DIGITAL LOGIC DESIGN

B Tech II Year I Sem

Course Code	Category	H	lour Wee	s/ k	Credits	Maximum Marks		
23EC304	Professional core	L	Т	Ρ	3	CIE	SEE	TOTAL
		3	0	0		40	60	100
Contact Classes: 48	Tutorial Classe <mark>s: 0</mark>	Practical Classe Nil			Classes:	Total Classes:48		

Course Objectives:

- 1. To understand common forms of number representation in logic circuits.
- 2. To understand the Realization of Logic Gates Using Diodes & Transistors.
- 3. To learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
- 4. To understand the concept of designing sequential circuits.
- 5. To understand the concepts of combinational logic circuits.

Course Outcomes: Upon completing this course, the students will be able to

- 1. Acquire the knowledge on numerical information in different forms and Boolean algebra theorems.
- 2. Characterize logic families and analyze them for the purpose of AC and DC parameters.
- 3. Define Postulates of Boolean algebra and to minimize combinational functions, and design the combinational circuits.
- 4. Design and analyze sequential circuits.
- 5. Design and analyse sequential circuits for various cyclic functions.

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	1	2	1	,	-	-	-	-	2
CO2	3	2	2	1	2	1).	-	-	-	-	2
CO3	3	2	1	1	1		-	-	-	-	-	-
CO4	3	2	1	1	1	-	-	-	-	-	-	-
CO5	2	3	3	2	2	1	-	-	-	-	-	1

UNIT YOUR roots to success...

Number Systems: Number systems, Complements of Numbers, Codes- Weighted andNon-weighted codes and its Properties, Parity check code and Hamming code. **Boolean algebra:** Basic Theorems and Properties, Switching Functions Canonical and Standard Form, Algebraic Simplification, Digital Logic Gates, EX-OR gates, Universal Gates, Multilevel NAND/NOR realizations.

UNIT - II

Minimization of Boolean functions: Karnaugh Map Method - Up to five Variables, Don't Care Map Entries, Tabular Method

Realization of Logic Gates Using Diodes & Transistors: AND, OR and NOT Gates using Diodes and Transistors, DCTL, RTL, DTL, TTL, CML and CMOS Logic Families and its Comparison, standard TTL NAND Gate-Analysis & characteristics, TTL open collector O/Ps, Tristate TTL, MOS & CMOS open drain and tri-state outputs,IC interfacing- TTL driving CMOS & CMOS driving TTL.

UNIT – III

Combinational Logic Circuits: Adders, Subtractors, Comparators, Multiplexers, Demultiplexers, Encoders, Decoders and Code converters, Hazards and Hazard Free Relations.

Sequential Circuits Fundamentals: Basic Architectural Distinctions between Combinational and Sequential circuits, SR Latch, Flip Flops: SR, JK, JK Master Slave, D and T Type Flip Flops, Excitation Table of all Flip Flops, Timing and Triggering Consideration, Conversion from one type of Flip-Flop to another.

UNIT - IV

Registers and Counters: Shift Registers – Left, Right and Bidirectional Shift Registers, Applications of Shift Registers - Design and Operation of Ring and Twisted Ring Counter, Operation of Asynchronous and Synchronous Counters.

Sequential Machines: Finite State Machines, Synthesis of Synchronous Sequential Circuits- Serial Binary Adder, Sequence Detector, Parity-bit Generator, Synchronous Modulo N –Counters.

$\mathbf{UNIT} - \mathbf{V}$

Finite state machine: capabilities and limitations, Mealy and Moore models, State equivalence and machine minimization, simplification of incompletely specified machines, Merger graphs. Asynchronous design-modes of operation, Hazards, synthesis of SIC fundamental mode circuits, synthesis of burst mode circuits. Introduction to ASM Charts

TEXT BOOKS

- 1. Zvi Kohavi&Niraj K. Jha, Switching and Finite Automata Theory, 3rd Ed., Cambridge, 2010.
- 2. R. P. Jain Modern Digital Electronics, 3rd Edition, 2007- Tata McGraw-Hill

REFERENCE BOOKS

- 1. Morris Mano, Fredriac J. Hill, Gerald R. Peterson Introduction to Switching Theory and Logic Design –3rd Ed., John Wiley & Sons Inc.
- 2. Charles H. Roth Fundamentals of Logic Design, 5th ED., Cengage Learning, 2004.