

NARASIMHA REDDY ENGINEERING COLLEGE

(Autonomous) Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad Accredited by NAAC with A Grade, Accredited by NBA

Course Title	: Numerical Methods and Complex Variables	
Course Code	: 23MA301	
Year & Sem	: II – I	
Regulation	• NR23 (NRCM – NR23 Autonomous Syllabus)	

Previous Question Paper

Code No: 154BG JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year II Semester Examinations, March/April – 2021 LAPLACE TRANSFORMS, NUMERICAL METHODS AND COMPLEX VARIABLES (Common to EEE, ECE, EIE) Time: 3 Hours Max. Marks: 75

Answer any five questions All questions carry equal marks

- 1. Using Laplace transforms, solve $\frac{d^2y}{dt^2} 4\frac{dy}{dt} 12y = e^{3t}$, given that y(0) = 1 and y'(0) = -2. [15]
- 2.a) Find a real root of the equation $x \log_{10} x = 1.2$ by Bisection method.
- b) Prove that $E\nabla = \Delta = \nabla E$ and $\nabla \Delta = \Delta \nabla = \delta^2$. [8+7]
- 3. Using Lagrange's interpolation formula, find y(6) from the following table. [15]

 x
 3
 5
 7
 9
 11

 y
 6
 24
 58
 108
 74
- 4. Taking n = 6, evaluate the approximate value of $\int_{4}^{32} \log x \, dx$ by using a) Trapezoidal rule b) Simpson's $1/3^{rd}$ and c) Simpson's $3/8^{th}$ rules. [5+5+5]

5. Using Runge – Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 - 2x}{y^2 + x}$, y(0) = 1. Compute y(0.1) and y(0.2). [15]

- 6.a) Find the value of 'p', if the function $f(z) = \frac{1}{2} \log(x^2 + y^2) + i \tan^{-1} \left(\frac{px}{y}\right)$ is analytic. b) Show that $u = e^{-x} (x \sin y - y \cos y)$ is harmonic. [8+7]
- 7.a) Using Cauchy's integral formula, evaluate $\oint \frac{e^z}{(z+2)(z+1)^2} dz$ where C is the circle |z| = 3.

b) Determine the poles and residues of the function $f(z) = \frac{z+1}{z^2(z-2)}$. [7+8]

Code No: 154BG

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year II Semester (Special) Examinations, January/February - 2021 LAPLACE TRANSFORMS, NUMERICAL METHODS AND COMPLEX VARIABLES (Common to EEE, ECE)

Time: 2 hours

Max. Marks: 75

Answer any Five Questions All Questions Carry Equal Marks

1.a) Find the Laplace transform of the function $f(t) = \begin{cases} t & 0 < t < a \\ -t + 2a & a < t < 2a \end{cases}$

- b) Using Laplace transform, solve $(D^2 + 1)x = t \cos 2t$, given $x = 0, \frac{dx}{dt} = 0$ at t = 0. [5+10]
- 2.a) By using method of false position, find the root of the equation $\cos x \cdot xe^x = 0$.
- b) Given $\sin 45^{\circ} = 0.7071$, $\sin 50^{\circ} = 0.7660$, $\sin 55^{\circ} = 0.8192$ and $\sin 60^{\circ} = 0.8660$. Find $\sin 52^{\circ}$ using Newton's interpolation formula. [7+8]
- 3.a) Using Lagrange formula express the function $\frac{x^2+6x-1}{(x^2-1)(x-4)(x-6)}$ as a sum of partial fractions.

b) Show
$$\Delta^2 x^{(m)} = m(m-1)x^{(m-2)}$$
, m is a positive integer and $h = 1$ [10+5]

- 4. Using modified Euler's method, find an approximate value of y when x =1.3 in steps of 0.1, given that $\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2}$, y(1) = 1. [15]
- 5.a) Find the successive approximate solution of the differential equation y' = y, y(0) = 1 by Picard's method and compare it with exact solution.
 - b) Evaluate $\int_0^{\pi/2} e^{\sin x} dx$ taking $h = \pi/6$. [7+8]
- 6.a) Find an analytic function whose imaginary part is $e^x(xsiny + ycosy)$.
- b) Show that xy^2 cannot be real part of an analytic function.
- c) Determine all the values of $(1-i)^{1+i}$. [5+5+5]
- 7.a) Evaluate $\oint_c \frac{dz}{z^2 + 6iz}$ where *c* is the circle |z| = 1.
 - b) Evaluate $\int_c (y x 3x^2i)dz$, where *c* consists of the line segments from z = 0 to z = iand the other from z = i to z = 1+i. [7+8]

8.a) State Cauchy integral formula.

b) If 0 < |z-1| < 2 then express $f(z) = \frac{z}{(z-1)(z-3)}$ in a series of positive and negative powers of (z-1). [7+8]

---00000----

R18

	Code No: 154BG JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERAB/ B. Tech II Year II Semester Examinations, August/September - 2021 LAPLACE TRANSFORMS, NUMERICAL METHODS AND COMPLEX VARI (Electrical and Electronics Engineering) Time: 3 Hours Max. Ma	ABLES
10	All questions carry equal marks	much much a
	1.a) Find $L[te^{2t} \sin 3t]$ b) Find Inverse Laplace transform of $\frac{3s+7}{(s^2-2s-3)}$. 2.a) Use convolution theorem to find $L^{-1}\left[\frac{s}{(s^2+4)^2}\right]$	[7+8]
	b) Find $L^{-1}\left[\frac{S+3}{S^2-10S+29}\right]$.	[8+7]
and the second s	3.a) Find a real root of $xe^{t} = 3$ using Regula falsi method. b) Using Newton's forward interpolation formula find the value of $f(1.6)$ if x 1 1.4 1.8 2.2 y 3.49 4.82 5.96 6.5	[7+8]
	4.a) Find a real root of the equation $x^3 - 3x + 1 = 0$ using iterative method. b) Find y(43) if y(20) = 0.939, y(25) = 0.906, y(32) = 0.848 and y(49) = 0 Lagrange's formula.	[748]
	5. Given $\frac{dy}{dx} = x + \sin y$ and $y(0)=1$ compute $y(0.2)$ and $y(0.4)$ with h=0	
And Antonio and Antoni	Euler's modified method. 6.a) Find the analytic function whose real part is $e^{-r}(x \sin y + y \cos y)$ b) If f(z) is an analytic function then show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$.	[15] [7+8]
	7.a) Expand $\frac{z}{(z+2)(z+1)}$ about z=2.	
	b) The function defined by $f(z) = \frac{x^3(1+i) - y^3(1-i)}{(x^2 + y^2)}$ at $z \neq 0$, and $f(0) = 0$ is continuation satisfies C.R equations at the origin, but $f'(0)$ does not exist.	[7+8]
	8.a) Expand $\frac{2z^3+1}{(z+z^2)}$ about $z = 1$ as a Taylor's series about $z = 0$ as a Laurent series.	
And a second sec	b) Evaluate using Residue theorem $\int_{C} \frac{ze^{2z}dz}{(z-1)^3}$ where C is $ z =2$. ooOoo	[8+7]