

PERMANENTLY AFFILIATED TO JNTUH, HYDERABAD - APPROVED BY AICTE, NEW DELHI AN ISO 9001 : 2008 CERTIFIED INSTITUTE

your roots to success...

UGC Autonomous

Analog circuits

UNIT No: 1

BJT Biasing, Analysis and design of small signal low frequency BJT amplifiers

Different Regions Of Operation

Region of Operation	Emitter Base Junction	Collector Base Junction	
Cut off	Reverse biased	Reverse biased	
Active	Forward biased	Reverse biased	
Saturation	Forward biased	Forward biased	

Transistor Voltage specifications For Various Operating <u>Regions</u>

Transistor	V _{CE (sat)}	V _{BE (sat)}	V _{BE (active)}	V _{BE (cut-in)}	V _{BE (cut - off)}
Si	0.2 V	0.8 V	0.7 V	0.5 V	0 V
Ge	0.1 V	0.3 V	0.2 V	0.1 V	– 0.1 V

Condition for Active & Saturation Regions

For saturation :	$I_{\rm B} > \frac{I_{\rm C}}{\beta_{\rm dc}}$
For active region :	V _{CE} > V _{CE (sat)}

Operating point near saturation region gives clipping at the positive peaks

Operating point at the centre of active region is most suitable

Transistor Biasing

Voltage divider bias circuit

CE, CC, & CB Amplifiers

Practical common emitter amplifier circuit

Common collector circuit

Common base circuit

H-Parameters Representation Of An Amplifier

Definitions of h-parameter

The parameters in the above equation are defined as follows :

 $h_{11} = \frac{V_i}{I_i}\Big|_{V_{o=0}}$ = Input resistance with output short-circuited, in ohms. a) With output

 $h_{12} = \frac{V_i}{V_o}\Big|_{I_{i=0}}$ = Fraction of output voltage at input with input open circuited.

This parameter is ratio of similar quantities, hence unitless

$$h_{21} = \frac{I_o}{I_i}\Big|_{V_{o=0}}$$
 = Forward current transfer ratio or current gain with output

short circuited.

This parameter is a ratio of similar quantities, hence unitless. $h_{22} = \frac{I_o}{V_o}\Big|_{I_{i=0}} = \text{Output admittance with input open-circuited, in mhos.}$

- a) With output short circuited :
 - $h_{11} = h_i$: Input resistance
 - h₂₁ = h_f : Short circuit current gain
- b) With input open circuited :

 $h_{12} = h_r$: Reverse voltage transfer ratio $h_{22} = h_o$: Output admittance

Transistor configurations and their hybrid models

Small Signal Analysis Of A Junction Transistor

Basic transistor amplifier

Transistor amplifier in its h-parameter model

small-signal analysis of a transistor amplifier

$A_i = -\frac{h_f}{1 + h_o R_L}$
$A_{is} = \frac{A_i R_s}{Z_i + R_s}$
$Z_i = h_i + h_r A_i R_L = h_i - \frac{h_f h_r}{h_o + Y_L}$
$A_{v} = \frac{A_{i}R_{L}}{Z_{i}}$
$A_{VS} = \frac{A_v R_i}{Z_i + R_s} = \frac{A_i R_L}{Z_i + R_s} = \frac{A_{is} R_L}{R_s}$
$Y_o = h_o - \frac{h_f h_r}{h_i + R_s} = \frac{1}{Z_o}$
$A_{P} = A_{V} A_{i} = A_{i}^{2} \frac{R_{L}}{Z_{i}}$

Guidelines for Analysis of a Transistor Circuit

- 1. Draw the actual circuit diagram.
- 2. Replace coupling capacitors and emitter bypass capacitor by short circuit.
- 3. Replace dc source by a short circuit. In other words, short V_{CC} and ground lines.
- 4. Mark the points B(base), C(collector), E(emitter) on the circuit diagram and locate these points as the start of the equivalent circuit.
- 5. Replace the transistor by its h-parameter model.

Problem

111

Consider a single stage CE amplifier with $R_s = 1 \ k\Omega$, $R_1 = 50 \ K$. $R_2 = 2K$, $R_C = 1K$, $R_1 = 1.2 \ K$, $h_{fe} = 50$, $h_{ie} = 1.1 \ K$, $h_{oe} = 25 \ \mu A/V$ and $h_{re} = 2.5 \times 10^{-4}$. as shown in Fig.

Approximate H-Model For CE Amplifier

Approximate CE model

Input Impedance $R_i \approx h_{ie}$

Voltage Gain :
$$A_v = \frac{A_i R_L}{R_i} = \frac{A_i R_L}{h_{ie}}$$

Output Impedance $Y_o = 0$ $R_o = \frac{1}{Y_o} = \infty$

 $\mathbf{R'_o} = \mathbf{R_o} \parallel \mathbf{R_L} = \mathbf{\infty} \parallel \mathbf{R_L} = \mathbf{R_L}$

Approximate H-Model For CC Amplifier

Simplified CC model

Current gain
$$A_i = \frac{I_o}{I_b} = \frac{-I_e}{I_b} = 1 + h_{fe}$$

Input resistance :
$$R_i = \frac{V_b}{I_b} = h_{ie} + (1 + h_{fe}) R_L$$

Voltage gain (A_v)
$$A_v = \frac{(1 + h_{fe})R_L}{h_{ie} + (1 + h_{fe})R_L} \cong 1$$

Output resistance
$$R_o R_o = \frac{V_o}{I_e} = \frac{R_s + h_{ie}}{1 + h_{fe}}$$

$$\mathbf{R'_o} = \mathbf{R_o} \parallel \mathbf{R_L} = \mathbf{\infty} \parallel \mathbf{R_L} = \mathbf{R_L}$$

Approximate H-Model For CB Amplifier

Simplified CB model

Voltage gain (A_v)

$$A_v = \frac{\frac{h_{fe}}{1 + h_{fe}} \times R_L}{\frac{h_{ie}}{1 + h_{fe}}} = \frac{h_{fe}R_L}{h_{ie}}$$

Output resistance (R_o)
$$R_o = \frac{V_o}{I_c} \Big|_{V_s=0}$$

$$\mathbf{R'_o} = \mathbf{R_o} \parallel \mathbf{R_L} = \mathbf{\infty} \parallel \mathbf{R_L} = \mathbf{R_L}$$

Problem

For the circuit shown in Fig. estimate A_i , A_v , R_i and R_o using reasonable approximations. The *h*-parameters for the transistor are given as

Miller's Theorem

Millers theorem is used to simplify the analysis of a circuit whenever there is a feedback connection in the circuit

Analysis of Common Emitter Amplifier with Collector to Base Bias

AC equivalent circuit

Problem

The Fig. shows common emitter amplifier with collector to base bigs. Calculate R_i , R_i , A_v , A_{vs} , A_i . The transistor parameters are $h_{ie} = 1.1$ K, $h_{fe} = 50$, $h_{oe} = 25 \times 10^{-6}$ A/V, $h_{re} = 2.5 \times 10^{-4}$.

٩

Problem

For a Common Emitter Configuration, what is the maximum value of R_L for which R₁ differs by not more than 10% of its value at R₂ = 0 ?

Analysis Of CE Amplifier With Unbypassed RE

- **\therefore R**_E is added to stabilize the gain of the amplifier
- $\clubsuit \quad \mathbf{R}_{\mathbf{E}} \text{ acts as a feedback resistor}$
- **\diamond** The overall gain will reduce with unbypassed R_E

AC Equivalent Circuit For CE Amplifier with Unbypassed RE

AC Equivalent Circuit For CE Amplifier with R_E Splitted using dual of Miller's Theorem

<u>h-Parameter Equivalent Circuit</u> (Exact Analysis)

$$A_{i} = \frac{-h_{fe}}{1 + h_{oe}R'_{L}} = \frac{-h_{fe}}{1 + h_{oe}\left(R_{L} + \frac{A_{i} - 1}{A_{i}}R_{E}\right)}$$

<u>h-Parameter Equivalent Circuit</u> (Approximate Analysis)

Approximate model for CE amplifier with RE

Current gain
$$A_i = \frac{-I_c}{I_b} = \frac{-h_{fe}I_b}{I_{b-1}} = -h_{fe}$$

Input resistance
$$R_i = \frac{V_i}{I_b} = h_{ie} + (1 + h_{fe}) R_E$$

Voltage gain
$$A_v = \frac{A_i R_L}{R_i} = \frac{-h_{fe} R_L}{h_{ie} + (1 + h_{fe})R_E}$$

Output resistance
$$R_o = \frac{V_o}{I_o} \Big|_{V_s=0}$$

$$R'_o = R_o \parallel R_L = \infty \parallel R_L = R_L$$

Problem

Example Fig. shows a single stage CE amplifier with unbypassed emitter resistance find current gain, input resistance, voltage gain and output resistance. Use typical values of h-parameter

PERMANENTLY AFFILIATED TO JNTUH, HYDERABAD - APPROVED BY AICTE, NEW DELHI AN ISO 9001 : 2008 CERTIFIED INSTITUTE

your roots to success

UGC Autonomous

Analog circuits

UNIT No: 2

FET Amplifiers

FET small signal model

The linear small signal model is same as the BJT.

⇒ We can formally express as

$$i_D = f(v_{GS}, v_{DS})$$

- ⇒ (a) The low-frequency small-signal FET model.
- (b) The high-frequency model, taking node capacitors into account

07.8

Dr. Viesen Human (IIIT Sutat)

CS AMPLIFIER

Common source FET configuration is probably the must widely used of all the FET ontait configurations. Like its opplar counterpart the common emitter circuit, the FET common source emplifier provides a good level of all round.

performance for many applications.

The common source circuit provides a medium input and output impedance levels. Both current and voltage gain can be described as medium, but the output is the inverse of the sigut, i.e. 1801 phase change. This provides a good overall performance and as such it is often thought of an the most wellery used configuration.

DESIGN OF CS AMPLIFIER

Following Design Specification are generally given :

- Desired voltage gain
- DC supply Vdd
- Frequency response
- Signal source impedance
- Load Impedance

your roots to success

Analog Circuits

UNIT No: 3

Multistage amplifiers

Classification of amplifiers

Type of Signal	Based on No.of Stages	Type of Configuration	Classification based on conduction angle	Frequency of Operation
Small Signal	Single Stage	Common Emitter	Class A Amplifier	Direct Current (DC)
Large Signal	Multistage	Common Base	Class B Amplifier	Audio Frequencies (AF)
		Common Collector	Class AB Amplifier	Radio Frequencies (RF)
			Class C Amplifier	VHF, UHF and SHF Frequencies

Distortion in amplifiers

There are 3 types of distortion in amplifiers

- 1. Amplitude Distortion or Non linear distortion
- 2. Frequency distortion
- 3. Phase distortion

Need For Cascading

- When the amplification of a single stage amplifier is not sufficient, or,
- When the input or output impedance is not of the correct magnitude, for a
 particular application two or more amplifier stages are connected, in cascade.
 Such amplifier, with two or more stages is also known as multistage
 amplifier.

Block diagram of 2-Stage Cascade Amplifier

Gain of 2-Stage Cascade Amplifier

$$G_{1} = \frac{P_{2}}{P_{1}}; \quad G_{2} = \frac{P_{3}}{P_{2}}$$

Overall gain
$$G = \frac{P_{3}}{P_{1}}$$
$$= \frac{P_{2}}{P_{1}} \cdot \frac{P_{3}}{P_{2}}$$
$$G = G_{1} G_{2}$$

Decibel Voltage Gain

Cascaded Stages

Fig. 2.23 Cascaded stages

$$A = A_1 \times A_2$$

$$A_1 = A_1' + A_2' \text{ (in decibels)}$$

ACCREDITED BY NBA & NAAC WITH A-GRADE NARSIMHA REDDY ENGINEERING COLLEGE

PERMANENTLY AFFILIATED TO JNTUH, HYDERABAD - APPROVED BY AICTE, NEW DELHI AN ISO 9001 : 2008 CERTIFIED INSTITUTE

your roots to success

UGC Autonomous

Electronic circuit analysis UNIT No: 1 Topic :Methods of interstage coupling K.Lakshmi

Methods of Inter Stage Coupling

In multistage amplifier, the output signal of preceding stage is to be coupled to the input circuit of succeeding stage. For this interstage coupling, different types of coupling elements can be employed. These are :

- 1. RC coupling
- 2. Transformer coupling
- 3. Direct coupling

Two stage RC coupled amplifier using transistors

Two stage transformer coupled amplifier using transistors

Two stage directly coupled amplifier using transistors

Frequency Response of 2-Stage RC Coupled Amplifier

Comparison Between Coupling Method

Parameter	RC Coupled	Transformer Coupled	Direct Coupled
Coupling Components	Resistor and Capacitor	Impedance matching transformer	-
Block DC	Yes	Yes	No
Frequency response	Flat at middle frequencies	Not uniform, high at resonant frequency and low at other frequencies	Flat at middle frequencies and improvement in the low frequency response
Impedance matching	Not achieved	Achieved	Not achieved
DC amplification	No	No	Yes
Weight	Light	Bulky and heavy	
Drift	Not present	Not present	Present
Hum	Not present	Present	Not present
Application Used in all audio small signal amplifiers. Used in record players, tape recorders, public address systems, radio receivers and television receivers.		Used in amplifier where impedance matching is an important criteria. Used in the output stage of the pubic address system to match the impedance of loudspeaker. Used in the RF amplifier stage of the receiver as a tuned voltage amplifier.	Used in amplification of slow varying parameters and where DC amplification is required.

h-parameter equivalent circuit for CE-CE cascade amplifier

Cascode Amplifier

AC equivalent circuit

h-parameter equivalent circuit for cascode amplifier

h-parameter equivalent circuit when output shorted

h-parameter equivalent circuit when $I_b = 0$

CE-CC Amplifier

Darlington Transistors

Darlington Transistors .+Vcc

AC Equivalent Circuit :

Parameter	Single stage	Darlington
Input Resistance	R _i = (1 + h _{fe}) R _E = 168.3 k Ω	$R_i = \frac{(1 + h_{fe})^2 R_E}{1 + h_{oe} (1 + h_{fe}) R_E} \approx 1.65 M \Omega$
Current Gain	A _i = 1 + h _{fe} = 51	$A_{i} = \frac{(1+h_{fe})^{2}}{1+h_{oe}(1+h_{fe})R_{E}} \approx 500$

Bootstrap Emitter Follower

Bootstrapped Darlington circuit

Bootstrapped Darlington Circuit Alternative Approach

AC equivalent circuit

Bootstrapped Darlington Circuit Alternative Approach

AC equivalent circuit

Frequency Response of an RC Coupled Amplifier

Bandwidth of an Amplifier

Frequency response, half power frequencies and bandwidth of an RC coupled amplifier

Hybrid – π Common Emitter Transc onductance Model

The High frequency model parameters of a BJT in terms of low frequency hybrid parameters is given below

Transconductance g_m = I_c/V_t

Internal Base node to emitter resistance $r_{b'e} = h_{fe}/g_m = (h_{fe} * V_t)/I_c$

Internal Base node to collector resistance rb'e = (hre* rb'c) / (1- hre) assuming hre << 1 it reduces to rb'e = (hre* rb'c) Base spreading resistance rbb' = hie – rb'e = hie – (hfe* Vt)/ Ic

Collector to emitter resistance rce = 1 / (hoe - (1+hfe)/rb'c)

$$\begin{split} g_m &= \frac{|I_C|}{V_T}, \quad r_{b'e} = \frac{h_{fe}}{g_m}, \quad r_{b'c} = \frac{r_{b'e}}{h_{re}} \\ &\frac{1}{r_{ce}} \cong h_{oe} - \frac{(1+h_{fe})}{r_{b'c}}, \quad C_C = 3p_F, \ C_e = \frac{g_m}{2\pi F_T} \\ &A_i = \frac{I_L}{I_i} \end{split}$$

(1) is in shunt with short circuit and behaves as open circuit and hence is removed from the equivalent circuit.

(2) rb'e rb'c rb'e

 $C_C \mid \mid C_e = C_C + C_e$

(3) Current delivered directly to the output from input though rb'c& Cc is negligibly sma compared to dependent

current source g_mV_{b'e}

Under these assumptions the simplified hybrid model of C_E amplifier.

- At $f = 0, A_i = -h_{fe}$ At
- $f = f_B, A_i$

Or
$$|A_i| = \frac{-h_{fe}}{\sqrt{2}} = \frac{\max^{\pm} \text{current gain}}{\sqrt{2}}$$

Thus at $f = f_B$, the short ckt current gain is $\frac{1}{\sqrt{2}}$ times the max[±] short ckt. current gain available at low frequency.

 $\frac{1}{\sqrt{2}}$ corresponds to -3dB and hence f_Bin called 3dB frequency and the frequency range 0 - f_B is called bandwidth of the amplifier.

The parameter f_T : The frequency at which the magnitude short ckt. current gain of C_E amplifier reduces to unity is defined as frequency f_T

f_T--> Gain bandwidth product of an amplifier.

$$A_i = \frac{-h_{fe}}{1 + jf/f_B}$$

$$|A_i| = \frac{h_{fe}}{[1 + (f/f_B)^2]^{\frac{1}{2}}}$$

∴ From above

$$\begin{split} 1 &= \frac{h_{fe}}{\left[1 + (f_T/f_B)^2\right]^{\frac{1}{2}}} \\ \left[1 + (f_T/f_B)^2\right]^{\frac{1}{2}} &= h_{fe} \\ f_T &= f_B \sqrt{h_{fe}^2 - 1} \\ \because \quad h_{fe}^2 \gg 1 \\ \therefore \quad f_T &= f_B \sqrt{h_{fe}^2} \\ \therefore \quad f_T &= f_B \sqrt{h_{fe}^2} \\ \therefore \quad f_T &= f_B h_{fe} \\ \\ \text{Also,} \quad f_T &= \frac{h_{fe}}{2\pi r_{b'e} (C_C + C_e)} \end{split}$$

$$\begin{split} f_{T} &= \frac{g_{m}}{2\pi(C_{C} + C_{e})} \\ C_{C} + C_{e} &= \frac{g_{m}}{2\pi f_{T}} \\ \therefore \quad C_{e} &= \frac{g_{m}}{2\pi f_{T}} - C_{C} \\ \therefore \quad g_{m}/2\pi f_{T} \gg C_{C} \\ \hline C_{e} &= \frac{g_{m}}{2\pi f_{T}} \\ \frac{A_{i}}{h_{fe}} &= \frac{1}{[1 + (f/f_{B})^{2}]^{\frac{4}{2}}} \\ 20 \log 10 \left| \frac{A_{i}}{h_{fe}} \right| &= 20 \log 10 \frac{1}{[1 + (f/f_{B})^{2}]^{\frac{5}{2}}} \\ &= -10 \log 10 [1 + (f/f_{B})^{2}] \\ = -10 \log 10 [1 + (f/f_{B})^{2}] \end{split}$$

Gain Bandwidth product

It is defined as performance of an amplifier also known as Figure of merit

ACCREDITED BY NBA & NAAC WITH A-GRADE NARSIMHA REDDY ENGINEERING COLLEGE

PERMANENTLY AFFILIATED TO JNTUH, HYDERABAD - APPROVED BY AICTE, NEW DELHI AN ISO 9001 : 2008 CERTIFIED INSTITUTE

your roots to success ...

UGC Autonomous

Analog Circuits

UNIT : 4

Feedback amplifiers

GENERALIZED BLOCK SCHEMATIC

Introduction To Feedback

- The process of injecting a fraction of output energy of some device back to the input is known as **feedback.**
- some of the short comings(drawbacks) of the amplifier circuit are:
 - 1. Change in the value of the gain due to variation in supplying voltage, temperature or due to components.
 - 2. Distortion in wave-form due to non linearities in the operating characters of the amplifying device.
 - 3. The amplifier may introduce noise (undesired signals)
- The above drawbacks can be minimizing if we introduce feedback

basic types of feedback in amplifiers

Positive feedback

•When the feedback energy (voltage or current) is in phase with the input signal and thus aids it, it is called *positive feedback*.

•*Both amplifier* and feedback network introduce a phase shift of 180. The result is a 360 phase shift around the loop, causing the *feedback voltage Vf* to be in phase with the input signal Vin.

Fig. Block diagram for positive feedback

Negative feedback.

When the feedback energy (voltage or current) is out of phase with the input signal and thus opposes it, it is called *negative feedback*.
The amplifier introduces a phase shift of 180° into the circuit while the feedback network is so designed that it introduces no phase shift (*i.e., 0° phase shift*).

•Negative feedback is also called as *degenerative feedback*.

Fig.negative feedback amplifier

CLASSIFICATION OF FEEDBACK AMPLIFIERS

voltage series feedback.

Voltage shunt Feedback

 $V_{1} \qquad A \qquad \downarrow^{I_{0}} \qquad R_{1}$

Current Shunt Feedback

Current Series Feedback

EFFECT OF NEGATIVE FEEDBACK ON TRANSFER GAIN

✤ REDUCTION IN GAIN

$$A'_V = \frac{A_v}{1 + \beta A_v}$$
 Denominator is > 1. $\therefore A'_V < A_V$

✤ INCREASE IN BANDWIDTH

$$f_{\rm H}' = f_{\rm H} \left(1 + \beta_{\rm v} A_{\rm v \, (mid)}\right)$$

$$\mathbf{f}_{\mathrm{L}}' = \frac{f_{\mathrm{L}}}{1 + \beta_{\mathrm{v}} \mathbf{A}_{\mathrm{v(mid)}}}$$

✤ REDUCTION IN DISTORTION

$$\frac{D}{1 + \beta_v A_v} \text{ is } < D$$

- FEEDBACK TO IMPROVE SENSITIVITY
- FREQUENCY DISTORTION
- ✤ BAND WIDTH

 $(BW)_f = (1 + \beta A_m) BW$

SENSITIVITY OF TRANSISTOR GAIN

$$Sensitivity = \frac{\left|\frac{dA_{f}}{A_{f}}\right|}{\left|\frac{dA}{A}\right|}$$

Densitivity
$$D = (1 + \beta A)$$
.

✤ REDUCTION OF NONLINEAR DISTORTION

$$B_{2f} = \frac{B_2}{1 + \beta A} B_{2f} < B_2$$

✤ REDUCTION OF NOISE

$$N_F = \frac{N}{1+\beta A}$$

 $N_F < N$. Noise is reduced with negative feedback.

TRANSFER GAIN WITH FEEDBACK

Consider the generalized feedback amplifier

$$A_{f} = \frac{A}{1 + \beta A}$$

$$A_{f} = \text{gain with feedback.}$$

$$A = \text{transfer gain without feedback.}$$

If $|A_f| < |A|$ the feedback is called as negative or degenerative, feedback If $|A_f| > |A|$ the feedback is called as positive or regenerative, feedback

LOOP GAIN

Return Ratio

 βA = Product of feedback factor β and amplification factor A is called as *Return Ratio*.

Return Difference (D)

The difference between unity (1) and return ratio is called as *Return difference*.

$$D = 1 - (-\beta A) = 1 + \beta A.$$

Let us now tabulate the amplifier characteristics that get affected by different types of negative feedbacks.

Characteristics	Types of Feedback			
	Voltage-Series	Voltage-Shunt	Current-Series	Current-Shunt
Voltage Gain	Decreases	Decreases	Decreases	Decreases
Bandwidth	Increases	Increases	Increases	Increases
Input resistance	Increases	Decreases	Increases	Decreases
Output resistance	Decreases	Decreases	Increases	Increases
Harmonic distortion	Decreases	Decreases	Decreases	Decreases
Noise	Decreases	Decreases	Decreases	Decreases

ACCREDITED BY NBA & NAAC WITH A-GRADE NARSIMHA REDDY ENGINEERING COLLEGE

PERMANENTLY AFFILIATED TO JNTUH, HYDERABAD - APPROVED BY AICTE, NEW DELHI AN ISO 9001 : 2008 CERTIFIED INSTITUTE

your roots to success ...

UGC Autonomous

Analog Circuits

UNIT : 5

Oscillators

OSCILLATORS

Oscillator is a source of AC voltage or current.

Oscillator Circuit

- Oscillator is an electronic circuit which converts dc signal into ac signal.
- Oscillator is basically a positive feedback amplifier with unity loop gain.
- For an inverting amplifier- feedback network provides a phase shift of 180° while for non-inverting amplifier- feedback network provides a phase shift of 0° to get positive feedback.

$$\frac{V_o}{V_s} = \frac{A}{1 - A\beta}$$
 If $\beta A = 1$ then $V_o = \infty$; Very high output with zero input.

Use positive feedback through frequency-selective feedback network to ensure sustained oscillation at wo

Use of Oscillator Circuits

- Clock input for CPU, DSP chips ...
- ✤ Local oscillator for radio receivers, mobile receivers, etc
- * As a signal generators in the lab
- Clock input for analog-digital and digital-analog converters

Oscillators

- If the feedback signal is not positive and gain is less than unity, oscillations dampen out.
- If the gain is higher than unity then oscillation saturates.

Type of Oscillators

Oscillators can be categorized according to the types of feedback network used:

- RC Oscillators: Phase shift and Wien Bridge Oscillators
- LC Oscillators: Colpitt and Hartley Oscillators
- Crystal Oscillators

There are two types of oscillators circuits:

I. Harmonic Oscillators 2. Relaxation Oscillators

PERFORMANCE MEASURES OF OSCILLATOR CIRCUITS:

- ***** *Stability:*
- ✤ Amplitude stability:
- ***** *Output Power:*
- ***** Harmonics:

Total phase shift = 360° (180 + 180). Therefore, to get sustained oscillations,

- 1. The loop gain must be unit 1.
- Total Loop phase shift must be 0⁰ or 360⁰. (Amplifier circuit produces 180⁰ phase shift and feedback network another 180⁰.

SINUSOIDAL OSCILLATORS

Block schematic

BARKHAUSEN CRITERION

 $|\beta A| = 1$ and phase of $-A\beta = 0$.

R - C PHASE-SHIFT OSCILLATOR

Transistor phase shift oscillator.

A GENERAL FORM OF LC OSCILLATOR CIRCUIT

- A β must be positive, and at least unity in magnitude. Than XI and X2 must have the same sign.

So if X_1 and X_2 are capacitive, X_3 should be inductive and vice versa.

If X_1 and X_2 are capacitors, the circuit is called *Colpitts Oscillator* If X_1 and X_2 are inductors, the circuit is called *Hartely Oscillators*

(a) Colpitts oscillator

(b) Hartely oscillator circuit

Wien bridge oscillator circuit.

Wien Bridge oscillator circuit.

$$f = \frac{1}{2\pi \text{RC}}$$

$$h_{fe} = 4k + 23 + \frac{29}{K}.$$

CRYSTAL OSCILLATORS

 $f = \frac{1}{2\pi} \sqrt{\frac{1}{\mathrm{LC}} - \frac{\mathrm{R}^2}{\mathrm{L}^2}}$