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 In electromagnetism, electric flux is the rate 

of flow of the electric field through a given 

area .

The total number of lines of force passing 

through the unit area of a surface.

 It is scalar quantity.

 Its unit is N.m²/C or V.m

ELECTRIC FLUX 



Mathematically the electric flux is defined as:

"The dot product of electric field 

intensity (E) and the vector area (∆A) is called 

electric flux.“

 Where θ is angle between E and ∆A

MATHEMATICALLY

AEe  .

cos. AEe 



PROPERTIES

Maximum Flux

 If the surface is placed perpendicular to the electric

field then maximum electric lines of force will pass

through the surface. Consequently maximum

electric flux will pass through the surface

 line are perpendicular than θ=0



Zero Flux

 If the surface is placed parallel to the electric field

then no electric lines of force will pass through the

surface. Consequently no electric flux will pass

through the surface.

CONT...



Consider a small positive point charge +q placed 

at the Centre of a closed sphere of radius "r".

The relation is not applicable in this situation 

because the direction of electric intensity varies 

point to point over the surface of sphere. 

 In order to overcome this problem the sphere is 

divided into a number of small and equal pieces 

each of area ∆A.

The direction of electric field in each segment of 

sphere is the same i.e. outward normal .

ELECTRIC FLUX THROUGH A SPHERE



Now we will determine the flux through each 

segment.

Electric flux through the first segment:

But θ=0

CONT...
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Electric flux through the second segment:

Similarly, Electric flux through other segments:

CONT…
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Being a scalar quantity, the total flux through the

sphere will be equal to the algebraic sum of all

these flux i.e.

But

CONT…
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As                         (Area of sphere)

Then equation is

This expression shows that the total flux through 

the sphere is 1/eO times the charge enclosed (q) 

in the sphere.
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The Electric Flux Density is called Electric

Displacement denoted by D, is a vector field that

appears in Maxwell's equations.

 It is equal to the electric field strength

multiplied by the permittivity of the material

through which the electric field extends.

 It is measured in coulombs per square meter.

The Electric Flux Density (D) is related to the

Electric Field (E) by:

------Equation (1)

ELECTRIC FLUX DENSITY



 In Equation [1], ε is the permittivity of the 
medium (material) where we are measuring the 
fields.

 If you recall that the Electric Field is equal to the 
force per unit charge (at a distance R from a 
charge of value q1 [C])

Equation------ (2)

Then the Electric Flux Density is:

Equation------ (3)

CONT…



From Equation [3], the Electric Flux Density is

very similar to the Electric Field, but does not

depend on the material in which we are

measuring (that is, it does not depend on the

permittivity .

Note that the D field is a vector field, which

means that at every point in space it has a

magnitude and direction.

The Electric Flux Density has units of Coulombs

per meter squared [C/m²].

CONT…



Definitions

• Flux—The rate of flow through an area or volume.  It can 

also be viewed as the product of an area and the vector 

field across the area

• Electric Flux—The rate of flow of an electric field through 

an area or volume—represented by the number of E field 

lines penetrating a surface



Charge and Electric Flux

Previously, we answered the question – how do we find 

E-field at any point in space if we know charge distribution?

Now we will answer the opposite question – if we know E-field

distribution in space, what can we say about charge distribution?



Electric flux

Electric flux is associated with the flow of electric field through a surface

For an enclosed charge, there is a connection 

between the amount of charge 

and electric field flux.
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Calculating Electric Flux

dV
A

dt


Amount of fluid passing through 

the rectangle of area A

cos
dV

A
dt

 

dV
A

dt

 





Calculating Electric Flux

• The flux for an electric field is

• For an arbitrary surface and nonuniform E field 

• Where the area vector  is a vector with magnitude of the 

area A and direction normal to the plane of A
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Flux of a Uniform Electric Field

cosE E A EA 
 

   A A n
 

 n


- unit vector in the direction of normal to the surface

Flux of a Non-Uniform Electric Field 

E

S

E d A
 

  
E – non-uniform and

A- not flat



Few examples on calculating the electric flux

32 10 [ / ]E N C 

Find electric flux



Definitions

• Symmetry—The balanced structure of an object, the halves 

of which are alike

• Closed surface—A surface that divides space into an inside 

and outside region, so one can’t move from one region to 

another without crossing the surface

• Gaussian surface—A hypothetical closed surface that has 

the same symmetry as the problem we are working on—

note this is not a real surface it is just an mathematical one



Gauss’ Law 

· Gauss’ Law depends on the enclosed charge only

1. If there is a positive net flux there is a net positive charge 

enclosed

2. If there is a negative net flux there is a net negative charge 

enclosed

3. If there is a zero net flux there is no net charge enclosed

• Gauss’ Law works in cases of symmetry
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Types of Symmetry

• Cylindrical symmetry—example a can

• Spherical symmetry—example a ball

• Rectangular symmetry—example a box—rarely used



Steps to Applying Gauss’ Law

To find the E field produced by a charge distribution at a point of 

distance r from the center

1. Decide which type of symmetry best complements the 

problem

2. Draw a Gaussian surface (mathematical not real) 

reflecting the symmetry you chose around the charge 

distribution at a distance of r from the center

3. Using Gauss’s law obtain the magnitude of E





Gauss’s Law
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Applications of the Gauss’s Law

If no charge is enclosed within Gaussian surface – flux is zero!

Electric flux is proportional to the algebraic number of lines leaving

the surface, outgoing lines have positive sign, incoming - negative

Remember – electric field lines must start and must end on charges!



Examples of certain field configurations

Remember, Gauss’s law is equivalent to Coulomb’s law 

However, you can employ it for certain symmetries to solve the reverse problem 

– find charge configuration from known E-field distribution. 

Field within the conductor – zero

(free charges screen the external field)

Any excess charge resides on the

surface

0

S

E d A
 
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Field of a charged conducting sphere



Field of a thin, uniformly charged conducting wire

Field outside the wire can only point 

radially outward, and, therefore, may

only depend on the distance from the wire 

0
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- linear density of charge



Field of the uniformly charged sphere 

rE
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


Uniform charge within a sphere of radius r
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Charged Isolated Conductors

• In a charged isolated conductor all the charge moves to the 

surface  

• The E field inside a conductor must be 0 otherwise a 

current would be set up

• The charges do not necessarily distribute themselves 

uniformly, they distribute themselves so the net force on 

each other is 0.

• This means the surface charge density varies over a 

nonspherical conductor



Charged Isolated Conductors cont

• On a conducting surface

• If there were a cavity in the isolated conductor, no charges 

would be on the surface of the cavity, they would stay on 

the surface of the conductor

o

E


s




Charge on solid conductor resides on surface.

Charge in cavity makes a equal but opposite charge reside on 

inner surface of conductor.



Properties of a Conductor in Electrostatic Equilibrium

1. The E field is zero everywhere inside the conductor

2. If an isolated conductor carries a charge, the charge resides on its 

surface

3. The electric field just outside a charged conductor is 

perpendicular to the surface and has the magnitude given above

4. On an irregularly shaped conductor, the surface charge density is 

greatest at locations where the radius of curvature of the surface 

is smallest



Charges on Conductors

Field within conductor

E=0



Experimental Testing of the Gauss’s Law



1

Gauss’s Law

Basic Concepts

Electric Flux

Gauss’s Law

Applications of Gauss’s Law

Conductors in Equilibrium



2

Electric Flux
The electric flux, FE, through a surface is defined as the scalar product of E and

A, FE = EA. A is a vector perpendicular to the surface with a magnitude equal

to the surface area. This is true for a uniform electric field.

A = A cos so FE = EA = EA cos
FE = EA
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Electric Flux Continued
What about the case when the electric field is not uniform and 

the surface is not flat?

Then we divide the surface into small elements and add 

the flux through each.

E i i

i

E d A E d AF     
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Electric Flux Continued
Finally, what about a closed

surface?

A closed surface is one that

completely encloses a volume.

This is handled as before, but we

need to resolve ambiguity about

direction of A. It is defined to

point outward so flux exiting the

enclosed volume is positive and

flux entering is negative.

F  E E dA
rr

Ñ
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Worked Example 1

Compute the electric flux through a cylinder with an axis parallel to the electric

field direction.

E

The flux through the curved surface is zero since E is perpendicular to dA

there. For the ends, the surfaces are perpendicular to E, and E and A are

parallel. Thus the flux through the left end (into the cylinder) is –EA, while

the flux through right end (out of the cylinder) is +EA. Hence the net flux

through the cylinder is zero.

A
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Gauss’s Law
Gauss’s Law relates the electric flux through a closed surface with

the charge Qin inside that surface.

0

F   
rr

Ñ
in

E

Q
E dA



This is a useful tool for simply determining the electric field, but

only for certain situations where the charge distribution is either

rather simple or possesses a high degree of symmetry.
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Select a Gaussian surface with symmetry that
matches the charge distribution

Draw the Gaussian surface so that the electric field
is either constant or zero at all points on the
Gaussian surface

Use symmetry to determine the direction of E on
the Gaussian surface

Evaluate the surface integral (electric flux)

Determine the charge inside the Gaussian surface

Solve for E

Problem Solving Strategies for Gauss’s 

Law
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Worked Example 2

Starting with Gauss’s law, calculate the electric field 

due to an isolated point charge q.

q
E

r dA

We choose a Gaussian surface that is a sphere of

radius r centered on the point charge. I have

chosen the charge to be positive so the field is

radial outward by symmetry and therefore

everywhere perpendicular to the Gaussian surface.

 
rr

E dA E dA Gauss’s law then gives:

0 0

    
rr

Ñ Ñ
inQ q

E dA E dA
 

Symmetry tells us that the field is 

constant on the Gaussian surface.

 2

2 2

0 0

1
4 so

4
      e

q q q
E dA E dA E r E k

r r


 Ñ Ñ
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Worked Example 3

An insulating sphere of radius a has a uniform charge density ρ and a total

positive charge Q. Calculate the electric field outside the sphere.

a

Since the charge distribution is spherically

symmetric we select a spherical Gaussian surface

of radius r > a centered on the charged sphere.

Since the charged sphere has a positive charge, the

field will be directed radially outward. On the

Gaussian sphere E is always parallel to dA, and is

constant.
Q

rE

dA

 2Left side: 4     
rr

Ñ Ñ ÑE dA E dA E dA E r

0 0

Right side: inQ Q

 




 2

2 2

0 0

1
4   or  

4
e

Q Q Q
E r E k

r r


 
  


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Worked Example 3 cont’d

a

Q

Find the electric field at a point inside the sphere.

Now we select a spherical Gaussian surface with

radius r < a. Again the symmetry of the charge

distribution allows us to simply evaluate the left side

of Gauss’s law just as before.r

The charge inside the Gaussian sphere is no longer Q. If we call the

Gaussian sphere volume V’then

 2Left side: 4     E dA E dA E dA E r
rr

Ñ Ñ Ñ


 
3

2

0 0

4
4

3

inQ r
E r




 
 




34
Right side:  

3
inQ V r   

 

3

3 32
30 00

4 1
  but    so  

43 43 4

3

e

r Q Q Q
E r E r k r

a ar a

 


   

    


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Worked Example 3 cont’d

2

3

We found for  ,   

and for  ,

e

e

Q
r a E k

r

k Q
r a E r

a

 

 
a

Q

Let’s plot this:
E

ra
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Conductors in Electrostatic 

Equilibrium

The electric field is zero everywhere inside the 

conductor

Any net charge resides on the conductor’s surface

The electric field just outside a charged conductor 

is perpendicular to the conductor’s surface

By electrostatic equilibrium we mean a situation where 

there is no net motion of charge within the conductor
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Conductors in Electrostatic 

Equilibrium

Why is this so?

If there was a field in the conductor the charges

would accelerate under the action of the field.

The electric field is zero everywhere inside the conductor

+
+

+
+

+
+

+
+

+
+

+
+

---------------------

Ein

E E

The charges in the conductor

move creating an internal electric

field that cancels the applied field

on the inside of the conductor
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Worked Example 4
Any net charge on an isolated conductor must reside on its surface and the

electric field just outside a charged conductor is perpendicular to its surface

(and has magnitude σ/ε0). Use Gauss’s law to show this.

For an arbitrarily shaped conductor we can

draw a Gaussian surface inside the conductor.

Since we have shown that the electric field

inside an isolated conductor is zero, the field

at every point on the Gaussian surface must be

zero.

From Gauss’s law we then conclude that the net

charge inside the Gaussian surface is zero. Since

the surface can be made arbitrarily close to the

surface of the conductor, any net charge must

reside on the conductor’s surface.

0

 
rr

Ñ
inQ

E dA




Physics 24-Winter 2003-L03 15

Worked Example 4 cont’d
We can also use Gauss’s law to determine the electric field just outside the

surface of a charged conductor. Assume the surface charge density is σ.

Since the field inside the conductor is zero

there is no flux through the face of the

cylinder inside the conductor. If E had a

component along the surface of the

conductor then the free charges would

move under the action of the field creating

surface currents. Thus E is perpendicular

to the conductor’s surface, and the flux

through the cylindrical surface must be

zero. Consequently the net flux through

the cylinder is EA and Gauss’s law gives:

0 0 0

orin
E

Q A
EA E

 

  
F    
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Worked Example 5
A conducting spherical shell of inner radius a and outer radius b with a net

charge -Q is centered on point charge +2Q. Use Gauss’s law to find the

electric field everywhere, and to determine the charge distribution on the

spherical shell.

a

b

-Q
First find the field for 0 < r < a

This is the same as Ex. 2 and is the field due to a

point charge with charge +2Q.

2

2
e

Q
E k

r


Now find the field for a < r < b

The field must be zero inside a conductor in equilibrium. Thus from Gauss’s law

Qin is zero. There is a + 2Q from the point charge so we must have Qa = -2Q on

the inner surface of the spherical shell. Since the net charge on the shell is -Q we

can get the charge on the outer surface from Qnet = Qa + Qb.

Qb= Qnet - Qa = -Q - (-2Q) = + Q.

+2Q
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Worked Example 5 cont’d

a

b

-Q

+2Q

Find the field for r > b

From the symmetry of the problem, the field in

this region is radial and everywhere perpendicular

to the spherical Gaussian surface. Furthermore,

the field has the same value at every point on the

Gaussian surface so the solution then proceeds

exactly as in Ex. 2, but Qin=2Q-Q.

 24     
rr

Ñ Ñ ÑE dA E dA E dA E r

Gauss’s law now gives:

 2

2 2

0 0 0 0

2 1
4 or

4

in
e

Q Q Q Q Q Q
E r E k

r r


   


    
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Summary

Two methods for calculating electric field
Coulomb’s Law

Gauss’s Law

Gauss’s Law: Easy, elegant method for symmetric
charge distributions

Coulomb’s Law: Other cases

Gauss’s Law and Coulomb’s Law are equivalent
for electric fields produced by static charges



Electric Flux Density, Gauss’s Law, 

and Divergence



Electric Flux Density

• Faraday’s Experiment



Electric Flux Density, D

• Units:  C/m2

• Magnitude:  Number of flux lines (coulombs) 

crossing a surface normal to the lines divided by 

the surface area.

• Direction:  Direction of flux lines (same direction 

as E).

• For a point charge: 

• For a general charge distribution, 



Gauss’s Law

• “The electric flux passing through any 

closed surface is equal to the total charge 

enclosed by that surface.”



• The integration is performed over a closed

surface, i.e. gaussian surface.



• We can check Gauss’s law with a point 

charge example.



Symmetrical Charge Distributions

• Gauss’s law is useful under two 
conditions.

1. DS is everywhere either normal or 
tangential to the closed surface, so that 
DS

.dS becomes either DS dS or zero, 
respectively.

2. On that portion of the closed surface for 
which DS

.dS is not zero, DS = constant.



Gauss’s law simplifies the task of finding D near an 

infinite line charge.



Infinite coaxial cable:



Differential Volume Element

• If we take a small enough closed surface, 

then D is almost constant over the surface.





Divergence

Divergence is the outflow of flux from a small 
closed surface area (per unit volume) as 
volume shrinks to zero.



-Water leaving a bathtub

-Closed surface (water itself) is essentially incompressible

-Net outflow is zero

-Air leaving a punctured tire

-Divergence is positive, as closed surface (tire) exhibits net 

outflow



Mathematical definition of divergence

div D 
D x

x

D y

y


D z

z










- Cartesian

div D 
0v

S
D

v






dlim



Surface integral as the volume element (v) approaches zero

D is the vector flux density



Cylindrical

Spherical

div D  1






  D 

1



D




Dz

z


div D  1

r
2

 D r r
2







r


1

r sin  

 D  sin   



1

r sin  

D 




Divergence in Other Coordinate Systems



Maxwell’s First Equation

S

.

SA




d Q

S

.

SA




d

v

Q

v

Gauss’ Law…

…per unit volume

Volume shrinks to zero 0v

S

.

SA




d

v
lim

 0v

Q

v
lim



Electric flux per unit volume is equal to the volume charge density



Maxwell’s First Equation

div D   v

0v

S

.

SA




d

v
lim

 0v

Q

v
lim



Sometimes called the point form of Gauss’ Law

Enclosed surface is reduced to a single point



 and the Divergence Theorem

 del operator


 ax 
x

 ay 
y


 az 
z



What is del?



’s Relationship to Divergence

div D  V D

True for all coordinate systems



Other  Relationships

Gradient – results from  operating on a function

Represents direction of greatest change



Curl – cross product of  and 

Relates to work in a field

If curl is zero, so is work



Examination of  and flux 

Cube defined by 1 < x,y,z < 1.2

D 2 x
2

 y a x 3 x
2

 y
2

 a y

Q

S

.

SD




d

vol

.

v v




d 

Calculation of total flux

 total  left  right  front  back

x1 1 x2 1.2

y1 1 y2 1.2

z1 1 z2 1.2

x1
z1

z2

z

y1

y2

y2 x1
2

 y




d




d y1
z1

z2

z

x1

x2

x3 x
2

 y1
2






d




d

x2
z1

z2

z

y1

y2

y2 x2
2

 y




d




d y2
z1

z2

z

x1

x2

x3 x
2

 y2
2






d




d



total x1 x2 y1 y2

total 0.103

Evaluation of  at center of cubeV D

div D 
x

2 x
2

 y d

d y
3 x

2
 y

2
 d

d


div D  4 x y 6 x
2

 y

divD 4 1.1( ) 1.1( ) 6 1.1( )
2

 1.1( )

divD 12.826



Applications of Gauss’s Law



Chapter 4

Energy and Potential



4.1 Energy to move a point 

charge through a Field

• Force on Q due to an electric field

• Differential work done by an external 

source moving Q

• Work required to move a charge a finite 

distance

F E QE

dW QE dL



4.2 Line Integral

• Work expression without using vectors

EL is the component of E in the dL direction

• Uniform electric field density

W Q

initial

final

LE L





d

W QE L BA



Example

E x y( )

y

x

2











 Q 2 A

.8

.6

1











 B

1

0

1











 Path: x
2

y
2

 1 z 1

Calculate the work to cary the charge from point B to point A.

W Q

B0

A0

xE x y( )
0






d Q

B1

A1

yE x y( )
1






d Q

B2

A2

zE x y( )
2






d

Plug path in for x and y in E(x,y)

W Q

B0

A0

xE 0 1 x
2

 
0





d Q

B1

A1

yE 1 y
2

 0 
1





d Q

B2

A2

zE 0 0( )
2






d W 0.96



Example

• Same amount of work with a different path

• Line integrals are path independent

E x y( )

y

x

2











 Q 2 A

.8

.6

1











 B

1

0

1











 Path: y 3 x 1( ) z 1

(straight line) 

Calculate the work to cary the charge from point B to point A.

W Q

B0

A0

xE x y( )
0






d Q

B1

A1

yE x y( )
1






d Q

B2

A2

zE x y( )
2






d

Plug path in for x and y in E(x,y)

W Q

B0

A0

xE 0 3 x 1( )[ ]
0






d Q

B1

A1

yE
y

3
1 0









1






d Q

B2

A2

zE 0 0( )
2






d W 0.96



4.3 Potential Difference

• Potential Difference

• Using radial distances from the point charge



4.3 Potential

• Measure potential difference between a 

point and something which has zero 

potential “ground”
VAB VA VB



Example – D4.4

E x y z( )

6x
2

6y

4















a) Find Vmn

M

2

6

1











 N

3

3

2











 VMN
N0

M0

x6x
2




d

N1

M1

y6y




d

N2

M2

z4




d VMN 139

b) Find Vm if V=0 at Q(4,-2,-35) 

Q

4

2

35











 VM
Q0

M0

x6x
2




d

Q1

M1

y6y




d

Q2

M2

z4




d VM 120

c) Find Vn if V=2 at P(1, 2, -4)

P

1

2

4











 VN
P0

N0

x6x
2




d

P1

N1

y6y




d

P2

N2

z4




d 2 VN 19



4.4 Potential Field of a Point 

Charge

• Let V=0 at infinity 

• Equipotential surface:

– A surface composed of all points having the 

same potential



Example – D4.5

Q 15 10
9

 P1

2

3

1











 0 8.85 10
12



Q is located at the origin

a) Find V1 if V=0 at (6,5,4)

P0

6

5

4











 V1
Q

40

1

P1

1

P0










 V1 20.677

b) Find V1 if V=0 at infinity

V1
Q

40

1

P1

 V1 36.047

c) Find V1 if V=5 at (2,0,4) 

P5

2

0

4











 V1
Q

40

1

P1

1

P5










5 V1 10.888



Potential field of single point 

charge

Q1

A

|r - r1|

Move A

from infinity

V r( )
Q1

4   0 r r1



Potential due to two charges

Q1

A

|r - r1|

Q2

|r - r2|

Move A

from infinity

V r( )
Q1

4   0 r r1

Q2

4   0 r r2




Potential due to n point charges

Continue adding charges

V r( )
Q1

4   0 r r1

Q2

4   0 r r2
 ....

Qn

4   0 r r n


V r( )

1

n

m

Qm

4   0 r r m





Potential as point charges become 

infinite

Volume of charge

Line of charge

Surface of charge

V r( ) v prime

 v r prime 
4   0 r r prime







d

V r( ) L prime

 L r prime 
4   0 r r prime







d

V r( ) S prime

 S r prime 
4   0 r r prime







d



Example

Find V on the z 

axis for a uniform 

line charge L in 

the form of a ring

V r( ) L prime

 L r prime 
4   0 r r prime







d



Conservative field

No work is done (energy is conserved) around a 

closed path

KVL is an application of this



4.6

Potential gradient Relationship between 

potential and electric field intensity

Two characteristics of relationship:

1. The magnitude of the electric field intensity is given 

by the maximum value of the rate of change of potential 

with distance

2. This maximum value is obtained when the direction 

of E is opposite to the direction in which the potential is 

increasing the most rapidly

V = -




dE dL



Gradient

• The gradient of a scalar is a vector

• The gradient shows the maximum space rate of change 

of a scalar quantity and the direction in which the 

maximum occurs

• The operation on V by which -E is obtained

E = - grad V = - V



Gradients in different coordinate 

systems

The following equations are found on page 104 and 

inside the back cover of the text:

Cartesian

Cylindrical

Spherical

gradV
V

x
a x

V

y
a y

V

z
a z

gradV
V


a 

1



V


 a 

V

z
a z

gradV
V

r
a r

1

r

V


 a 

1

r sin  

V


 a 



Example 4.3

Given the potential field, V = 2x2y - 5z, and a point P(-4, 

3, 6), find the following: potential V, electric field intensity 

E

potential VP = 2(-4)2(3) - 5(6) = 66 V

electric field intensity - use gradient operation

E = -4xyax - 2x2ay + 5az

EP = 48ax - 32ay + 5az



Dipole

The name given to two point charges of equal magnitude 

and opposite sign, separated by a distance which is small 

compared to the distance to the point P, at which we want 

to know the electric and potential fields



Potential

To approximate the 

potential of a dipole, 

assume R1 and R2 are 

parallel since the point 

P is very distant

V
Q

4   0

1

R1

1

R2












V
Q d cos  

4   0 r
2





Dipole moment

p = Q*d

The dipole moment is assigned the symbol p and is 

equal to the product of charge and separation

The dipole moment expression simplifies the 

potential field equation



Example

An electric dipole located at the origin in free space 

has a moment p = 3*ax - 2*ay + az nC*m.  Find V at 

the points (2, 3, 4) and (2.5, 30°, 40°).



p

3 10
9



2 10
9



1 10
9

















 0 8.854 10
12



P

2

3

4











 V
p

4  0 P 2

P

P
 V 0.23

Transform this 

into rectangular 

coordinates
Pspherical

2.5

30


180


40


180




















Prectangular

2.5 sin 30


180










 cos 40


180












2.5 sin 30


180










 sin 40


180












2.5 cos 30


180






























 Prectangular

0.958

0.803

2.165













V
p

4  0 Prectangular 2

Prectangular

Prectangular

 V 1.973



Potential energy

Bringing a positive charge from infinity into the field 

of another positive charge requires work.  The work is 

done by the external source that moves the charge into 

position.  If the source released its hold on the charge, 

the charge would accelerate, turning its potential 

energy into kinetic energy.

The potential energy of a system is found by finding 

the work done by an external source in positioning the 

charge.



Empty universe

Positioning the first charge, Q1, requires no work (no field present)

Positioning more charges does take work

Total positioning work = potential energy of field = WE = 

Q2V2,1 + Q3V3,1 + Q3V3,2 + Q4V4,1 + Q4V4,2 + Q4V4,3 + ...

Manipulate this expression to get

WE = 0.5(Q1V 1 + Q2V2 + Q3V3 + …)



Where is energy stored?

The location of potential energy cannot be precisely 

pinned down in terms of physical location - in the 

molecules of the pencil, the gravitational field, etc?

So where is the energy in a capacitor stored?

Electromagnetic theory makes it easy to believe that 

the energy is stored in the field itself



Energy and Potential



Energy to move a point charge 

through a Field

• Force on Q due to an electric field

• Differential work done by an external 

source moving Q

• Work required to move a charge a finite 

distance

F E QE

dW QE dL



Line Integral

• Work expression without using vectors

EL is the component of E in the dL direction

• Uniform electric field density

W Q

initial

final

LE L





d

W QE L BA



Potential Difference

• Potential Difference

• Using radial distances from the point charge



Potential

• Measure potential difference between a 

point and something which has zero 

potential “ground”
VAB VA VB



Potential Field of a Point Charge

• Let V=0 at infinity 

• Equipotential surface:

– A surface composed of all points having the 

same potential



Potential field of single point 

charge

Q1

A

|r - r1|

Move A

from infinity

V r( )
Q1

4   0 r r1



Potential due to two charges

Q1

A

|r - r1|

Q2

|r - r2|

Move A

from infinity

V r( )
Q1

4   0 r r1

Q2

4   0 r r2




Potential due to n point charges

Continue adding charges

V r( )
Q1

4   0 r r1

Q2

4   0 r r2
 ....

Qn

4   0 r r n


V r( )

1

n

m

Qm

4   0 r r m





Potential as point charges become 

infinite

Volume of charge

Line of charge

Surface of charge

V r( ) v prime

 v r prime 
4   0 r r prime







d

V r( ) L prime

 L r prime 
4   0 r r prime







d

V r( ) S prime

 S r prime 
4   0 r r prime







d



Potential gradient Relationship between 

potential and electric field intensity

Two characteristics of relationship:

1. The magnitude of the electric field intensity is given 

by the maximum value of the rate of change of potential 

with distance

2. This maximum value is obtained when the direction 

of E is opposite to the direction in which the potential is 

increasing the most rapidly

V = -




dE dL



Gradient

• The gradient of a scalar is a vector

• The gradient shows the maximum space rate of change 

of a scalar quantity and the direction in which the 

maximum occurs

• The operation on V by which -E is obtained

E = - grad V = - V



Gradients in different coordinate 

systems

The following equations are found on page 104 and 

inside the back cover of the text:

Cartesian

Cylindrical

Spherical

gradV
V

x
a x

V

y
a y

V

z
a z

gradV
V


a 

1



V


 a 

V

z
a z

gradV
V

r
a r

1

r

V


 a 

1

r sin  

V


 a 



Chapter 4

Energy and Potential



4.1 Energy to move a point 

charge through a Field

• Force on Q due to an electric field

• Differential work done by an external 

source moving Q

• Work required to move a charge a finite 

distance

F E QE

dW QE dL



4.2 Line Integral

• Work expression without using vectors

EL is the component of E in the dL direction

• Uniform electric field density

W Q

initial

final

LE L





d

W QE L BA



Example

E x y( )

y

x

2











 Q 2 A

.8

.6

1











 B

1

0

1











 Path: x
2

y
2

 1 z 1

Calculate the work to cary the charge from point B to point A.

W Q

B0

A0

xE x y( )
0






d Q

B1

A1

yE x y( )
1






d Q

B2

A2

zE x y( )
2






d

Plug path in for x and y in E(x,y)

W Q

B0

A0

xE 0 1 x
2

 
0





d Q

B1

A1

yE 1 y
2

 0 
1





d Q

B2

A2

zE 0 0( )
2






d W 0.96



Example

• Same amount of work with a different path

• Line integrals are path independent

E x y( )

y

x

2











 Q 2 A

.8

.6

1











 B

1

0

1











 Path: y 3 x 1( ) z 1

(straight line) 

Calculate the work to cary the charge from point B to point A.

W Q

B0

A0

xE x y( )
0






d Q

B1

A1

yE x y( )
1






d Q

B2

A2

zE x y( )
2






d

Plug path in for x and y in E(x,y)

W Q

B0

A0

xE 0 3 x 1( )[ ]
0






d Q

B1

A1

yE
y

3
1 0









1






d Q

B2

A2

zE 0 0( )
2






d W 0.96



4.3 Potential Difference

• Potential Difference

• Using radial distances from the point charge



4.3 Potential

• Measure potential difference between a 

point and something which has zero 

potential “ground”
VAB VA VB



Example – D4.4

E x y z( )

6x
2

6y

4















a) Find Vmn

M

2

6

1











 N

3

3

2











 VMN
N0

M0

x6x
2




d

N1

M1

y6y




d

N2

M2

z4




d VMN 139

b) Find Vm if V=0 at Q(4,-2,-35) 

Q

4

2

35











 VM
Q0

M0

x6x
2




d

Q1

M1

y6y




d

Q2

M2

z4




d VM 120

c) Find Vn if V=2 at P(1, 2, -4)

P

1

2

4











 VN
P0

N0

x6x
2




d

P1

N1

y6y




d

P2

N2

z4




d 2 VN 19



4.4 Potential Field of a Point 

Charge

• Let V=0 at infinity 

• Equipotential surface:

– A surface composed of all points having the 

same potential



Example – D4.5

Q 15 10
9

 P1

2

3

1











 0 8.85 10
12



Q is located at the origin

a) Find V1 if V=0 at (6,5,4)

P0

6

5

4











 V1
Q

40

1

P1

1

P0










 V1 20.677

b) Find V1 if V=0 at infinity

V1
Q

40

1

P1

 V1 36.047

c) Find V1 if V=5 at (2,0,4) 

P5

2

0

4











 V1
Q

40

1

P1

1

P5










5 V1 10.888



Potential field of single point 

charge

Q1

A

|r - r1|

Move A

from infinity

V r( )
Q1

4   0 r r1



Potential due to two charges

Q1

A

|r - r1|

Q2

|r - r2|

Move A

from infinity

V r( )
Q1

4   0 r r1

Q2

4   0 r r2




Potential due to n point charges

Continue adding charges

V r( )
Q1

4   0 r r1

Q2

4   0 r r2
 ....

Qn

4   0 r r n


V r( )

1

n

m

Qm

4   0 r r m





Potential as point charges become 

infinite

Volume of charge

Line of charge

Surface of charge

V r( ) v prime

 v r prime 
4   0 r r prime







d

V r( ) L prime

 L r prime 
4   0 r r prime







d

V r( ) S prime

 S r prime 
4   0 r r prime







d



Example

Find V on the z 

axis for a uniform 

line charge L in 

the form of a ring

V r( ) L prime

 L r prime 
4   0 r r prime







d



Conservative field

No work is done (energy is conserved) around a 

closed path

KVL is an application of this



4.6

Potential gradient Relationship between 

potential and electric field intensity

Two characteristics of relationship:

1. The magnitude of the electric field intensity is given 

by the maximum value of the rate of change of potential 

with distance

2. This maximum value is obtained when the direction 

of E is opposite to the direction in which the potential is 

increasing the most rapidly

V = -




dE dL



Gradient

• The gradient of a scalar is a vector

• The gradient shows the maximum space rate of change 

of a scalar quantity and the direction in which the 

maximum occurs

• The operation on V by which -E is obtained

E = - grad V = - V



Gradients in different coordinate 

systems

The following equations are found on page 104 and 

inside the back cover of the text:

Cartesian

Cylindrical

Spherical

gradV
V

x
a x

V

y
a y

V

z
a z

gradV
V


a 

1



V


 a 

V

z
a z

gradV
V

r
a r

1

r

V


 a 

1

r sin  

V


 a 



Example 4.3

Given the potential field, V = 2x2y - 5z, and a point P(-4, 

3, 6), find the following: potential V, electric field intensity 

E

potential VP = 2(-4)2(3) - 5(6) = 66 V

electric field intensity - use gradient operation

E = -4xyax - 2x2ay + 5az

EP = 48ax - 32ay + 5az



Dipole

The name given to two point charges of equal magnitude 

and opposite sign, separated by a distance which is small 

compared to the distance to the point P, at which we want 

to know the electric and potential fields



Potential

To approximate the 

potential of a dipole, 

assume R1 and R2 are 

parallel since the point 

P is very distant

V
Q

4   0

1

R1

1

R2












V
Q d cos  

4   0 r
2





Dipole moment

p = Q*d

The dipole moment is assigned the symbol p and is 

equal to the product of charge and separation

The dipole moment expression simplifies the 

potential field equation



Example

An electric dipole located at the origin in free space 

has a moment p = 3*ax - 2*ay + az nC*m.  Find V at 

the points (2, 3, 4) and (2.5, 30°, 40°).



p

3 10
9



2 10
9



1 10
9

















 0 8.854 10
12



P

2

3

4











 V
p

4  0 P 2

P

P
 V 0.23

Transform this 

into rectangular 

coordinates
Pspherical

2.5

30


180


40


180




















Prectangular

2.5 sin 30


180










 cos 40


180












2.5 sin 30


180










 sin 40


180












2.5 cos 30


180






























 Prectangular

0.958

0.803

2.165













V
p

4  0 Prectangular 2

Prectangular

Prectangular

 V 1.973



Potential energy

Bringing a positive charge from infinity into the field 

of another positive charge requires work.  The work is 

done by the external source that moves the charge into 

position.  If the source released its hold on the charge, 

the charge would accelerate, turning its potential 

energy into kinetic energy.

The potential energy of a system is found by finding 

the work done by an external source in positioning the 

charge.



Empty universe

Positioning the first charge, Q1, requires no work (no field present)

Positioning more charges does take work

Total positioning work = potential energy of field = WE = 

Q2V2,1 + Q3V3,1 + Q3V3,2 + Q4V4,1 + Q4V4,2 + Q4V4,3 + ...

Manipulate this expression to get

WE = 0.5(Q1V 1 + Q2V2 + Q3V3 + …)



Where is energy stored?

The location of potential energy cannot be precisely 

pinned down in terms of physical location - in the 

molecules of the pencil, the gravitational field, etc?

So where is the energy in a capacitor stored?

Electromagnetic theory makes it easy to believe that 

the energy is stored in the field itself


