UNIT 1

Introduction to Control Systems



System — An interconnection of elements and devices for a desired purpose.

Control System — An interconnection of components forming a system
configuration that will provide a desired response.

What is Control System?

* A system that provides an output or
response for a given input

Input Control Output L
Desired response [Idassdtlll Actual response
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GENERAL BLOCK DIAGRAM OF CLOSED
LOOP CONTROL SYSTEM
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BASIC COMPONENTS OF CONTROL
SYSTEM

o Plant
o~ Feedback

o Controller

o Error detector

o Plant: The portion of a system which is to be controlled or
regulated is called as plant or process. It is a unit where actual
processing is performed and if we observe in the above figure,

the input of the plant is the controlled signal generated by a
controller.

© Feedback: It is a controlled action in which the output is
sampled and a proportional signal is given to the input for
automatic correction of any changes in the desired output.

The output is given as feedback to the input for correction i.e.
information about output is given to input for correcting the
changes 1n output due to disturbances. The feedback signal is
fed to the error detector.



o Error Detector: The function of error detector 1s to compare
the reference input with the feedback signal. It produces an
error signal which 1s a difference of two inputs which are
reference signal and a feedback signal. The error signal 1s fed
to the controller for necessary controlled action.

o Controller: the element of a system within itself or external to
the system which controls the plant is called as a controller.
The error signal will be a weak signal and so it has to be
amplified and then modified for better control action.

In most of the systems, the controller itself amplifies the error
signal and integrates or differentiates to generate a control
signal.



Feedback and its effect

» Feedback system is a system that maintains a relationship
between the output and some reference input by comparing
them and using the difference as a means of control.

* Feedback is used to reduce the error between reference and
the system output.

» The feedback has effects on performance characteristics as
— Stability
— overall gain
— noise (external disturbance).



Classification of control system

* Single input single output (SISO)

* Multiple input multiple output (MIMO)
* Linear

* Non-linear

* Time-variant

* Time-invariant

* Analog

* Digital

* Process Control

* Sequential Control



R(.s')- G(s) C(s) e
Input Output
System
B Transfer function is the ratio of the output over the input
variables. ' C(s)
G(s)=-
R(s)

X The output signal can then be derived as; C = GR
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Mathematical Modeling of
Mechanical Translational
Systems



Basic Types of Mechanical Systems

* Translational
= Linear Motion

* Rotational
— Rotational Motion




Basic Elements of Translational Mechanical Systems

Translational Spring

i)
m

Translational Mass
i) -
o—{AM|°

Translational Damper

o= 1=

i)



Translational Spring

* A translational spring is a mechanical element that
can be deformed by an external force such that the

deformation is directly proportional to the force
applied to it.

Translational Spring

Nm A ASACACA
- -0

Circuit Symbols Translational Spring



Translational Mass

* Translational Mass is an inertia Translitional Mass

element. i) .
o—{M|C

* A mechanical system without
mass does not exist.

* If a force F is applied to a mass )
and it is displaced to x meters |
then the relation b/w force and 7 ()
displacements is given by
Newton’s law.

F = Mx



Translational Damper

* When the viscosity or drag is not
negligible in a system, we often
model them with the damping

force.

* All the materials exhibit the . TRRSStions Duoper
property of damping to some " |
extent. RLE B

* If damping in the system is not
enough then extra elements (e.g.
Dashpot) are added to increase
damping.
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EXAMPLE 1

. Consider the following system (friction is negligible)

\Y T ar

dWhere /' and., are force applied by the spring and
inertial force respectively.



fk‘%

M %f}u

£

F = f_;r + fM
d Then the differential equation of the system is:
F = Mx + kx

d Taking the Laplace Transform of both sides and ignoring initial
conditions we get

F(s) = Ms 2‘1’(5) + kX (s)
d The transfer function of the system is
X (s) 1

F(s) M > +k



EXAMPLE 2

 Find the transfer function of the mechanical translational system
given in Figure.
Free Body Diagram

i
M
| M
f(t)| x(t) f%r) f|.M
Xs) 1

F(s) M >+ Bs +Fk



JdFind the transfer function X,(s)/F(s) of the following system.

EXAMPLE 3
M, 1 Free Body Diagram
K l'ff ;1(1:) fklfk-) Uy fkl /B
2 | = ) 4
‘ 111 [
M 1 IV|2 M1
| X2(t) l T T
5 - F(r) f-M 2 fMl




EXAMPLE 4

m

mx, + DX, = &) +klx, —x,)=10 (eq .1)

mx +bx +kx =bx, + kx, (eq. 2)
o 0 0 z I

JdTaking Laplace Transform of the equation (2)

ns 2Xo(s) + bsX o(s) kX O(S) = bsX i(S) ¥ A’X,.(s)

X ;. ls) bs + k

X,(s)  ms” +bs +k
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BASIC ELEMENTS OF
ROTATIONALSYSTEM

T =k6,-6,)




Rotational Damper

8

T =C(0,—06,)

Moment of Inertia
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Series (Force voltage)

. Analog o
1 r?,x! R : 1 MaSS= M->in uctor /ﬁﬁ'ﬁﬁr\ '\/ '
v 2. Damper=B-> resistor 5 i
“ 3.Spring=K-> v
capacitor=1/C
. . 4. Applied force=f(t)-> Kirchhoff's mesh
Equation of motion of voltage source=e(t) equation for the
the above 5. Velocity =v(t)-> mesh above simple
translational current=i(t) series RLC

mechanical system is; netwark is:
(Ms % + B + K)X (s) = F (s) (s VRN = E(s)

\ Cs )



Mechanical System to a Series Analog

J Draw a series analog for the mechanical system.

xy (1) x5(1)
—- B3 -
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A |

Bl BJ
< The equations of motion in the Laplace transform domain are;
(M,s* +(B,+B,)s+(K, +K,)X,(s)— (By;s+ K,)X,(s) = F(s) > (1)

=(Bys B XA+ [Mys” +(B; +B)s+ (Ky+ BIX; () =0— (2)

< Coefficients represent sums of electrical impedance.

< Mechanical impedances associated withM1 form the first mesh,

JdWhere as impedances between the two masses are common to
the two loops.
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Parallel (Force current)

e Analo
M) :j{\:’jx O\ 1. Mass= M-> ca gy itor f L
[ =C 0@ = 'S L8
By e 2. Damper=B-> resistor 37
B @ =1/R (b)
3.Spring=K->
inductor=1/L A Kirchhoff’s nodal
4. Applied force=f(t)-> equation for the

simple parallel

RLC network

shown above is;
(Mg + Bs + K)X (s) = F(s)

(Cs + R + LWV(S) = 1(s)
\ Ls )



Mechanical System to a Parallel Analog
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J Equations of motion after conversion to velocity are;
(K, + K,)]

/ K., \
L(J\lls + (B, + By) + Jlrl(s) —! B, + —= v, ()= F(s) > D
S \ Ry J
# 0 [ (K, + K;) i
.. |v1(s)+‘M,s+(B,+B3)-;- -lv,(s)=0—.>(2)
\ S5 ) ) s )

O The Equation (1) and (2) are also analogous to electrical node
equations.

 Coefficients represent sums of electrical admittances.

O Admittances associated with M1 form the elements connected
to the first node
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DESIGN OF CONTROL SYSTEM
| ster1 |

Determune a
physical
svstem and
specifications | oy
from the Draw a
requirements detailed
lavout of
physical Transtorm
gysten the phy=ical

system info
a =chematic




[Tze

schematic to
obtamn a block
diagram.
signal flow
diagram. o1
state-space
representation

[f multiple
blocks, reduce
the block
ciagram to a
smgle block
or closed-loop
svsten

Analyze,
design., and
test to see that
requurements
and
specifications
are met




BLOCK DIAGRAM

Block diagrams consist of a single block or
a combination of blocks. These are used to
represent the control systems in pictorial form.

Basic Elements of Block Diagram

The basic elements of a block diagram are
a block, the summing point and the take-off
point.

Summing point

Take-off point

1 Vg

R‘(S)—"'%— G(s) —>
H(s) —‘




Ris)

B(s)

C(s)
E(s) Gis)
H(s) -
cs)  Gls)

R(s) 1+G(s)H(s)



Reduction of Complicated Block
Diagrams

* The block diagram of a practical control system is often
quite complicated.

* |t may include several feedback or feedforward loops, and
multiple inputs.

* By means of systematic block diagram reduction, every

multiple loop linear feedback system may be reduced to
canonical form.



1. Combining blocks in cascade

_qu

2. Combining blocks in parallel
G, [ S
e .G +G,|—
G |

3. Moving a summing point behind a block

o e

— t—

4. Moving a summing point ahead of a block

_.G

Y T TR

8-




5. Moving a pickoff point behind a block

@ —!

6. Moving a pickoff point ahead of a block

=g

Ppr— el

>

S>>

Q=




7. Eliminating a feedback loop
+
G - ey | G L
L3 1¥GH
B 7 i —

+‘w%'|c; -y | G |

H=1

8. Swap with two neighboring summing points

. . . .
A _QF _?B (> n_? _?A



Block Diagram Reduction Rules

Follow these rules for simplifying (reducing) the block diagram, which Is having many
blocks, summing points and take-off points.

= Rule 1 - Check for the blocks connected in series and simplify.
= Rule 2 - Check for the blocks connected in parallel and simplify.
= Rule 3 - Check for the blocks connected in feedback loop and simplify.

= Rule 4 - If there is difficulty with take-off point while simplifying, shift it towards
right.

= Rule 5 - [f there is difficulty with summing point while simplifying, shift it towards
eft.

= Rule 6 - Repeat the above steps till you get the simplified form, 1.e., single block.



EXAMPLE 1

* Combine all cascade block using rule-1

—&—S— - ——

* Combine all parallel block using rule-2







* Eliminate all minor feedback loops using rule-7




EXAMPLE 2
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R G,G,G, C
1-G,G,H, +G,G,H,




G .G,G

1= 2" 3

|1-GG,H +G,G,H, +G,G,G

273
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SIGNAL FLOW GRAPH

Signal flow graph is a graphical representation of algebraic
equations. In this chapter, let us discuss the basic concepts related
signal flow graph and also learn how to draw signal flow graphs.

Basic Elements of Signal Flow Graph
« Nodes and branches are the basic elements of signal flow graph.
* Node

 Node is a point which represents either a variable or a signal. There
are three types of nodes — input node, output node and mixed node.

* Input Node — It is a node, which has only outgoing branches.
* Qutput Node — It is a node, which has only incoming branches.

« Mixed Node — It is a node, which has both incoming and outgoing
branches.



Mason’s gain formula is

Where,
= C(s) is the output node

= R(s) is the input node

" Tis the transfer function or gain between R(s) and C(s)
= P;is the i forward path gain
A =1 — (sum of all individual loop gains)

+(sum of gain products of all possible two nontouching loops)

—(sum of gain products of all possible three nontouching loops)+-. ..



Gs(s)

RE) 1 Xifs) GyS) Xl 1 X9 1 Xfs) Gaofs) Xs(s)
0 U

-Ha(s) Hy(s)

-Ha(S)

- Forward path gain — gain along any path from the input
to the output

o Not passing through any node more than once

' Here, there are two forward paths with the following
gains:
1. G666
2. G1G,Gq



Gs(s)

-Ha(s)

Loop gain — total gain (product of individual gains) around
any path in the signal flow graph

o Beginning and ending at the same node
o Not passing through any node more than once

Here, there are three loops with the following gains:
1. —GqH;

2. G,H,

3. —G,G3H,



Non-touching loops — loops that do not have any
nodes in common

Here,
1. —GqH5 does not touch G, H;
2. —G,H5 does not touch —G,G3H,

Here, there are only two pairs of non-touching loops
L [=GyH;] - [GoH, ]
2. [=GyHs] - [-G,G3H,]




A =1 — Z(loop gains)

+2X(non-touching loop gains taken two-at-a-time)

—2X(non-touching loop gains taken three-at-a-time)

+X(non-touching loop gains taken four-at-a-time)

# of forward paths:
P=2

Forward path gains:
Tl — 61G26364
Tz = G]_GzGS

X(loop gains):

2(NTLGs taken two-at-a-time):
(—GyH3G,H,) + (G, H3G,G3H,)

A:
A=1- (—GlH3 T GzHl e 62631'12)
+(—=GyH3G,H, + G1H3G,G3H,)



o it o s e x.,';s)/‘;\ -

-Ha(s) Hi(s)

-Hz(s)
With forward path 1 removed, there are no loops, so

L=
1

B B
e
Il

R(s) () Xo(s) Xs(s) Xals) Xs(s) Ga(s) Xa(s) Gua(s) Y{s)
» . = Pt

Similarly, removing forward path 2 leaves no loops, so

1—0
1

B B
N N
i



For our example: P
Y(s) 1
P=2 T(s) = RG) B Ty Ay
Ty = 616,636y i
Tz — 616265

A=1+ GlH3 o~ GzHl + GngHz = 61H302H1 + GIH3G263H2

The closed-loop transfer function:

T1Ay + T4,

T(s)= n

G1G,G5G4 + G, G565

1{s)=
( ) 1+ Gng = GzHl < - 62G3H2 = GlH362H1 +: 61H30263H2
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Introduction

dTime response of a dynamic system response to an input
expressed as a function of time.

1

dThe time response of any system has two components
dTransient response

O Steady-state response



Introduction (Contd..)

dWhen the response of the system is changed from equilibrium it
takes some time to settle down.

A This is called transient response.

6

dThe response of the Step Input

system after the transient
response is called steady .
state response. Response

1t Transient Response

S?e‘ady State Response

1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
Time (sec)




Introduction (Contd..)

dTransient response depend upon the system poles only and not
on the type of input.

It is therefore sufficient to analyze the transient response using
a step input.

dThe steady-state response depends on system dynamics and
the input quantity.

It is then examined using different test signals by final value
theorem.



Introduction (Contd..)

 The first order system has only one pole.
C(s) K

R(s) Ts +1
d Where K is the D.C gain and T is the time constant of the system.

1 Time constant is a measure of how quickly a 1st order system
responds to a unit step input.

d D.C Gain of the system is ratio between the input signal and the
steady state value of output.



Introduction (Contd..)

d The first order system given below.

10
G(s) =

3s +1
[ D.Cgainis 10 and time constant is 3 seconds.

[ For the following system

Grs)o > _ _8/5

S+ 9 1/5s +1

d D.C Gain of the system is 3/5 and time constant is 1/5
seconds.



Impulse Response of 1st Order System

[ Consider the following 1st order system

3(t)
A

R(s)=0(s)=1

C(s) =
s +1



Impulse Response Ot 1st Order
System

K

C(s) =
s +1

J Re-arrange following equation as

K /T

C(s) =
s+1/T

dIn order to compute the response of the system in time domain
we need to compute inverse Laplace transform of the above
equation.

K
L_l( c ) —at c(t)= —e /T
- T




Impuise Response OT 1st Order

System
Qlf K=3 and T=2s then o(t) = ie—t/T
T
K/T*exp(-t/T)
1.5 ‘ ‘
1 L
0.5
O |
0 2 4 6 8 10

Time



Step Response OT 15t Oraer
System

1 Consider the following 1st order system

C(s)
1
R(s)=U(s)=—
S
C(s) A
S =
S(Ts +1)

dIn order to find out the inverse Laplace of the above equation, we
need to break it into partial fraction expansion

K KT
C(s) = —
S s +1




Step hesponse ot 1st Oraer

System
C(s) = K(l—— ! W
\'s Ts +1)

[ Taking Inverse Laplace of above equation

c(t) = K @(t)— e“/T)

d Where u(t)=1
c(t) = K @— e U7 )

d When t=T (time constant)

c(t) = K (1- e )= 0.632 K



Step hesponse ot 1st Oraer

System
O If K=10 and T=1.5s then c(t) = K 6— e /1 )

K*(1-exp(-t/T))

11

10 -

Step Response

_ steady state output
D.C Gain = K = =

63 % Input

Unit Step Input

10



Step Response OT 15t Oraer
System

d System takes five time constants to reach its final value.

(1 S o=
cl )‘ / i clf) = 1 —(;"_”'“

0.632




Introduction

M In time-domain analysis the response of a dynamic system to an input is
expressed as a function of time.

O It is possible to compute the time response of a system if the nature of
input and the mathematical model of the system are known.

[ Usually, the input signals to control systems are not known fully ahead of
time.

It is therefore difficult to express the actual input signals mathematically
by simple equations.



Standard Test Signals

1 The characteristics of actual input signals are a sudden shock, a sudden
change, a constant velocity, and constant acceleration.

1 The dynamic behavior of a system is therefore judged and compared
under application of standard test signals — an impulse, a step, a
constant velocity, and constant acceleration.

d The other standard signal of great importance is a sinusoidal signal.



Standard Test Signals

 Impulse signal

d The impulse signal imitate the sudden
shock characteristic of actual input

signal.
(A t =0 o1
6 (t) = 1
|10 t =0
A A

JIf A=1, the impulse signal is called unit
impulse signal.

> 1



Standard Test Signals

] Step signal

dThe step signal imitate the
sudden change characteristic
of actual input signal.

[A t >0
u(t) =
|0 t<O0

If A=1, the step signal is called
unit step signal

> 1



Standard Test Signals

J Ramp signal r(}?

JThe ramp signal imitate the
constant velocity characteristic
of actual input signal.

[ At t >0
rt) = ¢ 0 B
LO t< O

If A=1, the ramp signal is called
unit ramp signal




Standard Test Signals

3 Parabolic signal P

A The parabolic signal imitate
the constant acceleration
characteristic of actual input
signal.

[ At 0

t>20 p(t)
p(t) =1 2

4 5Aceeccncecccncan 4
( 0 t<0 parabolic signal with slope A|.......... .

>

QIf A=1, the parabolic signal is Pl oAl | ]
called unit parabolic signal. N R o1 2 3 |

0.5{....




Relation between standard Test Signals

JdImpulse

AStep

JdRamp

JParabolic

J

[A t =0
5 (t) =4 d
10 t= 0 -
dt
A t>20 <
u(t) =4
LO t< O d_
dt
[ At t>0 -
r(t) =4
|0 t<O d
dt
[ At 2
t>0




Laplace [ranstorm ot lest

Signals
JdImpulse
[A t=0
5 (1) = |
|10 t= 0
L{o (t)} =o(s)= A
AStep
(A t >0
u(t) =
|0 t<O

Liu(t)} =U(s) = —
S



Laplace [ranstorm ot lest

JdRamp

JParabolic

Signals
[ At t>0
r(t) =
|0 t <O

A
Lir(t)}y = R(s) = —

S

A
Lip(t)} = P(s) = 'Y
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Second Order System

(d We have already discussed transient response of 1st order systems.

d Compared to the simplicity of a first-order system, a second-order system
exhibits a wide range of responses that must be analyzed and described.

 Varying a first-order system's parameter (T, K) simply changes the speed
and offset of the response

1 Whereas, changes in the parameters of a second-order system can
change the form of the response.

1 A second-order system can display characteristics much like a first-order
system or, depending on component values, display damped or pure
oscillations for its transient response.



Introduction

d A general second-order system is characterized by the following transfer

function.
R(s) E(s) w% C(s)

C(s) o

R(s) - s2 +2(® s+ o°
n n

®, —— un-damped natural frequency of the second order system,
which is the frequency of oscillation of the system without
damping.

¢ damping ratio of the second order system, which is a measure
— of the degree of resistance to change in the system output.



Example

(A Determine the un-damped natural frequency and damping ratio
of the following second order system.

C(s) 4

R(s) s° +2s+4

(JCompare the numerator and denominator of the given transfer
function with the general 2nd order transfer function.

C(s) ® °

n

R(s)_ s + 2Cw S+ m°
n n

2
n

;/+2an8+0%1:§/+25+/ zzm:”()::



Introduction

C(s) o,

R(s) - 5% + 2Lw S + @ °
n n

L Two poles of the system are

_(’DnQ"'(Dn C -1

_(Dnc.,_@n Q -1



Introduction

_(Dng‘i'mn Cz_l

2
—(DnC—COn C -1

 According the value of , @ second-order system can be set
into one of the four categories

1.Overdamped - when the system has two real distinct poles
(1).

jw




Introduction

—®,5 + w, 7 =1
— @, —®, I —1
1 According the value ofC

, @ second-order system can be set
into one of the four categories

2. Underdamped - when the system has two complex conjugate poles (

0< c<1) Jw




Introduction

-
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- According the value of¢ 5 sacond-order system can be set

into one of the four categories

3. Undamped - when the system has two imaginary poles
=0).
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Introduction

—®,s + wm, 7 =1
- .
— @, — @, 4l -1

- According the value of¢ 5 second-order system can be set

into one of the four categories

4. Critically damped - when the system has two real but equal poles (¢




Step Response or unaerdamped
System

C(s) o, Step Respopse ©
= C (s :

o 2 2 =
R(S) > +2C®ns+®n S(SZ+2C_,COnS+Conz)

 The partial fraction expansion of above equation is given as

c(s) 1 s + 2Cw
S)=—-—
S 52+2C(Dn8+(0§

n

C(s) 1 s + 20w

S) = — —

(s + 260 ) s (" + 200 s+ 0 Jol-Clo, )
x/

C(s) =

n

(S+Q(o n)2+o)nzé—<;2)

1 s + 2Cw
S



Step Response or unaerdamped
System

C (s) 1 s + 2Cw
s)= ——
S (s+§a)n)2+corf€—(;2)

1 Above equation can be written as

n

n

C(s):i S+ 2w
S

2
(s+§wn) +0)§

dWhere 4, -0 1-¢°? , iIs the frequency of transient oscillations
and is called damped natural frequency.

dThe inverse Laplace transform of above equation can be obtained
easily if C(s) is written in the following form:

C(s):i— s+ Co B Co |

S (S+§mn)2+o)§ (S+§oan)2+(o§




Step Response or unaeradamped
System

C(s):i— s+ Co B Co

S (S+§oan)2+oa§ (S+Q(on)2+(o§

G 2
z(on 1-C
1 s + (o 1-C
C(s)=—- ., T
S (s+§oon) + o (s+§oan) + o 4
1 s+ Co o o 4
C(S):;_ 2 > 2 2 2
(S+§con) + O 1-¢ (s+§a)n) + O
-Co t C -lo t
c(t)y=1--¢ " cos o, t - e " sin o 4t

2

1-¢



Step Response or unaerdamped
System

¢ C —Co t

c(t):l—e_w"tcos o4t - e sin ® 4t
1-¢ °
I |
C(t):l—e_@)"t|cos o, t+ sin Q)dtI
2
i 1-6 ]
1 Whent =0

cC(t)=1- cos o,t



Step Response or unaerdamped
§ystem 1

c(t)=1—e‘§®nt|cos o, t+ sin (odt|

if ¢ =0.1
1.8r

1.6
1.4¢
1.2¢

1+
0.8]
0.6
0.4]

0.2]

0




Step Response or unaerdamped
§ystem 1

c(t)=1—e‘§®nt|cos o, t+ sin (odtI
2

I 1-¢ ]

f ¢ =05 and o =3

1.4

1.2

1,

0.8

0.6

0.4r

0.2




Step Response or unaerdamped

§ystem 1
c(t)=1—e‘§®nt|cos o, t+ sin (odtI
L 1-¢° |
f ¢ =09 and o =3
1.4
1.2¢

1,

0.87

0.6]

0.47

0.27




SlEpP nResponse Oor unaerdampeda
System

1.4
12+
l B N ————
)
0.8"
——— wn=0.5
0.6 wn=1
——— wn=15
——— wn=2
0.4 wn=2.5
0.2
N

| | | | | | | | |
0 1 2 3 4 ) 6 7 8 9 10
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Underdamped System

For O<¢ <1 and w, > 0, the 2" order system’s response due to
a unit step input is as follows.

Important timing characteristics: delay time, rise time, peak time,
maximum overshoot, and settling time.

Allowable tolerance

0.5

0




Delay Time

dThe delay (t,) time is the time required for the response to
reach half the final value the very first time.

Allowable tolerance

__________________ ;_i/ 0.03

e ﬁ/ 0.02

0.5

0

A
Y




Rise Time

d The rise time is the time required for the response to rise from
10% to 90%, 5% to 95%, or 0% to 100% of its final value.

For underdamped second order systems, the 0% to 100% rise
time is normally used. For overdamped systems, the 10% to 90%
rise time is com.; '

Allowable tolerance

0.5

0

A
Y




Peak Time

 The peak time is the time required for the response to
reach the first peak of the overshooit.

Allowable tolerance

0.5




Time Domain Specifications (Rise Time)

2 |

1-C |

[ ‘ ]
C(t)=1—e_€w”t|cos o, t+ sin codtI
2
I 1-6 ]
Put t =1t iIn above equation
r
| ]
C(tr):l—e_cm“tf|cos o t + sin oadtrI
2
i -6
Where cit,)=1
[ ]
0 = —e_cm”tf|cos oodtIr + : sin o4t |
i 1-¢ ]
[ |
Te et L O:Icos o4t + sin o)dtr|
]



LITTIC DOITIall opCcCiliCaliorns \RNISC

I ‘ |
icos o4t + sin oodtr||=0
2
i 1-6 ]
above equation can be re - writen as
Vi-¢°
sin w4 t, = — cos o 4t,
G
/ 2
1 —
tan oy t, =- :
G
1—@2)




Time Domain Specifications (Rise Time)

R
|

Cc )
—1(_Con 1_C2?
|
O
T — 0

(€))

Jo k
e
5 1 Wy
w/z\’"l - g : /\
b/ _
—T 0 o
_>" gwn —~—
a
0 =tan = —




Time Domain Specifications (Peak Time)

[ ]

C(t)zl—e_gm”t|cos o T+ :
2

] 1-6 |

sin (odt|

In order to find peak time let us differentiate above equation w.r.t t.

[ ] [ ]
dc (t
C():Cmne_gn”ticos o, b+ 5 sin ® tI—eC®t||—co sin @ 4t + Cmd COS ® dt}
o i 1-¢° J L Vi-¢ !
[ 2 |
~Co t| g (D Q(D
0=c¢e "1 Cow cos o U+ sin. ® t+ o, sin o, t- coso)dt

n d
|L 1-¢° V1-¢
[ ) /_7 / T
OegwntC(D/AS(Ddtq- G Q)n ) ; . d C d

]




0 =

Time Domain Specifications (Peak Time)

| /
_ CO Co 1+¢
th|§® Cos ® ,t+ : sin. 0 4t+ o, sin o t- i C
Vi-c o/

thrgm sin o, t+ o, smoot—||—0
BRI ]
g 50! =0 r : (D sin @, 4t+ @, sin codtTIO
V-G ]
[ 2 |
sin mdt{ 5 9, + o, I:O
RS



Time Domain Specifications (Peak Time)

Since for underdamped stable systems first peak is maximum peak
therefore,



Maximum Overshoot

dThe maximum overshoot is the maximum peak value of the
response curve measured from unity. If the final steady-state value
of the response differs from unity, then it is common to use the
maximum percent overshoot. It is defined by

C(tp) — ¢(00) « 1007

Maximum percent overshoot =
c(c0)

O The amount of the maximum (percent) overshoot directly
indicates the relative stability of the system.



Settling Time

L The settling time is the time required for the response curve to
reach and stay within a range about the final value of size
specified by absolute percentage of the final value (usually
2% or 5%).

Allowable tolerance

0.5

A
Y



Time Domain Specifications

c(t,) — ¢(o0)
Maximum percent overshoot = — () X 100”/(:.Dt)
c(o0
I |
t )=1 _Qm”tp|cosm t o+ i t |
c(ty,)=1-e | alp 2sm(,a)dpl
L 1-G |
C(o) =1
r ( ; |
Mp_:%—e(;m tp|cos®dt + sin o)dtp|— |><1OO
2
i \ 1-6 )]
T
Put t, = —in above equation
O

wo e al

i
|V|p=:—e |c050)d + sin cod—||><100
L




Time Domain Specifications (Maximum Overshoot)
[
M = |_— e d |(cos (1/ o + : sin u/ jw x 100

Put wy = o,4y1-C° in above equation
| _Q(,)% T )—|
M :I_e o%\/l—cz( G . |

0 |c057c+ 2smrc||><100
i \ 1-¢ )|
o
Mpzl_e 1—€2(—1+o)||><100
L |J
8




Time Domain Specifications (Settling Time)
r 1
;

C(t)=1—e_gm”t|cos o t+

sin codt|
2 |

1-C |

c(?)

4 Exponential decay generated by

real part of complex pole pair

-0 ¢ to, &;2—1

Real Part Imaginary Part

Sinusoidal oscillation generated by
imaginary part of complex pole pair

- f



Time Domain Specifications (Settling Time)

1 Settling time (2%) criterion

1 Time consumed in exponential decay up to 98% of the input.

L Settling time (5%) criterion

c(f)

Exponential decay generated by
real part of complex pole pair

Sinusoidal oscillation generated by
imaginary part of complex pole pair

= [

O Time consumed in exponential decay up to 95% of the input.



t

r

Summary of Time Domain Specifications

Rise Time Peak Time
T —0 T —0 . wo n
j— p— p o o
0) 2
® 2 d ©® \/1 - C
d W, \/1 -G "
Settling Time (2%)
4
t; = 41 = Maximum Overshoot
Co |,
5
3 1-¢ °
Co |,

Settling Time (4%)
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Steady State Error

 If the output of a control system at steady state does not exactly
match with the input, the system is said to have steady state error

1 Any physical control system inherently suffers steady-state error in
response to certain types of inputs.

d A system may have no steady-state error to a step input, but the
same system may exhibit nonzero steady-state error to a ramp input.



1 Consider the unity-feedback control system with the following open-
loop transfer function

K(T,s + 1)(Tys +1)---(T,,s + 1)

m

G) = NTos + 1)(Tys + 1) (Ts + 1)

p

It involves the term sNin the denominator, representing N poles at
the origin.

d A system is called type O, type 1, type 2, ..., if N=0, N=1, N=2, ...,
respectively.



[ As the type number is increased, accuracy is improved.

d However, increasing the type number aggravates the stability
problem.

d A compromise between steady-state accuracy and relative stability is
always necessary.



R(s)

Steady-state error analysis

E(s)

R(s)

+

E(s)

[
»

C(s)

Unity feedback
H(s)=1

C(s)

Non-unity feedback
H(s)#1



Steady-state error analysis

For unity feedback system:

E(s)=R(s)-C(s) —  Systemerror

For a non-unity feedback system:

E(s) = R(s)-—H(s)C(s) —  Actuatingerror



Steady State Error of Unity Feedback Systems

1 Consider the system shown in following figure.

R(s)
q—

E(s) C(s)

 The closed-loop transfer function is

C(S) B G(s) G B K(TﬂS T 1)(TbS T 1)"'(];”5 T 1)
R(s) 1+ G(s) ) = N5 + 1(Tys + 1) (T,s + 1)

p




Steady State Error of Unity Feedback Systems

Steady state error is defined as the error between the input signal
and the output signal when t-> infinity

The transfer function between the error signal E(s) and the input
signal R(s) is
E(s) 1
R(s) 1+ G(s)
The final-value theorem provides a convenient way to find the
steady-state performance of a stable system.
B 1
1 + G(s)

Since E(s) is E(s)

R(s)

The steady state error is

= i = limsE(s) = i o
e = lim e(r) = ImsE(s) = 5501 + G(s)




Static Error Constants

 The static error constants are figures of merit of control systems. The
higher the constants, the smaller the steady-state error.

 In a given system, the output may be the position, velocity, pressure,
temperature etc...

 Therefore, we can say the output as “position,” and the rate of change
of the output as “velocity,” and so on.

[ This means that in a temperature control system “position” represents
the output temperature, “velocity” represents the rate of change of the
output temperature, and so on.



Static Position Error Constant (K.)

d The steady-state error of the system for a unit-step input is

= lim L. l
S\ \_)01 _+_ G( ))/

B 1

1+ G(0)

[ The static position error constant K, is defined by
K, = limG(s) = G(0)
S—)

 Thus, the steady-state error in terms of the static position error
constant K is given by

1
e.. —
» 1+ K

P



Static Position Error Constant (K)

1 For a Type 0 system

K(T,s + 1)(T,s +1)--
K, = lim = K
s—0 (T-lS 1+ 1)<T2S ke 1) e

 For Type 1 or higher order systems
K(T,s + 1)(Tps + 1)
K, = lim
s=0 sN¥(Tys + 1)(Tps + 1)

 For a unit step input the steady state error e, is

= 00, for N = 1

— L for type 0 systems
Ess 1+ K’ yp Y

e, = 0, for type 1 or higher systems




Static Velocity Error Constant (K,)

(d The steady-state error of the system for a unit-ramp input is

S 1
- . — l
€ = 550 1 + G(s) s*
i 1
— 111m
s—0 SG(S)

 The static velocity error constant K, is defined by
K, = lim sG(s)
s—0

 Thus, the steady-state error in terms of the static velocity error constant
K, is given by il



Static Velocity Error Constant (K,)

1 For a Type 0 system

. SK(Tys + INGs + 1)+
K, = lim =0
s=>0 (Tys + 1)(Ths + 1)+

d For Type 1 systems

- sK(T,s + 1)(T,s + 1)+
K, = lim = K
s—=0 §(Tys + 1)(Tps + 1)+

 For type 2 or higher order systems

sK(T,s + 1)(T,s + 1)+

K, = lim = 00, for N = 2

s—=0 s¥(Tys + 1)(Tps + 1)



Static Velocity Error Constant (K,)

 For a ramp input the steady state error e is

1
Cos = T - % for type O systems
e = K _ K or type 1 systems
1 .
e, = —— = 0, for type 2 or higher systems

K

U



Static Acceleration Error Constant (K,)

d The steady-state error of the system for parabolicinput is

) ]
2 = M =
s T 501 + G(s) s”

1
lim s°G(s)

s—()

 The static acceleration error constant K, is defined by

K, = lim s°G(s)

s—0

 Thus, the steady-state error in terms of the static acceleration error
constant K, is given by 1



Static Acceleration Error Constant (K,)

1 For a Type 0 system
s?’K(T,s + 1)(T,s + 1)+

K, = 1i =0
e T S (Tys + )(Tys + 1)
[ For Type 1 systems  S?K(T,s + 1)(Tps + 1)
K, = lim =0

s—0 S(TIS T 1)(T25 == 1)

O For type 2 systems . SZK(T(,S o 1)(7},5 4 1)
K, = lim — - K
s—0 S‘-(TIS + 1)(T25 + 1) T

 For type 3 or higher order systems

 $*K(T,s + 1)(Tps + 1)+ ‘
K, = him—r- = 00, for N =3
s=>0 sN(Tys + 1)(Tps + 1)+




Static Acceleration Error Constant (K,)

O For a parabolicinput the steady state error e is

e, = 00, ftor type 0 and type 1 systems

1 :
e for type 2 systems

e, = 0, for type 3 or higher systems



Summary

Step Input Ramp Input Acceleration Input
) =1 r(t) =t r(t) =3¢
Type 0 system l'

YP y 1+ K > >
1

Type 1 system 0 = 00
K

1

Type 2 system 0 0 ==




Example

* For the system shown in figure below evaluate the static error constants
and find the expected steady state errors for the standard step, ramp and
parabolic inputs.

R(S) =H 1020(S+2)(S+5) > C(S)
— S"(s+8)(s+12)




Example

100 (s + 2)(s + 5)

G(s) =
s®(s+8)(s +12)
K., =1lim G
p = lim &) Ky = 1im G (s)
s—0
100 2 5) )
K, = lim ( (s +2)(s + ) | (100 s(s+-2)(s+-5)\
s_>o\sz(s+8)(s+12)) Ky = lim 2
s>0l s (s+8)(s+12) )
Kp =
K, = ®
K. = lim $2G(s) 100 s%(s + 2)(s + 5)
] s— 0 Ka = lim 2 J
s> 0 s“(s+8)(s+12)

=10 .4

(NOW+2X0+5W
L (0+8)0+12)

K, =



Kp_oo
1 O
6y = =
> 14K,
/|
€s — 7, -V
Ky
||

Example

K, =

Vv

K, =10.4
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Example

Consider the system shown in following figure, where damping ratio is
0.6 and natural undamped frequency is 5 rad/sec. Obtain the rise time t,,
peak time t,, maximum overshoot M, and settling time 2% and 4%
criterion t, when the system is subjected to a unit-step input.

R(s) z 3E(S) > C(s)




Example

Rise Time

m —0

® 4

Settling Time (2%)

4

tg = 4T = —
Co
3

tg =37 = ——
Co

Settling Time (4%)

Peak Time

Maximum Overshoot

.

2
M =e V' «100




Example

Rise Time
Tt —0
’[r =
® 4
3.141 -0
t, =
o, \1-C ?
1 (Dn 1_C2
O =tan ( ) = 0.93 rad
o
3.141 - 0.93
t, = = 0.55s

_ 5\/1— 0.6°



Peak Time

3.141
= 0.785 s

Example

Settling Time (4%)

Settling Time (2%)




Example

Maximum Overshoot

3.141 x0.6

= e 1-0.6° x 100

M = 0.095 x100

M _ =9.5%



Example

Step Response

1.6

1.4
———__
\
1
v 081
©
=
=]
e
< 06
04|
Rise Time
0.2 7
0 \ \ \
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time (sec)



Example

 Impulse response of a 1st order system is given below.

c(t) = 30 ~0-5t
L Find out

M Time constant T=2
U D.CGain K=6

M Transfer Function
(1 Step Response



Example

Transfer Function

c(t) = 3¢ ~0-5t
3 3
C(s) = x 1= x 0 (s)
S +0.5 S +0.5
C(s) C(s) 3

5(s) R(s) S +0.5

C(s)_ 6
R(s) 25 +1




Example

 For step response integrate impulse response

c(t) = 3¢ 05

[e(t)dt = 3je_0'5tdt

c ()= -6e " 4 C

dWe can find out C if initial condition is known e.g. c,(0)=0

C =6

-0.5t
c.(t)=6-6e



Example

Q If initial conditions are not known then partial fraction expansion is a
better choice

C(s) 6

R(s) 25 +1
1
since R(s)is a step input , R(s) = —
S

C(s) =
S(ZS +1)
6 A B

- — 4
s(2S +1) s 2s+1

6 6 6

s(25 +1) s s+0.5

c(t) =6 — 6e 2!



Time domain

specification

Delay time

Rise time

Peak time

% Peak overshoot

Formula
ty — l+£‘.75
tr = 5
=1
Y% M,




UNDERDAMPED

Example : Given the transfer function

100

G(5) =—
§T+155 4100

find T,, %0S,T,

Solution:

o =10 £=0.75

T, =0.533s, %0S =2.838%, T =0.475s

91



UNDERDAMPED

Example : Find the natural frequency and damping ratio for the
system with transfer function

36
G(s)=—
Solution: S°+4.25+36

Compare with general TF_

7 *wn=6
(0

f_rl.i.-:l = R | ; ¢ =0.35
57 +200 5+ @,

92



System

Pole-zero Plot

Response

2| -

R(s) —

7 (s)

b

(a)

R(s) — Al.

~

>

-
|

s2 - as v b

General

7 (s)

9

(<)

R =3 |

524+ 9y + 9

Overdamped

G (s)

9

C'(s)

C(s)

R(s) = %

(d) -

R(s) = 3

S22+ 9

UInderdamped

F(s)

9

5249

Undamped

(s)

9

s2 0 65 V9

Critically damped

C(s)

—7.854

C(s)

J

s=-plane

—1.146

Jw

s-plane
3

i

J
s=plane

% f—=—o
3

3

7

19.477)

cCty. ¢¢r) =1+ 0.171e 7833
l“— 1.171e .16y
0.5 |-
| | | | o
0] 1 3 4 5
c(r) (1) | e YecosV 8y |\"::-:; 5|n‘JNI)
l.4“ 1 1.06e ! cos(yf 87
1.2 |-
1 |-
0.8 |
0.6 |
0.4 (-
0.2 |-
| | | | -
O 1 3 4 5
(1)
2‘: c(r) | cos 37
1 |-
(8] 1 3 < s
< (7)
i I —3te™ — e
0.8
0.6
0.4
0.2 |-
| | | | —
(8] 3 4 5
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Concept of Stability

din order to know the location of the poles, we need to find the roots of
the closed-loop characteristic equation.

It turned out, however, that in order to judge a system's stability we don't
need to know the actual location of the poles, just their sign. that is whether
the poles are in the right-half or left-half plane.

(J The Hurwitz criterion can be used to indicate that a characteristic
polynomial with negative or missing coefficients is unstable.

(JThe Routh-Hurwitz Criterion is called a necessary and sufficient test of
stability because a polynomial that satisfies the criterion is guaranteed to
stable. The criterion can also tell us how many poles are in the right-half
plane or on the imaginary axis.



Before discussing the Routh-Hurwitz Criterion in
detail, firstly we will study the stable, unstable and
marginally stable system.

Stable System: If all the roots of the characteristic equation
lie on the left half of the 'S’ plane then the system is said to
be a stable system.

Marginally Stable System: If all the roots of the system lie
on the imaginary axis of the 'S' plane then the system is said
to be marginally stable.

Unstable System: If all the roots of the system lie on
the right half of the 'S' plane then the system is said to be an
unstable system.



Statement of Routh-Hurwitz Criterion

Routh Hurwitz criterion states that any system can be
stable if and only if all the roots of the first column have the
same sign and If it does not has the same sign or there Is a
sign change then the number of sign changes In the first
column is equal to the number of roots of the characteristic
equation in the right half of the s-plane 1.e. equals to the
number of roots with positive real parts.



Routh-Hurwitz Stability Criterion

1. All the coefficients of the equation should have the same
sign.
2. There should be no missing term.

[ These requirements are necessary but not sufficient. That is we
know the system is unstable if they are not satisfied; yet if they are
satisfied, we must proceed further to ascertain the stability of the
system.



Routh-Hurwitz Stability Criterion (Contd..)

1 The Routh-Hurwitz criterion applies to a polynomial (characteristic
equation) of the form:

P(s)=a s"+a s" " "+.... +as+a
n n-1 1 0

assume a, =0

 The Routh-Hurwitz array:

S an an—Z an—4 an—6
Sn—l

a‘n—l an—S an—5 an—?
n-2
s b, b, b, b,
n-3
S C1 C2 C3 C4
s? k k



Routh-Hurwitz Stability Criterion (Contd..)

[ Columns of s are only for accounting.

d The b row is calculated from the two rows above it.

d The c row is calculated from the two rows directly above it.
d Etc...

1 The equations for the coefficients of the array are:

1 an a'n—2 1 a'n a'n—4
b, = - — b, =———| " |, ...
an—l an—1 a‘n—3 an—l a'n—l a‘n—5
1 an—l an—3 1 a'n—l a‘n—5
Cl = - — C2 =—-—! |,
b,| b, b, b,| b, b,

J Note: the determinant in the expression for the ith coefficient in a row
is formed from the first column and the (i+1)th column of the two
preceding rows.



Routh-Hurwitz Stability Criterion

d The number of polynomial roots in the right half plane is equal to the
number of sign changes in the first column of the array.

J Example: P(s)=s’+s”+2s+8=(s+2)(s’—-s+4)
The Routh array is:
s° 1 2
s* 1 8
s 6
s g

1 Since there are two sign changes on the first column, there are two roots
of the polynomial in the right half plane: system is unstable.

1 Note: The Routh-Hurwitz criterion shows only the stability of the system,
it does not give the locations of the roots, therefore no information
about the transient response of a stable system is derived from the R-H
criterion.



Advantages of Routh- Hurwitz Criterion

*\We can find the stability of the system without solving the
equation.

*\We can easily determine the relative stability of the system.
By this method, we can determine the range of K for
stability.

By this method, we can also determine the point of
Intersection for root locus with an imaginary axis.

Limitations of Routh- Hurwitz Criterion

This criterion is applicable only for a linear system.

It does not provide the exact location of poles on the right
and left half of the S plane.

*In case of the characteristic equation, it is valid only for real
coefficients.
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Example: Check

characteristic

the stability of the system whose

equation is
s? + 2s3+6s52+4s+1 =0

given

Since all the
coefficients in the
first column are of
the same sign, i.e.,
positive, the given
equation has no roots
with positive real
parts; therefore, the
system is said to be
stable.

by



Example 1: The characteristic equation of a system is given below. Determine the
stability of the system.

s+ 4s + 1652+ 10s2+ 6 =0

Applying Routh Hurwitz Criteria and forming Routh array, we get

gt 1 16 5
5 4 10 0(formissing term)
SZ 16x4-10x1 =135 5x4-0x1 ml

13.5%X10~5x4

135
§" g

—

= 8.52 0



Example 4: The characteristic equation of a system is given as

$5+8*+ 35+ 352+ 2s+5=0

Applying Routh Hurwitz Criteria and forming Routh Array, we get

g° 1 3 2
gt 1 3 § Since there is a
¥ 0-=¢ =3 0 sign change at s1
g2 3€+3 5 0 row, hence th_e
-3(3253) system 1S
gl e_ o€ unstable and
— having two poles
g0 5 In right half of s-

plane due to two
sign changes.



Routh-Hurwitz Stability Criterion (Contd..)

J Case 1: none of the elements in the first column of the array is zero.
This is the simplest case. Follow the algorithm as shown in the previous
slides.

. Case 2: The first element in a row is zero, with at least one nonzero
element in the same row. In this case, replace the first element which is
zero by a small number X. All the elements that follow will be functions
of X. After all the elements are calculated, the signs of the elements in
the first column are determined by letting € approach zero.



Routh-Hurwitz Stability Criterion (Contd..)

] Case 3: All elements in a row are zero.

d Example: P(s) =s?+1
s? 1 1
st 0

d Here the array cannot be completed because of the zero element in the
first column.

 Another example: P(s)=s’+s%+2s+2

The array is:



Routh-Hurwitz Stability Criterion (Contd..)

d Case 3 polynomial contains an even polynomial as a factor. It is called
the auxiliary polynomial. In the first example, the auxiliary polynomial

IS s? 11
1 And in the second example, auxiliary polynomialis ¢z , ,

(d Case 3 polynomial may be analyzed as follows:

DSuppose that the row of zeros is the s' row, then the auxiliary
polynomial is differentiated with respect to s, and the coefficients of
the resulting polynomial used to replace the zeros in the s' row. The
calculation of the array then continues as in the case 1.



Routh-Hurwitz Stability Criterion (Contd..)

J Example: P(s) =s*+5s®+3s? +2s5s+2

The Routh arrayis:

s* 1 3 2
s 12

s° 1 2

s 0

[ Since the S1 row contains zeros, the auxiliary polynomial is obtained

from the s2 row: )
P (s)=s"+2

aux

 The derivative is 2s, therefore 2 replaces 0 in the s1 row, and the routh
array is then completed.



Routh-Hurwitz Stability Criterion (Contd..)

 Example: P(s) =s" +5s°+3s° +2s5s+2

The Routh array now becomes :

st 1 3 2
s* 1 2

ST

* B

s° )

1 Hence there are no roots in the right half plane.

dNote: When there is a row of zeros in the routh array, the systems is
not stable. That is it will have roots either on the imaginary axis (as in this
example), or it has roots on the right half plane.



Determination of range of gain K using RH Criterion

EIExampIe: P(s) =s>+5s>+(9-K)s+ K
The Routh array is :

1 For the system to be stable there should not be any sign changes in the
elements of 1st column

1 Hence choose the value of K so that 15t column elements are positive
1 From sO row, system to be stable K>0
J From s1 row 9-1.2K >0

9>1.2K

K <7.5
J Hence the range of K is 0<K<7.5



Problems on RH Criterion

J Example-1: P(s)=s°+10s?+31s+1030
The Routh array is:

3

S 1 31

2

S 1 103 (by dividing with 10)

1

S -72

0

S 103

[ 1stColumn of routh array has two sign changes (from 1 to -72 and from -
72 to 103). Hence the system is unstable with two poles in the right-half
plane.



Problems on RH Criterion (Contd..)

J Example 2:
JConstruct a Routh table and determine the number of roots with

positive real parts for the equation;

2s® + 4s° 4+ 4s+12 = 0

1 Solution:
Since there are two changes of sign in the first column of Routh table, the

equation above have two roots at right side (positive real parts).



Problems on RH Criterion (Contd..)

J Example 3:
1 The characteristic equation of a given system is:

s* +6s®+11s®>+6s+K =20

What restrictions must be placed upon the parameter K in order to
ensure that the system is stable?

 Solution:
For the system to be stable, 60— 6K < 0, or k< 10, and K> 0.
Thus0<K<10
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Basic concepts of root locus

In the previous sections, we have studied that the stability of a
system. It depends on the location of the roots of the characteristic
equation. We can also say that the stability of the system depends on
the location of closed-loop poles. Such knowledge of the movement
of the poles in the s-plane when the parameters are varied Is
Important. The minor changes in the parameters can greatly help in
the system designing. The nature of the system's transient response
IS closely related to the location of the poles in the s-plane.

We have also studied the Routh Hurwitz criteria that describe the
stability of the algebraic equation. If any of the term in the first
column of the Roth table possesses a sign change, the system tends
to become unstable.



INTRODUCTION

Root Locus Technique:

The root locus method was introduced by W.R Evans in 1948.

. It is a graphical method for determining the location of the poles
of a given closed loop system for some parameter values of the system.
The parameter can be the system gain or time constant.

. Time constant being the design value of an open loop system is
normally not varied.

. It IS a time domain method.



d

INTRODUCTION (Contd)..

We know that
for a unity feedback system the characteristic equation is given by
1+ G(S)=0, and
For a non-unity feedback system the characteristic equation is given
by
1+ G(S)H(S)=0
where,

G(S) : open loop transfer function of the system that is to be
controlled for desired time domain specifications, and

H(S) : feedback element (normally a transducer)



INTRODUCTION (Contd)..

J We know that for a closed loop system to be stable, its closed loop
poles (roots of characteristic equation) should lie in the left half of the
S-plane.

J We also know that a closed loop system is limitedly stable (on the verge
of instability) if any of its roots lie on the imaginary axis of the S-plane
and it is unstable if its poles lie in the right half of the S-plane.

1 Using this method, we can exactly position the location of closed loop
poles for a given value of system gain ‘K’ whereas Routh’s method does
not facilitate this.

 Using Routh’s method we cannot determine relative stability of a
system whereas this method allows us to do that.



Illustration by Example

d  We know that for a second order closed loop system the general form
is given by
M(S)=w 2/(S2+2&w S+ w 2)=N(S)/D(S)
O Let
G(S) = K/S(S+1) ; M(S) = G(S)/1+G(S) = K/(S? + S + K)
M(S) = N(S)/D(S)
d For a unity feedback system, the characteristics equation is:
Q(S) = 1+G(S)=0 mmm)1 + K/S(S+1)=0
mm) 52 +S+K=0
d For K=0; the roots of Q(S) are at S=0 & S=-1; which are the poles of
the system.



lllustration by Example (Contd)..

d Looking at Q(S) =S2+ S + K =0 we conclude that,

Q Aswe vary K from ‘0’ to any higher value, the location of the roots of
Q(S) will change (shift) in the S-plane.

d Thus the roots will chalk out a locus in the S-plane for a given range of
‘K’. This is called Root Locus.




Why Requirement of Root Locus Method ?

Q We know that we are interested in finding the roots of a characteristic
equation for a range of a parameter of the system which generally is
system gain ‘K. Generally speaking we may be interested in
determining the location of closed loop poles for a range of ‘K’

O0<K<oo

QO Now it is easy to factorize a second and third order characteristic
equation for various values of ‘K, but for higher order polynomials it is
very difficult (near impossible) to factorize for determining their roots.

(J Therefore we need a method to do so & that method is Root Locus.



The Method (Contd)..

1 Before going ahead with the method, it is necessary to define what is
called ‘rational transfer function’.

O A rational transfer function is the one which has equal number of poles
and zeros; thatis Np = Nz

Np: number of poles Nz: number of zeros
(d Consider the following transfer functions:

' Gy(S) Hy(S) or Gy(S) = K (S+1)/(S+2) - 1
- G,(S) = K (S+1)(S+2)/(S+3)(S+4) ---- 2
- G5(S) = K (S+1)/(S+2)(S+3) - 3

- Gy(S) = K (S+1)/(S+2)(S+3)(S+4) - 4



11IT IVICLIIUU

(Contd)..

O For, G,(S) = K (5+1)/(S+2), there is a finite pole at S = -2 & a finite zero at
S=-1; Np= Nz =1, hence it is a rational function

O G,(S) also has equal number of poles and zeros; Np = Nz = 2;
O G;(S) has 2 finite poles & 1 finite zero; Np # Nz

d  G,4(S) has 3 finite poles and 1 finite zero; Np # Nz

d Does it mean that G5(S) & G,4(S) are not rational functions!!

[ They both are, indeed, rational functions; the need is to find out the
location of remaining zeros so that Np = Nz.



 In order to resolve the issue of ‘how many zeros’ a transfer function
has, we need to understand what is zero of a transfer function.

d Let G(S) = K (S+1)/(S+2)(S+3)

Q We all understand ‘G(S)’ as ‘frequency dependent gain’ offered by the
system.

J Now, if we substitute S = -1 in G(S), its value = ‘0’; it means that gain
offered at S= -1 equals ‘0. Therefore S = -1 is a zero of the transfer
function, G(S)

1 Pole of a transfer function is a singularity because gain offered by G(S)
at its pole = eo. For example, S = -2 & -3 causes gain of G(S)=e°



J Therefore, we say If the number of zeros are not equal to the number
of finite poles of G(S), then number of zeros = Np — Nz shall lie at o=.

d Let
G(S) = K (S+1)/(S+2)(S+3)

d Lt. S——>00 G(S) = It. S——=c0 K/S = 0 ; the power of S is ‘1’ therefore there
is one zero at o=. Thus we have one finite zero and another zero at oo,
Hence Np = Nz

d For, G(S)=K(S+1)/(S+2)(S+3)(S+4)
[J we have one finite zero at S = -1 and two zeros at oo
J Therefore both are rational functions



 Let m
T (S+7Zj)
ji=1
G(S) H(S) =K

i=n
S"TT (S + Pi)
i=1
d where, K:gaininthe system
r: number of poles at the origin of S-plane

n & m: number of poles and zeros in the S-plane



1 7re vielrnod

(Contd)..
m
M| (S+2j)|
=1
|G(S)H(S)| = K =1.0
=N
| S"|TT [(S+Pi)|
i=1
j=m | =n

KTI|(S+Zj)| =S| TT |(S+ Pi); for K=0 we get poles
j=1 i=1 of G(S)H(S)



e vietlrod
(Contd)..

j=m i=n
T (S+Zj)| =1[S| TT [(S+Pi)/K;
=1 i=1

J For K— oo; we get zeros of G(S)H(S)
O We draw root locus for 0 S K < oo
Therefore,
 Starting points of root locus are poles of G(S)H(S), K=0
(d End points of root locus are zeros of G(S)H(S), K = o=



1N IVIELWNOU \LOTILA)..1T1E ATIgIC
Criteria

J The Angle Criteria:
m
IT(S+1Zj)
=1
G(S)H(S)= K

n
TT(S + Pi)
i=1
The angle criteria is in degrees given by:
m n
Yarg(S+7Zj) - ZZarg(S+Pj)= +/-(2q+1)180;
j=1 i=1 qg=0,1,2,....



i S
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Criteria

Since root locus is drawn satisfying angle criteria, now we explain how
it is done.

Plot location of poles & zeros of G(S)H(S) in the S-plane
Choose any point S = S0 in the S-plane.
From each pole & zero draw vectors to the chosen point, SO

Measure the angle subtended by each pole & zero at SO, in the CCW
direction.

Remember that angle subtended by a pole is negative & that by a zero
is positive

Algebraically add all the angles. If they sum up to 180 degrees, then S =
SO is a point on the root locus.



Grapnical impiementation or Angie
Criteria

 Graphical lllustration for Angle Criteria:

S- plane

X
Py

arg(S0+Z2) + arg(S0 + Z1) — arg(SO + P3) — arg(S0 + P2) —arg(S0 + P1) = +/ _
180 °.

0Z2 + 621 - 6P3 - O6P2 - =180°

 If the above angle condition is satisfied then S0 is on the locus.




IViagnituae
Criteria

J From the magnitude criteria, we calculate the value of gain ‘K’ at the point
S = S0 which lies on the root locus ( that is S=S0 satisfies angle criteria).

m n
TT1(So+Zj)| TT | (So+ Pi)|
=1 i=1

K =1 or, K =
n m
TT1(So + Pi) | T |(So +Zj)|
i=1 j=1

K = product of vector lengths from poles of G(S)H(S) to SO/product of
vector lengths from zeros of G(S)H(S) to SO.



Graphical Implementation of
] Graphical method for detM@gtﬂi’IM (ile Crite ria

Ea Ca Da : vectors from poles of G(S)H(S) to point ‘@’: S = S0

od
@) A
E A B C D
Aa Ba : vectors from zeros of G(S)H(S) to ‘@’

Gain K = (Ea)(Ca)(Da)/(Aa)(Ba)

We measure vector lengths, as per scale, and then calculate K



¢~ NARSIMHA REDDY
Y

, ENGINEERING COLLEGE
NRCM  ;5c AUTONOMOUS accroien oy nansnanc witn a-craoe

Subject name :Control Systems

Unit No '3
Topic :Construction Rules for Root
Locus

Faculty Name S LAKSHMI DEVI



Construction Rules for Root Locus

d Rulel:

Root Locus is symmetrical about real axis of S-plane, because roots are
either real or complex conjugate.

d Rule 2:

As ‘K’ increases from ‘0’ to ‘eo’, the open loop poles of G(S)H(S) move
(branch out) towards the zeros of G(S)H(S); some of the zeros may be at

OO’

The number of branches terminating on ‘oo’ equals Np — Nz; that is the
difference between number of finite poles & zeros of G(S)H(S).



Construction Rules for Root Locus

(] Rule 3:

A point S = SO on the real axis shall lie on the root locus iff the total
number of open loop poles & zeros of G(S)H(S) to the right of SO is odd.
(Loci lie in the region 2, 4 & 6)

1 x 2 x 5 o 4 oS5 x p 0O

’—

(d The number of poles + zeros to the right of region ‘6’ = 1(odd)
d The number of poles + zeros to the right of region ‘5’ = 2(even)
(d The number of poles + zeros to the right of region ‘4’ = 3(odd)
d The number of poles + zeros to the right of region ‘3’ = 4(even)
d The number of poles + zeros to the right of region ‘2’ = 5(odd)
1 The number of poles + zeros to the right of region ‘1’ = 6(even)



Construction Rules for Root Locus

J Rule 3 (contd)..

d The poles are K= 0 points & the zeros are K = o= points. As we are
interested in the range of K, 0<K<eo, therefore the poles will start
moving towards their respective zeros, in the region on the real axis,
and terminate at zeros (K = oo)

1 Therefore, we can say that the loci of closed loop poles start at K = 0
(the location of the poles of G(S)H(S)) and terminate at K =oo (the
location of the zeros of G(S)H(S))



Construction Rules for Root Locus

(J Rule 3 (contd): Example for implementation

Let G(S)H(S) = K(S+1)(S+2)/s(S+3)(S+4)
1. Draw pole zero locations in the S-plane

2. Use angle criteria to mark the regions on the real axis of the S-plane
where the root loci shall lie

k=0 k=0 =00 =co k=0 S-plane
% X e o X
-4 -3 -2 10

d The regions where the loci shall lie are highlighted in yellow where the
total angle subtended by poles & zeros = 180°



CLONSTruction ruies 1or Root
Locus

(1 Rule 3 (contd): Example for implementation

In the considered example:

1.

No. of open loop poles = 3; root loci branches = 3 because each pole is
a starting point.

Root Loci will start from S =0, -3 & -4 (K = 0 points)

As K increases, the loci moves from the poles to respective zeros (K =
oo points)

The arrows show the direction of movement of poles

Np =3 Nz = 2; no. of poles for which the loci shall terminate at = = Np
—-Nz=1

We observe that pole at S = -4 terminates at o°



Construction rules for Root Locus

J Rule 4: (Angle of Asymptotes)

The (Np — Nz) branches of the root locus asymptotically tend to e=. The
angles of asymptotes are given by:

éq =(2g+1) 180°/(Np—Nz); q=0,1,2, ...., (Np-Nz-1)
1. G(S) = K (S+1)(S+2)/S(S+3)(S+4)
Np = no. of poles = 3; Nz = no. of zeros=2; Np-Nz =1
g=0; $=180°
2. G(S) =K(S+2)/(S+1)(S+3)(S+5)(S+6)
Np = no. of poles =4; Nz = no. of zeros = 1; Np-Nz =3
qg=0,1,2; $0=60°, $1 =180°, $2 = 300°



COMNsutruction ruies 10r nOOL

Locus
d Rule 5: (Centroid)

If no. of asymptotes are more than 1, they cross the real axis of the S-
plane. Their point of intersection on the real axis is known as Centroid.

Centroid oA is given by:

n m
2Pi - 2Zj (Sum of real parts of poles -
i=1  j=1 Sum of real parts of zeros)

(Np — Nz) (No. of poles — No. of zeros)



COMNstruction ruies 10r nOOL LOCUS ATl

Example
1 Example:

Determine 1) no. of loci on the real axis and their regions, 2) no. of
asymptotes, 3) angle of asymptotes, 4) Centroid for a unity feedback
system whose open-loop transfer function is given as: G(S) =
K/S(S+1)(5+2)

 Solution Steps:
e Draw pole zero locations in the S-plane
 Determine no. of finite poles, Np, and zeros, Nz & Np-Nz
* Mark regions on the real axis where loci lie
* Find no. of asymptotes = Np — Nz & their respective angles
* If (Np-Nz) > 1 determine value of centroid
e Sketch root loci (free hand)
Continued in next slide



COMNstruction ruies 10r nOOL LOCUS ATl

DO 0O

Example

X X X T (poles are K=0 pts.)
S=-2 S=-1 S=0

Np = 3 Nz = 0 (no finite zero ; therefore all zeros at =)

Np-Nz =3

Loci on the real axis will lie between S= 0 & S= -1; it will also lie in the

region after S = -2 because total no. of poles & zeros to the right of the
regions = odd.

No. of asymptotes = Np-Nz = 3 & angles of asymptotes are given by &dq
= (29+1) 180°/(Np—Nz); q=0,1,2; $0 = 60°, $1 = 180°, $2 = 300°

Since (Np-Nz)>1 = 3 we will determine Centroid



COMNstruction ruies 10r nOOL LOCUS ATl

Example

[ Centroid is given by:

(sum of real parts of poles — sum of real parts of zeros)

oA = (no. of finite poles — no. of finite zeros)

oA = {(0-1-2)-(0)}/(3-0) =-1.0 180° —x P
d -

C P X X (X .
red loci is the loci in complex plane  $=-2 S=- =0
in yellow regions loci lie on the real axis 300° / B




Construction Rules for Root
0 Breakaway PoinksOCUS (Breakaway points)

Multiple roots of the characteristic equation occur at these points.
These are obtained using the formula dK / dS = 0. These points also
satisfy the angle criteria.

Examples: K=0
X, X ‘ ) K>0 RX(p1)
Breakaway $oint breakaway point ( fS)
A %
X X N0 K=0

=~<Breakaway points



Construction Rules tor Root
Locus (Breakaway points

 Example: Calculation for Breakaﬁxmp I e)

G(S) = K/S(S+1)(5+2)
1+ G(S)H(S)=0 mmp K/S(S+1)(S+2)=-1
mm) K=-(S3+3S2+2S)
mm) dK/dS=-(3S2+6S+2)=0
We find the roots of the polynomial
3§2+6S+2=0
We get $1=-0.423 & S2 =-1.577

We know that for the given G(S), the loci on the real axis will lie
between ‘0" & ‘-1’; therefore the breakaway point is = -0.423. S2 = -
1.577 is not a breakaway point because between S=-1 & -2 no loci exists

on the real axis of the S-plane.



Construction Rules tor Root
I Locus (Breakaway points
Xxample:

G(S)H(S) = K/S(S+4)(S2 + 4S + zoEMaM@Jﬁj))(su-jzt)

To determine the breakaway points: dK/dS =0. Substitute in 1+G(S)H(S) =
0 to get K = -S(S+4)(S2 + 4S + 20)

dK/dS=S3+6S52+185+20=0
Factorize dK/dS=0, we get S=-2;S =-2 +/-j 2.45

ad Now we find out that out of the roots of dK/dS = 0 which qualify to be

breakaway points. To do this, we first draw the pole — zero locations of
G(S)H(S) in the S-plane

(next slide)



Construction Rules tor Root
Locus (Breakaway points

Example)
J Example (contd): I ja-

]
=B x I tk=0)

\2
N

S-plane

(k=0)d - 4j4
J Having plotted the location of poles, we know that the root locus
on the real axis will lie between S = 0 (K=0) & S=-4(K=0).
J Now, one root of dK/dS =0 lies at S = -2; therefore S=-2 is a breakaway

point. Since, -2 is also real part of the complex pole (-2 +/- j4),
therefore S=-2+/-j2.45 ( root of dK/dS =0) is also a breakaway point.




Construction Rules tor Root

Locus (Angle of Departure/
O Angle of Departure/Arrival:Arriva I)

For poles on the real axis: ( either 0° or 180° )

Therefore, the angle of departure and/or arrival need be calculated only
for complex poles & zeros.

Method:
1. choose a point SO very close to the pole ‘p’

2.Graphically determine the angle contributions due to other poles &
zeros at the point SO.

3. determine angle of departure Bp from the pole ‘p’.



Construction Rules for Root Locus

Angle of Departure/ Arrival)
(J Draw the pole-zero locations of G(S)H(S)

J Draw a point SO in the S-plane very close to the pole/zero for which
departure angle is to be determined.

(J Draw vectors to SO from each pole & zero of G(S)H(S).
 Calculate total angle, ¢, subtended at SO.
d Angle of departure/ is given by ¢ — Bp/ =(2q + 1) 180°, or
we have Op=+/-(2q9+1) 180° + o;
0z =+/- (29+1)180° - ¢
d Bp/6z :the angle of departure/arrival for the pole/zero; Bp is subtracted
from ¢ because it is angle subtended by a pole.



Construction Rules tor Root
Locus (Determining Angle of

.6

De pa rture)
(d Op: angle of departure S
Op
: s N
X \ O X
65 94 62
So is placed very close to the pole X

X

for which angle of departure is to be calculated. For the sake of clarity,

here, it is shown some distance from the pole.

d Angle subtended by other poles & zeros at SO, ¢, is given by:

$=64-(61+62 + 63 +065)

¢ —06p=+/-(29+1)180°,q=0,1,2, ...; 6p =+/-(29+1)180° + P

d Angle of arrival at a zero is calculated in a similar way.



Construction Rules tor Root
Locus (Example: Angle of

u I lcul fDeIp?gture 0
Example: Calculation of angle of departure /ep=135°

45°  K=0)

Poles are at -1 +/-j1 S=-2 (K = o)
Zero at S=-2 o)
The K = 0 points are also points on the root

§

locus; therefore at open loop pole (K=0) x====-------- j1

location too, the angle criterion should be satisfied. ;;"\\\
The angle ¢ = (45°—90°); Op = (29+1)180° + ¢;
Op = 180° + (45° -90°) = 135° is the angle of departure




Construction Rules tor Root

Locus (Example: Angle of
 Example: Angle of Arrival (at zero locatgd at -1+j1)

rlﬁl\ 7\

tan61=%=0.5 0% 04
o N |
91= 2656 --i,\f)(\k-\lz,_-ﬁ;------ ji.414
tan 63 = 2.414/1 _ ? ...... i
03 =67.49° =~/ LF‘
02 = 90° g1 % ’f O-b'q-:l-- i1
tan 84 = -0.414/1 "l = Tl B
04 =-22.49° 0’4 =360-22.49=337.5° \63 9

The total angle,®, subtended at the zero=62 - 063 - 01 + 64 = 18.44°,
Therefore angle of arrival 6z = 180°- ¢ = 161.6°



Graphical determination of ‘K’ for
specified damping ratio

J Example: 6\ 4\ ]\T

G(S) = K (S+6)/(S+1)(S+4)
K=0 points: S =-1 & S=-4 are poles of G(S)
K = oo points: S = -6 are zeros of G(S)
Loci on the real axis lies between S = -1 & S= -4; and between S =-6 &

(o o]

4. Since one zero is at oo, therefore one closed loop pole will approach
this zero asymptotically

5. Angle of asymptote: ¢ = 180°(2g+1)/Np-Nz=180°;q=0
6. Since there is only one asymptote, there is no centroid
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specified damping ratio

o Breakaway points: 1+ G(S)=0; 1 +(|89g]/¥5 )(’S+4) 0; therefore, K
= - (S+1)(S+4)/(S+6)

0 dK/dS=0;BmE) 52+ 12 S + 26 = O ) S1 =-9.16, 52 = -2.84

Q Both S1 & S2 are breakaway points because the root loci on the real
axis lies between S =-1 & -4; and between S = -6 & oo

K>0 S-plane

A
A

= .
= oo point K=0 points

K>0

K
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specified damping ratio

 Let us fix the location of closed poles £g@£¥§dl)>w we want to find K
which yields S1 & S2. Let

S1=-2+j1.5
¢ = Cos(0)
(J Draw vectors from each pole & zero of G(S) to S1 or S2 as shown.

1 Then K = product of the length of vectors from poles/ product of length of
vectors from zeros

K=|S1+4]||S1+1|/|S1+6]|=|-2+j1.5+4]||-2+j1.5+1|/|-2+j1.5+6| = 1.05
¢ = Cos(45°) = 0.707



Effect of adding Zeros on Stability of a
Closed loop system |

L G(S) = K /(S+1)(S+2)(5+3) K=K

[ The root loci is obtained as: As the root loci cross K>0

in to RH of S-plane, i k>0 x

d The closed loop system becomes unstable for a value K>0 Fig.1
of K>Ki. Let us now add a zero. o=-2 (Vz:rmd)

J Let us now add a zero at S= -4 the loci will be  (asymptotes)
J We observe that addition of a zero has stabilized
the closed loop system for all values of K; 0<K&ao

/ Fig. 2

o=-1 (centroi

G(S) = K (S+4)/(5+1)(5+2)(S=3)
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Closed loop system
contd))..

JLet us now add a zero at S =-2.5 G(S) = }g (S+2.5)/(S+

(S+2)(S+3) o
= _1.75 asymptotes
Looking at Figs. 1, 2 & 3 we see that addition of zero has
1. Reduced no. of asymptotes X O %
thereby preventing the locus from o=-1.75 Figi3

moving in to RH of the S-plane.
2. Therefore the CL system has become stable for all values ¢

3. The location of zero also affects the locus.
4. Shifting zero location from S= -4 to -2.5 has moved centroid from -1 to -1.75

thereby shifting the starting point of asymptotes to further away from the
Imaginary axis of the S-plane. In Fig.2 the breakaway point is to the left of
o; in Fig.3 it is to the right of o.
5. Thus the system has become relatively more stable




Effect of adding Poles on Stability of a

Closed loop system
JAdding a pole:

G(S) = K/(S=1)(S+2) A
X Sle X
Fig. 1
G(S) = K/(S+1)(S+2)(5+3) M g

(JdWe observe that addition of a pole
affects stability of a CL system, as is seen
from Fig.1 & 2

X X X
\ Fig. 2



NOOL LOCUS
Problems

J Problem1:
For G(S) = K(S + b)/S(S + a) & H(S) = 1 show that the loci of the complex
roots are part of a circle with
center at (-b,0) ,and

radius = V (b2—ab)

 Solution:
The angle criterion: arg{(S + b)/S(S+ a)}=+/- 180°
At,S=0+jwwe have:arg{(c+jw+b)/(o+jw)(o+jw+a)}
o, tanl(w/o+Db)-tan w/o)-tan( w/o+a)=-/
tan’l( w/o) + tan’Y( w/o + a) = 1 + tan'}( w/o + b)
Take tan on both sides & simplify, to get
(0 +b)(20+a)=0 (0 +a)-w?
o02+*w?2+2bo+ab=0
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(contd)..

J Add & subtract b2 term to get
(02 + 2bo + b2) — b2 +w2 + ab =0
(o + b)2+ w2=>b2-ab is the equation of the circle with
center at (-b,0) & radius =V (b2- ab)
Forb=1&a=-1
center = (-1,0) & radius = V2
 Problem 2:
H(S)=1 G(S)=1/S(S+ a)
Draw root locus as a varies between 0< a<eo
Solution:

‘a’ appears in the denominator polynomial of G(S). ‘K’ always appeared in
the numerator of G(S). Therefore we manipulate to get ‘a’ in the
numerator.

The Characteristic equation Q(S) =1 + G(S)H(S) =0



NUUL LOUCUOS F1ODICITTIS
(contd)..

dQ(S)=S2+aS+1=0
From Q(S), we rewrite G(S) in a way that ‘a’ appears in the numerator
Therefore, we write

G(S)=aS/S2+1 X j1
The root locus for parameter ‘a’: )
o =0 points: S1=+j1 & S2=-j1; Np =2 (—j1
o = oo points: S=0; (another zero at ==); Nz =1
Np—Nz=1; No. of loci= 2
Locus on the real axis covers entire axis in the LH of S-plane

N

No. of asymptotes = 1
No Centroid ( because only one asymptote)

N o U ks W e

Angle of asymptote ( for g =0) = 180°



NOOL LOCUS FIODICITIS
(contd)..

J Breakaway point:
aS/S2+1=-1; a=-(52+1)/S;da/dS=0==S2-1=0;S=+/-1
The breakaway pointis S = -1 because it is a point on the loci
JAngle of Departure: (from pole at S =j1)
Angle subtended at S=j1 by zero at S=0 is 90°
Angle subtended at S = j1 by pole at S=-j1 = 90°
Total angle subtended, $ =90-90=0°
Angle of departure Bp = 180° + ¢ = 180°
d The Root Loci: breakaway point
Xjlo

< %
It is a circle with radius = 1 & center (0,0). (Contd. next slide)




NOOL LOCUS FIODICITIS
(contd)..

Q Let us fix the location of closed loop poles for damping ratio ¢ = 0.5 &
determine time domain parameters. We redraw the locus.

¢ = Cos(0) =0.5; 6 =60°. Draw a line at 60° from —ive real axis

as shown.
The intersections A & B on the locus define the
location of the closed loop system.

Dreakaway point

Since the locus is a circle with unity radius, the
vector OA =1 & therefore wn = 1 rads/sec.
-€wn =-0.5 ; wd =wnV(1-&%) =0.866 rads/sec

[ The CL poles are — &wn +/-j wd =-0.5+/-j 0.866
 The Characteristic equation is (S+ 0.5 + j 0.866)(S+ 0.5 -j 0.866)=S5*+S

+1=0

The derived Ch. Eqg. is: S*+ aS +1 =0

On comparing we get a=1.
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(contd)..

J Problem 3:
Suppose that the Characteristic equation is given as:
Q(S)=S*+KS? +2S+1=0
You are asked to draw root locus for 0<K<eo, How to draw?
Solution:

Collect all the terms containing ‘K’.

Divide terms containing ‘K’ by the balance terms

Write Q(S) =1 + N’(S)/D’(S)=0

Write G(S) = N’(s)/D’(S)

Plot root locus

In the presentcase: Q(S)=1+KSYS*+2S+1=0

G(S) = K S7YS? + 2S + 1; Factorize denominator polynomial

N ok wNhe



FRUDLLECIVI. CONSTruction or ROO1
Locus

Draw the root locus for the open loop transfer function G(s) and settling
time ts=4sec given, find the range of values of k and show that the loci of
the complex roots are part of a circle with (-1,0) as centre and radius =5

where k(s +1)
G (s) =

s(s —1)
Step-1: The first step in constructing a root-locus plot is to locate the
open-loop poles and zeros in s-plane.

 The k=0 points:
s=0, s=1
no. of poles (n)= 2
[ The k=< points:
=-1
no. of zeros (m)= 1



FRUDLLIVI: LONSTruction or hOOT LOCUS

(contd)..
1 i 1
The poles and zeros in @'}f ® x/k': 0 ; 0
s-plane after step-1. < e R .
|




FRUDLLEIVI. LONSTruction or ROOT LOCUS
(contd)..

Step-2: Determine the root loci on the real axis.

] To determine the root loci on

real axis we select some test .

points.

 e.g: p, (on positive real axis).

(1 No. of real poles and zeros on

the right of test point is zero ( -1t

which is even)

[ Hence, there is no root locus
on the positive real axis.




FRUDLLEIVI. LONSTruction or ROOT LOCUS
(contd)..

Step-2: Determine the root loci on the real axis.

(J Next, select a test point on
the positive real axis between
1 and 0.

1 No. of real poles and zeros on
the right of test point is one (
which is odd)

d Therefore, from 1 to O is part
of the root locus.




FRUDLLEIVI. LONSTruction or ROOT LOCUS
(contd)..

Step-2: Determine the root loci on the real axis.

J Next, select a test point on
the negative real axis
between 0 and -1.

d No. of real poles and zeros on
the right of test point is two (
which is even)

1 Therefore, from 0 to -1 is not
part of the root locus.

....................................... PO S —




FRUDLLEIVI. LONSTruction or ROOT LOCUS
(contd)..

Step-2: Determine the root loci on the real axis.

J Next, select a test point on
the negative real axis
between -1 and - oo, “r

d No. of real poles and zeros on
the right of test point is three p4 :
( which is odd) . R Q-gooe Kooeaoeas Xomooooes 7

1 Therefore, from -1 to - o= is
part of the root locus.




Step-2: Determine the root loci on the real axis.

PROBLEIVI Constructlon of Root
Locus (contd)..




FRUDLLCIVI: LONSTruction or hOOT LOCUS

Step-3: Determine the assmptotes 02 the root loci and angles.

+180 °(2q + 1)

Where Angle of asymptotes =¢ =

n-----> number of poles (2) n—-m

m-----> number of zeros (1) p - 1180 °(2q +1)
2 -1

¢ = £180° when q =0

J No. of asymptotes =n-m =1
1 The angle of asymptote is 180°.
1 No centroid for this system



FRUDLLEIVI. LONSTruction or ROOT LOCUS
(contd)..

Step-4: Determine the breakaway/break-in point.

dThe breakaway/break-in point is the point from which the root locus
branches leaves/arrives real axis.

U The breakaway or break-in points can be determined from the roots of
dK/ds=0

dIt should be noted that not all the solutions of dK/ds=0 correspond to
actual breakaway points.

dIf a point at which dK/ds=0 is on a root locus, it is an actual breakaway
or break-in point.

dThe characteristic equation of the system is

K(s+1)
1+G(s)H (s) =1+ =0
s(s —-1)

" :_s(s—l)

s+1



FRUDLLCIVI. CONSTruction or ROOT LOCUS
td).

1 The breakaway point can no&%?dre‘term ed as
dK d [s(s-1)]

ds __dsL s+1 J
dK (s+1)(2s —1) - (s* - s)(1)

ds (s +1)°
1 Set dK/ds=0in order to determine breakaway point.

(S+1)(28—1)—(82—S)(1):0 s°+2s-1=0
(s +1)°
M By solving the equation roots are at
s = +0.414
= —2.414

By substituting these s values in k equation, the value of k is positive real
for s=0.414 (k=0.17), s=-2.414 (k=5.828). so these points are actual
breakaway points.



FRUDLLCIVI: LONSTruction or hOOT LOCUS

ont}g)
Step- 4 Determine the bre ‘i way eak -in pomt

|:| M— -------- :*:H: ———————— —
Breakaway . Breakaway
point . point
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(contd)..

Step-5: Determine the points where root loci cross the
imaginary axis and range of K for stable operation

W The characteristic equation of closed loop system:
s(s-1)+ k(s+1) =0

s* 4+ (k-1)s+k =0 — S° 1 K

k >0

k >1 - s K

dThe root loci cuts the imaginary axis at s=+]1
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(contd)..

Step-5: Determine the points where root loci cross the
imaginary axis and range of K for stable operation

W The characteristic equation of closed loop system:

4
s(s-1)+k(s+1)=0 © :\/E t, =4 = Ep)_
s?+(k-1)s+k =0 > n « _1 > ’

k -1
52+2§oons+oan2=0 §®n2(7) gwnzlz(T)

k =3

W The location of closed loop poles

for k=3, ts=4 sec

52+23+3:0

s=-1x% j\/;
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(contd)..

To show that the loci of the complex roots are part of a
circle with (-1,0) as centre andvr.adius =
d Apply the angle criterion: (s + 1)

ZG(s)=ZKk = +m (2q +
s(s—-1) 1)

S=0 + JO

Zk+/Zoc + jo +1-/Zoc + jo - ZLoc + jo —-1= -7
T + tan 1( > ):tan _1(®—)+tan 1( - W
c +1 \o ) c -1)
3 Apply the tan on both sides tan( A + B) = tan A+ tan B
® o) o 1-tan Atan B
—+( w tan(n)+( )
¢ \o -1) \o +1)

1—m|[ 2 ) 1—tan(n)f ” )

c Lo -1) \oc +1)
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(contd)..

By cross multiply and simplify:

c’+mw°+20 -1=0

1 By add and subtract ‘1’ and rearrange

c°+20 +1)-1+0°-1=0

c +1)%+0° =2

INUVUL LULVUO

[ This is the equation of the circle with center at (-1,0) and radius V2
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Complete root locus for the given s.y.stem

k(s +1) Root Locus
G(S) = ( 1) 15 I 1 I 1 1 | 1
S(S — '
+ ji(k = 1)
| —1+ j1.414 (k = 3) | |
05} .
Jn
e
= < @ > > 5 =
-E, Breakaway Brepkaway
E poirt point
05 -
RS ] i
—-1-j1.414 (k = 3
.44 (k= 3) 1k = 1)
15 | 1 | 1 1 | 1
-3 25 2 1.5 -1 0.5 0 0.5 1

Real Axiz



FRUDLLECIVI. CONSTruction or ROO1
Locus

The characteristic equation of a feedback control system is
s* +3s°+12s?2 +(k—-16)s+k =0

Sketch the root locus plot for O<k<ee and show that the system s
conditionally stable (stable only for a range of gain k). Determine the range
of gain for which the system is stable.

Solution:
To sketch the root locus, we require the open-loop transfer function
G(s)H(s)

d 1+G(s)H(s)=s"+3s°+12s* -16s+ks+k =0
1+G(s)H (s) =s(s®°+3s°+125-16)+ k(s+1)=0

k(s +1) . k(s +1)
=1+

= =0
s(s’® +3s*+12s-16)

s(s—1)(s* + 4s +16) )

1+
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(contd)..

k(s +1) k(s +1)
s(s°+3s°+125-16) s(s—1)(s+2+ j3.42)s+2- j3.42)
 The k=0 points: s=0, s=1, s=-2+j3.42, s=-2-j3.42

no. of poles (n)=4
[ The k=c° points: s=-1
no. of zeros (m)=1
1 No. of root locus branches (n)=4
 Root locus exists on the real axis from s=1 to s=0 and to the left of s=-1
1 No asymptotes (n-m)=3
0 Angles of asymptotes- +60 °,+180 °
[ Centroids = -0.66
O The breakaway points are given by dk/ds=0.

d G(s)H (s) =

s(s—1)(s* +4s+16)
where k =

s+1
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(contd)..

dk d d
O —=(s+1)—(s*+3s° +12s* —16s) — (s* +3s° +12s° —-16s) —(s+1) =0
ds ds ds

(s+1)(4s° +9s° +24s5-16)—s* —3s° —-12s° +16s =0
35 +10s° +21s° +245-16 =0

By solving the above equation out of four roots only, s=0.45 and s=-2.26 are
actual break points.

1 Out of these s=0.45 is the breakaway point and s=-2.26 is the break-in point.
1 Corresponding to these points k values are 2.64 and 77.66

[ The angle departure of the root locus from the complex poleis 6, =+% .27 °
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(contd)..

Determine the points where root loci cross the imaginary axis
and range of K for stable operation
W The characteristic equation of closed loop system:

s* +3s®+12s?2+(k-16)s+k =0

s’ 1 12 k kK >0
. : - 16 ) 52 ko
- 36 — k + 16 ) « < 5
3
52 — k 2
(k —16) — 3k 52k +16k —k“ -832 -9k >0
1 3
S
52 — K k> -59k +832 <0
0 3 k > 23.3andk < 35.7
S k

U The range of values of k for stability is 23.3<k<35.7. The corresponding
oscillation frequencies are 1.68 rad/sec and 2.6 rad/sec
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(contd)..

1 Complete root locus of the given system is

Foot Locus
&

(= 5]

[
|

Imaginary Axis
L

1
[
|

[=p]
I

1
e

0

i
L9
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FREQUENCY DOMAIN ANALYSIS



ricyuclity vuilliaill
Specifications

O We have studied about time domain specifications like, rise time ,tr;
peak time, tp; settling time, ts; peak overshoot, Mp.

d Now, we define frequency domain specifications for a given system and
determine their correlation with the time domain specifications.

 This correlation between time & frequency domain is necessary as it
enables us to derive time domain specifications from frequency domain
ones & vice-versa.

 Further, we may like to analyze a given system either in time domain or
frequency domain & hence we need to have a set of specification in
each domain for evaluating a given system’s response.

[ Like in time domain, here too we consider a second order system for
deriving frequency domain specifications.



ricyuclity vullidlill opclliiLativulio
(contd)..

 Given, a closed loop transfer function, T(S) = C(S)/R(S), as
T(S) = C(S)/R(S) = wn?/ (S* + 2§ wn S + wn?)
d For determining frequency response, we let S =jw in T(S) because we

are interested in real frequencies which lie on the Imaginary axis of the
S-plane.

T(jw) = wn?/ (-w?+j2¢ wn w + wn?)
T(jw) = wn? / wn? { (1-(w/ wn))? +j2¢ w/ wn }
d Let u = w/ wn; u: normalized frequency
wn: natural frequency of oscillation of the system
w : input signal frequency
d Thus, T(jw) =1/{(1-u?) +j2& u- ............ (1)
| T(jw) |= M(u) = 1/V, (1-u?)? + 482 u?- ..... (2)
arg{T(jw)}= ¢ =-tan™,2¢ u/(1-u?)- ........... (3)



ricyuclity vullidlill opclliiLativulio

(contd)..

d The magnitude & phase response are part of frequency response.
Equations(2) & (3) corresponding to magnitude & phase response tell
us that,

 if we feed an input signal r(t) = A Sin(wt) to the system, the output
signal will have

magnitude = A/ V, (1-u?)? + 4¢? u?}, and the
phase introduced = - tan™" {2& u/(1-u?)}
J Thus the output signal, under steady state, will be
c(t) = A/*V, (1-u?)? + 4€2 u?}] Sin (wt - tan™{2€ u/(1-u?)})
(d We observe that the output amplitude is dependent on the input
frequency, and so is the phase lag introduced in the output signal.



ricyuclity vullidlill opclliiLativulio
(contd)..

Q Reproducing equations (2) & (3), we have
M(u) =1/V, (1-u?)?+ 4&* u*- ..... (2)
¢ =-tan™',2& u/(1-u?)- ...........(3)
PlottingM & p vs.u, u=w/wn

u M )
00| 1.0 | 0 (w=0)
1.0 |1/(2¢) |-N/2 (w= wn)
oo 0 -1 (wn  o9)
.
 Observation:

At w= wn, the value of ‘M’ is inversely proportional to €.

The lower the ¢ higher the ‘M’ implies higher peak in the magnitude
response.



ricyuclity vullidlill opclliiLativulio

(contd)..

(1 Resonant Frequency:

The frequency where ‘M’ has a peak value is called resonant
frequency. At this frequency, the slope of the magnitude curve,
M, is zero. Differentiate ‘M’ w.r.t ‘U’ in equation (1)

Therefore, dM/du=0 = yr2=1-2 ¢ wmpur=V(1-2§?)
U= ur =) Wr = wnV(1-2 &%)

Resonant frequency : wr= wnV(1-2 &%) ....(4)
1 Resonant Peak, Mr:
The maximum value of magnitude is known as ‘Resonant peak’
M(u) = 1/V, (1-u?)? + 4€* u?}; at resonant frequency u=ur, we get Mr.
Substitute for u= ur in M(u), to get Mr = 1/{2& V(1- &)} ..... (5)



FICyuUcliLy Uullialill opcultiCatclvulio

(contd)..

(1 Phase angle, ¢dr at Resonant Frequency:
Phase angle: ¢ = -tan™,2¢ u/(1-u?)}
Substitute for u = ur in ¢, to get
¢ér=-tan™',V(1-2 €3)/¢- ...... (6)
From equations (4) & (5), as reproduced below
wr= wnv(1-2¢&) ...(4)
Mr = 1/{2E V(1- &)- ..... (5)
It is seen that as & approaches ‘0’
wr approaches wn, and
Mr approaches oo
AtE=0.707; Mr=1& wr=0
Therefore there is no resonant peak & hence no resonant frequency.



ricyuclity vuilliaill

Specifications

(] The magnitude & phase plot:

Forarange of & 0<¢&<0.707 we sketch the plots.
T M (&< 0.707)

M 1.0

Magnitude %mm) _N/2

LR

T~

Ur = wr/wn

Normalized Frequency

J We observe that for &> 0.707, the magnitude plot decreases
monotonically from M=1 at u=0. Thus there is no resonant peak for
¢>0.707 & the greatest valueof M =1.0



FICyuUcliLy Uullialill opcultiCatclvulio

(contd)..
1 Bandwidth, wb:
The frequency at which M = 0.707 (1/V2) is called cut off frequency,

wC.

[ The range of frequencies for which M> 1/v2 is defined as bandwidth,
wbh of a system. Since control systems are low pass filters, wb = wc..

d At u = ub = wb / wn; (the normalized bandwidth), the expression for M
IS

M(ub) = 1/V, (1- ub 2)? + 42 ub 2- = 1/v2
Solving the above equation, we get
ub® - 2(1-2€*)ub?-1 =0 Let ub? = x; solve for x & then for ub. Ub = Vx
1 Solving for ub we get: ub =V *1-28 + V(2-482+4¢&%)]
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(contd)..
1 Bandwidth:

The denormalized bandwidth is given by,
wb = wn Vv *1-28 + V(2-482+4&%)]

Thus, we observe that bandwidth is a function of damping, € only.
¢ wb
0.2 1.51 wn
0.5 1.272 wn
0.707 | 0.999 wn

Thus we observe that as damping increases the bandwidth reduces.
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(contd)..

Q Correlation between time and frequency domain parameters:
Time Domain:
Mp = exp(- N1€/V(1-€))
tp=/1/wnVv(1-€%); wd=wnV(1-&?)
Frequency Domain:
Mr=1/{2§V(1-&)}; wr= wnV(1-2§’)
 From the above equations we understand that no matter in which
domain ( frequency or time) we are analyzing a system performance,

the other domain (time or frequency) parameters can be easily
estimated using the above set of relationships.

d For example, working in time domain from the root locus we can fix §,
wn, for a desired location of closed loop poles and then we can
determine frequency domain parameters using above equations.
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(contd)..

d Correlation between time & frequency domain parameters:
wr/ wd =V(1-2 €2)/ V(1-¢&?)

¢ wr/ wd
0.707| 0.0
0.5 |0.8165
0.3 |0.9493 [
0.2 |0.9789 orfod |
0.0 | 1.0 y



PLOT
[ Polar Plot:

Magnitude and phase of G(jw) is plotted in X-Y plane (graph sheet)
G(jw) = Re[G(jw)]+ Img [G(jw)]
G(jw) = |G(jw)| arg,G(jw)}= M exp(-jd)
As w is varied from ‘0’ to ‘eo’; the ‘M(w= w1)’ value is marked on the
graph sheet at an angle of ¢p(w=w1l)

J Example 1:
G(S)=1/(1+TS) m) G(jw) = 1/(1+ ] wT)
mp M) = IV(1+ (T));  dlw)=- tan~(wT)
w—0; M=1 d=0°
(0= wﬂo 1w = 0)

‘\\ 1/\/%,!(&/: 1/T)

=~

w——o;,M=0 b=-N/2
w=1/T, M=1/N2 ¢=-1/4
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(Contd..)

] Observations:

1. The w =0 & w =< are important points in a polar plot.

2. The angle subtended by G(jw) or G(jw) H(jw) at these frequencies
indicate the number of quadrants the polar plot is going to traverse in
the G(jw) or G(jw) H(jw) plane.

3. As we shall see later the intersection of the polar plot with the
negative real axis of the G(jw) or G(jw) H(jw) plane is a very important
information because it allows us to determine the stability of a CL
system, as also its relative stability.

4. Polar plot need not be drawn for all the frequencies from 0 to oo; the
necessary points are w = 0 & w = oo and those values of w at which the
polar plot intersects with the negative real axis of the G(jw) or G(jw)
H(jw) plane.
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(Contd..)
1 Example 2:

G(S) or G(S)H(S) = 1/S(1+TS)
G(jw)=1/jw (1 +jTw); M(w)=1/w V(1 + T*w?);
d(w) =-N1/2 -tan™(Tw)
w=0; M=oo; & =-/1/2 Angle measured in CW direction: -
w=o;, M=0; b =-/1 Angle measured in CCW direction: +
w=1/T, M=TN2 o¢=-3/1/4
(J Note: we observe that between w =0 & w =<o the angle changes by /1/2;

therefore the polar plot will traverse only in one quadrant.

The polar plot is shown in the next slide



 Polar plot:
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(Contd..)

at w=eo M(w)=0, p=-/1

d Atw =1/T; M=T/v2
In order to plot this point, we draw
an angle & = -3/1/4 and then mark

the point M = T/V2
At point A,
M=T/N2, ¢ =-3/1/4,

A — 2N /A
P = "I971/=

y /

\

at w=0 b =1/2 M=oco




rULAN rLuU |

(Contd..)

J Example 3:
G(S) = 1/(1+T: S)(1+T, S); G(jw) = 1/(1 + ] wT1) (1 +j wT)
M(w) = 1/V(1+ w?T:?) V(1+ w?T,?)
d(w) =-tan™(Thw) - tan™(Tw)
w=0; M=1; b =0 Angle measured in CW direction: -
w=oo; M=0; b =-N Angle measured in CCW direction: +
J We observe that ¢ changes from 0 to —/1 as w changes from 0 to o°.
J Therefore, the polar plot will traverse two quadrants in the G(jw) or
G(jw) H(jw) plane.
 Since the polar plot traverses two quadrants, we need to determine

point(s) of intersection between polar plot & the Imaginary & negative
real axis of the G(jw) plane.
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 Intersection with real & imaginary axis of the G(jw) plane:

] Procedure:

1.
2.
3.

Rationalize G(jw) or G(jw) H(jw)
Separate in to real & imaginary parts of G(jw) or G(jw) H(jw)

For intersection on real axis; imaginary part = 0. Make imaginary part =
O by making its numerator = 0. We get value of w at point of
intersection. Calculate the value of real part at this value of w. Draw a
vector of this length from the origin to get intersection on the real axis.

For intersection on imaginary axis; real part = 0. Make real part = 0 by
making its numerator = 0. We get value of w at point of intersection.
Calculate the value of imaginary part at this value of w. Draw a vector
of this length from the origin to get intersection on the real axis.
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(Contd..)

J Determination of Intersection point(s):
1 G(jw) can be written as, G(jw) = 1/[(1-w?TqT2) +j wW(Ty + T2)+

Rationalize: multiply & divide G(jw) by [(1-w?T:T2) - j w(Ty + To)+; that is
conjugate of the denominator.

We get,
G(jw) = [(1-w?TiT2) +j w(Tq + To)+/[(1-w?TiT2)? + w?(Tq + To)*+
Real part = (1-w?TqT2)/*(1-w*TqT2)* + w?(Tq + To)*+
Imaginary part = w(Ty + T2)/*(1-w?TqT2)? + w?(Tq + To)*+
d We see from the above that
Imag. Part cannot be zero, &
Real part = 0 for 1-w?TT, =0; w?=1/TiT,
at intersection on imaginary axis, the frequency w = 1/V TqT,



rULAN rLuU |

(Contd..)

Gfjw) plane

(W= M=0¢ =-/) (w=0M=1 ¢=0)

\
T

Vv T1 Tz/(T1 + Tz) wX0 w>0

l




PLOT
J Example 4:

G(S)=1/(1+T,S)(1+T, S) (14T3 S);

G(jw)=1/(1+j wTy) (1+] wTz) (1+]) wTs)

M(w) = 1/V(1+ w?T:?) V(1+ w?T2?) V(1+ w?T5?)

d(w) =-tan™(Thw) - tan™(Tw) - tan™(Tzw)

w=0;, M=1, ¢=0 Angle measured in CW direction: -

w=ee;, M=0; ¢=-3//2 Angle measured in CCW direction: +
(d We observe that ¢ changes from 0 to —3/1/2 as w changes from 0 to o°.

d Therefore, the polar plot will traverse three quadrants in the G(jw) or
G(jw) H(jw) plane.
1 Since the polar plot traverses three quadrants, we need to determine

point(s) of intersection between polar plot & the Imaginary & negative
real axis of the G(jw) plane.



rULAN rLuU |

(Contd..)

 Intersection on the Real & Imaginary axis of G(j w) plane:
Following the procedure as explained earlier, we have:

 For intersection on Imaginary Axis:

wW=1/V(T1 T2+ T3 T4 + T,T3)
 For intersection on real Axis:

W=V*T+T2+ T3/T1 T2 Ts ]

For the above values of w, determine the magnitude of the points with
imaginary intersection.
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Gfjw) plane

(w =o0 M=0 ¢ = -3/1/2) (wEO0M =1 $=0)

o

w1 = Vv (T1 +T2+T3)/(T1 Tz T3) w>0 /
~ w>0

OA: magnitude of G(jw) at w = w;,

OB : magnitude of G(jw) at
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Stability)

] Relative Stability:

1.

O e N o U kAE WD

[EEY
o

It is defined for systems that are open loop stable.

We have the Characteristic equation Q(S) =1 + G(S)H(S) =0

For real frequencies ( frequency response) S = jw

Therefore, Q(jw) =1 + G(jw) H(jw) =0

Or, G(jw ) H(j w) =-1

therefore, |G(jw ) H(j w)|=1 & arg(G(jw ) H(j w)) = =+/- N
When loop gain = |G(jw ) H(j w)|=1 & arg(G(jw ) H(j w)) = +/- N
Phase introduced due to error detector = 180°

Therefore, total phase in the loop =360° & |G(jw ) H(j w)|=1

. The CL system response is oscillatory & it is on the verge of

instability
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Contd..)

11. loop gain = |G(jw ) H(j w)|=1 & arg(G(jw ) H(j w)) = +/- N: thisis a
point (-1, jO) in the G(jw ) H(j w) plane. 1
12. Stability of a closed loop system is determined by \
(-1,j0)
non-encirclement of (-1,j0) point. As the polar plot gets closer to (-
1,j0) point, the CL system tends towards instability.

Polar plot & Location of closed loop poles:
X §plane X S plane

%

X
Ligr” / (-1,0) /x Gljww) H(joo) plane

We observe that|polar plot closer to (-1,jQ) point implies CL poles are
closer to the Imaginary axis of the S-plane
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Contd..)

1 As the CL poles move closer to the Imaginary axis of the S plane, the
system takes more time to settle down (reach steady state) & is
therefore relatively less stable than the one which has CL poles far
removed from the Imaginary axis of the S plane.

 In frequency domain it implies that as the polar plot moves closer to
the (-1,j0) in the G(jw ) H(jw ) plane, the CL system becomes relatively
less & less stable.

J Therefore proximity of the polar plot to the (-1,j0) point determines CL
system’s relative stability.

d If the polar plot encircles the (-1,j0) point then the CL system is
unstable.
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Contd..)

J Example of Relative stability:
G(jw )H(jw) plane

Plot 1: (-1,j0)a
Intersects negative real axisat ‘b’ d
Plot 2: T~

Intersects negative real axis at ‘c’

Plot 3:

Passes through (-1,j0) point 1 (More Stahle)
Plot 4: 2 (Stable)

Encircles (-1,j0) point & 3 (limitedly stable)
intersects negative real axis 4 (unstable)

at ‘d’



NTIAdlLIVC oldlllILy ITIUCA. Odlll A FlidoC

Margin
1 Gain Margin:

1. The margin between actual gain ‘K’ (of the system) and the critical

gain causing oscillations (in the system output) is called Gain
Margin (GM)

2. Critical gain: the value of ‘K’ at which the Polar plot- { G(jw)H(j w)}
plot - passes through (-1,j0) point.

3. Definition of GM: It is the factor by which the system gain can be

increased to drive it to the verge of instability. GH plane

4. At w = w;, the magnitude of (-1,j0) (w=w,)
intersection with the negative real axis is \\( >
‘a’; the phase angle = /1 a

5. For the plot to pass through (-1,j0) point, the facjor by which the

gain is to be increased =1/a. GM = 1/a



A

o
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Margin

|G(jw)H(jw) | =a, at w = w;

arg {G(jw)H(jw)} = d=1N, at w = wy

w = wq is the frequency at which ¢ = 180°.
w = w1 is called ‘Phase Crossover Frequency’

Phase crossover frequency: is defined as the frequency at which the
phase offered by the system is /1

Gain Margin is now defined in terms of phase crossover frequency as

‘reciprocal of the gain at the frequency at which phase angle
becomes 180’

Thus GM value is obtained at phase crossover frequency.
GM = 1/a; In decibels: GM = 20 Log(1/a) = - 20 Log(a)
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Margin

] Phase Margin:

1.
2.

o v bk w

It is calculated at ‘Gain Crossover Frequency’

The frequency at which | G(jw)H(jw)| = 1is called ‘Gain Crossover
frequency’ G(jw)H(jw) [plane

Draw a unit circle as shown.
The point of intersection of unit circle X(w=)) O

with polar plotis X, say, the frequency is w;. /
The |G(jw)H(jw) | (at w=w,) = length of vector OX= X(

PM = ¢
Therefore w=w- is the gain cross over frequency.

The angle made by OX with the negative real axis of the G(jw)H(jw)
plane is Phase Margin (PM), ¢, of the system.
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Margin

JPhase Margin & Stability of CL system:

1.

It is defined as the amount of additional phase lag at the gain cross
over frequency required to bring the system to the verge of
instability.

It is measured in the CCW direction from the negative real axis of
the G(jw) H(jw) plane.

If w = w; is the gain cross over frequency, then phase margin (PM) is
computed as:

PM = & = arg{G(jw:) H(jw:)} + 180°

Since systems introduce phase lag, arg{G(jw;) H(jw-)} is always
negative.

If PM is positive, the CL system is stable
If PM is negative the CL system is unstable
If PM = 0 the CL system is on the verge of instability
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Margin
(1 GM & Stability of CL system:

GM is calculated as the inverse of the |G(jw)H(jw)|= ‘@” at the point of
its intersection with negative real axis of the GH plane.

GM =1/a; or, GM =- 20 Log (a) in dB.
1. If GM is positive, CL system is stable
2. If GM is negative, CL system is unstable
3. IfGM =0/, CL system is on the verge of instability

diInterpretation of Relative Stability from GM & PM Values:

1. Large GM or large PM imply sluggish CL system

2. GMclose to ‘1’ or PM close to ‘0° imply highly oscillatory system

3. GM of about 6 dB or PM of 30-35° imply reasonably good degree of
relative stability

4. Generally a good GM automatically guarantees a good PM & vice-
versa.
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Margin

J Special Cases:

We have said that generally a good GM vyields good PM & vice versa. In

certain cases, it may not hold. G(jw)H(jw) pH
d Case 1: (-1,j0) point
Plot 1: gain K; ;PM = ¢1; GM = oo

Plot 2: gain K3; PM = ¢; GM = oo

2

bne

K3>K2>K1;¢3<¢2<¢1
3 We see that as we increase gain in the system #

e

the Phase Margin reduces whereas the 27114

1 Gain Margin does not change. Therefore in such cases we need to focus

only on PM because GM is not adjustable.
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Margin

J Case2:

Plot 1: gain K; ;PM = ¢;; GM = 1/a rad=1
Plot 2: gain Ky; PM = ¢2; GM =1/b

Ks >Ky>Kq; b3 <dr <Py _
(-1,j0) point

d  We see that as we increase gain
the GM reduces appreciably, but
the PM does not vary much. 2

d Therefore, we need to monitor GM in this case.
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PM & €

J Correlation between Phase Margin & Damping €:
Let G(S) = wn%S(S + 2€wn); for a unity feedback system
J At the gain cross over frequency, w = w,
|G(j w)H(jw)| = 1.0
o, wny wV(w2+4¢& wn?)=1.0

or, wA(w% + 4 € wn?) = wn?
of, (wi/ wn)*+4¢& (wy/ wn)?1=0;let (w/wn)*=x
or, x2+4&x-1=0

o, x=-2&+/-V(1+4¢%
of, (wi/ wn)?=Vv(1+4¢&)-2¢
o, wi=wnV(V(1+4¢*)-2¢?)
d The above equation relates € with gain cross over frequency, w;
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PM & €

arg{G(j w)H(jw)} =-90° - tan " (w/2 € wn)
at w = wy, b1 =-90°-tan (w1 /2 € wn)
PM = = 180° + & = 180° - 90° - tan (w1 /2 € wn)
b =90°-tan™(w1/2 € wn)
1 Substitute for w, to get,
b =90°-tan™™*V(V(1+4€*)-2¢2)/2¢&]
or, *WV(1+4¢&)-2¢8%)/2&]=tan(90°- d) =cot ¢

or, tand=2¢/ *V(V(1+4E&)-2¢&)]
or, d=tan" {2/ *V(V(1+4 &) -28&)]}

d The above equation gives a relationship between ¢ & ¢ for an under
damped system.

 In the range € < 0.707, a reasonably good approximation is given by
¢=0.01¢
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GM & PM

G(j w) = K/jw (1+j 0.2w)(1+j 0.05 w)
d ForK=1: a=-0.04
PM=¢=76°;
1 Intersection on negative real axis, a = -0.04
GM =20Log |1/a|=28 dB

d Suppose we desirea GM =20 dB, &
PM =40°
Q Fora GM =20 dB, the polar plot should intersect
the negative real axis at : 20 Log |1/b|=20 dB
therefore, b=0.1

 This is achieved if K is increased by 0.1/0.04 = 2.5; K = 2.5.
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GM & PM

(1 To achieve PM = 40°, we have:

(A Draw an angle of 40° in CCW direction from the i
negative real axis of GH plane, as shown 40°
d We see that for PM = 40°, gain ‘K’ /

is to be increased by the ratio OA/OB O

OA/OB=1/0.191=5.24
K=5.24
(J Thus we note that GM & PM are two different

 Specifications not achievable for a single value of gain ‘K.
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Margin
J Example:
O G(S) = K/S(1+0.25)(1+.05S) == G(jw) = K/jw(1+j0.2w )(1+j0.05w)

d We know that for determining GM, we need to find intersection on
negative real axis (Imaginary part =0).

(d Determine value of w for which Imaginary part = 0.
Simplify G(jw) to get G(jw) = K/[-0.25 w? + jw (1- 0.01 w?)]
Rationalize G(jw) to get,
G(jw) = -0.25K w¥Den -j w(1-0.01 w?)/Den
Where, Den = [(-0.25 w?)? + (w(1-0.01 w?))?]
For Imaginary part = 0,== 1-0.01 w?=0; == o = 10= w;
w1: phase cross over frequency. Magnitude of G(jw) at w = w;,
|G(jw) | = K/0.25(w4)* = K/25 = a (Contd.)
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Margin
J For a desired GM = 20 dB, we have
20 Log (1/a)=20,0r,a=1/10=0.1
K/25=a;K=2.5
1 Calculation of PM:
Let w = w, be the gain crossover frequency;
PM = 180° + arg{G(jw)}; Desired PM = 40°
arg{G(jw)}=-90° - tan™(0.2 w,) - tan™"(0.05 w)
PM =-90° - tan (0.2 w-) - tan™"(0.05 w,) +180° = 40°
tan™(0.2 w,) - tan™"(0.05 w;) = 50°; Apply tan on
0.25 w,/[1-0.01 w,?] = tan 50° = 1.2 rads; w, = 4 rads/sec
|G(jw) |at w = wz is = K/[w, V,14(0.2 wy)>- V,1+(0.05 wy)*} =1
Forw,=4,K=5.2
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PLOT

Q From the frequency response of open loop transfer function G(S) or
G(S)H(S), closed loop system stability & relative stability is determined,;
as in polar plots & root locus methods.

1. We draw two plots for each transfer function
Magnitude plot in dB

Phase plot

Both the plots are drawn on semi log paper

A

Magnitude in dB is given by 20 Log |G(jw )|
or 20 Log | G(jw )H(j w)]|
Angle ¢(w) is plotted in degrees
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(Contd..)

(J Note on Log Scale:
The advantage of Log scale is that we can handle a very large data size
 Linear Scale:
-30 -20 -10 0 10 20

| | | | | |

| | | | | |
 In linear scale each segment is incremented equally.
J Log Scale:
 In log scale, we decide the multiplication factor ‘x’. Let x = 10

2 -1 0 1 2 3  (linearscale) w

| | | | | |
0.01 0.1 1 10 100 1000 (Logscale)logw
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(Contd..)

d Conversion to Log scale:
Log 10 w =0 (onlinearscale) = w=1 (onlog scale)

Log 10 w = 1 (on linear scale) g w =10 (onlogscale)

Log 10 w =2 (on linear scale) mmp w =100 (on log scale)

Log 10 w =-1 (on linear scale) == w =0.1 (on log scale)

Log 10 w = -2 (on linear scale) o w =0.01(on log scale)
J We observe from the above that

1. on the positive side increment by ‘1’ on linear scale corresponds to
multiplication by ‘10’ on the Log scale ,and

2. on the negative side increment by ‘-1’ on linear scale corresponds
to division by ‘10" on the Log scale

3. We also observe that on the Log scale we cannot start with a value
of w =0, but it can assume a very small value
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(Contd..)

d Thus, we observe that increment by ‘1’ on linear scale causes

multiplication by ‘10" on Log scale and hence enabling data
compression and thus facilitating usage of large chunks of data.

d Further observations on Log scale:

1.

Between w =1 & w =10 on the log scale, if we want to mark w = 2
then we write: Log 10 2 = 0.301 ( which is 30.1% of the segment
length between ‘1’ & ‘10’ on the Log scale

Between w =1 & w =10 on the log scale, if we want to mark w = 3
then we write: Log 10 3 = 0.477 ( which is 47.7% of the segment
length between ‘1’ & ‘10’ on the Log scale

Between w =1 & w =10 on the log scale, if we want to mark w =5
then we write: Log 10 > = 0.699 ( which is 69.9% of the segment
length between ‘1’ & ‘10" on the Log scale

Thus we see that the marking is not linear.
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J Representation of Transfer Functions:
(J We have two ways of representing a transfer function:
 Pole-Zero Form:
m n
G(S)= K*TT(S+Z)]/*TI(S+Pi)] ;m<n
j=1 i=1
d Time — Constant Form: m n
G(S)= {KTTZi/TTPi} {*TT(1+S/Zj)]/ *T1(1+ S/Pi)]}
j=1 i=1
d Let Ky =K TTZj/TIPi ; Tzj = 1/Zj ; Tpi = 1/Pi; Tzj & Tpi are time constants
m n
G(S) = K1 *TT (1+ Tzj S)] / *TT(1+ Tpi S)]
j=1 i=1
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(Contd..)
d Example:

Given, G(S) =10 (S + 2) (S+4)/(S+5) (S + 10) in pole- zero form
Convert in to time constant form
 Solution:
G(S) =(10)(2)(4)(1 +S/2)(1+S/4) / (5)(10)(1 + S/5)(1 + S/10)
Ki=(10)(2)(4)/(5)(10) = 8/5
G(S) = (8/5) (1+0.5 S)(1+0.25S)/(1+0.2S)(1+0.15)
J Where, Tz1 =0.5; Tz22 = 0.25; Tpl1 = 0.2; Tp2 = 0.1 are time constants
1 Convert Time constant form in to Pole-Zero form:
G(S) = (8/5)(.5)(.25)(S+ 1/.5)(S + 1/.25)/[(.2)(.1)(S+1/.2) (S+1/.1)]
G(S)=K(S+2)(S+4)/(S+5)(S+10)
K=(8/5)(.5)(.25)/(.2)(.1) = 10
1 In Bode & Polar plots we use Time Constant form
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Drawing)

d Example:

G(S) = 1/(1+TS) = G(jw)=1/(1+] Tw)

= [G(jw)| =1/V(1+(Tw)?); arg[G(jw)] =-tan™(wT)

d The Log — magnitude in dB is given by:

20 Log 10 |G(jw)|=M(w)=20Log 10 [1/V(1 + (Tw)?)]

M(w)=-10 Log 10 (1 + (Tw)?) ---------- 1

1 Two cases are considered:

1. For Tw <<< 1 (low frequency asymptote); M(w) = 0.0 because (Tw)? can
be neglected as compared to ‘1’

2. For Tw >>>1 (high frequency asymptote); M(w) =-20 Log 10 (Tw)....... 2;
‘1’ can be neglected

wT (rads) | M(w)indB wT (rads) | M(w) in dB
1 U 100 -40
10 -20 1000 -60 (cont)
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Contd..

J We observe from the table in the previous slide that,

1. For a decade change in frequency ( 1 to 10, 10 to 100, & so on) the
magnitude changes by -20 dB.

2. Therefore the slope of the magnitude plot is -20 dB/decade change
in frequency.

d We have two plots: for wT<<<1 & wT >>>1

1 For wT<<<1; M(w) =0 & for wT >>>1; M(w) has slope of -20 dB/decade

d At wT=1; M(w) in equation (2) = 0 dB & M(w) in equation (1) =0
therefore the two meet at wT=1, if we extend the low frequency
asymptote; ( as they are both = 0)

[ This meeting point is called ‘Corner Frequency’ & is derived from wT=1;
or, w = 1/T is the corner frequency.
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d The Log-magnitude in dB is

viLLIIVu 1TUVIE UiTavwllilyg)

Contd..

plotted as:

mag. in dB T 1/10T 1/T 10/T 1077 10¥T

/ / | Logw

-60

( Lo% mag.
[ The Angle Plot: |  forT<<<1,

\< slope = -20 dB/decade

Plot — semi log graph paper)

$=0 , forwT =1, ¢ =-45° for wT>>>1, d =-90°

O\ |

$(w) ] -45

-90°




DOUC FI10LS. Ulliercerit types Ol Irarisicer
Functions

Example: First order ‘zero’

G(S) = (1+TS) G(jw) =(1+] Tw)

|G(jw) | =V(1 + (Tw)?);  arg[G(jw)] = tan *(wT)
The Log - magnitude in dB is given by:

20 Log 10 | G(jw) | = = 20 Log 10 V(1 + (Tw)3)]

M( ) 10 Log 10 (1 + (Tw)?) --------
-1

Two cases are considered:

1.For Tw <<< 1 (low frequency asymptote); M(w) = 0.0 because
(Tw)? can be neglected as compared to ‘1’
2. For Tw >>> 1 (high frequency asymptote); M(w) = 20 Log 10
(Tw).. 2; "1’ can be neglected
wT (rads) M(w) indB wT (rads) M(w)
in dB
1 0 100 40
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Functions

d We observe from the table in the previous slide that,

Q For a decade change in frequency (1 to 10, 10 to 100, & so on) the
magnitude changes by 20 dB.

A Therefore the slope of the magnitude plot is 20 dB/decade change
in frequency.

J We have two plots: for wT<<<1 & wT >>>1

Q For wT<<<1; M(w) =0 & for wT >>>1; M(w) has slope of 20
dB/decade

Q At wT=1; M(w) in equation (2) = 0 dB & M(w) in equation (1) =0
therefore the two meet at wT=1, if we extend the low frequency
asymptote; ( as they are both = 0)

 This meeting point is called ‘Corner Frequency’ & is derived from
wT=1; or, w = 1/T is the corner frequency.
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Functions

1 The Log-magnitude in dB is plotted as:

mag. In dBT 40 slope = 20 dB/decade
20 &

!

w

1/10T | 1/T 10/T 10¥T 10¥T
( Lo% mag. Plot — semi log graph paper)

d The Angle Plot: for wT<<<1, $ =0, forwT=1, =45 for wT>>>1, d = 90°

90° ‘

d(w) 1

00




DOUC FI10LS. Ulliercerit types Ol Irarisicer
Functions

d Example:
Consider 1) G1(S)=1/S & 2)G2(S)=S
1) Gl(jw)=1/jw; |Gl(jw)|=1/w & G2(jw) = jw; |G2(jw)|=w
2) The Log — magnitude in dB is given by:
20 Log 10 |G1(jw)|=M1(w)=20Log 10 [1/w] =-20 Log 10 (w)
20 Log 10 |G2(jw) |= M2(w)= 20 Log 10 [w] = 20 Log 10 (w)
Angle : d1(w)=-90° Angle: $2(w)= 90°

-20 dB/decade (slope) M1(w)

2048 / £ 20dB/decade (slope) Mz(w) b2(w) = 90°
0dB \ | Log w
0. w ¢1(w) =-90°
20dB |
Log-magnitude plot Phase Plot
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Functions

d We have drawn Bode plots for first order transfer functions having a
simple (order 1) pole or a simple (order 1)zero. We now generalize it to
multiple order poles & zeros which may be present in a given transfer

function.
G1(S)=1/(1+TS)" (pole of order ‘m’), &
G2(S)= (1+TS)" (zero of order ‘m’)

Gl(jw) = 1/(1+j Tw)"; | G1(jw)|= 1/*V(1+{wT)*+
Log-magnitude ( in dB) = 20 Log10 {1/*V(1+(wT)?+"-

=-10 m Log10 {(1+(wT)?+ ........ 1
Angle =-m tan™(wT)

G2(jw) =(1+Tw)"; |G2(jw)|=*V(1HwT)*+
Log-magnitude ( in dB) = 20 Log10 *V(1+(wT)*+

=10 m Log10 {(1+(wT)*+.......... 2
Angle = m tan™(wT)



DOUC FI10LS. Ulliercerit types Ol 1rarisier
Functions
J For G1(S) :

Log-magnitude (in dB) = -10 m Log10 {(1+(wT)?]

J For G2(S):
Log-magnitude ( in dB) = 10 m Log10 {(1+(wT)?]

1 Thus we observe that, for wT>>>1, the
slope of log-mag. plot for pole of order ‘m’ = -20 m dB/decade
slope of log-mag. plot for zero of order ‘m’ = 20 m dB/decade

d While the respective angles are given by
-/+ m tan™'(wT)

where m =1,2,3 ... is the order of the pole & zero. So as ‘m’ increases the
slopes and the angle increase.
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Functions
J Multiple Poles & Zeros at the Origin of the S plane:
Consider 1) G1(S)=1/S" & 2)G2(S)=S

1) Gl(jw)=1/(jw)"; |Gl(jw)|= 1/w" & G2(jw) = (jw)"; |G2(jw)|= w
2) The Log — magnitude in dB is given by:
20 Log 10 | G1(jw) |= M1(w)= 20 Log 10 [1/w"+= -20 m Log 10 (w)
20 Log 10 |G2(jw)|=M2(w)=20Log 10 [w"+=20 m Log 10 (w)
Angle : 1(w)=-m90° Angle: dp2(w)= m90°
(J Here again we observe that the slope for log-magnitude plot of
G1(S) is -20m dB/decade & angle is —m 90°, &
G2(S)is 20m dB/decade & angleis m 90°
d where, m=1,2,3.... Is the order of the pole and zero

As ‘m’ increases, slopes & angle increase
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Functions
a G(S) =K (1+T, S)(1+T, S)/S rr(1 + T3 S)(1+T,9S)

We have a combination of poles & zeros. There can be any
number of poles & zeros in a transfer function. We need to plot
Log-magnitude plot in dB & Angle plot in degrees

1 Log-magnitude plot:
G(jw ) =K (1 +jTiw)(1 +j Tow)/(jw) "(1+j Tzw)(1 +j Thw)
20 log |G(jw )[=20log |K (14] Tiw)(14j Tow)/(jw) T1+j Tsw)(1+]
T,Ww) |
20 log K + 20 log V(1+ (T w)2 + 20 log V(1 + (T,w)?
-20 m log w -20 log V(1 + (Tsw)2 - 20 log V(1+(T,w)? ... 1

O From equation (1) we make out that log-magnitude plot in dB, for
a given G(S), is obtained by algebraically adding asymptotic plot
of each pole & zero including the constant gain term ‘K’



DOUC FIOL. Vlllercrit Ltypes Ol irarisicer

Functions
d Example:
G(S) = 10 (1+4S)(1+10S)/S(1 + 5S)(1+208S)
J Bode Plot:
G(jw) = 10(14j 1w)(1+j 10w)/jw(1+j 5w)(1 + j 20w)
1. K=10; magnitudein dB=20log 10=20dB
2. (14jlw); corner frequency wT = 1; w= 1/T; w =1, up to w=
1, magnitude = 0; for w=1, magnitude plot has a slope of 20
dB/decade
3. (1+j 10 w); corner frequency wT = 1; w= 1/10; w =0.1; up to w=
0.1, magnitude = 0; for w=0.1, magnitude plot has a slope of 20
dB/decade
4. w; corresponds to pole at origin; magnitude plot has a slope of -20

dB /decade
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Functions

J (1+j5w); corner frequency wT = 1; w= 1/5; w =0.2; up to w=
0.2, magnitude = 0; for w=>0.2, magnitude plot has a slope of -20
dB/decade

J (1+] 20 w); corner frequency wT = 1; w= 1/20; w =0.05; up to w=
0.05, magnitude = 0; for w=0.05, magnitude plot has a slope of -20
dB/decade.

d The lowest corner frequency is 0.05; therefore we take lowest
frequency in log w scale as 0.005

The complete log- magnitude plot is shown in the next slide



DOUC FIOL. Vlllercrit Ltypes Ol irarisicer

Functions
d Complete log-magnitude plot: —— complete log-magnitude plot
dB (607
407
20
0.p05 0.(.)5 0.1 0.2 OSU. : : : I50 5=00 w
=207 \Qj 5w)
-407
-60f We have drawn asymptotic plots for each term in G(S)

d Now, we algebraically add all the plots keeping in mind that slope
change occurs at corner frequency only; corner frequencies are
0.05, 0.1; slope change begins at these frequencies.
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Functions
J Complete Angle plot:___ complete Angle plot
135°%
900 arg(1+108S)

45°

-45°
-90°L
-135°]

d Constant term introduces ‘0’ phase. At corner frequency angle is +/- 45°. At

ten times the corner frequency angle can be taken as +/- 90°. These are
asymptotic plots for angle of each term in G(S).

d Complete Angle plot is obtained by algebraically adding all the individual
plots.

arg(1+5S)




BODE PLOT: For 2rd order Under

3 Under damped systemdlaampedeﬂ_rqﬂygferpﬁe}n_etti@rq)ssider

normalized form of a second order system, given by
G(ju)=1/(1 +j28&u- u?);
|G(j u)| = 1/vV*¥(1-u?)* +(2¢&u)?]
d The log-magnitude plot is given by
20 log | G(j u) |= M(u) = -10 log[(1-u®)* +(2&u)?]

For u <<<1; higher order terms in u are neglected to obtain
M(u)=0dB

For u>>>1; M(u)=-10log u*=-40log u; (2éu)? << u* because € < 1
J Therefore, log magnitude plot consists of 2 straight line asymptotes
- one horizontal line at ‘0’ dB for u<<<1
- the other, a line with a slope of -40 dB/decade for u>>>1
d These 2 asymptotes meet on ‘0’dB line at u = 1; i.e. at w = wn.



BODE PLOT: For 2rd order Under

J The asymptotic plot for gfgmrdpedeTrignsfer Functions
d Asymptotic plots are approx. dBro A

plots; error at u = 1. 20 corner frequency (w=wn)
0 QL 10 100 w
-20 -46 dB/decade (slope)
J Exact Plot: 40 | | (Asymptotic plot)

N
The log-magnitude plot is given by |

M(u) = -10 log[(1-u?)? +(2&u)?]; Actual plots are drawn around Asymptotic plot.

We directly substitute for u = 1 & determine M(u) for different ¢ values.
M(u), u=1, is function of €.
u=1 | M(u)
=0.05| 20dB
£€=0.1 | 14dB




BODE PLOT: For 2rd order Under

damped Transfer Functions
d The Phase Plot:

The phase angle is given by: ¢(u) = -tan™(2&u/1-u?);

We observe that ¢(u) is a function of u & &. However, at u=1, for any
value of €, ¢(u) =-90°.

foru=0; d(u)=0& foru=-oo, p(u)=-180°
J For O<u<1 & 1<u<eo, Pp(u) is dependent on € value.

0.1 1.0 10 u
-90° K
180° |
= |
Increasing &
§=0.1
&1




Determination of Transfer Function
1 The problem of Synthesis: from BOde PIOt

 Given a transfer function, we know how to draw Bode plot.

J Now we will have the reverse problem:

Given the Bode (log-magnitude) plot how to determine the transfer
function. This is the process of system identification from a given
frequency response. dBT

0

Solution:
Slope of plot ‘1’ = -20 dB/decade

Slope of plot ‘2’ = -40 dB/decade
Corner frequency (wT = 1) correspondingto -
plot ‘1’ =1 rad/sec & plot ‘2’ = 0.1 rads/sec
d The gain up to 1st corner frequency (= 1 rad/sec) = 0 dB; therefore K= 1
The transfer function, G(S) = 1/(1 + S)(1 + 0.1S)




Determination of Transfer Function
from Bode Plot

d Determine G(S) magmtude?

20 \ -40 dB/decade (slope)

0.1 1.0 10y | 100. O w
200F— — —— — — |
-40 + — -20 dB/decade (—?Igpe)—

1 Corner frequencies are at w =1 & w = 10 rads/sec

Up to w = 1 rads/sec, the gain(magnitude) = 20 dB. We determine ‘K’
fromit. 20 Log 10 K = 20 dB; therefore K = 10.

J At w =1 rads/sec, magnitude plot falls with a slope of -40 dB/decade.
This corresponds to a double pole term like,1/(14S)% in G(S). From w =
10 rads/sec, the slope changes to -20 dB/decade, therefore there is a
zero term like (1 + 0.1S) in G(S).

d Therefore G(S) =K (1 + 0.1S)/(1 + S)?



Determination of Transfer Function
magnitudefcgsfm BOde PIOt

4 ~— w/decade (slope)
zo-x — -40 d'B/d'ecade-('rope)
| i |
001 110 Y100 10007 w
204 — — — — — ————
>
-40+ — —-20-dB/decade (stopey

60r — — — — — — —

1 There is a ramp with a slope: -20 dB/decade, starting at w = 0.1 r/s. It
implies a term 1/S in G(S). At w = 1 r/s; its magnitude should be ‘0’
dB, but it is 20 dB. It implies ‘K’ = 10 in G(S). From w =1 r/s to w= 10
r/s, the slope is -40 dB/decade. It implies a term 1/(1 + S) in G(S). From
w =10 r/s to w= 100 r/s, the slope is -20 dB/decade. It implies a term (1
+0.15)in G(S).

d Therefore, the transfer functionis: G(S) = 10 (1+ 0.1 S)/S(S + 1)

d Determine G(S):




Determination of Transfer Function
J Determine G(S): magmtudeffrfm BOde PIOt

20 dB/decade (slope) 20 0 dB/decade (slope)

—%w w
-8 dB _5_/_ — _\

-40 -20 dB/decade/@oZEe)

-60

J Starting, there is a ramp slope= 20_dB/decade; it implies a S term in
G(S); its magnitude should = 0 at w =1 r/s, but it is not so. It implies a
gain term ‘K’ in G(S). To determine ‘K’ we write

J 20 LogK+20logw=-8atw=1r/s;or, 20 log K =-8; K=0.3981

d From w =1 to 10 r/s ; slope is ‘0’; implies a term 1/(S +1) in G(S). From
w = 10 to 100 r/s ; slope is -20 dB/decade; implies a term 1/(1+ 0.1S) in
G(S). From w=1000 r/s onwards, the slope is ‘0’; implies a term (1 + 0.01
S) in G(S).

d Therefore, G(S)=0.3981(1+0.01S)/(S+1)(1+0.015)




Nyquist Method for finding
Q Stability study is carried os-gabirplkt\;,ooﬁ@terg%fwcy

response.
J Nyquist Stability Criterion:
1 The characteristic equation: Q(S) =1 + G(S)H(S)=0
G(S)H(S) = K (S+Z:)(S+Z3) ......(S + Zm)/(S+P1)(S+P5)... (S + Pn); m < n
Q(S) = 1+ K (S+Z4)(S+Z3) ......(S + Zm)/(S+P4)(S+P>)... (S + Pn)
On simplification, we write:
Q(S) = (S+Z/)(S+Z’) ......(S + Zn’)/(S+P4)(S+P3)... (S + Pn)
d We observe that

dZeros of Q(S) at S =7/, S = -Z5, ...... S = - Zn’ are the roots of the
characteristic equation

d Poles of Q(S) at S =-P4, S=-P,, ...S =-Pn are the same as open loop
poles of the system

J For stable system, zeros of Q(S), roots of characteristic
equation, must be in the LH of the S-plane.



Nyquist Method for finding
3 Even if some open loop p@etaebqh{ gfh@bl@ Steqmros

of Q(S), poles of CL system, must lie in the LH of the S plane. It means

that an unstable open loop system can be made stable with an
appropriate design of CL system.

[ The Nyquist Contour:

Since we interested in finding out whether there are any zeros of Q(S) in

the RH of the S plane, we choose a contour that completely encloses RH
of the S plane. This is called Nyquist Contour.
j=_ a Splane
O In CW direction, starting from the origin C1TR e 9.
of the S plane, we traverse Nyquist Contour. 0 C»
along the paths C; C; and Cs.
Since R—> oo, entire RH is enclosed

CsT
-j=— Nyquist Contour



Nyquist Method for finding
d From the Nyquist Contour &tcaja'lllslty O-F 'l Svctem

j=__a Splane
that for S = jw, along path C; frequency, w

. CigpRF ==\ ©
varies from ‘0’ to oo T

C C:
along path Csz frequency, w, varies from
-0 t0 ‘0. CsT

-j=— Nyquist Contour

[ The path C; is a circle of infinite radius ( # °=). Any point on C, can be
represented in polar form as: S = R exp(+/- jo). Along C,;, while
traversing in the direction of arrows, the angle © varies from 90° to -
90°.

d The Nyquist Contour as defined in the aforesaid lines, encloses all the
right half S plane zeros & poles of 1 + G(S)H(S).



Nyquist Method for finding
d I:E Stability Criterion & NyggtstaTBeﬂrﬁnv Of Cl_ System

Z: be the number of zeros of Q(S) in RH of the S plane
P: be the number of poles of Q(S) in RH of the S plane
[ Nyquist Theorem:

As point S = Sp moves along the Nyquist contour in the S plane, in the
Q(S) plane a closed contour I'q is traversed which encloses the origin ‘N’
times in CCW direction; where N = P-Z.

d For every point S = So on the Nyquist contour, Q(S) has a value. If we
plot the values of Q(S) in the plane called ‘Q(S) plane’, then, according
to Nyquist theorem, we will obtain a closed path, I'q, which will enclose
the origin of ‘Q(S) plane’ ‘N’ times.

1 Stability Criterion:

We know that zeros of Q(S), Z, are the closed loop system poles &

therefore should lie in the LH of the S plane for system stability.



Nyquist Method for finding
1 Stability Criterion (contd.):Sta blllty Of CL System

Therefore, Z = 0 ( for stable CL system).
 So for a stable CL system, we have two situations:
for P #0:
mm) N=P-Z=P
that the CCW encirclements of the origin of ‘Q(S) plane’ should be equal

to the number of poles, P of Q(S) (open loop poles of G(S)H(S)) in the
RH of the S plane.

 The above assertion implies that even if the open loop system is
unstable, the CL system can be stable.

1 For P = 0: ( no poles of G(S)H(S) in RH of the S plane) the number of
encirclements N = 0 for a stable CL system



Nyquist Method for finding
1 Modified Stability Criterion:Sta b|||ty Of CL System

We know that, Q(S) = 1 + G(S)H(S)
=> G(S)H(S)=Q(S)-1
 Therefore, we say that while,
['q encircles the origin in Q(S) plane
'GH will encircle (-1,j0) point in the GH plane
 In G(S)H(S) plane, we state the Nyquist Stability Criterion as:
For P #0:

If the contour T'GH of the open loop transfer function
G(S)H(S), corresponding to the Nyquist contour in the S plane, encircles
the point (-1,j0) in the CCW direction as many times as the number of
right of S-plane poles of G(S)H(S), the CL system is stable.

For P = 0: The CL system is stable if no encirclements of (-1,j0) point.



Nyquist Method for finding
J Mapping of Nyquist contoqutalblillcidIVL@f j=__a Splane

Following steps are followed: C1TR -\ b
Q C.
CsT
1. Convert G(S)H(S) in to G(jw) H(jw) = Nyquist Contour
2.For S = jw; 0 £ w £ oo (segment C;) draw polar (Nyquist) plot in GH
plane

3.For contour C;: S = R exp(j©); R —— oo, Substitute S = R exp(jO) in
G(S)H(S) and let R —- oo for o< S < -0, The entire segment maps to

‘0" in the GH plane
4.For -oo< w < 0 (segment C3) draw polar plot for negative frequencies;
which is mirror image of plot for C,.
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Examples
C’s I'eu plane jeo S plane
W === ",.u 0 (:1T > e s

-2je)

€%
d G(S)H(S) = K/(14T: S) (14T, S);  C’3 is mirror image of C’;

1. Corresponding to C; in I's plane we have the Nyquist plotin TGH
plane as C's.

-jeo Nyquist Contour

2. Corresponding to C; in I's plane we have; S =R exp(j©) in G(S)H(S);
R—> oo
G(S)H(S) = K/(T1R ele+ 1)(T, R ele+ 1) as R —=eo= therefore
G(S)H(S)=0e-126; |G(S)H(S)|=0; arg{ G(S)H(S)} =-
On C; ; © varies from +90° to -90° as we move from +joo to -joo
arg {G(S)H(S)} varies from -180° to + 180° . This is C’, in TGH plane.
3.C3in TS plane is mapped as C’3 ( Nyquist plot) in TGH plane. (Contd.)



INYQUISL IVIELNOU. EXAITIPIES
(Contd..)

J For the example in previous slide:

We have drawn the Nyquist plot for a given G(S)H(S). Now we need to
determine the stability of its closed loop system.

d The number of encirclements, N, of (-1,j0) point is given by:
N = P-Z
1 For closed loop system to be stable,Z=0

In this example, P = 0 because no poles of G(S)H(S) are in the RH of S
plane.

d Therefore N should be equal to ‘0, i.e. that there should be no
encirclement of (-1,j0) point. We see from the Nyquist diagram that it
does not encircle (-1,j0) point & hence the closed loop system is stable.



NYQUISLU IVIELNOU. EXAITIPICS
(Contd..)
C1?R

'3 'en plane J S plane
wso /1 O] o s
Wi "l 0 C;
-z/ K 7 T o)
C’s o -je= — Nyquist Contour

d G(S)H(S) = (S+2)/(S+ 1)) (S-1); C’3is mirrorimage of C’;

1.Corresponding to C; in I's plane we have the Nyquist plot in TGH plane
as C'.

2.Corresponding to C; in I's plane we have; S =R exp(j©) in G(S)H(S);
R — o0
G(S)H(S) = (2+ Rei®)/(1+R ei®)(R ei®-1) as, R—> o= therefore
G(S)H(S)=0e®; [G(S)H(S)|=0; arg{ G(S)H(S)} = -©
on C; ; © varies from +90° to -90° as we move from +jo° to -joo
arg{G(S)H(S)} varies from -90° to +90° . This is C’; in TGH plane.

3. G in TS plane is mapped as C’s ( Nyquist plot) in TGH plane. (Contd. .)



INYQUISL IVIELNOU. EXAITIPIES
(Contd..)

J Having drawn the Nyquist diagram, we need to determine the stability
of related CL system.

 Observation:
G(S) H(S) has a pole in the RH of the S plane; therefore P =1
N=P-Z/
Z = 0 for stable CL system
Therefore, N=P=1

mm) that the Nyquist plot should encircle (-1,j0)
point once in the CCW direction for the CL
system to be stable.

d From the Nyquist diagram we that it is encircling (-1,jO0) point once in
CCW direction. Therefore, the CL system is stable



INYQUISL IVIELNOU. EXAITIPIES
(Contd..)

1 Case: G(S)H(S) has a pole at the origin of the S plane:
Since there is a pole at the origin

in the S plane, while drawing the

Nyquist contour we bypass the origin
because pole is a singularity.

Bypassing is done by drawing a circle of ¢ = 0

very small radius r’; as r — 0. A point on the semi circle, C,, is
represented by

S=rei?
(d The Nyquist contour is traversed starting 1) s = jO. to jeo (C)
2)S = jeoto —joo (Cy),3)S= —jooto jO- (C3)and 4) S = jO-t0 jO. (Ca)



INYQUISL IVIELNOU. EXAITIPIES
(Contd..)

H Example: G(S)H(S) = K/S(.1+TS.)

N

B [6H plane G r ['s
C'3 C'4 pole atS=0 joO. G
-1!i0 » Ca
radius C3 —0
C’ C’4 Pathis traversedin the direction of arrows
A starting A-O-B-A

d A:w=j0,; |G(jw) H(jw)| = =°; arg =-90° B: w =j0,; | G(jw) H(jw)| =
oo; arg = -90°
0: W =joo to -joo ; | G(jw) H(jw)| =0; arg =-180° to 180°
C: is mapped in to C’; & C3 is mapped in to C’'3 (Nyquist/polar plot)
C, is mapped in to C’;(origin); C4 is mapped in to C’4. (Contd.)



INYQUISL IVIELNOU. EXAITIPIES
(Contd..)

4 G(jw)H(jw) = K/jw(1+jwT)

1.

2
3.
4.
5

© o N o

Ci: mappinginto gy plane: polar plot, C’;
C,: mapping in to gy plane: point C’, for S =R ei®
G(S)H(S) = K/ R ei® (14T R ei®) asR—soo

G(S)H(S) = | G(S)H(S)| ei®; 0 e-i28; arg(G(S)H(S)) = -

Since © changes from +90 to -90 ; arg(G(S)H(S)) changes from -180°
to + 180°. So we get point ‘O’ in [y plane.

Cs mappinginto C’ginlgyplaneforS=rei®asrs 0

G(S)H(S) = K/ r ei® (14T r ei®) asr—>0

G(S)H(S) = |G(S)H(S) | ei®; oo e-i®; arg(G(S)H(S)) = -¢

Since ¢ changes from -90 to +90 ; arg(G(S)H(S)) changes from 90° to
-90°. So we get C’'4 Iy plane.



INYQUISU IVIELTNOQ.
Examples

J For the example in previous Lecture:

We have drawn the Nyquist plot for a given G(S)H(S). Now we need to
determine the stability of its closed loop system.

d The number of encirclements, N, of (-1,j0) point is given by:
N = P-Z
 For closed loop system to be stable,Z=0

In this example, P = 0 because no poles of G(S)H(S) are in the RH of S
plane.

1 Therefore N should be equal to ‘0, i.e. that there should be no
encirclement of (-1,j0) point. We see from the Nyquist diagram that it
does not encircle (-1,j0) point & hence the closed loop system is stable.



INYQUISL IVIELNOU. EXAITIPIES
(Contd..)

C’s; I'eu plane je= A S plane
w ;__.0 2 C'3P‘ G 2 C1TR e [s
AV'4 - jo i ¢ Cs
X < x| w=-==(arg=-90% C3T
€. —jeo Nyquist Contour

G(S)H(S) = K/(S -1); C’3is mirror image of C’;

1. Corresponding to C; in I's plane we have the Nyquist plot in TGH plane
as C's.

2.Corresponding to C, in I's plane we have; S =R exp(j©) in G(S)H(S);
R__. oo
G(S)H(S) = K/ (R ei®-1)as,R oo therefore
G(S)H(S)=0e-®; |G(S)H(S)[=0; arg, G(S)H(S)-=-6
On C; ; © varies from +90° to -90° as we move from +joo to -joo

arg{G(S)H(S)} varies from -90° to +90° . This is C’; in TGH plane.
3. G5 in TS plane is mapped as C’3 ( Nyquist plot) in TGH plane. (Contd. .)



INYQUISL IVIELNOU. EXAITIPIES
(Contd..)

J Having drawn the Nyquist diagram, we need to determine the stability
of related CL system.

 Observation:
G(S) H(S) has a pole in the RH of the S plane; therefore P =1
N=P-Z/
Z = 0 for stable CL system
Therefore, N=P=1

mm) that the Nyquist plot should encircle (-1,j0) point once
in the CCW direction for the CL system to be stable.

d From the Nyquist diagram we that it is encircling (-1,j0) point once in
CCW direction. Therefore, the CL system is stable



INYQUISL IVIELNOU. EXAITIPIES
(Contd. )

C’; [en plane A S plane
m="\g_=- Chi ™= /( C1 18 s
[-ﬂjﬂ:}’{ @ Cs
0 < 7 .:m =0 (arg =-90°) Cs T .
C’5 _je= ™ Nyquist Contour
G(SJH(S) = K/(1-S); C’sis mirror image of C'y

1.Corresponding to C; in 's plane we have the Nyquist plotin TGH
plane as C's.

2. Corresponding to C, in T's plane we have; S =R exp(j©) in G(S)H(S);
R . oo
G(S)H(S) = K/ (R ei®-1) as, R> oo therefore
G(S)H(S)=0e-®; |G(S)H(S)|=0; arg, G(S)H(S)-=-6
On C;; © varies from +90° to -90° as we move from +joe to -joo
arg{G(S)H(S)} varies from -90° to +90° . This is C’, in TGH plane.
3.C3in TS plane is mapped as C’3 ( Nyquist plot) in TGH plane. (Contd.)
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CONVERSION OF STATE VARIABLE MODELS
TO TRANSFER FUNCTIONS By

om the Laplace-transformed version of the
s used in the derivation_

(3

We shall derive the transfer function of a SISO system fr ! o
state and output equations. Refer to Section 14.2 for the matrix ope
Consider the state variable model (Eqns (14.13)):

(1) = Ax(t) +bu(t); x(ty) 2 x° ,
y(t) = ex(?) + du(t) v (142)

Taking the Laplace transform of Eqns (14.26), we obtain

sX(s) - x" = AX(s) + bU(s)
Y(s) = eX(s) + dU(s)

where
X(s) 2 FIx(O]U(s) 2 Zu)]; Xs) 2 Ly(0)]
Manipulation of these equations gives

(sI — A)X(s) =x" + bU(s); I is n X n identity matrix
or X(s) = (sI - A) 'x’ + (s — A) 'bU(s) (14.27a)

Y(s) = e(sT - A) 'x"+ [e(sI — A)"'b + d]U(s) (el

Equations (14.27) are algebraic equations. If x° and U(s) are known, X(s) and Y(s) can be computed
from these equations.

In the case of a zero initial state (i.e., x’ = 0), the input-output behavior of the system (14.26) is
determined entirely by the transfer function,

¥(s)

UG G(s)=c(sI-A)'b+d (14.28)

We can express the inverse of the matrix (sI — A) as

L (- At

(sT-A)"! (14.29)
|sI-A|
~ where ,
|sI — AJ = determinant of the matrix (sI-A)
. (sI-A)" = adjoint of the matrix (sI-A)
. Using Eqn. (14.29), the transfer function G(s) given by Eqn. (14.28) can be written as
G(s)= M +d : ;fjr()'1{4’.30)

ISI—AI P "lf??

J+aiRlg @




Eigenvalues of a Matrix

4, a, A
A=|% 4y Aon
: 2
| Ay ) Ay 2
1 natrix (T - A) has the following appearance:
ST T R e
=q S—a [ S50 TFP
(L= A) B[ 2R =
| 74, L) TR a""~

' Ifwe imagine calculating det (sI — A

), we see that one of the terms will be the product of diagonal
elements of (sI — A):

(S—all)(S“azz)"'(S—ann):Sn +a1'3”_1 +...+an :

apolynomial of degree n with the leading coefficient of

the off-diagonal elements of (sI — A), but none will hav
of the following form:

unity. There will be other terms coming from
¢ a degree as high as n. Thus, | sI — A| will be

|SI-A|=A(s)=5"+0y 5"+ 4@, (14.31)
Where o7 are constant scalars. ~

This is known as the characteristic polynomial of the matrix A.
bhavior of the system. The roots of this polynomial are called the ¢

| Marix A. These roots, as we shall see in Section 14.6, determine t
Bnamic behavior of the system (14.26).
a0 o8 e o

It plays a vital role in the dynamic
haracteristic roots or eigenvalues of
he essential features of the unforced
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- The controllability matrix of the system is

i

';’@ i . i

| methods By use of nodal analysis, for example, we get

- Consider the electrical network shown in I
“R governing the dynamics of this network can b

C de, L ae) NGIe v
dt R, R
|
de,” Ve Se” Spany
C2 2+ 2 1+ 2 0:0

The appropriate state variables for the network are the capacitor
wltages e, and e,. Thus, the state equations of the network are

X = Ax + be,
Where x=[a ol
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We see that under the

p(U)= 1 and the system becomes ‘uncontrollable’. This conditio
bridge, and in this case, the Voltage across the terminals’of R, cannot be influenc
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