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BASIC ELEMENTS OF 

ROTATIONAL SYSTEM







Series (Force voltage)
Analogy

the above

translational

Kirchhoff’s mesh 

equation for the 

above simple 

series RLC

1. Mass= M-> inductor

=L

2. Damper=B-> resistor

=R

3.Spring=K->  

capacitor=1/C
4. Applied force=f(t)->

Equation of motion of voltage source=e(t)

5. Velocity =v(t)-> mesh
current=i(t)

mechanical system is;
2

( Ms  Bs  K ) X ( s )  F ( s )

Cs 

netwo1rk is;
 Ls  R   I ( s )  E ( s )









Kirchhoff’s nodal 

equation for the 

simple parallel 

RLC network 

shown above is;

Parallel (Force current)
Analogy

1. Mass= M-> capacitor

=C

2. Damper=B-> resistor

=1/R

3.Spring=K->  

inductor=1/L

2

4. Applied force=f(t)->

( Ms  Bs  K ) X ( s )  F ( s )

1

Ls
V ( s )  I ( s )




 Cs  R 


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DESIGN OF CONTROL SYSTEM





BLOCK DIAGRAM

Block diagrams consist of a single block or

a combination of blocks. These are used to

represent the control systems in pictorial form.

Basic Elements of Block Diagram

The basic elements of a block diagram are

a block, the summing point and the take-off

point.
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SIGNAL FLOW GRAPH
Signal flow graph is a graphical representation of algebraic

equations. In this chapter, let us discuss the basic concepts related
signal flow graph and also learn how to draw signal flow graphs.

Basic Elements of Signal Flow Graph

• Nodes and branches are the basic elements of signal flow graph.

• Node

• Node is a point which represents either a variable or a signal. There
are three types of nodes — input node, output node and mixed node.

• Input Node − It is a node, which has only outgoing branches.

• Output Node − It is a node, which has only incoming branches.

• Mixed Node − It is a node, which has both incoming and outgoing
branches.
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Introduction

System

The time response of any system has two components

Transient response

Steady-state response

Time response of a dynamic system response to an input  

expressed as a function of time.



When the response of the system is changed from equilibrium it 

takes some time to settle down.

This is called transient response.
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The response of the 

system after the transient 

response is called steady 

state response.

Introduction (Contd..)



Transient response depend upon the system poles only and not 

on the type of input.

It is therefore sufficient to analyze the transient response using

a step input.

The steady-state response depends on system dynamics and  

the input quantity.

It is then examined using different test signals by final value  

theorem.
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 The first order system has only one pole.

C ( s ) K


R ( s ) Ts  1

 Where K is the D.C gain and T is the time constant of the system.

 Time constant is a measure of how quickly a 1st order system  
responds to a unit step input.

 D.C Gain of the system is ratio between the input  signal and the 
steady state value of output.
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3

s  5
G ( s )  

1 /5 s  1

3 /5

 The first order system given below.

10
G ( s ) 

3 s  1

 D.C gain is 10 and time constant is 3 seconds.

 For the following system

 D.C Gain of the system is 3/5 and time constant is 1/5  

seconds.
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Impulse Response of 1st Order System

 Consider the following 1st order system

K

Ts  1
C ( s )R ( s )

0
t

δ(t)

1

R ( s )   ( s )  1

K
C ( s ) 

Ts  1



T

K
e
 t /T

c ( t ) 

K
C ( s ) 

Ts  1

 Re-arrange following equation as

K /T
C ( s ) 

s  1 /T

In order to compute the response of the system in time domain

we need to compute inverse Laplace transform of the above

equation.

C
L

 at
 Ce








 s  a

1 

Impulse Response of 1st Order 

System



K
e
 t /TIf K=3 and T=2s then

c ( t ) 
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Impulse Response of 1st Order 

System



 Consider the following 1st order system

K

Ts  1
C ( s )R ( s )

1

s
R ( s )  U ( s ) 

K

s Ts  1
C ( s ) 

In order to find out the inverse Laplace of the above equation, we

need to break it into partial fraction expansion

K KT
C ( s )  

s Ts  1

Step Response of 1st Order 

System




 1 T

 s Ts  1 

 Taking Inverse Laplace of above equation

C ( s )  K  

c ( t )  K u ( t )  e
 t /T 

 Where u(t)=1

c ( t )  K 1  e
 t /T 

 When t=T (time constant)

c ( t )  K 1 e
 1  0 .632 K

Step Response of 1st Order 

System



 If K=10 and T=1.5s then
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 System takes five time constants to reach its final value.

Step Response of 1st Order 

System



Introduction

 In time-domain analysis the response of a dynamic system to an input is 
expressed as a function of time.

 It is possible to compute the time response of a system if the nature of 
input and the mathematical model of the system are known.

 Usually, the input signals to control systems are not known fully ahead of 
time.

 It is therefore difficult to express the actual input signals mathematically 
by simple equations.



Standard Test Signals
 The characteristics of actual input signals are a sudden shock, a sudden

change, a constant velocity, and constant acceleration.

 The dynamic behavior of a system is therefore judged and compared
under application of standard test signals – an impulse, a step, a
constant velocity, and constant acceleration.

 The other standard signal of great importance is a sinusoidal signal.



Standard Test Signals
 Impulse signal

The impulse signal imitate the sudden
shock characteristic of actual input
signal.

 If A=1, the impulse signal is called unit 
impulse signal.

0
t

δ(t)

A
 0

t  0

t  0

 A
 ( t )  



Standard Test Signals
 Step signal

The step signal imitate the
sudden change characteristic
of actual input signal.

 If A=1, the step signal is called 
unit step signal

t  0

t  0

 A 
u ( t )  

 0

0
t

u(t)

A



Standard Test Signals

 Ramp signal

The ramp signal imitate the
constant velocity characteristic
of actual input signal.

 If A=1, the ramp signal is called 
unit ramp signal



 0

t  0

t  0

 At
r ( t )  0

t

r(t)

r(t)

unit ramp signal

r(t)

ramp signal with slope A



Standard Test Signals

 Parabolic signal

imitateThe parabolic signal
the constant acceleration
characteristic of actual input  
signal.

 If A=1, the parabolic signal is
called unit parabolic signal.





 0

2

2

t  0

t  0
 At

p ( t )  

0
t

p(t)

parabolic signal with slope A

p(t)

Unit parabolic signal

p(t)



Relation between standard Test Signals

Impulse

Step

Ramp

Parabolic

0

t   0

t  0

 A
 ( t )  



t  0

t  0

 A
u ( t )  

0

t  0

t  0

 At 
r ( t )  

 0





0

2

2

t  0

t  0
 At

p ( t ) 







dt

d

dt

d

dt

d



Laplace Transform of Test
Signals

Impulse

Step

0

t   0

t  0

 A
 ( t )  

L { ( t )}   ( s )  A

t  0

t  0

 A 
u ( t )  

 0

A
L {u ( t )}  U ( s ) 

S



Laplace Transform of Test
Signals

Ramp

Parabolic

s
2

A
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S
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Second Order System
 We have already discussed transient response of 1st order systems.

 Compared to the simplicity of a first-order system, a second-order system
exhibits a wide range of responses that must be analyzed and described.

 Varying a first-order system's parameter (T, K) simply changes the speed
and offset of the response

 Whereas, changes in the parameters of a second-order system can
change the form of the response.

 A second-order system can display characteristics much like a first-order
system or, depending on component values, display damped or pure
oscillations for its transient response.



Introduction

 A general second-order system is characterized by the following transfer
function.

n

s
2


2

 2 s  
2

n n


R ( s )

C ( s )

 n un-damped natural frequency of the second order system,
which is the frequency of oscillation of the system without
damping.

damping ratio of the second order system, which is a measure
of the degree of resistance to change in the system output.





Example



 2 s  4s
2

R ( s )

Determine the un-damped natural frequency and damping ratio 
of the following second order system.

C ( s ) 4

 4
n


2

n

s
2


2

 2 s  
2

n n


R ( s )

C ( s )

Compare the numerator and denominator of the given transfer 
function with the general 2nd order transfer function.

n
   2

n
 2 s  2 s

22
 s  2 s  4

2

nn
s  2 s  

n
   1

   0 . 5



Introduction

n

s
2


2

 2 s  
2

n n


R ( s )

C ( s )

Two poles of the system are

2

2
  n   n   1

  n   n   1



Introduction

, a second-order system can be set

2

2
  n    n   1

  n    n   1

 According the value of

-a-b-c
δ

into one of the four categories

1.Overdamped - when the system has two real distinct poles

(>1).

jω



Introduction

, a second-order system can be set According the value of 

0 < <1)

into one of the four categories

2. Underdamped - when the system has two complex conjugate poles (

-a-b-c
δ

jω



Introduction

, a second-order system can be set
into one of the four categories

 According the value of 

0).

3. Undamped - when the system has two imaginary poles

-a-b-c
δ

jω



Introduction

, a second-order system can be set According the value of 

= 1).

into one of the four categories

4. Critically damped - when the system has two real but equal poles (

-a-b-c
δ

jω



Step Response of underdamped
System

nnnn

n

s
2

1

s
2


22


2
 

2 
  2 s  

s  2
C ( s ) 

 The partial fraction expansion of above equation is given as

n

s
2

1

s  2 s  
2

n n

s  2
C ( s ) 

2
n

s  2

2  1  
2

n

2 22   1  



nn

n

s  

s  21

s
C ( s ) 

n


2

s
2  
 2 s  

2

n n


R ( s )

C ( s )

2

nn

n


2

s s 2  
 2 s   

C ( s ) 
Step Response



Above equation can be written as

2 2 1   


2

nn

n

s  

s  21

s
C ( s ) 

2

n d

n
1

s  
2s  

s  2
C ( s ) 

2
   1  

d n
Where , is the frequency of transient oscillations

and is called damped natural frequency.

The inverse Laplace transform of above equation can be obtained 

easily if C(s) is written in the following form:

22
dd nn

n n
1

s  
2



 
2 s  s  

s   
C ( s ) 

Step Response of underdamped
System



22

dn

n

dn

n
1

s



 
2s  



 
2s  

s  
C ( s ) 

2

2

2

2

dn

n

n d

n
1

s



 
2s  

 1  

1  


 
2s  

s  
C ( s ) 

2
22

dndn

n
1

s

 d

 
2s  1  



 
2s  

s  
C ( s ) 

e
dd

nn


sin  t
  t  t

cos  t 
2

1  

c ( t )  1  e

Step Response of underdamped
System



e
dd

nn


sin  t
  t  t

cos  t 
2

1  

c ( t )  1  e



t 




dd

 
sin 

2
1  



c ( t )  1  e n t  cos  t 



2
 d   n 1  

  n

 0 When

c ( t )  1  cos  n t

Step Response of underdamped
System





t 




dd

 
sin 

2
1  



c ( t )  1  e n t  cos  t 



n

2 4 6 8 10
0

0

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

if   0 .1 and   3
1.8

Step Response of underdamped
System





t 




dd

 
sin 

2
1  



c ( t )  1  e n t  cos  t 



n
and   3

2 4 6 8 10
0

0

1.2

1

0.8

0.6

0.4

0.2

if   0 .5
1.4

Step Response of underdamped
System





t 




dd

 
sin 

2
1  



c ( t )  1  e n t  cos  t 



2 4 6 8 10
0

0

if   0 .9 and   3
n

1.4

1.2

1

0.8

0.6

0.4

0.2

Step Response of underdamped
System



Step Response of underdamped
System
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Underdamped System
For 0< <1 and ωn > 0, the 2nd order system’s response due to 

a unit step input is as follows.

Important timing characteristics: delay time, rise time, peak time,

maximum overshoot, and settling time.



Delay Time
The delay (td) time is the time required for the response to 

reach half the final value the very first time.



Rise Time

 The rise time is the time required for the response to rise from

10% to 90%, 5% to 95%, or 0% to 100% of its final value.

For underdamped second order systems, the 0% to 100% rise

time is normally used. For overdamped systems, the 10% to 90%

rise time is commonly used.



Peak Time
 The peak time is the time required for the response to

reach the first peak of the overshoot.

220



Time Domain Specifications (Rise Time)


t 




dd

 
sin 

2
1  



c ( t )  1  e n t  cos  t 



equationPut t  t in above
r








d rd rr
n t r

 
sin  t



 cos  t 



2
1  

c ( t )  1  e

c(t r )  1Where








d rd r
n t r

 
sin  t



 cos  t 



2
1  

0   e

 0


e
  n t r












sin  d t r


2
1  

0   cos  d t r 



can be re - writen asequationabove

2 









1  


sin  d t r

  0 cos  d t r 


cos  d t r

2
1  

sin  d t r  

2
1  

tan  d t r  



















2

1 


1  

d r
 t  tan

Time Domain Specifications (Rise
Time)



















2

1 


1  

d r
 t  tan











 
nd

r
t 

2

1 


n 



 1  1
tan



d

r



  
t  a  

b

1
  tan

Time Domain Specifications (Rise Time)





t 




dd

 
sin 

2
1  



c ( t )  1  e n t  cos  t 



 In order to find peak time let us differentiate above equation w.r.t t.







  

t 



dt
dddddn


  e t   e

  n t   
 

t 
d cos sin 


n t  cos  t  sin 



dc ( t )

22
1  1  



t 




dddddn

 
t  d cos t   sin 

22

2


1  1  



0  e n t  cos  t  n sin 





t 




d

n

ddddn


cos t   sin  t t  n sin 

2

2

2

2


1  

 1  

1  



0  e
  n t  cos  




Time Domain Specifications (Peak Time)





t 




d

n

ddddn


cos t   sin  t t  n sin 

2

2

2

2


1  

 1  

1  



0  e
  n t  cos  




2 







ddd

1  

 2
 

t   sin  t   0e n t  n sin 

 0e
  n t

2 









ddd

1  

2


t   sin  t   0 n sin 

2 





dd
t  n



    0

1  

 2


sin 

Time Domain Specifications (Peak Time)



2 





dd
t  n



    0

1  

 2


sin 

2






d 



 n
    0

1  

 2


d
sin  t  0

 1
0

d
 t  sin

0 ,  , 2 ,

 d

t 

Since for underdamped stable systems first peak is maximum peak

therefore, 
t p 

 d

Time Domain Specifications (Peak Time)



Maximum Overshoot
The maximum overshoot is the maximum peak value of the

response curve measured from unity. If the final steady-state value

of the response differs from unity, then it is common to use the

maximum percent overshoot. It is defined by

 The amount of the maximum (percent) overshoot directly

indicates the relative stability of the system.



Settling Time
The settling time is the time required for the response curve to

reach and stay within a range about the final value of size

specified by absolute percentage of the final value (usually

2% or 5%).



Time Domain Specifications 
(Maximum Overshoot)








d pd pp

n  p
  t

sin  t



 cos  t 



2
1  

c ( t )  1  e

c ( )  1

2 



 







d p 



d pp
t


 1  100

1  

 
sin M  1  e n t p  cos  t 





in above equationPut
 d


t p 

2


   100
 

 

 









d

d

d

dp
M    e








1  





 d


  n

sin 


cos 



2


   100
 

 

 









d

d

d

dp
M    e






1  


   d


  n

sin 


cos 

2

 100










 

 

 

 
 1 

2 






 

sin cos  n

n

 eM 
p

1  



  1  0   100







1 
2



M 

 e




p

2

 100




1 
M  e

p

equationPut 1-ζ
2
in aboveω d  ω n

Time Domain Specifications (Maximum Overshoot)



Time Domain Specifications (Settling Time)



t 




dd

 
sin 

2
1  



c ( t )  1  e n t  cos  t 



2
 1     

nn

n

1
T 

Real Part Imaginary Part



n

1
T 

Settling time (2%) criterion

 Time consumed in exponential decay up to 98% of the input.

n


4
t s  4T 

n


Settling time (5%) criterion

 Time consumed in exponential decay up to 95% of the input.

3
t s  3T 

Time Domain Specifications (Settling Time)



Summary of Time Domain Specifications

n


t s  4T 

n


3
t s  3T 

2

 100




1 
M  e

p

2



 1  



n



 d

t p 

2
 1  

  


n

  

 d

t r 

Rise Time Peak Time

Settling Time (2%)

4

Settling Time (4%)

Maximum Overshoot
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Steady State Error

 If the output of a control system at steady state does not exactly 
match with the input, the system is said to have steady state error

 Any physical control system inherently suffers steady-state error in 
response to certain types of inputs.

 A system may have no steady-state error to a step input, but the 
same system may exhibit nonzero steady-state error to a ramp input.



 Consider the unity-feedback control system with the following open-
loop transfer function

 It involves the term sN in the denominator, representing N poles at 
the origin.

 A system is called type 0, type 1, type 2, ... , if N=0, N=1, N=2, ... ,
respectively.



the stability

 As the type number is increased, accuracy is improved.

 However, increasing the type number aggravates
problem.

 A compromise between steady-state accuracy and relative stability is
always necessary.



Steady-state error analysis

G(s)

H(s)

R(s)
+

-

C(s)

G(s)

R(s)
+

-

C(s)

Unity feedback 

H(s)=1

Non-unity feedback

H(s)≠1

E(s)

E(s)



Steady-state error analysis

For unity feedback system:

E ( s )  R ( s )  C ( s ) System error

For a non-unity feedback system:

E ( s )  R ( s )  H ( s )C ( s ) Actuating error



Steady State Error of Unity Feedback Systems

 Consider the system shown in following figure.

 The closed-loop transfer function is



E ( s ) 1


R ( s ) 1  G ( s )

• The final-value theorem provides a convenient way to find the  
steady-state performance of a stable system.

• Since E(s) is

• The steady state error is

Steady State Error of Unity Feedback Systems

• Steady state error is defined as the error between the input signal 
and the output signal when t-> infinity

• The transfer function between the error signal E(s) and the input
signal R(s) is



Static Error Constants

 The static error constants are figures of merit of control systems. The
higher the constants, the smaller the steady-state error.

 In a given system, the output may be the position, velocity, pressure,
temperature etc…

 Therefore, we can say the output as “position,” and the rate of change
of the output as “velocity,” and so on.

 This means that in a temperature control system “position” represents
the output temperature, “velocity” represents the rate of change of the
output temperature, and so on.



Static Position Error Constant (Kp)

 The steady-state error of the system for a unit-step input is

 The static position error constant Kp is defined by

 Thus, the steady-state error in terms of the static position error 
constant Kp is given by



Static Position Error Constant (Kp)

 For a Type 0 system

 For Type 1 or higher order systems

 For a unit step input the steady state error ess is



Static Velocity Error Constant (Kv)

 The steady-state error of the system for a unit-ramp input is

 The static velocity error constant Kv is defined by

 Thus, the steady-state error in terms of the static velocity error constant
Kv is given by



Static Velocity Error Constant (Kv)

 For a Type 0 system

 For Type 1 systems

 For type 2 or higher order systems



Static Velocity Error Constant (Kv)

 For a ramp input the steady state error ess is



Static Acceleration Error Constant (Ka)

 The steady-state error of the system for parabolic input is

 The static acceleration error constant Ka is defined by

 Thus, the steady-state error in terms of the static acceleration error
constant Ka is given by



Static Acceleration Error Constant (Ka)

 For a Type 0 system

 For Type 1 systems

 For type 2 systems

 For type 3 or higher order systems



Static Acceleration Error Constant (Ka)

 For a parabolic input the steady state error ess is



Summary



Example

• For the system shown in figure below evaluate the static error constants
and find the expected steady state errors for the standard step, ramp and
parabolic inputs.

C(S)R(S)
-

s
2

( s  8 )( s  12 )

100 ( s  2 )( s  5 )



Example
100 ( s  2 )( s  5 )

G ( s ) 

s
2

( s  8 )( s  12 )

G ( s )K p  lim
s  0

  lim
2

( s  8 )( s  12 ) 

 100 ( s  2 )( s  5 ) 
K p

p

s  0  s

K  

sG ( s )K v  lim
s  0

  lim
2

s ( s  8 )( s  12 ) 

 100 s ( s  2 )( s  5 ) 

s  0 

K v

K v  

K
a

s
2

G ( s ) lim
s  0 



 



 lim
s

2
( s  8 )( s  12 )

 100 s 
2

( s  2 )( s  5 ) 

s  0


K a

  10 .4

(0  8 )( 0  12 )

 100 ( 0  2 )( 0  5 ) 
K a  





Example

p
K   K v   K a  10 .4

 0

 0

 0 . 09
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Example
• Consider the system shown in following figure, where damping ratio is

0.6 and natural undamped frequency is 5 rad/sec. Obtain the rise time tr,
peak time tp, maximum overshoot Mp, and settling time 2% and 4%
criterion ts when the system is subjected to a unit-step input.



n
2

 100




1 
M  e

p

t 


p


d

  
t r 

 d

Rise Time Peak Time

Settling Time (2%)

4
Maximum Overshoot

n

t s  4T 



3
t s  3T 



Settling Time (4%)

Example



  
t r 

 d

Rise Time


2

 1  
n

t r 
3 .141  

2

n


 1  
  tan

1
(

n
)  0 . 93 rad

 0 . 55 s

5 1  0 . 6
2

3 . 141  0 . 93
t r 

Example



n


4
t s 


t p 

 d

Peak Time
Settling Time (2%)

n


3
t s 

Settling Time (4%)4

3 . 141
 0 . 785 st p 

4
 1 . 33 s

0 . 6  5
t s 

3
 1st s 

0 . 6  5

Example



2

 100




1 
M  e

p

Maximum Overshoot

 100



1 0 . 6
2

3 . 141  0 . 6

M  e
p

 0 .095  100
p

M

p
M  9 . 5 %

Example



Step Response
A

m
p
lit

u
d

e

0.2 0.4 0.6 0.8

Time (sec)

1 1.2 1.4 1.6
0

0

1.2

1.4

Mp

1

0.8

0.6

0.4

Rise Time

0.2

Example



Example

 Find out

Time constant T=2

D.C Gain K=6

Transfer Function

Step Response

 Impulse response of a 1st order system is given below.

c ( t )  3 e
 0 . 5 t



Example

Transfer Function

c ( t )  3 e
 0 . 5 t

  ( s )C ( s ) 
S  0 . 5

3
 1 

S  0 . 5

3

3


S  0 . 5R ( s )

C ( s )C ( s )

 ( s )

6


2 S  1R ( s )

C ( s )



Example
 For step response integrate impulse response

c ( t )  3 e
 0 . 5 t

 3  e
 0 . 5 t

dt c ( t )dt

 6 e
 0 . 5 t

c s ( t )   C

We can find out C if initial condition is known e.g. cs(0)=0

 C0   6 e
 0 . 5 0

C  6

 0 . 5 t

c s ( t )  6  6 e



Example



 If initial conditions are not known then partial fraction expansion is a 
better choice

C ( s ) 6

s 2 S  1
C ( s ) 

6


2 s  1

BA

s 2 S  1


s

R ( s ) 2 S  1

1

s

6

since R ( s ) is a step input , R ( s ) 

66


s  0 . 5

6

s 2 S  1


s

c ( t )  6  6 e
 0 . 5 t
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Example : Given the transfer function

UNDERDAMPED

sTOSsT ps 475.0%,838.2%,533.0 

ps TOSTfind ,%,

Solution:

75.010  n



92

UNDERDAMPED

Example : Find the natural frequency and damping ratio for the 
system with transfer function

Solution: 362.4

36
)(

2 


ss
sG

Compare with general TF

•ωn= 6

•ξ =0.35
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Concept of Stability

In order to know the location of the poles, we need to find the roots of
the closed-loop characteristic equation.

It turned out, however, that in order to judge a system's stability we don't
need to know the actual location of the poles, just their sign. that is whether
the poles are in the right-half or left-half plane.

 The Hurwitz criterion can be used to indicate that a characteristic
polynomial with negative or missing coefficients is unstable.

The Routh-Hurwitz Criterion is called a necessary and sufficient test of
stability because a polynomial that satisfies the criterion is guaranteed to
stable. The criterion can also tell us how many poles are in the right-half
plane or on the imaginary axis.



Before discussing the Routh-Hurwitz Criterion in 
detail, firstly we will study the stable, unstable and 
marginally stable system.

• Stable System: If all the roots of the characteristic equation 
lie on the left half of the 'S' plane then the system is said to 
be a stable system.

• Marginally Stable System: If all the roots of the system lie 
on the imaginary axis of the 'S' plane then the system is said 
to be marginally stable.

• Unstable System: If all the roots of the system lie on 
the right half of the 'S' plane then the system is said to be an 
unstable system.



Statement of Routh-Hurwitz Criterion

Routh Hurwitz criterion states that any system can be

stable if and only if all the roots of the first column have the

same sign and if it does not has the same sign or there is a

sign change then the number of sign changes in the first

column is equal to the number of roots of the characteristic

equation in the right half of the s-plane i.e. equals to the

number of roots with positive real parts.



Routh-Hurwitz Stability Criterion

1. All the coefficients of the equation should have the same 
sign.
2. There should be no missing term.

 These requirements are necessary but not sufficient. That is we
know the system is unstable if they are not satisfied; yet if they are
satisfied, we must proceed further to ascertain the stability of the
system.



 The Routh-Hurwitz criterion applies to a polynomial (characteristic 
equation) of the form:

P ( s )  a s
n
 a s

n 1
 . . . . . . .  a s  a

n n  1 1 0

a s s ume a
0
 0

 The Routh-Hurwitz array:

1

1

21

4321

4321

.

.

. . . .

. . . .

. . . .

. . . .

m

l

kk

ccc

.

.

c

bbbb

s
n

a
n

a
n  1

s
n  1

s
n  2

s
n  3

.

.

s
2

s
1  

s
0

a
n  6

a
n  7

a
n  4

a
n  5

a
n  2

a
n  3

Routh-Hurwitz Stability Criterion (Contd..)



 Columns of s are only for accounting.

 The b row is calculated from the two rows above it.

 The c row is calculated from the two rows directly above it.

 Etc…

 The equations for the coefficients of the array are:

 Note: the determinant in the expression for the ith coefficient in a row 
is formed from the first column and the (i+1)th column of the two 
preceding rows.

, . . . . . .

, . . .. . . .
11

21

21

1 a n  1 a n  5

b1
b1 b 3

1 a n  1 a n  3

b1
b1 b 2

a n a n  4

a n  1 a n  5a n  1

a n a n  2

a n  1 a n  3a n  1

c  c  

b  b  

Routh-Hurwitz Stability Criterion (Contd..)



Routh-Hurwitz Stability Criterion

 The number of polynomial roots in the right half plane is equal to the 
number of sign changes in the first column of the array.

 Example:

 Since there are two sign changes on the first column, there are two roots
of the polynomial in the right half plane: system is unstable.

 Note: The Routh-Hurwitz criterion shows only the stability of the system,
it does not give the locations of the roots, therefore no information
about the transient response of a stable system is derived from the R-H
criterion.

8

1 2

1 8

- 6

s
3

s
2

s
1   

s
0

P ( s )  s
3
 s

2
 2 s  8  ( s  2 ) ( s

2
 s  4 )

T h e R o u t h a r r a y is :



Advantages of Routh- Hurwitz Criterion

•We can find the stability of the system without solving the

equation.

•We can easily determine the relative stability of the system.

•By this method, we can determine the range of K for

stability.

•By this method, we can also determine the point of

intersection for root locus with an imaginary axis.

Limitations of Routh- Hurwitz Criterion

•This criterion is applicable only for a linear system.

•It does not provide the exact location of poles on the right

and left half of the S plane.

•In case of the characteristic equation, it is valid only for real

coefficients.
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Example: Check the stability of the system whose
characteristic equation is given by

s4 + 2s3+6s2+4s+1 = 0

Since all the

coefficients in the

first column are of

the same sign, i.e.,

positive, the given

equation has no roots

with positive real

parts; therefore, the

system is said to be

stable.

1





Since there is a

sign change at s1

row, hence the

system is

unstable and

having two poles

in right half of s-

plane due to two

sign changes.



Routh-Hurwitz Stability Criterion (Contd..)

 Case 1: none of the elements in the first column of the array is zero.
This is the simplest case. Follow the algorithm as shown in the previous
slides.

 Case 2: The first element in a row is zero, with at least one nonzero
element in the same row. In this case, replace the first element which is
zero by a small number x. All the elements that follow will be functions
of x. After all the elements are calculated, the signs of the elements in
the first column are determined by letting ε approach zero.



 Case 3: All elements in a row are zero.

 Example:

 Another example:

1 1

0

s
0

 Here the array cannot be completed because of the zero element in the 
first column.

s
2

s
1

P ( s )  s
2
 1

1 2

1 2

0

s
3

s
2

s
1  

s
0

P ( s )  s
3
 s

2
 2 s  2

T h e a r r a y is :

Routh-Hurwitz Stability Criterion (Contd..)



 Case 3 polynomial contains an even polynomial as a factor. It is called 
the auxiliary polynomial. In the first example, the auxiliary polynomial
is

 And in the second example, auxiliary polynomial is

 1s
2

 2s
2

 Case 3 polynomial may be analyzed as follows:

Suppose that the row of zeros is the s
i row, then the auxiliary

i
polynomial is differentiated with respect to s, and the coefficients of
the resulting polynomial used to replace the zeros in the s row. The
calculation of the array then continues as in the case 1.

Routh-Hurwitz Stability Criterion (Contd..)



Routh-Hurwitz Stability Criterion (Contd..)

 Example:

from the s2 row:

 The derivative is 2s, therefore 2 replaces 0 in the s1 row, and the routh
array is then completed.

1 3 2

1 2

1 2

0

s
0

 Since the S1 row contains zeros, the auxiliary polynomial is obtained

P ( s )  s
4
 s

3
 3 s

2
 2 s  2

The Rout h a r ray is :

s
4

s
3

s
2

s
1

( s )  s
2  
 2P

aux



Routh-Hurwitz Stability Criterion (Contd..)

 Example:

 Hence there are no roots in the right half plane.

Note: When there is a row of zeros in the routh array, the systems is
not stable. That is it will have roots either on the imaginary axis (as in this
example), or it has roots on the right half plane.

1 3 2

1 2

1


2

2

2

P ( s )  s
4
 s

3
 3 s

2
 2 s  2

T h e R o u t h a r ray n o w b e c o me s :

s
4

s
3

s
2

s
1

s
0

2



Determination of range of gain K using RH Criterion
 Example:

 For the system to be stable there should not be any sign changes in the 
elements of 1st column

 Hence choose the value of K so that 1st column elements are positive

 From s0 row, system to be stable K>0

 From s1 row

 Hence the range of K is 0<K<7.5

K

1 9 - K

5 K  

9 - 1 . 2 K

s
3

s
2

s
1   

s
0

P ( s )  s
3
 5 s

2
 ( 9  K ) s  K

T h e R o u t h a r r a y is :

9  1 .2 K  0

9  1 .2 K

K   7 .5



Problems on RH Criterion

 Example-1:

 1st Column of routh array has two sign changes (from 1 to -72 and from -
72 to 103). Hence the system is unstable with two poles in the right-half
plane.

1 0 3

w i t h 1 0 )

1 3 1

1 1 0 3 ( b y d iv id in g

- 7 2

s
3

s
2

s
1   

s
0

P ( s )  s
3
 1 0 s

2
 3 1 s  1 0 3 0

T h e R o u t h a r r a y is :



 Example 2:
Construct a Routh table and determine the number of roots with  
positive real parts for the equation;

2 s
3
 4 s

2
 4 s  12  0

 Solution:
Since there are two changes of sign in the first column of Routh table, the 
equation above have two roots at right side (positive real parts).

Problems on RH Criterion (Contd..)



 Example 3:
 The characteristic equation of a given system is:

What restrictions must be placed upon the parameter K in order to  
ensure that the system is stable?

 Solution:
For the system to be stable, 60 – 6K < 0, or k < 10, and K > 0.
Thus 0 < K < 10

 6 s
3
 11 s

2
 6 s  K  0s

4

Problems on RH Criterion (Contd..)
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Basic concepts of root locus
• In the previous sections, we have studied that the stability of a

system. It depends on the location of the roots of the characteristic

equation. We can also say that the stability of the system depends on

the location of closed-loop poles. Such knowledge of the movement

of the poles in the s-plane when the parameters are varied is

important. The minor changes in the parameters can greatly help in

the system designing. The nature of the system's transient response

is closely related to the location of the poles in the s-plane.

• We have also studied the Routh Hurwitz criteria that describe the

stability of the algebraic equation. If any of the term in the first

column of the Roth table possesses a sign change, the system tends

to become unstable.



INTRODUCTION

Root Locus Technique:

• It is a graphical method for determining the location of the poles

of a given closed loop system for some parameter values of the system.

The parameter can be the system gain or time constant.

• Time constant being the design value of an open loop system is

normally not varied.

• It is a time domain method.

The root locus method was introduced by W.R Evans in 1948.



 We know that

for a unity feedback system the characteristic equation is given by 

1 + G(S) = 0, and

 For a non-unity feedback system the characteristic equation is given 
by

1 + G(S) H(S) = 0

where,

 G(S) : open loop transfer function of the system that is to be  
controlled for desired time domain specifications, and

 H(S) : feedback element (normally a transducer)

INTRODUCTION (Contd)..



INTRODUCTION (Contd)..

 We know that for a closed loop system to be stable, its closed loop
poles (roots of characteristic equation) should lie in the left half of the
S-plane.

 We also know that a closed loop system is limitedly stable (on the verge
of instability) if any of its roots lie on the imaginary axis of the S-plane
and it is unstable if its poles lie in the right half of the S-plane.

 Using this method, we can exactly position the location of closed loop
poles for a given value of system gain ‘K’ whereas Routh’s method does
not facilitate this.

 Using Routh’s method we cannot determine relative stability of a
system whereas this method allows us to do that.



Illustration by Example

 We know that for a second order closed loop system the general form 
is given by

M(S) = ω 2 / (S2 + 2ξω S + ω 2) = N(S)/D(S)
n n n

 Let

G(S) = K/S(S+1) ; M(S) = G(S)/1+G(S) = K/(S2 + S + K)

M(S) = N(S)/D(S)

 For a unity feedback system, the characteristics equation is:

Q(S) = 1+G(S) = 0 1 + K/S(S+1) = 0 

S2 + S + K = 0

 For K = 0; the roots of Q(S) are at S=0 & S=-1; which are the poles of
the system.



Illustration by Example (Contd)..

 Looking at Q(S) = S2 + S + K = 0 we conclude that,
 As we vary K from ‘0’ to any higher value, the location of the roots of 

Q(S) will change (shift) in the S-plane.
 Thus the roots will chalk out a locus in the S-plane for a given range of

‘K’. This is called Root Locus.

S-plane

-1

K = 0

-0.5 0

J 0.866

-j 0.866

K = 1x

K = 1x

x
K = 0

x



 We know that we are interested in finding the roots of a characteristic
equation for a range of a parameter of the system which generally is
system gain ‘K’. Generally speaking we may be interested in
determining the location of closed loop poles for a range of ‘K’

0 ≤ K ≤ ∞

 Now it is easy to factorize a second and third order characteristic
equation for various values of ‘K’, but for higher order polynomials it is
very difficult (near impossible) to factorize for determining their roots.

 Therefore we need a method to do so & that method is Root Locus.

Why Requirement of Root Locus Method ?



The Method (Contd)..

 Before going ahead with the method, it is necessary to define what is 
called ‘rational transfer function’.

 A rational transfer function is the one which has equal number of poles
and zeros; that is Np = Nz

Np: number of poles Nz: number of zeros

 Consider the following transfer functions:

 G1(S) H1(S) or G1(S) = K (S+1)/(S+2) -------- 1







G2(S) = K (S+1)(S+2)/(S+3)(S+4) ---- 2

G3(S) = K (S+1)/(S+2)(S+3) ------- 3

G4(S) = K (S+1)/(S+2)(S+3)(S+4) ---- 4



The Method 
(Contd)..

 For, G1(S) = K (S+1)/(S+2), there is a finite pole at S = -2 & a finite zero at 
S = -1; Np= Nz = 1; hence it is a rational function

 G2(S) also has equal number of poles and zeros; Np = Nz = 2;

 G3(S) has 2 finite poles & 1 finite zero; Np ≠ Nz

 G4(S) has 3 finite poles and 1 finite zero; Np ≠ Nz

 Does it mean that G3(S) & G4(S) are not rational functions!!

 They both are, indeed, rational functions; the need is to find out the 
location of remaining zeros so that Np = Nz.



 In order to resolve the issue of ‘how many zeros’ a transfer function
has, we need to understand what is zero of a transfer function.

 Let G(S) = K (S+1)/(S+2)(S+3)

 We all understand ‘G(S)’ as ‘frequency dependent gain’ offered by the
system.

 Now, if we substitute S = -1 in G(S), its value = ‘0’; it means that gain
offered at S= -1 equals ‘0’. Therefore S = -1 is a zero of the transfer
function, G(S)

 Pole of a transfer function is a singularity because gain offered by G(S)
at its pole = ∞. For example, S = -2 & -3 causes gain of G(S)= ∞



 Therefore, we say If the number of zeros are not equal to the number
of finite poles of G(S), then number of zeros = Np – Nz shall lie at ∞.

 Let

G(S) = K (S+1)/(S+2)(S+3)

 Lt. S ∞ G(S) ≡ lt. S ∞ K/S = 0 ; the power of S is ‘1’ therefore there
is one zero at ∞. Thus we have one finite zero and another zero at ∞.
Hence Np = Nz

 For, G(S) = K (S+1)/(S+2)(S+3)(S+4)

 we have one finite zero at S = -1 and two zeros at ∞

 Therefore both are rational functions



 Let m

∏ (S + Zj)

j=1

G(S) H(S) = K

 where,

i = n

Sr ∏ (S + Pi)

i = 1

K: gain in the system

r: number of poles at the origin of S-plane

n & m: number of poles and zeros in the S-plane



The Method
(Contd)..

│G(S)H(S)│ =

j=m

m

∏ │ (S + Zj)│ 

j=1

K = 1.0

i = n

│ Sr │∏ │(S + Pi)│ 

i = 1

I = n

K ∏ │ (S + Zj)│ = │Sr│ ∏ │(S + Pi); for K =0 we get poles 

j=1 i = 1 of G(S)H(S)



The Method
(Contd)..

j=m i = n

∏ │(S + Zj)│ = │Sr│ ∏ │(S + Pi)/K;

j=1 i = 1

 For K ∞; we get zeros of G(S)H(S)

 We draw root locus for 0 ≤ K ≤ ∞ 

Therefore,

 Starting points of root locus are poles of G(S)H(S), K=0

 End points of root locus are zeros of G(S)H(S), K = ∞



The Method (Contd)..The Angle
Criteria

 The Angle Criteria:
m

∏ (S + Zj)

j=1

G(S)H(S) = K

n

∏(S + Pi)

i = 1

The angle criteria is in degrees given by:
n

- Σ arg(S + Pj) = +/- (2 q + 1)180;

m

Σ arg(S + Zj)

j = 1 i = 1 q = 0,1,2,….



Implement Angle
Criteria

 Since root locus is drawn satisfying angle criteria, now we explain how 
it is done.

1. Plot location of poles & zeros of G(S)H(S) in the S-plane

2. Choose any point S = S0 in the S-plane.

3. From each pole & zero draw vectors to the chosen point, S0

4. Measure the angle subtended by each pole & zero at S0, in the CCW 
direction.

5. Remember that angle subtended by a pole is negative & that by a zero 
is positive

6. Algebraically add all the angles. If they sum up to 180 degrees, then S = 
S0 is a point on the root locus.



Graphical Implementation of Angle
Criteria

Graphical Illustration for Angle Criteria:

S= S0 ο S- plane

θZ2 θP3 θP1

ο
-Z2

x
-P3

θP2 θZ1  

x
-P2 -Z1

ο x
-P1

arg(S0+Z2) + arg(S0 + Z1) – arg(S0 + P3) – arg(S0 + P2) – arg(S0 + P1) = +/_
180 °.

θZ2 + θZ1 – θP3 – θP2 – θP1 = 180 °
 If the above angle condition is satisfied then S0 is on the locus.



Magnitude
Criteria

 From the magnitude criteria, we calculate the value of gain ‘K’ at the point 
S = S0 which lies on the root locus ( that is S=S0 satisfies angle criteria).

n

∏ │(S0 + Pi)│

i = 1

or, K =

m

∏│(S0 + Zj)│

j=1

K = 1

n

∏│(S0 + Pi)│

i = 1

m

∏ │(S0 + Zj)│

j = 1

K = product of vector lengths from poles of G(S)H(S) to S0/product of  
vector lengths from zeros of G(S)H(S) to S0.



Graphical Implementation of
Magnitude Criteria

Graphical method for determination of ‘K’:

Ea Ca Da : vectors from poles of G(S)H(S) to point ‘a’: S = S0

ο a

x ο ο x

E A B C

x

D

Aa Ba : vectors from zeros of G(S)H(S) to ‘a’ 

Gain K = (Ea)(Ca)(Da)/(Aa)(Ba)

We measure vector lengths, as per scale, and then calculate K
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Construction Rules for Root Locus

 Rule 1:
Root Locus is symmetrical about real axis of S-plane, because roots are
either real or complex conjugate.

 Rule 2:
As ‘K’ increases from ‘0’ to ‘∞’, the open loop poles of G(S)H(S) move

(branch out) towards the zeros of G(S)H(S); some of the zeros may be at
‘∞’.
The number of branches terminating on ‘∞’ equals Np – Nz; that is the
difference between number of finite poles & zeros of G(S)H(S).



Construction Rules for Root Locus

Rule 3:

A point S = S0 on the real axis shall lie on the root locus iff the total

number of open loop poles & zeros of G(S)H(S) to the right of S0 is odd.

(Loci lie in the region 2, 4 & 6)

1 x 2 x 3 ο 4 ο 5 x 6 ο
 The number of poles + zeros to the right of region ‘6’ = 1(odd)

 The number of poles + zeros to the right of region ‘5’ = 2(even)

 The number of poles + zeros to the right of region ‘4’ = 3(odd)

 The number of poles + zeros to the right of region ‘3’ = 4(even)

 The number of poles + zeros to the right of region ‘2’ = 5(odd)

 The number of poles + zeros to the right of region ‘1’ = 6(even)



Construction Rules for Root Locus

Rule 3 (contd)..

 The poles are K= 0 points & the zeros are K = ∞ points. As we are
interested in the range of K, 0≤K≤∞, therefore the poles will start
moving towards their respective zeros, in the region on the real axis,
and terminate at zeros (K = ∞)

 Therefore, we can say that the loci of closed loop poles start at K = 0
(the location of the poles of G(S)H(S)) and terminate at K =∞ (the
location of the zeros of G(S)H(S))



Construction Rules for Root Locus

 Rule 3 (contd): Example for implementation

Let G(S)H(S) = K(S+1)(S+2)/s(S+3)(S+4)

1. Draw pole zero locations in the S-plane

2. Use angle criteria to mark the regions on the real axis of the S-plane 
where the root loci shall lie

S-planek=0  

x

-4

k=0  

x

-3

k=∞ k=∞ k=0  

ο ο x

-2 -1 0

 The regions where the loci shall lie are highlighted in yellow where the 
total angle subtended by poles & zeros = 180°



Construction rules for Root
Locus

 Rule 3 (contd): Example for implementation

In the considered example:

1. No. of open loop poles = 3; root loci branches = 3 because each pole is  
a starting point.

2. Root Loci will start from S =0, -3 & -4 (K = 0 points)

3. As K increases, the loci moves from the poles to respective zeros (K =
∞ points)

4. The arrows show the direction of movement of poles

5. Np = 3 Nz = 2; no. of poles for which the loci shall terminate at ∞ = Np
– Nz = 1

6. We observe that pole at S = -4 terminates at ∞



 Rule 4: (Angle of Asymptotes)

The (Np – Nz) branches of the root locus asymptotically tend to ∞. The

angles of asymptotes are given by:

φq = (2q+1) 180°/(Np – Nz); q = 0,1,2, …., (Np-Nz-1)

1. G(S) = K (S+1)(S+2)/S(S+3)(S+4)

Np = no. of poles = 3; Nz = no. of zeros = 2; Np-Nz = 1

q = 0; φ = 180°

2. G(S) = K(S+2)/(S+1)(S+3)(S+5)(S+6)

Np = no. of poles = 4; Nz = no. of zeros = 1; Np-Nz = 3 

q = 0,1,2; φ0 = 60°, φ1 = 180° , φ2 = 300°

Construction rules for Root Locus



 Rule 5: (Centroid)

If no. of asymptotes are more than 1, they cross the real axis of the S-
plane. Their point of intersection on the real axis is known as Centroid.

Centroid σA is given by:

n m

Σ Pi - Σ Zj

i=1 j=1

(Sum of real parts of poles -

Sum of real parts of zeros)

σA = =

(Np – Nz) (No. of poles – No. of zeros)

Construction rules for Root
Locus



 Example:

Determine 1) no. of loci on the real axis and their regions, 2) no. of 
asymptotes, 3) angle of asymptotes, 4) Centroid for  a unity feedback

open-loop transfer function is given as: G(S) =system whose
K/S(S+1)(S+2)

 Solution Steps:

• Draw pole zero locations in the S-plane

• Determine no. of finite poles, Np, and zeros, Nz & Np-Nz

• Mark regions on the real axis where loci lie

• Find no. of asymptotes = Np – Nz & their respective angles

• If (Np-Nz) > 1 determine value of centroid

• Sketch root loci (free hand)

Continued in next slide

Construction rules for Root Locus An
Example



1. X

S=-2

X X (poles are K=0 pts.)

S=-1 S=0

 Np = 3 Nz = 0 (no finite zero ; therefore all zeros at ∞)

 Np-Nz = 3

 Loci on the real axis will lie between S= 0 & S= -1; it will also lie in the 
region after S = -2 because total no. of poles & zeros to the right of the 
regions = odd.

 No. of asymptotes = Np-Nz = 3 & angles of asymptotes are given by φq
= (2q+1) 180°/(Np – Nz); q = 0,1,2; φ0 = 60°, φ1 = 180° , φ2 = 300°

 Since (Np-Nz)>1 = 3 we will determine Centroid

Construction rules for Root Locus An
Example



Centroid is given by:

(sum of real parts of poles – sum of real parts of zeros)

σA = (no. of finite poles – no. of finite zeros)

A

Σa 60°

x

S=-1 S=0

σA = {(0-1-2) – (0)}/(3-0) = -1.0 180°

C x x  

red loci is the loci in complex plane S=-2

in yellow regions loci lie on the real axis 300° B

Construction rules for Root Locus An
Example



Construction Rules for Root
Locus (Breakaway points)Breakaway Points:

Multiple roots of the characteristic equation occur at these points.
These are obtained using the formula dK / dS = 0. These points also
satisfy the angle criteria.

Examples: K=0

X X K>0 X(p1)

Breakaway point breakaway point (B)
A B

X

X X K>0

X(p2)  

K=0

x Breakaway points



 Example: Calculation for Breakaway points 
G(S) = K/S(S+1)(S+2)

1 + G(S)H(S) = 0 K/S(S+1)(S+2) = -1
K = -(S3 + 3 S2 + 2S)
dK/dS = -(3 S2 + 6S + 2) =0

We find the roots of the polynomial
3 S2 + 6S + 2 = 0

We get S1 = -0.423 & S2 = -1.577
We know that for the given G(S), the loci on the real axis will lie  
between ‘0’ & ‘-1’; therefore the breakaway point is = -0.423. S2 = -
1.577 is not a breakaway point because between S=-1 & -2 no loci exists
on the real axis of the S-plane.

Construction Rules for Root
Locus (Breakaway points

Example)



 Example:

G(S)H(S) = K/S(S+4)(S2 + 4S + 20)= K/S(S+4)(S+2+j4)(S+2-j4)

To determine the breakaway points: dK/dS =0. Substitute in 1+G(S)H(S) = 
0 to get K = -S(S+4)(S2 + 4S + 20)

dK/dS = S3 + 6 S2 + 18S + 20 = 0

Factorize dK/dS=0, we get S = -2; S = -2 +/-j 2.45

 Now we find out that out of the roots of dK/dS = 0 which qualify to be 
breakaway points. To do this, we first draw the pole – zero locations of 
G(S)H(S) in the S-plane

(next slide)

Construction Rules for Root
Locus (Breakaway points

Example)



 Example (contd): x j4-
S-plane

(K=0) x -2 x (k=0)

(k=0)x - -j4

 Having plotted the location of poles, we know that the root locus 

on the real axis will lie between S = 0 (K=0) & S=-4(K=0).

 Now, one root of dK/dS = 0 lies at S = -2; therefore S=-2 is a breakaway 
point. Since, -2 is also real part of the complex pole (-2 +/- j4), 
therefore S= -2 +/- j2.45 ( root of dK/dS =0) is also a breakaway point.

Construction Rules for Root
Locus (Breakaway points

Example)



Angle of Departure/Arrival:

For poles on the real axis: ( either 0° or 180° )

(K=∞ points)

ο x x ο

(K=0 points) θ = 180° θ=0°

Therefore, the angle of departure and/or arrival need be calculated only 
for complex poles & zeros.

Method:

1. choose a point S0 very close to the pole ‘p’

2.Graphically determine the angle contributions due to other poles & 
zeros at the point S0.

3. determine angle of departure θp from the pole ‘p’.

Construction Rules for Root
Locus (Angle of Departure/ 

Arrival)



 Draw the pole-zero locations of G(S)H(S)

 Draw a point S0 in the S-plane very close to the pole/zero for which 
departure angle is to be determined.

 Draw vectors to S0 from each pole & zero of G(S)H(S).

 Calculate total angle, φ, subtended at S0.

 Angle of departure/arrival is given by φ – θp/ φ + θz = (2q + 1) 180° , or

we have θp = +/- (2q + 1) 180° + φ; 

θz = +/- (2q+1)180° - φ

 θp/θz :the angle of departure/arrival for the pole/zero; θp is subtracted 
from φ because it is angle subtended by a pole.

Construction Rules for Root Locus (
Angle of Departure/ Arrival)



 θp: angle of departure S0 x

° θp

x ο
θ1

x
θ5

x
θ4 θ3 θ2

S0 is placed very close to the pole x
for which angle of departure is to be calculated. For the sake of clarity, 
here, it is shown some distance from the pole.

 Angle subtended by other poles & zeros at S0, φ, is given by:
φ = θ4 – (θ1 + θ2 + θ3 + θ5)

φ – θp = +/- (2q+1)180°; q = 0, 1 ,2, …; θp = +/-(2q+1)180° + φ
 Angle of arrival at a zero is calculated in a similar way.

Construction Rules for Root
Locus (Determining Angle of

Departure)



Construction Rules for Root
Locus (Example: Angle of

Departure)
 Example: Calculation of angle of departure

45° K=0)

θp= 135°

.x-------------j1

Poles are at -1 +/- j1 S= -2 (K = ∞)

Zero at S= -2 ο -1

The K = 0 points are also points on the root 

locus; therefore at open loop pole (K=0) x--------------j1

location too, the angle criterion should be satisfied. 90°

The angle φ = (45° – 90°); θp = (2q+1)180° + φ;

θp = 180° + (45° - 90°) = 135° is the angle of departure



 Example: Angle of Arrival (at zero located at -1+j1)
tan θ1 = ½ = 0.5 

θ1= 26.56°

tan θ3 = 2.414/1 

θ3 = 67.49°

θ2 = 90°

tan θ4 = -0.414/1

θ4 = -22.49° θ’4 = 360-22.49= 337.5°

The total angle,φ, subtended at the zero= θ2 – θ3 – θ1 + θ4 = 18.44°.
Therefore angle of arrival θz = 180° - φ = 161.6°

Construction Rules for Root
Locus (Example: Angle of

Arrival)



 Example: -6 -4 -1

G(S) = K (S+6)/(S+1)(S+4) ο x x

1. K=0 points: S = -1 & S= -4 are poles of G(S)

2. K = ∞ points: S = -6 are zeros of G(S)

3. Loci on the real axis lies between S = -1 & S= -4; and between S = -6 &
∞

4. Since one zero is at ∞, therefore one closed loop pole will approach 
this zero asymptotically

5. Angle of asymptote: φ = 180°(2q+1)/Np-Nz = 180° ; q = 0

6. Since there is only one asymptote, there is no centroid

Graphical determination of ‘K’ for 
specified damping ratio



 Breakaway points: 1 + G(S) = 0; 1 + K (S+6)/(S+1)(S+4) = 0; therefore, K
= - (S+1)(S+4)/(S+6)

 dK/dS = 0; S2 + 12 S + 26 = 0 S1 = -9.16, S2 = -2.84

 Both S1 & S2 are breakaway points because the root loci on the real 
axis lies between S = -1 & -4; and between S = -6 & ∞

Graphical determination of ‘K’ for
specified damping ratio

(contd)..



 Let us fix the location of closed poles at S1 & S2. Now we want to find K 
which yields S1 & S2. Let

S1 = -2 + j 1.5

ξ = Cos(θ) θ = 45°

 Draw vectors from each pole & zero of G(S) to S1 or S2 as shown.

 Then K = product of the length of vectors from poles/ product of length of 
vectors from zeros

K = │S1 + 4││S1 + 1│/│S1 + 6│ = │-2+j1.5+4││-2+j1.5+1│/│-2+j1.5+6│ = 1.05

ξ = Cos(45°) = 0.707

Graphical determination of ‘K’ for
specified damping ratio

(contd)..



Effect of adding Zeros on Stability of a 
Closed loop system

x

 G(S) = K /(S+1)(S+2)(S+3) K=K1

 The root loci is obtained as: As the root loci cross

in to RH of S-plane, k>0 x
 The closed loop system becomes unstable for a value

K>0

x

K>0 Fig. 1

of K>K1. Let us now add a zero. σ = -2 (centroid)

 Let us now add a zero at S= -4 the loci will be (asymptotes)

 We observe that addition of a zero has stabilized 

the closed loop system for all values of K; 0≤K≤∞

ο x x x

σ=-1 (centroid)

G(S) = K (S+4)/(S+1)(S+2)(S=3) Fig. 2



Let us now add a zero at S = -2.5 G(S) = K (S+2.5)/(S+1)(S+2)(S+3) σ

= -1.75 asymptotes

Looking at Figs. 1, 2 & 3 we see that addition of zero has

x ο x x

σ= -1.75 Fig.3

1. Reduced no. of asymptotes 

thereby preventing the locus from 

moving in to RH of the S-plane.

2. Therefore the CL system has become stable for all values of ‘K’

3. The location of zero also affects the locus.

4. Shifting zero location from S= -4 to -2.5 has moved centroid from -1 to -1.75 

thereby shifting the starting point of asymptotes to further away from the

Imaginary axis of the S-plane. In Fig.2 the breakaway point is to the left of
σ; in Fig.3 it is to the right of σ.

5. Thus the system has become relatively more stable

Effect of adding Zeros on Stability of a 
Closed loop system

(contd)..



Adding a pole: 

G(S) = K/(S=1)(S+2)

x x

Fig. 1

G(S) = K/(S+1)(S+2)(S+3)
We observe that addition of a pole 

affects stability of a CL system, as is seen 

from Fig.1 & 2

x x x

Fig. 2

Effect of adding Poles on Stability of a 
Closed loop system



Root Locus
Problems

 Problem1:
For G(S) = K(S + b)/S(S + a) & H(S) = 1 show that the loci of the complex
roots are part of a circle with

center at (-b,0) ,and 

radius = √ (b2 – ab)

 Solution:
The angle criterion: arg{(S + b)/S(S + a)} = +/- 180°

At, S = σ + j ω we have : arg{(σ + j ω + b)/(σ + j ω)(σ + j ω +a)} 

or, tan-1( ω/σ + b) - tan-1( ω/σ) - tan-1( ω/σ + a) = - Л

tan-1( ω/σ) + tan-1( ω/σ + a) = Л + tan-1( ω/σ + b)

Take tan on both sides & simplify, to get

(σ + b)(2σ + a) = σ (σ + a) - ω2 

σ 2 + ω2 + 2bσ + ab =0



 Add & subtract b2 term to get
(σ2 + 2bσ + b2) – b2 +ω2 + ab =0
(σ + b)2 + ω2 = b2 – ab is the equation of the circle with 

center at (-b,0) & radius = √ (b2- ab)
For b = 1 & a = -1

center = (-1,0) & radius = √2
 Problem 2:

H(S) =1 G(S) = 1/S(S + α)
Draw root locus as α varies between 0≤ α≤∞ 
Solution:

‘α’ appears in the denominator polynomial of G(S). ‘K’ always appeared in 
the numerator of G(S). Therefore we manipulate to get ‘α’ in the 
numerator.
The Characteristic equation Q(S) = 1 + G(S)H(S) = 0

Root Locus Problems 
(contd)..



Q(S) = S2 + α S + 1=0

From Q(S), we rewrite G(S) in a way that ‘α’ appears in the numerator

Therefore, we write

G(S) = α S/ S2 + 1 x j1

The root locus for parameter ‘α’: ο

x –j11. α = 0 points: S1 = +j1 & S2= -j1 ; Np = 2

2. α = ∞ points: S = 0 ; (another zero at ∞); Nz = 1

3. Np – Nz = 1; No. of loci = 2

4. Locus on the real axis covers entire axis in the LH of S-plane

5. No. of asymptotes = 1

6. No Centroid ( because only one asymptote)

7. Angle of asymptote ( for q = 0) = 180°

Root Locus Problems 
(contd)..



 Breakaway point:

α S/ S2 + 1 = -1; α = -(S2 + 1)/S; dα/dS = 0 S2 - 1 =0; S = +/- 1

The breakaway point is S = -1 because it is a point on the loci

Angle of Departure: (from pole at S = j1) 

Angle subtended at S= j1 by zero at S=0 is 90°

Angle subtended at S = j1 by pole at S= -j1 = 90°

Total angle subtended, φ = 90 – 90 = 0°

Angle of departure θp = 180° + φ = 180°

 The Root Loci: breakaway point

x j1 ο

x-j1

 It is a circle with radius = 1 & center (0,0). (Contd. next slide)

Root Locus Problems 
(contd)..



 Let us fix the location of closed loop poles for damping ratio ξ = 0.5 & 
determine time domain parameters. We redraw the locus.

ξ = Cos(θ) = 0.5; θ = 60°. Draw a line at 60° from –ive real axis

as shown.

The intersections A & B on the locus define the 

location of the closed loop system.

Since the locus is a circle with unity radius, the

vector OA = 1 & therefore ωn = 1 rads/sec.

-ξωn = -0.5 ; ωd = ωn √(1-ξ²) = 0.866 rads/sec

 The CL poles are – ξωn +/- j ωd = -0.5 +/- j 0.866

 The Characteristic equation is (S+ 0.5 + j 0.866)(S+ 0.5 - j 0.866)= S² + S
+1=0

The derived Ch. Eq. is : S² + αS +1 =0

On comparing we get α = 1.

Root Locus Problems 
(contd)..



 Problem 3:
Suppose that the Characteristic equation is given as: 

Q(S) = S³ + K S² + 2S + 1 = 0

You are asked to draw root locus for 0≤K≤∞. How to draw? 

Solution:

1. Collect all the terms containing ‘K’.

2. Divide terms containing ‘K’ by the balance terms

3. Write Q(S) = 1 + N’(S)/D’(S)=0

4. Write G(S) = N’(s)/D’(S)

5. Plot root locus

6. In the present case: Q(S) = 1 + K S²/ S³ + 2S +1 = 0

7. G(S) = K S²/S³ + 2S + 1; Factorize denominator polynomial

Root Locus Problems
(contd)..



PROBLEM: Construction of Root
Locus

k ( s  1)
G ( s ) 

s ( s  1)

Step-1: The first step in constructing a root-locus plot is to locate the 

open-loop poles and zeros in s-plane.

 The k=0 points:
s=0, s= 1
no. of poles (n)= 2

 The k=∞ points:

s= -1

no. of zeros (m)= 1

where

Draw the root locus for the open loop transfer function G(s) and settling
time ts=4sec given, find the range of values of k and show that the loci of
the complex roots are part of a circle with (-1,0) as centre and radius = 2



PROBLEM: Construction of Root Locus 
(contd)..

The poles and zeros in 
s-plane after step-1.

k  0k   k  0



Step-2: Determine the root loci on the real axis.

 To determine the root loci on
real axis we select some test
points.

 e.g: p1 (on positive real axis).

 No. of real poles and zeros on
the right of test point is zero (
which is even)

 Hence, there is no root locus
on the positive real axis.

PROBLEM: Construction of Root Locus 
(contd)..

p1



PROBLEM: Construction of Root Locus 
(contd)..

p2

Step-2: Determine the root loci on the real axis.

 Next, select a test point on
the positive real axis between
1 and 0.

 No. of real poles and zeros on
the right of test point is one (
which is odd)

 Therefore, from 1 to 0 is part 
of the root locus.



p3

Step-2: Determine the root loci on the real axis.

 Next, select a test point on
the negative real axis
between 0 and -1.

 No. of real poles and zeros on
the right of test point is two (
which is even)

 Therefore, from 0 to -1 is not
part of the root locus.

PROBLEM: Construction of Root Locus 
(contd)..



p4

Step-2: Determine the root loci on the real axis.

 Next, select a test point on
the negative real axis
between -1 and - ∞.

 No. of real poles and zeros on
the right of test point is three
( which is odd)

 Therefore, from -1 to - ∞ is
part of the root locus.

PROBLEM: Construction of Root Locus 
(contd)..



Step-2: Determine the root loci on the real axis.

PROBLEM: Construction of Root
Locus (contd)..



Step-3: Determine the asymptotes of the root loci and angles.

Where

n-----> number of poles (2)

m-----> number of zeros (1)

n  m

 180 (2 q  1)
Angle of asymptotes   

when q  0   180 

 
 180  ( 2 q  1)

2  1

 No. of asymptotes = n-m = 1
 The angle of asymptote is 180°.
 No centroid for this system

PROBLEM: Construction of Root Locus 
(contd)..



Step-4: Determine the breakaway/break-in point.

The breakaway/break-in point is the point from which the root locus 
branches leaves/arrives real axis.
The breakaway or break-in points can be determined from the roots of

dK/ds=0

It should be noted that not all the solutions of dK/ds=0 correspond to 
actual breakaway points.

If a point at which dK/ds=0 is on a root locus, it is an actual breakaway
or break-in point.

The characteristic equation of the system is

K ( s  1)
1  G ( s ) H ( s )  1   0

s ( s  1)

s  1

s ( s  1)
K  

PROBLEM: Construction of Root Locus 
(contd)..



dK ( s  1)( 2 s  1)  ( s
2
 s )(1)


ds ( s  1)

2

 Set dK/ds=0 in order to determine breakaway point.


 

 
s  1ds ds 

 The breakaway point can now be determined as

dK d  s ( s  1) 

 0
( s  1)

2

 By solving the equation roots are at
s    0 .414

  2 .414

 By substituting these s values in k equation, the value of k is positive real
for s=0.414 (k=0.17), s=-2.414 (k=5.828). so these points are actual
breakaway points.

( s  1)( 2 s  1)  ( s
2
 s )(1)  2 s  1  0s

2

PROBLEM: Construction of Root Locus 
(contd)..



Step-4: Determine the breakaway/break-in point.

Breakaway  

point

Breakaway  

point

PROBLEM: Construction of Root Locus 
(contd)..



s
2

s   j1

 1  0

 ( k  1) s  k  0s
2

s
2

s
1

s
0

1 k

k  1 0

k
k  0

k  1

cross theStep-5: Determine the points where root loci  
imaginary axis and range of K for stable operation

The characteristic equation of closed loop system:

s ( s  1)  k ( s  1)  0

The root loci cuts the imaginary axis at s   j1

PROBLEM: Construction of Root Locus 
(contd)..



s
2

s   1  j 2

 2 s  3  0

2

2

nn

s  ( k  1) s  k  0

2

s ( s  1)  k ( s  1)  0

s  2 s    0 )
2

n

n
  k

k  1
  (

cross theStep-5: Determine the points where root loci  
imaginary axis and range of K for stable operation

The characteristic equation of closed loop system:

2

4

k  3

n

n

  1  (
k  1

)

t s  4 



The location of closed loop poles 
for k=3, ts=4 sec

PROBLEM: Construction of Root Locus 
(contd)..



   ( 2 q 

1 )s ( s  1 )

s    j

( s  1 )
 Apply the angle criterion:

 G ( s )   k




 
 

  tan

 tan

 1  1 1 

   1      1 

  tan

 j     j  1   

 

 k     j  1   



To show that the loci of the complex roots are part of a 

circle with (-1,0) as centre and r2adius =

 Apply the tan on both sides
1  tan A tan B

tan A  tan B



















 

   1 


1  tan  



   1 

tan( A  B ) 


tan    

    1 

  
1 

    1 

 

PROBLEM: Construction of Root Locus 
(contd)..



 By cross multiply and simplify:

2


 


2  
 

2  
 2  1  0

  
  1  

   1   1  (  1)

2
(  1)

2  
   2

 By add and subtract ‘1’ and rearrange

(
2  
 2  1)  1  

2 
 1  0

 This is the equation of the circle with center at (-1,0) and radius 2

PROBLEM: Construction of Root Locus 
(contd)..



 Complete root locus for the given system
k ( s  1)

G ( s ) 
s ( s  1)

 j1(k  1)

Breakaway  

point

Breakaway  

point

 j1(k  1)

 1  j1 .414 ( k  3)

 1  j1 .414 ( k  3)

PROBLEM: Construction of Root Locus 
(contd)..





The characteristic equation of a feedback control system is

Sketch the root locus plot for 0<k<∞ and show that the system is
conditionally stable (stable only for a range of gain k). Determine the range
of gain for which the system is stable.

Solution:
To sketch the root locus, we require the open-loop transfer function  
G(s)H(s)

1  G ( s ) H ( s )  s
4
 3 s

3
 12 s

2
 16 s  ks  k  0

1  G ( s ) H ( s )  s ( s
3
 3 s

2
 12 s  16 )  k ( s  1)  0

 01   1 
s ( s

3
 3s

2
 12 s  16 ) s ( s  1)( s

2
 4 s  16 )

k ( s  1) k ( s  1)

 3 s
3  
 12 s

2  
 ( k  16 ) s  k  0s

4

PROBLEM: Construction of Root
Locus



 The k=0 points: s=0, s= 1, s=-2+j3.42, s=-2-j3.42
no. of poles (n)= 4

 The k=∞ points: s=-1
no. of zeros (m)=1

 No. of root locus branches (n)=4
 Root locus exists on the real axis from s=1 to s=0 and to the left of s=-1
 No asymptotes (n-m)=3

s ( s  1)( s  2  j3 .42 )( s  2  j3 .42 )

k ( s  1)

s ( s 
3
 3s

2
 12 s  16 )

k ( s  1)
 G ( s ) H ( s )  

o

s  1

 Angles of asymptotes  60
o

, 180

 Centroid   0 .66

 The breakaway points are given by dk/ds=0.

s ( s  1)( s
2
 4 s  16 )

where k 

PROBLEM: Construction of Root Locus 
(contd)..





o
 55 .27 The angle departure of the root locus from the complex pole is 

d

( s  1)( 4 s
3
 9 s

2
 24 s  16 )  s

4
 3 s

3
 12 s

2
 16 s  0

3s
4
 10 s

3
 21 s

2
 24 s  16  0

By solving the above equation out of four roots only, s=0.45 and s= -2.26 are 
actual break points.

 Out of these s=0.45 is the breakaway point and s=-2.26 is the break-in point.

 Corresponding to these points k values are 2.64 and 77.66

d d
 ( s  1) ( s

4
 3 s

3
 12 s

2
 16 s )  ( s

4
 3s

3
 12 s

2
 16 s ) ( s  1)  0

ds ds ds

dk

PROBLEM: Construction of Root Locus 
(contd)..



k

k

s
0

3

k

3

s
1 3

5 2  k

( k  1 6 )  3 k
5 2  k

3 6  k  1 6

k  0

52  k  0

k  52

Determine the points where root loci cross the imaginary axis 
and range of K for stable operation

The characteristic equation of closed loop system:

 ( k  16 ) s  k  0

1 1 2

3 k  1 6

 3 s
3
 12 s

2s
4

s
4

s
3

s
2

2
k  59 k   832  0

k  23 .3 andk  35 .7

 k
2  
 832  9 k  052 k  16 k

The range of values of k for stability is 23.3<k<35.7. The corresponding 
oscillation frequencies are 1.68 rad/sec and 2.6 rad/sec

PROBLEM: Construction of Root Locus 
(contd)..



 Complete root locus of the given system is

 j1 .68 ( k  23 .3 )

 j 2 .6 ( k  35 .7 )o  55 .27
d

o  55 .27
d

BA   2 .32 ( k  77 .66 ) BA  0 .45 ( k  2 .64 )

PROBLEM: Construction of Root Locus 
(contd)..



Unit-IV 
FREQUENCY DOMAIN ANALYSIS



Frequency Domain
Specifications

 We have studied about time domain specifications like, rise time ,tr;
peak time, tp; settling time, ts; peak overshoot, Mp.

 Now, we define frequency domain specifications for a given system and
determine their correlation with the time domain specifications.

 This correlation between time & frequency domain is necessary as it
enables us to derive time domain specifications from frequency domain
ones & vice-versa.

 Further, we may like to analyze a given system either in time domain or
frequency domain & hence we need to have a set of specification in
each domain for evaluating a given system’s response.

 Like in time domain, here too we consider a second order system for
deriving frequency domain specifications.



 Given, a closed loop transfer function, T(S) = C(S)/R(S), as 

T(S) = C(S)/R(S) = ωn² / (S² + 2ξ ωn S + ωn² )

 For determining frequency response, we let S = jω in T(S) because we 
are interested in real frequencies which lie on the Imaginary axis of the 
S-plane.

T(jω) = ωn² / (-ω² + j2ξ ωn ω + ωn² )

T(jω) = ωn² / ωn² { (1-(ω/ ωn))² + j2ξ ω/ ωn }

 Let u = ω/ ωn; u: normalized frequency

ωn: natural frequency of oscillation of the system 

ω : input signal frequency

 Thus, T(jω) = 1/{ (1-u²) + j 2ξ u- ………… (1)

│T(jω)│= M(u) = 1/√, (1-u²)² + 4ξ² u²- ….. (2)

arg{T(jω)} = φ = - tan⁻¹ ,2ξ u/(1-u²)- ………..(3)

Frequency Domain Specifications 
(contd)..



 The magnitude & phase response are part of frequency response.
Equations(2) & (3) corresponding to magnitude & phase response tell
us that,

 if we feed an input signal r(t) = A Sin(ωt) to the system, the output
signal will have

magnitude = A/ √, (1-u²)² + 4ξ² u²} , and the

phase introduced = - tan⁻¹ {2ξ u/(1-u²)}

 Thus the output signal, under steady state, will be

c(t) = A/*√, (1-u²)² + 4ξ² u²}] Sin (ωt - tan⁻¹ {2ξ u/(1-u²)})

 We observe that the output amplitude is dependent on the input
frequency, and so is the phase lag introduced in the output signal.

Frequency Domain Specifications 
(contd)..



 Reproducing equations (2) & (3), we have 

M(u) = 1/√, (1-u²)² + 4ξ² u²- ….. (2)

φ = - tan⁻¹ ,2ξ u/(1-u²)- ………..(3)

Plotting M & φ vs. u, u = ω/ωn

u M φ

0.0 1.0 0 (ω=0)

1.0 1/(2ξ) -Л/2 (ω= ωn)

∞ 0 - Л (ωn ∞)

 Observation:

At ω= ωn, the value of ‘M’ is inversely proportional to ξ.

The lower the ξ higher the ‘M’ implies higher peak in the magnitude 
response.

Frequency Domain Specifications 
(contd)..



Resonant Frequency:

The frequency where ‘M’ has a peak value is called resonant 
frequency. At this frequency, the slope of the magnitude curve, 
M, is zero. Differentiate ‘M’ w.r.t ‘u’ in equation (1)

Therefore, dM /du = 0 ur² = 1 – 2 ξ²

u = ur

ur = √(1-2 ξ²)

ωr = ωn √(1-2 ξ²)

Resonant frequency : ωr = ωn √(1-2 ξ²) …. (4)

Resonant Peak, Mr:

The maximum value of magnitude is known as ‘Resonant peak’

M(u) = 1/√, (1-u²)² + 4ξ² u²}; at resonant frequency u=ur, we get Mr. 

Substitute for u= ur in M(u), to get Mr = 1/{2ξ √(1- ξ²)} ….. (5)

Frequency Domain Specifications 
(contd)..



 Phase angle, φr at Resonant Frequency:

Phase angle: φ = - tan⁻¹ ,2ξ u/(1-u²)}

Substitute for u = ur in φ, to get

φr = - tan⁻¹ ,√(1-2 ξ²)/ξ- …… (6)

From equations (4) & (5), as reproduced below 

ωr = ωn √(1-2 ξ²) …. (4)

Mr = 1/{2ξ √(1- ξ²)- ….. (5) 

It is seen that as ξ approaches ‘0’

ωr approaches ωn, and 

Mr approaches ∞

At ξ = 0.707 ; Mr = 1 & ωr = 0

Therefore there is no resonant peak & hence no resonant frequency.

Frequency Domain Specifications 
(contd)..



 The magnitude & phase plot:

For a range of ξ:

1.0M

Magnitude

0.2

0

0<ξ<0.707 we sketch the plots.

M (ξ < 0.707)

Mr φ

M (ξ = 0.707) - Л/2

-Л

Ur = ωr/ωn Normalized Frequency

Normalized Frequency

 We observe that for ξ≥ 0.707, the magnitude plot decreases
monotonically from M=1 at u=0. Thus there is no resonant peak for
ξ≥ 0.707 & the greatest value of M = 1.0

Frequency Domain
Specifications



Bandwidth, ωb:

The frequency at which M = 0.707 (1/√2) is called cut off frequency, 
ωc.

 The range of frequencies for which M≥ 1/√2 is defined as bandwidth, 
ωb of a system. Since control systems are low pass filters, ωb = ωc .

 At u = ub = ωb / ωn; (the normalized bandwidth), the expression for M 
is

M(ub) = 1/√, (1- ub ²)² + 4ξ² ub ²- = 1/√2 

Solving the above equation, we get

ub⁴ - 2(1-2ξ²)ub² -1 = 0 Let ub² = x; solve for x & then for ub. Ub = √x

 Solving for ub we get: ub = √ *1-2ξ² + √(2-4ξ²+4ξ⁴)]

Frequency Domain Specifications 
(contd)..



Bandwidth:

The denormalized bandwidth is given by, 

ωb = ωn √ *1-2ξ² + √(2-4ξ²+4ξ⁴)]

Thus, we observe that bandwidth is a function of damping, ξ only. 

ξ ωb

0.2 1.51 ωn

0.5 1.272 ωn

0.707 0.999 ωn

Thus we observe that as damping increases the bandwidth reduces.

Frequency Domain Specifications 
(contd)..



 Correlation between time and frequency domain parameters: 

Time Domain:

Mp = exp(- Лξ/√(1-ξ²))

tp = Л/ωn √(1-ξ²);

Frequency Domain:

Mr = 1/{2ξ √(1- ξ²)};

ωd = ωn √(1-ξ²)

ωr = ωn √(1-2 ξ²)

 From the above equations we understand that no matter in which
domain ( frequency or time) we are analyzing a system performance,
the other domain (time or frequency) parameters can be easily
estimated using the above set of relationships.

 For example, working in time domain from the root locus we can fix ξ,
ωn, for a desired location of closed loop poles and then we can
determine frequency domain parameters using above equations.

Frequency Domain Specifications 
(contd)..



 Correlation between time & frequency domain parameters:

ωr/ ωd = √(1-2 ξ²)/ √(1-ξ²)

ξ ωr/ ωd

0.707 0.0

0.5 0.8165

0.3 0.9493

0.2 0.9789 ωr/ωd

0.0 1.0

ξ

0

0.8165

0.94930.97891

0

0.6

0.4

0.2

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Frequency Domain Specifications 
(contd)..



POLAR
PLOT

 Polar Plot:
Magnitude and phase of G(jω) is plotted in X-Y plane (graph sheet) 

G(jω) = Re[G(jω)]+ Img [G(jω)]

G(jω) = │G(jω)│ arg,G(jω)} = M exp(-jφ)

As ω is varied from ‘0’ to ‘∞’; the ‘M(ω= ω1)’ value is marked on the 
graph sheet at an angle of φ(ω= ω1)

 Example 1:

G(S) = 1/(1 + TS) G(jω) = 1/(1+ j ωT)

φ(ω)= - tan⁻¹(ωT)

1(ω = 0)

ω 0; M = 1

ω ∞; M = 0

ω = 1/T; M = 1/√2

M(ω) = 1/√(1+ (ωT)²); 

φ = 0°

(ω = ∞) 0

φ = -Л/2 

φ = -Л/4 1/√2 ( ω= 1/T)



Observations:

1. The ω = 0 & ω = ∞ are important points in a polar plot.

2. The angle subtended by G(jω) or G(jω) H(jω) at these frequencies
indicate the number of quadrants the polar plot is going to traverse in
the G(jω) or G(jω) H(jω) plane.

3. As we shall see later the intersection of the polar plot with the
negative real axis of the G(jω) or G(jω) H(jω) plane is a very important
information because it allows us to determine the stability of a CL
system, as also its relative stability.

4. Polar plot need not be drawn for all the frequencies from 0 to ∞; the
necessary points are ω = 0 & ω = ∞ and those values of ω at which the
polar plot intersects with the negative real axis of the G(jω) or G(jω)
H(jω) plane.

POLAR PLOT
(Contd..)



 Example 2:

G(S) or G(S)H(S) = 1/S(1+TS)

G(jω) = 1/jω (1 + j Tω); M(ω) = 1/ω √(1 + T²ω²);

φ(ω) = -Л/2 - tan⁻¹(Tω)

ω =0;

ω =∞;

M = ∞;

M = 0;

φ = -Л/2

φ = -Л

Angle measured in CW direction: -

Angle measured in CCW direction: +

ω =1/T; M = T/√2 φ = -3Л/4

 Note: we observe that between ω =0 & ω =∞ the angle changes by Л/2; 
therefore the polar plot will traverse only in one quadrant.

The polar plot is shown in the next slide

POLAR PLOT
(Contd..)



 Polar plot:
Img. G(jω)

G(jω) plane

at ω=∞ M(ω)=0, φ=-Л

Re. G(jω)

φ = -3 Л/4

T/√2

 At ω =1/T; M = T/√2 φ = -3Л/4 

In order to plot this point, we draw 

an angle φ = -3Л/4 and then mark 

the point M = T/√2

At point A,

M = T/√2, φ = -3Л/4, ω = 1/T

ω >0 A

ω = 1/T

at ω=0 φ = -Л/2 M = ∞

POLAR PLOT
(Contd..)



 Example 3:

G(S) = 1/(1+T₁ S)(1+T₂ S); G(jω) = 1/(1 + j ωT₁) (1 + j ωT₂)

M(ω) = 1/√(1+ ω²T₁²) √(1+ ω²T₂²) 

φ(ω) = - tan⁻¹(T₁ω) - tan⁻¹(T₂ω)

ω =0;

ω =∞;

M = 1;

M = 0;

φ = 0 

φ = -Л

Angle measured in CW direction: -

Angle measured in CCW direction: +

 We observe that φ changes from 0 to –Л as ω changes from 0 to ∞.

 Therefore, the polar plot will traverse two quadrants in the G(jω) or

G(jω) H(jω) plane.

 Since the polar plot traverses two quadrants, we need to determine
point(s) of intersection between polar plot & the Imaginary & negative
real axis of the G(jω) plane.

POLAR PLOT
(Contd..)



 Intersection with real & imaginary axis of the G(jω) plane:

 Procedure:

1. Rationalize G(jω) or G(jω) H(jω)

2. Separate in to real & imaginary parts of G(jω) or G(jω) H(jω)

3. For intersection on real axis; imaginary part = 0. Make imaginary part =
0 by making its numerator = 0. We get value of ω at point of
intersection. Calculate the value of real part at this value of ω. Draw a
vector of this length from the origin to get intersection on the real axis.

4. For intersection on imaginary axis; real part = 0. Make real part = 0 by
making its numerator = 0. We get value of ω at point of intersection.
Calculate the value of imaginary part at this value of ω. Draw a vector
of this length from the origin to get intersection on the real axis.

POLAR PLOT
(Contd..)



 Determination of Intersection point(s):

 G(jω) can be written as, G(jω) = 1/[(1-ω²T₁T₂) + j ω(T₁ + T₂)+

Rationalize: multiply & divide G(jω) by [(1-ω²T₁T₂) - j ω(T₁ + T₂)+; that is
conjugate of the denominator.

We get,

G(jω) = [(1-ω²T₁T₂) + j ω(T₁ + T₂)+/[(1-ω²T₁T₂)² + ω²(T₁ + T₂)²+ 

Real part = (1-ω²T₁T₂)/*(1-ω²T₁T₂)² + ω²(T₁ + T₂)²+ 

Imaginary part = ω(T₁ + T₂)/*(1-ω²T₁T₂)² + ω²(T₁ + T₂)²+

 We see from the above that

Imag. Part cannot be zero, &

Real part = 0 for 1-ω²T₁T₂ =0; ω² = 1/ T₁T₂

at intersection on imaginary axis, the frequency ω = 1/√ T₁T₂

POLAR PLOT
(Contd..)



G(jω) plane

(ω =∞ M=0 φ = -Л) (ω = 0 M = 1 φ=0)

√ T₁ T₂/(T₁ + T₂) ω> 0 ω> 0

ω = 1/ √ T₁ T₂

POLAR PLOT
(Contd..)



ω =0; M = 1; φ = 0 Angle measured in CW direction: -

ω =∞; M = 0; φ = -3Л/2 Angle measured in CCW direction: +

 Example 4:
G(S) = 1/(1+T₁ S)(1+T₂ S) (1+T₃ S);

G(jω) = 1/(1 + j ωT₁) (1 + j ωT₂) (1 + j ωT₃)

M(ω) = 1/√(1+ ω²T₁²) √(1+ ω²T₂²) √(1+ ω²T₃²)

φ(ω) = - tan⁻¹(T₁ω) - tan⁻¹(T₂ω) - tan⁻¹(T₃ω)

 We observe that φ changes from 0 to –3Л/2 as ω changes from 0 to ∞.

traverse three quadrants in the G(jω) or Therefore, the polar plot will
G(jω) H(jω) plane.

 Since the polar plot traverses three quadrants, we need to determine
point(s) of intersection between polar plot & the Imaginary & negative
real axis of the G(jω) plane.

POLAR
PLOT



POLAR PLOT
(Contd..)

 Intersection on the Real & Imaginary axis of G(j ω) plane: 

Following the procedure as explained earlier, we have:

 For intersection on Imaginary Axis:

ω = 1/√(T₁ T₂ + T₃ T₁ + T₂T₃)

 For intersection on real Axis:

ω = √ *T₁ +T₂ + T₃/T₁ T₂ T₃ ]

For the above values of ω, determine the magnitude of the points with 
imaginary intersection.



G(jω) plane

(ω =∞ M=0 φ = -3Л/2) (ω = 0 M = 1 φ=0)

A O

ω₁ = √ (T₁ +T₂+T₃)/(T₁ T₂ T₃) ω> 0

B ω> 0

ω₂ = 1/ √ (T₁ T₂ + T₂ T₃ + T₃ T₁ )

OA: magnitude of G(jω) at ω = ω₁ 

OB : magnitude of G(jω) at ω = ω₂

POLAR PLOT
(Contd..)



Relative Stability:

1. It is defined for systems that are open loop stable.

2. We have the Characteristic equation Q(S) = 1 + G(S)H(S) = 0

3. For real frequencies ( frequency response) S = jω

4. Therefore, Q(jω) = 1 + G(jω) H(jω) = 0

5. Or, G(jω ) H(j ω) = -1

6. therefore, │G(jω ) H(j ω)│= 1 & arg(G(jω ) H(j ω)) = φ = +/- Л

7. When loop gain = │G(jω ) H(j ω)│= 1 & arg(G(jω ) H(j ω)) = +/- Л

8. Phase introduced due to error detector = 180°

9. Therefore, total phase in the loop = 360° & │G(jω ) H(j ω)│= 1

10. The CL system response is oscillatory & it is on the verge of
instability

POLAR PLOT (Relative
Stability)



11. loop gain = │G(jω ) H(j ω)│= 1 & arg(G(jω ) H(j ω)) = +/- Л: this is a 
point (-1, j0) in the G(jω ) H(j ω) plane. x

12. Stability of a closed loop system is determined by

(-1,j0)

non-encirclement of (-1,j0) point. As the polar plot gets closer to (-
1,j0) point, the CL system tends towards instability.

Polar plot & Location of closed loop poles:

x S plane

x

x S plane

x

X X

(-1,j0) (-1,j0) G(jω) H(jω) plane

We observe that polar plot closer to (-1,j0) point implies CL poles are 
closer to the Imaginary axis of the S-plane

POLAR PLOT (Relative Stability 
Contd..)



 As the CL poles move closer to the Imaginary axis of the S plane, the
system takes more time to settle down (reach steady state) & is
therefore relatively less stable than the one which has CL poles far
removed from the Imaginary axis of the S plane.

 In frequency domain it implies that as the polar plot moves closer to
the (-1,j0) in the G(jω ) H(jω ) plane, the CL system becomes relatively
less & less stable.

 Therefore proximity of the polar plot to the (-1,j0) point determines CL
system’s relative stability.

 If the polar plot passes through (-1,j0) point then the CL system is on
the verge of instability

 If the polar plot encircles the (-1,j0) point then the CL system is
unstable.

POLAR PLOT (Relative Stability 
Contd..)



 Example of Relative stability:

G(jω )H(jω) plane

(-1,j0)a

X

Plot 1:

Intersects negative real axis at ‘b’ d  

Plot 2:

Intersects negative real axis at ‘c’

b

Plot 3:

Passes through (-1,j0) point 

Plot 4:

Encircles (-1,j0) point & 

intersects negative real axis 

at ‘d’

c

1 (More Stable)

2 (Stable)

3 (limitedly stable)

4 (unstable)

│b│<│c│<│a│<│d│

POLAR PLOT (Relative Stability 
Contd..)



Gain Margin:

1. The margin between actual gain ‘K’ (of the system) and the critical
gain causing oscillations (in the system output) is called Gain
Margin (GM)

2. Critical gain: the value of ‘K’ at which the Polar plot- { G(jω)H(j ω)}
plot - passes through (-1,j0) point.

3. Definition of GM: It is the factor by which the system gain can be
increased to drive it to the verge of instability.

4. At ω = ω₁ , the magnitude of (-1,j0)

GH plane

(ω=ω₁)

intersection with the negative real axis is X

‘a’; the phase angle = Л a

5. For the plot to pass through (-1,j0) point, the factor by which the
gain is to be increased = 1/a. GM = 1/a

Relative Stability Index: Gain & Phase 
Margin



1. │G(jω)H(jω)│ = a, at ω = ω₁

2. arg {G(jω)H(jω)} = φ = Л, at ω = ω₁

3. ω = ω₁ is the frequency at which φ = 180°.

4. ω = ω₁ is called ‘Phase Crossover Frequency’

5. Phase crossover frequency: is defined as the frequency at which the 
phase offered by the system is Л

6. Gain Margin is now defined in terms of phase crossover frequency as

7. ‘reciprocal of the gain at the frequency at which phase angle  
becomes 180’

8. Thus GM value is obtained at phase crossover frequency.

9. GM = 1/a; In decibels: GM = 20 Log(1/a) = - 20 Log(a)

Relative Stability Index: Gain & Phase 
Margin



Phase Margin:

1. It is calculated at ‘Gain Crossover Frequency’

2. The frequency at which │G(jω)H(jω)│ = 1 is called ‘Gain Crossover
G(jω)H(jω) plane

X(ω=ω₁) O

rad r= 1

frequency’

3. Draw a unit circle as shown.

4. The point of intersection of unit circle

5. with polar plot is X , say, the frequency is ω₁.

6. The │G(jω)H(jω)│(at ω=ω₁) = length of vector OX=1

PM = φ

7. Therefore ω=ω₁ is the gain cross over frequency.

8. The angle made by OX with the negative real axis of the G(jω)H(jω) 
plane is Phase Margin (PM), φ, of the system.

Relative Stability Index: Gain & Phase 
Margin



Phase Margin & Stability of CL system:
1. It is defined as the amount of additional phase lag at the gain cross 

over frequency required to bring the system to the verge of 
instability.

2. It is measured in the CCW direction from the negative real axis of 
the G(jω) H(jω) plane.

3. If ω = ω₁ is the gain cross over frequency, then phase margin (PM) is 
computed as:

4. PM = φ = arg{G(jω₁) H(jω₁)} + 180°
5. Since systems introduce phase lag , arg{G(jω₁) H(jω₁)} is always 

negative.
6. If PM is positive, the CL system is stable
7. If PM is negative the CL system is unstable
8. If PM = 0 the CL system is on the verge of instability

Relative Stability Index: Gain & Phase 
Margin



GM & Stability of CL system:
GM is calculated as the inverse of the │G(jω)H(jω)│= ‘a’ at the point of 
its intersection with negative real axis of the GH plane.

GM = 1/a ; or, GM = - 20 Log (a) in dB.

1. If GM is positive, CL system is stable

2. If GM is negative, CL system is unstable

3. If GM = ‘0’, CL system is on the verge of instability

Interpretation of Relative Stability from GM & PM Values:
1. Large GM or large PM imply sluggish CL system

2. GM close to ‘1’ or PM close to ‘0°’ imply highly oscillatory system

3. GM of about 6 dB or PM of 30-35° imply reasonably good degree of
relative stability

4. Generally a good GM automatically guarantees a good PM & vice-
versa.

Relative Stability Index: Gain & Phase 
Margin



 Special Cases:

We have said that generally a good GM yields good PM & vice versa. In 
certain cases, it may not hold. G(jω)H(jω) plane

 Case 1: (-1,j0) point

φ₃ φ₂ φ₁ rad=1Plot 1: gain K₁ ;PM = φ₁; GM = ∞

Plot 2: gain K₂; PM = φ₂; GM = ∞

Plot 3: gain K₃; PM = φ₃; GM = ∞

K₃ > K₂ > K₁ ; φ₃ < φ₂ < φ₁

 We see that as we increase gain in the system

the Phase Margin reduces whereas the 3 2 1

 Gain Margin does not change. Therefore in such cases we need to focus
only on PM because GM is not adjustable.

Relative Stability Index: Gain & Phase 
Margin



 Case 2:

φ₁

φ₂

Plot 1: gain K₁ ;PM = φ₁; GM = 1/a rad=1 

Plot 2: gain K₂; PM = φ₂; GM = 1/b

Plot 3: gain K₃; PM = φ₃; GM = 1/c

K₃ > K₂ > K₁ ; φ₃ < φ₂ < φ₁ c

(-1,j0 ) point

b a
 We see that as we increase gain

the GM reduces appreciably , but 1

the PM does not vary much. 2 φ₃

 Therefore, we need to monitor GM in this case. 3

Relative Stability Index: Gain & Phase 
Margin



Polar Plot: Correlation between 
PM & ξ

 Correlation between Phase Margin & Damping ξ:

Let G(S) = ωn²/S(S + 2ξωn); for a unity feedback system

 At the gain cross over frequency, ω = ω₁

│G(j ω)H(jω)│ = 1.0

or, ωn²/ ω₁√(ω₁² + 4 ξ² ωn²) = 1.0 

or, ω₁²(ω₁² + 4 ξ² ωn²) = ωn⁴

or, (ω₁/ ωn)⁴ + 4 ξ² (ω₁/ ωn )²-1 = 0; let (ω₁/ωn )² = x 

or, x² + 4 ξ² x – 1 = 0

or, x = -2 ξ² +/- √(1 + 4 ξ⁴)

or, (ω₁/ ωn )² = √(1 + 4 ξ⁴) - 2 ξ² 

or, ω₁ = ωn √(√(1 + 4 ξ⁴) - 2 ξ²)

 The above equation relates ξ with gain cross over frequency, ω₁



arg{G(j ω)H(jω)} = - 90° - tan¯¹(ω/2 ξ ωn) 
at ω = ω₁, φ₁ = - 90° - tan¯¹(ω₁ /2 ξ ωn)

PM = φ = 180° + φ₁ = 180° - 90° - tan¯¹(ω₁ /2 ξ ωn)
φ = 90° - tan¯¹(ω₁ /2 ξ ωn)

 Substitute for ω₁ to get,
φ = 90° - tan¯¹*√(√(1 + 4 ξ⁴) - 2 ξ²) /2 ξ ]

or,
or,
or,

*√(√(1 + 4 ξ⁴) - 2 ξ²) /2 ξ ] = tan(90° - φ) = cot φ
tan φ = 2 ξ / *√(√(1 + 4 ξ⁴) - 2 ξ²)]

φ = tan¯¹ {2 ξ / *√(√(1 + 4 ξ⁴) - 2 ξ²)]}
 The above equation gives a relationship between ξ & φ for an under 

damped system.
 In the range ξ ≤ 0.707, a reasonably good approximation is given by

ξ = 0.01 φ

Polar Plot: Correlation between 
PM & ξ



G(j ω) = K/jω (1+j 0.2ω)(1+j 0.05 ω)

 For K = 1:

PM = φ = 76° ;

a= -0.04

b = 0.1 φ = 76°= PM

2

 Intersection on negative real axis, a = -0.04 

GM = 20 Log │1/a│= 28 dB

 Suppose we desire a GM = 20 dB, &

PM = 40°

 For a GM = 20 dB, the polar plot should intersect 1  

the negative real axis at : 20 Log │1/b│= 20 dB

therefore, b = 0.1

 This is achieved if K is increased by 0.1/0.04 = 2.5; K = 2.5. Plot 2

Polar plot Examples: Computation of
GM & PM



40°

O

 To achieve PM = 40°, we have:

Draw an angle of 40° in CCW direction from the 

negative real axis of GH plane, as shown

 We see that for PM = 40° , gain ‘K’

is to be increased by the ratio OA/OB

OA/OB = 1/0.191 = 5.24 B

K = 5.24 A

 Thus we note that GM & PM are two different

 Specifications not achievable for a single value of gain ‘K’.

Polar plot Examples: Computation of
GM & PM



Analytical Method: Gain & Phase
Margin

 Example:

 G(S) = K/S(1+0.2S)(1+.05S) G(jω) = K/jω(1+j0.2ω )(1+j0.05ω)

 We know that for determining GM, we need to find intersection on
negative real axis (Imaginary part = 0).

 Determine value of ω for which Imaginary part = 0. 

Simplify G(jω) to get G(jω) = K/[-0.25 ω² + jω (1- 0.01 ω²)] 

Rationalize G(jω) to get,

G(jω) = -0.25K ω²/Den - j ω(1-0.01 ω²)/Den

Where, Den = [(-0.25 ω²)² + (ω(1-0.01 ω²))²]

For Imaginary part = 0, 1-0.01 ω² = 0; ω = 10= ω₁

ω₁: phase cross over frequency. Magnitude of G(jω) at ω = ω₁

│G(jω)│= K/0.25(ω₁)² = K/25 = a (Contd.)



 For a desired GM = 20 dB, we have

20 Log (1/a) = 20 , or, a = 1/10 = 0.1 

K/25 = a; K = 2.5

 Calculation of PM:

Let ω = ω₂ be the gain crossover frequency; 

PM = 180° + arg{G(jω)}; Desired PM = 40°

arg{G(jω)} = -90° - tan¯¹(0.2 ω₂) - tan¯¹(0.05 ω₂)

PM = -90° - tan¯¹(0.2 ω₂) - tan¯¹(0.05 ω₂) +180° = 40°

tan¯¹(0.2 ω₂) - tan¯¹(0.05 ω₂) = 50°; Apply tan on

0.25 ω₂/[1-0.01 ω₂²] = tan 50° = 1.2 rads; ω₂ = 4 rads/sec

│G(jω)│at ω = ω₂ is = K/[ω₂ √,1+(0.2 ω₂)²- √ ,1+(0.05 ω₂)²} = 1 

For ω₂ = 4, K = 5.2

Analytical Method: Gain & Phase
Margin



BODE
PLOT

 From the frequency response of open loop transfer function G(S) or
G(S)H(S), closed loop system stability & relative stability is determined;
as in polar plots & root locus methods.

1. We draw two plots for each transfer function

2. Magnitude plot in dB

3. Phase plot

4. Both the plots are drawn on semi log paper

5. Magnitude in dB is given by 20 Log │G(jω )│

or 20 Log │G(jω )H(j ω)│ 

Angle φ(ω) is plotted in degrees



 Note on Log Scale:

The advantage of Log scale is that we can handle a very large data size

 Linear Scale:

-30 -20 -10 0 10 20

 In linear scale each segment is incremented equally.

 Log Scale:

 In log scale, we decide the multiplication factor ‘x’. Let x = 10

-2 -1

0.01 0.1

0

1

1 2 3 (linear scale) ω

10 100 1000 (Log scale) Log ω

BODE PLOT
(Contd..)



ω = 1 (on log scale) 

ω = 10 (on log scale) 

ω = 100 (on log scale) 

ω = 0.1 (on log scale)

ω = 0.01 (on log scale)

 Conversion to Log scale:

Log 10 ω = 0 (on linear scale) 

Log 10 ω = 1 (on linear scale)

Log 10 ω = 2 (on linear scale) 

Log 10 ω = -1 (on linear scale) 

Log 10 ω = -2 (on linear scale)

 We observe from the above that

1. on the positive side increment by ‘1’ on linear scale corresponds to 
multiplication by ‘10’ on the Log scale ,and

2. on the negative side increment by ‘-1’ on linear scale corresponds 
to division by ‘10’ on the Log scale

3. We also observe that on the Log scale we cannot start with a value 
of ω = 0, but it can assume a very small value

BODE PLOT
(Contd..)



 Thus, we observe that increment by causes‘1’ on linear scale 
multiplication by ‘10’ on Log scale and hence enabling data
compression and thus facilitating usage of large chunks of data.

 Further observations on Log scale:

1. Between ω = 1 & ω = 10 on the log scale, if we want to mark ω = 2
then we write: Log 10 ² = 0.301 ( which is 30.1% of the segment
length between ‘1’ & ‘10’ on the Log scale

2. Between ω = 1 & ω = 10 on the log scale, if we want to mark ω = 3
then we write: Log 10 ³ = 0.477 ( which is 47.7% of the segment
length between ‘1’ & ‘10’ on the Log scale

3. Between ω = 1 & ω = 10 on the log scale, if we want to mark ω = 5
then we write: Log 10 ⁵ = 0.699 ( which is 69.9% of the segment
length between ‘1’ & ‘10’ on the Log scale

Thus we see that the marking is not linear.

BODE PLOT
(Contd..)



 Representation of Transfer Functions:

 We have two ways of representing a transfer function:

 Pole-Zero Form:

m n

G(S) = K *∏ (S + Zj)] / *∏(S + Pi)] ; m ≤ n

 Time – Constant Form:

j = 1 i = 1

m n

G(S) = {K ∏Zj/∏Pi} {*∏ (1+S/ Zj)] / *∏(1+ S/Pi)]}

j=1 i = 1

 Let K₁ = K ∏Zj/∏Pi ; Tzj = 1/Zj ; Tpi = 1/Pi; Tzj & Tpi are time constants

m n

G(S) = K₁ *∏ (1+ Tzj S)] / *∏(1+ Tpi S)]  

j=1 i = 1

BODE PLOT
(Contd..)



 Example:

Given, G(S) = 10 (S + 2) (S+4)/(S + 5) (S + 10) in pole- zero form 

Convert in to time constant form

 Solution:

G(S) = (10)(2)(4)(1 + S/2)(1+ S/4) / (5)(10)(1 + S/5)(1 + S/10) 

K₁ = (10)(2)(4)/(5)(10) = 8/5

G(S) = (8/5) (1+0.5 S)(1+0.25S)/(1+0.2S)(1+0.1S)

 Where, Tz1 = 0.5; Tz2 = 0.25; Tp1 = 0.2; Tp2 = 0.1 are time constants

 Convert Time constant form in to Pole-Zero form:

G(S) = (8/5)(.5)(.25)(S + 1/.5)(S + 1/.25)/[(.2)(.1)(S+1/.2) (S+1/.1)] 

G(S) = K (S + 2)(S + 4)/(S + 5)(S + 10)

K = (8/5)(.5)(.25)/(.2)(.1) = 10

 In Bode & Polar plots we use Time Constant form

BODE PLOT
(Contd..)



 Example:

G(S) = 1/(1+TS) G(jω) = 1/(1 + j Tω)

│G(jω)│ = 1/√(1 + (Tω)²) ; arg[G(jω)] = -tan¯¹(ωT)

 The Log – magnitude in dB is given by:

20 Log 10 │G(jω)│= M(ω)= 20 Log 10 [1/√(1 + (Tω)²)]

M(ω)= -10 Log 10 (1 + (Tω)²) ---------- 1

 Two cases are considered:

1. For Tω <<< 1 (low frequency asymptote); M(ω) = 0.0 because (Tω)² can 
be neglected as compared to ‘1’

2. For Tω >>> 1 (high frequency asymptote); M(ω) = -20 Log 10 (Tω)……. 2; 
‘1’ can be neglected

ωT (rads) 

1

M(ω) in dB 

0

ωT (rads)

100

M(ω) in dB

-40

10 -20 1000 -60 (cont)

BODE PLOT (Method for
Drawing)



 We observe from the table in the previous slide that,

1. For a decade change in frequency ( 1 to 10, 10 to 100, & so on) the
magnitude changes by -20 dB.

2. Therefore the slope of the magnitude plot is -20 dB/decade change
in frequency.

 We have two plots: for ωT<<<1 & ωT >>>1

 For ωT<<<1; M(ω) =0 & for ωT >>>1; M(ω) has slope of -20 dB/decade

 At ωT=1; M(ω) in equation (2) = 0 dB & M(ω) in equation (1) =0
therefore the two meet at ωT=1, if we extend the low frequency
asymptote; ( as they are both = 0)

 This meeting point is called ‘Corner Frequency’ & is derived from ωT=1;
or, ω = 1/T is the corner frequency.

BODE PLOT (Method for Drawing)
Contd..



 The Log-magnitude in dB is plotted as:

mag. in dB 10³/T1/10T 1/T 10/T 10²/T

0 Log ω

-20

-40 slope = -20 dB/decade

-60

( Log mag. Plot – semi log graph paper)

 The Angle Plot: for ωT<<<1, φ = 0  ; for ωT = 1, φ = -45°; for ωT>>>1, φ = -90°

0

φ(ω) -45°

-90°

BODE PLOT (Method for Drawing)
Contd..



 Example: First order ‘zero’

G(S) = (1+TS) G(jω) = (1 + j Tω)

│G(jω)│ = √(1 + (Tω)²) ; arg[G(jω)] = tan¯¹(ωT)

 The Log – magnitude in dB is given by:

20 Log 10 │G(jω)│= M(ω)= 20 Log 10 [√(1 + (Tω)²)]

M(ω)= 10 Log 10 (1 + (Tω)²) --------

-- 1

 Two cases are considered:

1.For Tω <<< 1 (low frequency asymptote); M(ω) = 0.0 because 

(Tω)² can be neglected as compared to ‘1’

2. For Tω >>> 1 (high frequency asymptote); M(ω) = 20 Log 10

(Tω)… 2; ‘1’ can be neglected

ωT (rads) M(ω) in dB ωT (rads) M(ω)

in dB

1 0 100 40

Bode Plots: Different types of Transfer
Functions



 We observe from the table in the previous slide that,

 For a decade change in frequency ( 1 to 10, 10 to 100, & so on) the 
magnitude changes by 20 dB.

 Therefore the slope of the magnitude plot is 20 dB/decade change 
in frequency.

 We have two plots: for ωT<<<1 & ωT >>>1

 For ωT<<<1; M(ω) =0 & for ωT >>>1; M(ω) has slope of 20  
dB/decade

 At ωT=1; M(ω) in equation (2) = 0 dB & M(ω) in equation (1) =0
therefore the two meet at ωT=1, if we extend the low frequency
asymptote; ( as they are both = 0)

 This meeting point is called ‘Corner Frequency’ & is derived from
ωT=1; or, ω = 1/T is the corner frequency.

Bode Plots: Different types of Transfer
Functions



 The Log-magnitude in dB is plotted as:

slope = 20 dB/decademag. In dB 40

20

0

ω
1/10T

 The Angle Plot:

1/T 10/T 10²/T 10³/T
( Log mag. Plot – semi log graph paper)

for ωT<<<1, φ = 0 ; for ωT = 1, φ = 45°; for ωT>>>1, φ = 90°

90°

φ(ω)

45°

0°

Bode Plots: Different types of Transfer
Functions



 Example:

Consider 1) G1(S) = 1/S & 2) G2(S) = S

1) G1(jω) = 1/jω; │G1(jω)│= 1/ω & G2(jω) = jω; │G2(jω)│= ω

2) The Log – magnitude in dB is given by:

20 Log 10 │G1(jω)│= M1(ω)= 20 Log 10 [1/ω] = -20 Log 10 (ω)

20 Log 10 │G2(jω)│= M2(ω)= 20 Log 10 [ω] = 20 Log 10 (ω)

Angle : φ1(ω) = - 90° Angle : φ2(ω) = 90°

-20 dB/decade (slope) M1(ω)

20 dB 20 dB/decade (slope) M2(ω) φ2(ω) = 90°

0dB Log ω

ω φ1(ω) = -90°

-20 dB

0.1 1.0 10.0

Log-magnitude plot Phase Plot

Bode Plots: Different types of Transfer
Functions



 We have drawn Bode plots for first order transfer functions having a
simple (order 1) pole or a simple (order 1)zero. We now generalize it to
multiple order poles & zeros which may be present in a given transfer
function.
G1(S) = 1/(1 + TS) ͫ (pole of order ‘m’), &
G2(S) = (1 + TS) ͫ (zero of order ‘m’)

G1(jω) = 1/(1 + j Tω) ͫ; │G1(jω)│= 1/*√(1+(ωT)²+ 
Log-magnitude ( in dB) = 20 Log10 {1/*√(1+(ωT)²+ ͫ-

= -10 m Log10 {(1+(ωT)²+ …….. 1
Angle = - m tan¯¹(ωT)

G2(jω) = (1 + j Tω) ͫ; │G2(jω)│= *√(1+(ωT)²+
Log-magnitude ( in dB) = 20 Log10 *√(1+(ωT)²+

= 10 m Log10 {(1+(ωT)²+ ………. 2
Angle = m tan¯¹(ωT)

Bode Plots: Different types of Transfer
Functions



 For G1(S) :
Log-magnitude ( in dB) = -10 m Log10 {(1+(ωT)²]

 For G2(S) :
Log-magnitude ( in dB) = 10 m Log10 {(1+(ωT)²]

 Thus we observe that, for ωT>>>1, the
slope of log-mag. plot for pole of order ‘m’ = -20 m dB/decade
slope of log-mag. plot for zero of order ‘m’ = 20 m dB/decade

 While the respective angles are given by
-/+ m tan¯¹(ωT)

where m = 1,2,3 … is the order of the pole & zero. So as ‘m’ increases the 
slopes and the angle increase.

Bode Plots: Different types of Transfer
Functions



 Multiple Poles & Zeros at the Origin of the S plane: 

Consider 1) G1(S) = 1/S ͫ & 2) G2(S) = S

1) G1(jω) = 1/(jω) ͫ; │G1(jω)│= 1/ω ͫ & G2(jω) = (jω) ͫ; │G2(jω)│= ω

2) The Log – magnitude in dB is given by:

20 Log 10 │G1(jω)│= M1(ω)= 20 Log 10 [1/ω ͫ+= -20 m Log 10 (ω)

20 Log 10 │G2(jω)│= M2(ω)= 20 Log 10 [ω ͫ+= 20 m Log 10 (ω)  

Angle : φ1(ω) = - m 90° Angle : φ2(ω) = m 90°

 Here again we observe that the slope for log-magnitude plot of 

G1(S) is -20m dB/decade & angle is –m 90°, &

G2(S) is 20m dB/decade & angle is m 90°

 where, m = 1,2,3 …. Is the order of the pole and zero

As ‘m’ increases, slopes & angle increase

Bode Plots: Different types of Transfer
Functions



Bode Plots: Different types of Transfer
Functions

 G(S) = K (1+T₁ S)(1+T₂ S)/S ͫ(1 + T₃ S)(1 + T₄ S)

We have a combination of poles & zeros. There can be any

number of poles & zeros in a transfer function. We need to plot

Log-magnitude plot in dB & Angle plot in degrees

 Log-magnitude plot:

G(jω ) = K (1 + j T₁ω)(1 + j T₂ω)/(jω) ͫ (1 + j T₃ω)(1 + j T₄ω)

20 log │G(jω )│= 20 log │K (1+j T₁ω)(1+j T₂ω)/(jω) (ͫ 1+j T₃ω)(1+j

T₄ω)│

20 log K + 20 log √(1+ (T₁ω)² + 20 log √(1 + (T₂ω)²

-20 m log ω -20 log √(1 + (T₃ω)² - 20 log √(1+(T₄ω)² … . . 1

 From equation (1) we make out that log-magnitude plot in dB, for

a given G(S), is obtained by algebraically adding asymptotic plot

of each pole & zero including the constant gain term ‘K’



Bode Plots: Different types of Transfer
Functions

 Example:

G(S) = 10 (1+S)(1+10S)/S(1 + 5S)(1+20S)

 Bode Plot:

G(jω) = 10(1+j 1ω)(1+j 10ω)/jω(1+ j 5ω)(1 + j 20ω)

1. K = 10; magnitude in dB = 20 log 10 = 20 dB

2. (1+j1ω); corner frequency ωT = 1; ω= 1/T; ω =1; up to ω=
1, magnitude = 0; for ω≥1, magnitude plot has a slope of 20
dB/decade

3. (1+j 10 ω); corner frequency ωT = 1; ω= 1/10; ω =0.1; up to ω=
0.1, magnitude = 0; for ω≥0.1, magnitude plot has a slope of 20
dB/decade

4. ω; corresponds to pole at origin; magnitude plot has a slope of -20
dB /decade



Bode Plots: Different types of Transfer
Functions

 (1+j5ω); corner frequency ωT = 1; ω= 1/5; ω =0.2; up to ω=
0.2, magnitude = 0; for ω≥0.2, magnitude plot has a slope of -20
dB/decade

 (1+j 20 ω); corner frequency ωT = 1; ω= 1/20; ω =0.05; up to ω=
0.05, magnitude = 0; for ω≥0.05, magnitude plot has a slope of -20
dB/decade.

 The lowest corner frequency is 0.05; therefore we take lowest
frequency in log ω scale as 0.005

The complete log- magnitude plot is shown in the next slide



 Complete log-magnitude plot: complete log-magnitude plot

(1+jω)

(1+ j 10ω)

dB 60

40

20

0.005 500 ω0.05 0.1 0.2 0.5 1.0 2 5 10 50

(1+j 5ω)

(1+j 20ω)

-20

-40

-60 We have drawn asymptotic plots for each term in G(S)

 Now, we algebraically add all the plots keeping in mind that slope 
change occurs at corner frequency only; corner frequencies are 
0.05, 0.1; slope change begins at these frequencies.

Bode Plots: Different types of Transfer
Functions



 Complete Angle plot: complete Angle plot

arg(1+ 10S) arg(1+S)

135°

90°

45°

0.005 0.05  0.1  0.2 0.5 1 2.0 5.0 10 50.0 500.0 ω

-45°

-90° arg(1+ 5S)

-135°
 Constant term introduces ‘0’ phase. At corner frequency angle is +/- 45°. At

ten times the corner frequency angle can be taken as +/- 90°. These are
asymptotic plots for angle of each term in G(S).

 Complete Angle plot is obtained by algebraically adding all the individual
plots.

Bode Plots: Different types of Transfer
Functions



 Under damped systems have complex conjugate poles. Let us consider 
normalized form of a second order system, given by

G(j u) = 1/(1 + j2ξu- u²);

│G(j u)│= 1/√*(1-u²)² +(2ξu)²]

 The log-magnitude plot is given by

20 log │G(j u)│= M(u) = -10 log[(1-u²)² +(2ξu)²]

For u <<<1; higher order terms in u are neglected to obtain 
M(u) = 0 dB

For u >>>1; M(u) = -10 log u⁴ = -40 log u; (2ξu)² << u⁴ because ξ < 1

 Therefore, log magnitude plot consists of 2 straight line asymptotes

- one horizontal line at ‘0’ dB for u<<<1

- the other, a line with a slope of -40 dB/decade for u>>>1

 These 2 asymptotes meet on ‘0’dB line at u = 1; i.e. at ω = ωn.

BODE PLOT: For 2nd order Under

damped Transfer Functions



 The asymptotic plot for 2nd order system is:

 Asymptotic plots are approx. dB40 

plots; error at u = 1. 20

0 0.1 1

-20 -6 db

corner frequency (ω=ωn)

10 100 ω

-40 dB/decade (slope)

 Exact Plot: -40 (Asymptotic plot)

The log-magnitude plot is given by

M(u) = -10 log[(1-u²)² +(2ξu)²]; Actual plots are drawn around Asymptotic plot.

We directly substitute for u = 1 & determine M(u) for different ξ values.  
M(u), u=1, is function of ξ.

u=1

ξ = 0.05

M(u)

20 dB

ξ = 0.1

ξ = 1.0

14 dB

-6 dB

BODE PLOT: For 2nd order Under

damped Transfer Functions



 The Phase Plot:

The phase angle is given by: φ(u) = -tan¯¹(2ξu/1-u²);

We observe that φ(u) is a function of u & ξ. However, at u=1, for any
value of ξ, φ(u) = -90°.

for u = 0; φ(u) = 0 & for u = ∞, φ(u) = - 180°

 For 0<u<1 & 1<u<∞, φ(u) is dependent on ξ value.

0.1 1.0 10 u

-90°

180°

Increasing ξ ξ = 0.05

ξ=0.1

ξ>1

BODE PLOT: For 2nd order Under

damped Transfer Functions



Determination of Transfer Function 
from Bode Plot The problem of Synthesis:

 Given a transfer function, we know how to draw Bode plot.

 Now we will have the reverse problem:

Given the  Bode  (log-magnitude)  plot how to determine the transfer
function. This is the process of system identification from a given

dB

0.1 1.0 10.0 100.0 ω

frequency response.
Solution:

Slope of plot ‘1’ = -20 dB/decade

Slope of plot ‘2’ = -40 dB/decade

Corner frequency (ωT = 1) corresponding to

-20 1

-40 2

-60

plot ‘1’ = 1 rad/sec & plot ‘2’ = 0.1 rads/sec

 The gain up to 1st corner frequency (= 1 rad/sec) = 0 dB; therefore K = 1 

The transfer function, G(S) = 1/(1 + S)(1 + 0.1S)



 Determine G(S) magnitude dB

20 -40 dB/decade (slope)

1.0 10.0 100.0 ω0.1

-20

-40 -20 dB/decade (slope)

 Corner frequencies are at ω = 1 & ω = 10 rads/sec

Up to ω = 1 rads/sec, the gain(magnitude) = 20 dB. We determine ‘K’
from it. 20 Log 10 K = 20 dB; therefore K = 10.

 At ω = 1 rads/sec, magnitude plot falls with a slope of -40 dB/decade.
This corresponds to a double pole term like,1/(1+S)² in G(S). From ω =
10 rads/sec, the slope changes to -20 dB/decade, therefore there is a
zero term like (1 + 0.1S) in G(S).

 Therefore G(S) = K (1 + 0.1S)/(1 + S)²

Determination of Transfer Function 
from Bode Plot



 Determine G(S):

ω

-20 dB/decade (slope)

- 40 dB/decade (slope)

1.0 10.0 100.0

-20 dB/decade (slope)

magnitude dB

40

20

0 0.1

-20

-40

-60

 There is a ramp with a slope: -20 dB/decade, starting at ω = 0.1 r/s. It
implies a term 1/S in G(S). At ω = 1 r/s; its magnitude should be ‘0’
dB, but it is 20 dB. It implies ‘K’ = 10 in G(S). From ω = 1 r/s to ω= 10
r/s, the slope is -40 dB/decade. It implies a term 1/(1 + S) in G(S). From
ω = 10 r/s to ω= 100 r/s, the slope is -20 dB/decade. It implies a term (1
+ 0.1 S) in G(S).

 Therefore, the transfer function is: G(S) = 10 (1+ 0.1 S)/S(S + 1)

Determination of Transfer Function 
from Bode Plot



 Determine G(S): magnitude dB

40

20 dB/decade (slope) 20 0 dB/decade (slope)

ω

- 8 dB

1.0 10.0 100.0

-20 dB/decade (slope)

0 0.1

-20

-40

-60

 Starting, there is a ramp slope= 20 dB/decade; it implies a S term in
G(S); its magnitude should = 0 at ω = 1 r/s, but it is not so. It implies a
gain term ‘K’ in G(S). To determine ‘K’ we write

 20 Log K + 20 log ω = -8 at ω = 1 r/s; or, 20 log K = -8; K = 0.3981

 From ω = 1 to 10 r/s ; slope is ‘0’; implies a term 1/(S +1) in G(S). From
ω = 10 to 100 r/s ; slope is -20 dB/decade; implies a term 1/(1+ 0.1S) in
G(S). From ω=1000 r/s onwards, the slope is ‘0’; implies a term (1 + 0.01
S) in G(S).

 Therefore, G(S) = 0.3981 (1 + 0.01 S)/(S + 1)(1 + 0.01 S)

Determination of Transfer Function 
from Bode Plot



Nyquist Method for finding 
Stability of CL System Stability study is carried out graphically from the open loop frequency 

response.
 Nyquist Stability Criterion:
 The characteristic equation: Q(S) = 1 + G(S)H(S) = 0

G(S)H(S) = K (S+Z₁)(S+Z₂) ……(S + Zm)/(S+P₁)(S+P₂)… (S + Pn); m ≤ n 
Q(S) = 1+ K (S+Z₁)(S+Z₂) ……(S + Zm)/(S+P₁)(S+P₂)… (S + Pn)
On simplification, we write:
Q(S) = (S+Z₁’)(S+Z₂’) ……(S + Zn’)/(S+P₁)(S+P₂)… (S + Pn)

 We observe that
Zeros of Q(S) at S =-Z₁’, S = -Z₂’, ……S = - Zn’ are the roots of the 

characteristic equation
Poles of Q(S) at S = -P₁, S = -P₂ , … S = - Pn are the same as open loop 

poles of the system
For stable system, zeros of Q(S), roots of characteristic

equation, must be in the LH of the S-plane.



 Even if some open loop poles lie in the RH of the S plane, all the zeros 
of Q(S), poles of CL system, must lie in the LH of the S plane. It means

can be made stable with anthat an unstable open loop system
appropriate design of CL system.

 The Nyquist Contour:

Since we interested in finding out whether there are any zeros of Q(S) in
the RH of the S plane, we choose a contour that completely encloses RH
of the S plane. This is called Nyquist Contour.

 In CW direction, starting from the origin

of the S plane, we traverse Nyquist Contour.

along the paths C₁ C₂ and C₃.

Since R ∞, entire RH is enclosed

Nyquist Method for finding 
Stability of CL System



 From the Nyquist Contour we observe 

that for S = jω, along path C₁ frequency, ω, 

varies from ‘0’ to ∞

along path C₃ frequency, ω, varies from

-∞ to ‘0’.

 The path C₂ is a circle of infinite radius ( R ∞). Any point on C₂ can be
represented in polar form as: S = R exp(+/- jѳ). Along C₂, while
traversing in the direction of arrows, the angle Ѳ varies from 90° to -
90°.

 The Nyquist Contour as defined in the aforesaid lines, encloses all the
right half S plane zeros & poles of 1 + G(S)H(S).

Nyquist Method for finding 
Stability of CL System



 The Stability Criterion & Nyquist Theorem:

Let,

Z: be the number of zeros of Q(S) in RH of the S plane

P: be the number of poles of Q(S) in RH of the S plane

 Nyquist Theorem:

As point S = S₀ moves along the Nyquist contour in the S plane, in the
Q(S) plane a closed contour Гq is traversed which encloses the origin ‘N’
times in CCW direction; where N = P-Z.

 For every point S = S₀ on the Nyquist contour, Q(S) has a value. If we
plot the values of Q(S) in the plane called ‘Q(S) plane’, then, according
to Nyquist theorem, we will obtain a closed path, Гq, which will enclose
the origin of ‘Q(S) plane’ ‘N’ times.

 Stability Criterion:

We know that zeros of Q(S), Z, are the closed loop system poles &

therefore should lie in the LH of the S plane for system stability.

Nyquist Method for finding 
Stability of CL System



 Stability Criterion (contd.):

Therefore, Z = 0 ( for stable CL system).

 So for a stable CL system, we have two situations:

for P ≠ 0:

N = P-Z = P

that the CCW encirclements of the origin of ‘Q(S) plane’ should be equal
to the number of poles, P, of Q(S) (open loop poles of G(S)H(S)) in the
RH of the S plane.

 The above assertion implies that even if the open loop system is
unstable, the CL system can be stable.

 For P = 0: ( no poles of G(S)H(S) in RH of the S plane) the number of
encirclements N = 0 for a stable CL system

Nyquist Method for finding 
Stability of CL System



 Modified Stability Criterion:

We know that, Q(S) = 1 + G(S)H(S)

G(S)H(S) = Q(S) – 1

 Therefore, we say that while,

Гq encircles the origin in Q(S) plane

ГGH will encircle (-1,j0) point in the GH plane

 In G(S)H(S) plane, we state the Nyquist Stability Criterion as:

For P ≠0:

If the contour ГGH of the open loop transfer function
G(S)H(S), corresponding to the Nyquist contour in the S plane, encircles
the point (-1,j0) in the CCW direction as many times as the number of
right of S-plane poles of G(S)H(S), the CL system is stable.

For P = 0: The CL system is stable if no encirclements of (-1,j0) point.

Nyquist Method for finding 
Stability of CL System



 Mapping of Nyquist contour in toГGH contour:

Following steps are followed:

1. Convert G(S)H(S) in to G(jω) H(jω)

2. For S = jω; 0 ≤ ω ≤ ∞ (segment C₁) draw polar (Nyquist) plot in GH
plane

3.For contour C₂: S = R exp(jѲ); R ∞. Substitute S = R exp(jѲ) in
G(S)H(S) and let R ∞ for ∞≤ S ≤ -∞. The entire segment maps to
‘0’ in the GH plane

4.For -∞≤ ω ≤ 0 (segment C₃) draw polar plot for negative frequencies;
which is mirror image of plot for C₁.

Nyquist Method for finding 
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 G(S)H(S) = K/(1+T₁ S) (1+T₂ S); C’₃ is mirror image of C’₁

1. Corresponding to C₁ in Гs plane we have the Nyquist plot in ГGH 
plane as C’₁.

2. Corresponding to C₂ in Гs plane we have; S = R exp(jѲ) in G(S)H(S);

R ∞

G(S)H(S) = K/(T₁ R ejѳ + 1)(T₂ R ejѳ + 1) as R ∞ therefore  

G(S)H(S) = 0 e –j2Ѳ ; │G(S)H(S)│= 0 ; arg{ G(S)H(S)} = -2Ѳ

On C₂ ; Ѳ varies from +90° to -90° as we move from +j∞ to -j∞

arg {G(S)H(S)} varies from -180° to + 180° . This is C’₂ in ГGH plane.

3. C₃ in ГS plane is mapped as C’₃ ( Nyquist plot) in ГGH plane. (Contd.)

Nyquist Method:
Examples



 For the example in previous slide:

We have drawn the Nyquist plot for a given G(S)H(S). Now we need to 
determine the stability of its closed loop system.

 The number of encirclements, N, of (-1,j0) point is given by:

N = P-Z

 For closed loop system to be stable, Z = 0

In this example, P = 0 because no poles of G(S)H(S) are in the RH of S
plane.

 Therefore N should be equal to ‘0’, i.e. that there should be no
encirclement of (-1,j0) point. We see from the Nyquist diagram that it
does not encircle (-1,j0) point & hence the closed loop system is stable.

Nyquist Method: Examples
(Contd..)



 G(S)H(S) = (S+2)/(S + 1)) (S -1); C’₃ is mirror image of C’₁

1.Corresponding to C₁ in Гs plane we have the Nyquist plot in ГGH plane 
as C’₁.

2. Corresponding to C₂ in Гs plane we have; S = R exp(jѲ) in G(S)H(S); 

R ∞

G(S)H(S) = (2+ R e jѲ )/(1+ R e jѲ)(R e jѲ -1) as, R ∞ therefore 

G(S)H(S) = 0 e –jѲ ; │G(S)H(S)│= 0 ; arg{ G(S)H(S)} = -Ѳ

on C₂ ; Ѳ varies from +90° to -90° as we move from +j∞ to -j∞

arg{G(S)H(S)} varies from -90° to +90° . This is C’₂ in ГGH plane.

3. C₃ in ГS plane is mapped as C’₃ ( Nyquist plot) in ГGH plane. (Contd. .)

Nyquist Method: Examples
(Contd..)



 Having drawn the Nyquist diagram, we need to determine the stability 
of related CL system.

 Observation:

G(S) H(S) has a pole in the RH of the S plane; therefore P = 1

N = P – Z

Z = 0 for stable CL system

Therefore, N = P = 1

that the Nyquist plot should encircle (-1,j0) 
point once in the CCW direction for the CL 
system to be stable.

 From the Nyquist diagram we that it is encircling (-1,j0) point once in 
CCW direction. Therefore, the CL system is stable

Nyquist Method: Examples
(Contd..)



 Case: G(S)H(S) has a pole at the origin of the S plane:

Since there is a pole at the origin 

in the S plane, while drawing the

Nyquist contour we bypass the origin

because pole is a singularity.

Bypassing is done by drawing a circle of

0. A point on the semi circle, C₄, isvery small radius ‘r ’; as r  
represented by

S = r ejφ

 The Nyquist contour is traversed starting 1) s = j0₊ to j∞ (C₁)

2) S = j∞ to –j∞ (C₂), 3) S = –j∞ to j0₋ (C₃) and 4) S = j0₋ to j0₊ (C₄)

Nyquist Method: Examples
(Contd..)



 Example: G(S)H(S) = K/S(1+TS)

 A : ω = j0₊ ; │G(jω) H(jω)│ = ∞; arg = -90° B: ω = j0₊;│G(jω) H(jω)│ =
∞; arg = -90°

o: ω = j∞ to -j∞ ; │G(jω) H(jω)│ = 0; arg = -180° to 180°

C₁ is mapped in to C’₁ & C₃ is mapped in to C’₃ (Nyquist/polar plot) 

C₂ is mapped in to C’₂(origin); C₄ is mapped in to C’₄. (Contd.)

Nyquist Method: Examples
(Contd..)



 G(jω)H(jω) = K/jω(1+jωT)

1. C₁: mapping in to ГGH plane: polar plot, C’₁

2. C₂: mapping in to ГGH plane: point C’₂ for S = R ejѲ

3. G(S)H(S) = K/ R ejѲ (1+T R ejѲ) as R ∞

4. G(S)H(S) = │G(S)H(S)│ ejѲ; 0 e-j2Ѳ; arg(G(S)H(S)) = -2Ѳ

5. Since Ѳ changes from +90 to -90 ; arg(G(S)H(S)) changes from -180°
to + 180°. So we get point ‘O’ in ГGH plane.

6. C₄ mapping in to C’₄ in ГGH plane for S = r ejφ as r 0

7. G(S)H(S) = K/ r ejφ (1+T r ejφ) as r 0

8. G(S)H(S) = │G(S)H(S)│ ejφ; ∞ e-jφ ; arg(G(S)H(S)) = -φ

9. Since φ changes from -90 to +90 ; arg(G(S)H(S)) changes from 90° to
-90°. So we get C’₄ ГGH plane.

Nyquist Method: Examples
(Contd..)



 For the example in previous Lecture:

We have drawn the Nyquist plot for a given G(S)H(S). Now we need to 
determine the stability of its closed loop system.

 The number of encirclements, N, of (-1,j0) point is given by:

N = P-Z

 For closed loop system to be stable, Z = 0

In this example, P = 0 because no poles of G(S)H(S) are in the RH of S
plane.

 Therefore N should be equal to ‘0’, i.e. that there should be no
encirclement of (-1,j0) point. We see from the Nyquist diagram that it
does not encircle (-1,j0) point & hence the closed loop system is stable.

Nyquist Method:
Examples



1. Corresponding to C₁ in Гs plane we have the Nyquist plot in ГGH plane 
as C’₁.

2. Corresponding to C₂ in Гs plane we have; S = R exp(jѲ) in G(S)H(S); 

R ∞

G(S)H(S) = K/ (R e jѲ -1) as, R ∞ therefore 

G(S)H(S) = 0 e –jѲ ; │G(S)H(S)│= 0 ; arg, G(S)H(S)- = -Ѳ

On C₂ ; Ѳ varies from +90° to -90° as we move from +j∞ to -j∞

arg{G(S)H(S)} varies from -90° to +90° . This is C’₂ in ГGH plane.

3. C₃ in ГS plane is mapped as C’₃ ( Nyquist plot) in ГGH plane. (Contd. .)

Nyquist Method: Examples
(Contd..)



 Having drawn the Nyquist diagram, we need to determine the stability 
of related CL system.

 Observation:

G(S) H(S) has a pole in the RH of the S plane; therefore P = 1

N = P – Z

Z = 0 for stable CL system

Therefore, N = P = 1

that the Nyquist plot should encircle (-1,j0) point once 
in the CCW direction for the CL system to be stable.

 From the Nyquist diagram we that it is encircling (-1,j0) point once in 
CCW direction. Therefore, the CL system is stable

Nyquist Method: Examples
(Contd..)



1.Corresponding to C₁ in Гs plane we have the Nyquist plot in ГGH 
plane as C’₁.

2. Corresponding to C₂ in Гs plane we have; S = R exp(jѲ) in G(S)H(S);

R ∞

G(S)H(S) = K/ (R e jѲ -1) as, R ∞ therefore 

G(S)H(S) = 0 e –jѲ ; │G(S)H(S)│= 0 ; arg, G(S)H(S)- = -Ѳ

On C₂ ; Ѳ varies from +90° to -90° as we move from +j∞ to -j∞ 

arg{G(S)H(S)} varies from -90° to +90° . This is C’₂ in ГGH plane.

3. C₃ in ГS plane is mapped as C’₃ ( Nyquist plot) in ГGH plane. (Contd. )

Nyquist Method: Examples
(Contd..)


































































































