EC4101PC: MICROWAVE AND OPTICAL COMMUNICATIONS (PC)

B. Tech. VI Year I Sem. Prerequisite: Antennas and Propagation

L	Т	Ρ	
3	0	0	

С

3

Course Objectives:

- 1. To get familiarized with microwave frequency bands, their applications and to understand the limitations and losses of conventional tubes at these frequencies.
- 2. To distinguish between different types of microwave tubes, their structures and principles of microwave power generation.
- 3. To impart the knowledge of Scattering Matrix, its formulation and utility, and establish the S-Matrix for various types of microwave junctions.
- 4. Understand the utility of Optical Fibres in Communications.

Course Outcomes:

- 1. Upon completing this course, the student will be able to
- 2. Known power generation at microwave frequencies and derive the performance characteristics.
- 3. realize the need for solid state microwave sources and understand the principles of solid state devices.
- 4. distinguish between the different types of waveguide and ferrite components, and select proper components for engineering applications
- 5. understand the utility of S-parameters in microwave component design and learn the measurement procedure of various microwave parameters.
- 6. Understand the mechanism of light propagation through Optical Fibres.

UNIT - I

Microwave Tubes: Limitations and Losses of conventional Tubes at Microwave Frequencies, Microwave Tubes – O Type and M Type Classifications, O-type Tubes: 2 Cavity Klystrons – Structure, Reentrant Cavities, Velocity Modulation Process and Applegate Diagram, Bunching Process and Small Signal Theory – Expressions for O/P Power and Efficiency. Reflex Klystrons – Structure, Velocity Modulation and Applegate Diagram, Mathematical Theory of Bunching, Power Output, Efficiency, Oscillating Modes and O/P Characteristics.

Helix TWTs: Types and Characteristics of Slow Wave Structures; Structure of TWT and Amplification Process (qualitative treatment), Suppression of Oscillations, Gain Considerations.

UNIT - II

M-Type Tubes:

Introduction, Cross-field Effects, Magnetrons – Different Types, Cylindrical Traveling Wave-Magnetron – Hull Cut-off and Hartree Conditions, Modes of Resonance and PI-Mode Operation, Separation of PI-Mode, o/p characteristics.

Microwave Solid State Devices: Introduction, Classification, Applications. TEDs – Introduction, Gunn Diodes – Principle, RWH Theory, Characteristics, Modes of Operation - Gunn Oscillation Modes, Principle of operation of IMPATT and TRAPATT Devices.

UNIT - III

Waveguide Components: Coupling Mechanisms – Probe, Loop, Aperture types. Waveguide Discontinuities – Waveguide Windows, Tuning Screws and Posts, Matched Loads. Waveguide Attenuators – Different Types, Resistive Card and Rotary Vane Attenuators; Waveguide Phase Shifters Types, Dielectric and Rotary Vane Phase Shifters, Waveguide Multiport Junctions - E plane and H plane Tees. Ferrites– Composition and Characteristics, Faraday Rotation, Ferrite Components – Gyrator, Isolator,

UNIT - IV

Scattering matrix: Scattering Matrix Properties, Directional Couplers – 2 Hole, Bethe Hole, [s] matrix of Magic Tee and Circulator.

Microwave Measurements: Description of Microwave Bench – Different Blocks and their Features, Errors and Precautions, Measurement of Attenuation, Frequency. Standing Wave Measurements, measurement of Low and High VSWR, Cavity Q, Impedance Measurements.

NR21 B.Tech. ECE Syllabus

UNIT - V

Optical Fiber Transmission Media: Optical Fiber types, Light Propagation, Optical fiber Configurations, Optical fiber classifications, Losses in Optical Fiber cables, Light Sources, Optical Sources, Light Detectors, LASERS, WDM Concepts, Optical Fiber System link budget.

TEXT BOOKS:

- 1. Microwave Devices and Circuits Samuel Y. Liao, Pearson, 3rd Edition, 2003.
- 2. Electronic Communications Systems- Wayne Tomasi, Pearson, 5th Edition

REFERENCE BOOKS:

- 1. Optical Fiber Communication Gerd Keiser, TMH, 4th Ed., 2008.
- 2. Microwave Engineering David M. Pozar, John Wiley & Sons (Asia) Pvt Ltd., 1989, 3r ed., 2011 Reprint.
- 3. Microwave Engineering G.S. Raghuvanshi, Cengage Learning India Pvt. Ltd., 2012.
- 4. Electronic Communication System George Kennedy, 6th Ed., McGrawHill.

your roots to success...