PYTHON PROGRAMMING




» What is Python?

» Python is an example of a high-level language; other high-level language
heard of are C++, PHP, and Java.

= Multi-purpose (Web, GUI, Scripting, etc.)

e Object Oriented

e Interpreted

e Strongly typed and Dynamically typed

e Focus on readability and productivity




History of Python:

Python was developed by Guido van Rossum in the late eighties and earl
National Research Institute for Mathematics and Computer Science in the

Python is derived from many other languages, including ABC, Modula-3, C,
SmallTalk, and Unix shell and other scripting languages.

e Python is copyrighted. Like Perl, Python source code is now available under th
General Public License (GPL).

e Python is now maintained by a core development team at the institute, although
van Rossum still holds a vital role in directing its progress.

e Python 1.0 was released in November 1994. In 2000, Python 2.0 was released. P
2.7.11 is the latest edition of Python 2.

e Meanwhile, Python 3.0 was released in 2008. Python 3 is not backward co
Python 2. The emphasis in Python 3 had been on the removal of duplicate
constructs and modules so that "There should be one -- and preferably o
way to do it." Python 3.5.1 is the latest version of Python 3



v

Features of python:
Python's features include-

e Easy-to-learn: Python has few keywords, simple structure, and a clearly
syntax. This allows a student to pick up the language quickly.

e Easy-to-read: Python code is more clearly defined and visible to the eyes.

o Easy-to-maintain: Python's source code is fairly easy-to-maintain.

e A broad standard library: Python's bulk of the library is very portable and cross
platform compatible on UNIX, Windows, and Macintosh.

e Interactive Mode: Python has support for an interactive mode, which allow
interactive testing and debugging of snippets of code.



» o Portable: Python can run on a wide variety of hardware platforms and
interface on all platforms.

» o Extendable: You can add low-level modules to the Python interpreter. The
enable programmers to add to or customize their tools to be more efficient.

» o Databases: Python provides interfaces to all major commercial databases.

» o GUI Programming: Python supports GUI applications that can be created and

» 4 to many system calls, libraries and windows systems, such as Windows MFC, Maci

and the X Window system of Unix.

» e Scalable: Python provides a better structure and support for large programs tha
scripting.




>

>

>

>

>

>

Apart from the above-mentioned features, Python has a big list of goo
are listed below-

e It supports functional and structured programming methods as well a

e It can be used as a scripting language or can be compiled to byte-code fo
large applications.

e It provides very high-level dynamic data types and supports dynamic type ch

e It supports automatic garbage collection.

e It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.



» Interpreter VS Compiler

» Two kinds of applications process high-level languages into low-level lang
interpreters and compilers.

» An interpreter reads a high-level program and executes it, meaning that it do
program says. It processes the program a little at a time, alternately reading |
performing computations.

—

CODE

—[
SOURCE INTERPRETER :] OUTPUT
e

» A compiler reads the program and translates it into a low-level program, which can
be run.

» In this case, the high-level program is called the source code, and the transl
program is called the object code or the executable. Once a program is ¢
can execute it repeatedly without further translation.




DN

SOURCE
CODE

COMPILER

:]9

Many modern languages use both processes. They are first compiled into a lo

level language, called byte code, and then interpreted by a program called a
machine. Python uses both processes, but because of the way programmers in

OBJECT
CODE

EXECUTOR

QUTPUT

j%

———

with it, it is usually considered an interpreted language

In shell mode, you type Python statements into the Python shell and the interp

immediately prints the result.

» There are two ways to use the Python interpreter: shell mode and script mode.




In this course, we will be using an IDE (Integrated Development Enviro
IDLE. When you first start IDLE it will open an interpreter window.1

The first few lines identify the version of Python being used as well as a fe
messages; you can safely ignore the lines about the firewall. Next there is a
identifying the version of IDLE. The last line starts with >>>, which is the P
prompt. The interpreter uses the prompt to indicate that it is ready for instru

If we type print 1 + 1 the interpreter will reply 2 and give us another prompt.2

22>t 1+ 1

]
o




» Running Python program:

» There are three different ways to start Python-

» (1) Interactive Interpreter

» You can start Python from Unix, DOS, or any other system that provides you a c
interpreter or shell window.

» Enter python the command line.

» (2) Script from the Command-line

» (3) Integrated Development Environment




What is Debugging ?

Programming is a complex process, and because it is done by human bein
often contain errors. For whimsical reasons, programming errors are called
process of tracking them down and correcting them is called debugging.

Three kinds of errors can occur in a program: syntax errors, runtime errors,
errors. It is useful to distinguish between them in order to track them down

Syntax errors

Python can only execute a program if the program is syntactically correct; other
process fails and returns an error message. Syntax refers to the structure of a pr
and the rules about that structure. For example, in English, a sentence must begin
capital letter and end with a period. this sentence contains a syntax error.

So does this one For most readers, a few syntax errors are not a significant proble
which is why we can read the poetry of e. e. cummings without spewing error messa
Python is not so forgiving. If there is a single syntax error anywhere in your progra
Python will print an error message and quit, and you will not be able to run your
program.

During the first few weeks of your programming career, you will probably spe
time tracking down syntax errors. As you gain experience, though, you will
syntax errors and find them faster.



» The second type of error is a runtime error, so called because the error

Runtime errors

until you run the program. These errors are also called exceptions beca
indicate that something exceptional (and bad) has happened. Runtime err
the simple programs you will see in the first few chapters, so it might be a
you encounter one.

Semantic errors

The third type of error is the semantic error. If there is a semantic error in yo
program, it will run successfully, in the sense that the computer will not generat
error messages, but it will not do the right thing. It will do something else.

Specifically, it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted to writ
meaning of the program (its semantics) is wrong. Identifying semantic errors ca
tricky because it requires you to work backward by looking at the output of th
and trying to figure out what it is doing.



Formal and Natural Languages:

Natural languages are the languages that ﬁneople speak, such as Endglish, Spanish,
were nlcl)t designed by people (although people try to impose some order on them); th
naturally.

Formal languages are languages that are designed by people for specific applications.
notation that mathematicians use is a formal language that is particularly good at denot
among numbers and symbols.

Programming languages are formal languages that have been designed to expres
computations.

Although formal and natural languages have many features in common—tokens, structure, syn
semantics—there are many differences:

ambiguity: Natural languages are full of ambiguity, which people deal with by using contextual
other information. Formal languages are designed to be nearly or completely unambiguous, whic
that any statement has exactly one meaning, regardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstandings, natural la
employ lots of redundancy. As a result, they are often verbose. Formal languages are less
more concise.

literalness: Natural languages are full of idiom and metaphor. If someone says, “"The
there is probably no penny and nothing dropped. Formal languages mean exactly wh




People who grow up speaking a natural language—everyone—often have
adjusting to formal languages. In some ways, the difference between for
language is like the difference between poetry and prose, but more so:

Poetry: Words are used for their sounds as well as for their meaning, and t
together creates an effect or emotional response. Ambiguity is not only com
deliberate.

Prose: The literal meaning of words is more important, and the structure cont

12 more meaning. Prose is more amenable to analysis than poetry but still ofte
ambiguous.

Programs: The meaning of a computer program is unambiguous and literal, and
understood entirely by analysis of the tokens and structure.



The Difference Between Brackets, Braces, and Parentheses:

Braces are used for different purposes. If you just want a list to contain s
and organize them by index numbers (starting from 0), just use the [] an
as necessary. {} are special in that you can give custom id's to values like
147}. Now, instead of making a list with ages and remembering whose age i
can just access John's age by a["John"].

The [] is called a list and {} is called a dictionary (in Python).

Dictionaries are basically a convenient form of list which allow you to access da
much easier way.

However, there is a catch to dictionaries. Many times, the data that you put in th
dictionary doesn't stay in the same order as before. Hence, when you go through
value one by one, it won't be in the order you expect. There is a special dictionary
around this, but you have to add this line from collections import OrderedDict and
replace {} with OrderedDict(). But, I don't think you will need to worry about th
now.



» Variables and Expressions:

» A value is one of the fundamental things—Ilike a letter or a number—that

Values and Types:

manipulates. The values we have seen so far are 2 (the result when we ad
and “Hello, World!”. These values belong to different types: 2 is an integer,
World!” is a string. You (and the interpreter) can identify strings because th
enclosed in quotation marks.

The print statement also works for integers.

=== print(4)
4

If you are not sure what type a value has. the interpreter can tell you.

‘:r-::::» type("Hello. World!")



Variables:

One of the most powerful features of a programming language is the abil
manipulate variables. A variable is a name that refers to a value. The as
statement creates

new variables and assigns them values:

2> message = "What's your name?"
»2z =17

>22 1= 314159

Programmers generally choose names for their variables that are meaningful—they
document what the variable is used for. Variable names can be arbitrarily long. Th
contain both letters and numbers, but they have to begin with a letter. Although it j
use uppercase letters, by convention we don’t. If you do, remember that case m
Bruce and bruce are different variables. The underscore character ( ) can appe
It is often used in nhames with multiple words, such as myname or priceofteai
give a variable an illegal name, you get a syntax error:



=== T6trombones = "big parade"
SyntaxError: invalid syntax

=== more$ = 1000000
SyntaxError: invalid syntax

=>> class = "COMP150"
SyntaxError: invalid syntax

Keywords define the language’s rules and structure, and they cannot be used
variable names. Python has thirty-one keywords:

and del from not while
as elif global or with
assert else if pass yield
break except import print

class exec in raise

continue finally 1s return

def for lambda try




Type conversion:

» Sometimes, you may need to perform conversions between the built-in t
between types, you simply use the type-name as a function.

» There are several built-in functions to perform conversion from one data ty




These functions return a new object representing the converted wvalue.

int(x [.base])
Converts X to an integer. The base specifies the base if x 15 a string.
float(x) Converts x to a floating-point number.
complex(real Creates a complex number,
[.1mag])
str(x) Converts object X to a string representation.
repr(x) Converts object X to an expression string.
eval(str) Evaluates a string and returns an object.
tuple(s) Converts s to a tuple.




list(s)

Converts s to a list.

set(s) Converts s to a set.
dict(d) Creates a dictionary. d must be a sequence of (key.value) tuples.
frozenset(s) Converts s to a frozen set.

chr(x)

Converts an integer to a character.

unichr(x)

Converts an integer to a Unicode character.




ord(x)

Converts a single character to 1fs mteger value,

hex(x)

Converts an mteger to a hexadecimal string,

oct(x)

Converts an mteger to an octal strmg.




Operators and Operands:

Operators are special symbols that represent computations like addition
multiplication. The values the operator uses are called operands. The foll
legal Python expressions whose meaning is more or less clear:

A + B here A and B are operands and + is operator
Expressions:

An expression is a combination of values, variables, and operators. If you type
expression on the command line, the interpreter evaluates it and displays the re

1]
)

The evaluation of an expression produces a value, which is why expressions can a
on the right hand side of assignment statements. A value all by itself is a simple
expression, and so is a variable.




- Interactive Mode and ScriptMode:
» Interactive Mode Programming

» Invoking the interpreter without passing a script file as a parameter brings
followina nromnt-

$ python
Python 3.3.2 (default. Dec 10 2013, 11:35:01)

[GCC 4.6.3] on Linux

. "copyright". "credits”, or "license" for more mformation. ===

On Windows:

Python 3.4.3 (v3.4.3:9b73f1c3e601. Feb 24 2015, 22:43:006) [MSC v.1600 32 bit (Intel)] on
win32

Tvpe "help

Twpe "copyright”, "credits" or "license()" for more information.

Tl

Type the following text at the Python prompt and press Enter-

[>>> print ("Hello. Python!") l

If vou are running the older version of Python (Python 2.x). use of parenthesis as inprint
function 1s optional. This produces the following result-

|[Hello. Python! |




Script Mode Programming

Invoking the interpreter with a script parameter begins execution of the
continues until the script is finished. When the script is finished, the inter
longer active.

Let us write a simple Python program in a script. Python files have the exte
the following source code in a test.py file-

print ("Hello. Python!")

We assume that vou have the Python interpreter set in PATH wvariable. Now. try to run this
program as follows-

On Linux

$ python test.py

This produces the tollowing result-

Hello, Python!

On Windows

C:'Python34=Python test.py

This produces the following result-
Hello, Python!



Order of Operations:

When more than one operator appears in an expression, the order of evalua
rules of precedence. Python follows the same precedence rules for its mat
that mathematics does. The acronym PEMDAS is a useful way to remember t
operations:

1. Parentheses have the highest precedence and can be used to force an expre
in the order you want. Since expressions in parentheses are evaluated first, 2*(
(1+1)**(5-2) is 8. You can also use parentheses to make an expression easier to
(minute*100)/60, even though it doesn’t change the result.

2. Exponentiation has the next highest precedence, so 2**1+1 is 3 and not 4, and
and not 27.

3. Multiplication and Division have the same precedence, which is higher than Additi
Subtraction, which also have the same precedence. So 2*3-1 yields 5 rather than 4, a
is -1, not 1 (remember that in integer division, 2/3=0).

Operators with the same precedence are evaluated from left to right. So in the expressi
minute*100/60, the multiplication happens first, yielding 5900/60, which in turn yiel
the operations had been evaluated from right to left, the result would have been 5
59, which is wrong. Similarly, in evaluating 17-4-3,

22
17-4 is evaluated first.
If in doubt, use parentheses.



Conditional Statements:

. IF statement:

The IF statement is similar to that of other languages. The if stateme
logical expression using which the data is compared and a decision is
on the result of the comparison.

Syntax:
if expression: statement(s)

If the boolean expression evaluates to TRUE, then the block of statemen
the if statement is executed. In Python, statements in a block are uniform
indented after the : symbol. If boolean expression evaluates to FALSE, the
set of code after the end of block is executed.

nested if statements You can use one if or else if statement insi
if or else if statement(s).






Example

num = 3
if num > (;

print(num, "is a positive number.")
print("This is always printed.")
num = -1 if

num > ();

print(num, "is

a positive number.")

print("This 1s
also always

printed.")




Guess the output?

3 is a positive number. This is always printed.

IF ELSE Statements:

An else statement can be combined with an if statement.

An else statement contains a block of code that executes if the conditional expression i
resolves to O or a FALSE value.

The else statement is an optional statement and there could be at the most only one else stat
following if.

Syntax

The syntax of the if...else statement is
if expression:

statement(s)

else: statement(s)




if condition
is true

If conditi
is false




Example

# Program checks if the number is positive or negative
# And displays an appropriate message

Il
W

num

# Try these two vanations as well.
# num = -5

Znum =0

if num >= 0:
print("Positive or Zero")
else:

print("Negative number")

Positive or Zero

In the above example. when num is equal to 3. the test expression is true and body of if is
executed and body of else is skipped.

If num is equal to -5. the test expression is false and body of else is executed and body




- Nested IF -ELSE Statements:

There may be a situation when you want to check for another condition aft
resolves to true. In such a situation, you can use the nested if construct. In'a
construct, you can have an if...elif...else construct inside another if...elif...else

Syntax The syntax of the nested if...elif...else construct may be
if expressionl:
statement(s)
if expression2:
statement(s)
elif expression3:
statement(s)
else:
statement(s)
elif expression4:
statement(s)
else: statement(s)




Example

# !/usr/bin/python3
# In this program. we input a number

# check if the number is positive or
# negative or zero and display
# an appropriate message

# This ime we use nested 1f

num = float(input("”Enter a number: "))
if num >= 0:
if num — O:
print("Zero")
else:
print("Positive number")
else:
print("Negative number")

num=int(input("enter number"))




Output 1

Enter a number: 5
Positive number

Output 2

Enter a number: -1
Negative nhumber
Output 3

Enter a number: 0

Zero Divisible by 3 and 2
enter number5

not Divisible by 2 not divisible by 3




Looping:

For:

The for loop in Python is used to iterate over a sequence (list
string) or other iterable objects. Iterating over a sequence is
traversal.

Syntax of for Loop:

for val in sequence:
Body of for

Note :Here, val is the variable that takes the value of the item inside the sequen
iteration. Loop continues until we reach the last item in the sequence. The body of
separated from the rest of the code using indentation.



for each
item in
sequence

Exit loop

Fig:- operation of for loop




Example: Python for Loop

# Program to find the sum of all numbers stored in a list
# List of numbers

numbers =[6, 5, 3, 8, 4, 2,5, 4, 11]

# variable to store the sum

sum =0

# iterate over the list

sum = sum-+val

# Output: The sum is 48

print("The sum is", sum)

for val in numbers:

when you run the program, the output will be: The sum is 48




2. While Loop

The while loop in Python is used to iterate over a block of code as Ia
expression (condition) is true. We generally use this loop when we dc
beforehand, the number of times to iterate.

Syntax of while Loop in Python
while test_expression:
Body of while

Note: In while loop, test expression is checked first. The body of the loop is entered o
the test_expression evaluates to True. After one iteration, the test expression is checke
again. This process continues until the test_expression evaluates to False.

In Python, the body of the while loop is determined through indentation. Body starts
indentation and the first unindented line marks the end. Python interprets any nog
value as True. None and O are interpreted as False.



|
|

| Enter while loop
\

Test h False
~ Expression :

Exit loop

Fig: operation of while loop




Example: Python while Loop

# Program to add natural

# numbers upto

# sum = 1+2+3+...+n

#To take input from the user,

n = int(input("Enter n: ")) n =10
# initialize sum and counter

sum =0

i=1

while i <= n:

sum = sum + I

i=i+1

# update counter

# print the sum

print("The sum is", sum) output: Entern: 10

The sum is 55




3. Nested loops:

Python programming language allows to use one loop inside anothe
section shows few examples to illustrate the concept.

Python Nested if Example

# In this program, we input a number
# check if the number is positive or
# negative or zero and display

# an appropriate message

# This time we use nested if




num = float(input("Enter a number: "))
if num >= 0:

if num ==

print("Zero")

else:

print("Positive nhumber")
else:

print("Negative number")

Special note: while using nested if else statement make sure inner block has
indentation prior to outer block .




Control statements:

1. Terminating loops:

The break statement terminates the loop containing it. Control of the
to the statement immediately after the body of the loop.

If break statement is inside a nested loop (loop inside another loop), brea
terminate the innermost loop.

Syntax of break
break




Enter loop

test expression
of loop

Exit Loop

\J

Remaining body

of loop




for var in sequence:
# codes inside for loop
if condition:
break
# codes inside for loop

# codes outside for loop

while test expression:
# codes inside while loop
if condition:

break

# codes inside while loop

# codes outside while loop




Example: Python break

# Use of break statement inside loop

for val in "string":
if val ="1":
break
print(val)

print("The end")

Output

The end




- 2. Skipping specific conditions:

The continue statement is used to skip the rest of the code inside a loop for th
only. Loop does not terminate but continues on with the next iteration.

Syntax of Continue
continue
Example: # Program to show the use of continue statement inside loops
for val in "string":

if val == "i":

continue

print(val) print("The end")
Output :
S
t
.
n

g
The end




» This program is same as the above example except the break statement
replaced with continue. We continue with the loop, if the string is "i", not
rest of the block. Hence, we see in our output that all the letters except "i'

» NOTE: while performing practicals keep proper indentation in between
For better experience use editiors like jyupiter notebook or anaconda navig




test expression
of loop

continue?

Exit Loop

A\

Remaining body

of loop




for var in sequence:

# codes inside for loop
if condition:

continue
# codes inside for loop

# codes outside for loop

while test expression:

# codes inside while loop
if condition:

continue
# codes 1inside while loop

# codes outside while loop




- Thank you
- VIsIt
https://www.profajaypashankar.c
- for more study material and notes .
- Visit
https://www.youtube.com/user/aja
nankar/ for more lectures .



https://www.profajaypashankar.com/
https://www.youtube.com/user/ajaypashankar7

\

THON PROGRAM




unctions

In python we have two kinds of functions .
First is built —in functions .

User defined functions (with def keyword).

This functions (built-in functions ) can also be
categories into two types i.e.

Fruitful Function(returns value)
Void Function (doesn’t return any value)



/
- /m Note :

You can some use built-in functions in python without any
import .(for e.g . abs)

You can use that on command prompt directly also.

For some functions you need to import that function based
module for e.g suppose you want to calculate ceiling value
of a number using ceil function you need to import math
module first .

import math # This will import math module
print ("math.ceil(-45.17) : ", math.ceil(-45.17))

If you use this kind functions directly with its module
importing you will get error .



The syntax of a function call is simply e
L Siane

e

FUNCTION NAME(ARGUMENTS)

Not all functions take an argument, and some take
more than one (in which case the arguments are
separated by commas).

The value or variable, which is called the argument
of the function, has to be enclosed in parentheses.

It is common to say that a function “takes” an
argument and “returns” a result.

The result is called the return value. "



s gaan A —

+Another useful function is len. It takes a Python sequence
as an argument.

The only Python sequence we have met so far is a string.
A string is a sequence of characters.

For a string argument, len returns the number of characters
the string contains.

>>>my str = "Hello world"
>>> len(my _str)
11




. MM
Tl

e

Function Returns ( description )
abs(x) The absolute value of x: the (positive) distance between x and zero.
ceil(x) The ceiling of x: the smallest integer not less than x
cmp(x. V) lifx<y, 0ifx=y,orlifx>y
eXp(x) The exponential of x: e
fabs(x) The absolute value of x.

floor(x) The floor of x: the largest integer not greater than x



——

" log(x) The natural logarithm of x, for x> 0
log10(x) The base-10 logarithm of x for x> 0.

max(x1.x2....) The largest of its arguments: the value closest to positive infinity
min(x1.x2....) The smallest of its arguments: the value closest to negative infinity

The fractional and integer parts of X in a two-item tuple. Both

modf{x) parts have the same sign as x. The integer part 1s returned as a
float.
poOw(X, V) The value of x**y.

x rounded to n digits from the decimal point. Python rounds away

round(x [.n)) - from zero as a tie-breaker: round(0.5) is 1.0 and round(-0.5) is -1.0.

7



—

«— aﬁMethod :

Description: The abs() method returns the absolute value
of x i.e. the positive distance between x and zero.

Syntax : Following is the syntax for abs() method-
abs(x)

Parameters :

x - This is a numeric expression.

Return : This method returns the absolute value of x.

The following example shows the usage of the abs()
method.

abs(-45): 45
abs(100.12) : 100.12



ceil) Method: e

Description: The ceil() method returns the ceiling value of x
i.e. the smallest integer not less than x.

Syntax: Following is the syntax for the ceil() method

import math
math.ceil( x )

Parameters

x - This is a numeric expression.

Return Value

This method returns the smallest integer not less than x.

Note: This function is not accessible directly, so we need to
import math module and then we need to call this function
using the math static object.



exp() Method \/

scription
The exp() method returns exponential of x: ex.
Syntax
Following is the syntax for the exp() method
import math
math.exp( x )
Parameters
X - This is a numeric expression.
Return Value
This method returns exponential of x: ex.

Note: This function is not accessible directly.
Therefore, we need to import the math module and
then we need to call this function using the math
static object.



fabs() Method e
 Description - e

The fabs() method returns the absolute value of x. Although

similar to the abs()

function, there are differences between the two functions.
They are-

« abs() is a built in function whereas fabs() is defined in math
module.

- fabs() function works only on float and integer whereas abs()
works with complex number also.

Syntax
Following is the syntax for the fabs() method
import math

math.fabs( x )

Note: This function is not accessible directly, so we need
to import the math module And then we need to call this
function using the math static object.

11



floor() Method —

. > o \\ /
/Mtlon

The floor() method returns the floor of x i.e. the largest
integer not greater than x.

Syntax

Following is the syntax for the floor() method

import math

math.floor( x )

Parameters

x - This is a numeric expression.

Return Value

This method returns the largest integer not greater than x.
The following example shows the usage of the floor() method.

Note: This function is not accessible directly, so we need
to import the math module and then we need to call this
function using the math static object.

12



log() Method

T)/esﬁptlon

The log() method returns the natural logarithm of x, for x
> 0.

Syntax

Following is the syntax for the log() method

import math

math.log( x )

Parameter:

x - This is a numeric expression.

Return Value

This method returns natural logarithm of x, for x > o.

Note: This function is not accessible directly, so we
need to import the math module and then we need to

call this function using the math static object.
13



log 10() Method

T)/esﬁptlon

The logio() method returns base-10 logarithm of x for x >
0.

Syntax

Following is the syntax for logio() method

import math

math.logio( x )

Parameters

x - This is a numeric expression.

Return Value

This method returns the base-10 logarithm of x for x > o.

Note: This function is not accessible directly, so we
need to import the math module and then we need to
call this function using the math static object.

14



max() Method f 7 =
axi) o

Description

The max() method returns the largest of its arguments i.e.
the value closest to positive infinity.

Syntax

Following is the syntax for max() method
max(x, V, z, .... )

Parameters

* X - This is a numeric expression.

* y - This is also a numeric expression.

- 7z - This is also a numeric expression.
Return Value

This method returns the largest of its arguments.

15



min() Method f ==

Description

The method min() returns the smallest of its arguments
i.e. the value closest to negative infinity.

Syntax

Following is the syntax for the min() method

min(x, V, z, .... )

Parameters

e x - T]
ey [

1S 1S @ numMeric expression.

his is also a numeric expression.

o7 T

his is also a numeric expression.

Return Value

This method returns the smallest of its arguments.

16



modf() Method T

Description =
The modf() method returns the fractional and integer
parts of x in a two-item tuple.

Both parts have the same sign as x. The integer part is
returned as a float.

Syntax

Following is the syntax for the modf() method
import math

math.modf( x )

Parameters

x - This is a numeric expression.

Return Value

This method returns the fractional and integer parts of x
in a two-item tuple. Both the parts have the same sign as
x. The integer part is returned as a float.

17



pow() Method —— //
‘»Return Value |

This method returns the value of xy.

Example

The following example shows the usage of the pow()

method.

import math # This will import math module

print ("mat]
print ("mat]

print ("mat]

h.pow (100, 2) : ", math.pow(100, 2))
n.pow (100, -2) : ", math.pow(100, -2))
n.pow(2, 4) : ", math.pow(2, 4))

print ("mat]

n.pow(3, 0) : ", math.pow(3, 0))

NOTE: make sure you pass two arguments to pow ()

Otherwise

it will raise an exception .



~

@ Sei Lé
Fileg

P13

| & Python 3.85 Shell
File Edit 5hell Debug Options Window Help

tel)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
>

Python 3.8.5 (tags/v3.8.5:580fbb0, Jul 20 2020, 15:43:08) [MSC v.1926 32 bit (In

=== RESTART: C:/Users/admin/RppData/Local/Programs/Python/Python38-32/ghh.py ===

Traceback (most recent call last):
File "C:/Users/admin/AppData/Local/Programs/Python/Python38-32/ghh.py",
, in <module>
print ("math.pow (100, 2) : ", math.pow(100))
TypeError: pow expected 2 arguments, got 1
>>> |

line 2

Show all X

ENG 951AM [ ]

19



round() Method =

escription -

round() is a built-in function in Python. It returns x
rounded to n digits from the decimal point.

Syntax

Following is the syntax for the round() method
round(x [, n] )

Parameters

* x - This is a numeric expression.

* n - Represents number of digits from decimal point up
to which x is to be rounded.

Default is o.
Return Value

This method returns x rounded to n digits from the
decimal point.

20



e

G EE——

e sqrt() method returns the square root of x for x > o.
Syntax
Following is the syntax for sqrt() method
import math
math.sqrt( x )
Parameters
x - This is a numeric expression.
Return Value
This method returns square root of x for x > o.

Note: This function is not accessible directly, so we
need to import the math module and then we need
to call this function using the math static object.

21



Adding New Functions =

/

A new function can be created in python using keyword
def followed by the function name and arguments in
parathesis and statements to be executed in function

Example:

def requiredArg (str,num):
Statements

Function definitions and use

As well as the built-in functions provided by Python you
can define your own functions.

In the context of programming, a function is a named
sequence of statements that performs a desired
operation. This operation is specified in a function
definition. In Python, the syntax for a function definition
is:

22



de/fNA:MLE( LIST OF PARAMETERS )7 ——— B——
< STATEMENTS

There can be any number of statements inside the function, but they have to be
you.

indented from the def. In the examples in this book, we will use the standard
indentation of four spaces3. IDLE automatically indents compound statements for
Function definitions are the first of several compound statements we will see, all
of which have the same pattern:

1. A header, which begins with a keyword and ends with a colon.

2. A body consisting of one or more Python statements, each indented the same
amount — 4 spaces is the Python standard - from the header.

In a function definition, the keyword in the header is def, which is followed by the
list name of the function and a list of parameters enclosed in parentheses. The
parameter may be empty, or it may contain any number of parameters. In either
case, the parentheses are required. The first couple of functions we are going to no
write have parameters, so the syntax looks like this:

23



This function is named new_line. The empty e
parentheses indicate that it has no which parameters
(that is it takes no arguments). Its body contains only a
single statement, outputs a newline character. (That’s
what happens when you use a print command without
any arguments. )

Defining a new function does not make the function
run. To do that we need a by a function call. Function
calls contain the name of the function to be executed

followed list of values, called arguments, which are
assigned to the parameters in the function definition.
Our first examples have an empty parameter list, so the
do function calls not take any arguments. Notice,
however, that the parentheses are required in the
function call

24



Flow of Execution:™ =

,/

In order to ensure that a function is defined before its first
use, you have to know the order in which statements are
executed, which is called the flow of execution.

Execution always begins at the first statement of the
program. Statements are executed one at a time, in order
from top to bottom.

Function definitions do not alter the flow of execution of
the program, but remember that statements inside the
function are not executed until the function is called.

Although it is not common, you can define one function
inside another. In this case, the inner definition isn’t
executed until the outer function is called.

25



Parameters and Arguments: —

. ost functions require arguments.

Arguments are values that are input to the function and
these contain the data that the function works on.

Some functions take more than one argument.

Inside the function, the values that are passed get
assigned to variables called parameters.

26



Fruitful functions and Void functions: /
\\
¢ Thereturn statement :

The return statement allows you to terminate the
execution of a function before you reach the end. One
reason to use it is if you detect an error condition:

defprint square rool(x):
ifx<0:
prini("Waming: cannot take square root of a negative number.
retum
resull = x**0.3
rint("The square root of X 15", resul)

The function print square root has a parameter named x. The first thing it
does is check whether x is less than o, in which case it displays an error
message and then uses return to exit the function. The flow of execution
immediately returns to the caller, and the remaining lines of the function are

not executed.
27



N/'

o Fruitful Functions :

The functions that returns some value is known as
fruitful functions.

Void Functions :

The functions that don'’t return any value is known as
Void Functions.

you can call one function from within another. This
ability is called composition

28



%ool&n functions*\/

~—® Functions can return boolean values, which is often
convenient for hiding complicated tests inside functions.
For example:

22> el 1s divisible, y):

ifx%y=0:
retum True
else:

retum False

29



e

T

Void Functions:—— e
o b

* Void functions are functions, like ‘print_twice’ (that we
defined earlier), that perform an action (either display

something on the screen or perform some other action).

However, they do not return a value.

30



Importing with from: = //
~oWe can use functions in modules in three different

ways:

Import a module object in Python:

[f you import math, you get a module object named
math. The module object contains constants like pi and
functions like sin and exp.

>>> import math

>>> print(math)

<module 'math’ (built-in)=
>>> print(math.pi)

3.141592653589793

31



>>> print(math.pi)
3.141592653589793

Now you can access pi directly, without dot notation.

>>> print(pi)

3.141592653589793

32



=

I t all objects dule in Python: __—
Import all-objects from-a moduleinPython s
>>> from math import*

The advantage of importing everything from the math
module is that your code can be more concise.

The disadvantage is that there might be conflicts
between names defined in different modules, or between
a name from a module and one of your variables.

33



[ ] /
Recursion: e ot

Recursion is a way of programming or coding a problem, in
which a function calls itself one or more times in its body.
Usually, it is returning the return value of this function call.
If a function definition fulfils the condition of recursion,
we call this function a recursive function.

Termination condition: A recursive function has to
terminate to be used in a program.

A recursive function terminates, if with every recursive call
the solution of the problem is downsized and moves
towards a base case.

A base case is a case, where the problem can be solved
without further recursion.

A recursion can lead to an infinite loop, if the base case is
not met in the calls.

34



¢ Recursi

* Now we come to implement the factorial in Python. It's
as easy and elegant as the mathematical definition.

def factorial(n):
print(“factortal has been called with n ="+ str(n))
ifn=1:
retumn |
else:
res =n * factorial(n-1)
print("intermediate result for ", n, " * factorial(" ;n-1,"): "res)
retum res

>>> prin(factorial(3))

35



STRINGS: e ==
/ e . .

¢ A String Is A sequence of Characters Strings in Python
are identified as a contiguous set of characters

represented in the quotation marks.

Python allows either pair of single or double quotes.
Subsets of strings can be taken using the slice operator

([ ] and [:]) with indexes starting at o in the beginning of
the string and working their way from -1 to the end.

The plus (+) sign is the string concatenation operator
and the asterisk (*) is repetition operator

36



ﬂ\

str = "Hello World!'

print (str) # Prints complete string

print (str[0]) # Prints first character of the string

print (str{2:5]) # Prints characters starting from 3rd to Sth
print (str{2:]) # Prints string starting from 3rd character
print (str * 2) # Prints string two times

print (str + "TEST") # Prints concatenated string

This will produce the following result

Hello World!

H

Llo

llo World!

Hello World!Hello World!
Hello World!TEST

37,



Traversal as a For Loop:™ = —

mf computations involve processing a string one
character ata time.

Often they start at the beginning, select each character
in turn, do something to it, and continue until the end.

This pattern of processing is called a traversal.

Python provides a very useful language feature for
traversing many compound types— the for loop:

>>> fruit ='banana’
>>> for char in fruit:

print(char)

The above piece of code can be understood as an abbreviated version of an English
sentence: “For each character in the string fruit, print out the character”. The for loop is an
example of an iterator: something that visits or selects every element in a structure (in this
case a string), usually in turn. The for loop also works on other compound types such as lists
and tuples, which we will look at later.

38



* prefixes = ”]KLMNW

suffix = "ack”
e for letter in prefixes:
e  print letter + suffix
* The output of this program is:
* Jack
* Kack
* Lack
* Mack
* Nack
* Nack
* Oack
* Pack

* Qack

39



}iﬂgjﬁces: ... iR

~% A substring of a string is called a slice.
Selecting a slice is similar to selecting a character:
>>> s = 'Peter, Paul, and Mary"
>>> print(s[o:5])
Peter

>>> print(s[7:11])

Paul
>>> print(s[17:21])

Mary

Note :The operator [n:m] returns the part of the string
from the nth character to the mth character, including the
first but excluding the last.

40



= fruit ''blainlalnlal’

index 0 1 2 34 5 6

If you omit the first index (before the colon), the slice starts at the beginning of the
string. If you omit the second index, the slice goes to the end of the string. Thus:

>>> fruif= "banana"
> fruit[0:3]

ban'

=22 fnuif]3:]

'ana

41



S/tmls Are Immutable: /
~® Strings are immutable, which means you can’t change an
existing string.

The best you can do is create a new string that is a
variation on the original:

>>> greeting = "Hello, world!"

>>> newGreeting = "]" + greeting]1:]

>>> print(newGreeting)

Jello, world!

The solution here is to concatenate a new first letter
onto a slice of greeting.

This operation has no effect on the original string.

42



%rcing withinM

[t determines if string str occurs in string, or in a
substring of string if starting index beg and ending
index end are given.

Syntax
str.find(str, beg=0, end=len(string))

Parameters

str -- This specifies the string to be searched.

beg -- This 1s the starting index, by default its 0.

end -- This 1s the ending index, by default its equal to the length of the string,

[ |

Return Value
[ndex 1f found and - otherwise.

43



>>> str1 = "this is stri ample....wow!!!"

% >>>str2 = "exam”
>>> print(stri.find(str2))
15
>>> print(stri.find(strz, 10))
15
>>> print(stri.find(str2, 40))

77 &

Note : if the required sub string is not found in
available string i.e. no index found so it will always
return -1.

44



StEgMethods: S e

T

® In addition to the functions that we have seen so far there
is also a special type of function called a method.

You can think of a method as a function which is
attached to a certain type of variable (e.g. a string).

When calling a function you just need the name of the
function followed by parentheses (possibly with some
arguments inside).

VARIABLE.METHODNAME(ARGUMENTYS)

45



* The in operator:

mPerator tests if one string is a substring of

another:

>>>"p" In "apple"
True

>>>"1" n "apple"
False

>>>"ap" in "apple"
True

>>>"pa" In "apple"
False

Note that a string 1s a substring of itself:

>>> "a" in "a"

True
:}:}:} "ﬂPP]_E“ 11_1 ”;-_I_PP]_E“
True

46



P~ The comparison operators work on strings. To see 1f two strings are equal:

>>> 1f word < "banana";

print("Your word," + word + ", comes before banana.")
elif word > "banana":

print("Your word," + word + ", comes after banana.")
else:

print("Yes, we have no bananas!")

You should be aware, though, that Python does not handle upper- and lowercase letters
the same way that people do. All the uppercase letters come before all the lowercase
letters. As a result:

Your word.zebra, comes after banana.

A common way to address this problem is to convert strings to a standard format, such
as all lowercase, before performing the comparison. A more difficult problem is
making the program realize that zebras are not fruit.

47



capitalize()
Capitalizes first letter of string

center(width, fillchar)

Returns a string padded with fillchar with the original string centered to
a total of width columns.

count(str, beg= 0,end=len(string))

Counts how many times str occurs in string or in a substring of string if
starting index beg and ending index end aregiven.

decode(encoding="UTF-8",errors="strict")

Decodes the string using the codec registered for encoding. encoding
defaults to the default string encoding.

encode(encoding="UTF-8",errors="strict")

Returns encoded string version of string; on error, default is to raise a
ValueError uniess errors is given with 'ignore’ or 'replace’.

48



6 endswith(suffix, beg=0, end=len(string))
Determines if string or a substring of string (if starting index beg and
ending index end are given) ends with suffix; returns true if so and
false otherwise.
expandtabs(tabsize=8)

7
Expands tabs in string to multiple spaces; defaults to 8 spaces per tab if
tabsize not provided.
find(str, beg=0 end=len(string))

8
Determine if str occurs in string or in a substring of string if starting
index beg and ending index end are given returns index if found and -1
otherwise.
index(str, beg=0, end=len(string))

S
Same as find(), but raises an exception if str not found.
isalnum()

10

Returns true if string has at least 1 character and all characters are
alphanumeric and false otherwise.

L

49



isalpha()

11
Returns true if string has at least 1 character and all characters are
alphabetic and false otherwise.
isdigit()

12
Returns true if the string contains only digits and false otherwise.
islower()

13
Returns true if string has at least 1 cased character and all cased
characters are in lowercase and false otherwise.
isnumeric()

14
Returns true if a unicode string contains only numeric characters and
false otherwise.
isspace()

15

Returns true if string contains only whitespace characters and false
otherwise.

\

50



istitle()

16
Returns true if string is properly "titlecased" and false otherwise.
isupper()

17
Returns true if string has at least one cased character and all cased
characters are in uppercase and false otherwise.
join(seq)

18
Merges (concatenates) the string representations of elements in
sequence seq into a string, with separator string.
len(string)

19

Returns the length of the string

51



ljust(width[, fillchar])

\

20
Returns a space-padded string with the original string left-justified to
a total of width columns.
lower()

21
Converts all uppercase letters in string to lowercase.
Istrip()

22
Removes all leading whitespace in string.
maketrans()

23
Returns a translation table to be used in translate function.
max(str)

24
Returns the max alphabetical character from the string str.
min(str)

25

Returns the min alphabetical character from the string str.

52



replace(old, new [, max])

e

26
Replaces all occurrences of old in string with new or at most max
occurrences if max given.
rfind(str, beg=0,end=len(string))
27
Same as find(), but search backwards in string.
rindex( str, beg=0, end=len(string))
28
Same as index(), but search backwards in string.
rjust(width,[, fillchar])
29
Returns a space-padded string with the original string right-justified to
a total of width columns.
rstrip()
30
Removes all trailing whitespace of string.
split(str="", num=string.count(str))
31

Splits string according to delimiter str (space if not provided) and
returns list of substrings; split into at most num substrings if given.

53



splitlines( num=string.count('\n"))

et

32
Splits string at all (or num) NEWLINEs and returns a list of each line
with NEWLINEs removed.
startswith(str, beg=0,end=len(string))

33 Determines if string or a substring of string (if starting index beg and
ending index end are given) starts with substring str; returns true if
so and false otherwise.
strip([chars])

34
Performs both Istrip() and rstrip() on string
swapcase()

35
Inverts case for all letters in string.
title()

36

Returns "titlecased" version of string, that is, all words begin with
uppercase and the rest are lowercase.

54



37

¢

translate(table, deletechars="")

Translates string according to translation table str(256 chars), removing
those in the del string.

38

upper()

Converts lowercase letters in string to uppercase.

39

zfill (width)

Returns original string leftpadded with zeros to a total of width
characters; intended for numbers, zfill() retains any sign given (less
one zero).

40

isdecimal()

Returns true if a unicode string contains only decimal characters and
false otherwise.

55



QUICK REVISION : s
@ In python we have two kinds of functions .

First is built —in functions .

User defined functions (with def keyword).

This functions (built-in functions ) can also be
categories into two types i.e.

Fruitful Function(returns value)

Void Function (doesn’t return any value).

A new function can be created in python using keyword
def followed by the function name and arguments in
parathesis and statements to be executed in function.

56



Arguments are values that are input to the fand

—these contain the data that the function works on.

Inside the function, the values that are passed get
assigned to variables called parameters.

Fruitful Functions :

The functions that returns some value is known as
fruitful functions.

Void Functions :

The functions that don't return any value is known as
Void Functions.

Strings are immutable, which means you can’t change
an existing string.

The best you can do is create a new string that is a
variation on the original:

57



//_—\

~—% https://www.profajaypashankar.com
* For more study material and notes .

e VISIT

e https://www.youtube.com/channel/UCu4Bd22zM6RpvH
WCoYHBhsQ)?view as=subscriber

e For more lectures .

e VISIT : FOR PRACTICAL MANUAL

® https://www.profajaypashankar.com/python-
programming-practical-manual/

e Password:STUDYHARD



https://www.youtube.com/channel/UCu4Bd22zM6RpvHWC9YHBh5Q?view_as=subscriber
https://www.profajaypashankar.com/python-programming-practical-manual/

PYTHON PROGRAMMI




Lists :

A list is an ordered set of values, where each value is identifi
index.

The values that make up a list are called its elements .

Lists are similar to strings, which are ordered sets of character
that the elements of a list can have any type.

Lists and strings—and other things that behave like ordered sets
called sequences .

The list is the most versatile datatype available in Python, which ca
written as a list of comma-separated values (items) between squar
brackets.

Important thing about a list is that the items in a list need not be of t
same type.

There are several ways to create a new list; the simplest is to enclose th
in square brackets ([ and ]):

[10, 20, 30, 40] ["'spam”, "bungee”, "swallow"]



>

A list within another list is said to be nested .

Finally, there is a special list that contains no elements.

It is called the empty list, and is denoted []. Like numeric O values
string, the empty list is false in a boolean expression:

Values and Accessing Elements:

The values stored in a list can be accessed using the slice operato
[:1) with indexes starting at 0 in the beginning of the list and wor
way to end -1.

The plus (+) sign is the list concatenation operator, and the asterisk
the repetition operator.



#!/usr/bin/python3
list = [ "abcd’, 786 , 2.23, ‘john’,

» 70.2 ] tinylist = [123, ‘john’]

vV V. vV vV vV v v v v Y

print (list)

print (list[0]) print (list[1:3])

# Prints complete list

# Prints first element of the list

# Prints elements starting from 2nd

till 3rd print (list[2:])

# Prints elements starting

from 3rd element print (tinylist * 2) # Prints list two
times

print (list + tinylist) # Prints concatenated lists




\ A 4

vV v vV Yy

\ A 4

Lists are mutable : \
Unlike strings lists are mutable , which means we can change thei

Using the bracket operator on the left side of an assignment, we ca
the elements:

>>> fruit = ["banana”, "apple”, "quince”]

>>> fruit[0] = "pear”

>>> fruit[-1] = "orange”
>>> print fruit

[’pear’, ’apple’, ’orange’]

Explanation:

The bracket operator applied to a list can appear anywhere in an express
appears on the left side of an assignment, it changes one of the element
so the first element of fruit has been changed from "banana" to "pear",
from "quince" to "orange".

An assignment to an element of a list is called item assignme



ltem assignment does not work for strings:

>>> my_string = "TEST"

>>> my_string[2] = "X"

Traceback (most recent call last): File "<stdin>", line 1, in

<module>

vV v v v v Vv

TypeError: ’str’ object does not support item assighment

v

but it does for lists:

>>> my_Llist = ["T", "E", "S", "T"]
>>> my_Llist[2] = "X"

>>> my_list

['T’, 'E’, ’X’, 'T’]

vV v v v Vv




vV v . v . v Y

vV vV v vV v v v Y

With the slice operator we can update several elements at once:
>>> g_list = ["a", "b", "c", "d", "e", "f"]
>>> a_list[1:3] = ['X", "Y"]

>>> print a_list

[’a,, ’X’, ’y’, ’d’, ’e’, ’f’]

We can also remove elements from a list by assigning the empty listto t
>>> a_list = ["a", "b", "c", "d", "e", "f"]
>>> a_list[1:3] =[]

>>>

print a_list [’a’,

d’,



vV v v v v v v

And we can add elements to a list by squeezing them into an emp
desired location:

>>> a_list = ["a", "d", "f"]
>>> a_list[1:1] = ['b", "c"]
>>> print a_list

ra’, b, e, d, ]

>>> a_list[4:4] = ["e"]

>>> print a_list

[’a’, ’b’, ’c’, ’d’, ’e’, 'f’]



Deleting elements from List :

» To remove a list element, you can use either the del statement if you kno
element(s) you are deleting.

» You can use the remove() method if you do not know exactly which items t

» #!/usr/bin/python3

» list = ['physics’, ‘chemistry’, 1997, 2000] print (list)

» del list[2]

» print ("After deleting value at index 2 : ", list)

» When the above code is executed, it produces the following result-

» ['physics’, ‘chemistry’, 1997, 2000]
» After deleting value at index 2 : [physics’, ‘chemistry’, 2000]

» Note: remove() method is discussed in subsequent section.




» Built-in List Operators, Concatenation, Repetition, In Operator :

» Lists respond to the + and * operators much like strings; they mean conc
repetition here too, except that the result is a new list, not a string.

en([1,2,3]) 3 Length
1,2,3]+[4,5. 6] 1,2,3.4,3,6] Concatenation
'Hil'"| *4 'Hi!", 'Hi!", Hi!','Hi'] | Repetition
3m(l,2,3] True Membership
forxm|[1.2,3]: pmt (xend="") | 123 Iteration




» Built-in List functions and methods :

» Python includes the following list functions :

|| cmp(listl, list2) : No longer available m Python 3.
len(list) : Grves the total length of the List.

max(list) : Returns ttem from the list with max value.
min(list) : Returns 1tem from the list with mn value.
list(seq) : Converts a tuple mto List.

LIV L R S B




Listlen()Method

Description

The len() method returns the number of elements in the list.
syntax

Following is the syntax for len() method-

len(list)

Parameters

list - This is a list for which, number of elements are to be counted.
Return Value

This method returns the number of elements in the list.
Example

The following example

list1 = ['physics’, ‘chemistry’, ‘'maths’]

print (len(list1))

vV V.V VvV V. V. V. V. V. V. vV v v Vv Y

list2=list(range(5)) #creates list of numbers between 0-4 print (len(list2)) shows t
method.




List max() Method :

Description

The max() method returns the elements from the list with maximum value.
Syntax

Following is the syntax for max() method-

max (list)

Parameters

list - This is a list from which max valued element are to be returned.
Return Value

This method returns t

Example

The following example shows the usage of max() method.

list1, list2 = ['C++',"Java’, 'Python’], [456, 700, 200]

print ("Max value element : ", max(list1))

vV V.V vV vV vV vV vV vV vV vV v v Vv Y

print ("Max value element : ", max(list2))




List min() Method :

Description

The method min() returns the elements from the list with minimum value.
Syntax

Following is the syntax for min() method-

min(list)

Parameters

list - This is a list from which min valued element is to be returned.

Return Value

vV v v vV vV vV vV v VvV Y

This method returns the elements from the list with minimum value.

v

list1, list2 = ['C++','Java’, 'Python’], [456, 700, 200]

print ("min value element : ", min(list1))

v

» print ("min value element : ", min(list2))




» List list() Method :
Description

v

» The list()method takes sequence types and converts them to lists. This is us
given tuple into list.

» Note: Tuple are very similar to lists with only difference that element values
not be changed and tuple elements are put between parentheses instead of squ
This function also converts characters in a string into a list.

Syntax

Following is the syntax for list() method-

list( seq )

Parameters

seq - This is a tuple or string to be converted into list.
Return Value : This method returns the list.

aTuple = (123, 'C++', Java', 'Python’) list1 = list(aTuple)

print (“List elements : ", list1)

str="Hello World" list2=list(str) print ("List elements : ", list2)

vV v v v v vV VvV VY




» Python includes the following list methods- :

1 list.append(obj)
Appends object obj to list

2 list.count(obj)

Returns count of how manv times obj occurs 1n list

3 list.extend(seq)
Appends the contents of seq to list
1 list.index(obj)

Returns the lowest index in list that obj appears

5 list.insert(index, obj)
Inserts object obj mto list at offset index
6 list.pop(obj=list[-1])

Removes and retwuns last object or obj from list

7 list.remove(obj)

Removes object obj from list

S list.reverse()
Reverses objects of list in place

o list.sort([func])

Sorts objects of list, use compare func if given




List append() Method :

Description

The append() method appends a passed obj into the existing list.
Syntax

Following is the syntax for append() method-

list.append(obj)

Parameters

obj - This is the object to be appended in the list.

Return Value

This method does not return any value but updates existing list.
Example

list1 = ['C++', Java’, 'Python’]

list1.append('C#)

print ("updated list : ", list1)

vV vV .V VvV vV V. V. vV vV vV vV vV vYvYY

NOTE: append method used to add element in list at last position




List count()Method

Description

The count() method returns count of how many times obj occurs in list.
Syntax

Following is the syntax for count() method-

list.count(obj)

Parameters

obj - This is the object to be counted in the list.

Return Value

This method returns count of how many times obj occurs in list.
aList = [123, 'xyz', 'zara', 'abc’, 123]; print ("Count for 123 : ", aList.count(123))
print ("Count for zara : ", alList.count('zara’))
O/P

Count for 123 : 2

Count for zara : 1

vV V.V VvV V. V. V. V. V. V. vV v v Vv Y




Listextend()Method

Description

The extend() method appends the contents of seq to list.
Syntax

list.extend(seq)

Parameters

seq - This is the list of elements

Return Value

vV vV vV v vV vV v vVY

This method does not return any value but adds the content to an existing list.

» list1 = ['physics’, ‘chemistry’, ‘maths’] list2=list(range(5)) #creates list of numbers between 0-4
list1.extend(‘Extended List :', list2)

» print (list1)




List index() Method

The index() method returns the lowest index in list that obj appears.
Syntax

Following is the syntax for index() method-

list.index(obj)

Parameters

obj - This is the object to be find out.

Return Value

vV v v vV v v vV VvV Y

This method returns index of the found object otherwise raises an exception indicatin
the value is not found.

v

list1 = ['physics’, ‘chemistry’, 'maths’]
» print (Index of chemistry’, list1.index('‘chemistry’)) print (Index of C#, list1.ind




» List insert() Method

» Description

» The insert() method inserts object obj into list at offset index.

» Syntax

» Following is the syntax for insert() method-

» list.insert(index, obj)

» Parameters

» e« index - This is the Index where the object obj need to be inserted.
» « obj - This is the Object to be inserted into the given list.

» Return Value

» This method does not return any value but it inserts the given element at the given index.
» list1 = ['physics’, ‘chemistry’, ‘'maths’] list1.insert(1, ‘Biology’)

» print (‘Final list : ', list1)

» Final list : ['physics’, '‘Biology’, ‘chemistry’, ‘'maths’]




List pop() Method :

Description

The pop() method removes and returns last object or obj from the list.
Syntax

Following is the syntax for pop() method-

list.pop(obj=list[-1])

Parameters

obj - This is an optional parameter, index of the object to be removed from the list.
Return Value

This method returns the removed object from the list.
list1 = ['physics’, 'Biology’, ‘chemistry’, ‘'maths’] list1.pop()
print (“list now : ", list1) list1.pop(1)

print (“list now : ", list1)

o/p

['physics’, ‘Biology’, ‘chemistry’]

vV v vV v vV Vv vV vV vV vV vV vV vV vVYVYy VY

['physics’, ‘chemistry’]




» Listremove()Method :
» Parameters

» obj - This is the object to be removed from the list.

» Return Value

v

This method does not return any value but removes the given object from the list

Example :
list1 = ['physics’, '‘Biology’, ‘chemistry’, ‘maths’] list1.remove('Biology’)

print (“list now : ", list1) list1.remove('maths’)

vV v v Vv

print (“list now : ", list1)

list now :

A A 4

['physics’, ‘chemistry’, 'maths’]

» [physics’, ‘chemistry’]



» Listreverse()Method

» Description

» The reverse() method reverses objects of list in place.

» Syntax

» Following is the syntax for reverse() method-

» list.reverse()

» Parameters

» NA

» Return Value

» This method does not return any value but reverse the given object from the list. \
» list1 = ['physics’, '‘Biology’, ‘chemistry’, ‘'maths’] list1.reverse()
» print ("list now : ", list1)

» o/p

» list now :['maths’, ‘chemistry’, '‘Biology’, 'physics’]




List sort() Method :

Description

The sort() method sorts objects of list, use compare function if given.
Syntax

Following is the syntax for sort() method-

list.sort([func])

Parameters

NA

Return Value

This method does not return any value but reverses the given object from the list.
list1 = ['physics’, ‘Biology’, ‘chemistry’, ‘'maths’] list1.sort()
print (“list now : ", list1)

list now : [Biology’, ‘chemistry’, ‘'maths’, ‘physics’]

vV V.V vV vV v vV vV vV vV v vV ‘VvVY

Note: this method sorts the list as alphabetically , incase of n
sort according to its value




vV v vy

v

vV v v v v VY

Tuples and Dictionaries :
tuple is a sequence of immutable Python objects.

Tuples are sequences, just like lists.

The main difference between the tuples and the lists is that the tuples'c
changed unlike lists. Tuples use parentheses, whereas lists use square b

Creating a tuple is as simple as putting different comma-separated values. Optiona
put these comma-separated values between parentheses also.

For example-

tup1 = (‘physics’, ‘chemistry’, 1997, 2000)

tup2 =(1, 2, 3,4,5)

tup3 = "a", "b", "c", "d"

The empty tuple is written as two parentheses containing nothing.
tup1 = ();

To write a tuple containing a single value you have to include a comma, even thoug
one value.

tup1 = (50,) Like string indices, tuple indices start at 0, and they can be sliced
and so on.



» Accessing values in Tuples :

v

To access values in tuple, use the square brackets for slicing along
indices to obtain the value available at that index.

tup1 = (‘physics’, '‘chemistry’, 1997, 2000)

tup2=(1, 2, 3,4,5,6,7)

print ("tup1[0]: *, tup1[0])

print ("tup2[1:5]: ", tup2[1:5])

When the above code is executed, it produces the following result-
tup1[0] : physics

tup2[1:5] : [2, 3, 4, 5]

vV v v vV v VvV Vv




v

vV v v vV v v VY

Tuple Assignment :

Once in a while, it is useful to perform multiple assignments in a single st
can be done with tuple assignment :

>>>ab =34

>>> printa 3

>>> print b 4
>>>a,b,c=(1,2,3),5,6
>>> print a (1, 2, 3)
>>> printb 5

>>> print

The left side is a tuple of variables; the right side is a tuple of values. Each value is a
to its respective variable. All the expressions on the right side are evaluated before an
assignments. This feature makes tuple assignment quite versatile. Naturally, the nu
variables on the left and the number of values on the right have to be the same:

Such statements can be useful shorthand for multiple assignment statements, b
be taken that it doesn’t make the code more difficult to read.

One example of tuple assignment that improves readibility is when we want
values of two variables. With conventional assignment statements, we hav
temporary variable. For example, to swap aand b:



v

>
>
>
>
>
>

Tuples as return values :

Functions can return tuples as return values. For example, we could write a function t
parameters :

def swap(x, y):

returny, x

Then we can assign the return value to a tuple with two variables:
a, b = swap(a, b)

Basic tuples operations, Concatenation, Repetition, in Operator,

Tuples respond to the + and * operators much like strings; they mean concatenation
repetition here too, except that the result is a new tuple, not a string.

len((1. 2. 3)) 3 Length
(1.2.3)+(4.5.06) (1.2.3.4.5.6) Concatenation
('Hi!.) * 4 ("Ha!". 'Hi!". 'Hi!". 'Hi!") Repetition

3in(l.2.3) True Membership




» Built-in Tuple Functions :

» Python includes the following tuple functions-

cmp(tuplel, tuple2)

No longer available in Python 3.

2 len(tuple)
Gives the total length of the tuple.

3 max(tuple)

Returns item from the tuple with max value.

4 min(tuple)

Returns item from the tuple with min value.

5 tuple(seq)

Converts a list into tuple.




Tuplelen()Method

Description

The len() method returns the number of elements in the tuple.
Syntax

Following is the syntax for len() method-

len(tuple)

Parameters

tuple - This is a tuple for which number of elements to be counted.
Return Value

This method returns the number of elements in the tuple.

tuple1, tuple2 = (123, 'xyz', 'zara’), (456, ‘abc’) print ("First tuple length : “, len(tuple1))

vV V.V vV vV vV vV vV v v v v

print ("Second tuple length : “, len(tuple2))




Tuplemax()Method

Description

The max() method returns the elements from the tuple with maximum value.
Syntax

Following is the syntax for max() method-

max(tuple)

Parameters

tuple - This is a tuple from which max valued element to be returned.
Return Value

This method returns the elements from the tuple with maximum value.
Example

The following example shows the usage of max() method.

When we run the above program, it produces the following result-
tuple1, tuple2 = (‘'maths’, ‘che’, '‘phy’, 'bio’), (456, 700, 200)

print ("Max value element : “, max(tuple1)) print ("Max value element : ", max(tuple2

vV vV vV vV v vV vV v vV vV v v v VY Y




vV vV vV vV vV vV vV vV v v v Y

Tuple min() Method
Description

The min() method returns the elements from the tuple with minimum value
Syntax

Following is the syntax for min() method-

min(tuple)

Parameters

tuple - This is a tuple from which min valued element is to be returned.
Return Value

This method returns the elements from the tuple with minimum value.
tuplel, tuple2 = (‘maths’, 'che’, 'phy’, 'bio'), (456, 700, 200)

print ("min value element : ", min(tuplel)) print ("min value element : ", min(tupl



vV vV .V vV vV vV vV vV vV vV v v ‘vvY

Tupletuple()Method
Description

The tuple() method converts a list of items into tuples.
Syntax

Following is the syntax for tuple() method-

tuple( seq )

Parameters

seq - This is a tuple to be converted into tuple.
Return Value

This method returns the tuple.

listl= ['maths’, 'che’, 'phy', 'bio'] tuplel=tuple(listl)
print ("tuple elements : ", tuplel)

o/p

tuple elements : ('maths’, 'che’, 'phy', 'bio")




v

>

Dictionary

Each key is separated from its value by a colon (:), the items are sep
commas, and the whole thing is enclosed in curly braces. An empty d
any items is written with just two curly braces, like this:

{ )

Keys are unique within a dictionary while values may not be. The value
can be of any type, but the keys must be of an immutable data type such
numbers, or tuples.

Accessing Values in a dictionary :

To access dictionary elements, you can use the familiar square brackets along with the
obtain its value. Following is a simple example.

dict = {Name': "Zara’, 'Age". 7, 'Class’: 'First’}
print ("dict[Name']: ", dict[Name’])

print ("dict[Age’]: ", dict['Age’])

o/p

dict[Name']: Zara

dict['Age’]: 7



vV vyvVvyyvy Vv VY

v

vV Vv

>

Updating Dictionary :

You can update a dictionary by adding a new entry or a key-value pair, modifying an existi
existing entry as shown in a simple example given below.

dict = {Name'": "Zara’, '‘Age’: 7, 'Class’: 'First’} dict['Age’] = 8; # update existing entry dict['Schod
Add new entry

print ("dict['Age’]: ", dict['Age’])

print ("dict['School’]: *, dict['School])
o/p

dict['Age’]: 8 dict['School]: DPS School
Deleting Elements from Dictionary :

You can either remove individual dictionary elements or clear the entire contents of a dictionary.
delete entire dictionary in a single operation.

To explicitly remove an entire dictionary, just use the del statement. Following is a simple example-
dict = {Name": "Zara’, '‘Age’": 7, 'Class’: ‘First’}

gel dict['Name'] # remove entry with key 'Name' dict.clear() # remove all entries in dict del dict # delg
ictionary

print ("dict['Age’]: ", dict['AgeT)
print ("dict['School]: ", dict['School])
Note: An exception is raised because after del dict, the dictionary does not exist anymore



» Properties of Dictionary keys :

» Dictionary values have no restrictions. They can be any arbitrary Python object, eithe
user-defined objects. However, same is not true for the keys.

v

There are two important points to remember about dictionary keys-

v

A. More than one entry per key is not allowed. This means no duplicate key is al
duplicate keys are encountered during assignment, the last assignment wins.

dict = {Name': "Zara’, '‘Age’: 7, 'Name': ‘'Manni'}
print ("dict[Name']: *, dict['Name')

o/p

dict[Name']: Manni

vV v v v Y

B. Keys must be immutable. This means you can use strings, numbers or tuples as dictiona
something like ['key'] is not allowed.

dict = {[Name']: Zara’, ‘Age’: 7}
print ("dict[Name']: *, dict['Name'])
o/p

>

Traceback (most recent call last): File "test.py”, line 3, in <module>
dict = {[[Name']: 'Zara', 'Age’: 7}
TypekError: list objects are unhashable




» Operations in Dictionary :

v

vV vV vV vV v vV v v v v Y

The del statement removes a key-value pair from a dictionary. For example,
dictionary

contains the names of various fruits and the number of each fruit in stock:

>>> del inventory["pears"]

>>> print inventory

{’oranges’: 525, ‘apples’: 430, '‘bananas’: 312}
Or if we're expecting more pears soon, we might just change the value associated wit
>>> inventory["pears"] = 0

>>> print inventory

{’oranges’: 525, ‘apples’: 430, 'pears’: 0, ‘bananas’: 312}
The len function also works on dictionaries; it returns the number of key-value pairs:

>>> |en(inventory) 4



» Built-In Dictionary Functions & Methods :

» Python includes the following dictionary functions-

cmp(dictl, dict2)

No longer available in Python 3.

len(dict)

Gives the total length of the dictionary. This would be equal to the number of items in
the dictionary.

str(dict)

Produces a printable string representation of a dictionary.

type(variable)

Returns the type of the passed variable. If passed variable 1s dictionary, then it
would return a dictionary type.




» Dictionarylen()Method

Description

» The method len() gives the total length of the dictionary. This would be equa
items in the dictionary.

» Syntax
Following is the syntax for len() method-
» len(dict)
» Example
» The following example shows the usage of len() method.
» #!/usr/bin/python3
» dict = {'Name': 'Manni', 'Age': 7, 'Class': 'First'} print ("Length : %d" % len (dict)
» When we run the above program, it produces the following result-
» Length : 3




Dictionarystr()Method
Description

The method str() produces a printable string representation of a dictionary.
Syntax

Following is the syntax for str() method —

str(dict)

Parameters

dict - This is the dictionary.

Return Value

This method returns string representation.

Example

The following example shows the usage of str() method.
#1/usr/bin/python3

dict = {'Name': 'Manni', 'Age': 7, 'Class': 'First'} print ("Equivalent String : %

vV V.V VvV V. V. V. V vV vV vV v v VY VY

Equivalent String : {'Name': 'Manni', 'Age': 7, 'Class’: 'First'}




» Dictionary type() Method
Description

v

The method type() returns the type of the passed variable. If passed variabl
it would return a dictionary type.

v

Syntax

Following is the syntax for type() method-
type(dict)

Parameters

dict - This is the dictionary.

Return Value

This method returns the type of the passed variable.
dict = {'Name': 'Manni', 'Age': 7, 'Class': 'First'} print ("Variable Type : %s" % type (di
o/p

Variable Type : <type 'dict'>

vV vV vV vV VvV v vV v v Vv




Python includes the following dictionary methods-

dict.clear()

Removwves all elements of dictionary dict.

2 dict.copy()

Returns a shallow copy of dictionary dict.

3 dict.fromkeys()

Create a new dictionary with keys from seq and values ser to value.

4 dict.get(key, default=None)

For kev key, returns value or default if key not in dictionary.

5 dict.has Kkev(key)

Removed, use the in operation instead.

6 dict.items()

Returns a list of dict's (key. value) tuple pairs.




dict.keys()
Returns list of dictionary dict's keys.

8 | dict.setdefault(key, default=None)

Similar to get(). but will set dict[key]|=detault if key is not already in dict.
9 | dict.update(dict2)

Adds dictionary dict2's key-values pairs to dict.
10| dict.values()

Returns list of dictionary dict's values.




Dictionaryclear()Method

Description

The method clear() removes all items from the dictionary.
Syntax

Following is the syntax for clear() method-

dict.clear()

Parameters

NA

Return Value
This method does not return any value.

Example :
dict = {'Name': 'Zara’', 'Age': 7} print ("Start Len : %d" % len(dict)) dict.clear()
print ("End Len : %d" % len(dict))
o/p

Start Len : 2

End Len: O

vV V. vV vV vV vV vV V. vV vV v v v




Dictionary co Method

Description

The method copy() returns a shallow copy of the dictionary.
Syntax

Following is the syntax for copy() method-

dict.copy()

Parameters

NA

Return Value

This method returns a shallow copy of the dictionary.

dictl = {'Name': 'Manni', 'Age': 7, 'Class': 'First'} dict2 = dictl.copy()
print ("New Dictionary : ",dict2)

o/p:

New dictionary : {'Name': 'Manni', 'Age': 7, 'Class':'First'}

vV V.V VvV V. vV V. vV vV vV vV v ‘v Y




» Deep Copy

NOTE:
Python provides two types of copy i.e. 1)shallow 2)deep

Shallow Copy

A shallow copy creates a new object which stores the reference of the original el

So, a shallow copy doesn't create a copy of nested objects, instead it just copies
of nested objects. This means, a copy process does not recurse or create copies 0
objects itself.

A deep copy creates a new object and recursively adds the copies of nested obje
the original elements.

The deep copy creates independent copy of original object and all its nested



» Dictionary fromkeys() Method :

» Description

» The method fromkeys() creates a new dictionary with keys from seq and values
» Syntax

» Following is the syntax for fromkeys() method-

» dict.fromkeys(seq[, value]))

» Parameters

» e seq - This is the list of values which would be used for dictionary keys preparation.
» e« value - This is optional, if provided then value would be set to thisvalue

» Return Value

» This method returns the list.

» Example:

» seq = (‘name’, ‘age’, 'sex’) dict = dict.fromkeys(seq)

» print ("New Dictionary : %s" % str(dict)) dict = dict.fromkeys(seq, 10)

print ("New Dictionary : %s" % str(dict)



» Dictionary get() Method
» Description

v

The method get() returns a value for the given key. If the key is not availabl
default value None.

Syntax

Following is the syntax for get() method-

dict.get(key, default=None)

Parameters

e key - This is the Key to be searched in the dictionary.

o default - This is the Value to be returned in case key does not exist.
Return Value

vV vV v v v v v .Yy

This method returns a value for the given key. If the key is not available, then returns
value as None.

dict = {Name': "Zara’, '‘Age’: 27}
print ("Value : %s" % dict.get('Age’))
print ("Value : %s" % dict.get('Sex’, "NA"))




Dictionary items() Method

Description

The method items() returns a list of dict's (key, value) tuple pairs.
Syntax :

Following is the syntax for items() method-

dict.items()

Parameters

NA

Return Value

This method returns a list of tuple pairs.
dict = {Name': "Zara’, '‘Age’: 7}

print ("Value : %s" % dict.items())

o/p

Value : [(‘Age’, 7), (Name', "Zara’)]

vV V. vV VvV vV vV vV v vV vV v v VY




Dictionary keys() Method :
Description

The method keys() returns a list of all the available keys in the dictionary.
Syntax

Following is the syntax for keys() method-

dict.keys()

Parameters

NA

Return Value

This method returns a list of all the available keys in the dictionary.
dict = {Name': "Zara’, 'Age": 7}

print ("Value : %s" % dict.keys())

o/p

vV V. vV vV vV vV vV v vV vV v v ‘v Y

Value : ['Age’, 'Name']




v

Dictionary setdefault() Method :

The method setdefault() is similar to get(), but will set dict[key]=default if
already in dict.

v

Syntax

Following is the syntax for setdefault() method-

dict.setdefault(key, default=None)

Parameters

e key - This is the key to be searched.

o default - This is the Value to be returned in case key is not found.
Return Value

>
>
>
>
>
>
>
>

This method returns the key value available in the dictionary and if given key is not ava
then it will return provided default value.

dict = {'Name': 'Zara', 'Age': 7}

print ("Value : %s" % dict.setdefault('Age', None)) print ("Value : %s" % dict.set
None)) print (dict)




» Dictionary update() Method

Description

» The method update() adds dictionary dict2's key-values pairs in to dict. Thi
return anything.

Syntax

Following is the syntax for update() method-
dict.update(dict2)

Parameters

dict2 - This is the dictionary to be added into dict.
Return Value

This method does not return any value.

dict = {'Name': 'Zara', 'Age': 7}

dict2 = {'Sex': 'female' } dict.update(dict2)

print ("updated dict : ", dict)

o/p

updated dict : {'Sex': 'female', 'Age': 7, 'Name': "Zara'}

vV vV vV vV vV vV vV vV vV v Vv Y




Dictionaryvalues()Method
Description

The method values() returns a list of all the values available in a given dicti
Syntax

Following is the syntax for values() method-

dict.values()

Parameters

NA

Return Value

This method returns a list of all the values available in a given dictionary.
Example

The following example shows the usage of values() method.
#1/usr/bin/python3

dict = {'Sex': 'female’, 'Age': 7, 'Name': 'Zara'} print ("Values : ", list(dict.values()
When we run above program, it produces following result-
Values : ['female', 7, 'Zara']

VvV V.V vV vV vV vV vV vV vV vV vV v v vy YVvY Y




v

vV v v Vv

>

Files

Python provides basic functions and methods necessary to manipulate files b
do most of the file manipulation using a file object.

The open Function

Before you can read or write a file, you have to open it using Python's built-in o
This function creates a file object, which would be utilized to call other support
associated with it.

Syntax
file object = open(file_name [, access_mode][, buffering])
Here are parameter details-

[1 file_name: The file_name argument is a string value that contains the name of th
you want to access.

[0 access_mode: The access_mode determines the mode in which the file has to be o
i.e., read, write, append, etc.

A complete list of possible values is given below in the table. This is an optional para
the default file access mode is read (r).

[1 buffering: If the buffering value is set to 0, no buffering takes place. If the b
1, line buffering is performed while accessing a file. If you specify the bufferin
integer greater than 1, then buffering action is performed with the indicated
negative, the buffer size is the system default (default behavior).



Opens a file for reading only. The file pointer is placed at the beginning of the
file. This 1s the default mode.

b Opens a file for reading only in binary format. The file pointer is placed at the
beginning of the file. This 1s the default mode.

I+ Opens a file for both reading and writing. The file pointer placed at the
beginning of the file.
rb+ Opens a file for both reading and writing in binary format. The file pointer

placed at the beginning of the file.

W Opens a file for writing only. Overwrites the file 1f the file exists. If the file
does not exist, creates a new file for writing.

wb Opens a file for writing only in binary format. Overwrites the file if the file
exists. If the file does not exist, creates a new file for writing.




W

Opens a file for both writing and reading. Overwrites the existing file if the file
exists. If the file does not exist. creates a new file for reading andwriting.

wb

Opens a file for both writing and reading in binary format. Overwrites the
existing file if the file exists. If the file does not exist, creates a new file for
reading and writing.

Opens a file for appending. The file pointer is at the end of the file if the file
exists. That is. the file 1s in the append mode. If the file does not exist, it creates
a new file for writing.

ab

Opens a file for appending in binary format. The file pointer 1s at the end of the
file if the file exists. That 1s, the file 1s in the append mode. If the file does not
exist, it creates a new file for writing.

at

Opens a file for both appending and reading. The file pointer is at the end of the
file 1f the file exists. The file opens in the append mode. If the file does not exist.
it creates a new file for reading and writing.

ab+

Opens a file for both appending and reading in binary format. The filepointer is
at the end of the file if the file exists. The file opens in the append mode. If the
file does not exist, it creates a new file for reading and writing.




» The File Object Attributes :

» Once a file is opened and you have one file object, you can get various infor
that file.

» Here is a list of all the attributes related to a file object-

file.closed | Returns true if file is closed. false otherwise.

file.mode Returns access mode with which file was opened.

file.name Returns name of the file.

Note: softspace attribute is not supported in Python 3.x




» The close() Method

» The close() method of a file object flushes any unwritten information and cl
after which no more writing can be done.

v

Python automatically closes a file when the reference object of a file is reassi
file. It is a good practice to use the close() method to close a file.

Syntax

fileObject.close();

Example

#!1/usr/bin/python3

# Open a file

fo = open("foo.txt", "wb")

print ("Name of the file: ", fo.name)
# Close opened file fo.close()

This produces the following result-

vV Vv vV vV v vV v v Vv

Name of the file: foo.txt



» The file object provides a set of access methods to make our lives easier. W

» The write() Method
» The write() method writes any string to an open file. It is important to note that

vV vV v v v v v . vY

Reading and Writing Files

use read() and write() methods to read and write files.

can have binary data and not just text.
The write() method does not add a newline character ('\n') to the end of the string-
Syntax

fileObject.write(string);

Here, passed parameter is the content to be written into the opened file.
# Open a file

fo = open("foo.txt", "wW")

fo.write( "Python is a great language.\nYeah its great!!\n")

# Close opend file fo.close()

The above method would create foo.txt file and would write given content in that fil
close that file. If you would open this file, it would have the following content-



» The read() Method

» The read() method reads a string from an open file. It is important to note t
can have binary data apart from the text data.

» Syntax
» fileObject.read([count]);

v

Here, passed parameter is the number of bytes to be read from the opened file. T
starts reading from the beginning of the file and if count is missing, then it tries to
as possible, maybe until the end of file.

Example

Let us take a file foo.txt, w

# Open a file

fo = open("foo.txt", "r+") str = fo.read(10)
print ("Read String is : ", str)

>
>
>
>
>
>

# Close opened file fo.close() which we created above.




File Positions :

The tell() method tells you the current position within the file; in other
read or write will occur at that many bytes from the beginning of the fil

The seek(offset[, from]) method changes the current file position. The off
argument indicates the number of bytes to be moved. The from argument
the reference position from where the bytes are to be moved.

If from is set to 0, the beginning of the file is used as the reference position. I
to 1, the current position is used as the reference position. If it is set to
end of the file would b



# Open a file

fo = open("foo.txt", "r+") str = fo.read(10)

print ("Read String is : ", str)

# Check current positione taken as the reference position.

position = fo.tell()

print ("Current file position : ", position)
# Reposition pointer at the beginning once again position = fo.seek(0, 0)
str = fo.read(10)

print ("Again read String is : ", str)

vV vV vV vV vV v v v v Y

# Close opened file fo.close()

» This produces the following result-
Read String is : Python is Current file position : 10
» Again read String is : Python is




» Renaming and Deleting Files

» Python os module provides methods that help you perform file-processing
renaming and deleting files.

» The rename()Method

» The rename() method takes two arguments, the current filename and the new fi

» Syntax

» os.rename(current_file_name, new_file_name)

» Example

» Following is an example to rename an existing file test1.txt-

» #!/usr/bin/python3 import os

» # Rename a file from testl.txt to test2.txt os.rename( "testl.txt", "test2.txt" )




» The remove() Method

You can use the remove() method to delete files by supplying the name o
deleted as the argument.

v

Syntax

os.remove(file_name)

Example

Following is an example to delete an existing file test2.txt-
#!1/usr/bin/python3 import os

vV v v v Vv Vv

# Delete file test2.txt os.remove("text2.txt")




\ A 4

vV v . v Vv

>

Directories :

All files are contained within various directories, and Python has no proble
too.

The os module has several methods that help you create, remove, and chan

The mkdir() Method

You can use the mkdir() method of the os module to create directories in the curr
You need to supply an argument to this method, which contains the name of the di
be created.

Syntax

os.mkdir("newdir")

#!/usr/bin/python3 import os

# Create a directory "test” os.mkdir("test")



» The chdir() Method

» You can use the chdir() method to change the current directory.

v

The chdir() method takes an argument, which is the name of the directory tha
make the current directory.

Syntax

os.chdir("newdir")

Example

Following is an example to go into "/home/newdir" directory-
#!1/usr/bin/python3 import os

vV v v v v Vv

# Changing a directory to "/home/newdir" os.chdir("/home/newdir")




The getcwd() Method

The getcwd() method displays the current working directory.
Syntax :

os.getcwd()

#!/usr/bin/python3 import os

vV vV v v v Y

# This would give location of the current directory os.getcwd()

v

The rmdir() Method

» The rmdir() method deletes the directory, which is passed as an argument in the m
Before removing a directory, all the contents in it should beremoved.

v

Syntax :
os.rmdir('dirname’)
import os

# This would remove "/tmp/test" directory.

vV v v v Vv

os.rmdir( "/tmp/test" )




» EXxceptions :

An exception is an event, which occurs during the execution of a program tha
normal flow of the program's instructions. In general, when a Python script e
situation that it cannot cope with, it raises an exception. An exception is a Pyt
represents an error.

When a Python script raises an exception, it must either handle the exception|im
otherwise it terminates and quits.

Python provides two types of exceptions i.e. 1)built-in 2)user defined

Built-in Exceptions

Exception Base class for all exceptions

Stoplteration Raised when the next() method of an iterator does not point to any
object.

SystemEXxit Raised by the sys.exit() function.

StandardError Base class for all built-in exceptions except Stoplteration and
SystemExit.




ArithmeticError

Base class for all errors that occur for numeric calculation.

OverflowError Raised when a calculation exceeds maximum limit for a numeric
type.

FloatingPointError Raised when a floating point calculation fails.

ZeroDivisonError Raised when division or modulo by zero takes place for all numeric
types.

AssertionError Raised 1n case of failure of the Assert statement.

AttributeError Raised in case of failure of attribute reference or assignment.

EOFEror Raised when there is no input from either the raw input() or input()
function and the end of file is reached.

ImportError Raised when an import statement fails.

KevboardInterrupt Raised when the user interrupts program execution, usually by

pressing Ctrl+c.

LookupError

Base class for all lookup errors.




IndexError

Raised when an index is not found in a sequence.

KeyError Raised when the specified key 1s not found in the dictionary.

NameError Raised when an identifier is not found in the local or global
namespace.

UnboundLocalError | Raised when trying to access a local variable in a function or
method but no value has been assigned to it.

EnvironmentError Base class for all exceptions that occur outside the Python
environment.

IOError Raised when an input/ output operation fails. such as the print
statement or the open() function when trying to open a file that does
not exist.

OSError Raised for operating system-related errors.

SyntaxError

Raised when there 1s an error in Python syntax.




IndentationError

Raised when indentation is not specified properly.

SystemError Raised when the interpreter finds an internal problem. but when this
error 1s encountered the Python interpreter does notexit.

SystemEXit Raised when Python interpreter is quit by using the sys.exit()
function. If not handled in the code. causes the interpreter to exit.

TypeError Raised when an operation or function is attempted that 1s invalid
for the specified data type.

ValueError Raised when the built-in function for a data type has the valid type
of arguments, but the arguments have invalid values specified.

RuntimeError Raised when a generated error does not fall into any category.

NotImplementedError] Raised when an abstract method that needs to be implemented in

an inherited class 1s not actually implemented.




» Handling Exceptions :

» If you have some suspicious code that may raise an exception, you can de
by placing the suspicious code in a try: block. After the try: block, include
statement, followed by a block of code which handles the problem as elegant

» Syntax
» Here is simple syntax of

» try....except...else blocks-

ry:

You do your operations here
except Exceptionl:

If there 1s Exceptionl. then execute this block.
except Exceptionll:

If there 1s ExceptionlL. then execute this block.
else:

If there is no exception then execute this block.




Here are few important points about the above-mentioned syntax-

e A single try statement can have multiple except statements. This is usef
contains statements that may throw different types of exceptions.

e You can also provide a generic except clause, which handles any exception

o After the except clause(s), you can include an else-clause. The code in the
executes if the code in the try: block does not raise an exception.

e The else-block is a good place for code that does not need the try: block's protecti



Example:

#!/usr/bin/python3

try:

fh = open("testfile”, "w")

fh.write("This is my test file for exception handling!!")
except IOError:

print ("Error: can\'t find file or read data”)

else:

vV vV vV vV vV v v v Y

print ("Written content in the file successfully”) fh.close()




» Exception with Arguments :

» An exception can have an argument, which is a value that gives ad
information about the problem. The contents of the argument vary b
capture an exception's argument by supplying a variable in the excep
follows-

try:

You do your operations here

except ExceptionIyvpe as Argument:

You can print value of Argument here...

If you write the code to handle a single exception, you can have a variable follow the
exception in the except statement. If you are trapping multiple exceptions, you ca
variable follow the tuple of the exception.
This variable receives the value of the exception mostly containing the cause of
variable can receive a single value or multiple values in the form of a tuple. Thi
contains the error string, the error number, and an errorlocation.




» Example

» Following is an example for a single exception-

» #!/usr/bin/python3

» # Define a function here. def temp_convert(var): try:

» returnint(var)

» except ValueError as Argument:

» print("The argument does not contain numbers\n“,Argument)
» # Call above function here. temp_convert("xyz")

» o/p

» The argument does not contain numbers invalid literal for int() with base 10: 'xyz'




» User-defined Exceptions :

v

vV v v v v v v Y

Python also allows you to create your own exceptions byderiving classes f
built-in exceptions.

Here is an example related to RuntimeError. Here, a class is created that is's
RuntimeError. This is useful when you need to display more specific informati
exception is caught.

In the try block, the user-defined exception is raised and caught in the except b
variable e is used to create an instance of the class Networkerror.

class Networkerror(RuntimeError):
def init (self, arg):
self.args = arg
So once you have defined the above class, you can raise the exception as follows-
try:
raise Networkerror("Bad hostname”)
except Networkerror,e:

print e.args



vV v v v v Vv

» tuple is a sequence of immutable Python objects.
» Dictionary :Each key is separated from its value by a colon (:), the items are

» An exception is an event, which occurs during the execution of a progr

QUICK REVISION OF UNIT III :
A list is an ordered set of values, where each value is identified by a

Important thing about a list is that the items in a list need not be of t
Lists are mutable .
An assignment to an element of a list is called item assignment

Tuple are very similar to lists with only difference that element values of
not be changed and tuple elements are put between parentheses instead
bracket.

append method used to add element in list at last position .

separated by commas, and the whole thing is enclosed in curly braces.
More than one entry per key is not allowed.

Keys must be immutable.

disrupts the normal flow of the program's instructions.

Python provides two types of exceptions i.e. 1)built-in 2)user defi



» VISIT
» https://www.profajaypashankar.com

» For more study material and notes .

» VISIT
» https://www.youtube.com/channel/UCu4Bd22zM6RpvHWC9YHBh5Q?view as=subscrib

» For more lectures .

» VISIT : FOR PRACTICAL MANUAL
» https://www.profajaypashankar.com/python-programming-practical-manual/
» Password:STUDYHARD



https://www.youtube.com/channel/UCu4Bd22zM6RpvHWC9YHBh5Q?view_as=subscriber
https://www.profajaypashankar.com/python-programming-practical-manual/

18. Python - GUI Programming (Tkinter)

Python provides various options for developing graphical user
interfaces (GUIs). Most important are listed below:

Tkinter: Tkinter is the Python interface to the Tk GUI toolkit shipped
with Python. We would look this option in this tutorial.

wxPython: This is an open-source Python interface for wxWindows
http://wxpython.org.

JPython: JPython is a Python port for Java, which gives Python scripts
seamless access to Java class libraries on the local machine
http://www.jython.org.



http://wxpython.org/
http://www.jython.org/

Tkinter Programming:

Tkinter is the standard GUI library for Python. Python when
combined with Tkinter provides a fast and easy way to create GUI
applications. Tkinter provides a powerful object-oriented interface
to the Tk GUI toolkit.

Creating a GUI application using Tkinter is an easy task. All you
need to do is perform the following steps:

- Example:Import the 7kinter module.
- Create the GUI application main window.

- Add one or more of the above mentioned widgets to the GUI
application.

- Enter the main event loop to take action against each event
triggered by the user.

import Tkinter
top = Tkinter.Tk()
# Code to add widgets will go here...

top.mainloop ()



Python - Tkinter Button

The Button widget is used to add buttons in a Python application.
These buttons can display text or images that convey the purpose
of the buttons. You can attach a function or a method to a button,
which is called automatically when you click the button.

Syntax:
w = Button ( master, option=value, ... )
Parameters:
- master: This represents the parent window.

- options: Here is the list of most commonly used options for this
widget. These options can be used as key-value pairs separated

by commas.



Example:
import Tkinter
import tkMessageBox
top = Tkinter.Tk()

def helloCallBack() :
tkMessageBox.showinfo( "Hello Python", "Hello World")

B = Tkinter.Button (top, text ="Hello", command =
helloCallBack)

B.pack ()
top.mainloop ()



Python - Tkinter Canvas
The Canvas is a rectangular area intended for drawing pictures or

other complex layouts. You can place graphics, text, widgets, or
frames on a Canvas.

Syntax:
w = Canvas ( master, option=value, ... )

Parameters:
- master: This represents the parent window.

- options: Here is the list of most commonly used options for this
widget. These options can be used as key-value pairs separated

by commas.



The Canvas widget can support the following standard items:
arc . Creates an arc item.
coord = 10, 50, 240, 210

arc = canvas.create arc(coord, start=0, extent=150,
fill="blue")

image . Creates an image item, which can be an instance of either
the Bitmaplmage or the Photolmage classes.

filename = PhotolImage (file = "sunshine.gif")

image = canvas.create image (50, 50, anchor=NE,
image=filename)

line . Creates a line item.

line = canvas.create line(x0, yO0, x1, yl, ..., xn, yn,
options)

oval . Creates a circle or an ellipse at the given coordinates. oval =

canvas.create oval (x0, y0, x1, yl, options)

polygon . Creates a polygon item that must have at least three
vertices.

oval = canvas.create polygon (x0, y0, x1, yl,...xn, yn,
options)



Example:
import Tkinter
import tkMessageBox
top = Tkinter.Tk()
C = Tkinter.Canvas (top, bg="blue", height=250,

width=300)

coord = 10, 50, 240, 210

arc = C.create arc(coord, start=0, extent=150,
fill="red")

C.pack ()

top.mainloop ()



Example:
import Tkinter
import tkMessageBox

top = Tkinter.Tk()

C = Tkinter.Canvas (top, bg="blue", height=250,
width=300)

coord = 10, 50, 240, 210

arc = C.create arc(coord, start=0, extent=150,
fill="red")
C.pack ()

top.mainloop ()



Python - Tkinter Checkbutton
The Checkbutton widget is used to display a number of options to a
user as toggle buttons. The user can then select one or more
options by clicking the button corresponding to each option.

You can also display images in place of text.

Syntax:
w = Checkbutton ( master, option, ... )
Parameters:

- master: This represents the parent window.

- options: Here is the list of most commonly used options for this
widget. These options can be used as key-value pairs separated

by commas.



Example:
from Tkinter import *
import tkMessageBox

import Tkinter

top = Tkinter.Tk()
CheckVarl = IntVar ()
CheckVar?2 = IntVar ()

Cl = Checkbutton(top, text = "Music", variable =
CheckVarl, \

onvalue = 1, offvalue = 0, height=5, width

C2 = Checkbutton(top, text = "Video", variable =
CheckVar2, \

onvalue = 1, offvalue = 0, height=5, width
Cl.pack ()
C2.pack ()

top.mainloop ()



Python Tkinter Entry:

The Entry widget is used to accept single-line text strings from a
user.

If you want to display multiple lines of text that can be edited, then
you should usethe 7extwidget.

If you want to display one or more lines of text that cannot be
modified by the user then you should use the Labe/widget.

Syntax:
Here is the simple syntax to create this widget:
w = Entry( master, option, ... )
Parameters:
- master: This represents the parent window.

- options: Here is the list of most commonly used options for this
widget. These options can be used as key-value pairs separated
by commas.



Example:

from Tkinter 1mport *

top = Tk{()

L1l = Label (top, text="User Name")
Ll.pack( side = LEFT)

El = Entry(top, bd =b)H)

El.pack(side = RIGHT)

top.mainloop ()



Python - Tkinter Frame

The Frame widget is very important for the process of grouping and
organizing other widgets in a somehow friendly way. It works like a
container, which is responsible for arranging the position of other
widgets.

It uses rectangular areas in the screen to organize the layout and to
provide padding of these widgets. A frame can also be used as a
foundation class to implement complex widgets.

Syntax:
Here is the simple syntax to create this widget:
w = Frame ( master, option, ... )
Parameters:
- master: This represents the parent window.

- options: Here is the list of most commonly used options for this
widget. These options can be used as key-value pairs separated
by commas.



Example:

from Tkinter import *

root = Tk()

frame = Frame (root)

frame.pack ()

bottomframe = Frame (root)

bottomframe.pack( side = BOTTOM )

redbutton = Button (frame, text="Red", fg="red")
redbutton.pack( side = LEFT)

greenbutton = Button (frame, text="Brown", fg="brown")
greenbutton.pack( side = LEFT )

bluebutton = Button (frame, text="Blue", fg="blue")
bluebutton.pack( side = LEFT )

blackbutton = Button (bottomframe, text="Black",
fg="black")

blackbutton.pack( side = BOTTOM)

root.mainloop ()



Python Tkinter Label

This widget implements a display box where you can place text or

images. The text displayed by this widget can be updated at any
time you want.

It is also possible to underline part of the text (like to identify a
keyboard shortcut), and span the text across multiple lines.
Syntax:
Here is the simple syntax to create this widget:
w = Label ( master, option, ... )
Parameters:
- master: This represents the parent window.

- options: Here is the list of most commonly used options for this

widget. These options can be used as key-value pairs separated
by commas.



Example:

from Tkinter import *
root = Tk()

var = StringVar ()
label = Label( root, textvariable=var, relief=RAISED )

var.set ("Hey!? How are you doing?")
label.pack ()

root.mainloop ()



Python - Tkinter Listbox
The Listbox widget is used to display a list of items from which a

user can select a number of items

Syntax:
Here is the simple syntax to create this widget:

w = Listbox ( master, option, ... )

Parameters:
- master: This represents the parent window.

- options: Here is the list of most commonly used options for this
widget. These options can be used as key-value pairs separated

by commas.



Example:

from Tkinter import *

import tkMessageBox

import Tkinter

top

Lbl
Lbl

Lbl.
Lbl.1i
Lbl.i
Lbl.1
Lbl.i

Lbl

= Tk()

= Listbox (top)

.insert (1,

.pack ()

.mainloop ()

"Python")
"Perl™")
ey
"PHP")
"JSP")
"Ruby™")



Python - Tkinter Menubutton

A menubutton is the part of a drop-down menu that stays on the
screen all the time. Every menubutton is associated with a Menu
widget that can display the choices for that menubutton when the
user clicks on it.

Syntax:
Here is the simple syntax to create this widget:
w = Menubutton ( master, option, ... )
Parameters:
- master: This represents the parent window.

- options: Here is the list of most commonly used options for this
widget. These options can be used as key-value pairs separated
by commas.



Example:

from Tkinter import *

import tkMessageBox

import Tkinter

top = Tk{()

mb= Menubutton ( top, text="condiments", relief=RAISED )

mb.grid ()

mb.menu = Menu ( mb, tearoff = 0 )

mb["menu"] = mb.menu

mayoVar = IntVar ()

ketchVar = IntVar ()

mb.menu.add checkbutton ( label="mayo"“, variable=mayoVar )

mb.menu.add checkbutton ( label="ketchup",
variable=ketchVar )

mb .pack ()

top.mainloop ()



Python Tkinter Message

This widget provides a multiline and noneditable object that
displays texts, automatically breaking lines and justifying their
contents.

Its functionality is very similar to the one provided by the Label
widget, except that it can also automatically wrap the text,
maintaining a given width or aspect ratio.

Syntax:
Here is the simple syntax to create this widget:
w = Message ( master, option, ... )
Parameters:
- master: This represents the parent window.

- options: Here is the list of most commonly used options for this
widget. These options can be used as key-value pairs separated
by commas.



Example:

from Tkinter import *

root = Tk()
var = StringVar ()
label = Message( root, textvariable=var, relief=RAISED )

var.set ("Hey!? How are you doing?")
label.pack ()

root.mainloop ()



Python - Tkinter Radiobutton

This widget implements a multiple-choice button, which is a way to

offer many possible selections to the user, and let user choose only
one of them.

In order to implement this functionality, each group of radiobuttons
must be associated to the same variable, and each one of the
buttons must symbolize a single value. You can use the Tab key to
switch from one radionbutton to another.

Syntax:
Here is the simple syntax to create this widget:
w = Radiobutton ( master, option, ... )
Parameters:

- master: This represents the parent window.

- options: Here is the list of most commonly used options for this

widget. These options can be used as key-value pairs separated
by commas.



Example:

from Tkinter import *

def sel () :
selection = "You selected the option " + str(var.get())
label.config(text = selection)

root = Tk()

var = IntVar ()

R1 = Radiobutton(root, text="Option 1", variable=var,

value=1, command=sel)
Rl .pack( anchor = W )

R2 = Radiobutton(root, text="Option 2", variable=var,
value=2, command=sel)

RZ2 .pack( anchor =W )

R3 = Radiobutton(root, text="Option 3", variable=var,
value=3, command=sel)

R3.pack ( anchor = W)
label = Label (root)
label.pack()

root.mainloop ()



Python - Tkinter Scale
The Scale widget provides a graphical slider object that allows you

to select values from a specific scale.

Syntax:
Here is the simple syntax to create this widget:
w = Scale ( master, option, ... )
Parameters:

- master: This represents the parent window.

- options: Here is the list of most commonly used options for this
widget. These options can be used as key-value pairs separated

by commas.



Example:

from Tkinter import *

def sel () :
selection = "Value = " + str(var.get())
label.config(text = selection)

root = Tk()

var = DoubleVar ()

scale = Scale( root, wvariable = wvar )

scale.pack (anchor=CENTER)

button = Button(root, text="Get Scale Value"
button.pack (anchor=CENTER)

label = Label (root)
label.pack()

root.mainloop ()

4

command=sel)



Python - Tkinter Scrollbar
This widget provides a slide controller that is used to implement
vertical scrolled widgets, such as Listbox, Text, and Canvas. Note
that you can also create horizontal scrollbars on Entry widgets.

Syntax:
Here is the simple syntax to create this widget:
w = Scrollbar ( master, option, ... )
Parameters:

- master: This represents the parent window.

- options: Here is the list of most commonly used options for this
widget. These options can be used as key-value pairs separated

by commas.



Example:

from Tkinter import *

root = Tk()
scrollbar = Scrollbar (root)
scrollbar.pack( side = RIGHT, fill=Y )

mylist = Listbox(root, yscrollcommand = scrollbar.set )
for line in range (100):

mylist.insert (END, "This is line number " + str(line))

mylist.pack( side = LEFT, fill = BOTH )

scrollbar.config( command = mylist.yview )

mainloop ()



Python Tkinter Text

Text widgets provide advanced capabilities that allow you to edit a
multiline text and format the way it has to be displayed, such as
changing its color and font.

You can also use elegant structures like tabs and marks to locate
specific sections of the text, and apply changes to those areas.
Moreover, you can embed windows and images in the text because
this widget was designed to handle both plain and formatted text.

Syntax:
Here is the simple syntax to create this widget:
w = Text ( master, option, ... )
Parameters:
- master: This represents the parent window.

- options: Here is the list of most commonly used options for this
widget. These options can be used as key-value pairs separated
by commas.



Example:
from Tkinter import *
def onclick () :
pass
root = Tk()
text = Text (root)
text.insert (INSERT, "Hello..... ")
text.insert (END, "Bye Bye..... ")
text.pack()

text.tag add("here", "1.0", "1.4")
text.tag add("start", "1.8", "1.13")

text.tag config("here", background="yellow",
foreground="blue")

text.tag config("start", background="black",
foreground="green")

root.mainloop ()



Python - Tkinter Toplevel

Toplevel widgets work as windows that are directly managed by the
window manager. They do not necessarily have a parent widget on
top of them.

Your application can use any number of top-level windows.
Syntax:

Here is the simple syntax to create this widget:

w = Toplevel ( option, ... )
Parameters:

- options: Here is the list of most commonly used options for this
widget. These options can be used as key-value pairs separated
by commas.



Example:

from Tkinter import *

root = Tk{()
top = Toplevel ()

top.mainloop ()



Python - Tkinter Spinbox
The Spinbox widget is a variant of the standard Tkinter Entry
widget, which can be used to select from a fixed number of values.

Syntax:
Here is the simple syntax to create this widget:
w = Spilnbox( master, option, ... )
Parameters:

- master: This represents the parent window.

- options: Here is the list of most commonly used options for this
widget. These options can be used as key-value pairs separated

by commas.



Example:

from Tkinter import *
master = Tk()

w = Spinbox (master, from =0, to=10)

w.pack ()

mainloop ()



Python Tkinter PanedWindow

A PanedWindow is a container widget that may contain any number
of panes, arranged horizontally or vertically.

Each pane contains one widget, and each pair of panes is separated
by a moveable (via mouse movements) sash. Moving a sash causes
the widgets on either side of the sash to be resized.

Syntax:
Here is the simple syntax to create this widget:
w = PanedWindow( master, option, ... )
Parameters:
- master: This represents the parent window.

- options: Here is the list of most commonly used options for this

widget. These options can be used as key-value pairs separated
by commas.



Example:

from Tkinter import *

ml = PanedWindow ()

ml.pack (£111=BOTH, expand=1)

left = Label (ml, text="left pane")
ml.add (left)

m2 = PanedWindow (ml, orient=VERTICAL)
ml .add (m2)

top = Label (m2, text="top pane")

mZ .add (top)

bottom = Label (m2, text="bottom pane")
m2 .add (bottom)

mainloop ()



Python - Tkinter LabelFrame
A labelframe is a simple container widget. Its primary purpose is to
act as a spacer or container for complex window layouts.

This widget has the features of a frame plus the ability to display a

label.
Syntax:
Here is the simple syntax to create this widget:
w = LabelFrame( master, option, ... )
Parameters:

- master: This represents the parent window.

- options: Here is the list of most commonly used options for this
widget. These options can be used as key-value pairs separated

by commas.



Example:

from Tkinter import *
root = Tk()

labelframe = LabelFrame (root, text="This 1s a LabelFrame")

labelframe.pack (fill="both", expand="yes")

left = Label (labelframe, text="Inside the LabelFrame")
left.pack()

root.mainloop ()



