EC4142PE: NETWORK SECURITY AND CRYPTOGRAPHY (PE - IV)

B. Tech. VI Year I Sem.

Prerequisite: Nil

```
L T P C
3 0 0 3
```

Course Objectives:

- 1. Understand the basic concept of Cryptography and Network Security, their mathematical models
- 2. To understand the necessity of network security, threats/vulnerabilities to networks and countermeasures
- 3. To understand Authentication functions with Message Authentication Codes and Hash Functions.
- 4. To provide familiarity in Intrusion detection and Firewall Design Principles

Course Outcomes: Upon completing this course, the student will be able to

- 1. Describe network security fundamental concepts and principles
- 2. Encrypt and decrypt messages using block ciphers and network security technology and protocols
- 3. Analyze key agreement algorithms to identify their weaknesses

4. Identify and assess different types of threats, malware, spyware, viruses, vulnerabilities UNIT- I

Security Services, Mechanisms and Attacks, A Model for Internetwork security, Classical Techniques: Conventional Encryption model, Steganography, Classical Encryption Techniques.

Modern Techniques: Simplified DES, Block Cipher Principles, Data Encryption standard, Strength of DES, Block Cipher Design Principles.

UNIT- II

Encryption: Triple DES, International Data Encryption algorithm, Blowfish, RC5, Characteristics of Advanced Symmetric block Ciphers. Placement of Encryption function, Traffic confidentiality, Key distribution, Random Number Generation.

UNIT – III

Public Key Cryptography: Principles, RSA Algorithm, Key Management, Diffie-Hellman Key exchange, Elliptic Curve Cryptograpy.

Number Theory: Prime and Relatively prime numbers, Modular arithmetic, Fermat's and Euler's theorems, Testing for primality, Euclid's Algorithm, the Chinese remainder theorem, Discrete logarithms.

UŇIT- IV

Message Authentication and Hash Functions: Authentication requirements and functions,

Message Authentication, Hash functions, Security of Hash functions and MACs.

Hash and Mac Algorithms: MD-5, Message digest Algorithm, Secure Hash Algorithm.

Digital signatures and Authentication protocols: Digital signatures, Authentication Protocols, Digital signature standards.

Authentication Applications: Kerberos, Electronic Mail Security: Pretty Good Privacy, SIME/MIME. UNIT – V

IP Security: Overview, Architecture, Authentication, Encapsulating Security Payload, Key Management. Web Security: Web Security requirements, Secure sockets layer and Transport layer security, Secure Electronic Transaction.

Intruders, Viruses and Worms: Intruders, Viruses and Related threats.

Fire Walls: Fire wall Design Principles, Trusted systems.

TEXT BOOKS:

1. Cryptography and Network Security: Principles and Practice - William Stallings, Pearson Education.

2. Network Security: The complete reference, Robert Bragg, Mark Rhodes, TMH,2004. **REFERENCE BOOKS:**

- 1. Network Security Essentials (Applications and Standards) by William Stallings Pearson Education.
- 2. Fundamentals of Network Security by Eric Maiwald (Dreamtech press)
- 3. Principles of Information Security, Whitman, Thomson.
- 4. Introduction to Cryptography, Buchmann, Springer.