

#### NARASIMHA REDDY ENGINEERING COLLEGE

(Autonomous) Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad Accredited by NAAC with A Grade, Accredited by NBA

# ELECTRICAL AND ELECTRONICS ENGINEERING

**OUESTION BANK** 

Course Title: POWER SYSTEMS- II Course Code: EE3102PC Regulation:

NR20

#### **Course Objectives**

- To analyze the performance of transmission lines.
- To understand the voltage control and compensation methods.
- To understand the per unit representation of power systems. And examine the performance of travelling waves.
- To know the methods of overvoltage protection and Insulation coordination of transmission lines
- To know the symmetrical components and fault calculation analysis

#### **Course Outcomes (CO's)**

- Analyze transmission line performance.
- Apply load compensation techniques to control reactive power
- Apply the application of per unit quantities.
- Design over voltage protection and insulation coordination
- Determine the fault currents for symmetrical and unbalanced faults

### UNIT-I

#### **Performance of Lines**

| S.                                | No | Questions                                                                   | BT | CO  | PO  |  |  |
|-----------------------------------|----|-----------------------------------------------------------------------------|----|-----|-----|--|--|
| Part – A (Short Answer Questions) |    |                                                                             |    |     |     |  |  |
|                                   | 1  | How transmission lines are classified                                       | L1 | CO1 | 1,2 |  |  |
|                                   | 2  | Draw the nominal T model of a transmission line                             | L4 | CO1 | 1,2 |  |  |
|                                   | 3  | Define the voltage regulation in transmission lines                         | L3 | CO1 | 1,2 |  |  |
|                                   | 4  | Write A, B, C and D constants of a short transmission line                  | L1 | CO1 | 1,2 |  |  |
|                                   | 5  | What are ABCD constants in a medium transmission line                       | L1 | CO1 | 1,2 |  |  |
|                                   | 6  | Draw the nominal $\Pi$ model of a transmission line                         | L4 | CO1 | 1,2 |  |  |
|                                   | 7  | Define the transmission efficiency of a transmission lines                  | L3 | CO1 | 1,2 |  |  |
|                                   | 8  | What is Ferranti Effect in transmission system                              | L1 | CO1 | 1,2 |  |  |
|                                   | 9  | Write the receiving end active and reactive power expressions               | L1 | CO1 | 1,2 |  |  |
| 1                                 | 0  | Write the receiving end active and reactive power expressions               | L1 | CO1 | 1,2 |  |  |
|                                   |    | Part – B (Long Answer Questions)                                            |    |     |     |  |  |
| 11                                | a) | What is a transmission line? Give its applications                          | L1 | CO1 | 1,5 |  |  |
|                                   | b) | Explain the performance of medium transmission line using                   | L2 | CO1 | 1,2 |  |  |
|                                   |    | nominal T method                                                            |    |     |     |  |  |
| 12                                | a) | List the classification of transmission lines                               | L4 | CO1 | 1   |  |  |
|                                   | b) | Explain the performance of medium transmission line using                   | L2 | CO1 | 1,2 |  |  |
|                                   |    | nominal $\pi$ method                                                        |    |     |     |  |  |
| 13                                | a) | What is Ferranti Effect? Explain in details                                 | L1 | CO1 | 1,2 |  |  |
|                                   | b) | A 3-phase overhead short transmission line delivers 1100 KW at              | L5 | CO1 | 2   |  |  |
|                                   |    | 33KV at 0.8 P.F lagging. The total resistance and inductive                 |    |     |     |  |  |
|                                   |    | reactance per phase of the line are 10K ohm & 15K ohm                       |    |     |     |  |  |
|                                   |    | respectively. Find sending end voltage, sending end PF,                     |    |     |     |  |  |
|                                   |    | percentage efficiency & percentage regulation                               |    |     |     |  |  |
| 14                                | a) | The constants of a 3-phase line are $A=0.9 \perp 2$ 0 and $B=14 \perp 70$ 0 | L5 | CO1 | 2   |  |  |
|                                   |    | $\Omega$ /phase. The line delivers 60 MVA at 132KV and 0.8 P.F lag.         |    |     |     |  |  |
|                                   |    | Draw circle diagram and find (a). Sending end voltage & amp;                |    |     |     |  |  |
|                                   |    | power angle (b). Maximum power (c). Sending end power and                   |    |     |     |  |  |
|                                   |    | power factor (d). Line losses.                                              |    |     |     |  |  |
|                                   | b) | Discuss the construction procedure of receiving end power circle            | L6 | CO1 | 3   |  |  |
|                                   |    | diagram of a transmission line                                              |    |     |     |  |  |
| 15                                | a) | Explain the power flow in a transmission line and obtain the                | L2 | CO1 | 1,2 |  |  |
|                                   |    | active and reactive power Expressions                                       |    |     |     |  |  |
|                                   | b) | Input to a single-phase short line is 2000 KW at 0.8 pf lagging.            | L1 | CO1 | 2   |  |  |

|    |    | The line has a series impedance of (0.4+j0.4) ohms. If the load       |    |     |     |
|----|----|-----------------------------------------------------------------------|----|-----|-----|
|    |    | voltage is 3 KV, find load and receiving end power factor. Also       |    |     |     |
|    |    | find supply voltage and supply power factor.                          |    |     |     |
| 16 | a) | Discuss why equivalent $\pi$ circuit of a long line is preferred over | L6 | CO1 | 1,5 |
|    |    | the equivalent T circuit                                              |    |     |     |
|    | b) | Discuss the construction of sending end power circle diagram of a     | L6 | CO1 | 2   |
|    |    | transmission line                                                     |    |     |     |

## UNIT-II

## Voltage Control

| <b>S.</b>                         | No  | Questions                                                                                                                        | BT         | CO     | PO  |  |  |  |
|-----------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------|------------|--------|-----|--|--|--|
| Part – A (Short Answer Questions) |     |                                                                                                                                  |            |        |     |  |  |  |
|                                   | 1   | What is the importance of voltage control in the modern power                                                                    | L1         | CO2    | 1.2 |  |  |  |
|                                   |     | system.                                                                                                                          |            |        |     |  |  |  |
| ,                                 | 2   | What are the various methods of voltage control in a power                                                                       | L1         | CO2    | 1,2 |  |  |  |
|                                   |     | system                                                                                                                           |            |        |     |  |  |  |
|                                   | 3   | What are the limitations off-load <u>tap changing</u>                                                                            | L1         | CO2    | 1,2 |  |  |  |
|                                   |     | transformer method of voltage control                                                                                            |            |        |     |  |  |  |
| 4                                 | 4   | Why Voltage control equipment is generally located at more than                                                                  | L2         | CO2    | 1,2 |  |  |  |
|                                   | _   | one point.                                                                                                                       | 10         | C02    | 2   |  |  |  |
|                                   | 5   | Why Tap-changing is generally performed on load.                                                                                 | L2         | $CO_2$ | 2   |  |  |  |
|                                   | 0   | why do we use overshooting the mark principle in automatic                                                                       | L2         | 02     | Z   |  |  |  |
| ,                                 | 7   | Voltage regulators                                                                                                               | I A        | CO2    | 3   |  |  |  |
|                                   | /   | transformer                                                                                                                      | LŦ         | 02     | 5   |  |  |  |
|                                   |     |                                                                                                                                  |            |        |     |  |  |  |
|                                   | 8   | Draw the connection diagram for Auto-transformer tap-changing                                                                    | L4         | CO2    | 3   |  |  |  |
|                                   |     |                                                                                                                                  |            |        |     |  |  |  |
|                                   | 9   | What are the limitations on-load tap changing transformer method                                                                 | L1         | CO2    | 1   |  |  |  |
|                                   |     | of voltage control                                                                                                               |            |        |     |  |  |  |
|                                   |     |                                                                                                                                  | <b>T</b> 4 | 000    |     |  |  |  |
| 1                                 | 0   | What are the sources of reactive power? How it is controlled                                                                     | LI         | CO2    | 1   |  |  |  |
|                                   |     | Part – B (Long Answer Ouestions)                                                                                                 |            |        |     |  |  |  |
| 11                                | a)  | what are the different voltage control methods of transmission                                                                   | L1         | CO2    | 1,2 |  |  |  |
|                                   | ,   | line                                                                                                                             |            |        |     |  |  |  |
|                                   | b)  | Explain the voltage control in a transmission line by using shunt                                                                | L2         | CO2    | 1,2 |  |  |  |
|                                   |     | reactor                                                                                                                          |            |        |     |  |  |  |
| 12                                | a)  | Explain the voltage control by using phase modifiers in a                                                                        | L2         | CO2    | 1,2 |  |  |  |
|                                   |     | transmission line.                                                                                                               |            |        |     |  |  |  |
|                                   | b)  | what are the disadvantages of dynamic voltage control devices                                                                    | L1         | CO2    | 1,2 |  |  |  |
|                                   |     | compared to static devices in a transmission line                                                                                |            |        |     |  |  |  |
| 13                                | a)  | What is the need of voltage control in a power system?                                                                           | L1         | CO2    | 1   |  |  |  |
|                                   | b)  | Explain the voltage control by using shunt capacitors in a                                                                       | L2         | CO2    | 1,2 |  |  |  |
| 1.4                               | - ) | transmission line                                                                                                                | 10         | CON    | 1.2 |  |  |  |
| 14                                | a)  | Explain the voltage control in a transmission line by using tap                                                                  | LZ         | 02     | 1,2 |  |  |  |
|                                   | b)  | At an industrial sub-station with a 4 MW load a consolitor of 2                                                                  | Ţ 1        | CO2    | 2   |  |  |  |
|                                   | U)  | At an industrial sub-station with a 4 WW load, a capacitor of 2 $MVAR$ is installed to maintain the load D E of 0.07 log. If the |            |        | 2   |  |  |  |
|                                   |     | capacitor bank is out of service what is the load nower factor                                                                   |            |        |     |  |  |  |
| 15                                | a)  | Explain about the load compensation in power system                                                                              | L2         | CO2    | 2   |  |  |  |
| 15                                | b)  | Explain the working of on-load tan changing transformer for                                                                      | <br>L2     | CO2    | 1   |  |  |  |
|                                   | 2)  | voltage control                                                                                                                  | -          |        |     |  |  |  |
| 16                                | a)  | Explain series and shunt compensation of lines and discuss their                                                                 | L2         | CO2    | 2   |  |  |  |
| 16                                | a)  | Explain series and shunt compensation of lines and discuss their                                                                 | L2         | 002    | 2   |  |  |  |

|    | effect on the surge impedance loading of the lines. If shunt compensation is 100%, what happens to SIL and voltage profile. |    |     |   |
|----|-----------------------------------------------------------------------------------------------------------------------------|----|-----|---|
| b) | A radial long uncompensated line with constant sending end                                                                  | L3 | CO2 | 1 |
|    | voltage is terminated through an asynchronous load, derive an                                                               |    |     |   |
|    | expression for maximum power transfer when termination is                                                                   |    |     |   |
|    | through a variable resistance.                                                                                              |    |     |   |

# <u>UNIT–III</u>

# Per Unit Representation of Power Systems

| <u>S</u> .                        | No | Questions                                                                          | BT         | CO  | PO  |  |  |  |
|-----------------------------------|----|------------------------------------------------------------------------------------|------------|-----|-----|--|--|--|
| Part – A (Short Answer Questions) |    |                                                                                    |            |     |     |  |  |  |
|                                   | 1  | What is the per unit impedance Z(pu)                                               | L1         | CO3 | 1   |  |  |  |
|                                   | 2  | Calculate the per- unit synchronous reactance on the base value of                 | L5         | CO3 | 2   |  |  |  |
|                                   |    | 200 MVA and 20 KV when a 100 MVA with 20 KV synchronous                            |            |     |     |  |  |  |
|                                   |    | generator has 1 pu synchronous reactance                                           |            |     |     |  |  |  |
|                                   | 3  | Why the load current in short circuit calculations are neglected                   | L2         | CO3 | 1   |  |  |  |
|                                   | 4  | What is proximity effect                                                           | L1         | CO3 | 1   |  |  |  |
|                                   | 5  | What is the per unit value of a 2 ohm resistor at 100 MVA and 10                   | L1         | CO3 | 2   |  |  |  |
|                                   |    | kV base voltage                                                                    |            | 000 |     |  |  |  |
|                                   | 6  | Explain about termination of line with open circuit for travelling wave            | L2         | CO3 | 1   |  |  |  |
|                                   | 7  | The base value of a power system is chosen based upon which                        | L1         | CO3 | 1   |  |  |  |
|                                   |    | considerations                                                                     |            |     |     |  |  |  |
|                                   | 8  | Tell brief about power loss due to corona                                          | L1         | CO3 | 1   |  |  |  |
|                                   | 9  | What is the coefficient of reflection for current for an open ended                | L1         | CO3 | 1   |  |  |  |
|                                   |    | line                                                                               |            |     | -   |  |  |  |
| 1                                 | 0  | An overhead line with surge impedance of 400 $\Omega$ is terminated                | L1         | CO3 | 2   |  |  |  |
|                                   |    | through a resistance R. A surge traveling over the line will not                   |            |     |     |  |  |  |
|                                   |    | suffer any reflection at the junction, then what is the value of R                 |            |     |     |  |  |  |
| 11                                |    | Part – B (Long Answer Questions)                                                   | 1.5        | 002 | 1.0 |  |  |  |
|                                   | a) | Explain the p.u. system of analyzing power system problems.                        | L3         | 03  | 1,2 |  |  |  |
|                                   |    | Discuss the advantages of this method over the absolute method                     |            |     |     |  |  |  |
|                                   | b) | of analysis.<br>A symphronous generator having 75 MVA $\pm 10$ KV X d $\pm 0.4$ mu | 15         | CO3 | 2   |  |  |  |
|                                   | 0) | A synchronous generator having 75 WVA, 10 KV, $\Lambda$ u =0.4 pu.                 | LJ         | 005 | 2   |  |  |  |
| 12                                | a) | Obtain the expression for velocity of a travelling wave of short                   | L3         | CO3 | 3   |  |  |  |
| 12                                | u) | transmission line                                                                  |            |     |     |  |  |  |
|                                   | b) | A 3-Ø generator with rating 1000KVA, 66 KV has its armature                        | L5         | CO3 | 2   |  |  |  |
|                                   |    | resistance and synchronous reactance as $60\Omega$ /phase and                      |            |     |     |  |  |  |
|                                   | ,  | $90\Omega$ /phase. Calculate p.u impedance of the generator                        |            |     |     |  |  |  |
| 13                                | a) | Explain about the termination of transmission line through open<br>ended line      | L2         | CO3 | 1   |  |  |  |
|                                   | b) | A generator is rated 600MVA, 35kV. Its star-connected winding                      | L1         | CO3 | 2   |  |  |  |
|                                   |    | has a reactance of 1.4p.u. Find the ohmic value of the reactance of                |            |     |     |  |  |  |
|                                   |    | winding                                                                            |            |     |     |  |  |  |
| 14                                | a) | Surge of 100 KV travelling in a line of natural impedance 600                      | L5         | CO3 | 2   |  |  |  |
|                                   |    | ohm arrives at a junction with two lines of impedance 800 ohm                      |            |     |     |  |  |  |
|                                   |    | and 200 ohm respectively, Find the surge voltage and current                       |            |     |     |  |  |  |
|                                   | •  | transmitted into the line.                                                         | <b>T</b> 4 | 000 |     |  |  |  |
|                                   | b) | If the generator is working in a circuit for which the specified                   | L1         | CO3 | 2   |  |  |  |
|                                   |    | values are 400MVA, 30KV, then find the p.u value of reactance                      |            |     |     |  |  |  |
|                                   |    | of generator winding on the specified base.                                        |            |     |     |  |  |  |
| 15                                | a) | Explain about the termination of transmission line through capacitance             | L2         | CO3 | 1   |  |  |  |

|    | <ul> <li>b) An overhead line with surge impedance 400 ohms bifurcates into<br/>two lines of surge impedance 400 ohms and 40 ohms respectively<br/>If a surge of 20 KV is incident on the overhead line, determine the<br/>magnitudes of voltage and current which enter the bifurcated<br/>lines.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L5   | CO3 | 2 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|---|
| 16 | Draw the per unit impedance diagram of the network shown in the figure. Choose base quantities as the generator values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E L6 | CO3 | 2 |
|    | $\begin{array}{c} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & $ | 7    |     |   |
|    | X = 0.1 So ka (A, 17152 K) 20 ohms line $X = 0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |     |   |

## UNIT-IV

# **Overvoltage Protection and Insulation Coordination**

| S.  | No                                | Questions                                                           | BT         | CO  | PO  |  |  |  |  |
|-----|-----------------------------------|---------------------------------------------------------------------|------------|-----|-----|--|--|--|--|
|     | Part – A (Short Answer Questions) |                                                                     |            |     |     |  |  |  |  |
|     | 1                                 | Discuss the causes of over voltages.                                | L6         | CO4 | 1   |  |  |  |  |
|     | 2                                 | What is lightning? Give the various types of lightning strokes      | L1         | CO4 | 1   |  |  |  |  |
|     | 3                                 | How do earthling screen provide protection against direct           | L3         | CO4 | 1   |  |  |  |  |
|     |                                   | lightning strokes                                                   |            |     |     |  |  |  |  |
|     | 4                                 | How do ground wires provide protection against direct lightning     | L3         | CO4 | 1   |  |  |  |  |
|     |                                   | strokes                                                             |            |     |     |  |  |  |  |
|     | 5                                 | What is the basic principle of operation of a surge diverter        | L1         | CO4 | 1   |  |  |  |  |
|     |                                   |                                                                     | T 1        | CO1 | 1   |  |  |  |  |
|     | 6                                 | What is a surge absorber                                            |            | CO4 | 1   |  |  |  |  |
| ,   | 7                                 | Why are steep fronted surges more dangerous to power system         | L1         | CO4 | 1   |  |  |  |  |
|     |                                   | equipment                                                           |            |     |     |  |  |  |  |
|     | 8                                 | What are the harmful effects of lightning                           | L1         | CO4 | 1   |  |  |  |  |
|     | 9                                 | Explain Horn gap diverter                                           | L2         | CO4 | 1   |  |  |  |  |
| 1   | 0                                 | Why are surge diverters located very close to the equipment to be   | L2         | CO4 | 1   |  |  |  |  |
|     |                                   | protected                                                           |            |     |     |  |  |  |  |
|     |                                   | Part – B (Long Answer Ouestions)                                    |            |     |     |  |  |  |  |
| 11  | a)                                | What are the different types of lightning arresters                 | L1         | CO4 | 1,2 |  |  |  |  |
|     | b)                                | Explain about the construction and working of valve type of         | L2         | CO4 | 1,2 |  |  |  |  |
|     |                                   | lightning arrester                                                  |            |     |     |  |  |  |  |
| 12  | a)                                | Explain the working of Ground wires and Ground rods                 | L2         | CO4 | 1,2 |  |  |  |  |
|     | b)                                | Explain the working of counter poise                                | L2         | CO4 | 1   |  |  |  |  |
| 13  | a)                                | What are the causes of over voltage in power system                 | L1         | CO4 | 1   |  |  |  |  |
|     | b)                                | Explain about the construction and working of Expulsion type of     | L2         | CO4 | 1,2 |  |  |  |  |
|     |                                   | lightning arrester                                                  |            |     |     |  |  |  |  |
| 14  | a)                                | What is insulation co-ordination. Explain volt-time curves of       | L1         | CO4 | 1,2 |  |  |  |  |
|     | 1.                                | protective devices                                                  | <b>T</b> 1 | 004 | 1.0 |  |  |  |  |
| 1.5 | b)                                | what are the different types of faults                              |            | CO4 | 1,2 |  |  |  |  |
| 15  | a)                                | Explain about the over voltage due to arcing ground and working     | L2         | CO4 | 1,2 |  |  |  |  |
|     | b)                                | OI Peterson coll<br>Discuss the construction and working of hom con | 16         | CO4 | 1.2 |  |  |  |  |
| 16  | (0)                               | Explain about the surge protection in rotating machines             | 1.2        | C04 | 1,2 |  |  |  |  |
| 10  | a)<br>b)                          | Explain about the surge protection in rotating machines             | L2<br>12   | C04 | 1,2 |  |  |  |  |
|     | (0                                | Explain the working of surge absorber                               | L2         | 004 | 1,4 |  |  |  |  |

| <u>UNIT–V</u>                                 |
|-----------------------------------------------|
| Symmetrical Components and Fault Calculations |

| <b>S.</b> | No | Questions                                                                                    | BT | CO  | PO  |
|-----------|----|----------------------------------------------------------------------------------------------|----|-----|-----|
|           |    | Part – A (Short Answer Questions)                                                            |    |     |     |
|           | 1  | What is meant by a fault                                                                     | L1 | CO5 | 1   |
| ,         | 2  | Why fault occur in a power system                                                            | L1 | CO5 | 1   |
| ,         | 3  | List the various types of shunt and series faults                                            | L4 | CO5 | 1   |
| 4         | 4  | What is symmetrical and unsymmetrical faults                                                 | L1 | CO5 | 1   |
|           | 5  | List any two methods of reducing short –circuit current                                      | L4 | CO5 | 1   |
| (         | 6  | What are different types of symmetrical components                                           | L1 | CO5 | 1   |
| ,         | 7  | Define negative sequence component                                                           | L2 | CO5 | 1   |
|           | 8  | What is meant by short circuit fault                                                         | L1 | CO5 | 1   |
|           | 9  | Define zero sequence component                                                               | L2 | CO5 | 1   |
| 1         | 0  | What assumption is made at the star / delta transformer                                      | L1 | CO5 | 1   |
|           |    | Part – B (Long Answer Questions)                                                             |    |     |     |
| 11        | a) | Explain the method of fault calculation for single line to ground                            | L2 | CO5 | 1,2 |
|           | b) | Obtain expression of three phase power in terms of sequences component                       |    | CO5 | 3   |
| 12        | a) | Explain about the significance of positive, negative and zero                                | L2 | CO5 | 3   |
|           |    | sequence components                                                                          |    |     |     |
|           | b) | Discuss phase shifting in star-delta transformers                                            |    | CO5 | 1   |
| 13        | a) | Explain the method of fault calculation for line to line fault                               | L2 | CO5 | 2   |
|           | b) | Derive an expression for the fault current for a double line to                              | L6 | CO5 | 3   |
|           |    | ground fault as an unloaded generator and draw its equivalent circuit                        |    |     |     |
| 14        | a) | Explain the double line to ground fault for the significance of                              | L2 | CO5 | 1   |
|           |    | sequence component equations                                                                 |    |     |     |
|           | b) | Discuss the significance of zero sequence circuit. Why should Zn                             |    | CO5 | 1,2 |
|           |    | appear as 3Zn in zero sequence equivalent circuit                                            |    |     | 1.0 |
| 15        | a) | Explain the method of fault calculation for single line to ground with fault impedance $Z_f$ | L2 | C05 | 1,2 |
|           | b) | What is 3 phase unsymmetrical fault? Discuss any one type of                                 | L1 | CO5 | 3   |
|           |    | unsymmetrical in brief.                                                                      |    |     |     |
| 16        |    | A generator rated 120MVA, 11KV has X1=X2= 30% and X0=                                        | L5 | CO5 | 3   |
|           |    | 15%. Its neutral is grounded through a reactance of 0.1 ohm. The                             |    |     |     |
|           |    | generator is operating at rated voltage, load is disconnected from                           |    |     |     |
|           |    | the system when double line to ground fault occurs at its                                    |    |     |     |
|           |    | terminals. Find the sub-transient current in the faulted phases and                          |    |     |     |
|           |    | line to line fault current.                                                                  |    |     |     |

\* Blooms Taxonomy Level (BT) (L1 – Remembering; L2 – Understanding; L3 – Applying; L4 – Analyzing; L5 – Evaluating; L6 – Creating)
Course Outcomes (CO)

Program Outcomes (PO)

## **Prepared By: M. RAVINDAR**