Syllabus

Course Code	Category	Hours/ Week			Credits	Maximum Marks		
23EC309	Professional Core	L 3	Т 0	P 0	-3	CIA 40	SEE 60	TOTAL 100
Contact Classes: 48	Tutorial Classes: Nil	Practical Classes: Nil				Total Classes:48		

Course Objectives:

- To introduce components such as diodes, BJTs and FETs their switchingcharacteristics, applications.
- Learn the concepts of high frequency analysis of transistors.
- To give understanding of various types of basic and feedback amplifier circuitssuch as small signal, cascaded, large signal and tuned amplifiers.
- To introduce the basic building blocks of linear integrated circuits.
- To introduce the concepts of waveform generation and introduce some specialfunction ICs.

Course Outcomes: At the end of this course, students will demonstrate the ability to

- Know the characteristics, utilization of various components.
- Understand the biasing techniques.
- Design and analyze various rectifiers, small signal amplifier circuits.
- Design sinusoidal and non-sinusoidal oscillators.
- A thorough understanding, functioning of OP-AMP, designs OP-AMP basedcircuits with linear integrated circuits.

UNIT-I:

Diode and Bipolar Transistor Circuits: P-N junction diode, I-V characteristics of a diode; review of half-wave and full-wave rectifiers, clamping and clipping circuits. Input output characteristics of BJT in CB, CE, CC configurations, biasing circuits, Load line analysis, common-emitter, common-base and common collector amplifiers; Small signal equivalent circuits

UNIT-II:

FET Circuits: FET Structure and VI Characteristics, MOSFET structure and I-V characteristics.MOSFETasaswitch.smallsignalequivalentcircuits-gain,input and output impedances, small-signal model and common-source, common-gate and common- drain amplifiers, trans conductance, high frequency equivalent circuit.

UNIT-III:

Multi-Stage and Power Amplifiers: Direct coupled and RC Coupled multi-stage amplifiers; Differential Amplifiers, Power amplifiers- Class A, Class B, Class C

UNIT-IV:

Feedback Amplifiers :Concepts of feedback– Classification of feedback amplifiers– General characteristics of Negative feedback amplifiers – Effect of Feedback on Amplifier characteristics –Voltage series, Voltage shunt, Current series and Current shunt Feedback configurations – Simple problems.

Oscillators: Condition for Oscillations, RC type Oscillators-RC phase shift and Wien- bridge Oscillators, LC type Oscillators–Generalized analysis of LC Oscillators, Hartley and Colpitts Oscillators.

UNIT-V:

Operational Amplifiers: Ideal op-amp, Output offset voltage, input bias current, input offset current, slew rate, gain bandwidth product, Inverting and non-inverting amplifier, Differentiator, integrator, Square-wave and triangular-wave generators.

TEXT BOOKS:

- 1. Integrated Electronics, Jacob Millman, Christos CHalkias, McGraw HillEducation, 2nd edition 2010
- 2. Op-Amps & Linear ICs Ramakanth A. Gayakwad, PHI, 2003.

REFERENCE BOOKS:

- 1. Electronic Devices Conventional and current version-Thomas L. Floyd 2015, pearson.
- 2. J.Millmanand A.Grabel, "Microelectronics", Mc Graw Hill Education, 1988.
- 3. P.Horowitz and W.Hill, "The Art of Electronics", Cambridge University Press, 1989.
- 4. P. R.Gray, R. G. Meyerand S. Lewis, "Analysis and Design of Analog IntegratedCircuits", John Wiley & Sons, 2001.