
UNIT -1
THE 8086 MICROPROCESSORS

• A microprocessor is an electronic component that is used by a

computer to do its work. It is a central processing unit on a

single integrated circuit chip containing millions of very small

components including transistors, resistors, and diodes that

work together.

Evolution of Microprocessor

UNIT 1
THE 8086 MICROPROCESSOR

Introduction to 8086 – Microprocessor
architecture – Addressing modes - Instruction
set and assembler directives – Assembly
language programming – Modular
Programming - Linking and Relocation - Stacks
- Procedures – Macros – Interrupts and
interrupt service routines – Byte and String
Manipulation.

UNIT 1
THE 8086 MICROPROCESSOR

FEATURES OF 8086

• The 8086 is a 16 bit processor.

• The 8086 has a 16 bit Data bus.

• The 8086 has a 20 bit Address bus.

• Direct addressing capability 1 M Byte of Memory (220)

• It provides fourteen 16-bit register.

• 24 Operand addressing modes.

• Four general-purpose 16-bit registers: AX, BX, CX, DX

• Available in 40pin Plastic Package and Lead Chip.

8086 MICROPROCESSOR ARCHITECTURE

the 8086 processor are partitioned logically into
two processing units

• Bus Interface Unit (BIU)

The BIU fetches instructions, reads data from
memory and ports, and writes data to memory
and I/O ports.

• Execution Unit (EU)

EU receives program instruction codes and data
from the BIU, executes these instructions and
stores the results either in the general registers or
output them through the BIU. EU has no
connections to the system buses.

The BIU contains

• Segment registers

• Instruction pointer

• Instruction queue

The EU contains

• ALU

• General purpose registers

• Index registers

• Pointers

• Flag register

General Purpose Registers

All general registers of the 8086 microprocessor can be
used for arithmetic and logic operations.

• Accumulator register (AX)

Accumulator can be used for I/O operations and string
manipulation.

• Base register (BX)

BX register usually contains a data pointer used for
based, based indexed or register indirect addressing.

• Count register (CX)

Count register can be used as a counter in string
manipulation and shift/rotate instructions.

• Data register (DX)

Data register can be used as a port number in I/O
operations.

Segment Registers:
Most of the registers contain data/instruction offsets within
64 KB memory segment. There are four different 64 KB
segments for instructions, stack, data and extra data.

• Code segment (CS)
The CS register is automatically updated during FAR JUMP,
FAR CALL and FAR RET instructions.

• Stack segment (SS)
SS register can be changed directly using POP instruction.

• Data segment (DS)
DS register can be changed directly using POP and LDS
instructions.

• Extra segment (ES)
ES register can be changed directly using POP and LES
instructions.

Pointer Registers
Stack Pointer (SP)

It is a 16-bit register pointing to program stack.
Base Pointer (BP)

It is a 16-bit register pointing to data in the stack segment.
BP register is usually used for based, based indexed or
register indirect addressing.

Index Registers
Source Index (SI)

It is a 16-bit register. SI is used for indexed, based indexed
and register indirect addressing, as well as a source data
address in string manipulation instructions.

Destination Index (DI)
It is a 16-bit register. DI is used for indexed, based indexed
and register indirect addressing, as well as a destination
data address in string manipulation instructions.

Instruction Pointer (IP)

It is a 16-bit register. The operation is same as the
program counter. The IP register is updated by
the BIU to point to the address of the next
instruction. Programs do not have direct access
to the IP, but during execution of a program the IP
can be modified or saved and restored from the
stack.

Flag register

It is a 16-bit register containing nine 1-bit flags:

• Six status or condition flags (OF, SF, ZF, AF, PF, CF)

• Three control flags (TF, DF, IF)

• Overflow Flag (OF) - set if the result is too large positive number,
or is too small negative number to fit into destination operand.

• Sign Flag (SF) - set if the most significant bit of the result is set.

• Zero Flag (ZF) - set if the result is zero.

• Auxiliary carry Flag (AF) - set if there was a carry from or borrow
to bits 0-3 in the AL register.

• Parity Flag (PF) - set if parity (the number of “1” bits) in the low-
order byte of the result is even.

• Carry Flag (CF) - set if there was a carry from or borrow to the
most significant bit during last result calculation.

• Trap or Single-step Flag (TF) - if set then single-step interrupt will
occur after the next instruction.

• Direction Flag (DF) - if set then string manipulation instructions
will auto-decrement index registers. If cleared then the index
registers will be auto-incremented.

• Interrupt-enable Flag (IF) - setting this bit enables maskable
interrupts.

Instruction Queue

The instruction queue is a First-In-First-out (FIFO)
group of registers where 6 bytes of instruction
code is pre-fetched from memory ahead of time.
It is being done to speed-up program execution
by overlapping instruction fetch and execution.
This mechanism is known as PIPELINING.

ALU

It is a 16 bit register. It can add, subtract,
increment, decrement, complement, shift
numbers and performs AND, OR, XOR operations.

Control unit

The control unit in the EU directs the internal
operations like RD , WR , M/IO

Instruction Set
• Data moving instructions.
• Arithmetic instructions - add, subtract, increment,

decrement, convert byte/word and compare.
• Logic instructions - AND, OR, exclusive OR,

shift/rotate and test.
• String manipulation instructions - load, store,

move, compare and scan for byte/ word.
• Control transfer instructions - conditional,

unconditional, call subroutine and return from
subroutine.

• Input/Output instructions.
• Other instructions - setting/clearing flag bits, stack

operations, software interrupts, etc.

Addressing modes
• Implied - the data value/data address is implicitly associated with the

instruction.
• Register - references the data in a register or in a register pair.
• Immediate - the data is provided in the instruction.
• Direct - the instruction operand specifies the memory address where data is

located.
• Register indirect - instruction specifies a register containing an address,

where data is located. This addressing mode works with SI, DI, BX and BP
registers.

• Based - 8-bit or 16-bit instruction operand is added to the contents of a
base register (BX or BP), the resulting value is a pointer to location where
data resides.

• Indexed - 8-bit or 16-bit instruction operand is added to the contents of an
index register (SI or DI), the resulting value is a pointer to location where
data resides.

• Based Indexed - the contents of a base register (BX or BP) is added to the
contents of an index register (SI or DI), the resulting value is a pointer to
location where data resides.

• Based Indexed with displacement - 8-bit or 16-bit instruction operand is
added to the contents of a base register (BX or BP) and index register (SI or
DI), the resulting value is a pointer to location where data resides.

Interrupts

Hardware interrupts

Maskable and non-maskable interrupts

Software interrupts

ADDRESSING MODES
• An addressing mode is the way the 8086 identifies the operands for

the instruction. All instructions that access the data use one or
more of the addressing modes.

• The memory address of an operand consists of two components
1.Starting address of the memory segment

2.Offset
• When an operand is stored in a memory location, how for the

operand’s memory location is within a memory segment from the
starting address of the segment, is called Offset or Effective
Address (EA).

• The 8086 uses 20 bit memory address. The segment register gives
16 MSBs of the starting address of the memory segment. The BIU
generates 20 bit starting address of the memory segment by
shifting the content of the segment register left by 4 bits. In other
words it puts 4 zeros in 4 LSB positions.

• Memory Address = Starting address of the memory segment +
Offset

The 8086 has the following addressing modes:

• Register Addressing Mode

• Immediate Addressing Mode

• Direct Addressing Mode

• Register Indirect Addressing Mode

• Base Addressing Mode

• Indexed Addressing Mode

• Based Indexed Addressing Mode

• String Addressing Mode

• I/O Port Addressing Mode

• Relative Addressing Mode

• Implied Addressing Mode

Register Addressing Mode
• Both source and destination operands are

registers. The operand sizes must match. MOV
destination, source

• Examples:
• MOV AL, AH
• MOV AX, BX
Immediate Addressing Mode
• The data operand is supplied as part of the

instruction. The immediate operand can only be a
source.

• Examples:
• MOV CH, 3A H
• MOV DX, 0C1A5 H

Direct Addressing Mode

• One of the operands is a memory location, given by a
constant offset.

• In this mode the 16 bit effective address (EA) is taken
directly from the displacement field of the instruction.

• Examples:

• MOV AX,[1234 H]

• MOV DL, [3BD2 H],

Register Indirect Addressing Mode

• One of the operands is a memory location, with the
offset given by one of the BP, BX, SI, or DI registers.

• Example:

• MOV [BX], CL

• MOV DL, [BX]

Base Addressing Mode

• In this mode EA is obtained by adding a
displacement (signed 8 bit or unsigned 16 bit)
value to the contents of BX or BP. The segment
registers used are DS and SS.

• Example:

• MOV AX, [BP + 200]

Indexed Addressing Mode

• The operand’s offset is the sum of the content of
an index register SI or DI and an 8-bit or 16-bit
displacement.

• Example:

• MOV AH, [DI]

Based Indexed Addressing Mode
• In this mode, the EA is computed by adding a base

register (BX or BP), an index register (SI or DI) and a
displacement (unsigned 16 bit or sign extended 8
bit)

• Example:
• MOV AX, [BX + SI + 1234 H]
• MOV CX, [BP][SI] + 4
String Addressing Mode
• The instruction is a string instruction, which uses

index registers implicitly to access memory.
• Example:
• MOVS B
• MOVS W

I/O Port Addressing Mode
• The destination or source of the data is an I/O port.

Either direct port addressing (including an 8-bit port
address) or indirect addressing (DX must contain the
port address) may be used.

• Examples:
• IN AX, 50H ; Direct
• OUT DX, AL ; Indirect
Relative Addressing Mode
• In this mode, the operand is specified as a signed 8

bit displacement, relative to PC(Program Counter).
• Examples:
• JMP 0200 H
• JNC START

Implied Addressing Mode

• Instructions using this mode have no operands.

• Examples:

• CLC, STC, CMC

INSTRUCTION SET
• Intel 8086 has approximately 117 instructions. These

instructions are used to transfer data between
registers, register to memory, memory to register or
register to I/O ports and other instructions are used for
data manipulation.

• But in Intel 8086 operations between memory to
memory is not permitted. These instructions are
classified in to six-groups as follows.

1.Data Transfer Instructions
2.Arithmetic Instructions
3.Bit Manipulation Instructions
4.String Instructions
5.Program Execution Transfer Instructions
6.Processor Control Instructions

Data Transfer Instructions

1.MOV

• MOV destination, source

• This (Move) instruction transfers a byte or a word
from the source operand to the destination
operand.

• (DEST) (SRC)

• DEST = Destination

• SRC = Source

• Example :

• MOV AX, BX

• MOV AX, 2150H

• MOV AL, [1135]

2.PUSH

• PUSH Source

• This instruction decrements SP (stack pointer)
by 2 and then transfers a word from the
source operand to the top of the stack now
pointed to by stack pointer.

• (SP) (SP) 2

• ((SP)+1 : (SP)) (SRC)

• Example :

• PUSH SI

• PUSH BX

3.POP

• POP destination

• This instruction transfers the word at the
current top of stack (pointed to by SP) to the
destination operand and then increments SP
by 2, pointing to the new top of the stack.

• (DEST) ((SP)+1:(SP))

• (SP) (SP) + 2

• Example :

• POP DX

• POP DS

LAHF
• Load Register AH from Flags
• This instruction copies Sign flag(S), Zero flag (Z),

Auxiliary flag (AC), Parity flag (P) and Carry flag
(C) of 8086 into bits 7, 6, 4, 2 and 0 respectively,
of register AH

SAHF
• Store Register AH into Flags
• This instruction transfers bits 7, 6, 4, 2 and 0 from

register AH into S, Z, AC, P and C flags
respectively, thereby replacing the previous
values.

XCHG
• XCHG destination, source
• This (Exchange) instruction switches the contents of the source and

destination operands.

XLAT
• XLAT table
• This (Translate) instruction replaces a byte in the AL register with a byte

from a 256-byte, user-coded translation table. XLAT is useful for
translating characters from one code to another.

• AL ((BX) + (AL))
• Example :
• XLAT ASCII_TAB
• XLAT Table_3

LEA
• LEA destination, source
• This (Load Effective Address) instruction transfers the offset of the

source operand (memory) to the destination operand (16-bit
general register).

• (REG) EA
• Example :
• LEA BX, [BP] [DI]
• LEA SI, [BX + 02AF H]
LDS
• LDS destination, source
• This (Load pointer using DS) instruction transfers a 32-bit pointer

variable from the source operand (memory operand) to the
destination operand and register DS.

• (REG) (EA)
• (DS) (EA+2)
• Example :
• LDS SI, [6AC1H]

LES
• LES destination, source
• This (Load pointer using ES) instruction transfers a 32-bit pointer variable from the

source operand (memory operand) to the destination operand and register ES.
• (REG) (EA)
• (ES) (EA+2)
• Example :
• LES DI, [BX]
IN
• IN accumulator, port
• This (Input) instruction transfers a byte or a word from an input port to the

accumulator (AL or AX).
• (DEST) (SRC)
• Example :
• IN AX, DX
• IN AL, 062H
OUT
• OUT port, accumulator
• This (Output) instruction transfers a byte or a word from the accumulator (AL or AX)

to an output port.
• (DEST) (SRC)
• Example :
• OUT DX, AL
• OUT 31, AX

Arithmetic Instructions
ADD
• ADD destination, source
• This (Add) instruction adds the two operands (byte or word) and stores

the result in destination operand.
• (DEST) (DEST) + (SRC)
• Example :
• ADD CX, DX
• ADD AX, 1257 H
• ADD BX, [CX]
ADC
• ADC destination, source
• This (Add with carry) instruction adds the two operands and adds one if

carry flag (CF) is set and stores the result in destination operand.
• (DEST) (DEST) + (SRC) + 1
• Example :
• ADC AX, BX
• ADC AL, 8
• ADC CX, [BX]

SUB
• SUB destination, source
• This (Subtract) instruction subtracts the source operand from the

destination operand and the result is stored in destination operand.
• (DEST) (DEST) – (SRC)
• Example :
• SUB AX, 6541 H
• SUB BX, AX
• SUB SI, 5780 H
SBB
• SBB destination, source
• This (Subtract with Borrow) instruction subtracts the source from the

destination and subtracts 1 if carry flag (CF) is set. The result is stored
in destination operand.

• (DEST) (DEST) – (SRC) –1
• Example :
• SBB BX, CX
• SBB AX, 2

CMP
• CMP destination, source
• This (Compare) instruction subtracts the source from the

destination, but does not store the result.
• (DEST) – (SRC)
• Example :
• CMP AX, 18
• CMP BX, CX
INC
• INC destination
• This (Increment) instruction adds 1 to the destination

operand (byte or word).
• (DEST) (DEST) + 1
• Example :
• INC BL
• INC CX

DEC
• DEC destination
• This (Decrement) instruction subtracts 1 from the

destination operand. (DEST) (DEST) –1
• Example :
• DEC BL
• DEC AX
NEG
• NEG destination
• This (Negate) instruction subtracts the destination

operand from 0 and stores the result in destination.
This forms the 2’s complement of the number.

• (DEST) 0 – (DEST)
• Example :
• NEG AX
• NEG CL

DAA
• This (Decimal Adjust for Addition) instruction converts the

binary result of an ADD or ADC instruction in AL to packed
BCD format.

DAS
• This (Decimal Adjust for Subtraction) instruction converts

the binary result of a SUB or SBB instruction in AL to packed
BCD format.

AAA
• This (ASCII Adjust for Addition) instruction adjusts the

binary result of ADD or ADC instruction.
• If bits 0-3 of AL contain a value greater than 9, or if the

auxiliary carry flag (AF) is set, the CPU adds 06 to AL and
adds 1 to AH. The bits 4-7 of AL are set to zero.

• (AL) (AL) + 6
• (AH) (AH) + 1
• (AF) 1

AAS
• This (ASCII Adjust for Subtraction) instruction adjusts the binary

result of a SUB or SBB instruction.
• If D3–D0 of AL > 9,
• (AL) (AL) – 6
• (AH) (AH) – 1
• (AF) 1
MUL
• MUL source
• This (Multiply) instruction multiply AL or AX register by register or

memory location contents. Both operands are unsigned numbers. If
the source is a byte (8 bit), then it is multiplied by register AL and
the result is stored in AH and AL.

• If the source operand is a word (16 bit), then it is multiplied by
register AX and the result is stored in AX and DX registers.

• If 8 bit data, (AX) (AL) x (SRC)
If 16 bit data, (AX), (DX) (AX) x (SRC)
Example :

• MUL 25
• MUL CX

• IMUL
• IMUL Source
• This (Integer Multiply) instruction performs a signed

multiplication of the source operand and the accumulator.
• If 8 bit data, (AX) (AL) x (SRC)
• If 16 bit data, (AX), (DX) (AX) x (SRC)
• Example :
• IMUL 250
• IMUL BL
AAM
• This (ASCII Adjust for Multiplication) instruction adjusts

the binary result of a MUL instruction. AL is divided by
10(0AH) and quotient is stored in AH. The remainder is
stored in AL.

• (AH) (AL/0AH)
• (AL) Remainder

DIV
• DIV Source
• This (Division) instruction performs an unsigned

division of the accumulator by the source operand. It
allows a 16 bit unsigned number to be divided by an 8
bit unsigned number, or a 32 bit unsigned number to
be divided by a 16 bit unsigned number.

• For 8 bit data, AX / source
(AL) Quotient
(AH) Remainder

• For 16 bit data, AX, DX / Source
(AX) Quotient
(DX) Remainder

• Example :
• DIV CX
• DIV 321

IDIV
• IDIV source
• This (Integer Division) instruction performs a signed division of the accumulator by

the source operand.
• For 8 bit data, AX / Source

(AL) Quotient
(AH) Remainder

• For 16 bit data, AX, DX / Source
(AX) Quotient
(DX) Remainder

• Example :
• IDIV CL
• IDIV AX

AAD
• This (ASCII Adjust for Division) instruction adjusts the unpacked BCD dividend in

AX before a division operation. AH is multiplied by 10(0AH) and added to AL. AH is
set to zero.

• (AL) (AH x 0AH) + (AL)
• (AH) 0

CBW
• This (Convert Byte to Word) instruction converts

a byte to a word. It extends the sign of the byte in
register AL through register AH. This instruction
can be used for 16 bit IMUL or IDIV instruction.

• IF AL < 80 H, then AH = 00 H
• IF AL > 80 H, then AH = FFH
CWD :
• This (Convert Word to Double word) instruction

converts a word to a double word.
• It extends the sign of the word in register AX

through register DX.
• If AX < 8000 H, then DX = 0000 H
• If AX > 8000 H, then DX = FFFFH

Bit Manipulation Instructions

(i)Logical Instructions: AND, OR, XOR, NOT,
TEST

(ii)Shift Instructions: SHL, SAL, SHR, SAR

(iii)Rotate Instructions: ROL, ROR, RCL, RCR

AND
• AND destination, source
• This (AND) instruction performs the logical “AND” of the source

operand with the destination operand and the result is stored in
destination.

• (DEST) ¬ (DEST) “AND” (SRC)
• Example :
• AND BL, CL
• AND AL, 0011 1100 B
OR
• OR destination, source
• This (OR) instruction performs the logical “OR” of the source

operand with the destination operand and the result is stored in
destination.

• (DEST) ¬ (DEST) “OR” (SRC)
• Example :
• OR AX, BX
• OR AL, 0000 1111B

XOR
• XOR destination, source
• This (Exclusive OR) instruction performs the logical “XOR”

of the two operands and the result is stored in destination
operand.

• (DEST) ¬ (DEST) “XOR” (SRC)
• Example :
• XOR BX, AX
• XOR AL, 1111 1111B
NOT
• NOT destination
• This (NOT) instruction inverts the bits (forms the 1’s

complement) of the byte or word.
• (DEST) ¬ 1’s complement of (DEST)
• Example :
• NOT AX

TEST
• TEST destination, source
• This (TEST) instruction performs the logical “AND” of the two operands and

updates the flags but does not store the result.
• (DEST) “AND” (SRC)
• Example :
• TEST AL, 15 H
• TEST SI, DI
SHL
• SHL destination, count
• This (Shift Logical Left) instruction performs the shift operation. The number

of bits to be shifted is represented by a variable count, either 1 or the number
contained in the CL register.

• Example
• SHL AL, 1
• Before execution :

SAL
• SAL destination, count
• SAL (Shift Arithmetric Left) and SHL (Shift Logical Left) instructions perform the same

operation and are physically the same instruction.
• Example
• SAL AL, CL
• SAL AL, 1
SHR
• SHR destination, count
• This (Shift Logical Right) instruction shifts the bits in the destination operand to the

right by the number of bits specified by the count operend, either 1 or the number
contained in the CL register.

• Example
• SHR BL, 1
• SHR BL, CL

SAR
• SAR destination, count
• This (Shift Arithmetic Right) instruction shifts the bits in the

destination operand to the right by the number of bits specified in
the count operand. Bits equal to the original high-order (sign) bits are
shifted in on the left, thereby preserving the sign of the original value.

ROL
ROL destination, count
This (Rotate Left) instruction rotates the bits in the byte/word destination operand to the
left by the number of bits specified in the count operand.

ROR
• ROR destination, count
• This (Rotate Right) instruction rotates the bits in the byte/word

destination operand to the right by the number of bits specified in the
count operand.

RCL
RCL destination, count
This (Rotate through Carry Left) instruction rotates the contents left through
carry by the specified number of bits in count operand.

RCR
• RCR destination, count
• This (Rotate through Carry Right) instruction rotates the contents right

through carry by the specified number of bits in the count operand.

STRING INSTRUCTIONS
REP
• REP MOVS destination, Source
• This (Repeat) instruction converts any string primitive

instruction into a re-executing loop. It specifies a termination
condition which causes the string primitive instruction to
continue executing until the termination condition is met.

• Example :
• REP MOVS CL, AL
• The other Repeat instructions are :
• REPE - Repeat while Equal
• REPZ - Repeat while zero
• REPNE - Repeat while Not Equal
• REPNZ - Repeat while Not Zero
• The above instructions are used with the CMPS and SCAS

instructions.

MOVS
• MOVS destination - string, source-string
• This (Move String) instruction transfers a byte/word

from the source string (addressed by SI) to the
destination string (addressed by DI) and updates SI and
DI to point to the next string element.

• (DEST) (SRC)
• Example :
• MOVS Buffer 1, Buffer 2
CMPS
• CMPS destination-string, source-string
• This (Compare String) instruction subtracts the

destination byte/word (addressed by DI) from the source
byte/word (addressed by SI). It affects the flags but does
not affect the operands.

• Example :
• CMPS Buffer 1, Buffer 2

SCAS
• SCAS destination-string
• This (Scan String) instruction subtracts the destination string element (addressed by

DI) from the contents of AL or AX and updates the flags.
• Example :
• SCAS Buffer
LODS
• LODS source-string
• This (Load String) instruction transfers the byte/word string element addressed by SI

to register AL or AX and updates SI to point to the next element in the string.
• (DEST) (SRC)
• Example :
• LODSB name
• LODSW name
STOS
• STOS destination - string
• This (Store String) instruction transfers a byte/word from register AL or AX to the

string element addressed by DI and updates DI to point to the next location in the
string.

• (DEST) (SRC)
• Example :
• STOS display

Program Transfer Instructions
• (i)Unconditional instructions: CALL, RET, JMP
• (ii)Conditional instructions: JC, JZ, JA.....
• (iii)Iteration control instructions :LOOP, JCXZ
• (iv)Interrupt instructions: INT, INTO, IRET
CALL
• CALL procedure - name
• This (CALL) instruction is used to transfer execution

to a subprogram or procedure. RET (return)
instruction is used to go back to the main program.
There are two basic types of CALL : NEAR and FAR

• Example :
• CALL NEAR
• CALL AX

RET

• This (Return) instruction will return execution from a
procedure to the next instruction after the CALL
instruction in the main program.

• Example :

• RET

• RET 6

JMP

• JMP target

• This (Jump) instruction unconditionally transfers control to
the target location. The target operand may be obtained
from the instruction itself (direct JMP) or from memory or
a register referenced by the instruction (indirect JMP).

• Example :

• JMP BX

LOOP

• LOOP label

• This (Loop if CX not zero) instruction
decrements CX by 1 and transfers control to
the target operand if CX is not zero. Otherwise
the instruction following LOOP is executed.

• If CX=0, CX = CX–1

• IP = IP+displacement

• If CX=0, then the next sequential instruction is
executed.

• Example :

• LOOP again

Processor Control Instructions

HLT

• This (Halt) instruction will cause the 8086 to stop fetching
and executing instructions. The 8086 will enter a halt
state.

WAIT

• This (Wait) instruction causes the 8086 to enter the wait
state while its test line is not active.

ESC

• This (Escape) instruction provides a mechanism by which
other coprocessors may receive their instructions from
the 8086 instruction stream and make use of the 8086
addressing modes. The 8086 does a no operation (NOP)
for the ESC instruction other than to access a memory
operand and place it on the bus.

NOP

• This (No operation) instruction causes the
CPU to do nothing. NOP does not affect any
flags.

ASSEMBLER DIRECTIVES
• An assembler is a program which translates an

assembly language program into machine language
program.

• An assembler directive is a statement to give
direction to the assembler to perform the task of
assembly process.

• The assembler directives control organization of the
program and provide necessary information to the
assembler to understand assembly language
programs to generate machine codes.

• An assembler supports directives to define data, to
organize segments, to control procedures, to define
macros etc.

• An assembly language program consists of two
types of statements: Instructions and Directives.

Some assembler directives are,
• Borland Turbo Assembler (TASM)
• IBM Macro Assembler (MASM)
• Intel 8086 Macro Assembler (ASM)
• Microsoft Macro Assembler

ASSUME

• The ASSUME directive enables error-checking
for register values.

• It is used to inform the assembler the names
of the logical segments, which are to be
assigned to the different segments used in an
assembly language program

• Format:
• ASSUME segregister:name [[, segregister:name]]...

• ASSUME dataregister:type [[, dataregister:type]]...

• ASSUME register:ERROR [[, register:ERROR]]...

• ASSUME [[register:]] NOTHING [[, register:NOTHING]]...

DB (Define Byte)

• It can be used to define data like BYTE.

• Format:

• Name of the VariableDB Initial values

• Example:

• WEIGHTS DB 18, 68, 45

DW (Define Word)

• It can be used to define data like WORD (2 bytes).

• Format:

• Name of the VariableDW Initial values

• Example:

• SUM DW 4589

DD (Define Double Word)
• It can be used to define data like DWORD (4

bytes).
• Format:
• Name of the VariableDD Initial values
• Example:
• NUMBER DD 12345678
DQ (Define Quad Word)
• It can be used to define data like QWORD (8

bytes).
• Format:
• Name of the VariableDQ Initial values
• Example:
• TABLE DQ 1234567812345678

DT (Define Ten Bytes)

• It can be used to define data like TBYTE (10 bytes).

• Format:

• Name of the Variable DT Initial values

• Example:

• AMOUNT DT 12345678123456781234

END (End of program)

• It marks the end of a program module and, optionally,
sets the program entry point to address.

• Format:

• END [[address]]

• Example:

• END label

ENDP (End Procedure)
• It marks the end of procedure.
• name previously begun with PROC.
• Format:
• nameENDP
• Example:

CONTROL PROC FAR
.
.
.

CONTROL ENDP
• ENDM (End Macro)
• It terminates a macro or repeat block.
• Format:
• ENDM
• Example:

CODE MACRO
.
.
.

ENDM

• ENDS (End of Segment)
• It marks the end of segment, structure, or union name previously

begun with SEGMENT, STRUCT, UNION, or a simplified segment
directive.

• Format:
• name ENDS
• Example:

CODE SEGMENT
.
.
.

CODEENDS
EQU (Equate)
• It assigns numeric value of expression or text to name. The name

cannot be redefined later.
• Format:
• name EQU expression
• name EQU <text>
• Example:
• CLEAR_CARRY EQU CLC

• EVEN (Align on Even memory Address)
• Format:
• EVEN
• Example:
• SALES DB 9
• EVEN
• DATA_ARRAY DW 100 DUP (?)

INCLUDE
• This directive inserts source code from the source file given by

filename into the current source file during assembly. The filename
must be enclosed in angle brackets if it includes a backslash,
semicolon, greater-than symbol, less-than symbol, single quotation
mark, or double quotation mark.

• Format:
• INCLUDE filename
• Example:
• INCLUDE C: \ MICRO \ ASSEM.LEV
• The above directive informs assembler to include all statements

mentioned in the file, ASSEM.LEV from the directory C: \ MICRO.

MACRO

• A sequence of instructions to which a name is
assigned is called a macro. The name of a macro
is used in assembly language programming.
Macros and subroutines are similar. Macros are
used for short sequences of instructions, where
as subroutines for longer ones. Macros execute
faster than subroutines. A subroutine requires
CALL and RET instructions whereas macros do
not.

• Format:

• name MACRO [optional arguments]

• statements ENDM

ASSEMBLY LANGUAGE
PROGRAMMING

Program

A computer can only do what the programmer
asks to do. To perform a particular task the
programmer prepares a sequence of instructions,
called a program.

Programming languages

• Microcomputer programming languages can
typically be divided into three main types:

1.Machine language

2.Assembly language

3.High-level language

Machine language

• A program written in the form of 0s and 1s is
called a machine language program. In the
machine language program there is a specific
binary code for each instruction.

• A microprocessor has a unique set of machine
language instructions defined by its
manufacturer.

• For example, the Intel 8085 uses the code
1000 11102 for its addition instruction while
the Motorola 6800 uses the code 1011 10012.

The machine language program has the following
demerits:

• It is very difficult to understand or debug a
program.

• Program writing is difficult.

• Programs are long.

• More errors occur in writing the program.

• Since each bit has to be entered individually
the entry of a program is very slow.

Assembly language

• Assembly language programming is writing machine
instructions in mnemonic form, using an assembler to
convert these mnemonics into actual processor
instructions and associated data.

The advantages of assembly language programming

1.The computation time is less.

2.It is faster to produce result.

The disadvantages of assembly language programming

• many instructions are required to achieve small tasks

• source programs tend to be large and difficult to follow

High-level language

• High level language programs composed of English-
language-type statements rectify all deficiencies of
machine and assembly language programming. The
high level languages are FORTRON, COBAL, BASIC, C,
C++, Pascal, Visual Basic etc.

The high level language program has the following
demerits:

• One has to learn the special rules for writing
programs in a particular high level language.

• Low speed.

• A compiler has to be provided to convert a high level
language program into a machine language
program. The compiler is costly.

Assembly language program

• Assembly language statements are written one
per line.

• A machine code program thus consists of a
sequence of assembly language statements,
where each statement contains a mnemonic.

• Each line of an assembly language program is split
into four fields, as below:

1.Label field

2.Mnemonic or Opcode field

3.Operand field

4.Comment field

As an example, a typical program for block transfer
of data written in 8086 assembly language is
given here.

LABEL

• The label field is optional. A label is an identifier.

• A label can be used to refer to a memory location
the value of a piece of data the address of a
program, sub-routine, code portion etc.

START: LDAA #24H

JMP START

• Here, the label START is equal to the address of the
instruction LDAA #24H. The label is used in the
program as a reference. This would result in the
processor jumping to the location (address)
associated with the label START, thus executing the
instruction LDAA #24H immediately after the JMP
instruction.

OPCODE

• Each instruction consists of an opcode
(Mnemonic) and possible one or more operands.
In the above instruction

JMP START

• The opcode is JMP and the operand is the
address of the label START.

Mnemonics are used because they

• are more meaningful than hex or binary values

• reduce the chances of making an error

• are easier to remember than bit values

OPERAND
• The operand field consists of additional information or data that the

opcode requires. In certain types of addressing modes, the operand is
used to specify

• constants or labels
• immediate data
• data contained in another accumulator or register
• an address
Examples of operands are
• JNZ STEP1
• MOV AX, 5000 H
• MOV AX, BX
• MOV AX, [3000 H]
COMMENTS
• The comment field is optional, and is used by the programmer to

explain how the coded program works. Comments are preceded by a
semi-colon. The assembler, when generating instructions from the
source file, ignores all comments.

Assembly Language Program - Development Tools
• Editor
• Assembler
• Linker
• Locator
• Loader
• Debugger
• Emulator

Editor:
• An editor is a program which allows creating a file containing the assembly

language statements for the program.
Assembler:
• An assembler is a program which translates an assembly language program into

machine language program.
Linker:
• A linker is a program which links smaller programs together to form a large

program. It is used to join several object files into one large object file. It also
links the subroutines with the main program.

Locator:
• A locator is a program which assigns specific memory addresses for the machine

codes of the program, which is to be loaded into the memory.
Loader:
• A loader is a program which loads object code into system memory. It can

accept programs in absolute or relocatable format.
Debugger:
• A debugger is a program which allows user to test and debug programs.
Emulator:
• An emulator is a mixture of software and hardware. It is usually used to test and

debug the software and hardware of an external system.

MODULAR PROGRAMMING
• Modular programming is subdividing the complex

program into separate subprograms such as
functions and subroutines.

• Similar functions are grouped in the same unit of
programming code and separate functions are
developed as separate units of code so that the code
can be reused by other applications.

• For example, if a program needs initial and boundary
conditions, use subroutines to set them.

• Then if someone else wants to compute a different
solution using the program, only these subroutines
need to be changed. This is very easier than having
to read through a program line by line, trying to
figure out what each line is supposed to do and
whether it needs to be changed.

• Subprograms make the actual program shorter,
hence easier to read and understand. Further, the
arguments show exactly what information a
subprogram is using. That makes it easier to
figure out whether it needs to be changed when
modifying the program.

ALPs are developed by essentially the same
procedure as high-level language programs by,

• Exactly stating what the program is to do.

• Splitting the overall problem into tasks.

• Defining exactly what each task must do and how
it is to communicate with the other tasks.

• Putting the tasks into assembler language
modules and connecting the modules together to
form the program.

• Debugging and testing the program.

• Documenting the program.

The benefits of using modular programming are,

• Modular programming allows many
programmers to collaborate on the same
application.

• Same code can be used in many applications.

• Code is short, simple and easy to understand.

• Code is stored across multiple files.

• A single procedure can be developed for reuse,
eliminating the need to retype the code many
times.

• Errors can easily be identified, as they are
localized to a subroutine or function.

LINKING AND RELLOCATION

The process combines the following.

• Find the object modules to be linked.

• Construct the load module by assigning the
positions of all of all the segments in all of the
object modules being linked.

• Fill in all offset that could not be determined by
the assembler.

• Fill in all segment address.

• Load the program for execution.

Segment combination

• In addition to the linker commands, the
assembler provides a means of regulating the way
segments in different object modules are
organized by the linker. Segments with same
name are joined together by using the modifiers
attached to the SEGMENT directives. SEGMENT
directive may have the form:

• Segment name SEGMENT Combination-type

PROCEDURES & MACROS
• A single instruction that expands automatically

into a set of instructions to perform a particular
task.

• A macro (which stands for "macroinstruction") is
a programmable pattern which translates a
certain sequence of input into a preset sequence
of output. Macros can be used to make tasks less
repetitive by representing a complicated
sequence of keystrokes, mouse movements,
commands, or other types of input.

Macro definition:

name MACRO [parameters,...]

statements >

ENDM

Advantages of macros
• Repeated small groups of instructions replaced by one macro
• Errors in macros are fixed only once, in the definition
• Duplication of effort is reduced
• In effect, new higher level instructions can be created
• Programming is made easier, less error prone
• Generally quicker in execution than subroutines
Disadvantages of macros
• In large programs, produce greater code size than procedures
When to use Macros
• To replace small groups of instructions not worthy of

subroutines
• To create a higher instruction set for specific applications
• To create compatibility with other computers
• To replace code portions which are repeated often throughout

the program

Procedure (PROC)

• This directive marks the start and end of a
procedure block called label. The statements in
the block can be called with the CALL instruction.

PROC definition:

label PROC [[near / far]]

<Procedure instructions>

label ENDP

Overlapping Proc Nested Proc

Differences between Macros and
Procedures

INTERRUPTS AND INTERRUPT SERVICE
ROUTINES

Interrupts

• A signal to the processor to halt its current
operation and immediately transfer control to
an interrupt service routine is called as
interrupt. Interrupts are triggered either by
hardware, as when the keyboard detects a key
press, or by software, as when a program
executes the INT instruction.

• Interrupts can be seen as a number of functions.
These functions make the programming much
easier, instead of writing a code to print a character,
simply call the interrupt and it will do everything.

• There are also interrupt functions that work with
disk drive and other hardware. They are called as
software interrupts.

• Interrupts are also triggered by different hardware,
these are called hardware interrupts.

• To make a software interrupt there is an INT
instruction, it has very simple syntax: INT value.

• Where value can be a number between 0 to 255 (or
00 to FF H).

Interrupt Service Routines (ISRs)

• ISR is a routine that receives processor control
when a specific interrupt occurs.

• The 8086 will directly call the service routine
for 256 vectored interrupts without any
software processing. This is in contrast to non
vectored interrupts that transfer control
directly to a single interrupt service routine,
regardless of the interrupt source.

Interrupt vector table:

When an interrupt occurs, regardless of source, the
8086 does the following:

• The CPU pushes the flags register onto the stack.

• The CPU pushes a far return address (segment:offset)
onto the stack, segment value first.

• The CPU determines the cause of the interrupt (i.e., the
interrupt number) and fetches the four byte interrupt
vector from address 0 : vector x 4 (0:0, 0:4, 0:8 etc)

• The CPU transfers control to the routine specified by the
interrupt vector table entry.

After the completion of these steps, the interrupt service
routine takes control. When the interrupt service routine
wants to return control, it must execute an IRET
(interrupt return) instruction. The interrupt return pops
the far return address and the flags off the stack

Types of Interrupts

• Hardware Interrupt - External uses INTR and NMI

• Software Interrupt - Internal - from INT or INTO

• Processor Interrupt - Traps and 10 Software
Interrupts

• External - generated outside the CPU by other
hardware (INTR, NMI)

• Internal - generated within CPU as a result of an
instruction or operation (INT, INTO,
Divide Error and Single Step)

Dedicated Interrupts

• Divide Error Interrupt (Type 0)

This interrupt occurs automatically following the
execution of DIV or IDIV instructions when the
quotient exceeds the maximum value that the
division instructions allow.

• Single Step Interrupt (Type 1)

This interrupt occurs automatically after execution
of each instruction when the Trap Flag (TF) is set to
1. It is used to execute programs one instruction at a
time, after which an interrupt is requested.
Following the ISR, the next instruction is executed
and another single stepping interrupt request
occurs.

• Non Maskable Interrupt (Type 2)

It is the highest priority hardware interrupt that
triggers on the positive edge.

This interrupt occurs automatically when it
receives a low-to-high transition on its NMI input
pin.

This interrupt cannot be disabled or masked. It is
used to save program data or processor status in
case of system power failure.

• Breakpoint Interrupt (Type 3)

This interrupt is used to set break points in
software debugging programs.

• Overflow Interrupt (Type 4)

Software Interrupts (INT n)

• The software interrupts are non maskable
interrupts. They are higher priority than
hardware interrupts.

Hardware Interrupts

• INTR and NMI are called hardware interrupts.
INTR is maskable and NMI is non-maskable
interrupts.

Interrupt Priority

Byte And String Manipulation
• The 8086 microprocessor is equipped with

special instructions to handle string
operations.

• By string we mean a series of data words or
bytes that reside in consecutive memory
locations.

• The string instructions of the 8086 permit a
programmer to implement operations such as
to move data from one block of memory to a
block elsewhere in memory.

• A second type of operation that is easily
performed is to scan a string and data elements
stored in memory looking for a specific value.

• Other examples are to compare the elements
and two strings together in order to determine
whether they are the same or different.

• Move String : MOV SB, MOV SW: An element of
the string specified by the source index (SI)
register with respect to the current data
segment (DS) register is moved to the location
specified by the destination index (DI) register
with respect to the current extra segment (ES)
register.

• The move can be performed on a byte (MOV SB)
or a word (MOV SW) of data. After the move is
complete, the contents of both SI & DI are
automatically incremented or decremented by 1
for a byte move and by 2 for a word move.

• Address pointers SI and DI increment or
decrement depends on how the direction flag DF
is set.

• Load and store strings : (LOD SB/LOD SW and STO
SB/STO SW) LOD SB: Loads a byte from a string in
memory into AL. The address in SI is used relative to
DS to determine the address of the memory location
of the string element. (AL) <= [(DS) + (SI)] (SI) <= (SI)
+ 1

• LOD SW : The word string element at the physical
address derived from DS and SI is to be loaded into
AX. SI is automatically incremented by 2. (AX) <=
[(DS) + (SI)] (SI) <= (SI) + 2

• STO SB : Stores a byte from AL into a string location
in memory. This time the contents of ES and DI are
used to form the address of the storage location in
memory [(ES) + (DI)] <= (AL) (DI) <=(DI) + 1

• STO SW : [(ES) + (DI)] <= (AX) (DI) <= (DI) + 2

8086 program to determine largest number in an
array of n numbers

Algorithm –
• Load data from offset 500 to register CL and set register CH

to 00 (for count).
• Load first number(value) from next offset (i.e 501) to

register AL and decrease count by 1.
• Now compare value of register AL from data(value) at next

offset, if that data is greater than value of register AL then
update value of register AL to that data else no change, and
increase offset value for next comparison and decrease
count by 1 and continue this till count (value of register CX)
becomes 0.

• Store the result (value of register AL) to memory address
2000 : 600.

Explanation –
• MOV SI, 500 : set the value of SI to 500
• MOV CL, [SI] : load data from offset SI to register CL
• MOV CH, 00 : set value of register CH to 00
• INC SI : increase value of SI by 1.
• MOV AL, [SI] : load value from offset SI to register AL
• DEC CL : decrease value of register CL by 1
• INC SI : increase value of SI by 1
• CMP AL, [SI] : compares value of register AL and [SI] (AL-[SI])
• JNC 413 : jump to address 413 if carry not generated
• MOV AL, [SI] : transfer data at offset SI to register AL
• INC SI : increase value of SI by 1
• LOOP 40C : decrease value of register CX by 1 and jump to address

40D if value of register CX is not zero
• MOV [600], AL : store the value of register AL to offset 600
• HLT : stop

8086 program to find the min value in
a given array

Algorithm –
• Assign value 500 in SI and 600 in DI
• Move the contents of [SI] in CL and increment SI by 1
• Assign the value 00 H to CH
• Move the content of [SI] in AL
• Decrease the value of CX by 1
• Increase the value of SI by 1
• Move the contents of [SI] in BL
• Compare the value of BL with AL
• Jump to step 11 if carry flag is set
• Move the contents of BL in AL
• Jump to step 6 until the value of CX becomes 0, and decrease CX by 1
• Move the contents of AL in [DI]
• Halt the program

UNIT -2

8086 SYSTEM BUS

STRUCTURE

PIN DIAGRAM

MINIMUM MODE SIGNALS

MAXIMUM MODE SIGNALS

Address / Data Bus (AD15–AD0)

• The multiplexed Address/ Data bus acts as

address bus during the first part of machine

cycle (T1) and data bus for the remaining part

of the machine cycle.

Address/Status (A19/S6, A18/S5, A17/S4, A16/S3)

• During T1 these are the four most significant

address lines for memory operations.

• During I/O operations these lines are LOW.

Read(RD)

• This signal is used to read data from memory or I/O
device which reside on the 8086 local bus.

Ready

• If this signal is low the 8086 enters into WAIT state.

• The READY signal from memory/ IO is synchronized
by the 8284A clock generator to form READY.

• This signal is active HIGH.

Interrupt Request (INTR)

• It is a level triggered maskable interrupt request.

• A subroutine is vectored via an interrupt vector lookup
table located in system memory.

TEST

• This input is examined by the “Wait” instruction.

• If the TEST input is LOW execution continues,

• otherwise the processor waits in an ``Idle’’ state.

Non-Maskable Interrupt (NMI)

• It is an edge triggered input which causes a type 2 interrupt.

• NMI is not maskable internally by software.

Reset

• This signal is used to reset the 8086.

• It causes the processor to immediately terminate its present
activity.

• The signal must be active HIGH for at least four clock
cycles.

• It restarts execution when RESET returns LOW.

Clock (CLK)

• This signal provides the basic timing for the
processor and bus controller.

• The clock frequency may be 5 MHz or 8 MHz or
10 MHz depending on the version of 8086.

VCC

• It is a +5V power supply pin.

Ground (GND)

• Two pins (1 and 20) are connected to ground ie, 0
V power supply.

Minimum/Maximum (MN/ MX)

• This pin indicates what mode the processor is to
operate in.

MEMORY / IO (M/ IO)

• It is used to distinguish a memory access from an
I/O access. M = HIGH, I/O = LOW.

WRITE(WR)

• It indicates that the processor is performing a
write memory or write I/O cycle, depending on
the state of the M/ IO signal.

• Interrupt Acknowledge (INTA)
This signal indicates recognition of an interrupt
request. It is used as a read strobe for interrupt
acknowledge cycles.

Address Latch Enable (ALE)

• This signal is used to demultiplex the AD0-AD15
into A0-A15 and D0-D15. It is a HIGH pulse active
during T1 of any bus cycle.

Data Enable(DEN)
This signal informs the transceivers
(8286/8287) that the 8086 is ready to send or
receive data.

Hold

• This signal indicates that another master
(DMA or processor) is requesting the host
8086 to handover the system bus.

Hold Acknowledge (HLDA)

• On receiving HOLD signal 8086 outputs
HLDA signal HIGH as an acknowledgement.

Request/Grant (RQ / GT0 , RQ / GT1)

• These pins are used by other local bus masters to force
RQ / GT1 the processor to release the local bus at the
end of the processor’s current bus cycle

LOCK
• This signal indicates that other system bus masters are

not to gain control of the system bus while LOCK is
active LOW.

• The LOCK signal is activated by the “LOCK” prefix
instruction and remains active until the completion of
the next instruction.

QUEUEue Status (QS1, QS0)
• The queue status is valid during the CLK cycle after

which the queue operation is performed.

SYSTEM BUS STRUCTURE

• System bus is a single computer bus that

connects the major components of a computer

system.

• It consists of data bus, address bus and control

bus.

• To communicate with external world,

microprocessor make use of buses.

DATA BUS

• It is used for the exchange of data between the
processor, memory and peripherals.

• It is bi-directional so that it allows data flow in
both directions.

• The width of the data bus can differ for every
microprocessor.

• When the microprocessor issues the address of
the instruction, it gets back the instruction
through the data bus.

ADDRESS BUS

• The address bus contains the connections

between the microprocessor and memory or

output devices

• It is unidirectional.

• The width of the address bus corresponds to

the maximum addressing capacity

CONTROL BUS

• The control bus carries the signals relating to

the control and coordination of the various

activities across the computer, which can be

sent from the control unit within the CPU.

• Microprocessor uses control bus to process

data, that is what to do with the selected

memory location.

MIN-MAX MODE OF OPERATION
Intel 8086 has two modes of operation. They are:

• Minimum mode

• Maximum mode

• When only 8086 microprocessor is to be used in a
microcomputer system, the 8086 is used in the
minimum mode of operation.

• In this mode, the microprocessor issues the
control signals required by memory or I/O
devices.

• In a multiprocessor system it operates in the
maximum mode. In this mode, the control
signals are issued by Intel 8288 bus controller.

• The pin MN/ MX (33) decides the operating

mode of 8086.

• When MN/ MX = 0, maximum mode of

operation.

= 1, minimum mode of

operation.

• Pins 24 to 31 have different functions for

minimum mode and maximum mode.

Minimum Mode

• For minimum mode of operation MN/ MX is

connected to VCC (+5 volts).

• All control signals for controlling memory and

I/O devices are generated inside the 8086

microprocessor.

• In this mode , peripheral devices can be used

with the microprocessor without any special

consideration

READ CYCLE

WRITE CYCLE

Maximum mode operation’

• In maximum mode 8086 based system, an

external Bus Controller (Intel 8288) has to be

employed to generate the bus control signals.

• The important signals are :

• MRDC - Memory Read Command

MWTC - Memory Write Command

IORC - I/O Read Command

IOWC - I/O Write Command

AMWC - Advanced Memory Write Command

AIOWC - Advanced I/O Write Command

• Three numbers of 8 bit latches (Intel 8282) are
employed to demultiplex the address lines.

• The latches are enabled by using the ALE signal
generated by the bus controller.

• Two numbers of octal bus transceivers (Intel
8286) are used as data transceivers.

• The signals DEN and DT/ R are generated by the
bus controller are used as enable and direction
control respectively.

• The clock generator (Intel 8284) is used to
generate clock, reset and ready signals for 8086.

• A quartz crystal of frequency 15 MHz is
connected to 8284.

Read cycle

Write cycle

SYSTEM DESIGN USING 8086

The specification of the system includes the

following:

• I/O devices

• Memory requirement

• System clock frequency

• Peripheral devices required

• Application

I/O devices

Input devices : 8279 – keyboard and display
controller

The popular output devices are,

• LED display

• LCD

• Printer

• Floppy disk / CD

• CRT terminal

Memory requirement
• The memory of the system is splitted between

EPROM and RAM.

• The popular EPROM used in 8086 based

system are 2708 (1K x 8), 2716 (2K x 8), 2732

(4K x 8), 2764 (8K x 8) and 27256 (32K x 8).

• The popular static RAM used in 8086 based

system are 6208 (1K x 8), 6216 (2K x 8), 6232

(4K x 8), 6264 (8K x 8) and 62256 (32 K x 8).

System clock frequency

• The 8086 does not have an internal clock

circuit. Hence clock has to be supplied from an

external device.

• The Intel 8284 clock generator is employed to

generate the clock.

• An external quartz crystal has to be connected

to 8284 to generate the clock signal.

Peripheral devices

• Intel 8253 - Programmable Interval Timer

• Intel 8251 - USART

• Intel 8255 - Programmable Peripheral

Interface

• Intel 8279 - Keyboard / Display controller

• Intel 8257 - DMA controller

• ADC, DAC etc.

Application

• The specifications of the microprocessor itself

depends on the applications for the proposed

system and the nature of work.

• The I/O device, memory, peripheral device are

all depends on the nature of work to be

performed by the system.

I/O PROGRAMMING

• Information can be transferred between input-

output devices or mass storage devices and the

CPU or memory.

• The three modes of transfer of device data,

commands and status are,

• Programmed I/O

• Interrupt driven I/O

• DMA transfer

PROGRAMMED I/O

• The program determines which interfaces need

servicing by testing the ready bits in their

status registers.

• Programmed testing of ready bits or signals is

known as polling.

INTERRUPT DRIVEN I/O

• An external interrupt is sent to the CPU from

the interface when the interface has data to

input or is ready to accept data.

• The I/O operation is performed by an interrupt

routine.

DMA TRANSFER

• The interface requests the use of the bus by

sending a signal through the control line and

makes the necessary transfer without the help

of the CPU.

PROGRAMMED I /O

Read input in programmed I/O mode

• Each input is read after first testing whether

the device is ready with the input or whether

the device input buffer is not empty.

• The program waits for the ready status by

repeatedly testing the status bit and till all

targeted bytes are read from the input device.

• The program is in busy state only after the

device gets ready else in wait state.

Output write in programmed I/O
mode

• Each output written after first testing whether

the device is ready to accept the bytes at its

output register or output buffer is empty.

• The program waits for the ready status by

repeatedly testing the status bit and till all the

targeted bytes are written to the device.

• The program in busy state only after the device

gets ready else wait state.

Interrupt driven I /O

i) Polling

ii)Daisy chaining

iii) Interrupt priority management hardware

POLLING
• Polling is constantly testing a port to see if data is

available. i.e, the CPU polls (asks) the port if it

has data available or if it is capable of accepting

data.

• Polling notifies the part of the computer

containing the I/O interface that a device is ready

to be read but does not indicate which device.

• The interrupt controller must poll (send a signal

out to) each device to determine which one made

the request.

LIMITATIONS

• It is wasteful of the processors time, as it

needlessly checks the status of all device.

• Priority of the device is determined by the

order in the polling loop.

• When fast devices are connected to a system,

polling may simply not be fast enough.

Daisy chaining

• It is a simple hardware means of attaining a
priority scheme.

• It consists of associating a logic circuit with
each interface and passing the interrupt
acknowledge signal

• A daisy chain is used to identify the device
requesting service.

• Daisy chaining is used for level sensitive
interrupts

Interrupt priority management
hardware

• By designing a programmable interrupt

priority management circuit and bus control

logic.

• The duty is placed on the requesting device to

request the interrupt and identify itself.

• The identity could be a branching address .

• If the device just supplies an identification

number, this can be used in conjunction with a

lookup table to determine the address of the

required service routine.

Direct Memory Access Block Transfer

• A DMA controller allows devices to transfer

data to or from the system’s memory without

the intervention of the processor.

• Components connected to the system bus is

given control of the bus.

• This component is said to be the master during

that cycle and the component it is

communicating with is said to be the slave.

• Taking control of the bus for a bus cycle is

called cycle stealing.

• The interface sends the DMA controller a

request for DMA service.

• A Bus request is made to the HOLD pin

(active High) on the 8086 microprocessor and

the controller gains control of the bus.

• A Bus grant is returned to the DMA controller

from the Hold Acknowledge (HLDA) pin

(active High) on the 8086 microprocessor.

• The DMA controller places contents of the

address register onto the address bus.

• The controller sends the interface a DMA

acknowledgment, which tells the interface to

put data on the data bus.

• The data byte is transferred to the memory

location indicated by the address bus.

• The interface latches the data.

• The Bus request is dropped, the HOLD pin

goes Low, and the controller relinquishes the

bus.

• The Bus grant from the 8086 microprocessor is

dropped and the HLDA pin goes Low.

• The address register is incremented by 1.

• The byte count is decremented by 1.

• If the byte count is non-zero, return to step 1,

otherwise stop.

MULTIPROGRAMMING

• Multiprogramming can execute several jobs

concurrently by switching the attention of the

CPU back and forth among them.

• Multiprogramming enable the CPU to be

utilized more efficiently. If the operating

system can quickly switch the CPU to another

task

Advantages of multiprogramming

• It increases CPU utilization.

• It decreases total read time needed to execute a
job.

• It maximizes the total job throughput of computer.

Disadvantages of multiprogramming

• It is fairly sophisticated and more complex.

• A multiprogramming operating system must keep
track of all kinds of jobs it is concurrently
running.

Process Management

• Two or more processors reside in the memory

and share the CPU, but the CPU can execute

only one of these processes at a time.

• There are three states that the processes can be

in, with each process being in exactly one of

these states at any given time.

States

• Ready

• Running

• Blocked

TRANSISTIONS

Creation

• The creation transition is caused by a syscall

for loading a program.

• A process control block is created for the

program.

• Usually the operating system sets up three

open files: standard input, standard output, and

standard error.

Dispatch

• A process is dispatched when a processor is

free to execute the process and the operating

system has scheduled the process to run next

• Scheduling involves selecting one of the ready

processes to run next.

Timeout

• A timeout is triggered by an external interrupt

from a timer device.

• Information about the process’s register and

PC contents is saved into the PCB for the

process.

Blocking

• It is caused by the process making an operating

system request (syscall) that must be satisfied

before it can continue executing.

Unblocking

• The unblocking transition is triggered by

satisfaction of the request that lead to blocking.

• After the operating system has handled the

request satisfaction it puts the process into the

ready state, entering it into the ready queue.

Termination

• The termination transition may be triggered by
an exit syscall from the process(normal
termination) or by a processor exception
(abnormal termination).

• The operating system frees up any resources
used by the process.

• If the termination is abnormal an error
message is displayed.

MULTIPROCESSORS
• A multiprocessor system will have two or more

processors that can execute instructions or
perform operations simultaneously.

Need for Multiprocessor Systems

• Some processor like DMA controllers can help
8086 with low level operations, while the CPU
can take care of the high level operations

• Due to limited data width and lack of floating
point arithmetic instructions, 8086 requires many
instructions for computing even single floating
point operation. For this Numeric Data Processor
(8087), can help 8086 processor.

Advantages

• Several low cost processors may be combined to fit the
needs of an application while avoiding the expense of the
unneeded capabilities of a centralized system.

• It is easy to add more processor for expansion as per
requirement.

• When a failure occurs, it is easier to replace the faulty
processor.

• In a multiprocessor system implementation of modular
processing of task can be achieved.

BASIC CONFIGURATIONS

• Co processor configuration

• Closely coupled configuration

• Loosely coupled configuration

CO-PROCESSOR

• In coprocessor configuration both the CPU

(8086) and external processor (Math Co-

processor 8087) share entire memory and I/O

sub system.

• They also share same bus control logic and

clock generator.

• 8086 is the master and 8087 is the slave.

• The 8086 fetches the instructions.

• The coprocessor monitors the instruction sequence and
captures its own instructions.

• The ESC is decoded by the CPU and coprocessor
simultaneously.

• The CPU computes the 20 bit address of memory operand
and does a dummy read. The coprocessor captures the
address of the data and obtains control of the bus to load or
store as needed.

• The coprocessor sends BUSY (high) to the TEST pin.

• The CPU goes to the next instruction and if this is an 8086
instruction, the CPU and coprocessor execute in parallel.

• If another coprocessor instruction occurs, the 8086 must
wait until BUSY goes low ie, TEST pin become active. To
implement this, a WAIT instruction is put in front of most
8087 instructions by the Assembler.

• The WAIT instruction does the operations ie, wait until the
TEST pin is active.

CLOSELY COUPLED CONFIGURATION

Share :

• Memory

• I/O system

• Bus and Bus control logic

• Clock generator

LOOSELY COUPLED CONFIGURATION
• In loosely coupled configuration a number of

modules of 8086 can be interfaced through a

common system bus to work as a

multiprocessor.

• Each module has an independent

microprocessor based system with its own

clock source, and its own memory and I/O

devices interfaced through a local bus.

• Each module can also be a closely coupled

configuration of a processor or coprocessor.

Advantages

• Better system throughput by having more than
one processor.

• The system can be expanded in modular form.

• A failure in one module normally does not
affect the breakdown of the entire system and
faulty module can be easily detected and
replaced.

Bus allocation schemes

• Daisy chaining

• Polling method

• Independent Priority

DAISY CHAINING METHOD

• In daisy chaining method all masters make use of
the same line for bus request.

• In response to a bus request, the controller sends
a bus grant if the bus is free.

• The bus grant signal serially propagates through
each master until it encounters the first one that is
requesting access to the bus.

• This master blocks the propagation of the bus
grant signal, activates the busy line and gains
control of the bus.

POLLING

• In polling method, the controller sends address of
device to grant bus access.

• The number of address lines required is depend on the
number of masters connected in the system.

• In response to a bus request, controller generates a
sequence of master addresses.

• When the requesting master recognizes the address, it
activates the busy line and begins to use the bus.

• The priority can be changed by altering the polling
sequence stored in the controller.

• Another one advantage of this method is, if one module
fails entire system does not fail.

Independent priority

• Each master has a separate pair of bus request

(BRQ) and bus grant (BGR) lines and each

pair has a priority assigned to it.

• The built in priority decoder within the

controller selects the highest priority request

and asserts the corresponding bus grant signal.

ADVANCED PROCESSOR

• In real mode, the advanced processors,

including the Pentium, simply operate like

very fast 8086, with the associated 1 MB

memory limit.

• Real mode operation is automatically selected

upon power-up.

• Pentium-based PC that boots up into DOS is

operating in real mode.

• In protected mode, the full 4 GB of memory

is available to the processor.

• It supports for multitasking, virtual memory

addressing, memory management, protection

and control over the internal data and

instruction cache.

• The Windows operating system runs in

protected mode to take advantage of these

improvements.

PENTIUM PROCESSOR
• The term ‘’Pentium processor’’ refers to a family

of microprocessors that share a common
architecture and instruction set.

• The first Pentium processors were introduced in
1993.

• It runs at a clock frequency of either 60 or 66
MHz and has 3.1 million transistors.

The features of Pentium architecture are

• Improved instruction execution time

• Bus cycle pipelining

• Address parity .

• Internal parity checking

• Functional redundancy checking

FEATURES
• Wider (64-bit) Data Bus: With its 64-bit-wide external data

bus the Pentium processor can handle up to twice the data
load of the Intel486 processor at the same clock frequency.

• Superscalar Architecture: Dual Instruction Pipeline

• Dynamic Branch Prediction Logic: The Pentium processor
fetches the branch target instruction before it executes the
branch instruction.

• Enhanced Floating Point Unit: The Pentium processor
executes individual instructions faster through execution
pipelining, which allows multiple floating point instructions
to be executed at the same time.

• Dedicated Instruction and Data Cache: The Pentium
processor has two separate 8 KB caches on chip-one for
instructions and one for data.

• Write-Back MESI Protocol in Data Cache: When data is
modified; only the data in the cache is changed.

STAGES OF PENTIUM PROCESSOR

• Pre-fetch/Fetch : Instructions are fetched from the
instruction cache and aligned in pre-fetch buffers for
decoding.

• Decode1 : Instructions are decoded into the Pentium's
internal instruction format. Branch prediction also takes
place at this stage.

• Decode2 : Same as above, and microcode ROM kicks
in here, if necessary. Also, address computations take
place at this stage.

• Execute : The integer hardware executes the
instruction.

• Write-back : The results of the computation are written
back to the register file.

FLOATING POINT UNIT

• There are 8 general-purpose 80-bit floating

point registers.

• Floating point unit has 8 stages of pipelining.

First five are similar to integer unit.

• Since the possibility of error is more in

floating point unit (FPU) than in integer unit

Multi-core processor
• A multi-core processor is a single chip that

contains more than one microprocessor core.

• Each core can simultaneously execute

processor instructions in parallel.

• This effectively multiplies the processor’s

potential performance by the number of cores.

• Because the cores are physically close to each

other, they can communicate with each other

much faster than separate processors in a

multiprocessor system.

• It improves overall system performance.

UNIT- 3

I/O INTERFACING

Memory Interfacing

• While executing a program, the microprocessor

needs to access memory frequently to read

instruction code and data stored in memory; the

interfacing circuit enables that access.

• Memory has some signal requirements to write

into and read from its registers.

• Similary, the microprocessor initiates a set of

signals when it wants to read from and write into

memory.

I/O INTERFACING

• The Input/Output devices such as keyboards and
displays are the communication channels to the
outside world.

• Latches and buffers are used for I/O interfacing.
They once hardwired, perform only one function
(either as input device if it is buffer and as output
device if it is a latch). Thus limiting their
capabilities.

• To improve the overall system performance the
Intel has designed various programmable I/O
devices.

• Some of the peripheral devices developed by

Intel for 8085/8086/8088 based system are:

• 8255 - Parallel Communication Interface

• 8251 - Serial Communication Interface

• 8254 - Programmable Timer

• 8279 - Keyboard / Display Controller

• 8257 - DMA Controller

• 8259 - Programmable Interrupt Controller

• The microprocessor can communicate with

external world or other systems using two

types of communication interfaces. They are:

• Serial Communication Interface

• Parallel Communication Interface.

Serial Communication Interface

• The serial communication interface gets a byte

of data from the microprocessor and sends it

bit by bit to the other system serially or it

receives data bit by bit serially from the

external system.

• Then it converts the data into bytes and sends

to the microprocessor.

Parallel Communication Interface

• A parallel communication interface gets a byte

from the microprocessor and sends all the bits

in that byte simultaneously (parallel) to the

external system and vice-versa.

SERIAL COMMUNICATION INTERFACE

• The primary difference between parallel I/O and
serial I/O is the number of lines used for data
transfer; the parallel I/O uses the entire data bus
and serial I/O uses one data line.

• In serial I/O transmission the microprocessor
selects the peripheral through chip select (CS)
and uses the control signals read to receive data
and write to transmit data.

• The address decoding can be either I/O-mapped
I/O or memory-mapped I/O.

• Serial data transmission is classified as

• Simplex

• Half duplex

• Full duplex

Simplex

• The data are transmitted in only one direction.
There is no possibility of data transfer in the
other direction.

• Example : Transmission from a computer to
the printer.

Half duplex

• The data are transmitted in both directions, but
not simultaneously.

• Example : Walky - Talky

Full duplex

• The data are transmitted in both directions

simultaneously.

• Example : Telephone

The data in the serial communication may be

sent in two formats:

• Asynchronous

• Synchronous

Synchronous Transmission

• In synchronous transmission, a receiver and

transmitter work in same speed and could be

synchronized.

• Both will use a common clock and start at the

same time

Asynchronous transmission
• The asynchronous transmission is character-

oriented. Each character carries the information of
the Start and Stop bits

• When no data are being transmitted, a receiver
stays high at logic 1, called Mark and logic 0 is
called Space.

• Transmission begins with one start bit (Low),
followed by 7 or 8 bits to represent a character
and 1 or 2 Stop bits (high).

• A start bit, character and stop bits are called as
Frame.

PARALLEL COMMUNICATION INTERFACE OR
(8255 A - Programmable Peripheral

Interface)

• It has a 3-state bi-directional 8-bit buffer which
interfaces the 8255A to the sys-tem data bus.

• It has 24 programmable I/O Pins.

• It reduces the external logic normally needed
to interface peripheral devices.

• It has two 8 bit ports: Port A, Port B, and two 4
bit ports: CUPPER and CLOWER.

• Available in 40-Pin DIP and 44-Pin PLCC.

OPERATING MODES

• It can be operated in two basic modes:

– Bit Set/Reset Mode

– I/O Mode

• I/O mode is further divided into 3 modes:

– Simple I/O mode (Mode 0)

– Strobed I/O mode (Mode 1)

– Bidirectional Data Transfer mode (Mode 2)

Pin diagram of 8255A

• The 8255 consists of Four sections namely

• Data Bus Buffer

• Read/Write Control Logic

• Group A Control

• Group B Control

DATA BUS BUFFER

• Used to interface the internal data bus of

8255A to the system data bus of 8085.

• Using IN or OUT instructions, CPU can read

or write the data from/to the data bus buffer.

• It can also be used to transfer control words

and status information between CPU and

8255A.

Read/Write Control Logic

• This block controls the Chip Selection (CS),

Read (RD) and Write (WR) operations.

• It consists of A0 and A1 signals which are

generally connected to the CPU address lines

A0 and A1 respectively.

• When CS (Chip Select) signal goes LOW,

different values of A0 and A1 select one of the

I/O ports or control register

• Group A : Port A and Most Significant Bits

(MSB) of Port C (PC4 – PC7)

• Group B : Port B and Least Significant Bits

(LSB) of Port C (PC0 – PC3)

• Port A: One 8-bit data output latch/buffer and

one 8-bit input latch buffer.

• Port B: One 8-bit data input/output latch/buffer.

• Port C: One 8-bit data output latch/buffer and

one 8-bit data input buffer. This port can be

divided into two 4-bit ports and it can be used for

the control signal outputs and status signal inputs

in conjunction with ports A and B.

BSR (Bit Set/Reset) Mode

• This mode is applicable only for Port C.

• A control word with bit D7 = 0 is recognized

as BSR control word.

• This control word can set or reset a single bit

in the Port C.

The I/O mode is divided into three modes

Mode 0, Mode 1 and Mode 2 as given below.

• Mode 0 – Basic I/O Mode

• Mode 1 – Strobed I/O Mode

• Mode 2 – Bi-directional data transfer mode

Mode 0 – Basic I/O mode

• The features of Mode 0 are :

• Two 8-bit ports (Port A, Port B) and two 4-bit

ports (Port CU, Port CL). Any port can be input

or output.

• Outputs are latched.

• Inputs are not latched.

Mode 1 - Strobed Input/Output
• In this mode, handshake signals are exchanged between the

microprocessor and peripherals prior to data transfer

The features of mode 1 are :

• Two Groups (Group A and Group B).

• Each group contains one 8-bit data port and one 4-bit
control/data port. The 8-bit data port can be either input or
output

• The 4-bit port is used for control and status of the 8-bit data
port.

• If Port A is in mode 1 (input), then PC3, PC4, PC5 are used
as control signals. If Port B is in mode 1 (input), then PC0,
PC1, PC2 are used as control signals.

• Both inputs and outputs are latched.

• STB (Strobe Input) – A “low” signal on this

pin indicates that the peripheral device has

transmitted a byte of data.

• The 8255A in response to STB , generates IBF

and INTR.

• IBF (Input Buffer Full) – A “high” signal

issued by 8255A is an acknowledge to indicate

that the input latch has received the data byte.

This is reset when the CPU reads the data.

• INTR (Interrupt Request) – This is an output

signal, used to interrupt the CPU. This will be

in active state when STB , IBF and INTE

(internal Flip-Flop) are all at logic 1. This will

be reset by the falling edge of RD signal.

• INTE (Interrupt Enable) – This is an Internal

Flip-Flop used to enable or disable the

generation of INTR signal. There are two Flip-

Flops INTEA and INTEB are set/reset using the

BSR mode.

Mode 2 – Bi-directional Data

Transfer Mode

• This mode provides a means for communicating
with a peripheral device or structure on a single 8-
bit bus for both transmitting and receiving data
(bidirectional bus I/O).

• The features of Mode 2 are :

• Used in Group A only.

• Port A only acts as bi-directional bus port

• Port C (PC3-PC7) is used for handshaking
purpose.

INTR (Interrupt Request):

• A high on this output can be used to interrupt
the CPU for input or output operations.

OBF(Output Buffer Full):
This signal will go LOW to indicate that the
CPU has written data out to Port A.

ACK(Acknowledge):
A LOW on this input enables the tri-state
output buffer of Port A to send out the data.

• Otherwise, the output buffer will be in the high
impedance state.

DIGITAL TO ANALOG

CONVERTERS (DAC)

• The digital to analog converters (DAC)

convert binary numbers into their analog

equivalent voltages or currents. Several

techniques are employed for digital to analog

conversion.

• Weighted resistor network

• R-2R ladder network

• Current output D/A converter

APPLICATIONS

• Digitally controlled gains

• Motor speed control

• Programmable gain amplifiers

• Digital voltmeters

• Panel meters, etc.

• Resolution: It is a change in analog output for

one LSB change in digital input.

(1/2n)*Vref

• 1/256*5 V=39.06 mV (since n=8 for 8-bit

DAC)

• Settling time: It is the time required for the

DAC to settle for a full scale code change.

DAC 0800 8-bit Digital to Analog
converter

• DAC0800 is a monolithic 8-bit DAC

manufactured by National semiconductor.

• It has settling time around 100ms.

• It can operate on a range of power supply

voltage i.e. from 4.5V to +18V.

• Usually the supply V+ is 5V or +12V. The V-

pin can be kept at a minimum of –12V.

• Resolution of the DAC is 39.06mV

• The Vref+ should be tied to +5 V to generate a

wave of +5V amplitude.

• The required frequency of the output is 500

Hz, i.e. the period is 2 ms.

• Assuming the wave to be generated

• is symmetric, the waveform will rise for 1 ms

and fall for 1 ms.

• This will be repeated continuously.

ANALOG TO DIGITAL INTERFACE

• ADC 0808/0809

8254 - Timer/Counter

• It is designed to solve the common timing
control problems in microcomputer system
design.

• Compatible with all Intel and most other
microprocessors.

• It can be operated at count rates upto 10 MHz

• Six programmable counter modes and all
modes are software programmable.

• Three independent 16-bit counters

Applications of 8254

• Real time clock

• Event-counter

• Digital one-shot

• Programmable rate generator

• Square wave generator

PIN DIAGRAM

BLOCK DIAGRAM

Data Bus Buffer

• This 3-state, bi-directional, 8-bit buffer is used

to interface the 8254 to the system bus.

Read/Write Logic

• The Read/Write logic accepts inputs from the

system bus and generates control signals for

the other functional blocks of the 8254.

• A1 and A0 select one of the three counters or

the control word register to be read

from/written into.

Control Word Register

• The control word register is selected by the

Read/Write logic when A1, A0=11.

• If the CPU then does a write operation to the

8254, the data is stored in the control word

register and is interpreted as a control word

used to define the operation of the counters.

• The control word register can only be written

to; status information is available with the

Read-Back command.

Counter 0, Counter 1, Counter 2

• Each is a 16 bit down counter

• The counters are fully independent. Each

counter may operate in a different mode.

• Each counter has a separate clock input, count

enable (gate) input lines and output line.

• The control word register is not a part of the

counter itself, but its contents determine how

the counter operates.

OPERATING MODES

• Mode 0: Interrupt On Terminal Count

• Mode 1: Hardware Retriggerable One-Shot

• Mode 2: Rate Generator

• Mode 3: Square Wave Mode

• Mode 4: Software Triggered Strobe

• Mode 5: Hardware Triggered Strobe

Mode 0: Interrupt On Terminal Count

• Mode 0 is typically used for event counting.

• After the control word is written, OUT is
initially low, and will remain low until the
counter reaches zero. OUT then goes high and
remains high until a new count or a new Mode
0 control word is written into the counter.

• GATE = 1 enables counting;

• GATE = 0 disables counting. GATE has no
effect on OUT

Mode 1: Hardware Re-triggerable
One-Shot

• OUT will be initially high. OUT will go low on the CLK pulse

following a trigger to begin the one-shot pulse, and will remain low

until the counter reaches zero.

• OUT will then go high and remain high until the CLK pulse after the

next trigger. Thus generating a one-shot pulse.

• After writing the control word and initial count, the counter is

armed.

• A trigger results in loading the counter and setting OUT low on the

next CLK pulse, thus starting the one-shot pulse. An initial count of

N will result in a one-shot pulse ‘N’CLK cycles in duration.

Mode 2: Rate Generator

• This mode functions like a divide-by-N counter.

• It is typically used to generate a real time clock
interrupt.

• OUT will initially be high. When the initial count
has decremented to 1, OUT goes low for one CLK
pulse. OUT then goes high again, the counter
reloads the initial count and the process is
repeated.

• Mode 2 is periodic; the same sequence is repeated
indefinitely.

• For an initial count of N, the sequence repeats
every N CLK cycles.

Mode 3: Square Wave Mode

• Mode 3 is typically used for baud rate
generation.

• Mode 3 is similar to Mode 2 except for the
duty cycle of OUT. OUT will initially be high.
When half the initial count has expired, OUT
goes low for the remainder of the count.

• Mode 3 is periodic; the sequence above is
repeated indefinitely. An initial count of N
results in a square wave with a period of N
CLK cycles.

METHODS TO IMPLEMENT

MODE 3

Even counts:

• OUT is initially high. The initial count is loaded

on one CLK pulse and then is decremented by

two on succeeding CLK pulses. When the count

expires OUT changes value and the counter is

reloaded with the initial count. The above process

is repeated indefinitely.

Odd counts:

• For odd counts, OUT will be high for (N +1)/2

counts and low for (N - 1)/2 counts.

Mode 4: Software Triggered Strobe

• The output goes high on setting the mode.

After terminal count, the output goes low for

one clock period and then goes high again.

• In this mode the OUT is initially high; it goes

low for one clock period at the end of the

count. The count must be reloaded for

subsequent outputs.

Mode 5: Hardware Triggered Strobe

• This mode is similar to mode 4, but a trigger at

the gate initiates the counting.

• This mode is similar to mode 4, except that it

is triggered by the rising pulse at the gate.

• Initially the OUT is high and when the gate

pulse is triggered from low to high, the count

begins, at the end of the count, the OUT goes

low for one clock period.

Programming the 8254

Write Operations

• For each counter, the control word must be

written before the initial count is written.

• The initial count must follow the count format

specified in the control word (least significant

byte only, most significant byte only, or least

significant byte and then most significant

byte).

Read Operations

• It is often desirable to read the value of a

counter without disturbing the count in

progress. This is easily done in the 8254.

• There are three possible methods for reading

the counters:

• Simple read operation,

• Counter latch command, and

• Read-Back command.

CONTROL WORD FORMAT OF

8254

KEYBOARD/DISPLAY CONTROLLER

• Intel 8279 is an LSI device.

• It simultaneously drives the display of a system
and interfaces a keyboard with the
microprocessor.

• The keyboard display interface scans the
keyboard to identify if any key has been pressed
and sends the code of the pressed key to the
microprocessor.

• It also transmits the data received from
microprocessor to the display device.

Features of 8279

• 8279 has 3 input modes for keyboard interface

– Scanned keyboard mode

– Scanned sensor matrix mode

– Strobed input mode

• 8279 has 2 output modes for display interface

– Left entry

– Right entry

• It has two key depression modes

– 2 key lockout mode

– N key rollover mode

PIN DIAGRAM

Data Bus (D7 – D0) :

• All data and commands between the
microprocessor and 8279 are transmitted on these
lines.

RD (Read) :
Microprocessor reads the data/status from 8279.

WR (Write) :
Microprocessor writes the data to 8279.

A0 :

• A HIGH signal on this line indicates that the word
is a command or status. A LOW signal indicates
the data.

RESET :

• High signal in this pin resets the 8279. After

being reset, the 8279 is placed in the following

modes

• 16 x 8-bit character display –left entry

• Two key lock out

CS (Chip Select) :

A LOW signal on this input pin enables the

communication between 8279 and the

microprocessor.

IRQ (Interrupt Request) :

• The interrupt line goes low with each

FIFO/sensor RAM reads and returns high if

there is still information in the RAM.

SL0 – SL3 :

• Scan lines which are used to scan the key

switch or sensor matrix and the display digits.

• These lines can be either encoded (1 of 16) or

decoded (1 of 4).

RL0 – RL7 :

• Input return lines which are connected to the

scan lines through the keys or sensor switches.

• They have active internal pull-ups to keep

them high until a switch closure pull one low.

These also serve as an 8-bit input in the

strobed input mode.

SHIFT :

• It has an active internal pullup to keep it high

until a switch closure pulls it low.

CNTL/STB :

• For keyboard mode, this line is used as a control

input and stored like status on a key closure.

• The line is also the strobed line to enter the data

in to the FIFO in the strobed input mode.

OUT A0 – OUT A3, OUT B0 – OUT B3 :

• These two ports are the outputs for the 16´4

display refresh registers. These two ports may

also be considered as one 8-bit port.

• The two 4-bit ports may be blanked

independently.

BD :

This output is used to blank the display during

digit switching or by a display blanking

command.

Block Diagram of 8279

• The 8279 has the following four sections.

• CPU Interface Section

• Keyboard Section

• Scan Section

• Display Section

CPU Interface Section

• This section has bi-directional data buffer

(DB0 – DB7), I/O control lines (RD , WR , CS ,

A0) and Interrupt Request line (IRQ).

• The A0 signal determines whether

transmit/receive control word or data is used.

• An active high in the IRQ line is generated to

interrupt the microprocessor whenever the data

is available.

Keyboard Section

• This section has keyboard debounce and

control, 8x8 FIFO/Sensor RAM, 8 Return lines

(RL0 – RL7) and CNTL/STB and shift lines.

• In the keyboard debounce and control unit,

keys are automatically debounced and the

keyboard can be operated in two modes.

• Two key lock out

• N – key roll over

• In the two key lock out mode, if two keys are

pressed simultaneously, the first key only

recognized.

• In the N-key roll over mode, it stores the codes of

simultaneous keys pressed in the internal buffer, it

can also be setup so that no key is recognized

until only one key remains pressed.

• The 8´8 FIFO/Sensor RAM consists of 8 registers

that are used to store eight keyboard entries.

• The return lines (RL0 – RL7) are connected to

eight columns of keyboard.

• The status of shift and CNTL/STB lines are stored

along with the key closure.

Scan Section

• This section has scan counter and four scan

lines (SL0–SL3).

• These lines are decoded by 4 to16 decoder to

generate 16 scan lines.

• Generally SL0 – SL3 are connected with the

rows of a matrix keyboard.

Display Section

• This section has two groups of output lines A0

–A3 and B0–B3.

• These lines are used to send data to display

drivers.

• BD line is used blank the display.

• It also has 16 x 8 display RAM.

Programming the 8279

INTERRUPT CONTROLLER

• The 8259A programmable interrupt controller

extends the hardware interrupt facility provided in

a microprocessor.

• It manages up to 8 vectored priority interrupts for

a processor.

• It has built-in features for expandability to other

8259A’s (up to 64 vectored priority interrupts).

• It is programmed by the system’s software as an

I/O peripheral.

Features of 8259 A

• It can manage 8 priority interrupts.

• By cascading 8259s it is possible to get 64

priority interrupts.

• It can be programmed to accept either the level

triggered or the edge triggered interrupt

request.

• Reading of interrupt request register (IRR) and

in-service register (ISR) through data bus.

VARIOUS MODES OF OPERATION

• Fully nested mode

• Special fully nested mode.

• Special mask mode

• Buffered mode

• Poll command mode

• Cascade mode with master or slave selection

• Automatic end-of-interrupt mode

PIN DIAGRAM

BLOCK DIAGRAM

Interrupt Request Register (IRR)

• The interrupts at the IR input lines are handled

by two registers in cascade, the Interrupt

Request Register (IRR) and the In-Service

Register (ISR).

• The IRR is used to store all the interrupt levels

which are requesting service.

In-Service Register (ISR)

• The ISR is used to store all the interrupt levels

which are being serviced.

Priority Resolver

• This logic block determines the priorities of

the bits set in the IRR. The highest priority is

selected and strobed into the corresponding bit

of the ISR during INTA pulse.

Interrupt Mask Register (IMR)

• The IMR stores the bits which mask the
interrupt lines to be masked. The IMR operates
on the IRR. Masking of a higher priority input
will not affect the interrupt request lines of
lower quality.

Data Bus Buffer

• This 3-state, bidirectional 8-bit buffer is used
to interface the 8259A to the system data bus.
Control words and status information are
transferred through the Data Bus Buffer.

Read/Write Control Logic

• The function of this block is to accept output

commands from the Microprocessor.

• It contains the Initialization Command Word

(ICW) registers and Operation Command

Word (OCW) registers which store the various

control formats for device operation.

• This function block also allows the status of

the 8259A to be transferred onto the data bus.

Cascade Buffer/Comparator

• This block is used to expand the number of

interrupt levels by cascading two or more 8259s.

• This function block stores and compares the IDs

of all 8259A’s used in the system.

• The associated three I/O pins (CAS0-2) are

outputs when the 8259A is used as a master and

are inputs when the 8259A is used as a slave.

• As a master, the 8259A sends the ID of the

interrupting slave device onto the CAS0±2 lines.

Control Logic

• This block has two pins INT and INTA.

INT (Interrupt)

• This output goes directly to the CPU interrupt
input. The voltage level on this line is designed to
be fully compatible with the 8080A, 8085A and
8086 input levels.

INTA (Interrupt Acknowledge)

• INTA pulses will cause the 8259A to release
vectoring information onto the data bus.

• The format of this data depends on the system
mode of the 8259A

PRIORITY MODES

• Fully Nested Mode

• This mode is entered after initialization unless

another mode is programmed.

• The interrupt requests are ordered in priority

from 0 through 7 (0 highest).

• When an interrupt is acknowledged the highest

priority request is determined and its vector

placed on the bus.

• Automatic End of Interrupt (AEOI) Mode

• If AEOI = 1 in ICW4, then the 8259A will operate in
AEOI mode continuously until reprogrammed by
ICW4.

• In this mode the 8259A will automatically perform a
non-specific EOI operation at the trailing edge of the
last interrupt acknowledge pulse.

• Automatic Rotation (Equal Priority Devices)

• In some applications there are a number of interrupting
devices of equal priority.

• In this mode a device after being serviced, receives the
lowest priority. So a device requesting an interrupt will
have to wait.

• In the worst case until each of 7 other devices are
serviced at most once.

• Specific Rotation (Specific Priority)

• The programmer can change priorities by
programming the bottom priority and thus fixing
all other priorities; i.e., if IR4 is programmed as
the lowest priority device, then IR5 will have the
highest one.

• Special Mask Mode

• In the special mask mode, when a mask bit is set
in OCW1, it inhibits further interrupts at that level
and enables interrupts from all other levels (lower
as well as higher) that are not masked.

• Thus, any interrupts may be selectively enabled
by loading the mask register.

• Poll Command

• In poll mode the INT output functions as it

normally does.

• The microprocessor should ignore this output.

• This can be accomplished either by not

connecting the INT output or by masking

interrupts within the microprocessor, thereby

disabling its interrupt input.

• Service to devices is achieved by software

using a poll command.

• Special Fully Nest Mode

• This mode will be used in the case of a big

system where cascading is used, and the

priority has to be conserved within each slave.

• In this case the fully nested mode will be

programmed to the master.

• Buffered Mode

• When the 8259A is used in a large system

where bus driving buffers are required on the

data bus and the cascading mode is used, there

exists the problem of enabling buffers.

• This modification forces the use of software

programming to determine whether the 8259A

is a master or a slave.

INITIALIZATION COMMAND WORD

ICW 1

• A write command issued to the 8259 with A0=0
and D4=1 is interpreted as ICW 1, which starts the
initialization sequence. It specifies,

• Single or Multiple 8259s in the system.

• 4 or 8 bit, interval between the interrupt vector
Locations.

• The address bits A7–A5 of the CALL instruction.

• Edge triggered or Level triggered interrupts.

• ICW 4 is needed or not.

ICW 2

• ICW 2 is issued following, ICW 1 with A0 = 1

• ICW 2 specified the high-order byte of the

CALL instruction.

• Since A0 input of 8259 is connected to address

line A1, ICW1 should be addressed to ‘C0’ H

& ICW 2 should be addressed to ‘C2’H

• ICW 3 :

• ICW 3 is required if there is more than one

8259 in the system and if they are cascaded.

• An ICW 3 operation loads a slave register in

the 8259.

• The format of the byte to be loaded as an ICW

3 for a MASTER 8259 or a SLAVE

• ICW 4 :

• It is loaded only if the D0 bit of ICW 1 is set.

• It specifies,

• Whether to use special fully nested mode or non
special fully nested mode.

• Whether to use buffered mode or non buffered
mode.

• Whether to use Automatic EOI or Normal EOI.

• CPU used – 8085 or 8086 / 8088

OCW

• After intialization, the 8259 is ready to process IRs.

• However during operation, it might be necessary to
change the mode of processing the interrupt OCWs
which are used for this purpose.

• They may be loaded anytime after the initialization of
8259 to operate in various interrupt modes.

These modes are

• Fully nested mode

• Rotating Binary mode

• Special Mask mode

• Polled mode

OCW1

• Issued with A0=1, used to mask the interrupts.

To enable all the IR lines, the command word

is 00 H.

OCW 2:

• A write command with A0 = 1 and D4D3=00 is

interpreted as OCW2.

• R–Rotate

• SL–Select Level

• EOI - End of Interrupt

• The R, SL, EOI bits control the Rotate and

End of Interrupt Modes and combinations of

the two.

OCW 3 :

• OCW 3 is used to read the status of the

registers and to set or reset the Special Mask

and Polled Modes.

8257-PROGRAMMABLE DMA
CONTROLLER

• The ability of an I/O sub system is to transfer
data to and from a memory subsystem, which
is used for high speed data transfer.

• Ex : Data transfer between a floppy disk and
memory.

DMA Controller :

• It is a device that can control data transfer
between an I/O subsystem and a memory
subsystem without the help of CPU.

DMA Operation sequence

• Once interface is ready to receive data, DMA request is
made.

• Bus request is made by the DMA.

• Bus grant is returned by the processor.

• DMA places address on the address bus.

• DMA request is acknowledged.

• Memory places data on the data bus.

• Interface latches data.

• Bus request is dropped and control is returned to the
processor

• Bus grant is dropped by the processor.

Features of 8257

• Enable / Disable control of individual DMA

Requests.

• Four Independent DMA channels - CH0, CH1,

CH2 and CH3.

• Independent auto-intialization of all channels.

• Memory to memory transfer.

• Memory block initialization.

Data Bus Buffer :

• It is a tri-state, bidirectional, 8 bit buffer which

interfaces the 8257 to the system data bus.

• In the slave mode, it is used to transfer data

between microprocessor and internal registers

of 8257.

• In master mode, it is used to send higher byte

address (A8–A15) on the data bus.

Read/Write Logic :

• During DMA cycles (ie, Master mode) the

Read/Write logic generates the I/O read and

memory write (DMA write cycle) or I/O Write

and Memory read (DMA read cycle) signals

which control the data transfer between

peripheral and memory device.

DMA Channels

• The 8257 provides four identical channels
labelled CH0, CH1, CH2 and CH3. Each channel
has two-16 bit registers

• DMA address register

• Terminal Count register

DMA address Register:

• It specifies the address of the first memory
location to be accessed. It is necessary to load
valid memory address in the DMA address
register before channel is enabled.

Terminal Count Register :

• The value loaded into the low order 14 bits (C13–
C0) of TCR specifies the number of DMA cycles
minus one (N–1) before TC output is activated.

TERMINAL COUNT REGISTER

Control Logic :

• It controls the sequence of operations during

all DMA cycles (DMA read, DMA write,

DMA verify) by generating the appropriate

control signals and the 16-bit address that

specifies the memory location to be accessed.

• It consists of mode set register and status

register.

Mode Set Register

• LSB 4 bits are the enable 4 DMA channels

• MSB 4 bits are the enable Autoload, TC Stop,
Extended Write, Rotating Priority Modes.

• It is normally programmed by the CPU after
initializing the DMA address registers and
terminal count registers.

• It is cleared by RESET input, this disabling all
options, inhibiting all channels, and preventing
bus conflicts on power-up.

STATUS BIT REGISTER

• It indicates which channels have reached a
terminal count condition and includes the update
flag.

• The TC status bit = 1, terminal count has been
reached for that channel.

• TC bit remains set until the status register is read
or the 8257 is reset.

• Update flag = 1, 8257 is executing update cycle.

• In update cycle 8257 load parameters in channel 3
to channel 2.

Priority Resolver :

• It resolves the peripherals request. It can be

programmed to work in two modes, either in

fixed mode or rotating priority mode.

UNIT – 4

MICROCONTROLLERS

BASIC BLOCK DIAGRAM

FEATURES

High integration of functionality :

• Microcontrollers are called as single chip

computers because they have on - chip

memory and I/O circuitry and other circuitries

that enable them to function as small stand -

alone computers without other supporting

circuitry.

• Field programmability, flexibility :

Microcontrollers often use EPROM or

E2PROM as their storage device to allow field

programmability so they are flexible to use.

• Once the program is tested to be correct then

large quantities of microcontrollers can be

programmed to be used in embedded systems.

• Easy to use.

Advantages of microcontrollers

• The overall system cost is low, as the
peripherals are integrated in a single chip.

• The product is of small size as compared to the
microprocessor based system and is very
handy.

• The system is more reliable.

• The system is easy to troubleshoot and
maintain.

• If required additional RAM, ROM and I/O
ports may be interfaced

ARCHITECTURE OF 8051

The features of the 8051 are :

• 8 bit CPU with registers A (the accumulator) and B

• 16 bit Program Counter (PC) and Data Pointer (DPTR)

• 8 bit Program Status Word (PSW)

• 64K Program memory address space

• 64K Data memory address space

• 128 bytes of on chip data memory

• 32 I/O pins for four 8 bit ports : Port 0, Port 1, Port 2,
Port 3

• Two 16 bit timers / counters : T0 and T1

• Full duplex UART : SBUF

• Two external and three internal interrupt sources

• On chip clock oscillator.

Central processing unit

• The CPU is the brain of the microcontrollers
reading user’s programs and executing the
expected task as per instructions stored there
in. It’s primary elements are an Accumulator
(ACC), B register (B), Stack pointer (SP),
Program counter (PC), Program status word
(PSW), Data pointer register (DPTR) and few
more 8 bit registers.

Accumulator

• The accumulator performs arithmetic and logic

functions on 8 bit input variables.

• Arithmetic operations include basic addition,

subtraction, multiplication and division.

• Logical operations are AND, OR XOR as well

as rotate, clear, complement etc.

• Apart from all the above, accumulator is

responsible for conditional branching decisions

and provides a temporary place in a data

transfer operations within the device.

B Register

• B register is used in multiply and divide

operations.

• During execution B register either keeps one

of the two inputs and then retains a portion of

the result.

• For other instructions it is used as general

purpose register.

Stack Pointer

• Stack Pointer (SP) is an 8 bit register.

• This pointer keeps track of memory space where

the important register information are stored when

the program flow gets into executing a subroutine.

• The stack portion may be placed in anywhere in

the onchip RAM.

• But normally SP is initialized to 07H after a

device reset and grows up from the location 08H.

• The SP is automatically incremented or

decremented for all PUSH or POP instructions

and for all subroutine calls and returns.

Program Counter

• The Program Counter (PC) is the 16 bit

register giving address of next instruction to be

executed during program execution.

• It always points to the program memory space.

Data Pointer Register

• The Data Pointer Register (DPTR) is the 16 bit

addressing register that can be used to fetch

any 8 bit data from the data memory space.

• When it is not being used for this purpose, it

can be used as two eight bit registers, DPH and

DPL.

Program Status Word

• The Program Status Word (PSW) keeps the
current status of the arithmetic and logic
operations in different bits.

• The 8051 has four math flags that respond
automatically to the outcomes of arithmetic and
logic operations and 3 general purpose user flags
that can be set 1 or cleared to 0 by the
programmer as desired.

• The math flags are carry (C), auxiliary carry
(AC), overflow (OV) and parity (P).

• User flags are named flag 0 (F0), Register bank
select bits RS0 and RS1.

Input / Output Ports

• 8051 has 32 I/O pins configured as 4 eight bit

parallel ports (P0, P1, P2 and P3).

• Each pin can be used as an input or as an

output under the software control.

• These I/O pins can be accessed directly by

memory instructions during program execution

to get require flexibility.

Timers / Counters

• 8051 has two 16 bit Timers / Counters, T0 and T1

capable of working in different modes.

• Each consists of a ‘HIGH’ byte and a ‘LOW’ byte

which can be accessed under software.

• There is a mode control register (TMOD) and a

control register (TCON) to configure these timers

/ counters in number of ways.

• These timers are used to measure time intervals,

determine pulse widths or initiate events with one

microsecond resolution upto a maximum 65ms.

Serial Port

• The 8051 has a high speed full duplex serial

port which is software configurable in 4 basic

modes :

• Shift register mode

• Standard UART mode

• Multiprocessor mode

• 9 bit UART mode

Interrupts

• The 8051 has five interrupt sources : One from

the serial port (RI / TI) when a transmission or

reception operation is executed : two from the

timers (TF0, TF1) when overflow occurs and two

come from the two input pins INT0, INT1.

• Each interrupt may be independently enabled or

disabled to allow polling on same sources and

each may be classified as high or low priority.

• These operations are selected by Interrupt Enable

(IE) and Interrupt Priority (IP) registers.

Oscillator and Clock

• The 8051 generates the clock pulses by which

all internal operations are synchronized.

• Pins XTAL 1 and XTAL 2 are provided for

connecting a resonant network to form an

oscillator.

• A quartz crystal is used for oscillator.

• The crystal frequency is the basic internal

clock frequency of the microcontroller.

SPECIAL FUNCTION REGISTERS (SFRS)

• The address of the Special Function Registers

are above 80H, since the addresses 00H to

7FH are the addresses of RAM memory.

• The SFRs have addresses between 80H and

FFH.

• But all the address space of 80H to FFH is not

used by the SFRs.

• The unused locations are reserved and must

not be used by the programmer.

ADDRESSING MODES

• Immediate addressing mode

• Register addressing mode

• Direct addressing mode

• Register indirect addressing mode

• Indexed addressing mode

Immediate Addressing Mode

• When a source operand is a constant rather
than a variable, then the constant can be
embedded into the instruction itself.

• This kind of instructions take two bytes and
first one specifies the opcode and second byte
gives the required constant.

• The operand comes immediately after the
opcode. The mnemonic for immediate data is
the pound sign (#).

• This addressing mode can be used to load
information into any of the registers including
DPTR register.

Register Addressing Mode

• Register addressing accesses the eight working

registers (R0 - R7) of the selected register bank.

• The least significant three bits of the

instruction opcode indicate which register is to

be used for the operation.

• One of the four banks of registers is to be

predefined in the PSW before using register

addressing instruction.

• ACC, B and DPTR can also be addressed in

this mode.

Direct Addressing Mode

• In the direct addressing mode, all 128 bytes of

internal RAM and the SFRs may be addressed

directly using the single - byte address

assigned to each RAM location and each SFR.

• Internal RAM uses address from 00H to 7FH

to address each byte.

Register Indirect Addressing Mode

• In this mode a register is used as a pointer to

the data.

• If the data is inside the CPU, only registers R0

and R1 are used for this purpose.

• When R0 and R1 hold the addresses of RAM

locations, they must be preceded by the “@”

sign.

Indexed Addressing Mode

• Only the program memory can be accessed by this
mode.

• This mode is intended for reading lookup tables in the
program memory.

• A 16 bit base register (DPTR or PC) points to the base
of the lookup tables and accumulator carries the
constant indicating table entry number.

• The address of the exact location of the table is formed
by adding the accumulator data to the base pointer.

Example

MOVC A, @A + DPTR

• The contents of A are added to the DPTR to form the 16
bit address of the needed data. ‘C’means code.

I/OPORTS

Port 0 (P0.0 - 0.7)

• Port 0 is used for both address and data bus (AD0

–AD7).

• When the microcontroller chip is connected to an
external memory, Port 0 provides both address
and data.

• ALE pin indicates if Port 0 has address or data.

• When ALE = 0, Port 0 provides data (D0 – D7)

= 1, Port 0 provides address (A0 –A7)

• ALE is used for demultiplexing address and data
with the help of a latch

Port 1 (P1.0 - P1.7)

• Port 1 pins are used as input or output.

• To make port 1 as an input port, write 1 to all

its 8 bits.

• To make port 1 as output port, write 0 to all its

8 bits.

• Thus port 1 pins have no dual functions.

Port 2 (P2.0 - P2.7)

• Port 2 pins are used as input / output pins

similar in operation to port 1.

• The alternate use of port 2 is to supply a high

order address byte (A8 – A15) when the

microcontroller is connected to external

memory

Port 3 (P3.0 - P3.7)

• Port 3 pins are used as input or output

INSTRUCTION SET

• An instruction is a command given to the

computer to perform a specified operation on

given data.

• The instruction set is the collection of

instructions that the microcontroller is

designed to execute.

• The programmer can write the program in

assembly language using these instructions.

• Data transfer group

• Arithmetic group

• Logical group

• Boolean variable manipulation

• Program branching

Data Transfer Instructions

ARITHMETIC INSTRUCTIONS

UNIT – 5

INTERFACING

MICROCONTROLLER

PROGRAMMING 8051 TIMERS
Mode 1 Programming

Operations of mode 1:

• It allows values of 0000 H to FFFF H to be loaded

into the timer’s registers TL and TH.

• After TH and TL are loaded with a 16 - bit initial value,

the timer must be started.

• This is done by “SET B TR0” for Timer 0 and “SET B

TR1” for Timer 1.

• After the timer is started, it starts to count up. It counts
up until it reaches its limit of FFFF H. When it rolls
over from FFFF H to 0000H, it sets high a flag bit
called TF (Timer Flag). This timer flag can be
monitored. When this timer flag is raised, one option
would be to stop the timer with the instructions “CLR
TR0” or “CLR TR1” for Timer 0 and Timer 1
respectively.

• After the timer reaches its limit and rolls over to repeat
the process the registers TH and TL must be reloaded
with the original value and TF must be reset to 0

TIMER FOR MODE 1

PROCEDURE

• Load the TMOD value register indicating which
timer (Timer 0 or Timer 1) is to be used and
which timer mode (0 or 1) is selected.

• Load registers TL and TH with initial count
values.

• Start the Timer.

• Keep monitoring the timer flag (TF). When TF
becomes high get out of the loop.

• Stop the timer.

• Clear the TF flag for the next round.

PROGRAM

Mode 2 Programming

Operations of Mode 2:

• Mode 2 allows only values of 00 H to FF H to be loaded
into the timer’s register TH.

• After TH is loaded with the 8 bit value, the 8051 gives a
copy of it to TL. Then the timer must be started. This is
done by “SET B TR0” for Timer 0 and “SET B TR 1” for
Timer 1.

• After the timer is started, it started it starts to count up by
incrementing the TL register. It counts up until it reaches its
limit of FFH. When it rolls over from FFH to 00H, it sets
high the timer flag (TF) TF0 is raised for Timer 0 and TF 1
is raised for Timer 1.

• When the TL register rolls from FF H to 00 H and TF is set
to 1, TL is reloaded automatically with the original value
kept by the TH register. To repeat the process clear TF (anti
- reloading).

PROCEDURE

• Load the TMOD value register indicating which
timer (Timer 0 or 1) is to be used and select the
timer mode 2.

• Load the TH registers with the initial count value.

• Start the timer.

• Keep monitoring the timer flag (TF) with “JNB
TFx” instruction. When TF becomes high get out
of the loop.

• Clear the TF flag

• Go back to step 4, since Mode 2 is auto - reload.

COUNTER PROGRAMMING

• When C/T = 1, the timer is used as a counter and gets
its pulses from outside the 8051. The counter counts up
as pulses are fed from pins T0 (Timer 0 input) and T1
(Timer 1 input). These two pins belong to port 3. For
Timer 0, when C/T = 1 pin 3.4 provides the clock pulse
and counter counts up for each clock pulse coming
from that pin.

• Similarly for Timer 1, when C/T = 1 each clock pulse
coming in from pin 3.5 makes the counter countup.

P3.4 - T0 - Timer/Counter 0 external input

P3.5 - T1 - Timer/Counter 1 external input

• In counter mode, the TMOD, TH and TL registers are
the same as for the timer. Counter programming also
same as timer programming.

SERIAL PORT PROGRAMMING

Programming the 8051 to transfer data

serially

• The TMOD register is loaded with the value

20H, indicating the use of Timer 1 in mode 2

(8 bit auto - reload) to set the baud rate.

• The TH 1 is loaded with one of the values in

Table to set the baud rate for serial data

transfer.

• The SCON register is loaded with the value 50

H, indicating serial mode 1, where 8-bit data is

framed with start and stop bits.

• TR 1 is set to start Timer 1.

• TI is cleared by the “CLR TI” instruction.

• The character byte to be transferred serially is

written into the SBUF registers.

• The TI flag bit is monitored with the use of the

instruction “JNB TI, XX ” to see if the

character has been transferred completely.

• To transfer next character, go to step 5.

Programming the 8051 to receive data serially

• The first 4 steps are as same in programming

to transfer data serially.

• RI is cleared with “CLR RI “ instruction.

• The RI flag bit is monitored with the use of the

instruction “JNB RI, XX” to see if the

character has been received yet.

• When RI is raised, SBUF has the byte. Its

contents are moved into a safe place.

• To receive the next character, go to step 5.

INTERRUPT PROGRAMMING

• An interrupt is an internal or external event that
interrupts the microcontroller to inform it that a device
needs its service. Every interrupt has a program
associated with it called the interrupt service routine
(ISR).

• The 8051 has 6 interrupts:

• Reset

• Timer interrupts :Timer 0 interrupt and Timer 1
interrupt

• External hardware interrupts : INT 0 INT 1

• Serial communication interrupt

• The 8051 can be programmed to enable or disable an
interrupt and the interrupt priority can be altered.
Register IE is responsible for enabling and disabling the
interrupts.

Programming Timer Interrupts

• The timer flag (TF) is raised when the timer rolls over.
In polling TF, we have to wait until the TF is raised.

• In problem with polling method is that the
microcontroller is tied down while waiting for TF to be
raised and cannot do anything else.

• Using interrupts solves this problem and avoids tying
down the microcontroller.

• If the timer interrupt in the IE register is enabled,
whenever the timer rolls over, TF is raised and the
microcontroller is interrupted in whatever it is doing
and jumps to the interrupt vector table to service the
ISR.

• In this way the microcontroller can do other things until
it is notified that the timer has rolled over.

Programming External Hardware Interrupts

• The 8051 has two external hardware interrupts

INT 0 and INT 1.

• Upon activation of these interrupts through

Port pins P3.2 and P3.3, the 8051 gets

interrupted in whatever it is doing and jumps

to the interrupt vector table to perform the

interrupt service routine (ISR).

• There are two types of activation for the

external hardware interrupts: Level triggered

and Edge triggered.

KEYBOARD INTERFACING

• The rows are connected to an output port and

the columns are connected to an input port.

• When a key is pressed, a row and a column

make a contact, otherwise there is no

connection between rows and columns.

• If all the rows are grounded and a key is

pressed, one of the columns will have 0 since

the key pressed provides the path to ground.

• If no key has been pressed, reading the input

port will yield 1s for all columns since they are

connected to Vcc.

• If any key is pressed, the columns are scanned
again and again until one of them has a 0 on it.

• After the key press detection, it waits 20 milli
seconds for the bounce and then scans the
columns again.

• After 20 ms delay, the key is still pressed, it goes
to detect which row it belongs to. To detect the
row it grounds one row at a time, reading the
columns each time.

• If all columns are high, the pressed key cannot
belong to that row. Therefore it grounds the next
row and continues until it finds the row the key
press belongs to.

• After finding the row, it sets up the starting

address for the look-up table holding the

ASCII codes for that row and goes to the next

stage to identify the key.

• Now it rotates the column bits, one bit at a

time into the carry flag and checks if it is low.

• When carry flag is zero, it pulls out the ASCII

code for that key from look-up table; otherwise

it increments the pointer to point to the next

element of the look-up table.

LCD INTERFACING

• The various types of LCD displays are, 16x2,
20x1, 20x2, 20x4, 40x2 and 40x4 LCDs. 16x2
LCD means that it having two lines, 16
characters per line.

• The 8 bit data pins (D0–D7) are used to send
information tot he LCD or read the contents of
the LCD’s internal registers.

• The data lines are connected to Port 1. Register
Select (RS),

• Read/Write (R/W) and Enable (EN) plans are
connected to Port 3.

• There are two important registers are available inside the LCD. They
are (i) instruction command register, (ii) data register.

• The RS pin is used to select the register. If RS=0, the instruction
command code register is selected, allowing the user to send a
command. If RS=1, the data register is selected, allowing the user to
send data to be displayed on the LCD.

• R/W pin is used to write information to the LCD or read information
from it. EN (enable) pin is used to latch information presented to its
data pins.

• When data is supplied to data pins, a high-to-low pulse must be
applied to EN pin in order for the LCD to latch in the data present at
the data pins.

• This pulse must be a minimum of 450 ns.

• If RS=0 and R/W = 0
When busy flag (D7)=1, the LCD is busy and will not accept any
new information.

• When busy flag (D7) = 0, the LCD is ready to receive new
information.

ADC interfacing

• ADCs are used to convert the analog signals to digital
numbers so that the microcontroller can read them.

• ADC [like ADC 0804 IC] works with +5 volts and has a
resolution of 8 bits.

• Conversion time is defined as the time taken to convert the
analog input to digital (binary) number. The conversion
time varies depending upon the clock signals; it cannot be
faster than 110 μs .

• Analog input is given to the pins Vin (+) and Vin (-).

• Vin (-) is connected to ground.

• Digital output pins are D0 - D7. D7 is the MSB and D0 is the
LSB.

• There are two pins for ground, analog ground and digital
ground. Analog ground is connected to the ground of the
analog Vin and digital ground is connected to the ground of
the VCC pin.

• The following steps are followed for data
conversion :

• Make chip select (CS) = 0 and send a low - to
- high pulse to pin WR to start the conversion.

• Keep monitoring the INTR pin. If INTR is
low, the conversion is finished and go to the
next step. If INTR is high, keep polling until it
goes low.

• After the INTR has become low, we make CS
= 0 and send a high- to-low pulse to the RD
pin to get the data out.

The program presents the concept to monitor the

INTR pins and bring an analog input into

register A. Then call a hex - to - ASCII

conversion and data display subroutines

continuously.

• P2.6 = WR (start conversion needs to low - to -

high pulse)

• P2.7 = INTR, when low, end - of - conversion

• P2.5 = RD (a high-to-low will read the data

from ADC chip)

• P1.0 - P1.7 = D0 - D7 of ADC 804

DAC INTERFACING

• The digital - to - analog converter (DAC) is used
to convert digital pulses to analog signals.

The methods of creating a DAC are:

• Binary weighted

• R/2R ladder.

• Mostly R/2R method with DAC 0808 (MC 1408)
is used since it can achieve a much higher degree
of precision. Port 1 furnishes the digital byte to be
converted to an analog Voltage and port 3 controls
the conversion process.

• In DAC 0808, the digital inputs are converted to
current. The total courrent provided by the Iout pin
is a function of the binary numbers at the D0 – D7
inputs of DAC and the reference current Iref.

SENSOR INTERFACING

Sensor :

• Sensor converts the physical Pressure, Temperature or other variable
to a proportional voltage or current.

Types of Sensors :

• Light Sensor

• Temperature Sensor

• Pressure Sensor

• Force Sensor

• Flow Sensor

Temperature Sensor

• There are many types of temperature sensors. Now we discuss about
Semiconductor Temperature Sensor (LM 35). The LM35 series
sensors are precision integrated circuit temperature sensor whose
output voltage is proportional to the Celsius (centigrade)
temperature.

• It outputs 10 mV for each degree of centigrade temperature. If the
output is connected to a negative reference voltage VS, the sensor
will give a meaningful output for a temperature range of –550C to
+1500C. The output voltage can be amplified or filtered for a
particular application.

EXTERNAL MEMORY INTERFACING

• When the data is located in the code space of
8051, MOVC instruction is used to get the data,
where ‘C’ stands for code.

• When the data memory space must be
implemented externally, MOVX instruction is
used, where ‘X’ stands for external.

External data RAM interfacing

• To connect the 8051 to an external SRAM, we
must use both RD (P3.7) and WR (P3.6).

• In writing data to external data RAM, the
instruction “MOVX @DPTR, A” is used, where
the contents of register A are written to external
RAM whose address is pointed to by the DPTR
register.

STEPPER MOTOR INTERFACING

• A stepper motor is a widely used device that translates electrical
pulses into mechanical movement. In applications such as disk
drives, dot matrix printers and robotics the stepper motor is used for
position control. Every stepper motor has a permanent magnet rotor
surrounded by four stator windings, that are paired with a center-
tapped common.

• The center tap allows a change of current direction in each of two
coils when a winding is grounded, thereby resulting in a polarity
change of the stator. The stepper motor shaft runs in a fixed
repeatable increment which allows one to move it to a precise
position.

• This repeatable fixed movement is possible as a result of basic
magnetic theory where poles of the same polarity repel and opposite
poles attract. The direction of the rotation is dictated by the stator
poles. The stator poles are determined by the current sent through
the wire coils.

• As the direction of the current is changed, the polarity is also
changed causing the reverse motion of the rotor As the sequence of
power is applied to each stator winding, the rotor will rotate. There
are several used sequences where each has a different degree of
precision.

WAVEFORM GENERATION:

• Steps to generate sine wave on 8051 microcontroller.

• Generate digital values of sine wave on a port that is 8 bit binary value.

• Convert that digital value into analog value to take that 8 bit output on 1
pin.

• Generated sine wave is in steps hence to obtain a pure sine wave, pass it
through low pass filter. Thus by remove high frequency part, obtain
smoother sine wave.

• First, generate digital values for sine wave. For this example take 16 points
in 1 cycle. Thus 1 value will hold for 1/16th of 360 degree. Hence use
sine(360 * (i/16)) where i runs from 0 to 15.

• This will cover 16 equally spaced points in one cycle. Place this cycle in
while (1) loop so that will get continuous sine wave.

• In a cycle of sine wave, half cycle is positive and remaining half cycle is
negative. Since microcontroller cannot have negative voltage, will shift
sine wave to half of maximum value.

• As maximum value is 255 for 8 bits, half of it is 127.5.Thus digital value to
be assigned to port is 127.5 + 127.5 * sine(360*(i/16)) where i runs from 0
to 15. Here minimum value is 127.5 - 127.5 = 0 and maximum value is
127.5 + 127.5 = 255

• Hence sine wave will be between 0 and 255 and which can be assigned to
port. Since most of the values will come in fraction, have to round figure to
assign integer value.

COMPARISON OF MICROPROCESSOR,
MICROCONTROLLER, PIC AND ARM
PROCESSORS

Microprocessor

• Microprocessor has only a CPU inside them in one or
few Integrated Circuits. Like microcontrollers it does
not have RAM, ROM and other peripherals. They are
dependent on external circuits of peripherals to work.
But microprocessors are not made for specific task but
they are required where tasks are complex and tricky
like development of software’s, games and other
applications that require high memory and where input
and output are not defined. It may be called heart of a
computer system. Some examples of microprocessor
are Pentium, I3, and I5 etc.

Microcontroller

• A micro-controller can be comparable to a little stand alone
computer; it is an extremely powerful device, which is able
of executing a series of pre-programmed tasks and
interacting with extra hardware devices. Being packed in a
tiny integrated circuit (IC) whose size and weight is
regularly negligible, it is becoming the perfect controller for
as robots or any machines required some type of intelligent
automation.

• A single microcontroller can be enough to manage a small
mobile robot, an automatic washer machine or a security
system. Several microcontrollers contains a memory to
store the program to be executed, and a lot of input/output
lines that can be a used to act jointly with other devices, like
reading the state of a sensor or controlling a motor.8051
microcontroller is an 8-bit family of microcontroller is
developed by the Intel in the year 1981.

https://www.elprocus.com/8051-microcontroller-architecture-and-applications/

PIC Microcontroller

• Peripheral Interface Controller (PIC) is microcontroller
developed by a Microchip, PIC microcontroller is fast and
simple to implement program when we contrast other
microcontrollers like 8051. The ease of programming and
simple to interfacing with other peripherals PIC become
successful microcontroller. Microcontroller is an integrated
chip which is consists of RAM, ROM, CPU, TIMER and
COUNTERS.

• The PIC is a microcontroller which as well consists of
RAM, ROM, CPU, timer, counter, ADC (analog to digital
converters), DAC (digital to analog converter). PIC
Microcontroller also support the protocols like CAN, SPI,
UART for an interfacing with additional peripherals. PIC
mostly used to modify Harvard architecture and also
supports RISC (Reduced Instruction Set Computer) by the
above requirement RISC and Harvard we can simply that
PIC is faster than the 8051 based controllers which is
prepared up of Von-Newman architecture.

https://www.elprocus.com/introduction-to-pic-microcontrollers-and-its-architecture/
https://www.elprocus.com/8051-microcontroller-8-16-bit-timers-and-counters/
https://www.elprocus.com/analog-digital-converters/
https://www.elprocus.com/what-is-risc-and-cisc-architecture-and-their-workings/

ARM Processor

• An ARM processor is also one of a family of CPUs based
on the RISC (Reduced Instruction Set Computer)
architecture developed by Advanced RISC Machines
(ARM). An ARM makes at 32-bit and 64-bit RISC multi-
core processors. RISC processors are designed to perform a
smaller number of types of computer instructions so that
they can operate at a higher speed, performing extra
millions of instructions per second (MIPS).

• By stripping out unnecessary instructions and optimizing
pathways, RISC processors give outstanding performance at
a part of the power demand of CISC (complex instruction
set computing) procedure. ARM processors are widely used
in customer electronic devices such as smart phones,
tablets, multimedia players and other mobile devices, such
as wearables. Because of their reduced to instruction set,
they need fewer transistors, which enable a smaller die size
of the integrated circuitry(IC).

https://www.elprocus.com/arm-architecture/
https://www.elprocus.com/different-types-of-integrated-circuits/

