.

AAA

* This (ASCIl Adjust for Addition) instruction adjusts the
binary result of ADD or ADC instruction.

* |f bits 0-3 of AL contain a value greater than 9, or if the
auxiliary carry flag (AF) is set, the CPU adds 06 to AL and
adds 1 to AH. The bits 4-7 of AL are set to zero.

o (Al)e (AL)+6
o (AHF¥ (AH) +1
.« (AF)* 1

AAS

This (ASCII Adjust for Subtraction) instruction adjusts the binary
result of a SUB or SBB instruction.

|f D3—Dg of AL > 9,
(AL)e (AL)— 6
(AH)< (AH)-1
(AF)« 1

MUL

MUL source

This (Multiply) instruction multiply AL or AX register by register or
memory location contents. Both operands are unsigned numbers. If
the source is a byte (8 bit), then it is multiplied by register AL and
the result is stored in AH and AL.

If the source operand is a word (16 bit), then it is multiplied by
register AX and the result is stored in AX and DX registers.

If 8 bit data, (AX)e (AL) x (SRC)

If 16 bit data, (AX), (DX)< (AX) x (SRC)

Example :

MUL 25

* MULCX

NRCM

your roots to success...

e IMUL
e IMUL Source

* This (Integer Multiply) instruction performs a signed
multiplication of the source operand and the accumulator.

* If 8 bit data, (AX)< (AL) x (SRC)

* If 16 bit data, (AX), (DX) < (AX) x (SRC)
 Example:

 |IMUL 250

 IMUL BL

AAM

* This (ASCII Adjust for Multiplication) instruction adjusts
the binary result of a MUL instruction. AL is divided by
10(0AH) and quotient is stored in AH. The remainder is
stored in AL.

* (AH)< (AL/OAH)

* (AL) «Remainder

DIV
* DIV Source

* This (Division) instruction performs an unsigned
division of the accumulator by the source operand. It
allows a 16 bit unsigned number to be divided by an 8
bit unsigned number, or a 32 bit unsigned number to
be divided by a 16 bit unsigned number.

 For 8 bitdata, AX/source
(AL) «Quotient
(AH)«—Remainder
* For 16 bit data, AX, DX / Source
(AX)« Quotient
(DX)< Remainder
e Example :
* DIVCX

 DIV321

NRCM

your roots to success...

IDIV
* [IDIV source

* This (Integer Division) instruction performs a signed division of the accumulator by
the source operand.

* For 8 bitdata, AX/Source
(AL)< Quotient
(AH)e Remainder
* For 16 bit data, AX, DX / Source
(AX)< Quotient
(DX)s Remainder

 Example :
« IDIVCL
 IDIVAX
AAD

* This (ASCII Adjust for Division) instruction adjusts the unpacked BCD dividend in
AX before a division operation. AH is multiplied by 10(0AH) and added to AL. AH is
set to zero.

+ (AL) < (AH x 0AH) + (AL)
« (AH)< 0

CBW
* This (Convert Byte to Word) instruction converts

* I[FAL<80H,thenAH=00H
* |[FAL>80H, then AH = FFK

a byte to a word. It extends the sign of the byte in
register AL through register AH. This instruction
can be used for 16 bit IMUL or IDIV instruction.

CWD:

This (Convert Word to Double word) instruction
converts a word to a double word.

It extends the sign of the word in register AX
through register DX.

If AX <8000 H, then DX =0000 H
If AX > 8000 H, then DX = FFFFH

Bit Manipulation Instructions

(i)Logical Instructions: AND, OR, XOR, NOT,
TEST

(ii) Shift Instructions: SHL, SAL, SHR, SAR
(iii)Rotate Instructions: ROL, ROR, RCL, RCR

AND
 AND destination, source

* This (AND) instruction performs the logical “AND” of the source
operand with the destination operand and the result is stored in
destination.

 (DEST)- (DEST) “AND” (SRC)
 Example :

« ANDBL, CL

« ANDAL,001111008B

 ORdestination, source

e This (OR) instruction performs the logical “OR” of the source
operand with the destination operand and the result is stored in
destination.

« (DEST) - (DEST) “OR” (SRC)
 Example :

 OR AX, BX

e ORAL,00001111B

2=0R: LOGICOR

OR instruction source operand immediate , register or memory location to the
destination operand

OR AX,0098H content of AX if 3FOFH
OR AX,BX

0011 1111 0000 1111 =3FOFH [AX]
OR
0000 0000 1001 1000 =0098H

0011 1111 1001 1111 =3F9FH [AX]
v

XOR
 XOR destination, source

* This (Exclusive OR) instruction performs the logical “XOR”
of the two operands and the result is stored in destination
operand.

 (DEST) - (DEST) “XOR” (SRC)
 Example:

 XOR BX, AX

« XORAL,11111111B

NOT

* NOT destination
* This (NOT) instruction inverts the bits (forms the 1’s
complement) of the byte or word.

 (DEST)-1"s complement of (DEST)
e Example:
« NOT AX

TEST

» TEST destination, source

* This (TEST) instruction performs the logical “AND” of the two operands and
updates the flags but does not store the result.

e (DEST) “AND” (SRC)

e Example :

e TESTAL,15H
e TESTSI, DI
SHL

* SHL destination, count

e This (Shift Logical Left) instruction performs the shift operation. The number
of bits to be shifted is represented by a variable count, either 1 or the number
contained in the CL register.

e Example
 SHLAL 1
 Before execution :

CF
Lo

1 1 o 0
After execution :
CF AL
1 1] oF 1

SAL
 SAL destination, count

* SAL (Shift Arithmetric Left) and SHL (Shift Logical Left) instructions perform the same
operation and are physically the same instruction.

 Example

« SALAL,CL
 SALAL1
SHR

* SHR destination, count

* This (Shift Logical Right) instruction shifts the bits in the destination operand to the
right by the number of bits specified by the count operend, either 1 or the number
contained in the CL register.

e Example

* SHRBL1
* SHRBL, CL
CF EL

— [— — —s —s — —

The SHE instuctionmav be used to divide a number bv 2. For example, we can divide

32 h;' 2,
MOWVBL, 32 ; 0010 0000 (32)
SHEEL. 1 . 0001 0000 (18)
SHERBL.1 : 0000 1000 (8)

SHEHR FT 1 - Dty Oyl Oviny ALY

SAR
 SAR destination, count

* This (Shift Arithmetic Right) instruction shifts the bits in the
destination operand to the right by the number of bits specified in
the count operand. Bits equal to the original high-order (sign) bits are
shifted in on the left, thereby preserving the sign of the original value.

= —

CF ‘ '
= | I'i..-f[SEﬂ — — — I

ROL

ROL destination, count

This (Rotate Left) instruction rotates the bits in the byte/word destination operand to the
left by the number of bits specified in the count operand.

(—yi--c < <

CF AT
Before execution - | 0 1 1 0 0 1 1 ol 0

CF

ik

- =
Example :

ROLAT.1

ROR
* ROR destination, count

* This (Rotate Right) instruction rotates the bits in the byte/word
destination operand to the right by the number of bits specified in the

count operand.

-
> > .
o
Example :
POR AT 1
CF AT,
Beforeexecutiml:lﬂll 1 1 of © 1] 1| 0 O
CF AT,
After execution - | 0| ol 1| 1| o| o 1| 1| o
RCL

RCL destination, count
This (Rotate through Carry Left) instruction rotates the contents left through

carry by the specified number of bits in count operand.

A

=]
Ercarmeple -
BFCT AT 1
ZF AT,
Before execution : I 1| | Dl Dl Dl Dl
L AT,

After execution - |0 | Dl Dl Dl

RCR
* RCRdestination, count

* This (Rotate through Carry Right) instruction rotates the contents right
through carry by the specified number of bits in the count operand.

CF
|_)|: I
Example :
RCR AL, 1
CF AL
Before execution : | 1 1) 1 0o 0 ¢ Of 1] 0
CF AL
Afterexecution: |0 1| 1| 1| 0 0 0] 0] 1

STRING INSTRUCTIONS
REP

e REP MOVS destination, Source

* This (Repeat) instruction converts any string primitive
instruction into a re-executing loop. It specifies a termination
condition which causes the string primitive instruction to
continue executing until the termination condition is met.

e Example:

e REP MOVSCL, AL

 The other Repeat instructions are :
 REPE - Repeat while Equal

 REPZ - Repeat while zero

* REPNE - Repeat while Not Equal

e REPNZ - Repeat while Not Zero

e The above instructions are used with the CMPS and SCAS
instructions.

MOVS
 MOVS destination - string, source-string

* This (Move String) instruction transfers a byte/word
from the source string (addressed by Sl) to the
destination string (addressed by DI) and updates Sl and
DI to point to the next string element.

 (DEST)<(SRC)

 Example :

e MOVS Buffer 1, Buffer 2

CMPS

* CMPS destination-string, source-string

* This (Compare String) instruction subtracts the
destination byte/word (addressed by DI) from the source
byte/word (addressed by Sl). It affects the flags but does
not affect the operands.

 Example :

« CMPS Buffer 1, Buffer 2

SCAS

SCAS destination-string

This (Scan String) instruction subtracts the destination string element (addressed by
DI) from the contents of AL or AX and updates the flags.

Example:
SCAS Buffer

LODS

LODS source-string

This (Load String) instruction transfers the byte/word string element addressed by Sl
to register AL or AX and updates Sl to point to the next element in the string.

(DEST) < (SRC)
Example :
LODSB name
LODSW name

STOS

STOS destination - string

This (Store String) instruction transfers a byte/word from register AL or AX to the
string element addressed by DI and updates DI to point to the next location in the
string.

(DEST)e (SRC)

Example :

STOS display

Program Transfer Instructions

(i)lUnconditional instructions: CALL, RET, JMP
(ii)Conditional instructions: JC, JZ, JA.....
(iii)lteration control instructions :LOOP, JCXZ
(iv)Interrupt instructions: INT, INTO, IRET

CALL

CALL procedure - name

This (CALL) instruction is used to transfer execution
to a subprogram or procedure. RET (return)
instruction is used to go back to the main program.
There are two basic types of CALL : NEAR and FAR

Example :
CALL NEAR

* CALL AX

NRCM

your roots to success...

RET

e This (Return) instruction will return execution from a
procedure to the next instruction after the CALL
instruction in the main program.

* Example :
* RET

* RET6
JMP

* JMP target

e This (Jump) instruction unconditionally transfers control to
the target location. The target operand may be obtained
from the instruction itself (direct IMP) or from memory or
a register referenced by the instruction (indirect JMP).

 Example :

* JMP BX

NRCM

your roots to success...

Condittonal JAMP

+
| Instruction Operation

J Jurmp if carmry
JINC Jurmp ifno carry
JZ Jump 1f Zero
JINE Jump ifnot zero
JS Jump if sign or negative
JINS Jurmnmp if positive
JE/JPE Jump ifpantv/panty even
JPSTRO Jump ifnot panty/odd panty
JO Jump if overflow
JINC Jurmp ifno overflow
JA/ITNEBE Jurmp if abowve/not below or equal
JAE/JNE Jump ifabowve or equal’not below
JB/JNAE Jump ifbelow/not abowve or egqual
JBE/JINA Jump ifbelow or equal/ not abowve
J&EINLE Jurnp if greater’not less thannor egual
JGEE/JINL Jurnp 1f greater or equal’notlessthan
JL/JINGE Jurmp ifless'neither greater nor egual
JLE/JNG | Jump ifless than orequal/ not greater

LOOP
e [OOP label

* This (Loop if CX not zero) instruction
decrements CX by 1 and transfers control to
the target operand if CX is not zero. Otherwise
the instruction following LOOP is executed.

* |If CX#0, CX = CX-1
* [P =IP+displacement

* |f CX=0, then the next sequential instruction is
executed.

e Example :
* LOOP again

Processor Control Instructions
HLT

e This (Halt) instruction will cause the 8086 to stop fetching
and executing instructions. The 8086 will enter a halt
state.

WAIT

* This (Wait) instruction causes the 8086 to enter the wait
state while its test line is not active.

ESC

e This (Escape) instruction provides a mechanism by which
other coprocessors may receive their instructions from
the 8086 instruction stream and make use of the 8086
addressing modes. The 8086 does a no operation (NOP)
for the ESC instruction other than to access a memory
operand and place it on the bus.

NOP

* This (No operation) instruction causes the
CPU to do nothing. NOP does not affect any
flags.

Flag operations

Instruction Operation

CLC Clear the carry flag (CF)

CMC Complement the carrv flag (CF)
STC Set the carrv flag (CF)

CLD Clear the direction flag (DF)
STD Set the direction flag (DF)

CLI Clear the intermutp flag (IF)

STI Set the interrupt flag (IF)

ASSEMBLER DIRECTIVES

An assembler is a program which translates an
assembly language program into machine language
program.

An assembler directive is a statement to give
direction to the assembler to perform the task of
assembly process.

The assembler directives control organization of the
program and provide necessary information to the
assembler to understand assembly language
programs to generate machine codes.

An assembler supports directives to define data, to
organize segments, to control procedures, to define
macros etc.

An assembly language program consists of two

types of statements: Instructions and Directives.

Some assembler directives are,

* Borland Turbo Assembler (TASM)

* |IBM Macro Assembler (MASM)

* Intel 8086 Macro Assembler (ASM)
* Microsoft Macro Assembler

The general

ASSTTME
DB
DWW
DD
DO

DT
END
ENDP
ENDM
ENDS
EQTT
EVEN

assembler directives are

EXTRIN
GROTRP
INCLTUDE
LABETL.
MIACE O
ORG

PTER

PR O
PUOBILIC
BEECORID
SEGGMENT
STERETIC

ASSUME

* The ASSUME directive enables error-checking
for register values.

* |tis used to inform the assembler the names
of the logical segments, which are to be
assigned to the different segments used in an
assembly language program

* Format:

 ASSUME segregister:name | [, segregister:namel]...

 ASSUME dataregister:type [[, dataregister:typel]]...
 ASSUME register:ERROR [][, register:ERROR]]...
 ASSUME [[register:]] NOTHING [[, register:NOTHING]]...

DB (Define Byte)

* |t can be used to define data like BYTE.

* Format:

* Name of the Variable DB Initial values
e Example:

* WEIGHTS DB 18, 68, 45

DW (Define Word)

* |t can be used to define data like WORD (2 bytes).
* Format:

* Name of the Variable DW Initial values
 Example:

« SUM DW 4589

DD (Define Double Word)

* |t can be used to define data like DWORD (4
oytes).

* Format:

* Name of the Variable DD Initial values
 Example:

 NUMBER DD 12345678

DQ (Define Quad Word)

* |t can be used to define data like QWORD (8
oytes).

* Format:
 Name of the Variable DQ Initial values
 Example:

* TABLE DQ 1234567812345678

DT (Define Ten Bytes)
* |t can be used to define data like TBYTE (10 bytes).
* Format:

* Name of the Variable DT Initial values
e Example:

« AMOUNT DT 12345678123456781234
END (End of program)

* It marks the end of a program module and, optionally,
sets the program entry point to address.

* Format:
e END [[address]]
 Example:
 END label

ENDP (End Procedure)

* It marks the end of procedure.

e name previously begun with PROC.
* Format:

* nameENDP
 Example:

CONTROL PROC FAR

CONTROL ENDP
« ENDM (End Macro)
* |tterminates a macro or repeat block.
* Format:

e ENDM
e Example:
CODE MACRO

ENDM

 ENDS (End of Segment)

* It marks the end of segment, structure, or union name previously
begun with SEGMENT, STRUCT, UNION, or a simplified segment
directive.

* Format:
* name ENDS
e Example:

CODE SEGMENT

CODEENDS

EQU (Equate)
It assigns numeric value of expression or text to name. The name
cannot be redefined later.

* Format:
* name EQU expression
* name EQU <text>

e Example:

* CLEAR_CARRY EQU CLC

EVEN (Align on Even memory Address)
Format:

EVEN

Example:

SALES DB 9

EVEN

DATA ARRAY DW 100 DUP (?)
INCLUDE

This directive inserts source code from the source file given by
filename into the current source file during assembly. The filename
must be enclosed in angle brackets if it includes a backslash,
semicolon, greater-than symbol, less-than symbol, single quotation
mark, or double quotation mark.

Format:

INCLUDE filename

Example:

INCLUDE C: \ MICRO \ ASSEM.LEV

The above directive informs assembler to include all statements
mentioned in the file, ASSEM.LEV from the directory C: \ MICRO.

MACRO

* A sequence of instructions to which a name is
assigned is called a macro. The name of a macro
is used in assembly language programming.
Macros and subroutines are similar. Macros are
used for short sequences of instructions, where
as subroutines for longer ones. Macros execute
faster than subroutines. A subroutine requires
CALL and RET instructions whereas macros do
not.

* Format:

* name MACRO [optional arguments |
* statements ENDM

ASSEMBLY LANGUAGE
PROGRAMMING

Program

A computer can only do what the programmer
asks to do. To perform a particular task the
programmer prepares a sequence of instructions,
called a program.

Programming languages

* Microcomputer programming languages can
typically be divided into three main types:

1.Machine language
2.Assembly language

3.High-level language

Machine language

* A program written in the form of Os and 1s is
called a machine language program. In the
machine language program there is a specific
binary code for each instruction.

* A microprocessor has a unique set of machine
language instructions defined by its
manufacturer.

* For example, the Intel 8085 uses the code
1000 1110, for its addition instruction while
the Motorola 6800 uses the code 1011 1001,.

The machine language program has the following
demerits:

* |tis very difficult to understand or debug a
program.

* Program writing is difficult.
* Programs are long.
 More errors occur in writing the program.

* Since each bit has to be entered individually
the entry of a program is very slow.

Assembly language

* Assembly language programming is writing machine
instructions in mnemonic form, using an assembler to
convert these mnemonics into actual processor
instructions and associated data.

The advantages of assembly language programming
1.The computation time is less.
2.1t is faster to produce result.

The disadvantages of assembly language programming

* many instructions are required to achieve small tasks

e source programs tend to be large and difficult to follow

High-level language

* High level language programs composed of English-
language-type statements rectify all deficiencies of
machine and assembly language programming. The
high level languages are FORTRON, COBAL, BASIC, C,
C++, Pascal, Visual Basic etc.

The high level language program has the following
demerits:

* One has to learn the special rules for writing
programs in a particular high level language.

* Low speed.

* A compiler has to be provided to convert a high level
language program into a machine language

program. The compiler is costly.

Assembly language program

* Assembly language statements are written one
per line.

* A machine code program thus consists of a
sequence of assembly language statements,
where each statement contains a mnemonic.

* Each line of an assembly language program is split
into four fields, as below:

1.Label field
2.Mnemonic or Opcode field
3.0perand field

4.Comment field

As an example, a typical program for block transfer
of data written in 8086 assembly language is

given here.
LABEL | OPCODE | OPERAND COMMENTS
CLD Clear direction flag DF

MOV SI.0200 Source addressin 51
MOV DL 0302 Destination addressin DI
MOV CX, [S]] Countin CX

INC S1 Increment 51
INC S1 Increment 51
BACK: |MOV SB Move byte
LOOP BACK Jump to BACK until CX=0

INT Interrupt program

LABEL
 The label field is optional. A label is an identifier.

* Alabel can be used to refer to a memory location
the value of a piece of data the address of a
program, sub-routine, code portion etc.

START: LDAA #24H
JMP START

* Here, the label START is equal to the address of the
instruction LDAA #24H. The label is used in the
program as a reference. This would result in the
processor jumping to the location (address)
associated with the label START, thus executing the
instruction LDAA #24H immediately after the JMP

instruction.

OPCODE

e Each instruction consists of an opcode
(Mnemonic) and possible one or more operands.
In the above instruction

JMP START

* The opcode is IMP and the operand is the
address of the label START.

Mnemonics are used because they
* are more meaningful than hex or binary values
* reduce the chances of making an error

e are easier to remember than bit values

OPERAND

 The operand field consists of additional information or data that the
opcode requires. In certain types of addressing modes, the operand is
used to specify

e constantsorlabels

 immediate data

e data contained in another accumulator or register
* an address

Examples of operands are

 JNZSTEP1

e MOV AX,5000H

e MOV AX, BX

e MOV AX, [3000 H]

COMMENTS

* The comment field is optional, and is used by the programmer to
explain how the coded program works. Comments are preceded by a
semi-colon. The assembler, when generating instructions from the
source file, ignores all comments.

Assembly Language Program - Development Tools

Editor
Assembler
Linker
Locator
Loader
Debugger
Emulator
N Module Object
Wree |eX
_};ﬂlasembler 1 Maodule
‘ Module Object . Load | |Relocating
Source Text= Assembler — Module)| Linker _}Mndule — Loader
Object
¥ & _h
Source Tex CD[TI[JLJ’[EF Module Machine Code

Instructions

Editor:

* An editor is a program which allows creating a file containing the assembly
language statements for the program.

Assembler:

* Anassembler is a program which translates an assembly language program into
machine language program.

Linker:

* Alinkeris a program which links smaller programs together to form a large
program. It is used to join several object files into one large object file. It also
links the subroutines with the main program.

Locator:

* Alocatoris a program which assigns specific memory addresses for the machine
codes of the program, which is to be loaded into the memory.

Loader:

 Aloaderis a program which loads object code into system memory. It can
accept programs in absolute or relocatable format.

Debugger:
 Adebuggeris a program which allows user to test and debug programs.
Emulator:

 An emulator is a mixture of software and hardware. It is usually used to test and
debug the software and hardware of an external system.

.

Addition of two 16-Bit Data

Label

Mnemonics

Comments

STEP:

MOV AX DATAI

MOV CL,00H
ADD AX DATA!

MOV 2000H, AX

INC STEP
INC CL

MOV 2002H, CL
HLT

Load the first datam AX register

Clear the CL remster for camry
Add 2nd data to AX sum will be in AX

Store sum in memory location 1

Check the status of carry flag

If camry 1s set; mcrement CL by one
Store camry in memory location 2

Halt

3.

Multiplication of Two 16-Bit Dafa

Label

Mnemonics

Comments

MOV AX., [2000]

MUL [2002]

MOV [2100], DX

MOV [2102], AX

HLT

Move the first datato AX register from memory
location 2000 H

Multiply the data m AX with the datain memory
location 2002 H

Save the MSW (high order) of theresultm DX
register

Save the LSW (Lower Order) or the result n AX
register

Halt

MODULAR PROGRAMMING

Modular programming is subdividing the complex
program into separate subprograms such as
functions and subroutines.

Similar functions are grouped in the same unit of
programming code and separate functions are
developed as separate units of code so that the code
can be reused by other applications.

For example, if a program needs initial and boundary
conditions, use subroutines to set them.

Then if someone else wants to compute a different
solution using the program, only these subroutines
need to be changed. This is very easier than having
to read through a program line by line, trying to
figure out what each line is supposed to do and

whether it needs to be changed.

* Subprograms make the actual program shorter,
hence easier to read and understand. Further, the
arguments show exactly what information a
subprogram is using. That makes it easier to
figure out whether it needs to be changed when
modifying the program.

ALPs are developed by essentially the same
procedure as high-level language programs by,

* Exactly stating what the program is to do.
e Splitting the overall problem into tasks.

* Defining exactly what each task must do and how
it is to communicate with the other tasks.

* Putting the tasks into assembler language
modules and connecting the modules together to
form the program.

* Debugging and testing the program.
 Documenting the program.

The benefits of using modular programming are,

* Modular programming allows many
programmers to collaborate on the same
application.

 Same code can be used in many applications.
* Code is short, simple and easy to understand.
* Code is stored across multiple files.

* Asingle procedure can be developed for reuse,
eliminating the need to retype the code many
times.

* Errors can easily be identified, as they are

localized to a subroutine or function.

LINKING AND RELLOCATION

Operating system

Commands
I e .
: i 1O drivers
Source Object Load
W . module : module H '

Q—» Assembler-@ Lﬂﬁgr—p — |_ EIECLFJ’[H'IEI

3
l [] A

LESNg -

ITETTILTY

magp.

Make ohiect. . O O
comections dules "
' m@_ Library

The process combines the following.

Find the object modules to be linked.

Construct the load module by assigning the
positions of all of all the segments in all of the
object modules being linked.

Fill in all offset that could not be determined by
the assembler.

Fill in all segment address.
Load the program for execution.

Segment combination

* |n addition to the linker commands, the
assembler provides a means of regulating the way
segments in different object modules are
organized by the linker. Segments with same
name are joined together by using the modifiers
attached to the SEGMENT directives. SEGMENT
directive may have the form:

* Segment name SEGMENT Combination-type

PROCEDURES & MACROS

* Asingle instruction that expands automatically
into a set of instructions to perform a particular
task.

* A macro (which stands for "macroinstruction") is
a programmable pattern which translates a
certain sequence of input into a preset sequence
of output. Macros can be used to make tasks less
repetitive by representing a complicated
sequence of keystrokes, mouse movements,
commands, or other types of input.

Macro definition:

name MACRO [parameters,...]
statements >

ENDM
Example:
MvMacro MACROPIL, P2, P3
MOV AX, Pl
MOV BX, P2
MOV CX, P3

ENDM

Advantages of macros

Repeated small groups of instructions replaced by one macro
Errors in macros are fixed only once, in the definition
Duplication of effort is reduced

In effect, new higher level instructions can be created
Programming is made easier, less error prone

Generally quicker in execution than subroutines

Disadvantages of macros

In large programs, produce greater code size than procedures

When to use Macros

To replace small groups of instructions not worthy of
subroutines

To create a higher instruction set for specific applications
To create compatibility with other computers

To replace code portions which are repeated often throughout
the program

Procedure (PROC)

 This directive marks the start and end of a
procedure block called label. The statements in
the block can be called with the CALL instruction.

PROC definition:
label PROC [[near / far]]
<Procedure instructions>
label ENDP

Example:
WEST PROC FAFR

WEST ENDP

Overlapping Proc Nested Proc

r.",_,..-- '
£ Qutside Proc Proced
UL5I0E rroc Frocedre 1E"“‘---.‘ Qutside Proc Procedure

i w T~ Inside Proc Procedure
N Inside Proc Procedure

Differences between Macros and

Procedures
E.ICJ. PROCEDURES MACROS
1.| Touseaprocedure CALLandRET | Touse a macro, Just tvpe its name.
instructions are needed
2.| Ttoccupiesless memory. It occupies more memory.
3.| Stackisused. Stack 1snotused.
4.| Tomark the end of the procedure, tvpe | To mark the end of the macro ENDM
the name of the procedure beforethe | directive is enough.
ENDP directive.
5. | Overhead time 1s required to call the Nofoverhead ime during the procedure
and return to the calling execution
program.

INTERRUPTS AND INTERRUPT SERVICE
ROUTINES

Interrupts

* A signal to the processor to halt its current
operation and immediately transfer control to
an interrupt service routine is called as
interrupt. Interrupts are triggered either by
hardware, as when the keyboard detects a key

press, or by software, as when a program
executes the INT instruction.

Interrupts can be seen as a number of functions.
These functions make the programming much
easier, instead of writing a code to print a character,
simply call the interrupt and it will do everything.

There are also interrupt functions that work with
disk drive and other hardware. They are called as
software interrupts.

Interrupts are also triggered by different hardware,
these are called hardware interrupts.

To make a software interrupt there is an INT
instruction, it has very simple syntax: INT value.

Where value can be a number between 0 to 255 (or
00 to FF H).

Interrupt Service Routines (ISRs)

* ISR is a routine that receives processor control
when a specific interrupt occurs.

* The 8086 will directly call the service routine
for 256 vectored interrupts without any
software processing. This is in contrast to non
vectored interrupts that transfer control
directly to a single interrupt service routine,
regardless of the interrupt source.

Interrupt vector table:

3FF H

TYPE 255 POINTER:

AVAILABLE 3FC H (AVAILABLE)
INTERRUPT -
TYPE 33 POINTER:
084 H (AVAILABLE)
TYPE 32 POINTER:
080 H
(AVAILABLE)
TYPE 31 POINTER:
RESERWVED 0FF H (AVAILABLE)
IMTERRUPT :
TYPE 5 POINTER:
014 H
(RESERVED)
110 H TYPE 4 POINTER:
OVERFLOW
TYPE 3 POINTER:
IE:EEI}EISSLEEF} 00CH | 1 BYTE INT INSTRUCTION
TYPE 2 POINTER:
008 H NOMN MASKABLE
TYPE 1 POINTER:
004 H SINGLE STEP
000 1 TYPE 0O POINTER:

DIVIDE ERROR

When an interrupt occurs, regardless of source, the
8086 does the following:

The CPU pushes the flags register onto the stack.

The CPU pushes a far return address (segment:offset)
onto the stack, segment value first.

The CPU determines the cause of the interrupt (i.e., the
interrupt number) and fetches the four byte interrupt
vector from address O : vector x 4 (0:0, 0:4, 0:8 etc)

The CPU transfers control to the routine specified by the
interrupt vector table entry.

After the completion of these steps, the interrupt service
routine takes control. When the interrupt service routine
wants to return control, it must execute an IRET
(interrupt return) instruction. The interrupt return pops
the far return address and the flags off the stack

Types of Interrupts

Hardware Interrupt - External uses INTR and NMI
Software Interrupt - Internal - from INT or INTO

Processor Interrupt - Traps and 10 Software
Interrupts

External - generated outside the CPU by other
hardware (INTR, NMI)

Internal - generated within CPU as a result of an
instruction or operation (INT, INTO,
Divide Error and Single Step)

NIl Requesting
Device

MM
d0d6 CPU

Interrupt Logic

T T T T

Progammable

Interrupt Controller

INTR

Intel

'I ivide| |Single
INT HhTC Errar || Step

Software Traps

2534

EEEEERR—

TITTTTTT

==

R
)

& G B &S

Dedicated Interrupts
* Divide Error Interrupt (Type 0)

This interrupt occurs automatically following the
execution of DIV or IDIV instructions when the
guotient exceeds the maximum value that the
division instructions allow.

e Single Step Interrupt (Type 1)

This interrupt occurs automatically after execution
of each instruction when the Trap Flag (TF) is set to
1. It is used to execute programs one instruction at a
time, after which an interrupt is requested.
Following the ISR, the next instruction is executed
and another single stepping interrupt request

OCCUTrsS.

NRCM

your roots to success...

* Non Maskable Interrupt (Type 2)

It is the highest priority hardware interrupt that
triggers on the positive edge.

This interrupt occurs automatically when it
receives a low-to-high transition on its NMI input
pin.

This interrupt cannot be disabled or masked. It is

used to save program data or processor status in
case of system power failure.

* Breakpoint Interrupt (Type 3)

This interrupt is used to set break points in
software debugging programs.

* Overflow Interrupt (Type 4)

Software Interrupts (INT n)

* The software interrupts are non maskable

interrupts. They are higher priority than
hardware interrupts.

Hardware Interrupts

* INTR and NMI are called hardware interrupts.
INTR is maskable and NMI is non-maskable
Interrupts.

Interrupt Priority

Interrupt Priority
INTn, INTO, Divide Error Highest
NMI v
INTR. !
Single Step Lowest

Byte And String Manipulation

* The 8086 microprocessor is equipped with
special instructions to handle string
operations.

* By string we mean a series of data words or
bytes that reside in consecutive memory
locations.

 The string instructions of the 8086 permit a
programmer to implement operations such as
to move data from one block of memory to a
block elsewhere in memory.

e A second type of operation that is easily
performed is to scan a string and data elements
stored in memory looking for a specific value.

e Other examples are to compare the elements
and two strings together in order to determine
whether they are the same or different.

 Move String : MOV SB, MOV SW: An element of
the string specified by the source index (SI)
register with respect to the current data
segment (DS) register is moved to the location
specified by the destination index (DI) register
with respect to the current extra segment (ES)
register.

* The move can be performed on a byte (MOV SB)
or a word (MOV SW) of data. After the move is
complete, the contents of both SI & DI are
automatically incremented or decremented by 1
for a byte move and by 2 for a word move.

 Address pointers SI and DI increment or

decrement depends on how the direction flag DF
s set.

Load and store strings : (LOD SB/LOD SW and STO
SB/STO SW) LOD SB: Loads a byte from a string in
memory into AL. The address in Sl is used relative to
DS to determine the address of the memory location
of the string element. (AL) <= [(DS) + (SI)] (SI) <= (SI)
+1

LOD SW : The word string element at the physical
address derived from DS and Sl is to be loaded into
AX. Sl is automatically incremented by 2. (AX) <=
[(DS) + (SI)] (SI) <=(SI) + 2

STO SB : Stores a byte from AL into a string location
in memory. This time the contents of ES and DI are
used to form the address of the storage location in
memory [(ES) + (DI)] <= (AL) (DI) <=(DI) + 1

STO SW : [(ES) + (DI)] <= (AX) (DI) <= (DI) + 2

1. 16 BIT ADDITION USING 3036

ADDEESS | LABEL | MNEMONICS | OPCODE COMMENTS
106 MOV Al Claar C rezistar
AX [1200H
0
11
e ADD e Mova the immeadiata data 1 to
1003 03
AX [1202H accumulator
)]
02
12
1007 Hﬁ‘f[l}l;:'-“l]l-l._ﬁ; 3 Nove the immadiate data 2 to B registar
04
12
100A HLT F4 End the prosram

INPUT OUTPUT
1200 04 LI04 03
1201 02 1205 07
1202 01
1203 053

L.B.16BIT SUBTRACTION USING 8086

ADDRESS | LABEL | MNEMONICS | OPCODE COMMIENTS
10040 MOV Al Clear C ragister
AN [12001H
00
12
1003 SLB +B MhMove the immediats data 1 to
B A [1202]1H - accumulstor
06
02
12
1007 1101'[&34]& A3 Move the immediate data 2 to B ragistar
04
12
100A HLT F4 End the program

INPUT OUTPLT
1200 08 1204 J6
1201 04 1203 1
1202 (02
1203 03

1. C. 16 BIT MULTIPLICATION USING 8086

ADDRESS | LABFL | MNEMONICS | OPCODE COMMENTS
1000 Mm"“:]'i [1200 Al Clear C register
00
20
1003 MUL _[2002] F7 Move immediats data AX
26
02
20
1007 JMow 87 Mowe the immediate data to B Besgister
[2100].DX
16
00
21
100B 2 1‘3131‘& A3 Move the immediate valus
02
21
100E HLT F4 Stop the Program

INPUT OUTPUT
2000 02 2100 06
2001 03 2101 00
2002 03 2102 03
2003 03 2103 00

1. iD. 16 BIT DIVISION USING B086

ADDRESS

LABE

MNEMONICS

OPCODE

COMMENTS

1000

MOVAX [1200]

Al

Clear O rasistar

0d

1003

DIV, [2002]

Liove the data register

1007

N0V
[2100].DX

MMove the immediate valus to B Eagister

100B

MOV [2102],AX

Move the imrmediate data

100E

stop the Program

INPUT OUTPUT
2000 a0 2100 a0
2001 20 2101 ad
2002 al 2102 03
2003 30 2103 ad

8086 program to determine largest number in an
array of n numbers

Algorithm —

* Load data from offset 500 to register CL and set register CH
to 00 (for count).

* Load first number(value) from next offset (i.e 501) to
register AL and decrease count by 1.

 Now compare value of register AL from data(value) at next
offset, if that data is greater than value of register AL then
update value of register AL to that data else no change, and
increase offset value for next comparison and decrease
count by 1 and continue this till count (value of register CX)
becomes 0.

e Store the result (value of register AL) to memory address
2000 : 600.

400 MOV 51, 500 Sl=-500

403 MOV CL, [SI] ClL=-[SI]

405 MOV CH, 00 CH=-00

407 INC Si Sl=-51+1

408 MOV AL, [SI1] AlL<-[SI]

404 DEC CL ClL<-CL-1

40C INC Si Sle-51+1

40D CMP AL, [S1] AL-[SI]

40F JNC 4713 JUMP TO 413 IF CY=0
411 MOV AL, [SI] Al <-[SI]

413 INC Si Sl=-51+1

414 LOOF 40D CR=-CX¥-T & JUMP TO 40D IF CX NOT O
416 MOV [600], AL AL-=[600]

474 HLT END

Input Data —, > 04 10

Memory Address{offset) > S00 501

Output Data C—_> 40

Memory Address(offset) > 600

Explanation —

« MOV SI, 500 : set the value of Sl to 500

* MOVCL, [SI] : load data from offset Sl to register CL
« MOV CH, 00 : set value of register CH to 00
 INCSI:increase value of Sl by 1.

e MOV AL, [SI] : load value from offset Sl to register AL
* DECCL:decrease value of register CL by 1

* INCSI:increase value of Sl by 1

« CMP AL, [SI] : compares value of register AL and [SI] (AL-[SI])
* JNCA413:jump to address 413 if carry not generated
« MOV AL, [SI] : transfer data at offset Sl to register AL
* INCSI: increase value of Sl by 1

 LOOP 40C : decrease value of register CX by 1 and jump to address
40D if value of register CX is not zero

« MOV [600], AL : store the value of register AL to offset 600
* HLT:stop

8086 program to find the min value in

a given array
Algorithm —
* Assign value 500 in Sl and 600 in DI
 Move the contents of [SI] in CL and increment Sl by 1
* Assign the value 00 H to CH
* Move the content of [SI] in AL
* Decrease the value of CX by 1
* Increase the value of Sl by 1
 Move the contents of [SI] in BL
 Compare the value of BL with AL
 Jumptostep 11if carry flagis set
* Move the contents of BL in AL
* Jump to step 6 until the value of CX becomes 0, and decrease CX by 1
 Move the contents of AL in [DI]
e Halt the program

0400 hOY S0, 500 Sl =- 500
0403 PACY DI, 600 Dl =- 200
0406 MOV CL, [S1] CL =- [31]
0408 MMOW CH, 00 CH =- 00
0404 INC Sl Sl = 51+
040B MOW AL, [SI1] AL <=- [SI]
o400 DEC CX CH - TX-1
040E IMNC Sl Sl = 51+
040F MOV BL, [S1] BL =- [S1]
0411 ChP AL, BL AL-EL
0413 JC 0417 Jump if cammy is 1
0415 PMOW AL, BL AL =- BL
0417 LOOP 040E Jump if CX not equal to 0
0479 MOV [DI], AL [DI] =- AL

041B HLT End of the program

e s

OUTPUT
bara, = o

MEMORY
AD

I
NRCM

your roots to success...

UNIT -2

8086 SYSTEM BUS
STRUCTURE

PIN DIAGRAM

T (Max mode)

cnpl—y 1 ao0l—] Y.

AD 1 - 39— AD,.
AT I 3 ig I A8y
ava) 4 37] A5,
ATy, I 5 i6 I A a8
ATy o] i5 I A8
Y | 7 14 | s /5,
Na) | g 13 | ww i
e | 9 12 | =0

an [10 31| RQ/GT.
a1 8086 3 | FEOGT
_-'-I',-.I 1z 29 I LK
ADs[13 28 | =
f‘anI: 14 37] f
AD[15 26 | 5
AD,| 15 25 | Qs
w1 17 241 s,
mTH___] 18 23 | 7

ke | 19 .. | READY
axof 20 21 | RESET

(Ain mode)
HOL D)
(HLD A)

(WE)

o a0

(DT /R)
(DEN)

(ALE)

Address/data/status

'
ADqs-ADy Address/data bus Bidirectional, 3-state
Ao/Ss-Are'Ss Address/status bus output,3-state
RD Read from memory/ IO output,3-state
READY Ready signal Input
M/IO Select memory or IO output, 3-state
WR Write to memory/I0 output,3-state
ALE Address latch enable output
DT'K Data transmit/receive output
DER Data bus enable output
BHE /5, Bus high enable output
INTR Interrupt request Input
NMI Non-maskable interrupt Input
RESET Reset Input
INTA Interrupt acknowledge output

HOLD Hold request Input

HLDA Hold acknowledge output
TEST Test pin tested by WAIT mstruction Input

MN/MX Minimum/maximummode, 5V Input

C}E Clock pin for basic timing signal Input

v o Power supply, +5 V

GND

Ground connection, 0V

Addressqda%ﬂjstams

ADs-ADyg

A10/S5-A16'S3

Address/data bus

Address/status bus

Bidirectional, 3-state

output_3-state

ED Read from memorv/10 output,3-state
READY Ready signal input
BHE /S- Bus high enable output
5,.51.5; Status/handshake bits indicating the
function of the current bus cycle output
INTR Interrupt request input
NMI Non-maskable interrupt input
BESET

Beset

input

Request grant pms forbus access

Used to lock the bus, activated by
LOCK prefix on any mstruction

(Quene status

Test pin tested by WAIT mstruction
Minimum/'maximum mode, 0V
Clock pin for basic imimg signal
Power supply, +5 V

Ground connection, 0V

bidirectional

output

oufput
mput
mput

mput

Address / Data Bus (AD,-—AD,)

 The multiplexed Address/ Data bus acts as
address bus during the first part of machine
cycle (T1) and data bus for the remaining part
of the machine cycle.

Address/Status (A o/Sg, AglSe, A7/S,, AglSs)

* During T1 these are the four most significant
address lines for memory operations.

* During I/O operations these lines are LOW.

5-4 53 Function
Ch 0 | ES. Extra segment
0 1 S5, Stack Segment
1 0 | [CS. Code segment
1 1 DS, Data segment
A -
BHE | Characteristics
0 | 0 | Wholeword
0 | 1 | Upperbytefrom'to odd address
1 | 0 [Lowerbyte from'to evenaddress
1 1 |None

Read(RD)

* This signal Is used to read data from memory or 1/O
device which reside on the 8086 local bus.

Ready
* [f this signal is low the 8086 enters into WAIT state.

« The READY signal from memory/ 10 is synchronized
by the 8284A clock generator to form READY.

* This signal is active HIGH.
Interrupt Request (INTR)

» Itisalevel triggered maskable interrupt request.

« A subroutine Is vectored via an interrupt vector lookup
table located In system memory.

\.k\fu.

TEST
« This input Is examined by the “Wait” Instruction.

« Ifthe TEST input is LOW execution continues,
 otherwise the processor waits in an "‘Idle’’ state.

Non-Maskable Interrupt (NMI)
 [tisan edge triggered input which causes a type 2 interrupt.
« NMI is not maskable internally by software.

Reset
 This signal is used to reset the 8086.

* It causes the processor to immediately terminate its present
activity.

« The signal must be active HIGH for at least four clock
cycles.

* |t restarts execution when RESET returns LOW.

Clock (CLK)

* This signal provides the basic timing for the
processor and bus controller.

* The clock frequency may be 5 MHz or 8 MHz or
10 MHz depending on the version of 8086.

VCC
 [tisa+5V power supply pin.
Ground (GND)

* Two pins (1 and 20) are connected to ground ie, 0
V power supply.

Minimum/Maximum (MN/ MX)
 This pin indicates what mode the processor Is to

operate In.

MEMORY /10 (M/ 10)

* |t is used to distinguish a memory access from an
|/0O access. M = HIGH, 1/0 = LOW.

WRITE(WR)

* It Indicates that the processor Is performing a
write memory or write 1/O cycle, depending on
the state of the M/ 10 signal.

* Interrupt Acknowledge (INTA)
This signal indicates recognition of an interrupt
request. It Is used as a read strobe for interrupt
acknowledge cycles.

Address Latch Enable (ALE)

 This signal is used to demultiplex the AD,-AD,:
Into Ay,-Aqs and Dy-Dy:. It i1s @ HIGH pulse active

during T1 of any bus cycle.

Data Enable(DEN)
This signal informs the transcelvers
(8286/8287) that the 8086 Is ready to send or
receive data.

Hold

 This signal Indicates that another master
(DMA or processor) Is requesting the host
8086 to handover the system bus.

Hold Acknowledge (HLDA)

 On receiving HOLD signal 8086 outputs
HLDA signal HIGH as an acknowledgement.

o
=

Aachine cvcle

HHHHDDDD.Q‘”

= = O O e = 3 T

I—ll.:ll—ilﬂll-ll.:ll-ll:lg'l|

Interrupt acknowledge
L'O read

L'O swrite

Halt

Opcode fetch
MMemory read
Memory write

Passive

Request/Grant (RQ/GT,, RQ/GT,)

* These pins are used by other local bus masters to force
RQ / GTi the processor to release the local bus at the
end of the processor’s current bus cycle

LOCK

* This signal indicates that other system bus masters are
not to gain control of the system bus while LOCK is
active LOW.

 The LOCK signal is activated by the “LOCK” prefix
instruction and remains active until the completion of
the next instruction.

QUEUEue Status (QS,, QS,)

* The queue status is valid during the CLK cycle after
which the queue operation is performed.

Q05 Characteristics

0 | No operation
| Tustbyte of opcode from Quene

0 Empty the Queue

I | Subsequent byte from Quens
O

SYSTEM BUS STRUCTURE

e System bus Is a single computer bus that
connects the major components of a computer
system.

* |t consists of data bus, address bus and control
bus.

« To communicate with external world,
microprocessor make use of buses.

DATA BUS

It Is used for the exchange of data between the
processor, memory and peripherals.

It IS bi-directional so that i1t allows data flow In
both directions.

The width of the data bus can differ for every
mIicroprocessor.

When the microprocessor issues the address of
the Instruction, It gets back the iInstruction
through the data bus.

ADDRESS BUS

 The address bus contains the connections
between the microprocessor and memory or
output devices

e |tis unidirectional.

* The width of the address bus corresponds to
the maximum addressing capacity

CONTROL BUS

* The control bus carries the signals relating to
the control and coordination of the various

activities across the computer, which
sent from the control unit within the CP

* Microprocessor uses control bus to

can be
J.

OIOCESS

data, that 1S what to do with the selected

memory location.

System Bus

N
CPU
ALU

Registers

and Controls

. S

o

Input and
Cutput

|
- Address Bus

| Control Bus \

MIN-MAX MODE OF OPERATION

Intel 8086 has two modes of operation. They are:
* Minimum mode
« Maximum mode

* When only 8086 microprocessor Is to be used in a
microcomputer system, the 8086 Is used In the
minimum mode of operation.

* In this mode, the microprocessor issues the
control signals required by memory or 1/O
devices.

* In a multiprocessor system it operates In the
maximum mode. In this mode, the control
signals are issued by Intel 8288 bus controller.

* The pin MN/ MX (33) decides the operating
mode of 8086.

e When MN/ MX = 0, maximum mode of
operation.

= 1, minimum mode of
operation.

* Pins 24 to 31 have different functions for
minimum mode and maximum mode.

Minimum Mode

* For minimum mode of operation MN/ MX IS
connected to V. (+5 volts).

 All control signals for controlling memory and
/O devices are generated iInside the 8086

MICroprocessor.

* In this mode , peripheral devices can be used
with the microprocessor without any special
consideration

Crystal Voo

Oscillator l
o —)J
354 A)I CLg MNNX RD
MID M RAM
EPRCM
From Intermupt
Controller — INTR STB Address [/0 Davices
. = " Intermpt
To Interrupt _ GND 202 Controller
Controlier < INTA BE atch
From DMA INTEL {:_nW
—
Caontroller HOL 2026

To DMA CPU
Controller HLDA

6206 . Dats
::> [Transcawver '(,‘_::3

TR T (2)

= 1

MI0|RD | WR Operation

0 |0 | 1 |TORead
0|1 | 0 | TOWnte
1 10 | 1 |MemoryRead
(1 | 0 | Memory Wnte

CLK

>
and BHE/S,

Alys—ADg

OTIR

READ CYCLE

OneBus Cycle

I I I
T T: Tz Ta

— Address, BHEOUT

! r
;rc’\' I }:(: Status OUT :}

-

n
<AddressOUT > DatalN

7

LOW =1/0 Read, HIGH=Memory Read

™ s

WRITE CYCLE

le Lne ous \ycle

| | | |

w

T, T, T, T.
CLK
Address, BHE OUT
Ass/Ss —As IS <
and BHE/S- D_< .f >'<:‘: =tatus OUT :,\:>
!
AD,s—ADo <Address OUT »<_ Data IN =
[] 1
|]
' H
1]
ALE / A\ i 4
|
1]
MND P LOW = /O Write, HIGH = Memory Write P
:
—_]
WR ' i
| K ¢
N1 T — : e
- ‘H“"n-._______
DEN i

Maximum mode operation’

Crystal GMND
Oscillator l
r||:||—| _ 3
s MMME S0 AN MRDC
3234 A 50
Gock Generator] o CLK _ 51, B2EE MWTC
— =3 BUZ IORC
32 = Controller S
NC e | AMWC ——
DEN IMNTA
LOCK —» OT/R AIOWEC i
_ ALE > NG
RO I GTT €— |
- B INTEL - Address Bus
i o E
HiEe 8086 - 18 E—
CPU S - 6282
INTR € BHE - Latch
ADO_AD15 o] 2o |
15 A1D < Ado Dot
|
T) Diata Bus]
—e— e
o 8286
Transceiver
—n, (2] -
—

RAM

EPROM
110 Devices

Interrupt
Controller

CihdlA,
Controller

* In maximum mode 8086 based system, an
external Bus Controller (Intel 8288) has to be
employed to generate the bus control signals.

* The important signals are :

* vrpe - Memory Read Command

vwTtc - Memory Write Command
iorc - I/O Read Command

iowc - 1/0O Write Command
amwe - Advanced Memory Write Command
alowc - Advanced 1/0 Write Command

Three numbers of 8 bit latches (Intel 8282) are
employed to demultiplex the address lines.

The latches are enabled by using the ALE signal
generated by the bus controller.

Two numbers of octal bus transceivers (Intel
8286) are used as data transceivers.

The signals DEN and DT/ R are generated by the
bus controller are used as enable and direction
control respectively.

The clock generator (Intel 8284) i1s used to
generate clock, reset and ready signals for 8086.

A quartz crystal of frequency 15 MHz is
connected to 8284,

Read cycle

’. One Bus Cycle
| | |

= 2 =

S il \\ [/E;_—_E.:. Inan:ti::'éﬂ_----

— A
—BHE, = 1

Address/Status e

1
. !
and BHE/S7 ... ,,,—r\’; L ><

Address/data

. Float
-~

Data IM D15—D.:|

ADs—ADg

*ALE 9 \

i

*MRDC

orlORC

O

N

*DTIR e

“DEN

'\\

*8288 Bus Controller Oufputs

/

L

r_\ALLitlecveleT cree —

T Tz Ty T,
CLK
R N 8.5, /5 S nactive
BHE. &5_ 16
Address/Status.-ce., m— Float
and BHE/S oo =< L < S5, >
Address/data_ Data IN D45 -Dy

ADAD; < AwhAs >
“ALE / \
“AMWC
or ATOWC N
“WIC
or lOWC AN /

“DEN - . yd ™

*8268 Bus Controller Outputs

SYSTEM DESIGN USING 8086

The specification of the system includes the
following:

* 1/O devices

* Memory requirement

« System clock frequency
 Peripheral devices required
 Application

/0 devices

Input devices : 8279 — keyboard and display
controller

The popular output devices are,
* LED display

« LCD

* Printer

* Floppy disk / CD

* CRT terminal

. T
E
. T

Memory requirement

ne memory of the system is splitted between
PROM and RAM.

ne popular EPROM used In 8086 based

system are 2708 (1K x 8), 2716 (2K x 8), 2732
(4K x 8), 2764 (8K x 8) and 27256 (32K x 8).

* The popular static RAM used In 8086 based
system are 6208 (1K x 8), 6216 (2K x 8), 6232
(4K x 8), 6264 (8K x 8) and 62256 (32 K x 8).

System clock frequency

« The 8086 does not have an internal clock
circuit. Hence clock has to be supplied from an
external device.

* The Intel 8284 clock generator i1s employed to
generate the clock.

* An external quartz crystal has to be connected
to 8284 to generate the clock signal.

Peripheral devices

Intel 8253 - Programmable Interval Timer
Intel 8251 - USART

Intel 8255 - Programmable Peripheral
Interface

Intel 8279 - Keyboard / Display controller
Intel 8257 - DMA controller
ADC, DAC etc.

Application

* The specifications of the microprocessor itself
depends on the applications for the proposed
system and the nature of work.

* The 1/0O device, memory, peripheral device are
all depends on the nature of work to be
performed by the system.

I/O PROGRAMMING

Information can be transferred between input-
output devices or mass storage devices and the
CPU or memory.

he three modes of transfer of device data,
commands and status are,

Programmed 1/O
Interrupt driven 1/O
DMA transfer

PROGRAMMED I/O

* The program determines which interfaces need

servicing by testing the ready bits in their
status registers.

* Programmed testing of ready bits or signals Is
known as polling.

INTERRUPT DRIVEN I/O

* An external interrupt Is sent to the CPU from
the Interface when the interface has data to
Input or Is ready to accept data.

* The 1/O operation Is performed by an interrupt
routine.

DMA TRANSFER

* The Interface requests the use of the bus by
sending a signal through the control line and
makes the necessary transfer without the help
of the CPU.

PROGRAMMED | /O

Read input in programmed 1/O mode

* Each input i1s read after first testing whether
the device Is ready with the input or whether
the device input buffer is not empty.

 The program waits for the ready status by
repeatedly testing the status bit and till all
targeted bytes are read from the input device.

* The program Is In busy state only after the
device gets ready else in walt state.

Frogram

Mext step of the
Orogram

lm‘

Read status bit and
test whether the

device 15 ready
with the data

Yes

Input Mot
Ready

D y

Walt for a period

@

Read bytes

MNo

YES. @

Test more bytes
to be read

Output write in programmed 1/0O
mode

* Each output written after first testing whether
the device Is ready to accept the bytes at Its
output register or output buffer is empty.

 The program waits for the ready status by
repeatedly testing the status bit and till all the
targeted bytes are written to the device.

* The program in busy state only after the device
gets ready else walt state.

Program

Mext step pf the
program

B

Read status bit and
test whether the

device Is ready

Yes

Output buffer
Mot Full

@ y

Wait fora penod

@

Write bytes

Yes

9,

Ng

Test more bytes
to be wniten

Interrupt driven | /O

1) Polling
11) Daisy chaining
111) Interrupt priority management hardware

POLLING

 Polling Is constantly testing a port to see If data Is
avallable. 1.e, the CPU polls (asks) the port if it
has data available or if it is capable of accepting
data.

* Polling notifies the part of the computer
containing the 1/O Interface that a device Is ready
to be read but does not indicate which device.

* The Interrupt controller must poll (send a signal
out to) each device to determine which one made
the request.

LIMITATIONS

It 1s wasteful of the processors time, as it
needlessly checks the status of all device.

* Priority of the device Is determined by the
order in the polling loop.

* When fast devices are connected to a system,
polling may simply not be fast enough.

Daisy chaining

It Is a simple hardware means of attaining a
priority scheme.

It consists of associating a logic circuit with
each Interface and passing the interrupt
acknowledge signal

A daisy chain Is used to identify the device
requesting service.

Daisy chaining i1s used for level sensitive
Interrupts

CPU and bus
control logic

logic

)

V{Jpen

[laisy chai
Logic V

il

aisy chain
=1y

Device 1 Device 2 Device 3
Interface Interface Interface
Interrupt E[Interrupt T
lacknowledg ; 1
, : request
aisy chain

!

i

+5Y

Interrupt priority management
hardware

By designing a programmable interrupt
priority management circuit and bus control
logic.

The duty Is placed on the requesting device to
request the interrupt and identify itself.

The i1dentity could be a branching address .

If the device just supplies an identification
number, this can be used in conjunction with a
lookup table to determine the address of the

required service routine.

Direct Memory Access Block Transfer

« A DMA controller allows devices to transfer
data to or from the system’s memory without
the intervention of the processor.

« Components connected to the system bus Is
given control of the bus.

* This component Is said to be the master during
that cycle and the component It Is
communicating with is said to be the slave.

» Taking control of the bus for a bus cycle Is
called cycle stealing.

 The Interface sends the DMA controller a
request for DMA service.

« A Bus request is made to the HOLD pin
(active High) on the 8086 microprocessor and
the controller gains control of the bus.

* A Bus grant Is returned to the DMA controller
from the Hold Acknowledge (HLDA) pin
(active High) on the 8086 microprocessor.

« The DMA controller places contents of the
address register onto the address bus.

 The controller sends the interface a DMA
acknowledgment, which tells the interface to
put data on the data bus.

 The data byte is transferred to the memory
location indicated by the address bus.

* The Interface latches the data.

 The Bus request Is dropped, the HOLD pin
goes Low, and the controller relinquishes the
bus.

The Bus grant from the 8086 microprocessor Is
dropped and the HLDA pin goes Low.

The address register I1s incremented by 1.
The byte count Is decremented by 1.

If the byte count Is non-zero, return to step 1,
otherwise stop.

AL AL AL ALU

S S

UNIT-3

/O INTERFACING

Memory Interfacing

* While executing a program, the microprocessor
needs to access memory frequently to read
Instruction code and data stored In memory; the
Interfacing circuit enables that access.

 Memory has some signal requirements to write
Into and read from its registers.

« Similary, the microprocessor Initiates a set of
signals when It wants to read from and write into
memory.

1/0 INTERFACING

* The Input/Output devices such as keyboards and
displays are the communication channels to the
outside world.

 Latches and buffers are used for 1/O interfacing.
They once hardwired, perform only one function
(either as Input device If it Is buffer and as output
device If 1t I1s a latch). Thus limiting their
capabilities.

« To improve the overall system performance the
Intel has designed various programmable 1/0
devices.

Some of the peripheral devices developed by
Intel for 8085/8086/8088 based system are:

8255 - Parallel Communication Interface
8251 - Serial Communication Interface
8254 - Programmable Timer

8279 - Keyboard / Display Controller
8257 - DMA Controller

8259 - Programmable Interrupt Controller

 The microprocessor can communicate with
external world or other systems using two
types of communication interfaces. They are:

 Serial Communication Interface

e Parallel Communication Interface.

Serial Communication Interface

* The serial communication interface gets a byte
of data from the microprocessor and sends it
bit by bit to the other system serially or it
receives data bit by bit serially from the
external system.

* Then it converts the data into bytes and sends
to the microprocessor.

Parallel Communication Interface

A parallel communication interface gets a byte
from the microprocessor and sends all the bits
In that byte simultaneously (parallel) to the
external system and vice-versa.

SERIAL COMMUNICATION INTERFACE

* The primary difference between parallel 1/0 and
serial 1/0O Is the number of lines used for data
transfer; the parallel 1/O uses the entire data bus
and serial 1/0 uses one data line.

* In serial 1/O transmission the microprocessor
selects the peripheral through chip select (CS)
and uses the control signals read to receive data
and write to transmit data.

* The address decoding can be either 1/0-mapped
1/0O or memory-mapped I/0O.

Serial data transmission 1Is classified as

Simplex

Half duplex

Full duplex

Simplex

* The data are transmitted in only one direction.

There Is no possibility of data transfer In the
other direction.

 Example : Transmission from a computer to
the printer.

Half duplex

 The data are transmitted in both directions, but
not simultaneously.

« Example : Walky - Talky

Full duplex

« The data are transmitted In both directions
simultaneously.

« Example : Telephone

The data In the serial communication may be
sent In two formats:

« Asynchronous
* Synchronous

Synchronous Transmission

* In synchronous transmission, a receiver and
transmitter work In same speed and could be
synchronized.

 Both will use a common clock and start at the
same time

THETE

W{e

1oL

R

VEELE|

Asynchronous transmission

The asynchronous transmission 1Is character-
oriented. Each character carries the information of
the Start and Stop bits

When no data are being transmitted, a receiver
stays high at logic 1, called Mark and logic O Is
called Space.

Transmission begins with one start bit (Low),
followed by 7 or 8 bits to represent a character
and 1 or 2 Stop bits (high).

A start bit, character and stop bits are called as
Frame.

tart bi Stop
Mark -
Oy {01 | Oz | O Dsf Ds Ur UT
—3 Tessnite ey f—
M0tk 'T— A ;\ Llock
apace

‘ Frame)

PARALLEL COMMUNICATION INTERFACE OR
(8255 A - Programmable Peripheral
Interface)

* |t has a 3-state bi-directional 8-bit buffer which
Interfaces the 8255A to the sys-tem data bus.

* |t has 24 programmable 1/O Pins.

* |t reduces the external logic normally needed
to interface peripheral devices.

* It has two 8 bit ports: Port A, Port B, and two 4
bit ports: Cpper aNd C| qwer.

* Available in 40-Pin DIP and 44-Pin PLCC.

OPERATING MODES

* |t can be operated in two basic modes:
— Bit Set/Reset Mode
— 1/O Mode

* |/O mode is further divided into 3 modes:
— Simple 1/0 mode (Mode 0)
— Strobed 1/0 mode (Mode 1)
— Bidirectional Data Transfer mode (Mode 2)

Pin diagram of 8255A

A000000aaaaaaanannnn

= 44

1 .
pe. 34]
3 394 1
4 < [|
5 adq]
& 3]
7 341
3 < [|
=] 34 1
10 <y I |
11 8255A s
12 29]
13 241
1.4 21
15 =4
16 29]
17 >4
18 2% 1
19 241
20D 2411

|
P =
Pt

FEa.

The 8255 consists of Four sections namely
Data Bus Buffer

Read/Write Control Logic

Group A Control

Group B Control

FPower
Supply

Bidirectional Data Bus

- >
——> GND

+5Y

<

Data
{—>| Bus
D~ - Do Buffer
%,
ROD—>0
WR—>0
A
o Read
l||I:"': I'lf'IEE
RESET 3 Control
Logic

1

[~

T
Group A
Group Port A o
A <:_ (®) s Phe
Control —
|
W
Group A
Port C
E% I::d_} F'C7—F'|:¢
>
=
a-Bit x
Internal =
Data <::>
Bus
|l
(Garoup
B
CoETing

DATA BUS BUFFER

e Used to Interface the Internal data bus of
8255A to the system data bus of 8085.

* Using IN or OUT instructions, CPU can read
or write the data from/to the data bus buffer.

* |t can also be used to transfer control words
and status Information between CPU and

8255A.

Read/Write Control Logic

* This block controls the Chip Selection (CS),
Read (RD) and Write (WR) operations.

* It consists of A, and A; signals which are
generally connected to the CPU address lines
A, and A, respectively.

« When CS (Chip Select) signal goes LOW,
different values of A, and A, select one of the
|/O ports or control register

cs Ay | Ay Selected
0 0 0 | PORT A

0 0 1 PORT B

0 1 0 PORT C

0 1 1 | Confrol Regmster

1 X X | 8255A1snot Selected

— PortA=80H
1cs
ﬂh_ 8255 [—> PortB=81H
III:Illl:l
108 —9RD. — PortC=82 H
oW —A WA
RESET

Fig..3. Chip Select Logic

« Group A : Port A and Most Significant Bits
(MSB) of Port C (PC, — PC-)

« Group B : Port B and Least Significant Bits
(LSB) of Port C (PC, — PC,)

* Port A: One 8-bit data output latch/buffer and
one 8-bit input latch buffer.

* Port B: One 8-bit data input/output latch/buffer.

* Port C: One 8-bit data output latch/buffer and
one 8-bit data Input buffer. This port can be
divided into two 4-bit ports and it can be used for
the control signal outputs and status signal Inputs
In conjunction with ports A and B.

0/1
|
BSR mode o
Mode 0 Mode 1
simple /O Handshake /O
forPorns A Band C for Port A andlor

Port B
Port C bits are used as

handshake signals

|

Mode 2
Bi-Directional Data bus for Port A
Port B in either Mode 0 or 1
Part C bits are
used as handshake signals

BSR (Bit Set/Reset) Mode

* This mode is applicable only for Port C.

A control word with bit D7 = 0 Is recognized
as BSR control word.

 This control word can set or reset a single bit
In the Port C.

D D Ds Dy Ds Dz D4 Dy
D X X * SR
I I
!
MNotused > Set- 1
B=R Mode . Rezef- 0
(LEH Bt O
D01 Bit 1
010 Bit 2
011 Bit 3
100 Bit 4
101 Bit &
110 Bit &
111 Bit T

The 1/0 mode is divided into three modes
Mode 0, Mode 1 and Mode 2 as given below.
* Mode 0 — Basic I/O Mode

 Mode 1 — Strobed I/O Mode

* Mode 2 — Bi-directional data transfer mode

Control Word

L)

D, Il::-____ D, Il::-_

Sroup B ~~\""---.h

Part C {lower-PC,-PC,)
1= Input
0 = COutput

Fort B
1 = Input
0 = Output

Mode Selection
0=Mode QO
1=Mode 1

SGroup A \

Port C (Upper-PC-PG,)

1 = Input
0 = Cutput
Poart A

1 = Input
0= Cutput

Mode Selection
00 = Mode 0O
01 = Mode 1
1¥ = Mode 2

3
0

"o Mode
BSR Mode

Mode 0 — Basic I/O mode

The features of Mode O are :

Two 8-bit ports (Port A, Port B) and two 4-bit
ports (Port C,, Port C,). Any port can be Input

or outpult.
Outputs are latched.
Inputs are not latched.

> PortA (Qutput

(1 PortCusses (Input)

> Port Ciowes (Output)

B onon b

> PoMB (Output)

Fig.3.6. Ports in Mode 0

Mode 1 - Strobed Input/Output

* In this mode, handshake signals are exchanged between the
microprocessor and peripherals prior to data transfer

The features of mode 1 are :
« Two Groups (Group A and Group B).

- Each group contains one 8-bit data port and one 4-bit
control/data port. The 8-bit data port can be either input or
output

* The 4-bit port is used for control and status of the 8-bit data
port.

 |If Port A is in mode 1 (input), then PC,, PC,, PC; are used

as control signals. If Port B is in mode 1 (input), then PCo,
PC,, PC, are used as control signals.

 Both inputs and outputs are latched.

n onpd O

Phg —FAs

INTEA

< —__JPortA (Input)

INTE=

< 5B .

PCs *INTRz

PE-PER__1PortB (Input)
PLe-PCAE7—21i0

— |BFa 110 Mode

D D D_ D [D_ D. D

o111 (11111 X
I
Port Ain — Port B (Input)

Mode 1 FortB in
PortA (INPUT)— Mode 1

- PCs-PC,

1-Input

0 - Output

Control Word

D+

s Ds Dy D3 Dz Dy Dy

/0 | IBFs [INTE,|[INTR,|INTE,| IBF, |INTR,

Status Word for Mode 1 {Input)

 STB (Strobe Input) — A “low” signal on this
pin Indicates that the peripheral device has
transmitted a byte of data.

* The 8255A in response to STB , generates IBF
and INTR.

* IBF (Input Buffer Full) — A “high” signal
Issued by 8255A Is an acknowledge to indicate
that the Input latch has received the data byte.
This 1s reset when the CPU reads the data.

* INTR (Interrupt Request) — This Is an output
signal, used to Interrupt the CPU. This will be
In active state when STB , IBF and INTE
(internal Flip-Flop) are all at logic 1. This will
be reset by the falling edge of RD signal.

* INTE (Interrupt Enable) — This is an Internal
Flip-Flop used to enable or disable the
generation of INTR signal. There are two Flip-
Flops INTE, and INTEg are set/reset using the
BSR mode.

Mode 2 — Bi-directional Data
Transfer Mode

This mode provides a means for communicating
with a peripheral device or structure on a single 8-

bit bus for both transmitting and receiving data
(bidirectional bus 1/0O).

The features of Mode 2 are :
Used in Group A only.
Port A only acts as bi-directional bus port

Port C (PC;-PC;) 1s used for handshaking
Urpose.

] ?-ﬁq

p - N L

PAPA; {— rona

PC:

FCs

PC—PC. %

INTR (Interrupt Request):

A high on this output can be used to interrupt
the CPU for input or output operations.

OBF(Output Buffer Full):
This signal will go LOW to indicate that the
CPU has written data out to Port A.

ACK(Acknowledge):
A LOW on this input enables the tri-state
output buffer of Port A to send out the data.

* Otherwise, the output buffer will be in the high
Impedance state.

L) D D D D D D D

1 O x X X O 1 10 ‘
7)
MO Mode PortAin PC—PCo
Mode 1 1-Input
4 C-Output
+ PortBi(lnput)
Port B
Mode O

Mode 2 - Input Configuration

D Die 5 Dls D Oz 04 O
1 1 x x x 1 0 x ‘
O Mode <— v ‘I'
cde Port Ain PC: —PCo
hlode 2 1-lnput
O-Output
J Port B
Port B (Qutput)
Mode 1

Mode 2 - Output Configuration

8254 - Timer/Counter

It is designed to solve the common timing
control problems In microcomputer system
design.

Compatible with all Intel and most other
MICroprocessors.

It can be operated at count rates upto 10 MHz

Six programmable counter modes and all
modes are software programmable.

Three independent 16-bit counters

Applications of 8254

Real time clock
Event-counter

Digital one-shot
Programmable rate generator
Square wave generator

PIN DIAGRAM

cLk d_

GATE d_|

1

W~ S W MmN

10
11

GOl

12

8254

—

24

23

22
21

20
19

18
17

16
15
14

13

BLOCK DIAGRAM

K—

=]]

THEETTT

a

Data
P
v o Bus
Buffer
RD ————>«
W =y Read/
Write
A -] Logic
A -
i
CS ‘T)
Control
Word
Hegister

f

f:

[,

<::> Counter

0

e« CLK 0
e GATE D
= OUT 0

g
y;

e CLK 1

< GATE 1

= OUT 1

A Counter

2

e ClLK 2
e GATE 2
= QuUT 2

I S |

Data Bus Buffer

* This 3-state, bi-directional, 8-bit buffer 1s used
to interface the 8254 to the system bus.

Read/Write Logic

* The Read/Write logic accepts inputs from the
system bus and generates control signals for
the other functional blocks of the 8254,

« Al and AO select one of the three counters or
the control word register to be read
from/written into.

Control Word Register

* The control word register is selected by the
Read/Write logic when A, A,=11.

* If the CPU then does a write operation to the
8254, the data Is stored in the control word
register and Is Interpreted as a control word
used to define the operation of the counters.

* The control word register can only be written
to; status Information Is available with the
Read-Back command.

Counter 0, Counter 1, Counter 2
 Each s a 16 bit down counter

 The counters are fully iIndependent. Each
counter may operate In a different mode.

» Each counter has a separate clock input, count
enable (gate) input lines and output line.

* The control word register iIs not a part of the
counter itself, but I1ts contents determine how
the counter operates.

MocC
MocC
MocC
MocC
MocC

MocC

OPERATING MODES

e 0: Interrupt On Terminal Count

e 1. Hardware Retriggerable One-Shot
e 2: Rate Generator

e 3: Square Wave Mode

e 4. Software Triggered Strobe

e 5: Hardware Triggered Strobe

Mode O: Interrupt On Terminal Count

* Mode 0 is typically used for event counting.

« After the control word is written, OUT IS
Initially low, and will remain low until the
counter reaches zero. OUT then goes high and
remains high until a new count or a new Mode
0 control word Is written into the counter.

 GATE =1 enables counting;

« GATE = 0 disables counting. GATE has no
effect on OUT

Clock

WR n—l 2 3 1 0
Output - :
(Interrupt) = . !
(n=4) e——— >
R —
(zate . '
Output : :
(Interrupt) m=5 51 i 290]
= —
A ; B

A+ B=m

Mode 1: Hardware Re-triggerable
One-Shot

OUT will be initially high. OUT will go low on the CLK pulse
following a trigger to begin the one-shot pulse, and will remain low
until the counter reaches zero.

OUT will then go high and remain high until the CLK pulse after the
next trigger. Thus generating a one-shot pulse.

After writing the control word and initial count, the counter is
armed.

A trigger results in loading the counter and setting OUT low on the
next CLK pulse, thus starting the one-shot pulse. An initial count of
N will result in a one-shot pulse ‘N’ CLK cycles in duration.

Clock

RN o—

Trigger
4
Dutput
(n=4.
Trigger
3

Dutput

Mode 2: Rate Generator

This mode functions like a divide-by-N counter.

It 1s typically used to generate a real time clock
Interrupt.

OUT will inttially be high. When the initial count
has decremented to 1, OUT goes low for one CLK
pulse. OUT then goes high again, the counter
reloads the iInitial count and the process Is
repeated.

Mode 2 Is periodic; the same sequence Is repeated
Indefinitely.

For an initial count of N, the sequence repeats
every N CLK cycles.

0

L

Mode 3: Square Wave Mode

« Mode 3 Is typically used for baud rate
generation.

* Mode 3 Is similar to Mode 2 except for the
duty cycle of OUT. OUT will initially be high.
When half the initial count has expired, OUT
goes low for the remainder of the count.

 Mode 3 Is periodic; the sequence above IS
repeated indefinitely. An initial count of N
results In a square wave with a period of N
CLK cycles.

METHODS TO IMPLEMENT
MODE 3

Even counts:

« OUT is initially high. The initial count is loaded
on one CLK pulse and then iIs decremented by
two on succeeding CLK pulses. When the count
expires OUT changes value and the counter Is
reloaded with the Initial count. The above process
IS repeated indefinitely.

Odd counts:
* For odd counts, OUT will be high for (N +1)/2

counts and low for (N - 1)/2 counts.

N A A AR

Qutpet) m

/T A T A A R .

(utpet) m

Mode 4: Software Triggered Strobe

* The output goes high on setting the mode.
After terminal count, the output goes low for

one clock period and then goes high again.

* In this mode the OUT is initially high; it goes
low for one clock period at the end of the
count. The count must be reloaded for

subsequent outputs.

Toa 300 WF.J. i

Mode 5: Hardware Triggered Strobe

This mode is similar to mode 4, but a trigger at
the gate Initiates the counting.

This mode Is similar to mode 4, except that It
IS triggered by the rising pulse at the gate.

Initially the OUT 1i1s high and when the gate
pulse is triggered from low to high, the count
begins, at the end of the count, the OUT goes
low for one clock period.

(bate ‘43210

Output (n=4)
o — LI
Output (n=4] § 3 432 11

e

Programming the 8254

Write Operations

 For each counter, the control word must be
written before the initial count 1s written.

* The initial count must follow the count format
specified In the control word (least significant
byte only, most significant byte only, or least

significant byte and then most significant
byte).

Read Operations

* It Is often desirable to read the value of a
counter without disturbing the count In
progress. This Is easily done in the 8254,

* There are three possible methods for reading
the counters:

« Simple read operation,
e Counter latch command, and
 Read-Back command.

CONTROL WORD FORMAT OF
8254

Dz Dg Dsg Dy D D- D, D
SC1 SC0 }QW1 RO M2 | WA MDD _
| | I |
| 11-*_
So-mme|ect L ounter Mode EEDJ’EIHEW
| U- Binary
L R/L-Read/Load I 1-BCD
n2 [MO Mode
SC1 | SC0 Counter
0 0 0 Mode 0
0 0 Select Counter 0 0 0 1 Mode 1
0 1 Select Counter 1 = 1 0 Mode 2
1 0 Select Counter 2 X 1 1 Mode 3
1 0 0 Mode 4
1 1 Read-Back
Command 1 0 1 Mode 5
s
R WO O peration
0 0| Latch Counter O
0 1 LSB only
1 0 MSB only
1 1LEEB first
MSB next

KEYBOARD/DISPLAY CONTROLLER

* Intel 8279 i1s an LS| device.

* |t simultaneously drives the display of a system
and Interfaces a keyboard with the
MICroprocessor.

 The keyboard display interface scans the
keyboard to identify If any key has been pressed
and sends the code of the pressed key to the
microprocessor.

* |t also transmits the data received from
microprocessor to the display device.

Features of 8279

» 8279 has 3 input modes for keyboard interface
— Scanned keyboard mode
— Scanned sensor matrix mode
— Strobed input mode

« 8279 has 2 output modes for display interface
— Left entry
— Right entry

* |t has two key depression modes

— 2 key lockout mode
— N key rollover mode

PIN DIAGRAM

rRL. L[]+ ~— ada Ve
rRL, [z 3¢ 1 RL,
cLk [Cl3 341 RL,
Ira [CJa 3] CNTUSTB
RL. []5 341 sSHIFT
rRL: s 34 1 sL.
rRLs [}7 34 1 sL.
RL, s 311 s,

REsSET []2 34 1 s,
RD [0 311 ouT B,
wr [+ s8279 301 ouT B,
DB, (12 24 1 ouT B,
DB, []13 24 1 OUT B;
DB, []14 241 ouT A,
DB, [] 15 EE OUT A,
DB. L] 15 2 OuUT A
DBEs L] 17 24 1 ouT A,
DBs [] 18 2% 1 BD
DB, [] 19 23] Cs
‘u’EE - 20 2 — Ao

Data Bus (D7 _ Do) :

« Al data and commands between the
microprocessor and 8279 are transmitted on these
lines.

RD (Read) :

Microprocessor reads the data/status from 8279.

WR (Write) :

Microprocessor writes the data to 8279.

A, :

* A HIGH signal on this line indicates that the word
IS a command or status. A LOW signal indicates
the data.

RESET :

* High signal In this pin resets the 8279. After
being reset, the 8279 is placed in the following
modes

» 16 X 8-bit character display —left entry
* Two key lock out

CS (Chip Select) :
A LOW signal on this input pin enables the
communication between 8279 and the
mICroprocessor.

IRQ (Interrupt Request) :

 The Interrupt line goes low with each
FIFO/sensor RAM reads and returns high if
there is still information in the RAM.

SL,—SL;:

« Scan lines which are used to scan the key
switch or sensor matrix and the display digits.

* These lines can be either encoded (1 of 16) or
decoded (1 of 4).

RL,-RL-:
* Input return lines which are connected to the
scan lines through the keys or sensor switches.

 They have active internal pull-ups to keep
them high until a switch closure pull one low.
hese also serve as an 8-bit Input In the
strobed input mode.

SHIFT :

* It has an active internal pullup to keep it high
until a switch closure pulls it low.

CNTL/STB :

* For keyboard mode, this line is used as a control
Input and stored like status on a key closure.

 The line Is also the strobed line to enter the data
In to the FIFO In the strobed input mode.

OUT A, - OUT A,, OUT B,— OUT B, :

* These two ports are the outputs for the 1674
display refresh registers. These two ports may
also be considered as one 8-bit port.

« The two 4-bit ports may be blanked
Independently.

BD

his output is used to blank the display during
digit switching or by a display blanking
command.

Block Diagram of 8279

* The 8279 has the following four sections.

* CPU Interface Section

« Keyboard Section

 Scan Section

 Display Section

RDWR C5 A

CLK RESET DB.DB;
IR
Data FIFQ/Sansor
o T RAM
Buffers ~—1- 14O Control Status
10 ' 101
{ Internal Data Bus (3) ¢
i‘L ﬂ AL | l Keyboard
Display 16x3 Contral and Bx8 ;

Addre ss :>Displa‘_.f 5| Tming [° FlFﬂfsenmr< and
Registers RAM Reqgistars | 5 RAM —)l Control

1 e

Display and
Registers Control 4:"54:3:1 Counter Return

I [¥

OUT Ag As ~ OUT BoBs —
CNTL/STB
BD SLg-Sla Rlo ALy

A

CPU Interface Section

 This section has bi-directional data buffer
(DB, — DB-), 1/0 control lines (g5 , WR , CS ,

Ao) and Interrupt Request line (IRQ).
« The Ao signal determines whet

transmit/receive control word or data 1s used.

« An active high in the IRQ line Is generatec

ner

to

Interrupt the microprocessor whenever the @
IS available.

ata

A WAL o 'Ll"tﬂ.l LELALP AL LPE Whiw i

A 1=]
1 | RD |WR Operation

010 |0 | MPUwntesthe datais §279

0 | 0 |1 | MPUreadsthe data from8279

L1 |0 | MPUwntescontrol wordto 8279

1 [0 | 1 | MPUreads status word from 8279

Keyboard Section

* This section has keyboard debounce and
control, 8x8 FIFO/Sensor RAM, 8 Return lines
(RL,— RL-) and CNTL/STB and shift lines.

* In the keyboard debounce and control unit,
keys are automatically debounced and the
keyboard can be operated in two modes.

* Two key lock out
* N —key roll over

In the two key lock out mode, If two keys are
pressed simultaneously, the first key only
recognized.

In the N-key roll over mode, It stores the codes of
simultaneous keys pressed In the internal buffer, it
can also be setup so that no key Is recognized
until only one key remains pressed.

The 88 FIFO/Sensor RAM consists of 8 registers
that are used to store eight keyboard entries.

The return lines (RL, — RL,) are connected to
eight columns of keyboard.

The status of shift and CNTL/STB lines are stored

along with the key closure.

Scan Section

* This section has scan counter and four scan
lines (SLo—SL3).

* These lines are decoded by 4 to16 decoder to
generate 16 scan lines.

» Generally SL, — SL; are connected with the
rows of a matrix keyboard.

Display Section

 This section has two groups of output lines Ao
— A; and B,—Ba.

* These lines are used to send data to display
drivers.

* BD line is used blank the display.
* It also has 16 x 8 display RAM.

Programming the 8279

1. Write Display RAM
1100 AT|AJA[A A

The CPU sets up the 8279 fora wnte to the Display RAM by first wnting this command.

After wnting the command with A;=1, all subsequent wnites with A;=0 will be to the Display
RAM. The addressing and auto mcrement finctions are identical to those for the Read Display
RAM

If AI=1 display RAM address i1s mcremented after eachread command to display RAM.

AAAA - Selects one of the 16 rows of the Display RAM.

1. Display Write Inhihit/Blanking
A B AB

The IW Bits can be used to masknibble A and mibble B in application requinng separate

4-bit display ports. By setfing the [W flag (IW=1) for one of the ports, the port becomes
masked

The BL flags are available foreach mbble. Thelast clear commandissued determmed the

code to be used as a blank.

3. Clear

1 {10 mgﬂpﬂ Cr Ca
The CD bits are available in this command to clear all rows of the Display RAMto 2
selectable blankmg code as follows:

% 0.

0 X All Zeros (X=Don't Care)
I 0 AB=Hex20(00100000)
I 1 AllOnes

—— Enable clear displayif thisbitis 1

If the Cg bit1s asserted (C=1), the FIFO status 15 cleared and the mterrupt output line 13
Teset.

§. Read FIFO/Sensor RAM

TFFFEEE

The CPU sets up the 8279 for a read of the FIFQ/Sensor RAM by first wniting this
command. Inthe scan keyboardmode, the Auto-Increment flag (AT} and the RAM address bits
(AAA) are imrelevant.

In the sensor mamx mode, the RAM address bits AAA select one of the 8 rows of the
Sensor RAM If the Al flagis set (AI=1), each succesaveread will be from the subsequent row
of the sensor RAM.

3, EndInterrupt/Error Mode Sef

Q033303

X=Don'tcare

For the sensor matms modes s command lowers e [RQ lme and eng

wtmg imto RAM. Forthe N-Key rollover mode if
operate I the spectal emor mode

0les further

he B bt 15 programmed to | €

e chip wl

Kevboard/Display Mode Set
0|0 |0 |D|D K | KK

D D

0 0 Eightnumbers of 8-bit character display - Left entrv
0 1 Sixteen numbersof 8-bit character display - Left entrv
1 0 Eightnumbers of 8-bit character display - Right entrv
1 1 Sixteen numbers of 8-bit character displavy - Right entrv
KKK

0 0 0 EncodedScan Kevboard - 2-Kev Lockout

0 0 1 DecodedScanKevboard- 2-Kev Lockout

0 1 0 EncodedScan Kevboard - N-EevRollover

0 11 Decoded Scan keyboard - N-Key Rollover

1 00 Encoded Scan Sensor Matrix

1 Decoded Scan Sensor Matnx

0
1 1 0 Swoobed Input. Encoded Display Scan
1 Swoobed Input. Decoded Display Scan

7. Program Clock

SOREEEEE

3. Read Display RAM

The CPU se upthEE”?Q oratead ofthe Display RAM by first wnting this command.
The address bits AAAA select one of the 16 rows of the Display RAM. Ifthe Al flaz s se

(AL tistow addr&ss i le Imeremented after each wnte command to the Display RAM.

INTERRUPT CONTROLLER

The 8259A programmable interrupt controller
extends the hardware interrupt facility provided In
a MICroprocessor.

It manages up to 8 vectored priority interrupts for
a processor.

It has built-in features for expandability to other
8259A’s (up to 64 vectored priority interrupts).

It Is programmed by the system’s software as an
1/O peripheral.

Features of 8259 A

It can manage 8 priority interrupts.

By cascading 8259s it Is possible to get 64
priority Interrupts.

It can be programmed to accept either the level

triggered or the edge triggered interrupt
request.

Reading of interrupt request register (IRR) and
In-service register (ISR) through data bus.

VARIOUS MODES OF OPERATION

Fully nested mode

Special fully nested mode.

Special mask mode

Buffered mode

Poll command mode

Cascade mode with master or slave selection
Automatic end-of-interrupt mode

PIN DIAGRAM

cs [
1&:
FEB [
- [
VO
Ds [
Dy [
Ds [
Dz [
. O
V.C
cAsO0 [
cAS1 [

oND [

— . 4V
1 28 1 ec
A
2 o7 %
3 26 INTA
4 241 IR,
5 241 1R
6 24 1 IRs
7 goseA 24 IR
8 21 IR;
g 20 IR,
10 191 IR,
11 199 1R,
12 17 INT
13 16_] SP/EN
14 191 cas 2

BLOCK DIAGRAM

&~

41

Control Logic

o

I

Tt

]

i

Imter

nal

Drata
D - D.;C:; Bus
Buffer
RD — >4 Read/
WR —=% Write
A 5 Logic
cs T

In-sanice
Registar
(ISR}

CASD ¢ 5

Cascade

CAS | €—p - Buffer

Comparator

T

A—M Pricnity <:
W] Hesoher

Indenmupt
Reqguest
Register

< R
Smmmmm—
pe————— Iz
e
R
C—
e Fir

Interrupt Mask Register

(IMR}

CAS 2 €—=

)

SP/EM <

Interrupt Request Register (IRR)

* The interrupts at the IR input lines are handled

oy two registers In cascade, the Interrupt

Request Register (IRR) and the In-Service

Register (ISR).

 The IRR Is used to store all the interrupt levels
which are requesting service.

In-Service Register (ISR)

* The ISR is used to store all the interrupt levels
which are being serviced.

Priority Resolver

* This logic block determines the priorities of
the bits set in the IRR. The highest priority Is
selected and strobed into the corresponding bit
of the ISR during INTA pulse.

Interrupt Mask Register (IMR)

* The IMR stores the bits which mask the
Interrupt lines to be masked. The IMR operates
on the IRR. Masking of a higher priority input
will not affect the interrupt request lines of
lower quality.

Data Bus Buffer

 This 3-state, bidirectional 8-bit buffer Is used
to interface the 8259A to the system data bus.
Control words and status information are
transferred through the Data Bus Buffer.

Read/Write Control Logic

* The function of this block Is to accept output
commands from the Microprocessor.

|t contains the Initialization Command Word
(ICW) registers and Operation Command
Word (OCW) registers which store the various
control formats for device operation.

 This function block also allows the status of
the 8259A to be transferred onto the data bus.

Cascade Buffer/Comparator

* This block 1s used to expand the number of
Interrupt levels by cascading two or more 8259s.

* This function block stores and compares the IDs
of all 8259A°’s used 1n the system.

 The associated three /O pins (CASO0-2) are
outputs when the 8259A iIs used as a master and
are inputs when the 8259A is used as a slave.

 As a master, the 8259A sends the ID of the
Interrupting slave device onto the CAS0%2 lines.

Control Logic
 This block has two pins INT and INTA.

INT (Interrupt)

* This output goes directly to the CPU interrupt
Input. The voltage level on this line is designed to
be fully compatible with the 8080A, 8085A and
8086 Input levels.

INTA (Interrupt Acknowledge)

* INTA pulses will cause the 8259A to release
vectoring information onto the data bus.

* The format of this data depends on the system
mode of the 8259A

PRIORITY MODES

Fully Nested Mode

This mode Is entered after initialization unless
another mode Is programmed.

The Interrupt requests are ordered In priority
from O through 7 (0 highest).

When an interrupt is acknowledged the highest
priority request IS determined and its vector
placed on the bus.

Automatic End of Interrupt (AEOI) Mode

f AEOI = 1 in ICW4, then the 8259A will operate In
AEOI mode continuously until reprogrammed by
CWj4.

n this mode the 8259A will automatically perform a
non-specific EOI operation at the trailing edge of the
last interrupt acknowledge pulse.

Automatic Rotation (Equal Priority Devices)

In some applications there are a number of interrupting
devices of equal priority.

n this mode a device after being serviced, receives the
owest priority. So a device requesting an interrupt will
nave to wait.

n the worst case until each of 7 other devices are
serviced at most once.

Specific Rotation (Specific Priority)

The programmer can change priorities by
programming the bottom priority and thus fixing
all other priorities; 1.e., If IR4 Is programmed as
the lowest priority device, then IR5 will have the
highest one.

Special Mask Mode

In the special mask mode, when a mask bit Is set
In OCW1, it inhibits further interrupts at that level
and enables interrupts from all other levels (lower
as well as higher) that are not masked.

Thus, any iInterrupts may be selectively enabled
by loading the mask register.

Poll Command

In poll mode the INT output functions as it
normally does.

The microprocessor should ignore this output.

'his can be accomplished either by not
connecting the INT output or by masking
Interrupts within the microprocessor, thereby
disabling its interrupt input.

Service to devices Is achieved by software
using a poll command.

 Special Fully Nest Mode

* This mode will be used In the case of a big
system where cascading Is used, and the
priority has to be conserved within each slave.

* In this case the fully nested mode will be
programmed to the master.

 Buffered Mode

 When the 8259A is used In a large system
where bus driving buffers are required on the
data bus and the cascading mode Is used, there
exists the problem of enabling buffers.

 This modification forces the use of software

programming to determine whether the 8259A
IS @ master or a slave.

INITIALIZATION COMMAND WORD

Ao

O

De

Ds

Dy

O

Dz

04

Dy

0

A

T

A

A

|

LTM

ADI

SMGL

| 1G4

1= I1CW4 Needed
0= Mo ICW4 Needed

A

1= 3ingle
0= Cascade MNeeded

A

Call Address Interval

1 = Interval of 4
0 = Interval of 8

1=Level-Triggered Mode
0 =Edge-Triggered Mode

A=A of ntemipt
Vector Address
(MCS-80/85 Made Only)

ICW 1

A write command issued to the 8259 with Ao=0
and D4=1 is Interpreted as ICW 1, which starts the
Initialization sequence. It specifies,

Single or Multiple 8259s In the system.

4 or 8 bit, interval between the interrupt vector
Locations.

The address bits A7—As of the CALL Instruction.
Edge triggered or Level triggered interrupts.
ICW 4 is needed or not.

For Example, ICW1=17H

ADDDODDTD DD

o0 0|1 01110 1 1 1 = ICW, 15 needed
ok d*f L Single 8259
J¢ » CALL address
A- Ag As = 000 interval = 4
Edge tnggered mode

CALL address interval =4

Single 8259
ICW 4 15 needed

ICW 2

* ICW 2 is issued following, ICW 1 with A0 =1

* ICW 2 specified the high-order byte of the
CALL instruction.

 Since AO input of 8259 Is connected to address
line A1, ICW1 should be addressed to ‘C0’ H
& ICW 2 should be addressed to ‘C2° H

0 0 D D D D D D
R I T A | R

pLILLLLL]

ICW 3:

ICW 3 Is required If there is more than one
8259 In the system and If they are cascaded.

An ICW 3 operation loads a slave register in
the 8259.

The format of the byte to be loaded as an ICW
3 fora MASTER 8259 or a SLAVE

ICYW 3 -Adaster Device
D7 De. D5. D.q. DE. D: D1 D,

ST | S| S5 | Sa | B2 | 32| 34| 5o

> 1 =R inputhas aslave
O=IR inputdoesnot havea slave

ICW3 - Slave Device
O D [D QD D D

I B : 4

0 0 Of 0 0

o

S mamoooote— O
X

B o T PR o Y ﬁ
e =E =Tl =i
28]

W

— M Wh e P

ICW 4 ;
It is loaded only if the Do bit of ICW 1 Is set.
It specifies,

Whether to use special fully nested mode or non
special fully nested mode.

Whether to use buffered mode or non buffered
mode.

Whether to use Automatic EOI or Normal EOI.
CPU used — 8085 or 8086 / 8088

7]

J‘IJL:. D,‘- D.g. D{, D4 D;,| Dg

11 0f 0] 0|SFNMBU

14
1= 5pecial fully nested mode
0= Non-special fully nested mode

Dy Dy
- IMYS | AEQIH MPM
{ = 8086/ 3088 Mode
0=8085Mode
s 1=Auto EOI
0 =Normal EQI
L
0Tx| MonBuffered Mode

Buffered Mode /5lave
Buffered Mode /Maser

OCW

 After intialization, the 8259 Is ready to process IRs.

- However during operation, it might be necessary to
change the mode of processing the interrupt OCWs
which are used for this purpose.

* They may be loaded anytime after the initialization of
8259 to operate In various interrupt modes.

These modes are
 Fully nested mode
 Rotating Binary mode
« Special Mask mode

* Polled mode

OCW1

* Issued with AO=1, used to mask the Interrupts.
To enable all the IR lines, the command word
BOOH

-'E'LZID'-’DE- Ds Dy D3 Dy Dy Dy

[L] ad o o] e

Interrupt Mask
1= Mask SET
0= Mask RESET

OCW 2:

A write command with A, =1 and D,D,=00 Is
Interpreted as OCW2.

R—Rotate
SL—Select Level
EOI - End of Interrupt

he R, SL, EOI bits control the Rotate and
End of Interrupt Modes and combinations of
the two.

| = ‘ IR level to be

~|.r acted upon

Dy Dg Ds Dy D: Dy Dy Dy
[+ TsiJeal o To Tu]
F v oo
Yl 0]]]
0 Non Snecific B0l Command | O 0 1 1
Speciic EOl Command H :II EI]' g
1 0 1Rotate an Naa Specific EQI i 0 0 4
1 0 (Retate in Autornatic EO[(SET) | 1 o 1 5
00 (QRoenamomaceoiGer| . 1 9 9
1 1 1Fofate an Specilic EOI
1 1 (5 Prionly Cammand
0 1 (BNo operation

OCW 3:

OCW 3 iIs used to read the status of the
registers and to set or reset the Special Mask
and Polled Modes.

A D D D D: 0; D Dy D

0 || 0 | Eswm amw 1 plRe (RS
L l L | Read Register Command
Eﬂﬁiﬁﬂl Mask Mode 0 [0 | NoAction
010 Mo Act 0|
ol oAciT 1 | 0 |ReadIRR onnext RD Pulse
1| 0| Reset Speical Mask | | [1 T 1 | Read ISK on next KU Pulse
111 et Special Mask |¥
1 = Poll command

0 =No Poll command

8257-PROGRAMMABLE DMA
CONTROLLER

* The ability of an 1/O sub system Is to transfer
data to and from a memory subsystem, which
IS used for high speed data transfer.

« Ex : Data transfer between a floppy disk and
memory.

DMA Controller :

* It I1s a device that can control data transfer
between an /O subsystem and a memory
subsystem without the help of CPU.

DMA Operation sequence

Once Interface Is ready to receive data, DMA request is
made.

Bus request is made by the DMA.

Bus grant is returned by the processor.
DMA places address on the address bus.
DMA request Is acknowledged.
Memory places data on the data bus.
Interface latches data.

Bus request Is dropped and control Is returned to the
processor

Bus grant is dropped by the processor.

Features of 8257

Enable / Disable control of individual DMA
Requests.

Four Independent DMA channels - CHO, CH1,
CH2 and CHS.

Independent auto-intialization of all channels.
Memory to memory transfer.
Memory block initialization.

K

ior []4 = a0] a;
ow L] ove| [Eat
wemr L3 5a|C A,
e L4 Rt
mark [1s s 1Tc
reaDy []s 35 b &
Hoa [z s ™
anste []s 331 .
aen [Lls 32 L A
HRCQ E 10 31 Weo
E E 11 B257 30 Do
cLk []1z -] o,
reser []1s3 25| ..
oacre. []14 -7 D,
sacis L 15 611 D,
pra3 L]is o5) cacko
praz [li7 54 I GACHA
pra1 []1s 23] o
prao []19 22 p.
cno [2o 21 o

il .-\-‘-\-\-\"—_r'
Data Channe| 0 L DRQO
Bus -
D7 -Dy ‘::::;' Buffer \;/‘:D' {:‘:) 16 Bit Addr
:-I. o CHTR — DACKO
IFOR <—J I
[0 1 SE— - Channe |1 t—— DR 1
CLK — Read!/ @ 411
RESET — AT o
Ao < . Write _1| 16 Bit Addr
4 < o Logic CNTR ——— DACKAI
.‘!'uz < - oo 5]
if—rl =[Ep A—=|Channe, 2 L. DRQ 2
Co T = =
A, © ™ L‘--_:-- 16 Bit Addr
Hy
— +—>» DACHKSZ
e I
A ontrol
' Logic e = Channe|3 t—— DR 3
READY ——— and ._._:"" "::;,
HROQ ~— Mode I L —
HLDA ——— Set > CNTE ————— DACHKS
MEMH =< = Heqister t} T
—_— b e R 8
MEMW < “Hriory
AEMN = k Reso ver
ADSTB <
TC = T
MARK <

Fig.3.48. Block Diagram

Data Bus Buffer :

e |t IS a tri-state, bidirectional, 8 bit buffer which
Interfaces the 8257 to the system data bus.

* In the slave mode, It Is used to transfer data
between microprocessor and internal registers
of 8257.

* In master mode, It Is used to send higher byte
address (Ag—A;z) on the data bus.

Read/Write Logic :

* During DMA cycles (ie, Master mode) the
Read/Write logic generates the 1/O read and
memory write (DMA write cycle) or I/O Write
and Memory read (DMA read cycle) signals
which control the data transfer between

peripheral and memory device.

DMA Channels

« The 8257 provides four identical channels
labelled CHO, CH1, CH2 and CH3. Each channel
has two-16 bit registers

 DMA address register
» Terminal Count register
DMA address Register:

* |t specifies the address of the first memory
location to be accessed. It Is necessary to load
valid memory address In the DMA address
register before channel is enabled.

Terminal Count Register :

* The value loaded into the low order 14 bits (C13-
CO) of TCR specifies the number of DMA cycles

minus one (N-1) before TC output Is activated.

TERMINAL COUNT REGISTER

DLE |::|1f- D13 D1E |:]11 |:]1'3 D'EI D-ﬂ D? Di DE Dt D3 DE |::|1

Tyl T T 14-Bit Count

l—.,r,.—l'

Venfy Data Cycle
Wnte DMA Cycle

Read DMA Cycle
llegal

— & O
— 3 —h

Control Logic :

* |t controls the sequence of operations during
all DMA cycles (DMA read, DMA write,
DMA verify) by generating the appropriate
control signals and the 16-bit address that
specifies the memory location to be accessed.

* It consists of mode set register and status
register.

Mode Set Register

L SB 4 bits are the enable 4 DMA channels

MSB 4 bits are the enable Autoload,
Extended Write, Rotating Priority Moo

'C Stop,
es.

It 1s normally programmed by the CPU after
Initializing the DMA address registers and

terminal count registers.

It Is cleared by RESET input, this disabling all
options, inhibiting all channels, and preventing

bus conflicts on power-up.

Enables Autoloa

Enal
Enal

Enal

g3 10 sfop e——
g5 Extenea inte

85 Rotatng Pronty ¢

[m—

s s e

STATUS BIT REGISTER

It Indicates which channels have reached a
terminal count condition and includes the update
flag.

The TC status bit = 1, terminal count has been
reached for that channel.

TC bit remains set until the status register is read
or the 8257 Is reset.

Update flag = 1, 8257 Is executing update cycle.

In update cycle 8257 load parameters in channel 3
to channel 2.

Enables Autoload

Enab
Enab

Enab

85 [C stop ¢

es Extended Wnie «——

es Rotating Ponty

E3

E3
E3

E3

L3 L 3L 3 L1

==

=

AC

AC
AC

AC

1anne

1anne
1anne

anne

| ce—

s P —=

Priority Resolver :

* It resolves the peripherals request. It can be
programmed to work In two modes, either In
fixed mode or rotating priority mode.

UNIT —4

MICROCONTROLLERS

BASIC BLOCK DIAGRAM

RAM f ROM
Memory
Microprocessor M0 pors
(CPLU} i

FEATURES

High integration of functionality :

* Microcontrollers are called as single chip
computers because they have on - chip
memory and 1/O circuitry and other circuitries
that enable them to function as small stand -
alone computers without other supporting
circuitry.

 Field programmability, flexibility
Microcontrollers often use EPROM or
E2PROM as their storage device to allow field
programmability so they are flexible to use.

* Once the program is tested to be correct then
large quantities of microcontrollers can be
programmed to be used in embedded systems.

* Easy to use.

Advantages of microcontrollers

 The overall system cost Is low, as the
peripherals are integrated in a single chip.

* The product is of small size as compared to the
microprocessor based system and Is very
handy.

* The system is more reliable.

* The system Is easy to troubleshoot and
maintain.

 If required additional RAM, ROM and 1/0O
ports may be interfaced

Wc:]
ROM

Program

&9d91
Hegister

k= suffer
PC
Incremoenic

I Program

Countor

—>{ DPTR =3

G s Poct O Port 2
RAI.]
A4
V== 5 4"1 = j‘r 4I T
- - >
[
= 1‘|v~
>
Stack
- Pomnte
B —
Reg e TAAE=ED TP oz
. :‘ -=~ 'cu _=~
T "_C SB U=
ALU
T H TLII [} = =
lntern_lbt. Senal
PSSV, Port & Timer
FseEN € EQ l:no::\rcs
AlE € Timing = ﬂ 3
and -
= T3 Control Ily “
= —_— Poet 1
IC)ECJI?E_IO:‘ Por 1
XTAL 1 —|D|— XTAL2 P1.0-P1.7 F30P 3.7

Eis. 4.2. S8051 Arxrchitecture

The features of the 8051 are :

8 bit CPU with registers A (the accumulator) and B

16 bit Program Counter (PC) and Data Pointer (DPTR)
* 8 bit Program Status Word (PSW)

* 64K Program memory address space

« 64K Data memory address space

« 128 bytes of on chip data memory

« 32 1/O pins for four 8 bit ports : Port O, Port 1, Port 2,
Port 3

» Two 16 bit timers / counters : T, and T,
* Full duplex UART : SBUF
« Two external and three internal interrupt sources

* On chip clock oscillator.

Central processing unit

 The CPU is the brain of the microcontrollers
reading user’s programs and executing the
expected task as per Instructions stored there
in. It’s primary elements are an Accumulator
(ACC), B reqgister (B), Stack pointer (SP),
Program counter (PC), Program status word
(PSW), Data pointer register (DPTR) and few
more 8 bit registers.

Accumulator

* The accumulator performs arithmetic and logic
functions on 8 bit Iinput variables.

« Arithmetic operations Include basic addition,
subtraction, multiplication and division.

 Logical operations are AND, OR XOR as well
as rotate, clear, complement etc.

« Apart from all the above, accumulator Is
responsible for conditional branching decisions
and provides a temporary place in a data
transfer operations within the device.

B Register

B register iIs used in multiply and divide
operations.

* During execution B register either keeps one
of the two Inputs and then retains a portion of
the result.

* For other Instructions It IS used as general
purpose register.,

Stack Pointer

Stack Pointer (SP) is an 8 bit register.

This pointer keeps track of memory space where
the important register information are stored when
the program flow gets into executing a subroutine.

The stack portion may be placed in anywhere In
the onchip RAM.

But normally SP is initialized to 0O/H after a
device reset and grows up from the location 08H.

The SP 1s automatically Incremented or
decremented for all PUSH or POP Instructions
and for all subroutine calls and returns.

Program Counter

 The Program Counter (PC) Is the 16 bit
register giving address of next instruction to be
executed during program execution.

* |t always points to the program memory space.

Data Pointer Register

* The Data Pointer Register (DPTR) Is the 16 bit
addressing register that can be used to fetch
any 8 bit data from the data memory space.

* When it Is not being used for this purpose, it
can be used as two eight bit registers, DPH and
DPL.

Program Status Word

 The Program Status Word (PSW) keeps the
current status of the arithmetic and logic
operations in different bits.

« The 8051 has four math flags that respond
automatically to the outcomes of arithmetic and
logic operations and 3 general purpose user flags
that can be set 1 or cleared to 0 by the
programmer as desired.

 The math flags are carry (C), auxiliary carry
(AC), overflow (OV) and parity (P).

» User flags are named flag 0 (FO), Register bank
select bits RS0 and RS1.

CY | AC | FO [RS1 | RS0 OV — F
Carry J User Owverflow Farity
- fiag O
" Auxiliary flag flag
Carry
flag v v
0 0 - Select register bank 0
0 1- Select register bank 1
1 0- Select register bank 2

1

- Select register bank 3

Input / Output Ports

» 8051 has 32 1/O pins configured as 4 eight bit
parallel ports (PO, P1, P2 and P3).

* Each pin can be used as an input or as an
output under the software control.

* These 1/0O pins can be accessed directly by
memory Instructions during program execution
to get require flexibility.

Timers / Counters

e 8051 has two 16 bit Timers / Counters, TO and T1
capable of working in different modes.

* Each consists of a ‘HIGH’ byte and a ‘LOW’ byte
which can be accessed under software.

* There 1s a mode control register (TMOD) and a
control register (TCON) to configure these timers
/ counters in number of ways.

* These timers are used to measure time intervals,
determine pulse widths or initiate events with one
microsecond resolution upto a maximum 65ms.

Serial Port

* The 8051 has a high speed full duplex serial
port which Is software configurable in 4 basic
modes :

* Shift register mode

« Standard UART mode
* Multiprocessor mode
* 9bit UART mode

Interrupts

* The 8051 has five interrupt sources . One from
the serial port (RI / Tl) when a transmission or
reception operation Is executed : two from the
timers (TFO, TF1) when overflow occurs and two
come from the two input pins INTO, INT1.

» Each interrupt may be Independently enabled or
disabled to allow polling on same sources and
each may be classified as high or low priority.

* These operations are selected by Interrupt Enable
(IE) and Interrupt Priority (IP) registers.

Oscillator and Clock

* The 8051 generates the clock pulses by which
all internal operations are synchronized.

* Pins XTAL 1 and XTAL 2 are provided for
connecting a resonant network to form an
oscillator.

» Aquartz crystal Is used for oscillator.

 The crystal frequency is the basic Internal
clock frequency of the microcontroller.

SPECIAL FUNCTION REGISTERS (SFRS)

* The address of the Special Function Registers
are above 80H, since the addresses 00H to
/FH are the addresses of RAM memory.

« The SFRs have addresses between 80H and
FFH.

« But all the address space of 80H to FFH Is not
used by the SFRs.

« The unused locations are reserved and must
not be used by the programmer.

1anie 4.3 apecial Funcoen Kegisters

Name Functon Address (Hex)
Acc(A) Accumulator E0|
E Anthmetic FO
DPH (Data Pomter High bvte) Addressing 23

extermal memory
DPFL Data Pomter Low byte g2
IE Intermapt Enable Control AL
IF Intermapt Pnonty Control BE
PO 'O Port O Latch a0
Pl I'OPort 1 Latch o0
P2 I'OPort 2 Latch A0
P3 I'OPort 3 Latch BO
PCON Power Control a7
PSW Program Status Word DO
SCON Senal Port Control 0L
SBUF Senal Port Data Buffer oo
SP Stack Pomter 21
THIOD Tumer/ Counter Mode Control g0
TCON Timer/ Counter Control 28
TLO Tomer 0 low byte A
THO Timner 0 hugh byte 2C
TL1 Timer 1 low byte 2B
THI1 Timer 1 high byte 2D

ADDRESSING MODES

Immediate addressing mode
Register addressing mode

Direct addressing mode

Register indirect addressing mode
Indexed addressing mode

Immediate Addressing Mode

 When a source operand Is a constant rather
than a variable, then the constant can be
embedded into the instruction itself.

* This kind of Instructions take two bytes and
first one specifies the opcode and second byte
gives the required constant.

 The operand comes Immediately after the
opcode. The mnemonic for immediate data Is
the pound sign (#).

* This addressing mode can be used to load
Information into any of the registers including

DPTR register.

Examples ;
MOV A #18H

MOV B, #65H

MOV DPTER, #2040H
DPL «— 40H
DPH =— 20H

Register Addressing Mode

* Register addressing accesses the eight working
registers (Ro - R7) of the selected register bank.

 The least significant three bits of the
Instruction opcode Indicate which register Is to
be used for the operation.

* One of the four banks of registers iIs to be
predefined in the PSW before using register
addressing Instruction.

« ACC, B and DPTR can also be addressed In
this mode.

EEE_'['HEIEE :

MOV A_RS3

MOV RO, A

A R3
B
R0 A

Direct Addressing Mode

* In the direct addressing mode, all 128 bytes of
Internal RAM and the SFRs may be addressed
directly using the single - byte address
assigned to each RAM location and each SFR.

* Internal RAM uses address from 0O0H to 7FH
to address each byte.

Examples

60H

il
6ZH

MOVRZ 61H
MOV6FH A

MRS

ek [k

&FH

Register Indirect Addressing Mode

* In this mode a register is used as a pointer to
the data.

 |f the data Is Inside the CPU, only registers RO
and R1 are used for this purpose.

* When RO and R1 hold the addresses of RAM
locations, they must be preceded by the “@”

sign.

Example

MOV@RLA - Moveconteats of A mto RAM locaion waose adares 5 bed by R
|

MOVE, R0 Mo cotent ofRAMbocton e s s eld by 0 o

Indexed Addressing Mode

* Only the program memory can be accessed by this
mode.

« This mode is intended for reading lookup tables in the
program memory.

« A 16 bit base register (DPTR or PC) points to the base
of the lookup tables and accumulator carries the
constant indicating table entry number.

 The address of the exact location of the table iIs formed
by adding the accumulator data to the base pointer.

Example
MOVC A, @A+ DPTR

 The contents of A are added to the DPTR to form the 16
bit address of the needed data. ‘C’> means code.

I/OPORTS
Port 0 (P0.0-0.7)

Port O 1s used for both address and data bus (ADo
— AD.).
When the microcontroller chip Is connected to an

external memory, Port 0 provides both address
and data.

ALE pin indicates if Port 0 has address or data.

When ALE =0, Port O provides data (D, — D-)
= 1, Port O provides address (A, — A,)

ALE Is used for demultiplexing address and data
with the help of a latch

Port1 (P1.0 - P1.7)
 Port 1 pins are used as Input or output.

* To make port 1 as an input port, write 1 to all
Its 8 Dbits.

* To make port 1 as output port, write 0 to all its
8 bits.

* Thus port 1 pins have no dual functions.

Port 2 (P2.0 - P2.7)

* Port 2 pins are used as Input / output pins
similar In operation to port 1.

* The alternate use of port 2 iIs to supply a high
order address byte (Ag; — A;) when the

microcontroller 1S connected to external
memory

Port 3 (P3.0 - P3.7)
* Port 3 pins are used as input or output

Pin Function
P3i.0-RXD Serial data input
P31-TXD Serial data output
P3.2- INTO External interrupt 0
P33 - INTI External interrupt 1
P3i4-TO External imer 0 input
P3i5-T1 External timer 1 input
P3.6- WR External memory write pulse
P37-ED External memory read pulse

INSTRUCTION SET

* An Instruction IS a command given to the
computer to perform a specified operation on
given data.

« The Instruction set 1s the collection of
Instructions that the microcontroller 1Is
designed to execute.

 The programmer can write the program In
assembly language using these instructions.

Data transfer group
Arithmetic group

Logical group

Boolean variable manipulation
Program branching

hime

IO A Rn

IO A direct

IO A G Ri

OO A = data

IO Fo, A

IO Fn, direct

IO Fln, ==data

IO direct, A

IO direct, FEn

BAO direct, direct
IO dirsct, (@R
BAO direct, =data
LIOW, B Fi, &

IO B Ri_ direct
IO DPTE = data 16
RIOW C A i@as + DPTE

MOVC A, @A+ PC

MOV X A, @ Ri

BRI X A G DPTER

IOV X @ Ri, A

MOV X @ DPTE. A

FILI5H direct

S —FHn

A «— {adds)
A «— (Ri)
A s— data

Fn «— &

En «— {addr)

Fmn <— data
(adds) «— A
fadds)} +— FEn
faddsr 1) «— {addc)
(addr) <— {Fi)
{adds) «— data
(Fdi) <—

(Ri) +— (addr)
DPTE +— data 16
A« (A +DPTER)

A (A +PC)

A (Ri)

A« (DPFTR)”

(Ri)"™ «— A

(DPTER)™ «— A

(SE) «— ADDER

hiowe register to acciomlastor

Mlowea direct bete to accimmnlator
hiowe indirect FAMN to accurmilator
Mlowve immediate datato accunrmmlator
hiowe accumulator to registar

Mlowve direct bwta to resistar

hiowe imnmediate datato register
Mlove accunmulator to diresct bt
hiowe register to direct byta

Mlowve direct bwta to diract bwts
hiowe indirect E AN to direct beta
Mlove immediate datato direct bwts
hiowe accumulator to indirsct B A
Mlowve direct bete into indirsct EANT
L oad data poimterwrith 16 bit constant
howe cods bete relative to DPFTE to

accurmulator

howe code bete relative to PLC to

Mlove external EAN {8 bit addr=ss}to
accurmulator

hMove extermal RAM {16 bit address)
to accumulator.

IhAowe accurmulator to extermaal AT
{2 bitaddrass])

hovwe accumulator to external BRART
{18 bit address)

FPush direct byte omto stack

Mnemonic Description Operation
POP diract (addr) < (3F) POP diract byte from stack
XCHA En A En Exchangs registar with acourmlstor
XCHA direct A& (addr) Exchangs direct bytawith accumulater
XCHA, @Ri A+ (Ri) Exchange indiract RAM with
accumulator
XCHD A, @Ri AL > (Ri)L Exchangs low orderdigit indirect

B AM with accumulator

Aimemomic

D escription

Operation

ADD_ A En
ADD A dirsct
ADD A, @Ri
ADD A = data
ADDC A En
ADDC A dirsct
ADDC A, @R
ADDMC A = data
STTEBE A. Rn
SUBE A, dirsct

SUBE A, @ Fi

SUBE A, = dats

INC A
INCRn
IMC direct
INC @R
INCDPTER
DEC A
DECEn
DEC dirsct
DEC @ Ri
MUL AB
DIV AB

DA A

Ase A+ Fn

A w— A+ {addr)

A A+ (Ri)

A e A+ data
A A +En+C

A e A+ (addo) +C
A e A+ (Ri)+C

S e — A+ data
As— A -Fn -

A e A {adds) - C

Ao A TR C
Ao & - data - O

A A+ 1
FEn+«+ Fn-+1
{adds) «— {addc)+ 1
(Fi}) «— (Fi) + 1
DPFTE «— DFTE +1
Ae—A-1
En + Fn -1

(addsr) «— {addr) -1
(Fi) «— (Ri) -1
AB«— A=xDB
AB«— AB
.a':L_t «— .FL____

i =

Add resister to accwmmulator

Add direct byte to accumm lator

Add indiract BEAMN to accimrmilater

Add immediatedata to accumm lastor

Add resister to accumulator writh caro

Add direct byte to acocuwmulatorwrith caroer

Add indirect AN to accummlator writh carrer
Add immediatedata to acciurmm lastorwrith carce
Subtract resister from accumulator writh bomoer

Subtract direct byte from accurmulator writh
borrosr

Subtract indirect EA N from sccoumm lstor writh
borrow

Subtract imTmmmediate data from aconrmmlastora-ith
borrow

Increment accurmulator
Incremernt resister
Increment diraect beta
Incrament indirsct B AR
Increment data pointer
Drscrament accimmulator
Drecrement resistar
Dracrement diract beta
IDarrement indirect B AR
Elultiply A and B
Ddiwide A b B

Dracimal adjustaccurmilator

Al eersomm i ey crip fom 1D era fomn
AN A Fmn A AT (FEn) AN resister o aoonsmnlatar
ANT. A dirsct A ANDY (adds) AN direct byt to aconimm lator
ANMNL A, @R A ANDY CFA) AN indirect FARN to aconmmlatar

AN A =d=t=
AT, dirsct, A
ANL digsct, =datz
ORI A FEn
ORI A, dirsct
OFL A, @Fi
ORI A, =d=t=
OFL dirsct, A
OFRL dirsct, = dat=
=EL A . FEmn
HAEL A disect
XFL A, @FRi
AEPEL A, =d=t=
=B dirsct, A
=B dirsct, =data
FI. A

FEl.io oA

EE A

FFRT A
CLLE A

CPL A
SWADR A

A AND data

{addr) AT (A
{addsry AN data
AL OF (o)

A OF (addr

LA QR R
(A OF data
{addry OF (A
{addsy OF. data

(AL XOFR (Fm)

A XOF (addr)

LA HOEBRAD

A XOF data

faddsy HOF {A)

{addsry HOF data
Aps—AT Al A Ag
Ce—fume—Me e —Fge—iT
Ap—FAT—+ Ag - —FA1—F Ap
T f—afe —wfg—siT
A« D

A e

Ay === Ao

AT imarmesd iate dats 1o @ocnmmlatar
AND aconmnlatar to dizect byt

AND imanedizte data to dirsct byie
OF rezister 1o oo lator

OF dirsct byvrs 1o aoonmulator

OF indirect FoA M o aconmmlatar

OF imerediste dats 1o aoonmolstos
OF aoconmn lator to direct byr=

OF imanediats dats to dirsect byis

Ex - OF rezistsy ©0 2conimmlatar

EX - OF dir=ct byvie to aoonmuolator
EXX - OF indirect FA R t0 accnmmlatar
EX - OF immeadists dats 1o soonsmmlstar
EX - OF zoonmulator to direct byt
EX - OF imsnedizte data to dirsct byi=
Fatats aconmmlatar 15

Fotats aconmmnlator 1= thronsh caamyr
Fotats aconiomlatar risht

Fatats aoocnsmmlatar risht thoansh caamy

Cl=Er aoonmm l=tar

Compleanenit aooniom laiar

Swrap nibblss vwrithin the aconmmlstar

Mnemonic Description Operation
CLRC C«0 Clear canry
CLR bit bit 0 Clear direct bit
SETBC C &l Set cany
SETB bit bit 1 Set direct bt

CPLC

CPL bit
JANL C bit

ANLC,
ORL C. bit
ORL C. &it
MOV C, bit
MOV bit, C
JCradd

INC radd

TB bit, radd
INB bit, radd
TBC bit, radd

C o

bit «— &it
(CIAND bit
(C)JAND iz
(C) OR bit
(C)OR bt
C «— bit
bit « C

« PC +2 +radd
« PC+2 +radd
« PC+3 +radd
«— PC+3 +radd
« PC+3 +radd

Complement carrv

Complement direct bit

AND direct bit to carry
AND complement of direct bit to camry
OR. direct bit to carrv

OFR. complement of direct bit to carrv
Move direct bit to carrv

Move carry to direct bit

Jump if carrvis set

Jump if carrvis not set.

Jump if direct bitis set

Jump if direct bitis not set

Jump if direct bitis set and clear bit

Ainemonic

Description

Operation

ACATLIL sadd

LCALL ladd

RET

RETI

ATUNP sadd
LIUNP ladd
STUNP radd.

TMP & A+ DPTR

TZ radd

TNZ radd

CINE A, direct, radd,

CINE A, # data, radd

CINE En. # data, gadd

DINZRn. radd
DIMNZ direct. zadd,

NOP

(SP)Y— PC+ 2;
PC «—sadd
(SP)«— PC + 3:
FC «ladd
PC « (SP)

PC «— (SP);El
PC < sadd

PC « ladd
PC —PC + 2 + radd

PC—DPTE + A

L4 =00];
PC —PC + 2 + radd

[A = 00];
PC —PC + 2 + radd

LA == (addr)]:
PC—PC +3 + radd

[A <> (data)];
PC—PC +3 + radd

[(Bx) <> data];
PC—PC +3 + radd

[Fn-1=>=00];
PC—PC +3 + radd

[(add)y -1 == 0];
PC—PC +3 + radd

PC—PC +1

Absoluts subroutme call

Long subroutine czll

Eesnun from zub - routine

Eetumn from misrnip

Absoluts jump

Long jump

Short jump {(relatimre address)
Jump indirect relatire to the DEPTE.

Jumpr if accumulator is =Zsro

Jumyp if accumulator is not Z=ro.

Compars direct byts to Acc and jump if not
equal.

Compars immedists datas to Scc and jump
tf not egual.

Compars immedists dats to register and
Jumnp if not egusl.
Decrement register and jump if not =z=ro.

Decrement direct byte and jump if not zero.

Mo operation.

UNIT —5

INTERFACING
MICROCONTROLLER

PROGRAMMING 8051 TIMERS

Mode 1 Programming
Operations of mode 1:

* It allows values of 0000 H to FFFF H to be loaded
Into the timer’s registers TL and TH.

o After TH and TL are loaded with a 16 - bit initial value,
the timer must be started.

* This 1s done by “SET B TRO” for Timer 0 and “SET B
TR1” for Timer 1.

 After the timer Is started, it starts to count up. It counts
up until it reaches its limit of FFFF H. When it rolls
over from FFFF H to O000H, it sets high a flag bit
called TF (Timer Flag). This timer flag can be
monitored. When this timer flag iIs raised, one option
would be to stop the timer with the imnstructions “CLR
TRO” or “CLR TRI1” for Timer 0 and Timer 1
respectively.

 After the timer reaches its limit and rolls over to repeat
the process the registers TH and TL must be reloaded
with the original value and TF must be reset to O

Osclator

TIMER FOR MODE 1

_

Overow |

Frequency

|}

el (

IR

}

W0

TF qogs hign
When FFFF 5 (

i

ey

PROCEDURE

Load the TMOD value register indicating which
timer (Timer O or Timer 1) Is to be used and
which timer mode (0 or 1) Is selected.

Load registers TL and TH with initial count
values.

Start the Timer.

Keep monitoring the timer flag (TF). When TF
becomes high get out of the loop.

Stop the timer.
Clear the TF flag for the next round.

- -

Load TMOD
(Timer 0, Mode 1)

>

i

DELAY SUBROUTINE

Start Timer 0O

"
Load The initial value
into THO—TLO

L

Toggle P2 .2

|

=

T

Monitor Timer 0O flag
until it rolls over

Call Delay Subroutine

Yes

Stop Timer 0O

b

Clear Timer 0 Flag

Retum

PROGRAM

ELEL-BN F LN -

BACONT THhIOD, = 01
BACNT TIL.O. & OF2 H
TP 1 - BACNT THO_ # OFF H
CPI. P22
A ATT, DET. A™Y
=J I T.OOF 1
IDET A Y - SET TE.O
LT 2 JINIE TEFO_ T .OOP2
CIT.ER TE.O
CT.R TED

TMOD register ;

— Timer 1 3| Timer 0 —
GATE | CIT M1 M0 GATE | CIT M1 M0
0 0 0 0 0 0 0 1

Sttt e e A A A A A A A A A A A A A AR A AR A AN AN

=01H

Program :

LOOP 1:

LOOP2:

CLE
AN
DA™
BAON
SET B
SET B

CLE
CLE
CLE
LIMP

Pl1. 4

ThWiOD, 01 H
TL.O, Z0B0 H
THO, #3CH
Pl .4

TRO

TFO, LOOP2
TRO

TFO

Pl1.4

LOOP1

Mode 2 Programming
Operations of Mode 2:

Mode 2 allows only values of 00 H to FF H to be loaded
into the timer’s register TH.

After TH is loaded with the 8 bit value, the 8051 gives a
copy of it to TL. Then the timer must be started. This Is
done by “SET B TRO” for Timer 0 and “SET B TR 1” for
Timer 1.

After the timer Is started, it started it starts to count up by
Incrementing the TL register. It counts up until it reaches its
limit of FFH. When it rolls over from FFH to 00H, it sets
high the timer flag (TF) TFO Is raised for Timer 0 and TF 1
Is raised for Timer 1.

When the TL register rolls from FF H to 00 H and TF is set
to 1, TL is reloaded automatically with the original value
kept by the TH register. To repeat the process clear TF (anti
- reloading).

Oscillator
Frequency

.q:_
Relpad

S il

Overflow flag

TF goes high
when FF = 0

PROCEDURE

Load the TMOD value register indicating which
timer (Timer 0 or 1) Is to be used and select the
timer mode 2.

Load the TH registers with the initial count value.
Start the timer.

Keep monitoring the timer tlag (TF) with “JNB
TFx” instruction. When TF becomes high get out
of the loop.

Clear the TF flag
Go back to step 4, since Mode 2 is auto - reload.

TMOD register :

fe—— Timer 1 »|€ Timer 0 —|
GATE CIT M1 MO GATE CIT M1 MO
0 0 1 0 0 0 0 0
Timer 1. Mode 2 — Auto reload
Program ;
MOV TMOD, % 20H
MOV THI1. #6
SETB TE1
LOOP: JNBE JF1.LOOP
CPL P13
CLE TF 1
SIMP LOOP

=20H

COUNTER PROGRAMMING

 When C/T =1, the timer is used as a counter and gets
Its pulses from outside the 8051. The counter counts up
as pulses are fed from pins TO (Timer O input) and T1
(Timer 1 input). These two pins belong to port 3. For
Timer 0, when C/T =1 pin 3.4 provides the clock pulse
and counter counts up for each clock pulse coming
from that pin.

« Similarly for Timer 1, when C/T = 1 each clock pulse
coming In from pin 3.5 makes the counter countup.
P3.4 - TO - Timer/Counter 0 external input

P35 -T1 - Timer/Counter 1 external input

* In counter mode, the TMOD, TH and TL registers are
the same as for the timer. Counter programming also
same as timer programming.

LOOP 1:
LOOP 2:

MOV
MOV

SETB
SETB
MOV
MOV

CLR
CLR
SIMP

TMOD,#01100000B
TH1,#00H

P35

TR 1

A TLI
P2 A
TF1,LOOP2
TRI

IF1

LOOP1

=

Counter |, Mode2, T =1
Clear TH1

Make T1 mput

Start the counter

. Get copy of count TL 1

Displav it on Port 2

. Goto Loop 21f TF=0

Stop the counter 1
Make TF=0
Jump to Loop 1.

SERIAL PORT PROGRAMMING

Programming the 8051 to transfer data
serially

 The TMOD register i1s loaded with the value
20H, Indicating the use of Timer 1 in mode 2

TMOD Remster

GAIE
0

CT
0

Ml
l

MO
0

GATE
0

If M; M; =10, 8 bit Auto - reload counter

CT
0

Ml

MO

able to set the baud rate for serial
transfer.
Baud rate TH1 (Decimal) TH 1 (Hex)
9600 -3 ID
4800 6 FA
2400 -12 4
1200 24 E8

"he TH 1 Is loaded with one of the values In

data

* The SCON register is loaded with the value 50
H, indicating serial mode 1, where 8-bit data IS
framed with start and stop bits.

SCONregster
SMO | SMI| SM2| REN| TB8| RBS| TI
01 1| 0) 0|0
£ SMO, SM1=01, Senal Mode 1, 8 bt data, I stop bit 1 start bit

'R 11sset to start Timer 1.
| 1s cleared by the “CLR TI” Instruction.

"he character byte to be transferred serially Is
written into the SBUF registers.

The TI flag bit 1s monitored with the use of the
instruction “JNB TI, XX ” to see if the
character has been transferred completely.

o transfer next character, go to step 5.

Program

Write an ALP to transfer letter *E’ senally at 4800 baud continucusly.

Solution:
MOV TMOD. #20H : Timer 1, Mode 2 (Auto-reload)
MOV TH 1 #-6 - 4800 baud rate
MOV SCON.#50H . 8-bit, 1 stop, 1 start, REN enabled
SETE TR1 - Start Timer 1
LOOP1: MOV SBUF. 5 ‘E - Letter “E’ to be transferred
LOOP2: JNB T LOOP2 - Wait for the last bit
CLE TI - Clear TI for next character

SIMP LOOP1 . GotoLoop 1 forsending “E’

Programming the 8051 to receive data serially

* The first 4 steps are as same In programming
to transfer data serially.

 RIis cleared with “CLR RI ¢ instruction.

* The RI flag bit is monitored with the use of the
instruction “JNB RI, XX to see 1f the
character has been received yet.

 When RI is raised, SBUF has the byte. Its
contents are moved into a safe place.

* To receive the next character, go to step 5.

Program

Write an ALP to receive bytes of data senally and put themin Port 2. Set the baud rate at
2400, 8 bit dataand 1 stop bit |

Solution:
MOV TMOD.#20H : Timerl mode?
MOV THI1.#F4H . For 2400 baud THI=12 (F4 H)
MOV SCON.#50H ; 8-hit, 1 stop, REN enabled
SETE TRI - Start Timer 1

LOOP1; INB RLLOOP1 - Wait for character to come n
MOV A SBUF . Saveincoming byte in A
MOV P2 A - SendtoPort2
CLR RI : Getready toreceive next byte

SIMP LOOPI . GotoLoop] . tokeepgetting data.

INTERRUPT PROGRAMMING

An Interrupt Is an Internal or external event that
Interrupts the microcontroller to inform it that a device
needs Its service. Every Interrupt has a program
associated with it called the interrupt service routine
(ISR).

The 8051 has 6 interrupts:

Reset

Timer interrupts :Timer O Interrupt and Timer 1
Interrupt

External hardware interrupts : INT O INT 1
Serial communication interrupt

The 8051 can be programmed to enable or disable an
Interrupt and the interrupt priority can be altered.
Register IE is responsible for enabling and disabling the
Interrupts.

Programming Timer Interrupts

* The timer flag (TF) is raised when the timer rolls over.
In polling TF, we have to wait until the TF Is raised.

* In problem with polling method 1Is that the
microcontroller is tied down while waiting for TF to be
raised and cannot do anything else.

 Using Interrupts solves this problem and avoids tying
down the microcontroller.

* If the timer Interrupt In the IE register iIs enabled,
whenever the timer rolls over, TF Is raised and the
microcontroller Is interrupted In whatever it is doing
and jumps to the Interrupt vector table to service the
ISR.

* In this way the microcontroller can do other things until
It 1S notified that the timer has rolled over.

Times 0 interrupt Vector

Jumps to

,I 000BH ‘

Times 1 interrupt Vector

Jjumps to

J.I 001BH ‘

Programming External Hardware Interrupts

* The 8051 has two external hardware Interrupts
INT O and INT 1.

* Upon activation of these interrupts through
Port pins P3.2 and P3.3, the 8051 gets
Interrupted In whatever it Is doing and jumps
to the iInterrupt vector table to perform the
Interrupt service routine (ISR).

 There are two types of activation for the
external hardware interrupts: Level triggered
and Edge triggered.

KEYBOARD INTERFACING

* The rows are connected to an output port and
the columns are connected to an input port.

 When a key Is pressed, a row and a column
make a contact, otherwise there IS no
connection between rows and columns.

 If all the rows are grounded and a key Is
pressed, one of the columns will have O since
the key pressed provides the path to ground.

* If no key has been pressed, reading the input
port will yield 1s for all columns since they are

connected to Vcc.

+5

If any key Is pressed, the columns are scanned
again and again until one of them has a 0 on it.

After the key press detection, it waits 20 milli
seconds for the bounce and then scans the
columns again.

After 20 ms delay, the key is still pressed, it goes
to detect which row it belongs to. To detect the
row It grounds one row at a time, reading the
columns each time.

If all columns are high, the pressed key cannot
belong to that row. Therefore it grounds the next
row and continues until it finds the row the key
press belongs to.

« After finding the row, It sets up the starting
address for the look-up table holding the
ASCII codes for that row and goes to the next
stage to identify the key.

« Now It rotates the column bits, one bit at a
time into the carry flag and checks if it is low.

* When carry flag Is zero, it pulls out the ASCI|
code for that key from look-up table; otherwise
It Increments the pointer to point to the next
element of the look-up table.

Program
Write 8051 AT P to interface 4x4 matrix kevboard _
Solution :

ROW_1: MOV DPTR, EKEYI1]|
SINP FIND
ROW_2: MOV DPTR, #FKEYZ2
SINP FIND
ROW_3: MOWV DPTR,#KEYS3
FIND RRC A

JTINC DNAATCE
INC IDPITER
SIMNE FINID
DA TCH - CLE A
MO CA . (@A TDPTER
MON PO A
MO P11, #F00H
L3¢ DAON A P2
AN A F0F H
CINE A _ #F0FH, 1.3
CAT.T. DEL.AY
SJIhilP 1.2

ASCII-Look up table for each row

ORG F000H
EEY 0: DE “0° - 17 - 27 - “3°
EEY 1: DB 47 - *57 - *§7 - * 7"
EEY 2 : DB 8" - 97 - A" - “]°
EEYS : DB C* - D - “E° - “F°
END

FProgram for Kevibhboard

N ER:

O ER1:

AN P2 _=O0FF H

PACYN 1 _ (¢ IEL

RBACON & P2

=JrhAdF 1L=

ST AT T TOET &S 5

RBACON & P2

CIE & =0FH (OOWEER1
=JrhAdF 1L=

PAOONT 1 #H0F EFL

RBACON & P2

CINE & =0FE B %W O
FPACS 1 _~=OFI>
RBACON & P2

CIE & =0OFEH EOWW 1
FPAOY 1 _~=0FE K
RBACON & P2

CIE & =0F HH_CECOWW 2
FPAOON P11 _+=0F 7 H
RBACON & P2

CINE & = 0FEHE EOWW =

LCD INTERFACING

* The various types of LCD displays are, 16x2,
20x1, 20x2, 20x4, 40x2 and 40x4 LCDs. 16x2
LCD means that it having two lines, 16
characters per line.

* The 8 bit data pins (D,—D-) are used to send
Information tot he LCD or read the contents of
the LCD’s internal registers.

* The data lines are connected to Port 1. Register
Select (RS),

* Read/Write (sy,) and Enable (EN) plans are
connected to Port 3.

202
LCD

Er=0

Dg D] D D Dk . xgg’ RS RAW | EN
=
=
[

\ J .)

Y
5]
P10 1.1 1.2 1.3 1.4 1.5 1.6 1.7 FiZ 33 34

Fort1

Fort3

— * +5\/

—5V
GND

There are two important registers are available inside the LCD. They
are (1) instruction command register, (ii) data register.

The RS pin is used to select the register. If RS=0, the instruction
command code register is selected, allowing the user to send a

command. If RS=1, the data register is selected, allowing the user to
send data to be displayed on the LCD.

=w PIN Is used to write information to the LCD or read information
from it. EN (enable) pin is used to latch information presented to its
data pins.

When data is supplied to data pins, a high-to-low pulse must be
applied to EN pin in order for the LCD to latch in the data present at
the data pins.

This pulse must Dbe a minimum of 450 ns.

If RS=0 and g\, =0 i :
When busy fFag (D7)=1, the LCD is busy and will not accept any
new information.

When busy flag (D7) = 0, the LCD is ready to receive new
Information.

ADC interfacing

ADCs are used to convert the analog signals to digital
numbers so that the microcontroller can read them.

ADC [like ADC 0804 IC] works with +5 volts and has a
resolution of 8 bits.

Conversion time is defined as the time taken to convert the
analog Input to digital (binary) number. The conversion
time varies depending upon the clock signals; it cannot be
faster than 110 us .

Analog input is given to the pins V;,, (+) and Vi, (-).

Vi, (-) Is connected to ground.

Digital output pins are D, - D,. D, is the MSB and D, is the
LSB.

There are two pins for ground, analog ground and digital
ground. Analog ground Is connected to the ground of the
analog V;, and digital ground is connected to the ground of

the V¢ pin.

The following steps are followed for data
conversion :

Make chip select (CS) =0 and send a low - to
- high pulse to pin WR to start the conversion.

Keep monitoring the INTR pin. If INTR Is
low, the conversion Is finished and go to the
next step. If INTR is high, keep polling until it
goes low.

After the INTR has become low, we make CS
= 0 and send a high- to-low pulse to the RD
pin to get the data out.

he ol
8051

F2.5
F2.6

1.0
F1.1
1.2
F1.3
1.4
F1.5
F1.6

F1.7
P27

i

A A A

AHp A QA

ADC 804
RD Voo * 5y
WR CLK in —e
D0
D1 +5V
D3 Vin (=)
D4
D5 pe—
06 AGND _I
D7 Vrefl2 -
INTR GMND _l

|

The program presents the concept to monitor the
INTR pins and bring an analog Input into
register A. Then call a hex - to - ASCII
conversion and data display subroutines
continuously.

* P2.6 = WR (start conversion needs to low - to -
nigh pulse)
« P2.7=INTR, when low, end - of - conversion

P25 = RD (a high-to-low will read the data
from ADC chip)

* P1.0-P1.7=D,- D, of ADC 804

BACK:

HERE:

MOV
CLR
SETB

CLR
MOV
ACALL
ACALL
SETB
SIMP

P1.#0FF H

P16

P16

P27 HERE

P13

APl
CONVERSION
DATA DISPLAY
P15

BACK

-make Pl =input

WR=0

:WR =1 Low - to - high to start conversion.
- Wait for end of conversion

- Conversion fimshed, enable RD

- read the data

- hex - to - ASCII conversion

- display the data

- make RD =1 for next round

DAC INTERFACING

+8V
$ o
P3.2 C_S > Vce Vrel (=)
P3.3 WR 5K
P3.4 RD AN
8051
V oul
DAC 741
R 0808 '
P1.0 Do
P1.1 > D-
P1.2 > D-
P13 > D:
p14 > Dl :_
P15 > D-
P1.6 > D: Vref(-)

y
@)
T

P1.7

* The digital - to - analog converter (DAC) is used
to convert digital pulses to analog signals.

The methods of creating a DAC are:
 Binary weighted
* R/2R ladder.

* Mostly R/2R method with DAC 0808 (MC 1408)
IS used since It can achieve a much higher degree
of precision. Port 1 furnishes the digital byte to be
converted to an analog Voltage and port 3 controls
the conversion process.

 In DAC 0808, the digital inputs are converted to
current. The total courrent provided by the I, pin
IS a function of the binary numbers at the D, — D,
Inputs of DAC and the reference current | ;.

D D D D D D D D
I, A —— . — 3 — :

L2 4 8 16 32 & 128 %)
Where [,.s;=2 mA.

SENSOR INTERFACING
Sensor :

» Sensor converts the physical Pressure, Temperature or other variable
to a proportional voltage or current.

Types of Sensors :
 Light Sensor

« Temperature Sensor
* Pressure Sensor

e [orce Sensor

* Flow Sensor
Temperature Sensor

« There are many types of temperature sensors. Now we discuss about
Semiconductor Temperature Sensor (LM 35). The LM35 series
sensors are precision integrated circuit temperature sensor whose
output voltage Is proportional to the Celsius (centigrade)
temperature.

It outputs 10 mV for each degree of centigrade temperature. If the
output is connected to a negative reference voltage V., the sensor

will give a meaningful output for a temperature range of -55°C to

+150°C. The output voltage can be amplified or filtered for a
particular application.

+aV

LM 35

L 4

LI

ki

bl

L

ce I:_S
R
WR
Y —CH1 MADMD,
= CH2 MA1/D,
——CH3Z MAZ2/D:
—— =
R1 CH4 @ MA3IMD:
CH5 2 ma4m,
L}E
_vg ——{CH7 0g
—CHE
+1l.|".|:.|:T D'.r
g: Viet(+) INTR
Setto] ANO
_L 286V

F2.4
F2.5
F2.G

F1.0

F1.1
F1.2

F1.3
F1.4

F1.5
F1.6

F1.7

o F2.7

2051

EXTERNAL MEMORY INTERFACING

 When the data is located Iin the code space of
8051, MOVC Instruction Is used to get the data,
where ‘C’ stands for code.

 When the data memory space must be
Implemented externally, MOVX Instruction is
used, where ‘X’ stands for external.

External data RAM interfacing

* To connect the 8051 to an external SRAM, we
must use both RD (P3.7) and WR (P3.6).

* In writing data to external data RAM, the
instruction “MOVX @DPTR, A” 1s used, where
the contents of register A are written to external
RAM whose address is pointed to by the DPTR
register.

Program:

Write a program to read 200 bytes of data from Port 1 and save the data in external RAM
starting at RAM location 5000H.

kil
RAMDATA EQU

COUNT EQU
MOV
MOV

AGAIN: MOV
MOVX

ACALL

INC

DJNZ
HERE : SIMP

5000H
200

DPTR, # RAMDATA ; pointer to external NV-RAM

R3, #COUNT
A,PI
@WDPTR, A
DELAY
DPTR

R3, AGAIN
HERE

. counter

~read dafta from P1

-save it external NV-RAM

- wait before next sample |
-next data location

-untl all are read

 stay here when finished

P37 -
B
P35 : ATS
= mml?”—} CE WE OF
= A2 Ai3 i:@

8051 P = 16K
ALE G Data
P07 ADT T EQ AT RAM
0 74LS373 N

ADD oc Al 07 D0
o
Y D7

D0

STEPPER MOTOR INTERFACING

« A stepper motor is a widely used device that translates electrical
pulses into mechanical movement. In applications such as disk
drives, dot matrix printers and robotics the stepper motor is used for
position control. Every stepper motor has a permanent magnet rotor
surrounded by four stator windings, that are paired with a center-
tapped common.

* The center tap allows a change of current direction in each of two
coils when a winding is grounded, thereby resulting in a polarity
change of the stator. The stepper motor shaft runs in a fixed
repeatable increment which allows one to move it to a precise
position.

* This repeatable fixed movement is possible as a result of basic
magnetic theory where poles of the same polarity repel and opposite
poles attract. The direction of the rotation Is dictated by the stator
poles. The stator poles are determined by the current sent through
the wire coils.

« As the direction of the current iIs changed, the polarity is also
changed causing the reverse motion of the rotor As the sequence of
power is applied to each stator winding, the rotor will rotate. There
are several used sequences where each has a different degree of

precision.

NRCM

your roots to success...

A
]

Stepper
Motor

rague
[::I I’:] I 18
+5% diriver
J:., /\ A A A
Microcontroller
W 4 L'l Z
EN I— Latch ,':'.": P
CLK St ol Shift register + latch
ouT nata clk g

Fig £.20 Drive circoiiry for a stepper motor

The movement of the stepper motor wath a single step 1= depends on the mtemal

constraction ofthe motor, n particular the number ofteeth onthe stator and the rotor. The step

angle 1z the minimmom degree of rotation associated wath a smgle step. Vanous motors hawve

different step angles. Table 5.3 shows some step angles for vanous motors.

Stepsper revolution= Totalnmumber of stepsneededto rotate one complete

rotation or 360 degrees.

P PM =« Steps per revolution

Stepspersecond=

60

WAVEFORM GENERATION:

Steps to generate sine wave on 8051 microcontroller.
Generate digital values of sine wave on a port that is 8 bit binary value.

Convert that digital value into analog value to take that 8 bit output on 1

pin.
Generated sine wave is in steps hence to obtain a pure sine wave, pass it
through low pass filter. Thus by remove high frequency part, obtain
smoother sine wave.

First, generate digital values for sine wave. For this example take 16 points
in 1 cycle. Thus 1 value will hold for 1/16th of 360 degree. Hence use
sine(360 * (i/16)) where i runs from 0 to 15.

This will cover 16 equally spaced points in one cycle. Place this cycle in
while (1) loop so that will get continuous sine wave.

In a cycle of sine wave, half cycle Is positive and remaining half cycle is
negative. Since microcontroller cannot have negative voltage, will shift
sine wave to half of maximum value.

As maximum value is 255 for 8 bits, half of it is 127.5.Thus digital value to
be assigned to port is 127.5 + 127.5 * sine(360*(i/16)) where 1 runs from 0
to 15. Here minimum value is 127.5 - 127.5 = 0 and maximum value is
127.5 + 127.5 = 255

Hence sine wave will be between 0 and 255 and which can be assigned to
port. Since most of the values will come in fraction, have to round figure to

assign integer value.

NRCM

your roots to success...

Program:
#include<regs1 h> |

int main(void)
{
/Digital values of sine wave
unsigned char x[16]={127.,176,218,245,255,245.218,176.,128,79.37.10,0,10,37,79}:

unsigned char i:

while(1)

{
for(1=0:1<16:1++)
{

Pl1=x[i];

h

¥

H

COMPARISON OF MICROPROCESSOR,
MICROCONTROLLER, PIC AND ARM

PROCESSORS
Microprocessor
« Microprocessor has only a CPU inside

them In one or

few Integrated Circuits. Like microcontrollers it does
not have RAM, ROM and other peripherals. They are

dependent on external circuits of perip
But microprocessors are not made for s
they are required where tasks are com

nerals to work.
necific task but

nlex and tricky

like development of software’s, games and other
applications that require high memory and where input
and output are not defined. It may be called heart of a

computer system. Some examples of
are Pentium, 13, and I5 etc.

microprocessor

Microcontroller

* A micro-controller can be comparable to a little stand alone
computer; It Is an extremely powerful device, which Is able
of executing a series of pre- programmed tasks and
Interacting with extra hardware devices. Being packed in a
tiny iIntegrated circuit (IC) whose size and weight is
regularly negligible, it is becoming the perfect controller for
as robots or any machines required some type of intelligent
automation.

* A single microcontroller can be enough to manage a small
mobile robot, an automatic washer machine or a security
system. Several microcontrollers contains a memory to
store the program to be executed, and a lot of input/output
lines that can be a used to act jointly with other devices, like
reading the state of a sensor or controlling a motor. 8051
microcontroller i1s an 8-bit family of microcontroller is
developed by the Intel in the year 1981.

https://www.elprocus.com/8051-microcontroller-architecture-and-applications/
https://www.elprocus.com/8051-microcontroller-architecture-and-applications/

PIC Microcontroller

* Peripheral Interface Controller (PIC) is microcontroller
developed by a Microchip, PIC microcontroller Is fast and
simple to implement program when we contrast other
microcontrollers like 8051. The ease of programming and
simple to interfacing with other peripherals PIC become
successful microcontroller. Microcontroller Is an integrated
chip which is consists of RAM, ROM, CPU, TIMER and
COUNTERS.

« The PIC is a microcontroller which as well consists of
RAM, ROM, CPU, timer, counter, ADC (analog to digital
converters), DAC (digital to analog converter). PIC
Microcontroller also support the protocols like CAN, SPI,
UART for an interfacing with additional peripherals. PIC
mostly used to modify Harvard architecture and also
supports RISC (Reduced Instruction Set Computer) by the
above requirement RISC and Harvard we can simply that
PIC Is faster than the 8051 based controllers which is
prepared up of Von-Newman architecture.

https://www.elprocus.com/introduction-to-pic-microcontrollers-and-its-architecture/
https://www.elprocus.com/8051-microcontroller-8-16-bit-timers-and-counters/
https://www.elprocus.com/8051-microcontroller-8-16-bit-timers-and-counters/
https://www.elprocus.com/analog-digital-converters/
https://www.elprocus.com/analog-digital-converters/
https://www.elprocus.com/what-is-risc-and-cisc-architecture-and-their-workings/

ARM Processor

 An ARM processor is also one of a family of CPUs based
on the RISC (Reduced Instruction Set Computer)
architecture developed by Advanced RISC Machines
(ARM). An ARM makes at 32-bit and 64-bit RISC multi-
core processors. RISC processors are designed to perform a
smaller number of types of computer instructions so that
they can operate at a higher speed, performing extra
millions of instructions per second (MIPS).

« By stripping out unnecessary instructions and optimizing
pathways, RISC processors give outstanding performance at
a part of the power demand of CISC (complex instruction
set computing) procedure. ARM processors are widely used
In customer electronic devices such as smart phones,
tablets, multimedia players and other mobile devices, such
as wearables. Because of their reduced to instruction set,
they need fewer transistors, which enable a smaller die size
of the integrated circuitry(IC).

https://www.elprocus.com/arm-architecture/
https://www.elprocus.com/different-types-of-integrated-circuits/

	UNIT -1
	UNIT 1
	UNIT 1 (1)
	The BIU contains
	The EU contains
	Interrupts

	ADDRESSING MODES
	Implied Addressing Mode
	• Examples:

	INSTRUCTION SET
	2. PUSH
	• Example :

	3. POP
	• Example :
	Bit Manipulation Instructions

	STRING INSTRUCTIONS
	LOOP
	• Example :

	NOP

	ASSEMBLER DIRECTIVES
	ASSUME

	ASSEMBLY LANGUAGE
	Machine language
	Assembly language program
	OPCODE
	Mnemonics are used because they

	MODULAR PROGRAMMING
	ALPs are developed by essentially the same
	The benefits of using modular programming are,
	LINKING AND RELLOCATION
	The process combines the following.
	Segment combination

	PROCEDURES & MACROS
	Procedure (PROC)

	INTERRUPTS AND INTERRUPT SERVICE
	Interrupts

	Interrupt Service Routines (ISRs)
	Types of Interrupts
	• Non Maskable Interrupt (Type 2)
	• Breakpoint Interrupt (Type 3)
	• Overflow Interrupt (Type 4)
	Hardware Interrupts

	Byte And String Manipulation
	8086 program to find the min value in
	PIN DIAGRAM
	MAXIMUM MODE SIGNALS
	Address / Data Bus (AD15–AD0)
	Data Enable(DEN)
	Hold
	Hold Acknowledge (HLDA)

	SYSTEM BUS STRUCTURE
	DATA BUS
	ADDRESS BUS
	CONTROL BUS
	MIN-MAX MODE OF OPERATION
	Minimum Mode

	READ CYCLE
	Maximum mode operation’

	SYSTEM DESIGN USING 8086
	I/O devices
	Memory requirement
	System clock frequency
	Peripheral devices
	Application

	I/O PROGRAMMING
	PROGRAMMED I/O
	INTERRUPT DRIVEN I/O
	DMA TRANSFER
	PROGRAMMED I /O
	Read input in programmed I/O mode

	Interrupt driven I /O

	POLLING
	LIMITATIONS
	Daisy chaining
	Memory Interfacing

	I/O INTERFACING
	Serial Communication Interface
	Parallel Communication Interface
	SERIAL COMMUNICATION INTERFACE
	Simplex
	Half duplex
	Full duplex
	Synchronous Transmission

	Asynchronous transmission

	OPERATING MODES
	DATA BUS BUFFER
	Read/Write Control Logic
	BSR (Bit Set/Reset) Mode
	Mode 0 – Basic I/O mode
	Mode 1 - Strobed Input/Output
	INTR (Interrupt Request):
	OBF(Output Buffer Full):
	ACK(Acknowledge):

	Applications of 8254

	PIN DIAGRAM
	Data Bus Buffer
	Read/Write Logic
	Control Word Register
	Counter 0, Counter 1, Counter 2

	OPERATING MODES (1)
	Mode 3: Square Wave Mode
	METHODS TO IMPLEMENT MODE 3
	Mode 4: Software Triggered Strobe
	Mode 5: Hardware Triggered Strobe

	Programming the 8254
	Write Operations
	Read Operations

	KEYBOARD/DISPLAY CONTROLLER
	PIN DIAGRAM (1)
	RESET :
	CS (Chip Select) :
	IRQ (Interrupt Request) :

	SHIFT :
	Block Diagram of 8279
	CPU Interface Section
	Keyboard Section
	Scan Section
	Display Section

	INTERRUPT CONTROLLER
	Features of 8259 A

	VARIOUS MODES OF OPERATION
	BLOCK DIAGRAM
	Interrupt Request Register (IRR)
	In-Service Register (ISR)
	Priority Resolver
	Interrupt Mask Register (IMR)
	Data Bus Buffer
	Read/Write Control Logic

	PRIORITY MODES
	• Fully Nested Mode
	• Poll Command
	• Special Fully Nest Mode
	• Buffered Mode

	ICW 1
	ICW 2
	• ICW 3 :

	OCW
	OCW1
	OCW 2:
	OCW 3 :
	8257-PROGRAMMABLE DMA
	DMA Controller :

	DMA Operation sequence
	Features of 8257
	Data Bus Buffer :
	Read/Write Logic :
	TERMINAL COUNT REGISTER
	Control Logic :

	Mode Set Register

	STATUS BIT REGISTER
	Priority Resolver :

	BASIC BLOCK DIAGRAM
	High integration of functionality :
	• Easy to use.
	ARCHITECTURE OF 8051
	Central processing unit
	Accumulator
	B Register
	Program Counter
	Data Pointer Register
	Input / Output Ports
	Serial Port
	Oscillator and Clock
	SPECIAL FUNCTION REGISTERS (SFRS)

	ADDRESSING MODES (1)
	Immediate Addressing Mode
	Register Addressing Mode
	Direct Addressing Mode
	Register Indirect Addressing Mode
	Port 1 (P1.0 - P1.7)
	Port 2 (P2.0 - P2.7)
	Port 3 (P3.0 - P3.7)
	INSTRUCTION SET
	ARITHMETIC INSTRUCTIONS

	PROGRAMMING 8051 TIMERS
	TIMER FOR MODE 1
	PROGRAM
	PROCEDURE
	SERIAL PORT PROGRAMMING
	Programming the 8051 to transfer data serially
	Programming the 8051 to receive data serially
	Programming External Hardware Interrupts

	KEYBOARD INTERFACING
	LCD INTERFACING

	DAC INTERFACING

