

NARASIMHA REDDY ENGINEERING COLLEGE

UGC - Autonomous Institute Accredited by NBA & NAAC with 'A' Grade Approved by AICTE Permanently affiliated to JNTUH

NETWORK ANALYSIS AND TRANSMISSION LINE

QUESTION BANK

COURSE TITLE: Network Analysis and Transmission Line

COURSE CODE: EC2102PC

REGULATION: NR-21

<u>UNIT-1</u>

<u>Network Topology</u>

PART- A (SHORT ANSWER QUESTIONS)

Sl.No	Questions	BT	CO	РО
	Part –A (Short Answer Questions)			
1	Define tie set and basic tie set matrix.	BT2	CO1	PO1
2	Write short notes on cut set and basic cut set matrix.	BT1	CO1	PO1
3	Define tree, graph, sub graph.	BT2	CO1	PO1
4	What is dot convention?	BT2	CO1	PO1
5	Define incidence matrix.	BT3	CO1	PO2
6	Define magnetic circuits.	BT3	CO1	PO2
7	Two coils are mutually coupled, with $L1 = 25$ mH, $L2 = 60$ mH, and		CO1	PO2
	k = 0.5. Calculate the maximum possible equivalent inductance if			
	(a) the two coils are connected in series (b) the coils are connected in			
	parallel.			
8	Define Coefficient of Coupling and find the coefficient of coupling	BT2	CO1	PO1
	for two coils having $L_1 = 2$ H, $L_2 = 8$ H and $M = 3$ H?			
9	Define self and mutual inductance.	BT2	CO1	PO2
10	Define ideal transformer?	BT3	CO1	PO1
	Part– B (Long Answer Questions)			
11	Briefly explain Fundamental Tie set matrix with one example.	BT3	CO1	PO2
			u	•
12	Briefly explain Fundamental cut set matrix with one example.	BT4	CO1	PO2
13	For the network shown in figure 1 draw the Oriented graph and from	BT3	CO1	PO3
	the cut set matrix.			

14	$ \begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & $	BT3 BT2	C01 C01	PO2 PO2
15	Draw the oriented graph of network with fundamental subject matrix	DT2	001	DOD
15	Draw the oriented graph of network with fundamental cutest matrix as shown in figure find the number of cut set and draw them.	BT3 BT3	CO1 CO1	PO2 PO3
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
16	Draw the directed graph, tree, cutset matrix and tie set matrix for	BT2	CO1	PO2
	the network shown infigure 1. $ \begin{array}{c} $	BT3	CO1	PO2
17	Clearly explain the following:	BT2	CO1	PO2
	(i)Self Inductance (L) (ii)Mutual inductance (M)	BT2	CO1	PO2
	(a) Derive the expression for co - efficient of coupling (k).	BT3	CO1	PO2
	(b) Two coupled coils of $L1 = 0.8$ H and $L2 = 0.2$ H have a coupling		C01	PO3
18	coefficient $k = 0.9$. Find the mutual inductance M.			
19	For an ideal transformer figure 1 find the impedance assume load	BT3	CO1	PO3
L		I	1	1

	impedance to be Z _L			
20	Define Ideal Transformer? Explain its working	BT3	CO1	PO3

<u>UNIT-2</u>

A.C. Circuits

	Questions	BT	CO	PO
	Part –A (Short Answer Questions)			
1	Define transient state and steady state.	BT2	CO2	PO2
2	Define square and step response of a circuit.	BT1	CO2	PO1
3	Define root locus.	BT3	CO2	PO2
4	Explain resonance.	BT3	CO2	PO2
5	Derive the relation between voltage and current in a series connected RL Circuits.	BT2	CO2	PO3
6	Explain quality factor and bandwidth.	BT2	CO2	PO1
7	What is the significance of power factor?	BT1	CO2	PO1
8	Define damping factor.	BT3	CO2	PO2
9	Differentiate between under damped and critically damped case.	BT3	CO2	PO2
10		BT2	CO2	PO3
	Part– B (Long Answer Questions)			
11	For the circuit shown in Figure determine the particular solution	BT3	CO2	PO2
	for i(t) through the circuit. Assume zero initial conditions.	BT3	CO2	PO3
	V(t) = 6 Sin (10 ⁴ t + Π /4) V \bigcirc \Box c = 0.5 F 1.			
12	Derive the expression for $i(t)$ of RL Series circuit. When DC voltage is applied to it at t=0 by closing the switch. Draw the response curve $i(t)$ vs t. Define time constant of RL circuit.		CO2	PO2
1	Jour roots to succes	BT3	CO2	PO2
13 a) Derive the expression for i(t) of RLC Series circuit. When DC voltage is applied to it at t=0 by closing the switch. Complete Response i(t)	BT2	CO2	PO2
b	 A DC voltage of 20 V is applied in a RL circuit where R=5 ohms, L=10 H Find (a)Time constant (b) Maximum value of stored Energy 	BT3	CO2	PO3
14 a) Derive the expression for $i(t)$ and voltage $V_c(t)$ across	BT3	CO2	PO2
	capacitance of RC Series circuit. When DC voltage is applied to	BT2	CO2	PO1
	it at $t=0$ by closing the switch. Draw the response curve $i(t)$ vs t.			

		Explain about time constant of RC circuit.			
15	a)	Derive the expression for the current response in RL series circuit with a sinusoidal response.	BT3	CO2	PO2
	b)	Derive the expression for the current response in RC series circuit with a sinusoidal response.	BT2	CO2	PO2
16	a)	Derive the expression for the current response in RLC series circuit with a sinusoidal response.	BT2	CO2	PO3
	b)	Derive the expression for the current response in RL series circuit with a Step response.	BT2	CO2	PO2
17	a)	Derive the expression for the current response in RC series circuit with a Step response.			
	b)	Derive the expression for the current response in RLC series circuit with a Step response.			
18		A series R C circuit with R = 100 Ω and C = 25 μ F has a Sinusoidal excitation V (t) = 250 Sin 500t. Find the total current assuming that the capacitor is initially uncharged			
19		What is damping factor? Derive the expression for over damped, under damped, critically damped cases.			
20.		Derive expression for quality factor and bandwidth for series and parallel resonance.			

<u>UNIT-3</u>

Two Port Network

S.	No	Questions	BT	CO	PO
		Part –A (Short Answer Questions)			
	1	Discuss different types of two port network.	BT1	CO3	PO1
	2	Define image transfer constant.	BT1	CO3	PO2
	3	Write down the set of equations of a two port network in terms of ABCD parameters.	BT2	CO3	PO2
	4	Define characteristic impedance.	BT2	CO3	PO2
	5	Define transformed variables.	BT2	CO3	PO2
	6	What is attenuator?	BT2	CO3	PO2
	7	Define poles and zeros in a transfer function.	BT2	CO3	PO1
	8	Define image and iterative impedance.	BT2	CO3	PO2
	9	What is a driving point in transfer function?	BT3	CO3	PO2
	10	Define impedance matching network.	BT3	CO3	PO3
		Part-B (Long Answer Questions)			
11		Define Z and Y parameters of a two port network and determine	BT2	CO3	PO2
		the relationship between the above parameters.	BT3	CO3	PO3
12	a)	Find Y parameters for the above network shown in Figure $+^{1}\circ 4\Omega 5\Omega 0^{2}$ $v_{1} \xi 6\Omega v_{2}$	BT3	CO3	PO2
	b)		BT2	CO3	PO1
13	a)	Express Z parameters in terms of ABCD and Inverse ABCD parameters.	BT3	CO3	PO2
	b)	Express Y parameters in terms of ABCD and Inverse ABCD parameters.	BT3	CO3	PO2

14	a)	Write the Z-parameters of the following networkin Figure:1	BT2	CO3	PO2
		$1 \qquad \qquad$			
	b)	19. Find the Y & h-parameters of the following network $1^{\circ} - \frac{1}{4\Omega} + \frac{1}{4\Omega} = 2$ $\stackrel{\circ}{\scriptstyle \qquad \qquad$	BT2	CO3	PO2
		1′0			
15		Derive the relation between Z-parameters in terms of Y-parameters and	BT2	CO3	PO2
		ABCD parameters.	BT2	CO3	PO2
16		Derive the relation between Z-parameters in terms of Y-parameters and	BT3	CO3	PO2
		ABCD parameters.	BT3	CO3	PO2
17		Discuss in detail about series and parallel connection of two port networks.			
18		Discuss about impedance matching network.			
19.		Explain the concept of two port network functions using transformed variables?			
20.		Explain the concept of poles, zeros, their significance and necessary conditions for driving point functions and transfer functions?			
			ı		·

<u>UNIT-4</u>

Transmission Line

		Part –A (Short Answer Questions)			
	1	What is group velocity?	BT1	CO4	PO1
	2	What is patch loading?	BT2	CO4	PO2
		What do you understand by loading of transmission lines?	BT2	CO4	PO2
	4	Define Characteristic impedance?	BT2	CO4	PO2
	5	What is frequency distortion?	BT2	CO4	PO3
		Calculate the load reflection coefficient of open and short circuited lines?	BT1	CO4	PO2
		Calculate the characteristic impedance for the following line parameters $R = 10.4$ ohms /km L = 0.00367 H/km, C = 0.00835 \mu f /km, G = 10.8x10-6 mhos /km	BT2	CO4	PO2
	8	Define phase distortion?	BT2	CO4	PO2
		Write the equation for the input impedance of a TL?	BT1	CO4	PO1
	10	Define reflection factor and reflection loss?	BT2	CO4	PO2
		Part– B (Long Answer Questions)			
11		Obtain the general solution of Transmission line?	BT2	CO4	PO2
			BT1	CO4	PO2
12		Explain about waveform distortion and distortion less line	BT2	CO4	PO2
		condition?	BT2	CO4	PO3
13		Explain in following terms	BT2	CO4	PO2
		(i) Reflection factor (ii) Reflection loss (iii) Return loss	BT2	CO4	PO3
14		Discuss in details about inductance loading of telephone cables	BT1	CO4	PO2
		and derive the attenuation constant and phase constant and	BT1	CO4	PO2
		velocity of signal transmission (v) for the uniformly loaded cable?			
15		Derive the equation of attenuation constant and phase constant of TL in terms of R, L, C, G?			
16		Explain in details about the reflection on a line not terminated in its characteristic impedance (z0)?			
17		Explain about physical significance of TL?			
18		Derive the equation for transfer impedance?			
19	у	Derive the expression for input impedance of lossless line?	S.		
20		Explain about telephone cable?			

<u>UNIT-5</u>

Transmission Line-II

S.	No	Questions	BT	CO	PO
	- 10	Part –A (Short Answer Questions)		00	
	1	Name few applications of half wave line?	BT2	CO5	PO2
	2	Find the VSWR and reflection co – efficient of a perfectly	BT2	CO5	PO2
		matched line with no Reflection from load?			
	3	Explain the use of quarter wave line for impedance matching?	BT1	CO5	PO3
	<u> </u>	What is the need for stub matching in transmission lines?	BT1 BT1	C05	PO2
			DII	005	102
	5	Why do standing waves exist on TL?	BT2	CO5	PO2
	6	What are the advantages of double stub matching over single stub	BT1	CO5	PO2
		matching?			
,	7	Derive the relationship between standing wave ratio and	BT2	CO5	PO2
		reflection co – efficient?			
	8	Explain the use of quarter wave line for impedance matching?	BT2	CO5	PO1
	9	Give the applications of smith chart?	BT2	CO5	PO2
	-		212	000	102
	10	Give the analytical expression for input impedance of dissipation	BT3	CO5	PO2
		less line?			
		Part– B (Long Answer Questions)			
11		Explain about half wave transformer?	BT	CO5	PO3
			2	CO5	PO2
12		Discuss application of smith chart?	BT	CO5	PO2
			1		
			BT 2	CO5	PO2
13		Explain about voltage and current waveform of dissipation less line		CO5	PO2
			1		
	V	our roots to succes	BT 3	CO5	PO2
14	~	Derive the expression for the input impedance of the dissipation lea		CO5	PO1
		line and the expression for the input impedance of a quarter way	/e 2		
		line. Also discuss the application of quarter wave line?	BT 1	CO5	PO2
15		Explain single stub matching on a transmission line and derive the		CO5	PO2
		expression and the length of the stub used for matching on a line?	1		
			BT	CO5	PO3
16		Design a single stub match for a load of 150+j225 ohms for a 7	1 75 BT	CO5	PO2
10		ohms line at 500 MHz using smith chart?	3 ВТ	005	102
		Sinds the at 500 mills using sinth chart.	BT	CO5	PO2
			3		

17	A 30 m long lossless transmission line with characteristic impedance (z_0) of 50 ohm is terminated by a load impedance (Z_L) = 60 + j40 ohm. The operating wavelength is 90m. find the input impedance andSWR using smith chart?		
18	Explain double stub matching on a transmission line and derive the expression and the length of the stub used for matching on a line?		
19	Explain about Lamda/ 8 wave transformer?		
20	Explain about properties of smith chart?		

