SIGNALS AND SYSTEMS OVERVIEW UNIT1

What is Signal?

Signal is a time varying physical phenomenon whi<mark>ch</mark> is intended to convey information.

OR

Signal is a function of time.

OR

Signal is a function of one or more independent variables, which contain some information.

Example: voice signal, video signal, signals on telephone wires etc.

Note: Noise is also a signal, but the information conveyed by noise is unwanted hence it is considered as undesirable.

What is System?

System is a device or combination of devices, which can operate on signals and produces corresponding response. Input to a system is called as excitation and output from it is called as response.

For one or more inputs, the system can have one or more outputs.

Example: Communication System

reath model to success...

Dept of ECE, NRCM

SIGNALS CLASSIFICATION

Signals are classified into the following categories:

- Continuous Time and Discrete Time Signals
- Deterministic and Non-deterministic Signals
- Even and Odd Signals
- Periodic and Aperiodic Signals

Energy and Power Signals

Real and Imaginary Signals

Continuous Time and Discrete Time Signals

A signal is said to be continuous when it is defined for all instants of time.

A signal is said to be discrete when it is defined at only discrete instants of time/

Deterministic and Non-deterministic Signals

A signal is said to be deterministic if there is no uncertainty with respect to its value at any instant of time. Or, signals which can be defined exactly by a mathematical formula are known as deterministic signals.

Dept of ECE, NRCM

ume

A signal is said to be non-deterministic if there is uncertainty with respect to its value at some instant of time. Non-deterministic signals are random in nature hence they are called random signals. Random signals cannot be described by a mathematical equation. They are modelled in probabilistic terms.

Even and Odd Signals

A signal is said to be even when it satisfies the condition xt = x-t

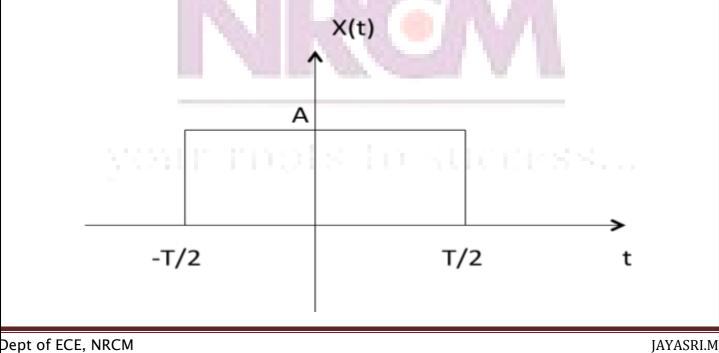
Example 1: t2, t4... cost etc.

Let
$$xt = t2$$

x-t = -t2 = t2 = xt

∴, t2 is even function

Example 2: As shown in the following diagram, rectangle function xt = x-t so it is also even function.



A signal is said to be odd when it satisfies the condition xt = -x-t

Example: t, t3 ... And sin t

Let xt = sin t

x-t = sin-t = -sin t = -xt

 \therefore , sin t is odd function.

yearn modes for success...

Dept of ECE, NRCM

Any function ft can be expressed as the sum of its even function f_et and odd function f_ot .

$$f(t) = f_e(t) + f_0(t)$$

where

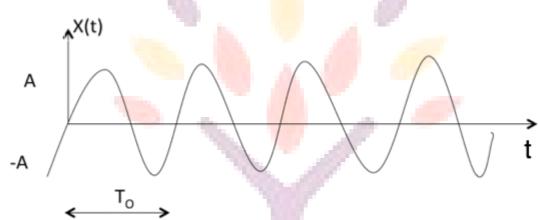
 $f_e(t) = \frac{1}{2}[f(t) + f(-t)]$

Periodic and Aperiodic Signals

A signal is said to be periodic if it satisfies the condition xt = xt + T or xn = xn + N. Where

T = fundamental time period,

$$1/T = f = fundamental frequency$$



The above signal will repeat for every time interval T_0 hence it is periodic with period T_0 .

Energy and Power Signals

A signal is said to be energy signal when it has finite energy.

Energy
$$E = \int_{-\infty}^{\infty} x^2(t) dt$$

A signal is said to be power signal when it has finite power.

Power
$$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T} x^2(t) dt$$

NOTE: A signal cannot be both, energy and power simultaneously. Also, a signal may be neither energy nor power signal.

Power of energy signal = 0

Energy of power signal $= \infty$

Real and Imaginary Signals

Dept of ECE, NRCM

A signal is said to be real when it satisfies the condition $xt = x^{*}t$

A signal is said to be odd when it satisfies the condition $xt = -x^*t$ Example:

If xt = 3 then $x^{*}t = 3^{*} = 3$ here xt is a real signal.

If xt = 3j then $x^{*}t = 3j^{*} = -3j = -xt$ hence xt is a odd signal.

yearn mols to success...

Dept of ECE, NRCM

Note: For a real signal, imaginary part should be zero. Similarly for an imaginary signal, real part should be zero.

yearn mods to success...

Dept of ECE, NRCM

SIGNALS BASIC TYPES

Here are a few basic signals:

Unit Step Function

Unit step function is denoted by ut. It is defined as $ut = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$

It is used as best test signal. Area under unit step function is unity.

Unit Impulse Function

Impulse function is denoted by δt . and it is defined as $\delta t = \{ egin{array}{c} 1 & t = 0 \ \end{array} \}$

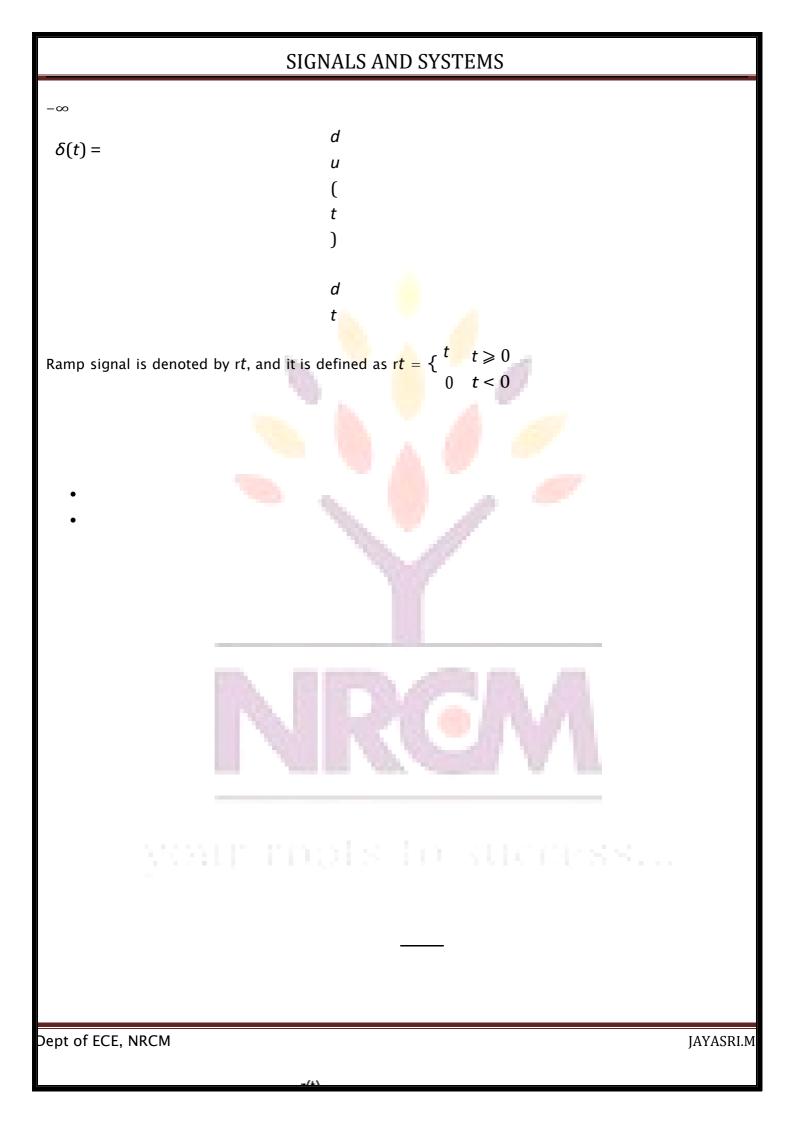
 $\int_{0}^{\infty} \delta(t) dt = u(t)$ Signal

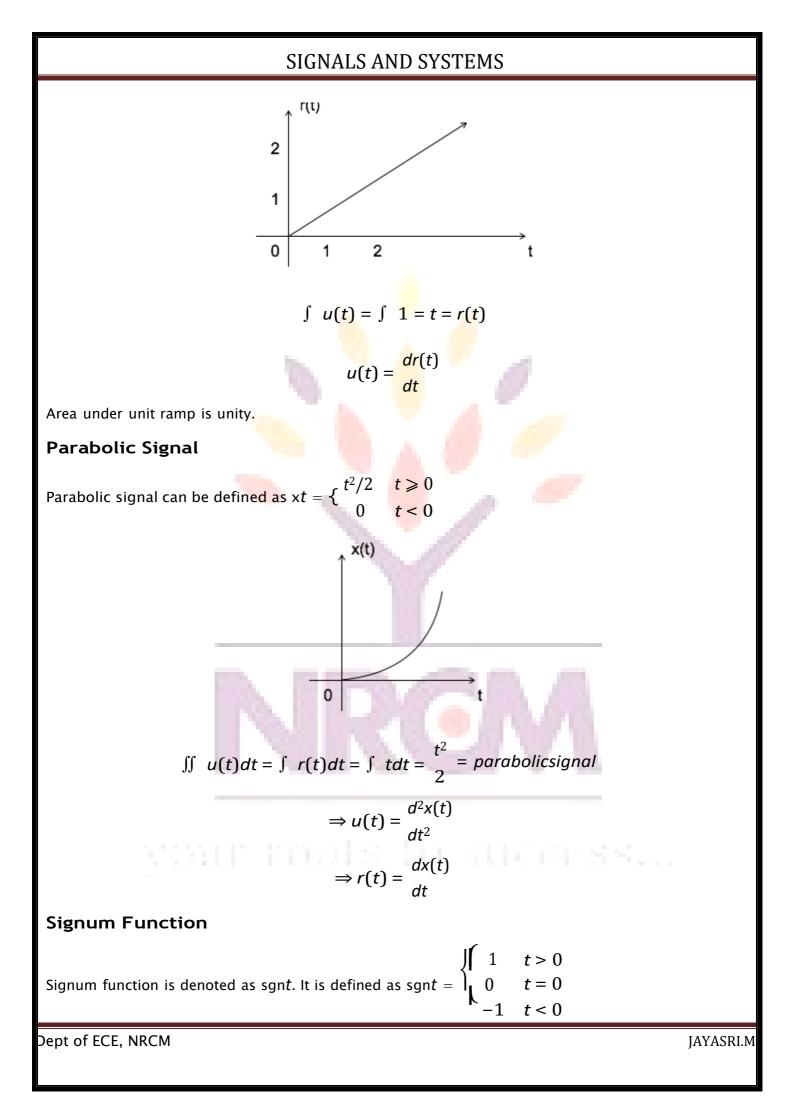
0

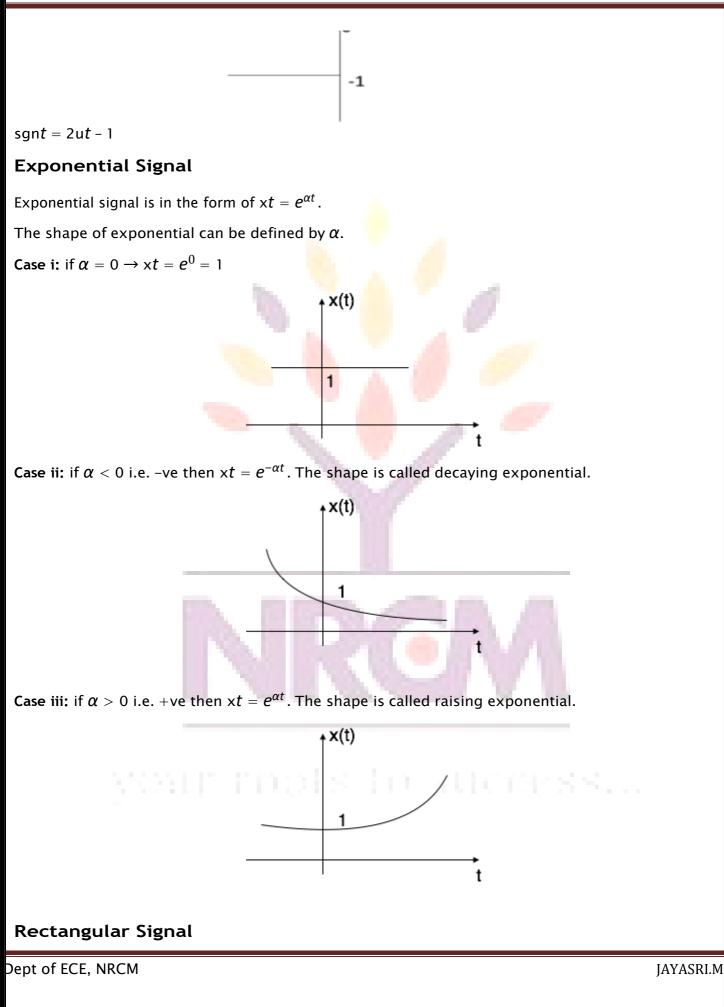
t ≠ 0

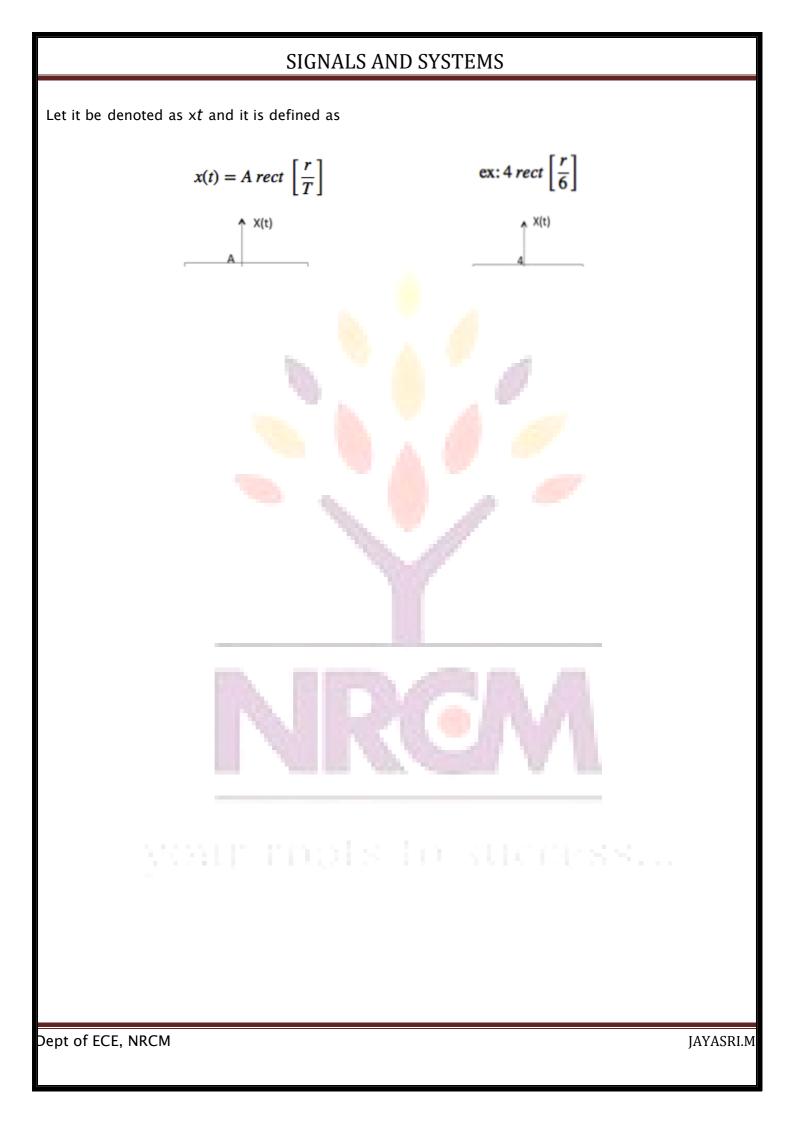
Ramp

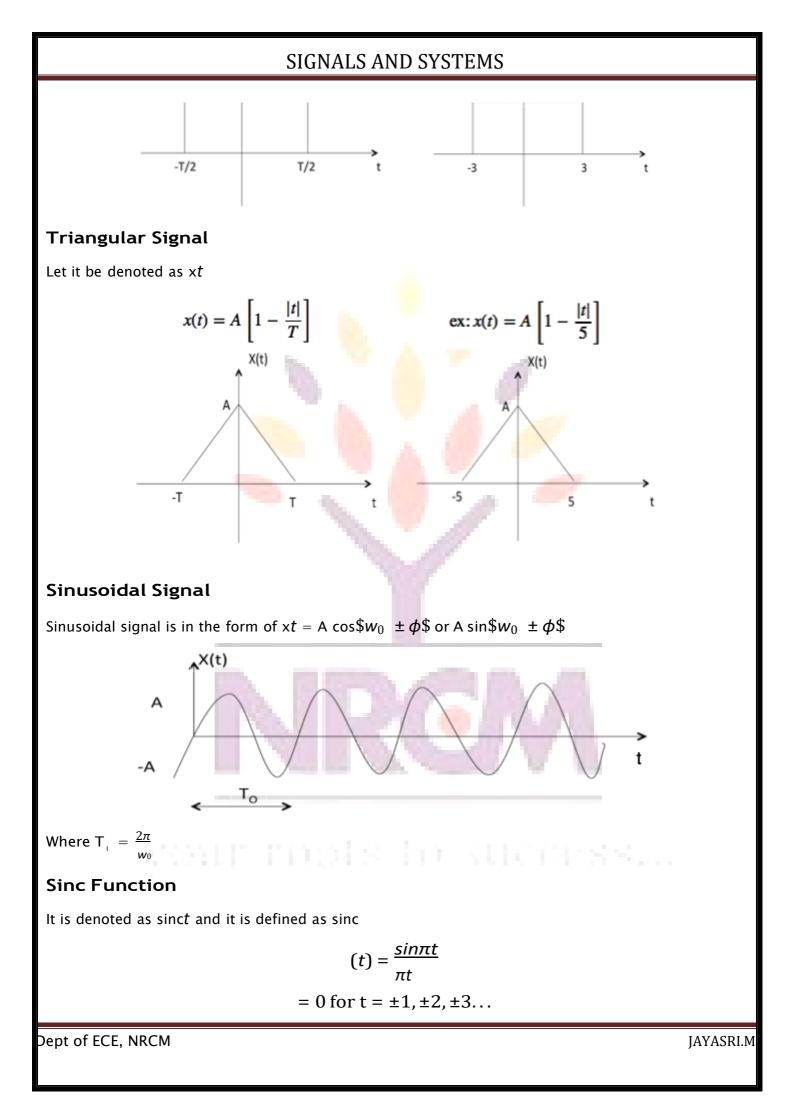
Dept of ECE, NRCM

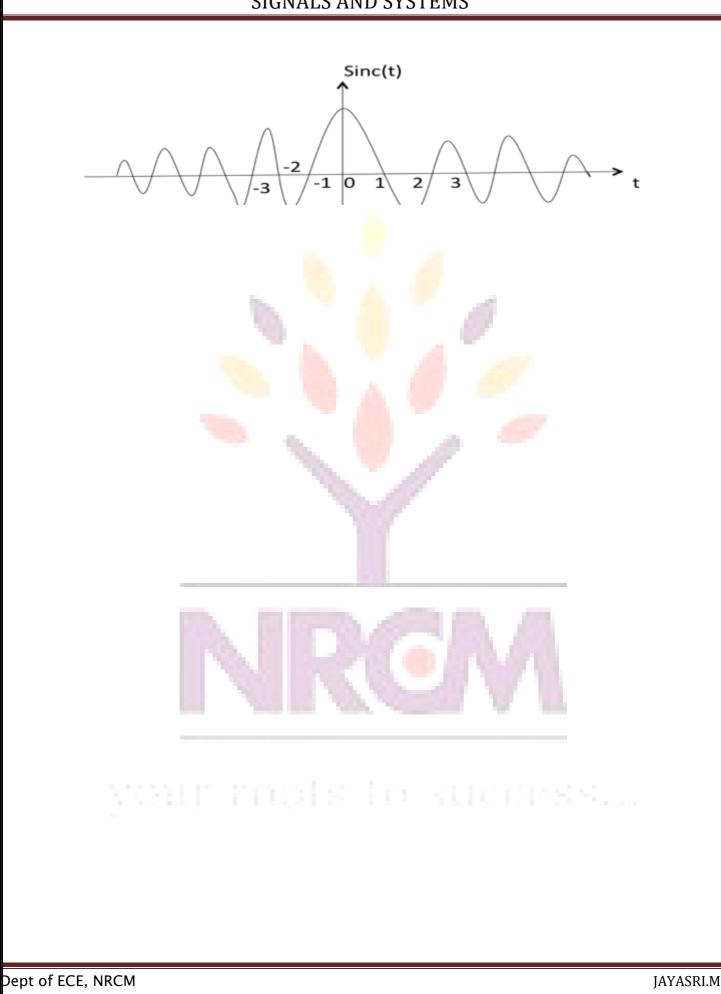












 \cup

Sampling Function

It is denoted as sat and it is defined as

$$sa(t) = \frac{sint}{t}$$

= 0 for t = ± π , ± 2π , ± 3π ...

yearn modis to success...

Dept of ECE, NRCM

SIGNALS BASIC OPERATIONS

There are two variable parameters in general:

- 1. Amplitude
- 2. Time

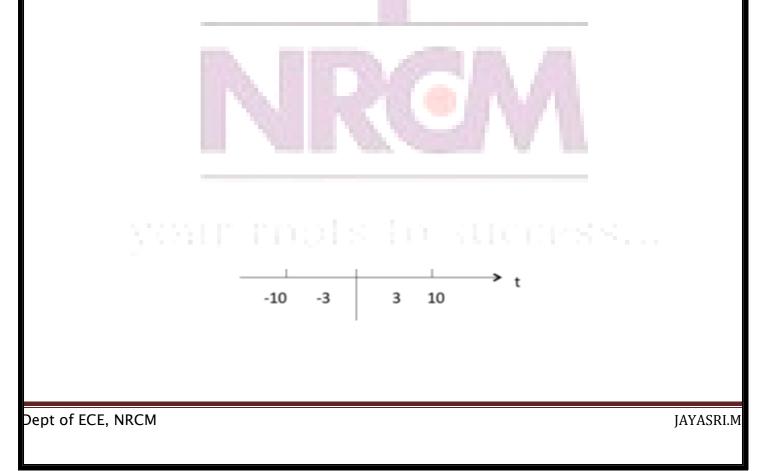
The following operation can be performed with amplitude:

Amplitude Scaling

 $C \times t$ is a amplitude scaled version of $\times t$ whose amplitude is scaled by a factor C.

Addition

Addition of two signals is nothing but addition of their corresponding amplitudes. This can be best explained by using the following example:



As seen from the diagram above,

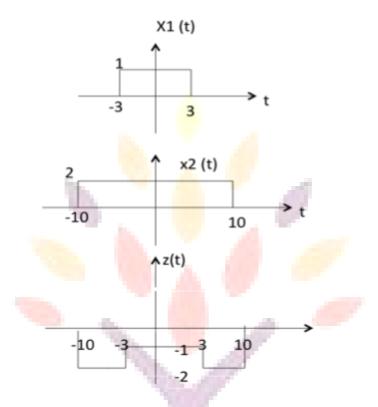
- -10 < t < -3 amplitude of zt = x1t + x2t = 0 + 2 = 2
- -3 < t < 3 amplitude of zt = x1t + x2t = 1 + 2 = 3
- 3 < t < 10 amplitude of zt = x1t + x2t = 0 + 2 = 2

yearn model for success...

Dept of ECE, NRCM

Subtraction

subtraction of two signals is nothing but subtraction of their corresponding amplitudes. This can be best explained by the following example:



As seen from the diagram above,

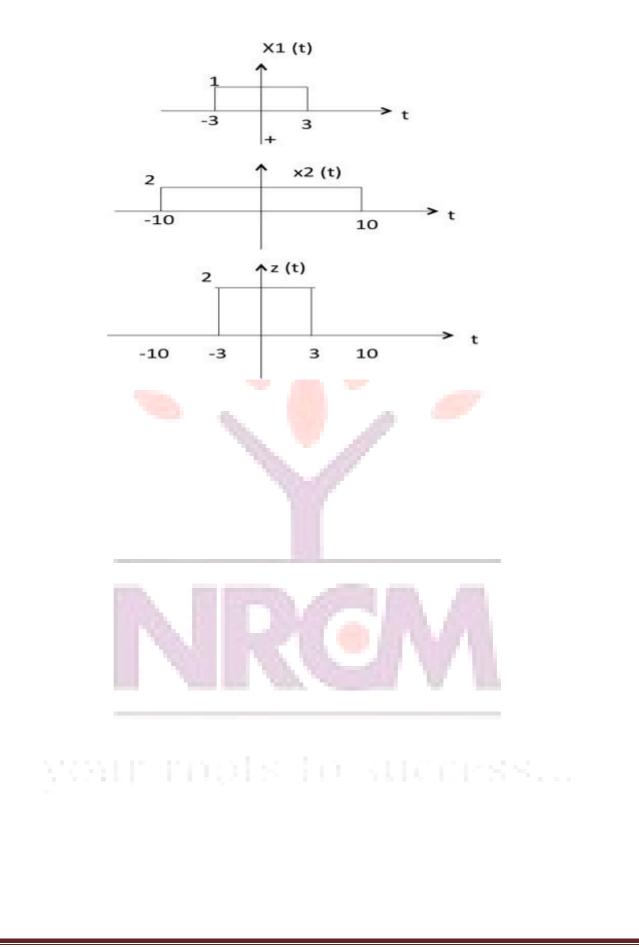
- -10 < t < -3 amplitude of z $t = x_1t x_2t = 0 2 = -2$
- -3 < t < 3 amplitude of z $t = x_1 t x_2 t = 1 2 = -1$
- 3 < t < 10 amplitude of z t = x1t + x2t = 0 2 = -2

Multiplication

Multiplication of two signals is nothing but multiplication of their corresponding amplitudes. This can be best explained by the following example:

geath model to success...

Dept of ECE, NRCM



Dept of ECE, NRCM

As seen from the diagram above,

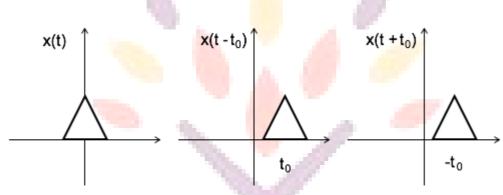
- -10 < t < -3 amplitude of z $t = x1t \times x2t = 0 \times 2 = 0$
- -3 < t < 3 amplitude of z $t = x_1 t \times x_2 t = 1 \times 2 = 2$
- 3 < t < 10 amplitude of z $t = x1t \times x2t = 0 \times 2 = 0$

The following operations can be performed with time:

Time Shifting

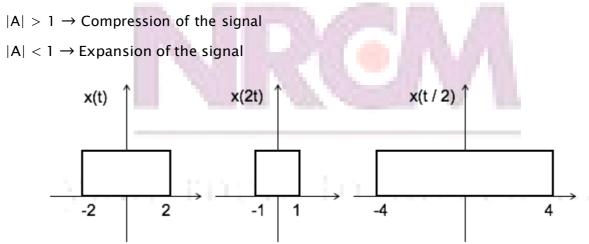
 $x(t \ t_0)$ is time shifted version of the signal xt.

- $x (t + t_0) \rightarrow negative shift$
- x (t t₀) \rightarrow positive shift



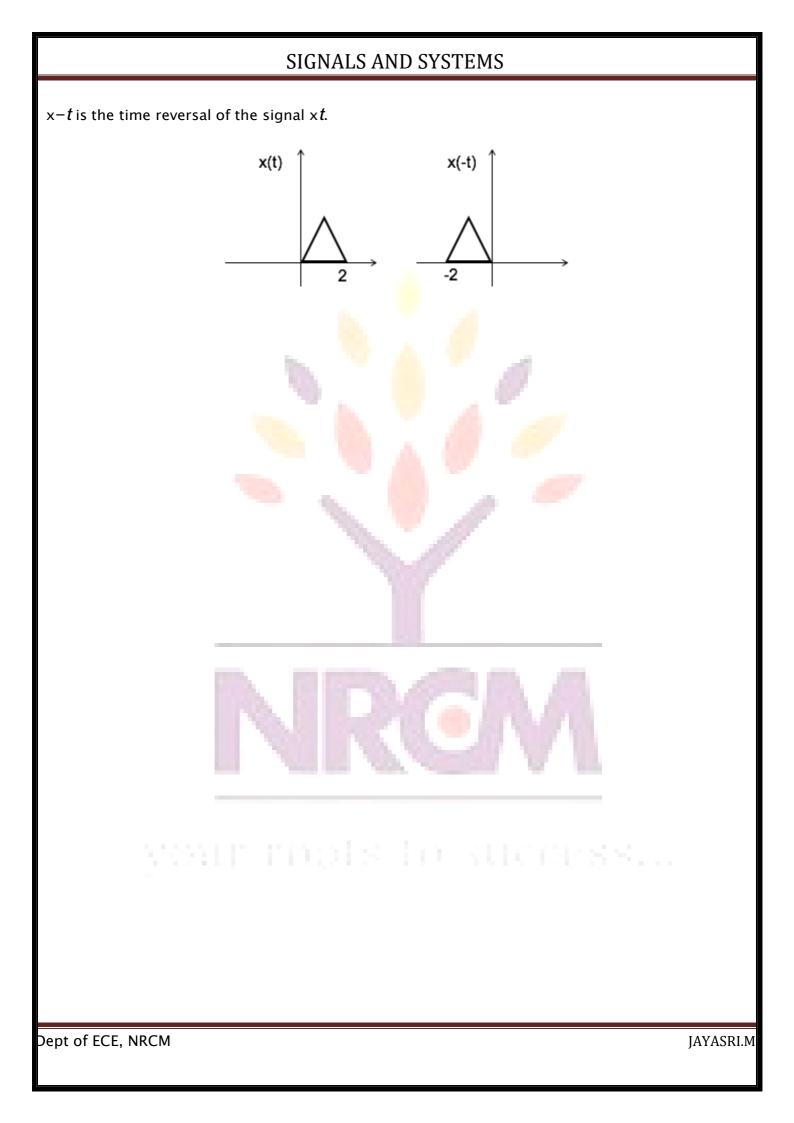
Time Scaling

xAt is time scaled version of the signal xt. where A is always positive.



Note: uat = ut time scaling is not applicable for unit step function.

Dept of ECE, NRCM



FOURIER SERIES

Jean Baptiste Joseph Fourier, a French mathematician and a physicist; was born in Auxerre, France. He initialized Fourier series, Fourier transforms and their applications to problems of heat transfer and vibrations. The Fourier series, Fourier transforms and Fourier's Law are named in his honour.

Jean Baptiste Joseph Fourier 21March1768-16May1830

Fourier series

To represent any periodic signal xt, Fourier developed an expression called Fourier series. This is in terms of an infinite sum of sines and cosines or exponentials. Fourier series uses orthoganality condition.

Fourier Series Representation of Continuous Time Periodic Signals

A signal is said to be periodic if it satisfies the condition x t = x t + T or x n = x n + N.

Where T = fundamental time period,

 $\omega_0 = \ fundamental \ frequency = \ 2\pi/T$

There are two basic periodic signals:

 $x(t) = \cos \omega_0 t \ sinusoidal \ \&$

 $x(t) = e^{i\omega_0 t}$ complexexponential

These two signals are periodic with period $T=2\pi/\omega_0$.

A set of harmonically related complex exponentials can be represented as $\{\phi_k(t)\}$

$$\phi_k(t) = \{e^{jk\omega_0 t}\} = \{e^{jk(\frac{2\pi}{\tau})t}\} \text{ where } k = 0 \pm 1, \pm 2...n....(1)$$

All these signals are periodic with period T

According to orthogonal signal space approximation of a function $\times t$ with n, mutually orthogonal functions is given by

x(t)

Dept of ECE, NRCM

$$=\sum_{k=-\infty}^{\infty}a_{k}ke^{jk\omega_{0}t}$$

Where a_k = Fourier coefficient = coefficient of approximation.

This signal $\times t$ is also periodic with period T.

Equation 2 represents Fourier series representation of periodic signal xt.

The term k = 0 is constant.

The term $k = \pm 1$ having fundamental frequency ω_0 , is called as 1st harmonics.

The term $k = \pm 2$ having fundamental frequency $2\omega_0$, is called as 2^{nd} harmonics, and so on...

The term $k = \pm n$ having fundamental frequency $n\omega 0$, is called as nth harmonics.

Deriving Fourier Coefficient

We know that
$$x(t) = \Sigma^{\infty} \qquad a_k e^{jk\omega_0 t}$$
(1)

Multiply $e^{-jn\omega_0 t}$ on both sides. Then

$$x(t)e^{-jn\omega_0 t} = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \cdot e^{-jn\omega_0 t}$$

Consider integral on both sides.

$$\int_{0}^{T} \mathbf{x}(t) e^{jk\omega_{0}t} dt = \int_{0}^{T-\infty} \sum_{k=-\infty}^{\infty} a_{k} e^{jk\omega_{0}t} \cdot e^{-jn\omega_{0}t} dt$$
$$= \int_{0}^{T-\infty} \sum_{k=-\infty}^{\infty} a_{k} e^{j(k-n)\omega_{0}t} \cdot dt$$

$$\int_{0}^{T} \mathbf{x}(t) e^{jk\omega_{0}t} dt = \sum_{k=-\infty}^{\infty} a_{k} \int_{0}^{T} e^{j(k-n)\omega_{0}t} dt \dots (2)$$

by Euler's formula,

Dept of ECE, NRCM

$$dt = \begin{cases} T & k = n \\ 0 & k \neq n \end{cases}$$

Hence in equation 2, the integral is zero for all values of k except at k = n. Put k = n in equation 2.

Dept of ECE, NRCM

$$\Rightarrow \int_{0}^{T} x(t) e^{-jn\omega_{0}t} dt = a_{n}T$$
$$\Rightarrow a_{n} = \frac{1}{T} \int_{0}^{T} e^{-jn\omega_{0}t} dt$$

Replace n by k.

$$\Rightarrow a_k = \frac{1}{T} \int_0^T e^{-jk\omega_0 t} dt$$
$$\therefore x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j(k-n)\omega_0 t}$$

where $a_k = \frac{1}{T} \int_0^T e^{-jk\omega_0 t} dt$

year mods to success...

Dept of ECE, NRCM

FOURIER SERIES PROPERTIES

These are properties of Fourier series:

Linearity Property

fourier series coefficient If $x(t) \leftarrow - - - - - - \rightarrow f_{xn} \& y(t) \leftarrow - - - - \rightarrow f_{yn}$

then linearity property states that

fourier series coefficient a $x(t) + b y(t) \leftarrow - - - - - - - - a f_{xn} + b f_{yn}$

Time Shifting Property

fourier series coefficient If $_{X(t)} \leftarrow - - - - - - \rightarrow f_{xn}$

then time shifting property states that

fourier series coefficient $-jn\omega_0 t_0$ $x(t-t_0) \leftarrow --- - --- e f_{xn}$

Frequency Shifting Property

then frequency shifting property states that

 $e^{jn\omega_0t_0}$. $x(t) \xleftarrow{fourier\ series\ coefficient} - - - - - \to f_{x(n-n_0)}$

Time Reversal Property

If $x(t) \xleftarrow{fourier series coefficient} f_{xn}$

then time reversal property states that

$$\mathsf{lf}_{x(-t)} \xleftarrow{fourier series coefficient} \leftarrow - - - - - - - - \rightarrow f_{-xn}$$

Time Scaling Property

fourier series coefficient
If
$$_X(t) \leftarrow - - - - - - - \rightarrow f_{xn}$$

then time scaling property states that

If
$$x(at) \stackrel{fourier series coefficient}{\leftarrow - - - - - - - - \to f_{xn}}$$

Time scaling property changes frequency components from ω_0 to $a\omega_0$.

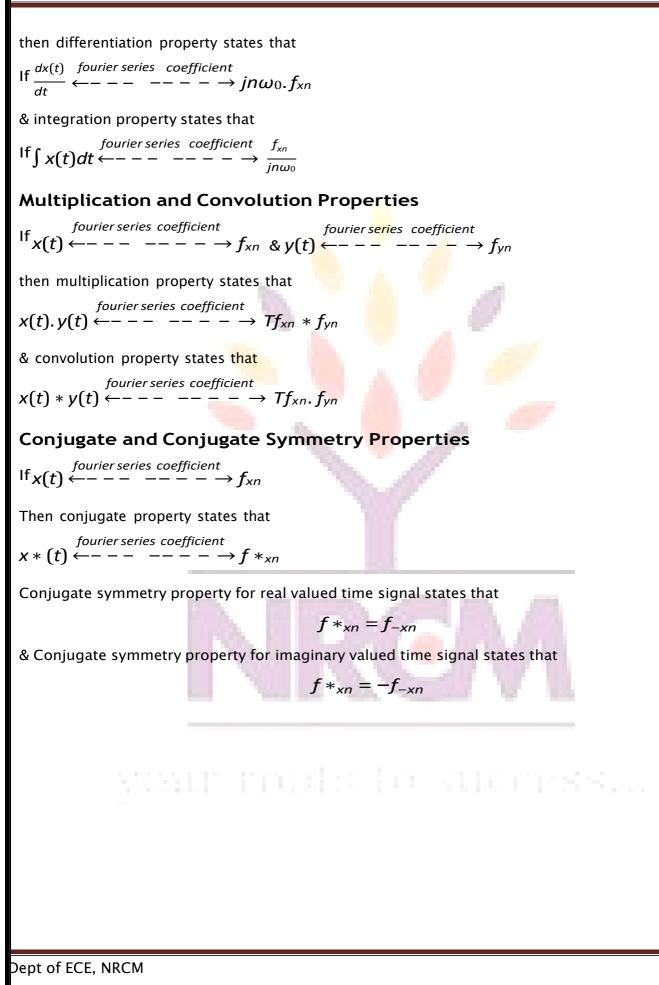
Dept of ECE, NRCM

Differentiation and Integration Properties

If $_{X(t)} \xleftarrow{fourier series coefficient} f_{xn}$

yearn mods to success...

Dept of ECE, NRCM



FOURIER SERIES TYPES SIGNALS AND SYSTEMS

Trigonometric Fourier Series TFS

 $\sin n\omega_0 t$ and $\sin m\omega_0 t$ are orthogonal over the interval $(t_0, t_0 + \frac{2\pi}{\omega_0})$. So $\sin \omega_0 t$, $\sin 2\omega_0 t$ forms an orthogonal set. This set is not complete without $\{\cos n\omega_0 t\}$ because this cosine set is also orthogonal to sine set. So to complete this set we must include both cosine and sine terms. Now the complete orthogonal set contains all cosine and sine terms i.e. $\{\sin n\omega_0 t, \cos n\omega_0 t\}$ where n=0, 1, 2...

: Any function xt in the interval $(t_0, t_0 + \frac{2\pi}{3})$ can be represented as

 $x(t) = a_0 \cos 0\omega_0 t + a_1 \cos 1\omega_0 t + a_2 \cos 2\omega_0 t + \ldots + a_n \cos n\omega_0 t + \ldots$

 $+b_0 \sin 0\omega_0 t + b_1 \sin 1\omega_0 t + \ldots + b_n \sin n\omega_0 t + \ldots$

 $= a_0 + a_1 \cos 1\omega_0 t + a_2 \cos 2\omega_0 t + \ldots + a_n \cos n\omega_0 t + \ldots$

 $+b_1 \sin 1\omega_0 t + \ldots + b_n \sin n\omega_0 t + \ldots$

$$\therefore x(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos n\omega_0 t + b_n \sin n\omega_0 t) \quad (t_0 < t < t_0 + T)$$

The above equation represents trigonometric Fourier series representation of xt.

Where
$$a_0 = \frac{\int_{t_0}^{t_0+T} x(t) \cdot 1dt}{\int_{t_0}^{t_0+T} 1^2 dt} = \frac{1}{T} \cdot \int_{t_0}^{t_0+T} x(t) dt$$

 $a_n = \frac{\int_{t_0}^{t_0+T} x(t) \cdot \cos n\omega_0 t dt}{\int_{t_0}^{t_0+T} \cos^2 n\omega_0 t dt}$
 $b_n = \frac{\int_{t_0}^{t_0+T} x(t) \cdot \sin n\overline{\omega}_0 t dt}{\int_{t_0}^{t_0+T} \sin^2 n\omega_0 t dt}$
Here $\int_{t_0}^{t_0+T} \cos^2 n\omega_0 t dt = \int_{t_0}^{t_0+T} \sin^2 n\omega_0 t dt = \frac{T}{2}$
 $\therefore a_n = \frac{2}{T} \cdot \int_{t_0}^{t_0+T} x(t) \cdot \cos n\omega_0 t dt$
 $b_n = \frac{2}{T} \cdot \int_{t_0}^{t_0+T} x(t) \cdot \cos n\omega_0 t dt$

Exponential Fourier Series EFS

Consider a set of complex exponential functions $\{e^{jn\omega_0 t}\}$ $(n = 0, \pm 1, \pm 2...)$ which is orthogonal over the interval $(t_0, t_0 + T)$. Where $T = \frac{2\pi}{\omega_0}$. This is a complete set so it is possible to represent any function ft as shown below

 $f(t) = F_0 + F_1 e^{j\omega_0 t} + F_2 e^{j2\omega_0 t} + \dots + F_n e^{jn\omega_0 t} + \dots$

$$\mathbf{F}_{-1}e^{-j\omega_0 t} + \mathbf{F}_{-2}e^{-j2\omega_0 t} + \ldots + \mathbf{F}_{-n}e^{-jn\omega_0 t} + \ldots$$

$$\therefore f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\omega t} \qquad (t_0 < t < t_0 + T) \dots \dots (1)$$

Equation 1 represents exponential Fourier series representation of a signal ft over the interval (to,

$$F_{n} = \int_{0}^{n} \int_{0}^{n} f(t) e^{-jt\omega t} dt$$

$$= \int_{0}^{n+T} f(t) e^{-jt\omega t} dt$$
Relation Between Trigonometric and Exponential Fourier Series
Consider a periodic signal st, the TFS & EFS representations are given below respectively
 $x(t) = \cos x^{m} \int_{0}^{0} \cos \cos u\omega t + b_{n} \sin n\omega \omega t$

$$= f_{0} + f_{1}(e^{j\omega t} + f_{2})e^{j\omega t} + \dots + f_{n}e^{j\omega t} + \dots$$

$$= f_{0} + f_{1}(\cos \omega t + j\sin \omega \omega t) + \dots + f_{n}(\cos m\omega t + j\sin n\omega t) + \dots$$

$$= f_{0} + f_{1}(\cos \omega t + j\sin \omega \omega t) + f_{2}(\cos 2\omega t + \sin 2\omega t) + \dots + f_{n}(\cos m\omega t + j\sin n\omega t) + \dots$$

$$= f_{0} + f_{1}(\cos \omega t + j\sin \omega \omega t) + f_{2}(\cos n\omega t + j(f_{n} - f_{-n})) \sin m\omega t) (\dots (2)$$
Compare equation 1 and 2.

$$= f_{0} + f_{1}(\cos \omega t - j\sin \omega t) + f_{2}(\cos n\omega t - j\sin n\omega t) + \dots (2)$$
Compare equation 1 and 2.

$$= f_{0} + f_{1}(\cos \omega t - j\sin \omega t) + f_{2}(\cos n\omega t - j\sin n\omega t) + \dots (2)$$
Compare equation 1 and 2.

$$= f_{0} + f_{1}(\cos \omega t - j\sin \omega t) + f_{2}(\cos n\omega t - j\sin n\omega t) + \dots (2)$$
Compare equation 1 and 2.

$$= f_{0} + f_{1}(\cos \omega t - j\sin \omega t) + f_{2}(\cos n\omega t - j\sin n\omega t) + \dots (2)$$
Compare equation 1 and 2.

$$= f_{0} + f_{1}(\cos \omega t - j\sin \omega t) + f_{2}(\cos n\omega t - j\sin n\omega t) + \dots (2)$$
Compare equation 1 and 2.

$$= f_{0} + f_{1}(\cos \omega t - j\sin \omega t) + f_{2}(\cos n\omega t - j\sin n\omega t) + \dots (2)$$
Compare equation 1 and 2.

$$= f_{0} + f_{1}(\cos \omega t - j\sin \omega t) + f_{2}(\cos n\omega t - j\sin n\omega t) + \dots (2)$$
Compare equation 1 and 2.

$$= f_{0} + f_{1}(\cos \omega t - j\sin \omega t) + f_{2}(\cos n\omega t - j\sin n\omega t) + \dots (2)$$
Compare equation 1 and 2.

$$= f_{0} + f_{1}(\cos \omega t - j\sin \omega t) + f_{2}(\cos n\omega t - j\sin n\omega t) + \dots (2)$$
(AYASRI.M

Similarly,

= _ ·

a

yearn modis to success...

Dept of ECE, NRCM

 $F_n = \frac{1}{2}(a_n - jb_n)$ $F_{-n} = \frac{1}{2}(a_n + jb_n)$

yearn modis to success...

Dept of ECE, NRCM

UNIT 2 - FOURIER TRANSFORMS

The main drawback of Fourier series is, it is only applicable to periodic signals. There are some naturally produced signals such as nonperiodic or aperiodic, which we cannot represent using Fourier series. To overcome this shortcoming, Fourier developed a mathematical model to transform signals between time *orspatial* domain to frequency domain & vice versa, which is called 'Fourier transform'.

Fourier transform has many applications in physics and engineering such as analysis of LTI systems, RADAR, astronomy, signal processing etc.

Deriving Fourier transform from Fourier series

Consider a periodic signal ft with period T. The complex Fourier series representation of ft is given as

Let $\frac{1}{\tau_1} = \Delta f$, then equation 1 becomes

$$f(t) = \sum_{k=1}^{\infty} a_k e^{j 2 \pi k \Delta f t} \dots (2)$$

but you know that

$$a_k = \frac{1}{0} \int_{t_0}^{t_0+T} \boldsymbol{f}(t) e^{-jk\omega_0 t} dt$$

Substitute in equation 2.

$$2 \Rightarrow f(t) = \Sigma^{\infty} \qquad \frac{1}{0} \int_{t_0}^{t_0 + T} f(t) e^{-jk\omega_0 t} dt e^{j2\pi k\Delta f t}$$

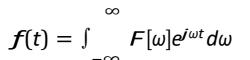
Let $t_0 = \frac{T}{t}$

$$= \sum_{k=-\infty}^{\infty} \left[\int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-j2\pi k\Delta ft} dt \right] e^{j2\pi k\Delta ft} \Delta f$$

In the limit as $T \to \infty$, Δf approaches differential df, $k\Delta f$ becomes a continuous variable f, and summation becomes integration

Dept of ECE, NRCM





Where $F[\omega] = \left[\int_{-\infty}^{\infty} f(t) e^{-j2\pi ft} dt\right]$

Fourier transform of a signal

$$f(t) = F[\omega] = \left[\int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt\right]$$

Inverse Fourier Transform is

$$f(t) = \int_{-\infty}^{\infty} F[\omega] e^{j\omega t} d\omega$$

Fourier Transform of Basic Functions

Let us go through Fourier Transform of basic functions:

FT of GATE Function

your mpis in success...

FT of Impulse Function

 $FT[\omega(t)] = \left[\int_{-\infty}^{\infty} \delta(t) e^{-j\omega t} dt\right]$

 $= e^{-j\omega t} \mid t = 0$

Dept of ECE, NRCM

 $= e^0 = 1$

 $\div\,\delta(\omega)=1$

FT of Unit Step Function:

 $U(\omega)=\pi\delta(\omega)+1/j\omega$

yosun modis to success...

Dept of ECE, NRCM

FT of Exponentials

$$e^{-at}u(t) \stackrel{\text{F.T}}{\longleftrightarrow} 1/(a+j\omega)$$

$$e^{-at}u(t) \stackrel{\text{F.T}}{\longleftrightarrow} 1/(a+j\omega)$$

$$e^{-a|t|} \stackrel{\text{F.T}}{\leftarrow} \frac{2a}{a^{2}+\omega^{2}}$$

$$e^{j\omega_{0}t} \stackrel{\text{F.T}}{\longleftrightarrow} \delta(\omega-\omega_{0})$$

FT of Signum Function

$$sgn(t) \stackrel{\text{F.T}}{\longleftrightarrow} \frac{2}{j\omega}$$

Conditions for Existence of Fourier Transform

Any function ft can be represented by using Fourier transform only when the function satisfies Dirichlet's conditions. i.e.

- The function ft has finite number of maxima and minima.
- There must be finite number of discontinuities in the signal ft, in the given interval of time.
- It must be absolutely integrable in the given interval of time i.e.

$\int_{-c}^{\infty} |f(t)| dt < \infty$

your mpis in success...

Dept of ECE, NRCM

FOURIER TRANSFORMS PROPERTIES

Here are the properties of Fourier Transform:

Linearity Property

If
$$x(t) \stackrel{\text{F.T}}{\longleftrightarrow} X(\omega)$$

& $v(t) \stackrel{\text{F.T}}{\longleftrightarrow} Y(\omega)$

Then linearity property states that

 $ax(t) + by(t) \stackrel{\text{F.T}}{\leftrightarrow} aX(\omega) + bY(\omega)$

Time Shifting Property

If $x(t) \stackrel{\text{F.T}}{\longleftrightarrow} X(\omega)$

Then Time shifting property states that

 $x(t-t_0) \stackrel{\text{F.T.}}{\longleftrightarrow} e^{-j\omega t_0} X(\omega)$

Frequency Shifting Property

If $x(t) \stackrel{\text{F.T}}{\longleftrightarrow} X(\omega)$

Then frequency shifting property states that

 $e^{j\omega_0 t}$. $x(t) \stackrel{\text{F.T}}{\longleftrightarrow} X(\omega - \omega_0)$

Time Reversal Property

If $x(t) \stackrel{\text{F.T}}{\longleftrightarrow} X(\omega)$

Then Time reversal property states that

 $x(-t) \stackrel{\text{F.T}}{\longleftrightarrow} X(-\omega)$

Time Scaling Property

If
$$x(t) \stackrel{\text{F.T}}{\longleftrightarrow} X(\omega)$$

Then Time scaling property states that

 $x(at)^{1} \mathbf{X}^{\underline{\omega}}$

Dept of ECE, NRCM

|a| a

Differentiation and Integration Properties

If $x(t) \stackrel{\text{F.T}}{\longleftrightarrow} X(\omega)$

Then Differentiation property states that

year mods to success...

Dept of ECE, NRCM

SIGNALS SAMPLING THEOREM

Statement: A continuous time signal can be represented in its samples and can be recovered back when sampling frequency f_s is greater than or equal to the twice the highest frequency component of message signal. i. e.

$$f_s \leq 2f_m$$
.

Proof: Consider a continuous time signal xt. The spectrum of xt is a band limited to f_m Hz i.e. the spectrum of xt is zero for $|\omega| > \omega_m$.

Sampling of input signal xt can be obtained by multiplying xt with an impulse train δt of period T_s . The output of multiplier is a discrete signal called sampled signal which is represented with yt in the following diagrams:

Here, you can observe that the sampled signal takes the period of impulse. The process of sampling can be explained by the following mathematical expression:

The trigonometric Fourier series representation of δt is given by

$$\delta(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos n\omega_s t + b_n \sin n\omega_s t) \dots (2)$$

Dept of ECE, NRCM

Where
$$a_0 = \frac{1}{L_1} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \delta(t) dt = \frac{1}{L_2} \delta(0) = \frac{1}{L_2}$$

 $a_n = \frac{2}{L_2} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \delta(t) \cos n\omega_s dt = \frac{2}{L_2} \delta(0) \cos n\omega_s 0 = \frac{2}{T}$

$$b_n = \frac{2}{\tau_s} \int_{\frac{-\tau}{2}}^{\frac{\tau}{2}} \delta(t) \sin n\omega_s t dt = \frac{2}{\tau_s} \delta(0) \sin n\omega_s 0 = 0$$

Substitute above values in equation 2.

$$\therefore \delta(t) = \frac{1}{T_s} + \sum_{n=1}^{\infty} \left(\frac{2}{T_s} \cos n\omega_s t + 0\right)$$

Substitute δt in equation 1.

$$\rightarrow y(t) = x(t). \,\delta(t)$$

$$= x(t) \left[\frac{1}{\tau_s} + \sum_{n=1}^{\infty} \frac{2}{\tau_s} \cos n\omega_s t \right]$$

$$= \frac{1}{\tau_s} \left[x(t) + 2\sum_{n=1}^{\infty} (\cos n\omega_s t) x(t) \right]$$

$$y(t) = \frac{1}{s} \left[x(t) + 2\cos \omega_s t. x(t) + 2\cos 2\omega_s t. x(t) + 2\cos 3\omega_s t. x(t) \right]$$

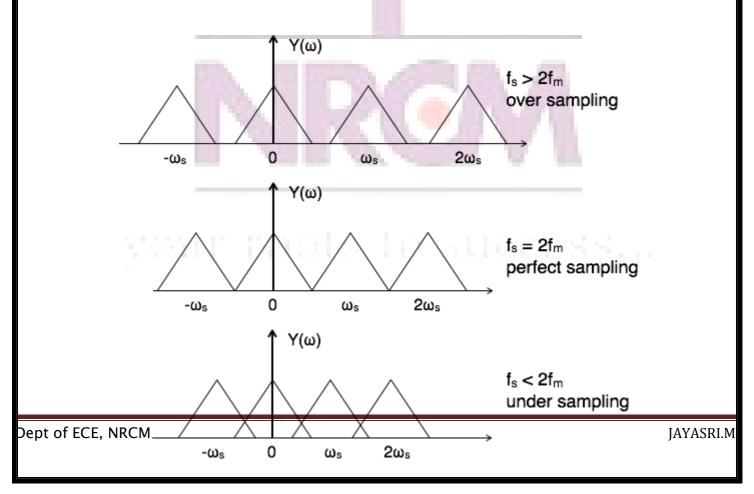
Take Fourier transform on both sides.

$$Y(\omega) = \frac{1}{s} [X(\omega) + X(\omega - \omega_s) + X(\omega + \omega_s) + X(\omega - 2\omega_s) + X(\omega + 2\omega_s) + \dots]$$

$$\therefore Y(\omega) = \frac{1}{\tau_s} \sum_{n=-\infty}^{\infty} X(\omega - n\omega_s) \quad \text{where } n = 0, \pm 1, \pm 2, \dots$$

To reconstruct xt, you must recover input signal spectrum X ω from sampled signal spectrum Y ω , which is possible when there is no overlapping between the cycles of Y ω .

Possibility of sampled frequency spectrum with different conditions is given by the following diagrams:



Aliasing Effect

The overlapped region in case of under sampling represents aliasing effect, which can be

yearn modis to success...

Dept of ECE, NRCM

removed by

- considering $f_{\text{s}} > 2 f_{\text{m}}$
- By using anti aliasing filters.

yearn mods to success...

Dept of ECE, NRCM

SIGNALS SAMPLING TECHNIQUES

There are three types of sampling techniques:

Impulse sampling.

Natural sampling.

Flat Top sampling.

Impulse Sampling

Impulse sampling can be performed by multiplying input signal xt with impulse train $\sum_{n=-\infty}^{\infty} \delta(t - nT)$ of period 'T'. Here, the amplitude of impulse changes with respect to amplitude of input signal xt. The output of sampler is given by

 $y(t) = x(t) \times$ impulse train

 $= x(t) \times \Sigma^{\infty} \qquad \delta(t - nT)$ $y(t) = y_{\delta}(t) = \sum_{n=-\infty}^{\infty} x(nt)\delta(t - nT).....1$

To get the spectrum of sampled signal, consider Fourier transform of equation 1 on both sides

 $Y(\omega) = \frac{1}{\tau} \sum_{n=-\infty}^{\infty} X(\omega - n\omega_s)$

This is called ideal sampling or impulse sampling. You cannot use this practically because pulse width cannot be zero and the generation of impulse train is not possible practically.

Natural Sampling

Natural sampling is similar to impulse sampling, except the impulse train is replaced by pulse train of period T. i.e. you multiply input signal xt to pulse train $\Sigma^{\infty} = P(t - nT)$ as shown below

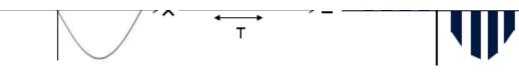
Dept of ECE, NRCM

The output of sampler is

$$y(t) = x(t) \times \text{pulse train}$$

= $x(t) \times p(t)$
= $x(t) \times \sum_{n=-\infty}^{\infty} P(t - nT)$(1)

yearn model to success...



Dept of ECE, NRCM

The exponential Fourier series representation of pt can be given as

$$p(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\omega_s t} \dots (2)$$
$$= \sum_{n=-\infty}^{\infty} F_n e^{j2\pi n f_s t}$$
Where $F_n = \frac{1}{2} \int_{2}^{\frac{T}{2}} p(t) e^{-jn\omega_s t} dt$
$$= \frac{-1}{2} (n\omega_s)$$

Substitute F_n value in equation 2

 $\therefore p(t) = \sum_{\substack{n=-\infty \\ T}}^{\infty} \frac{1}{r} P(n\omega_s) e^{jn\omega_s t}$ $= \frac{1}{T} \sum_{\substack{n=-\infty \\ T}}^{\infty} P(n\omega_s) e^{jn\omega_s t}$

Substitute pt in equation 1

$$y(t) = x(t) \times p(t)$$

= $x(t) \times \frac{1}{\tau} \sum_{n=-\infty}^{\infty} P(n\omega_s) e^{jn\omega_s t}$
 $y(t) = \frac{1}{\tau} \sum_{n=-\infty}^{\infty} P(n\omega_s) x(t) e^{jn\omega_s t}$

To get the spectrum of sampled signal, consider the Fourier transform on both sides.

$$F.T[y(t)] = F.T[\underbrace{1 \sum_{T} \sum_{n=-\infty}^{\infty} P(n\omega_{s}) x(t) e^{in\omega_{s}t}}_{T n=-\infty}]$$
$$= \underbrace{1 \sum_{T} \sum_{n=-\infty}^{\infty} P(n\omega_{s}) F.T[x(t) e^{in\omega_{s}t}]}_{T n=-\infty}$$

According to frequency shifting property

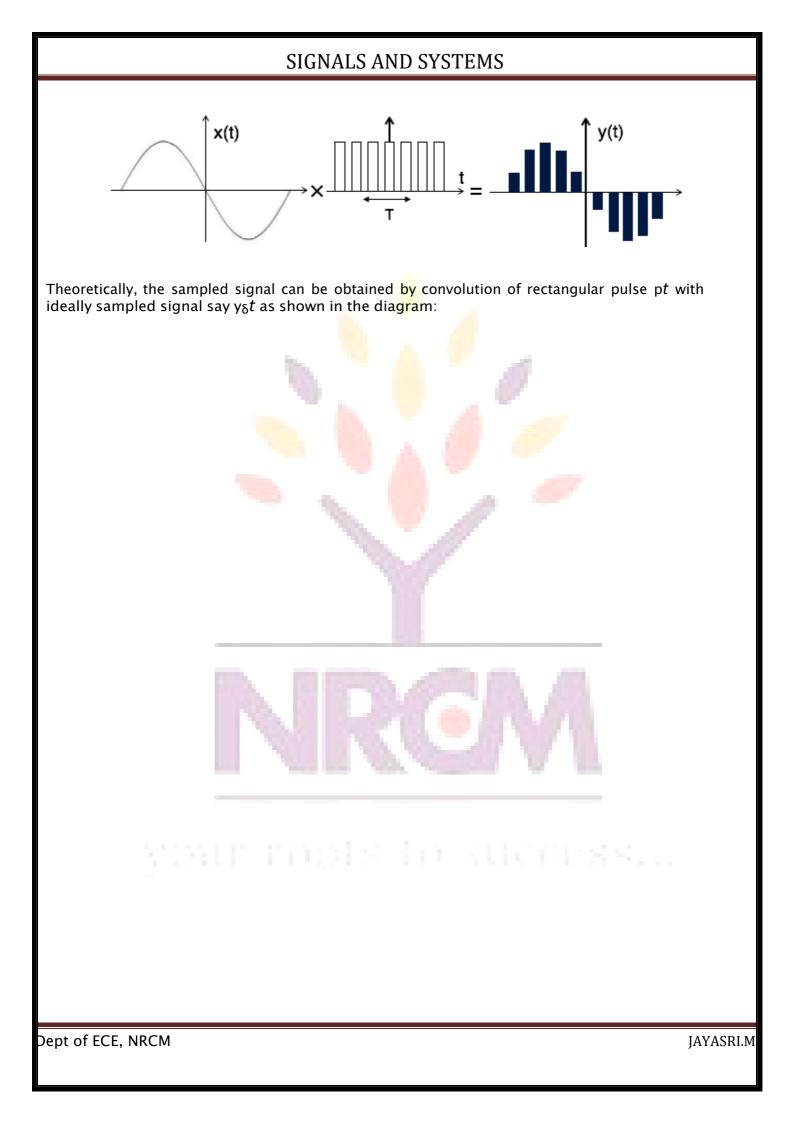
$$F \cdot T[\mathbf{x}(t) e^{jn\omega_s t}] = \mathbf{X}[\omega - n\omega_s]$$

$$\therefore Y[\omega] = \frac{1}{\tau} \sum_{n=-\infty}^{\infty} P(n\omega_s) \mathbf{X}[\omega - n\omega_s]$$

Flat Top Sampling

During transmission, noise is introduced at top of the transmission pulse which can be easily removed if the pulse is in the form of flat top. Here, the top of the samples are flat i.e. they have constant amplitude. Hence, it is called as flat top sampling or practical sampling. Flat top sampling makes use of sample and hold circuit.

Dept of ECE, NRCM



i.e.
$$y(t) = p(t) \times y_{\delta}(t)$$
.....(1)

To get the sampled spectrum, consider Fourier transform on both sides for equation 1

 $Y[\omega] = F. T [P(t) \times y_{\delta}(t)]$

By the knowledge of convolution property,

 $Y[\omega] = P(\omega) Y_{\delta}(\omega)$

Here $P(\omega) = TSa(\omega^T) = 2 \sin \omega T / \omega$

Nyquist Rate

It is the minimum sampling rate at which signal can be converted into samples and can be recovered back without distortion.

Nyquist rate $f_N = 2f_m hz$

Nyquist interval = $\frac{1}{fN} = \frac{1}{2fm}$ seconds.

Samplings of Band Pass Signals

In case of band pass signals, the spectrum of band pass signal $X[\omega] = 0$ for the frequencies outside the range $f_1 \le f \le f_2$. The frequency f_1 is always greater than zero. Plus, there is no aliasing effect when $f_s > 2f_2$. But it has two disadvantages:

The sampling rate is large in proportion with f₂. This has practical limitations.

The sampled signal spectrum has spectral gaps.

To overcome this, the band pass theorem states that the input signal xt can be converted into its samples and can be recovered back without distortion when sampling frequency $f_s < 2f_2$.

Also,

$$f_s = \frac{1}{T} = \frac{2f_2}{m}$$

Where m is the largest integer $< \frac{f_2}{r}$

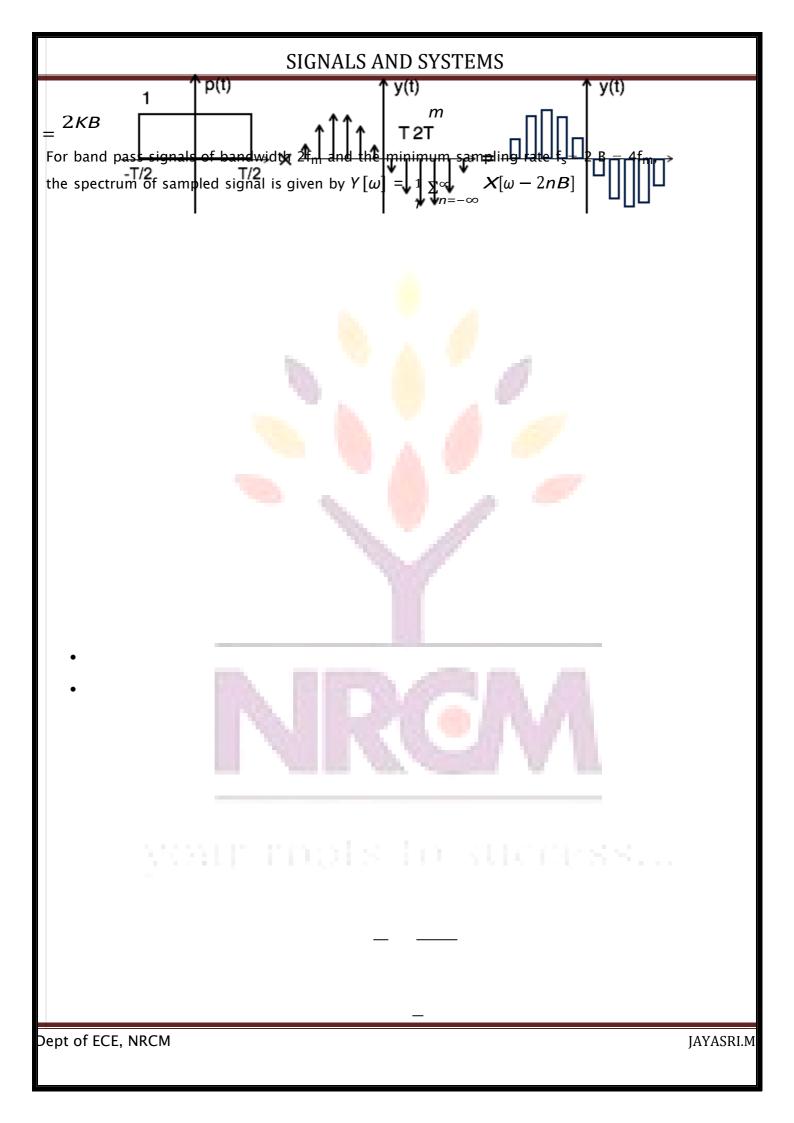
and B is the bandwidth of the signal. If f_2 =KB, then

$$f_s = 1$$

Dept of ECE, NRCM

JAYASRI.M

Т



UNIT 3 – SIGNAL TRANSMISSION THROUGH LTI SYSTEM

Systems are classified into the following categories:

- Liner and Non-liner Systems
- Time Variant and Time Invariant Systems
- Liner Time variant and Liner Time invariant systems
- Static and Dynamic Systems

Causal and Non-causal Systems

Invertible and Non-Invertible Systems

Stable and Unstable Systems

Liner and Non-liner Systems

A system is said to be linear when it satisfies superposition and homogenate principles. Consider two systems with inputs as x_1t , x_2t , and outputs as y_1t , y_2t respectively. Then, according to the superposition and homogenate principles,

 $T [a_1 x_1 t + a_2 x_2 t] = a_1 T[x_1 t] + a_2 T[x_2 t]$

 \therefore , T [a₁ x₁t + a₂ x₂t] = a₁ y₁t + a₂ y₂t

From the above expression, is clear that response of overall system is equal to response of individual system.

Example:

$$t = x^2 t$$

Solution:

$$y_1 t = T[x_1 t] = x_1^2 t$$

 $y_2 t = T[x_2t] = x_2^2t$

 $T [a_1 x_1 t + a_2 x_2 t] = [a_1 x_1 t + a_2 x_2 t]^2$

Which is not equal to $a_1 y_1 t + a_2 y_2 t$. Hence the system is said to be non linear.

Time Variant and Time Invariant Systems

A system is said to be time variant if its input and output characteristics vary with time. Otherwise, the system is considered as time invariant.

The condition for time invariant system is:

$$y n, t = yn - t$$

The condition for time variant system is:

Dept of ECE, NRCM

y n, t ≠ yn – t

Where y n, t = T[xn - t] = input change

y n - t = output change

Example:

yosun nopis in success...

Dept of ECE, NRCM

$$yn = x - n$$

yn, t = T[xn - t] = x - n - t

yn - t = x - (n - t) = x - n + t

: $yn, t \neq yn - t$. Hence, the system is time variant.

Liner Time variant LTV and Liner Time Invariant LTI Systems

If a system is both liner and time variant, then it is called liner time variant *LTV* system.

If a system is both liner and time Invariant then that system is called liner time invariant *LTI* system.

Static and Dynamic Systems

Static system is memory-less whereas dynamic system is a memory system.

Example 1: $yt = 2 \times t$

For present value t=0, the system output is $y_0^2 = 2x_0^2$. Here, the output is only dependent upon present input. Hence the system is memory less or static.

Example 2: yt = 2 xt + 3 xt - 3

For present value t=0, the system output is $y^0 = 2x^0 + 3x - 3$.

Here x-3 is past value for the present input for which the system requires memory to get this output. Hence, the system is a dynamic system.

Causal and Non-Causal Systems

A system is said to be causal if its output depends upon present and past inputs, and does not depend upon future input.

For non causal system, the output depends upon future inputs also.

Example 1: yn = 2 xt + 3 xt - 3

For present value t=1, the system output is y1 = 2x1 + 3x-2.

Here, the system output only depends upon present and past inputs. Hence, the system is causal.

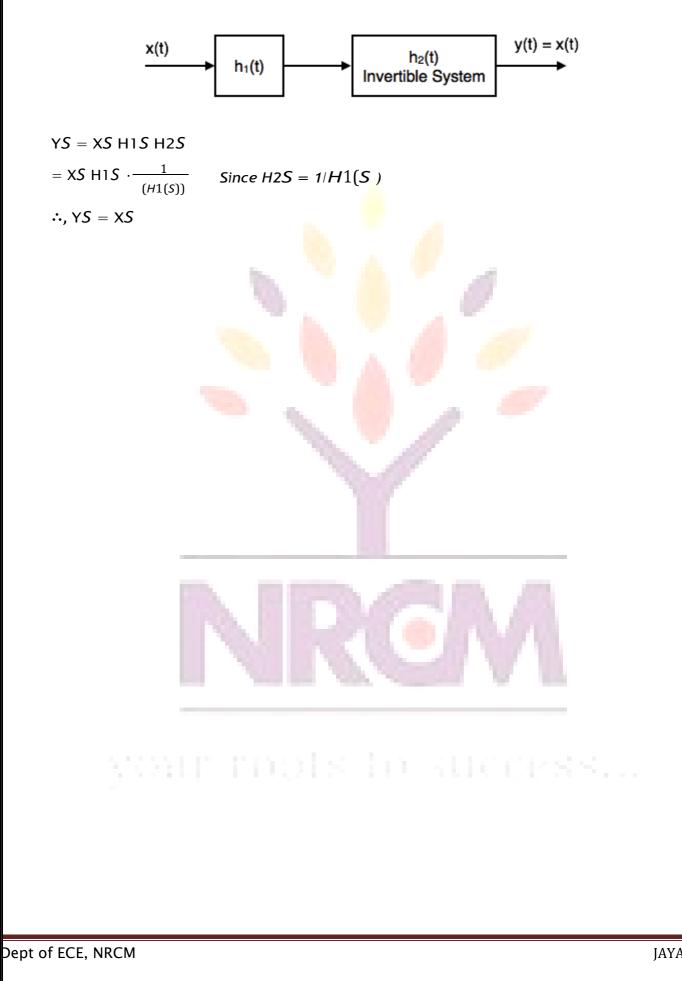
Example 2: yn = 2xt + 3xt - 3 + 6xt + 3

For present value t=1, the system output is y1 = 2x1 + 3x-2 + 6x4 Here, the system output depends upon future input. Hence the system is non-causal system.

Invertible and Non-Invertible systems

A system is said to invertible if the input of the system appears at the output.

Dept of ECE, NRCM



$$\rightarrow$$
 yt = xt

Hence, the system is invertible.

If $yt \neq xt$, then the system is said to be non-invertible.

Stable and Unstable Systems

The system is said to be stable only when the output is bounded for bounded input. For a bounded input, if the output is unbounded in the system then it is said to be unstable.

Note: For a bounded signal, amplitude is finite.

Example 1: $y t = x^2 t$

Let the input is ut unitstepbounded input then the output $yt = u^2t = ut = bounded output$.

Hence, the system is stable.

Example 2: $y t = \int x(t) dt$

Let the input is u t unitstepboundedinput then the output $yt = \int u(t) dt = ramp signal$ unboundedbecauseamplitudeoframpisnotfiniteitgoestoinfinitewhent\$ \rightarrow \$infinite

Hence, the system is unstable.

your mpis to success...

Dept of ECE, NRCM

UNIT 4 - CONVOLUTION AND CORRELATION OF SIGNALS

Convolution

Convolution is a mathematical operation used to express the relation between input and output of an LTI system. It relates input, output and impulse response of an LTI system as

$$y(t) = x(t) * h(t)$$

Where y t = output of LTI

x t = input of LTI

h t = impulse response of LTI

Thete are two types of convolutions:

Continuous convolution

Discrete convolution

Continuous Convolution

y(t) = x(t) * h(t) $= \int^{\infty} x(\tau)h(t - \tau)d\tau$ or

 $=\int^{\infty} x(t-\tau)h(\tau)d\tau$

Discrete Convolution

$$v(n) = x(n) * h(n)$$

$$= \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$

or

$$= \sum_{k=-\infty}^{\infty} x(n-k)h(k)$$

By using convolution we can find zero state response of the system.

Dept of ECE, NRCM

Deconvolution

Deconvolution is reverse process to convolution widely used in signal and image processing.

Properties of Convolution

Commutative Property

Dept of ECE, NRCM

 $x_1(t) * x_2(t) = x_2(t) * x_1(t)$

Distributive Property

 $x_1(t) * [x_2(t) + x_3(t)] = [x_1(t) * x_2(t)] + [x_1(t) * x_3(t)]$

Associative Property

 $x_1(t) * [x_2(t) * x_3(t)] = [x_1(t) * x_2(t)] * x_3(t)$

Shifting Property

$$x_{1}(t) * x_{2}(t) = y(t)$$

$$x_{1}(t) * x_{2}(t - t_{0}) = y(t - t_{0})$$

$$x_{1}(t - t_{0}) * x_{2}(t) = y(t - t_{0})$$

$$x_{1}(t - t_{0}) * x_{2}(t - t_{1}) = y(t - t_{0} - t_{1})$$
Convolution with Impulse

$$x_1(t) * \delta(t) = x(t)$$

$$x_1(t) * \delta(t-t_0) = x(t-t_0)$$

Convolution of Unit Steps

$$u(t) * u(t) = r(t)$$

$$u(t - T_1) * u(t - T_2) = r(t - T_1 - T_2)$$

$$u(n) * u(n) = [n + 1]u(n)$$

Scaling Property

If x(t) * h(t) = y(t)then $x(at) * h(at) = \frac{1}{|a|} y(at)$

Differentiation of Output

if
$$y(t) = x(t) * h(t)$$

then $\frac{dy(t)}{dt} = \frac{dx(t)}{dt} * h(t)$
or
 $\frac{dy(t)}{dt} = x(t) * \frac{dh(t)}{dt}$

Dept of ECE, NRCM

Note:

- Convolution of two causal sequences is causal.
- Convolution of two anti causal sequences is anti causal.
- Convolution of two unequal length rectangles results a trapezium.
- Convolution of two equal length rectangles results a triangle.

yearn naphs io success...

Dept of ECE, NRCM

• A function convoluted itself is equal to integration of that function.

Example: You know that u(t) * u(t) = r(t)

According to above note, $u(t) * u(t) = \int u(t)dt = \int 1dt = t = r(t)$

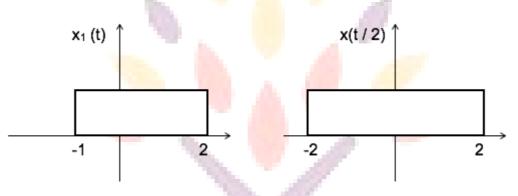
Here, you get the result just by integrating u(t).

Limits of Convoluted Signal

If two signals are convoluted then the resulting convoluted signal has following range:

Sum of lower limits < t < sum of upper limits

Ex: find the range of convolution of signals given below



Here, we have two rectangles of unequal length to convolute, which results a trapezium.

The range of convoluted signal is:

Sum of lower limits < t < sum of upper limits

-1 + -2 < t < 2 + 2

$$-3 < t < 4$$

Hence the result is trapezium with period 7.

Area of Convoluted Signal

The area under convoluted signal is given by $A_y = A_x A_h$

Where A_X = area under input signal

A_h = area under impulse response

 A_v = area under output signal

Proof:
$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

Take integration on both sides

$$\int y(t)dt = \int \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau dt$$

Dept of ECE, NRCM

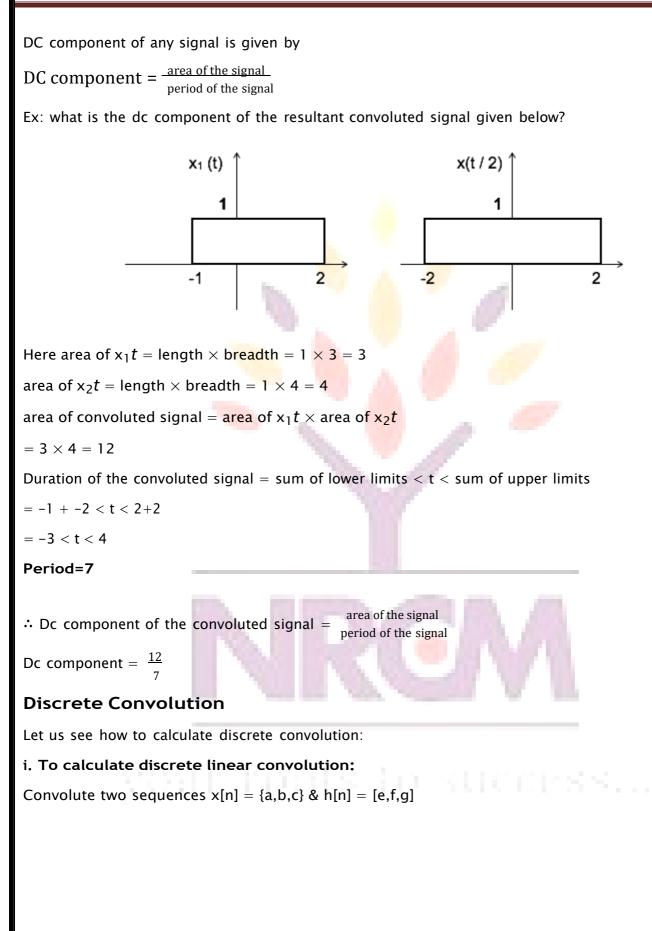
$$=\int x(\tau)d\tau\int_{-\infty}^{\infty}h(t-\tau)dt$$

We know that area of any signal is the integration of that signal itself.

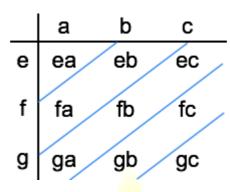
 $\therefore A_y = A_x A_h$

DC Component

Dept of ECE, NRCM



Dept of ECE, NRCM



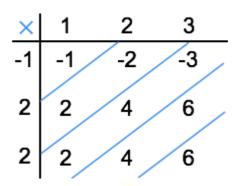
Convoluted output = [ea, eb+fa, ec+fb+ga, fc+gb, gc]

Note: if any two sequences have m, n number of samples respectively, then the resulting convoluted sequence will have [m+n-1] samples.

Example: Convolute two sequences $x[n] = \{1,2,3\} \& h[n] = \{-1,2,2\}$

yearn modis to success...

Dept of ECE, NRCM



Convoluted output y[n] = [-1, -2+2, -3+4+2, 6+4, 6]

= [-1, 0, 3, 10, 6]

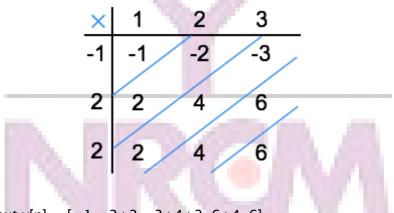
Here x[n] contains 3 samples and h[n] is also having 3 samples so the resulting sequence having 3+3-1 = 5 samples.

ii. To calculate periodic or circular convolution:

Periodic convolution is valid for discrete Fourier transform. To calculate periodic convolution all the samples must be real. Periodic or circular convolution is also called as fast convolution.

If two sequences of length m, n respectively are convoluted using circular convolution then resulting sequence having max [m,n] samples.

Ex: convolute two sequences $x[n] = \{1,2,3\} \& h[n] = \{-1,2,2\}$ using circular convolution



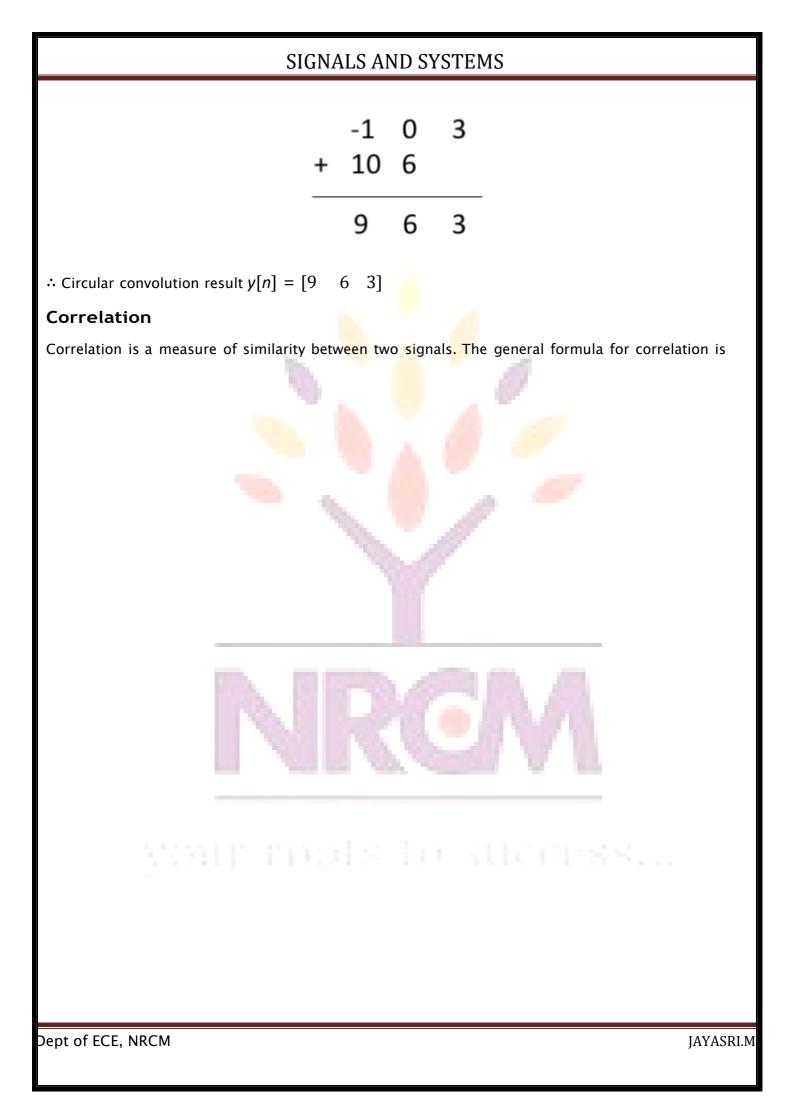
Normal Convoluted output y[n] = [-1, -2+2, -3+4+2, 6+4, 6].

= [-1, 0, 3, 10, 6]

Here x[n] contains 3 samples and h[n] also has 3 samples. Hence the resulting sequence obtained by circular convolution must have max[3,3]= 3 samples.

Now to get periodic convolution result, 1st 3 samples [as the period is 3] of normal convolution is same next two samples are added to 1st samples as shown below:

Dept of ECE, NRCM



$$\int_{-\infty}^{\infty} x_1(t) x_2(t-\tau) dt$$

There are two types of correlation:

- Auto correlation
- Cros correlation

Auto Correlation Function

It is defined as correlation of a signal with itself. Auto correlation function is a measure of similarity between a signal & its time delayed version. It is represented with R τ .

Consider a signals xt. The auto correlation function of xt with its time delayed version is given by

 $R_{11}(\tau) = R(\tau) = \int_{-\infty}^{\infty} x(t)x(t-\tau)dt \quad [+\text{ve shift}]$ $= \int_{-\infty}^{\infty} x(t)x(t+\tau)dt \quad [-\text{ve shift}]$

Where τ = searching or scanning or delay parameter.

If the signal is complex then auto correlation function is given by

$$R_{11}(\tau) = R(\tau) = \int_{-\infty}^{\infty} x(t)x * (t - \tau)dt \quad [+\text{ve shift}]$$
$$= \int_{-\infty}^{\infty} x(t + \tau)x * (t)dt \quad [-\text{ve shift}]$$

Properties of Auto-correlation Function of Energy Signal

- Auto correlation exhibits conjugate symmetry i.e. $R \ \tau = R^{*} \tau$
- Auto correlation function of energy signal at origin i.e. at $\tau = 0$ is equal to total energy of that signal, which is given as:

$$\mathsf{R}_{0} = \mathsf{E} = \int_{-\infty}^{\infty} |x(t)|^{2} dt$$

- Auto correlation function $\frac{1}{2}$,
- Auto correlation function is maximum at $\tau = 0$ i.e |R $\tau \leq R 0 \forall \tau$
- Auto correlation function and energy spectral densities are Fourier transform pairs. i.e.

$$F.T[R(\tau)] = \Psi(\omega)$$

 $\Psi(\omega) = \int_{-\infty}^{\infty} R(\tau) e^{-j\omega\tau} d\tau$

•
$$R(\tau) = x(\tau) * x(-\tau)$$

Dept of ECE, NRCM

Auto Correlation Function of Power Signals

The auto correlation function of periodic power signal with period T is given by

$$R(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t)x * (t - \tau)dt$$

yearp models for success...

Dept of ECE, NRCM

Properties

- Auto correlation of power signal exhibits conjugate symmetry i.e. $R(\tau) = R * (-\tau)$
- Auto correlation function of power signal at $\tau = 0$ *atorigin* is equal to total power of that signal. i.e.

 $R(0) = \rho$

- Auto correlation function of power signal $\frac{1}{2}$,
- Auto correlation function of power signal is maximum at $\tau = 0$ i.e.,

 $|R(\tau)| \le R(0) \,\forall \,\tau$

• Auto correlation function and power spectral densities are Fourier transform pairs. i.e.,

 $F. T[R(\tau)] = s(\omega)$

 $s(\omega) = \int \infty R(\tau) e^{-j\omega\tau} d\tau$

• $R(\tau) = x(\tau) * x(-\tau)$

Density Spectrum

Let us see density spectrums:

Energy Density Spectrum

Energy density spectrum can be calculated using the formula:

$$E = \int |x(f)|^2 df$$

 ∞

Power Density Spectrum

Power density spectrum can be calculated by using the formula:

$$P = \sum_{n=-\infty}^{\infty} |C_n|^2$$

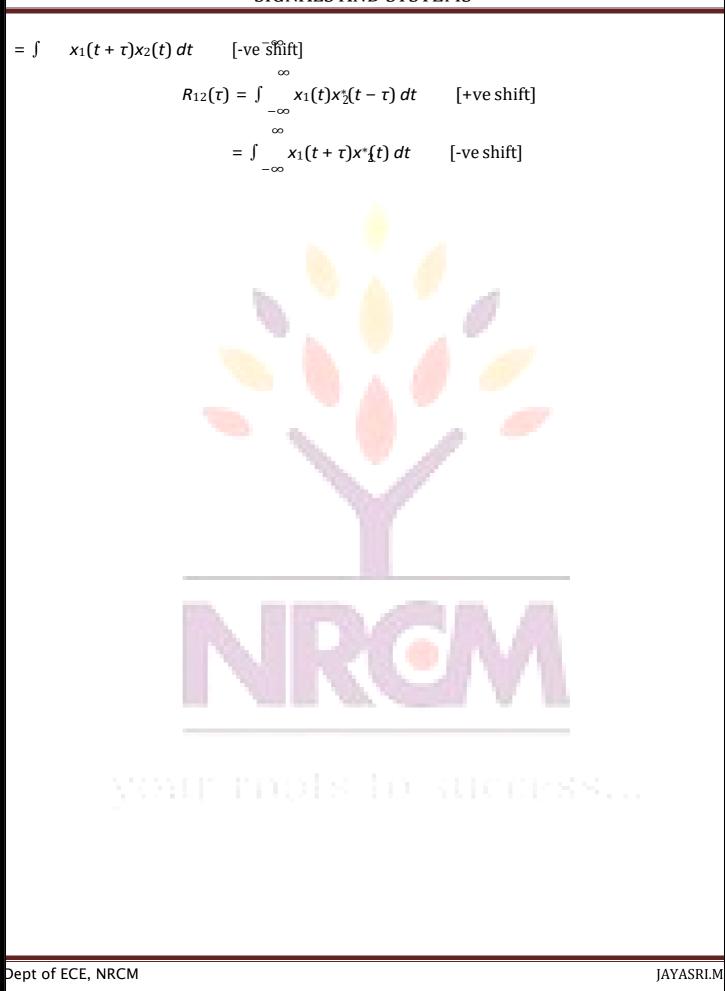
Cross Correlation Function

Cross correlation is the measure of similarity between two different signals.

Consider two signals x_1t and x_2t . The cross correlation of these two signals $R_{12}(\tau)$ is given by

 $R_{12}(\tau) = \int_{-\infty}^{\infty} x_1(t) x_2(t-\tau) dt \qquad [+ve shift]$

Dept of ECE, NRCM



$$R_{21}(\tau) = \int_{-\infty}^{\infty} x_2(t) x_1^*(t-\tau) dt \qquad [+ve shift]$$
$$= \int_{-\infty}^{\infty} x_2(t+\tau) x^*(t) dt \qquad [-ve shift]$$

Properties of Cross Correlation Function of Energy and Power Signals

- Auto correlation exhibits conjugate symmetry i.e. $R_{12}(\tau) = R^*(-\tau)$.
- Cross correlation is not commutative like convolution i.e.

$$\frac{R_{12}(\tau) \neq R_{21}(-\tau)}{2}$$

• If $R_{12}0 = 0$ means, if $\int_{-\infty}^{\infty} x_1(t)x^*(t)dt = 0$, then the two signals are said to be orthogonal.

For power signal if $\lim_{\tau \to \infty} \frac{1}{2} \frac{1}{2} x(t)x^*(t) dt$ then two signals are said to be orthogonal.

 Cross correlation function corresponds to the multiplication of spectrums of one signal to the complex conjugate of spectrum of another signal. i.e.

$$R_{12}(\tau) \leftarrow \xrightarrow{} X_1(\omega) X^*(\omega)$$

This also called as correlation theorem.

Parsvel's Theorem

Parsvel's theorem for energy signals states that the total energy in a signal can be obtained by the spectrum of the signal as

 $E = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$

Note: If a signal has energy E then time scaled version of that signal xat has energy E/a.

year mois to success...

Dept of ECE, NRCM

DISTORTION LESS TRANSMISSION

Transmission is said to be distortion-less if the input and output have identical wave shapes. i.e., in distortion-less transmission, the input xt and output yt satisfy the condition:

 $y t = Kx(t - t_d)$

Where $t_d = delay$ time and

k = constant.

Take Fourier transform on both sides

 $FT[y t] = FT[Kx(t - t_d)]$

 $= K FT[x(t - t_d)]$

According to time shifting property,

 $= KX w e^{-j\omega t_d}$

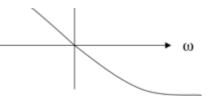
 $\therefore Y(w) = \mathcal{K} \mathcal{K}(w) e^{-j\omega t_d}$

Thus, distortionless transmission of a signal xt through a system with impulse response ht is achieved when

 $|H(\omega)| = K$ and *amplituderesponse*

 $\Phi(\omega) = -\omega t_d = -2\pi f t_d$ phaseresponse

A physical transmission system may have amplitude and phase responses as shown below:



Dept of ECE, NRCM

UNIT 5 - LAPLACE TRANSFORM

Complex Fourier transform is also called as Bilateral Laplace Transform. This is used to solve differential equations. Consider an LTI system exited by a complex exponential signal of the form $x t = Ge^{st}$.

Where s = any complex number = $\sigma + j\omega$,

 $\sigma = real \; of \; s, \; and \;$

 $\omega = \text{imaginary of s}$

The response of LTI can be obtained by the convolution of input with its impulse response i.e.

$$y(t) = x(t) \times h(t) = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau$$

 $=\int^{\infty} h(\tau) Ge^{s(t-\tau)} d\tau$

$$= Ge^{st} \int \int d\tau h(\tau) e^{(-s\tau)} d\tau$$

 $y(t) = Ge^{st} \cdot H(S) = x(t) \cdot H(S)$

Where HS = Laplace transform of $h(\tau) = \int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau$

Similarly, Laplace transform of $x(t) = X(S) = \int_{-\infty}^{\infty} x(t)e^{-st} dt$(1)

Relation between Laplace and Fourier transforms

Laplace transform of $x(t) = X(S) = \int_{-st}^{\infty} x(t)e^{-st} dt$

Substitute $s = \sigma + j\omega$ in above equation.

$$\rightarrow X(\sigma + j\omega) = \int \infty x(t)e^{-(\sigma + j\omega)t} dt$$

$$=\int \infty [x(t)e^{-\sigma t}]e^{-j\omega t}dt$$

$$\therefore X(S) = F.T[x(t)e^{-\sigma t}]....(2)$$

$$X(S) = X(\omega)$$
 for $s = j\omega$

Inverse Laplace Transform

You know that
$$X(S) = F.T[x(t)e^{-\sigma t}]$$

$$\rightarrow x(t)e^{-\sigma t} = F. T^{-1}[X(S)] = F. T^{-1}[X(\sigma + j\omega)]$$
$$= \frac{1}{2}\pi \int_{-\infty}^{\infty} X(\sigma + j\omega)e^{j\omega t} d\omega$$
$$x(t) = e^{\sigma t} \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\sigma + j\omega)e^{j\omega t} d\omega$$

Dept of ECE, NRCM

$$-\infty$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{X}(\sigma + \mathbf{j}\omega) e^{(\sigma + \mathbf{j}\omega)t} \, d\omega \, \dots \dots \dots (3)$$

Here, $\sigma + j\omega = s$

 $jd\omega = ds \rightarrow d\omega = ds/j$

yearn mods to success...

Dept of ECE, NRCM

$$\therefore x(t) = \frac{1}{2\pi j} \int_{-\infty}^{\infty} X(s) e^{st} ds \dots (4)$$

Equations 1 and 4 represent Laplace and Inverse Laplace Transform of a signal xt.

Conditions for Existence of Laplace Transform

Dirichlet's conditions are used to define the existence of Laplace transform. i.e.

- The function ft has finite number of maxima and minima.
- There must be finite number of discontinuities in the signal ft, in the given interval of time.
- It must be absolutely integrable in the given interval of time. i.e.

 $\int_{-c}^{\infty} |f(t)| dt < \infty$

Initial and Final Value Theorems

If the Laplace transform of an unknown function xt is known, then it is possible to determine the initial and the final values of that unknown signal i.e. xt at $t=0^+$ and $t=\infty$.

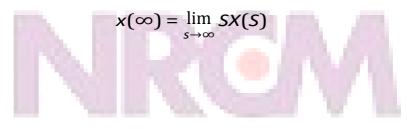
Initial Value Theorem

Statement: if xt and its 1st derivative is Laplace transformable, then the initial value of xt is given by

$$x(0^+) = \lim_{s\to\infty} SX(s)$$

Final Value Theorem

Statement: if xt and its 1st derivative is Laplace transformable, then the final value of xt is given by



your mpis to success...

Dept of ECE, NRCM

LAPLACE TRANSFORMS PROPERTIES

The properties of Laplace transform are:

Linearity Property

If $x(t) \stackrel{\text{L.T}}{\longleftrightarrow} X(s)$ & $y(t) \stackrel{\text{L.T}}{\longleftrightarrow} Y(s)$

Then linearity property states that

 $ax(t) + by(t) \stackrel{\text{L.T}}{\leftrightarrow} aX(s) + bY(s)$

Time Shifting Property

If $x(t) \stackrel{\text{L.T}}{\longleftrightarrow} X(s)$

Then time shifting property states that

 $x(t-t_0) \stackrel{\text{L.T.}}{\longleftrightarrow} e^{-st_0} X(s)$

Frequency Shifting Property

If $x(t) \stackrel{\text{L.T}}{\longleftrightarrow} X(s)$

Then frequency shifting property states that

 $e^{s_0t}.x(t) \stackrel{\text{L.T}}{\longleftrightarrow} X(s-s_0)$

Time Reversal Property

If $x(t) \stackrel{\text{L.T}}{\longleftrightarrow} X(s)$

Then time reversal property states that

 $x(-t) \stackrel{\text{L.T}}{\longleftrightarrow} X(-s)$

Time Scaling Property

If
$$x(t) \stackrel{\text{L.T}}{\longleftrightarrow} X(s)$$

Then time scaling property states that

$$x(at) \stackrel{\text{L.T}}{\longleftrightarrow} \stackrel{1}{\longrightarrow} X(\underline{s})$$

Dept of ECE, NRCM

|a| a

Differentiation and Integration Properties

If $x(t) \stackrel{\text{L.T}}{\longleftrightarrow} X(s)$

Then differentiation property states that

yearn noble to success...

Dept of ECE, NRCM

REGION OF CONVERGENCE ROC

The range variation of $\boldsymbol{\sigma}$ for which the Laplace transform converges is called region of convergence.

Properties of ROC of Laplace Transform

ROC contains strip lines parallel to $j\omega$ axis in s-plane.

If xt is absolutely integral and it is of finite duration, then ROC is entire s-plane.

If xt is a right sided sequence then ROC : $Re{s} > \sigma_0$.

If xt is a left sided sequence then ROC : $Re{s} < \sigma_0$.

If xt is a two sided sequence then ROC is the combination of two regions.

ROC can be explained by making use of examples given below:

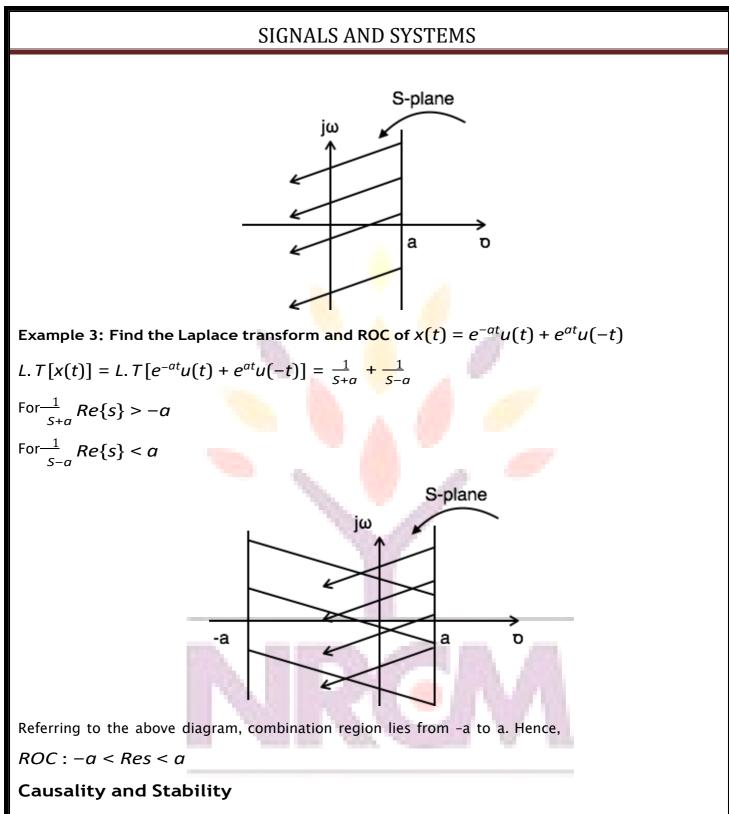
Example 1: Find the Laplace transform and ROC of $x(t) = e^{-at} u(t)$

 $L.T[x(t)] = L.T[e \quad a^{t} u(t)] = \frac{1}{S+a}$ Re > -a ROC : Res >> -a

geath napis in strongess...

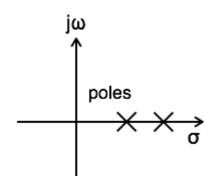
Dept of ECE, NRCM

Example 2: Find the Laplace transform and ROC of $x(t) = e^{at}u(-t)$ $L.T[x(t)] = L.T[e^{at}u(t)] = \frac{1}{S-a}$ Res < a $RO^{\circ}C$: Res < aSt Dept of ECE, NRCM JAYASRI.M



• For a system to be causal, all poles of its transfer function must be right half of s-plane.

Dept of ECE, NRCM

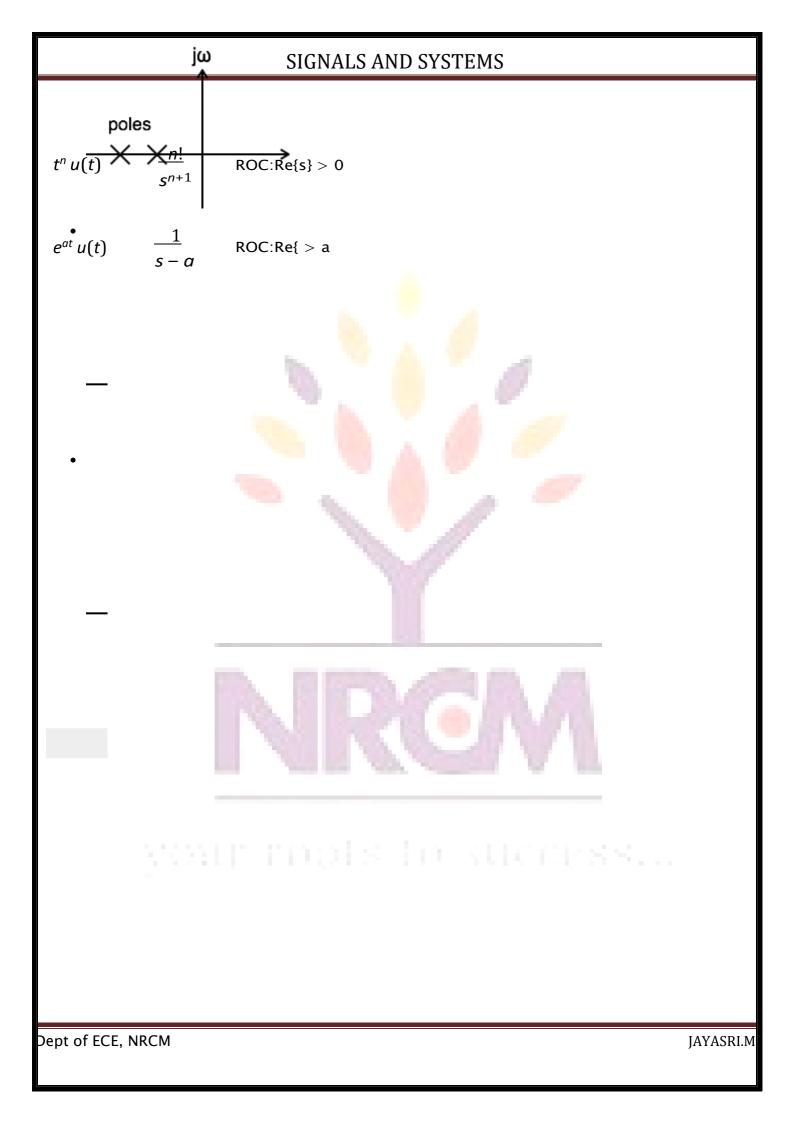


A system is said to be stable when all poles of its transfer function lay on the left half of splane.

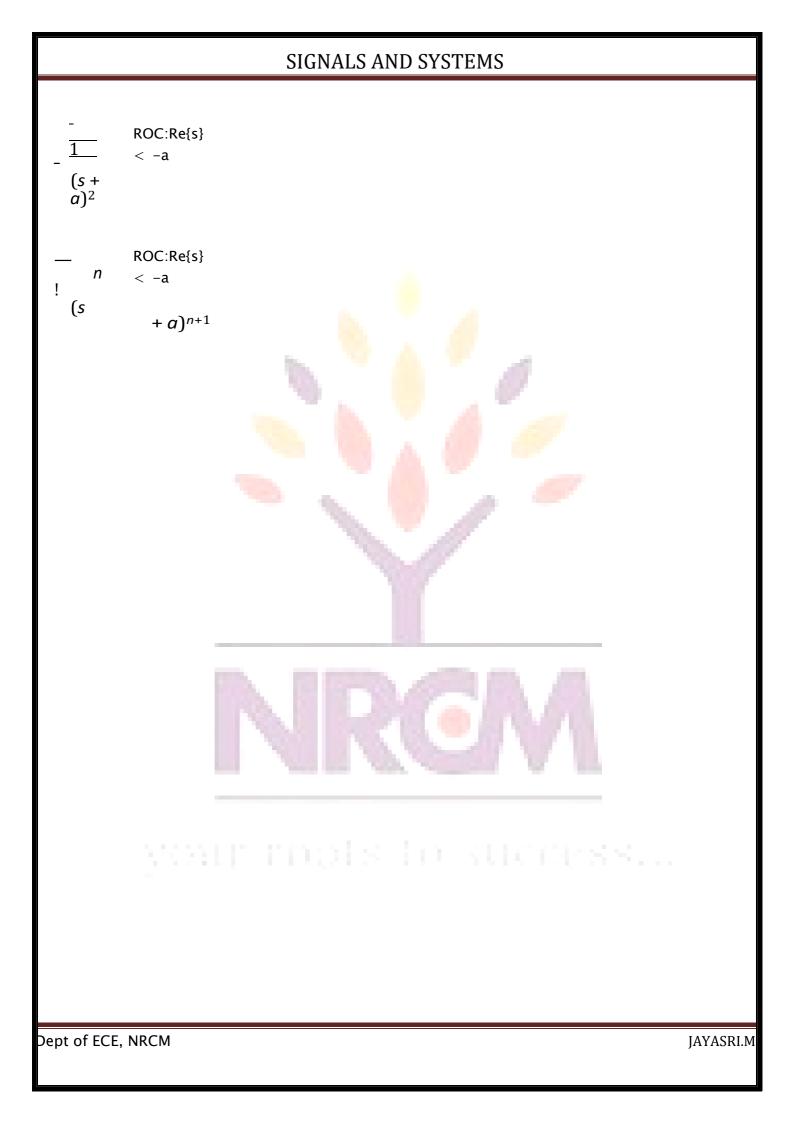
year mods to success...

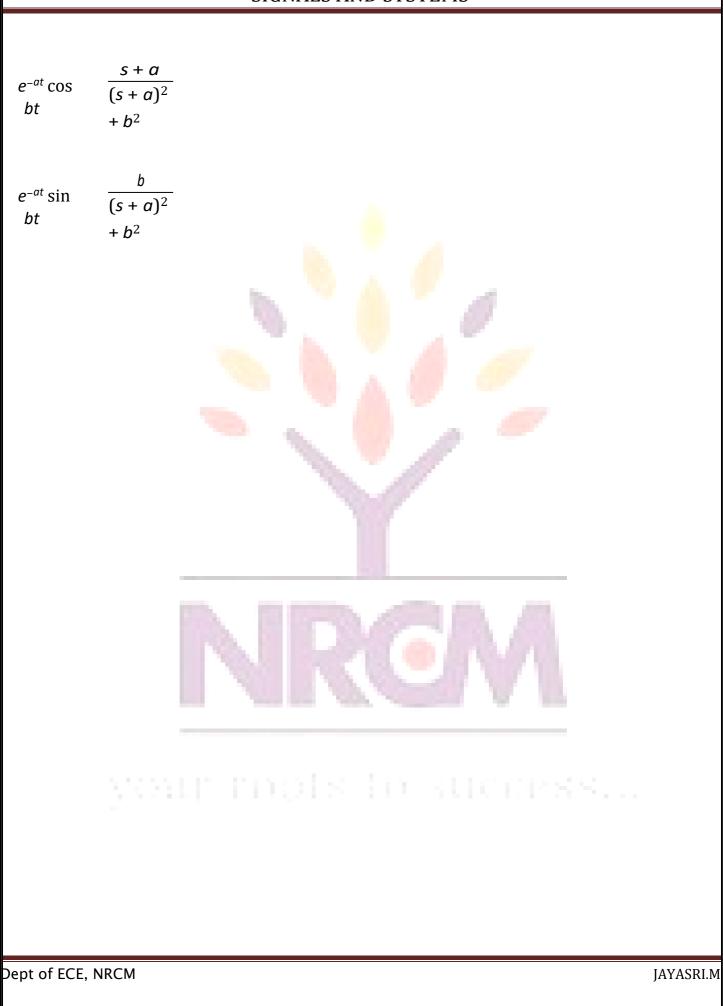
Dept of ECE, NRCM

SIGNALS AND SYSTEMS A system is said to be unstable when at least one pole of its transfer function is shifted to the right half of s-plane. A system is said to be marginally stable when at least one pole of its transfer function lies on the j ω axis of s-plane. **ROC of Basic Functions** ft ROC: Re{s} > 0 1 u(t) S 1 tu(t) $ROC:Re\{s\} > 0$ s^2 Dept of ECE, NRCM JAYASRI.M



e ^{-at} u(t)	<u>1</u> s + a	$ROC:Re\{s\} > -a$	
e ^{at} u(t)	$\frac{1}{s-a}$	ROC:Re{s} < a	
e ^{-at} u(-t)	1 	ROC:Re{s} < -a	
te ^{at} u(t)	$\frac{1}{(s-a)^2}$	ROC:Re{s} > a	
t ⁿ e ^{at} u(t)	n! (s — a) ⁿ⁺¹	ROC:Re{s} > a	
t e ^{-at} u(t)	$\frac{1}{(s+a)^2}$	ROC:Re{s} > -a	
t ⁿ e ^{-at} u(t)	$\frac{n!}{(s + a)^{n+1}}$	ROC:Re{s} > -a	
t e ^{at} u(-t)	$-\frac{1}{(s-a)^2}$	ROC:Re{s} < a	
t ⁿ e ^{at} u(−t)	n! (s a)^{n+1}	ROC:Re{s} < a	
t e ^{−at} u(−t)		$t^n e^{-at} u(-t)$	
Dept of ECE, I	NRCM		JAYASRI.M





Z-TRANSFORMS

Analysis of continuous time LTI systems can be done using z-transforms. It is a powerful mathematical tool to convert differential equations into algebraic equations.

The bilateral *twosided* z-transform of a discrete time signal xn is given as

$$Z.T[x(n)] = X(Z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$

The unilateral *onesided* z-transform of a discrete time signal xn is given as

$$Z.T[x(n)] = X(Z) = \sum_{n=0}^{\infty} x(n) z^{-n}$$

Z-transform may exist for some signals for which Discrete Time Fourier Transform *DTFT* does not exist.

Concept of Z-Transform and Inverse Z-Transform

Z-transform of a discrete time signal xn can be represented with XZ, and it is defined as

$$X(Z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n} \cdots (1)$$

If $Z = re^{j\omega}$ then equation 1 becomes

$$X(re^{j\omega}) = \sum_{\substack{n=-\infty\\n=-\infty}}^{\infty} x(n) [re^{j\omega}]^{-n}$$
$$= \sum_{\substack{n=-\infty\\n=-\infty}}^{\infty} x(n) [r^{-n}] e^{-j\omega n}$$

$$X(re^{j\omega}) = X(Z) = F \cdot T[x(n)r^{-n}] \dots (2)$$

The above equation represents the relation between Fourier transform and Z-transform.

$$X(Z)|_{z=e^{j\omega}}=F.T[x(n)].$$

Inverse Z-transform

$$X(re^{j\omega}) = F \cdot T[x(n)r^{-n}]$$

$$x(n)r^{-n} = F \cdot T^{-1}[X(re^{j\omega}]$$

$$x(n) = r^{n} F \cdot T^{-1}[X(re^{j\omega})]$$

$$= r^{n} \frac{1}{2\pi} \int X(re^{j\omega})e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int X(re^{j\omega})[re^{j\omega}]^{n} d\omega \quad \dots \dots \dots (3)$$

Substitute $re^{j\omega} = z$.

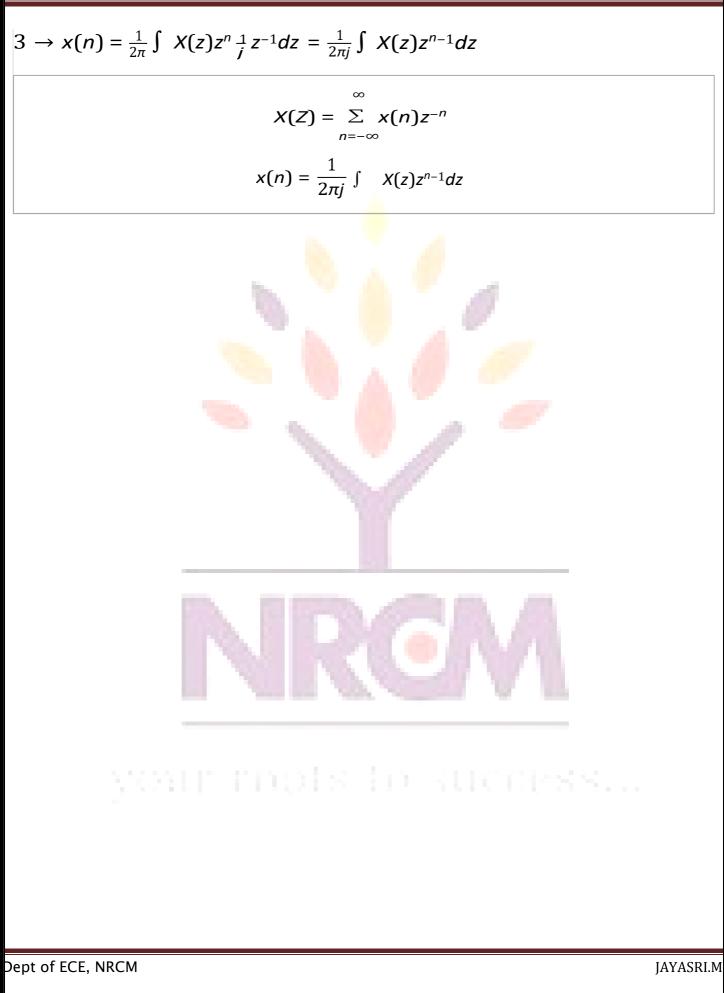
Dept of ECE, NRCM

 $dz = jre^{j\omega}d\omega = jzd\omega$ $d\omega = \frac{1}{j}z^{-1}dz$

Substitute in equation 3.

yearn model to success...

Dept of ECE, NRCM



Z-TRANSFORMS PROPERTIES

Z-Transform has following properties:

Linearity Property

If
$$x(n) \stackrel{Z.T}{\longleftrightarrow} X(Z)$$

and $y(n) \stackrel{Z.T}{\longleftrightarrow} Y(Z)$

Then linearity property states that

 $a x(n) + b y(n) \stackrel{\text{Z.T}}{\longleftrightarrow} a X(Z) + b Y(Z)$

Time Shifting Property

If $x(n) \stackrel{\text{Z.T}}{\longleftrightarrow} X(Z)$

Then Time shifting property states that

 $x(n-m) \stackrel{\text{Z.T}}{\longleftrightarrow} z^{-m} X(Z)$

Multiplication by Exponential Sequence Property

 $\mathsf{lf} \ x(n) \overset{\mathrm{Z}.\mathrm{T}}{\longleftrightarrow} X(Z)$

Then multiplication by an exponential sequence property states that

$$a^n . x(n) \stackrel{\text{Z.T}}{\longleftrightarrow} X(Z/a)$$

Time Reversal Property

If
$$x(n) \stackrel{\text{Z.T}}{\longleftrightarrow} X(Z)$$

Then time reversal property states that

$$x(-n) \stackrel{\mathrm{Z.T}}{\longleftrightarrow} X(1/Z)$$

Differentiation in Z-Domain OR Multiplication by n Property

If
$$x(n) \stackrel{\text{Z.T}}{\longleftrightarrow} X(Z)$$

Then multiplication by n or differentiation in z-domain property states that

k Z.T
$$k k d^k X(Z)$$

Dept of ECE, NRCM

$$n \ x(n) \leftrightarrow [-1] \ z_{dZ^{\kappa}}$$

Convolution Property

 $\mathsf{If} \ x(n) \overset{\mathrm{Z}.\mathrm{T}}{\longleftrightarrow} X(Z)$

yearn mods to success...

Dept of ECE, NRCM

and $y(n) \stackrel{\text{Z.T}}{\longleftrightarrow} Y(Z)$

Then convolution property states that

 $x(n) * y(n) \stackrel{\text{Z.T}}{\longleftrightarrow} X(Z). Y(Z)$

Correlation Property

If $x(n) \stackrel{Z.T}{\longleftrightarrow} X(Z)$ and $y(n) \stackrel{Z.T}{\longleftrightarrow} Y(Z)$

Then correlation property states that

 $x(n) \otimes y(n) \stackrel{\mathrm{Z.T}}{\longleftrightarrow} X(Z). Y(Z^{-1})$

Initial Value and Final Value Theorems

Initial value and final value theorems of z-transform are defined for causal signal.

Initial Value Theorem

For a causal signal xn, the initial value theorem states that

$$x(0) = \lim_{z\to\infty} X(z)$$

This is used to find the initial value of the signal without taking inverse z-transform

Final Value Theorem

For a causal signal xn, the final value theorem states that

$\boldsymbol{x}(\infty) = \lim_{z \to 1} [z-1] \boldsymbol{X}(z)$

This is used to find the final value of the signal without taking inverse z-transform.

Region of Convergence ROC of Z-Transform

The range of variation of z for which z-transform converges is called region of convergence of z-transform.

Properties of ROC of Z-Transforms

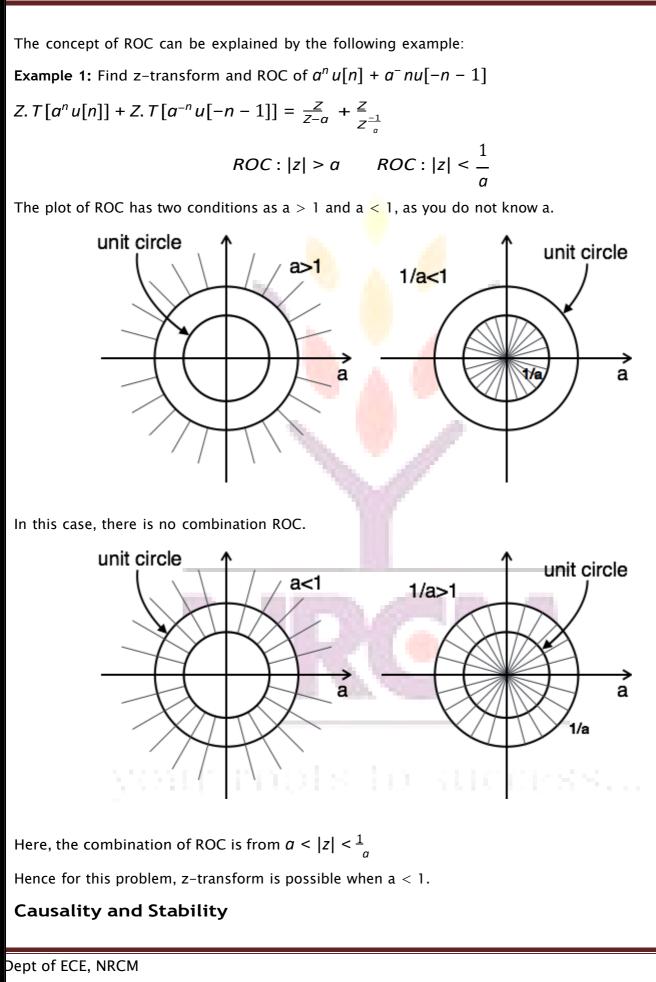
- ROC of z-transform is indicated with circle in z-plane.
- ROC does not contain any poles.
- If xn is a finite duration causal sequence or right sided sequence, then the ROC is entire zplane except at z = 0.
- If xn is a finite duration anti-causal sequence or left sided sequence, then the ROC is entire z-plane except at $z = \infty$.

Dept of ECE, NRCM

- If xn is a infinite duration causal sequence, ROC is exterior of the circle with radius a. i.e. |z| > a.
- If xn is a infinite duration anti-causal sequence, ROC is interior of the circle with radius a. i.e. |z| < a.
- If xn is a finite duration two sided sequence, then the ROC is entire z-plane except at $z = 0 \& z = \infty$.

year mods to success...

Dept of ECE, NRCM



Causality condition for discrete time LTI systems is as follows:

A discrete time LTI system is causal when

- ROC is outside the outermost pole.
- In The transfer function H[Z], the order of numerator cannot be grater than the order of denominator.

Stability Condition for Discrete Time LTI Systems

yearphonols to success...

Dept of ECE, NRCM

A discrete time LTI system is stable when

- its system function H[Z] include unit circle |z|=1.
- all poles of the transfer function lay inside the unit circle |z|=1.

Z-Transform of Basic Signals

×t	
δ	1
u(n)	<i>Z</i> <i>Z</i> -1
u(-n —1)	<i>z</i>
δ(n – m)	<i>z</i> ^{-m}
a ⁿ u[n]	Z Z-a
a ⁿ u[-n — 1]	Z
n a ⁿ u[n]	aZ Z-a ²
n a ⁿ u[-n — 1]	aZ Z-a ²
a ⁿ cos ωnu[n]	Z ² –aZ co Z ² –2aZ c ω+a ²

aⁿ sin $Z^2 - 2aZ\cos \theta$ $\omega nu[n]$ $\omega + a^2$

Dept of ECE, NRCM