4. Old Question Paper

Code No: 153BT

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, October - 2020 SIGNALS AND SYSTEMS (Common to ECE, EIE) Time: 2 hours Max. Marks: 75 Answer any five questions All questions carry equal marks Show that f(t) is orthogonal to signals cost, cos2t, cos3t, ... cos nt for all integer values of n, n#0, over the interval $(0,2\pi)$ if $x(t) = \begin{cases} 1, & \text{for } 0 < t < \pi \\ -1, & \text{for } \pi < t < 2\pi \end{cases}$ Discover the analogy of vectors and signals in terms of orthogonality. b) [6+9] Estimate the mean square error value of a function f(t). 2.a) Sketch the following signals (i) r(t)-r(t-1)-r(t-3)+r(t-4) (ii) $\pi(\frac{t-2}{2}) + \pi(2t-3.5)$ [7+8] b) Assume that T=2, determine the Fourier series expansion of the signal shown below 3.a) figure 1 with amplitude of ± 1 . Figure: 1 Prove the following properties of the Fourier transform: (i) duality (ii) modulation.[8+7] b) 4.a) Determine the exponential Fourier series from trigonometric Fourier series. [6+9] Solve the Fourier transform of the rectangular pulse. Find the convolution of the rectangular pulse given below figure 2 with itself. 5.a) Figure: 2 Explain causality and physical relizability of a system and give Paley wiener co A system produces an output of $y(t) = e^{-t} u(t)$ for an input of $x(t) = e^{-2t} u(t)$. Determine 6.a) impulse response and frequency response of the system. b) Compare the signals and system bandwidth. 7. Evaluate the Laplace Transforms of the following functions: b) Unit step function c) Damped sine function. a) Exponential function [15] Prove that for a signal, auto correlation and PSD form a Fourier transform pair. 8 a) A function f(t) has a PSD of S(w). Find the PSD of i) integral of f(t) and ii) time derivative of f(t). [7+8]--ooOoo--

R18

R18

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, March - 2021 SIGNALS AND SYSTEMS

(Common to ECE, EIE)

Time: 3 hours Max. Marks: 75

> Answer any five questions All questions carry equal marks

- State and prove the properties of Impulse Function. How to approximate the given signal using complete set of orthogonal functions? Explain with one example. [6+9] Find the Exponential Fourier series of train of impulses. b) Find the Fourier Transform of the signal $\chi(t) = e^{-a|t|}$. [7+8]Find and sketch the impulse response of Ideal Band pass Filter. 3.a) Find the convolution between the following signals: $x(t) = e^{-at}u(t); h(t) = e^{-bt}u(t)$ [7+8]4.a) Find the impulse response of the system described by the differential equation. y''(t) + 5y'(t) + 4y(t) = 6x(t)b) State and prove initial final value Theorems of Z-transform. [7+8]State and prove Sampling theorem for band limited signals. 5.a) Derive the relationship between Autocorrelation function and Power spectral density [9+6] Find the Hilbert Transform of the signal $x(t) = \cos(t) + \sin(t)$. Check the stability of the system y(t) = tx(t). [7+8]b)
- 6.a)
- 7.a) Derive the conditions for distortion less transmission through a system.
- b) State and prove the multiplication theorem of Fourier Transform. [7+8]
- 8.a) State and prove time shifting property of Laplace Transform. State and prove convolution theorem of z-transform. [7+8]b)

R18

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, March - 2022

SIGNALS AND SYSTEMS (Common to ECE, EIE)

Time: 3 Hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

- Define Dirac Delta function, draw its waveform and Summerize its properties.
- b) Obtain the condition under which two real signals f₁(t) and f₂(t) are said to be orthogonal to each other. Hence, prove that Sin noot and Cos moot are orthogonal to each other for all integer values of m, n. [6+9]
- Classify the signals under different categories and then explain the same. [15]
- 3.a) State the existence conditions of fourier series.
- b) Find the Trigonometric Fourier series coefficients and build Fourier series for the following signal.

Explain about Complex fourier spectrum.

[4+7+4]

- 4.a) Obtain the Fourier transform of the following signals
 - i) 4 Cos 2ω₀t
- ii) e^{-4t} u(t)
- State and prove the following properties of Fourier transform.
 i) Convolution in time domain
 ii) Differentiation in time domain

[8+7]

- 5.a) With the help of plots, determine the convolution of the following two signals in time domain. $x_1(t) = e^{-4t}u(t)$ and $x_2(t) = u(t+4)$.
 - b) Explain about stability and causality of an LTI system.

110+5

6.a) Perform the graphical convolution of the following signals:

$$x_1(t) = e^{-at}u(t); x_2(t) = u(t) - u(t-3).$$

b) List and explain the properties of convolution and prove any one.

10+51

- 7.a) Determine the Laplace transform of the following two signals.
 - i) e^{-at} sin (bt)u(t)
- ii) $x(t) = t e^{-at} u(t)$
- b) State and prove the following properties of z-transform
 - Time shifting
- ii) Convolution

[8+7]

- 8.a) State and explain the sampling theorem for band limited signals with graphs analysis.
- Define cross correlation function? State and prove the properties of cross correlation function. [7+8]

R18

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, August/September - 2022 SIGNALS AND SYSTEMS

(Common to ECE, EIE)

Time: 3 Hours

Max.Marks:75

Answer any five questions All questions carry equal marks

- 1.a) Compare continuous-time and discrete -time signals.
 - Draw and explain the unit step signal and unit ramp signal.
 - Explain the term complete orthogonal set using relevant expressions. c)

[4+5+6]

- Discuss about Orthogonal Signal Space and obtain the expression for mean signal error. 2.a)
 - What is signum function and explain its importance. b)
- Describe the functionality of Complex exponential signals and Sinusoidal signals. c)

[7+4+4]

- Discuss the Dirchlet's conditions and its significance to obtain Fourier series 3.a) representation of any signal.
 - State and prove the following properties of Fourier transform. b)
 - Multiplication in time domain (ii) Frequency shifting.

[8+7]

- 4.a) Derive the expression for Fourier Transform from Fourier Series.
- State and prove the properties of Fourier series.

[8+7]

- 5.a) When is a system said to be a Causal system?
 - State Distributive properties of convolution.
- Explain the filter characteristics of ideal LPF, HPF and BPF using their magnitude and c) phase responses. [4+4+7]
- List and explain the properties of Autocorrelation function. 6.a)
- Determine whether the following systems are Linear or Nonlinear, Shift variant or Invariant, Causal or Non-causal, Stable or unstable. (i) $y(t) = x(t+10) + x^2(t)$ (ii) $\frac{dy(t)}{dt} + 10y(t) = x(t)$

(i)
$$y(t) = x(t+10) + x^2(t)$$

$$(ii)\frac{dy(t)}{dt} + 10y(t) = x(t)$$

- 7.a) State and prove the time shifting, differentiation and integration properties of
- b) Determine the inverse Laplace Transform of the following functions. (i) $\frac{1}{s(s+1)}$ (ii) $\frac{3s^2 + 8s + 6}{((s+2)(s^2 + 2s + 1))}$

(i)
$$\frac{1}{s(s+1)}$$

i)
$$3s^2 + 8s + 6/((s+2)(s^2+2s)$$

[8+7]

- Explain the detection of periodic signals in the presence of noise by correlation.
- With the help of graphical example, explain sampling theorem for Band limited signals and also give the mathematical analysis. [7+8]

R18

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, April/May - 2023 SIGNALS AND SYSTEMS

(Common to ECE, EIE)

Max. Marks: 75

Note: i) Question paper consists of Part A, Part B.

ii) Part A is compulsory, which carries 25 marks. In Part A, Answer all questions.
iii) In Part B, Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART A

(25 Marks)

1.a)	Differentiate between Vector and signal.	[2]
b)	Justify why Mean Square Error criterion is preferred over Average error of	riterion is
	chosen for minimizing the error over an interval?	[3]
c)	Write down the trigonometric form of the Fourier series representation of	a periodic
	signal.	[2]
d)	What is the Fourier transform of DC signal with amplitude 1?	[3]
e)	Explain with suitable example what is meant by an LTI system.	[2]
f)	Explain the LPF characteristics.	[3]
g)	State convolution property of Z transform.	[2]
g) h)	Find the L.T. of $x(t) = e^{-3t} \cos(2\pi 100 t) u(t)$.	[3]
i)	Write the expression for cross correlation of power (periodic) signals.	[2]
j)	State sampling theorem for Band passes Signals.	[3]
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	DADTD	

PART B

(50 Marks)

- Explain orthogonality property between two complex functions $f_1(t)$ and $f_2(t)$ for a real 2.a) variable t.
 - b) Define the error function while approximating signals and hence derive the expression for condition for orthogonality between two waveforms f1(t) and f2(t).

A function f(t) is defined rectangular pulse given by: 3.a)

$$f(t) = 1$$
 $0 < t < \pi$
-1 $\pi \le t < 2\pi$

Approximate above function by a finite series of Sinusoidal functions.

Give the relationship between continuous time unit impulse function f(t), step function u(t) and ramp function r(t). [5+5]