SWITCH GEAR AND PROTECTION

B.Tech. III Year II Sem.

L T P C 3 1 0 4

Course code: EE3203PC

Prerequisite: Power Systems-I, Power Systems-II

Course Objectives:

- To introduce all kinds of circuit breakers and relays for protection of Generators, Transformers and feeder bus bars from Over voltages and other hazards.
- To describe neutral grounding for overall protection.
- To understand the phenomenon of Over Voltages and it's classification.

Course Outcomes:

- Analyze quenching mechanisms used in air, oil and vacuum circuit breakers Apply technology to protect power system components.
- Evaluate electromagnetic, static relays.
- Apply the concepts of Static Relays and Microprocessor Based Relays to protect power system components
- Analyze the neutral grounding mechanisms
- Understand and analyze the over voltage protection schemes

UNIT-I:

Introduction to Circuit Breakers: Elementary principles of arc interruption, Recovery, Restriking Voltage and Recovery voltages.- Restriking Phenomenon, Average and Maximum RRRV, Numerical Problems - Current Chopping and Resistance Switching - CB ratings and Specifications: Types and Numerical Problems. – Autoreclosures. Description and Operation of following types of circuit breakers: Minimum Oil Circuit breakers, Air Blast Circuit Breakers, Vacuum, and SF6 circuit breakers.

IINIT- II

Electromagnetic and Static Relays: Principle of Operation and Construction of Attracted armature, Balanced Beam, induction Disc and Induction Cup relays.

Types of Over Current Relays: Instantaneous, DMT and IDMT types.

Application of relays: Over current/ under voltage relays, Direction relays, Differential Relays and Percentage Differential Relays. Universal torque equation, Distance relays: Impedance, Reactance, and Mho and Off-Set Mho relays, Characteristics of Distance Relays and Comparison. Static Relays: Static Relays verses Electromagnetic Relays.

UNIT-III:

Protection of Power Equipment: Protection of generators against Stator faults, Rotor faults, and Abnormal Conditions. Restricted Earth fault and Inter- turn fault Protection. Numerical Problems on % Winding Unprotected. **Protection of transformers**: Percentage Differential Protection, Numerical Problem on Design of CT s Ratio, Buchholtz relay Protection.

Protection of Lines: Over Current, Carrier Current and Three-zone distance relay protection using Impedance relays. Translay Relay. Protection of Bus bars – Differential protection.

UNIT-IV:

Neutral Grounding: Grounded and Ungrounded Neutral Systems. - Effects of Ungrounded Neutral on system performance. Methods of Neutral Grounding: Solid, Resistance, Reactance- Arcing Grounds and Grounding Practices.

UNIT - V:

Protection Against Over voltages: Generation of Over Voltages in Power Systems.- Protection against Lightning Over Voltages - Valve type and Zinc- Oxide Lighting Arresters - Insulation Coordination -BIL, Impulse Ratio, Standard Impulse Test Wave, Volt-Time Characteristics.

TEXT BOOKS:

- 1. Badriram and D.N. Vishwakarma, Power System Protection and Switchgear, TMH 2001.
- 2. U.A.Bakshi, M.V.Bakshi: Switchgear and Protection, Technical Publications, 2009.

REFERENCE BOOKS:

- 1. C.Russel Mason —The art and science of protective relaying, Wiley Eastern, 1995
- 2. L.P.Singh —Protective relaying from Electromechanical to MicroprocessorsI, New Age Internationa