N
3

. NARSIMHA REDDY ENGINEERING COLLEGE Accredited by NBA & NAAC with '’ Grade

Approved by AICTE
Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India Permanently affiliated to JNTUH

Microprocessor and
Microcontrollers(EC3101PC)

Prepared by
V. Nagalakshmi

Dept of ECE,NRCM
V. Nagalakshmi,Asst prof

UNIT -1
THE 8086 MICROPROCESSORS

* A microprocessor is an electronic component that is used by a
computer to do its work. It is a central processing unit on a
single integrated circuit chip containing millions of very small
components including transistors, resistors, and diodes that
work together.

/ Microprocessor \

ALU

[T
(IS
]
=

Control Unit

Input
Device

I Output
Device

it

Register Array

.

Dept of ECE,NRCM V.Nagalakshmi,Asst prof

Evolution of Microprocessor

Processor | Introduced in | Data Bus Memory address | Clock signal
capability

4004 1971 4 bit 1KB

8008 1972 8 bit, 40 pin 16KB

8080 1973 8 bit 64KB

8085 1976 8 bit, 40 pin 64KB 8-6 MHz

8086 1988 16bit up, 40 pm | IMB 5-10MHz

80286 1982 16 bit up, 68 pm | 16MB 6-12.5MHz

80386 1985 32bit, 132 pin | 4GB 22-33MHz

80486 1989 32bit, 168 pin | 4GB 26-100MHz

Pentium 1993 32bit, 168 pin | 4GB 100-150MHz

Dept of ECE,NRCM

V.Nagalakshmi,Asst prof

Microprocessor

Micro Controller

Read-Write

Memory

Read-Only

Memory

Microprocessor is heart of Computer system.

Micro Controller is a heart of embedded system.

It is just a processor. Memory and 1/0O components
have to be connected externally

Micro controller has external processor along with
internal memory and i/O components

Since memory and 1/O has to be connected externally,
the circuit becomes large.

Since memory and 1/0 are present internally, the
circuit is small.

Cannot be used in compact systems and hence
inefficient

Can be used in compact systems and hence it is an
efficient technique

Cost of the entire system increases

Cost of the entire system is low

Due to external components, the entire power
consumption is high. Hence it is not suitable to used
with devices running on stored power like batteries.

Since external components are low, total power
consumption is less and can be used with devices
running on stored power like batteries.

Most of the microprocessors do not have power saving
features.

Most of the micro controllers have power saving modes
like idle mode and power saving mode. This helps to
reduce power consumption even further.

Since memory and 1/O components are all external,
each instruction will need external operation, hence it
is relatively slower.

Since components are internal, most of the operations
are internal instruction, hence speed is fast.

Microprocessor have less number of registers, hence
more operations are memory based.

Micro controller have more number of registers, hence
the programs are easier to write.

Microprocessors are based on von Neumann
model/architecture where program and data are stored
in same memory module

Micro controllers are based on Harvard architecture
where program memory and Data memory are separate

Mainly used in personal computers

Dept of ECE,NRCM

Used mainly in washing machine, MP3 players

V.Nagalakshmi,Asst prof

UNIT 1
THE 8086 MICROPROCESSOR

Introduction to 8086 — Microprocessor
architecture — Addressing modes - Instruction
set and assembler directives — Assembly
language programming - Modular
Programming - Linking and Relocation - Stacks
- Procedures — Macros - Interrupts and
interrupt service routines — Byte and String
Manipulation.

UNIT 1
THE 8086 MICROPROCESSOR

FEATURES OF 8086

The 8086 is a 16 bit processor.

The 8086 has a 16 bit Data bus.

The 8086 has a 20 bit Address bus.

Direct addressing capability 1 M Byte of Memory (229)
It provides fourteen 16-bit register.

24 Operand addressing modes.

Four general-purpose 16-bit registers: AX, BX, CX, DX
Available in 40pin Plastic Package and Lead Chip.

8086 MICROPROCESSOR ARCHITECTURE

Memory
BiU
(Bus Interface Unit) | |
G
— 5
" ST
AR
E Segment 3
LS .
SS registers 2
DS 1
IE -instruction |~ ————4~="" """~ """
pointer Control
IR I = Lnit
EU \
{Execution unit) ! j\ H
e
General AH AL
puUrpose —» BH Bl s
registers _H L OiC
| DH DL
FPointers —}{ SE >
BE
Index ::-{ ﬁ'l Flags - 2
registers Dept of ECE,NRCM M

\VV Nagalakshmi As<st nrof

the 8086 processor are partitioned logically into
two processing units

* Bus Interface Unit (BIU)

The BIU fetches instructions, reads data from
memory and ports, and writes data to memory
and |/O ports.

* Execution Unit (EU)

EU receives program instruction codes and data
from the BIU, executes these instructions and
stores the results either in the general registers or
output them through the BIU. EU has no
connections to the system buses.

The BIU contains

* Segment registers

* |nstruction pointer

* Instruction queue

The EU contains

 ALU

* General purpose registers
* [ndex registers

* Pointers

* Flag register

General Purpose Registers

All general registers of the 8086 microprocessor can be
used for arithmetic and logic operations.

* Accumulator register (AX)

Accumulator can be used for I/O operations and string
manipulation.

e Base register (BX)

BX register usually contains a data pointer used for
based, based indexed or register indirect addressing.

e Count register (CX)

Count register can be used as a counter in string
manipulation and shift/rotate instructions.

e Data register (DX)

Data register can be used as a port numberin I/O
operations.

Segment Registers:

Most of the registers contain data/instruction offsets within
64 KB memory segment. There are four different 64 KB
segments for instructions, stack, data and extra data.

e Code segment (CS)

The CS register is automatically updated during FAR JUMP,
FAR CALL and FAR RET instructions.

e Stack segment (SS)
SS register can be changed directly using POP instruction.
 Data segment (DS)

DS register can be changed directly using POP and LDS
instructions.

e Extra segment (ES)

ES register can be changed directly using POP and LES
instructions.

Pointer Registers
Stack Pointer (SP)

It is a 16-bit register pointing to program stack.
Base Pointer (BP)

It is a 16-bit register pointing to data in the stack segment.
BP register is usually used for based, based indexed or
register indirect addressing.

Index Registers
Source Index (SI)

It is a 16-bit register. Sl is used for indexed, based indexed
and register indirect addressing, as well as a source data
address in string manipulation instructions.

Destination Index (Dl)

It is a 16-bit register. DI is used for indexed, based indexed
and register indirect addressing, as well as a destination
data address in string manipulation instructions.

Instruction Pointer (IP)

It is a 16-bit register. The operation is same as the
program counter. The IP register is updated by
the BIU to point to the address of the next
instruction. Programs do not have direct access
to the IP, but during execution of a program the IP
can be modified or saved and restored from the

stack.
Flag register
It is a 16-bit register containing nine 1-bit flags:
 Six status or condition flags (OF, SF, ZF, AF, PF, CF)
* Three control flags (TF, DF, IF)

Overflow Flag (OF) - set if the result is too large positive number,
or is too small negative number to fit into destination operand.

Sign Flag (SF) - set if the most significant bit of the result is set.
Zero Flag (ZF) - set if the result is zero.

Auxiliary carry Flag (AF) - set if there was a carry from or borrow
to bits 0-3 in the AL register.

Parity Flag (PF) - set if parity (the number of “1” bits) in the low-
order byte of the result is even.

Carry Flag (CF) - set if there was a carry from or borrow to the
most significant bit during last result calculation.

Trap or Single-step Flag (TF) - if set then single-step interrupt will
occur after the next instruction.

Direction Flag (DF) - if set then string manipulation instructions
will auto-decrement index registers. If cleared then the index
registers will be auto-incremented.

Interrupt-enable Flag (IF) - setting this bit enables maskable
interrupts.

AH AL Accumulator (AX)
BH BL Base (BX)
CH CL Count (CX)
DH DL Data (DX)
SP Stack Pointer
BP Base Pointer
51 Source Index
DI Destination Index
Cs Code Segment
D5 Data Segment
S5 Stack Segment
ES Extra Segment
| P Instruction Pointer
‘ OF | DF TF SF ZF | AF PF CF |Flags

Dept of ECE,NRCM

\VV Nagalakshmi As<st nrof

Instruction Queue

The instruction queue is a First-In-First-out (FIFO)
group of registers where 6 bytes of instruction
code is pre-fetched from memory ahead of time.
It is being done to speed-up program execution
by overlapping instruction fetch and execution.
This mechanism is known as PIPELINING.

ALU

It is a 16 bit register. It can add, subtract,
increment, decrement, complement, shift
numbers and performs AND, OR, XOR operations.

Control unit

The control unit in the EU directs the internal
operations like rp , wr » m/10

Instruction Set
* Data moving instructions.

* Arithmetic instructions - add, subtract, increment,
decrement, convert byte/word and compare.

* Logic instructions - AND, OR, exclusive OR,
shift/rotate and test.

e String manipulation instructions - load, store,
move, compare and scan for byte/ word.

* Control transfer instructions - conditional,
unconditional, call subroutine and return from
subroutine.

* |nput/Output instructions.

* Other instructions - setting/clearing flag bits, stack
operations, software interrupts, etc.

Addressing modes

* Implied - the data value/data address is implicitly associated with the
instruction.

* Register - references the data in a register or in a register pair.
* Immediate - the data is provided in the instruction.

* Direct - the instruction operand specifies the memory address where data is
located.

* Register indirect - instruction specifies a register containing an address,
where data is located. This addressing mode works with SI, DI, BX and BP
registers.

* Based - 8-bit or 16-bit instruction operand is added to the contents of a
base register (BX or BP), the resulting value is a pointer to location where
data resides.

* Indexed - 8-bit or 16-bit instruction operand is added to the contents of an
index register (Sl or DI), the resulting value is a pointer to location where
data resides.

* Based Indexed - the contents of a base register (BX or BP) is added to the
contents of an index register (S| or DI), the resulting value is a pointer to
location where data resides.

* Based Indexed with displacement - 8-bit or 16-bit instruction operand is
added to the contents of a base register (BX or BP) and index register (S| or
Dl), the resulting value is a pointer to location where data resides.

Interrupts
Hardware interrupts

Maskable and non-maskable interrupts
Software interrupts

ADDRESSING MODES

An addressing mode is the way the 8086 identifies the operands for
the instruction. All instructions that access the data use one or
more of the addressing modes.

The memory address of an operand consists of two components
1.Starting address of the memory segment
2.0ffset

When an operand is stored in a memory location, how for the
operand’s memory location is within a memory segment from the
starting address of the segment, is called Offset or Effective
Address (EA).

The 8086 uses 20 bit memory address. The segment register gives
16 MSBs of the starting address of the memory segment. The BIU
generates 20 bit starting address of the memory segment by
shifting the content of the segment register left by 4 bits. In other
words it puts 4 zeros in 4 LSB positions.

Memory Address = Starting address of the memory segment +
Offset

The 8086 has the following addressing modes:
* Register Addressing Mode

* Immediate Addressing Mode

* Direct Addressing Mode

* Register Indirect Addressing Mode
 Base Addressing Mode

* Indexed Addressing Mode

* Based Indexed Addressing Mode

e String Addressing Mode

* |/O Port Addressing Mode

e Relative Addressing Mode

* Implied Addressing Mode

Register Addressing Mode

* Both source and destination operands are
registers. The operand sizes must match. MOV
destination, source

 Examples:

e MOV AL, AH

e MOV AX, BX

Immediate Addressing Mode

 The data operand is supplied as part of the
instruction. The immediate operand can only be a
source.

 Examples:
* MOV CH, 3AH
e MOV DX, 0OC1A5H

Direct Addressing Mode

One of the operands is a memory location, given by a
constant offset.

In this mode the 16 bit effective address (EA) is taken
directly from the displacement field of the instruction.

Examples:
MOV AX,[1234 H]
MOV DL, [3BD2 H],

Register Indirect Addressing Mode

One of the operands is a memory location, with the
offset given by one of the BP, BX, Sl, or DI registers.

Example:
MOV [BX], CL
MOV DL, [BX]

Base Addressing Mode

* |n this mode EA is obtained by adding a
displacement (signed 8 bit or unsigned 16 bit)
value to the contents of BX or BP. The segment
registers used are DS and SS.

 Example:
« MOV AX, [BP + 200]
Indexed Addressing Mode

* The operand’s offset is the sum of the content of
an index register Sl or DI and an 8-bit or 16-bit
displacement.

* Example:
« MOV AH, [DlI]

Based Indexed Addressing Mode

* |n this mode, the EA is computed by adding a base
register (BX or BP), an index register (Sl or DI) and a
displacement (unsigned 16 bit or sign extended 8
bit)

 Example: |

* MOV AX, [BX +SI+ 1234 H]

« MOV CX, [BP][SI] + 4

String Addressing Mode

* The instruction is a string instruction, which uses
index registers implicitly to access memory.

 Example:
* MOVSB
* MOVSW

1/O Port Addressing Mode

* The destination or source of the data is an I/O port.
Either direct port addressing (including an 8-bit port
address) or indirect addressing (DX must contain the
port address) may be used.

 Examples:

* IN AX, 50H ; Direct

« OUT DX, AL ; Indirect
Relative Addressing Mode

* |In this mode, the operand is specified as a signed 8
bit displacement, relative to PC(Program Counter).

 Examples:
e JMP 0200 H
 JNCSTART

Implied Addressing Mede
* |nstructions using this mode have no operands.

 Examples:
* CLC, STC, CMC

INSTRUCTION SET

* Intel 8086 has approximately 117 instructions. These
instructions are used to transfer data between
registers, register to memory, memory to register or
register to |/O ports and other instructions are used for
data manipulation.

 Butin Intel 8086 operations between memory to
memory is not permitted. These instructions are
classified in to six-groups as follows.

1.Data Transfer Instructions

2.Arithmetic Instructions

3.Bit Manipulation Instructions

4.5tring Instructions

5.Program Execution Transfer Instructions
6.Processor Control Instructions

Data Transfer Instructions
1.MOV

MOV destination, source

This (Move) instruction transfers a byte or a word
from the source operand to the destination
operand.

(DEST)e (SRC)
DEST = Destination
SRC = Source
Example :

MOV AX, BX

MOV AX, 2150H
MOV AL, [1135]

2.PUSH
e PUSH Source

* This instruction decrements SP (stack pointer)
by 2 and then transfers a word from the
source operand to the top of the stack now
pointed to by stack pointer.

e (SP)<(SP)—2

e ((SP)+1 : (SP))«(SRC)
 Example :

 PUSH SI

 PUSH BX

Stack

Segment

2007
SP=2004H 2005

2004 —» Current SP
Instruction 32 2003 —» SP-1
PUSH AX F5 2002 ——» Sp-2

2001

2000

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

3.POP
e POP destination

* This instruction transfers the word at the
current top of stack (pointed to by SP) to the
destination operand and then increments SP
by 2, pointing to the new top of the stack.

 (DEST)< ((SP)+1:(SP))
* (SP)e«(SP) + 2

e Example :

 POP DX

* POP DS

LAHF
* Load Register AH from Flags

* This instruction copies Sign flag(S), Zero flag (Z),

Auxiliary flag (AC), Parity flag (P) and Carry flag
(C) of 8086 into bits 7, 6, 4, 2 and O respectively,

of register AH

(AH)e« | 8 | Z | X |AaCc| X | P | X | C

SAHF
e Store Register AH into Flags

 This instruction transfers bits 7, 6, 4, 2 and O from
register AH into S, Z, AC, P and C flags

respectively, thereby replacing the previous
values.

s 1z [AE“‘P X‘CJ<—£AH)

-IJ-I--I_=dh=l‘l=’.-l"

XCHG
 XCHG destination, source

 This (Exchange) instruction switches the contents of the source and
destination operands.

(Temp}<«— (DEST)
(DEST) « (SRC)
(SRC) «— (Temp)
HNCHG AN, BX
HNCHG BL., AT

XLAT
e XLAT table

* This (Translate) instruction replaces a byte in the AL register with a byte
from a 256-byte, user-coded translation table. XLAT is useful for
translating characters from one code to another.

* Al ((BX) +(AL)

« Example :
e XLAT ASCIl_TAB
e XLAT Table 3

Dept of ECE,NRCM
VV Nagalakshmi Asst nrof

LEA
* LEA destination, source

* This (Load Effective Address) instruction transfers the offset of the
source operand (memory) to the destination operand (16-bit
general register).

« (REG)<€ EA

* Example:

 LEA BX, [BP] [DI]

« LEASI, [BX + 02AF H]
LDS

e LDS destination, source

* This (Load pointer using DS) instruction transfers a 32-bit pointer
variable from the source operand (memory operand) to the
destination operand and register DS.

 (REG)<€ (EA)
 (DS)e (EA+2)
 Example :
 LDSSI, [6AC1H]

LES
* LES destination, source

* This (Load pointer using ES) instruction transfers a 32-bit pointer variable from the
source operand (memory operand) to the destination operand and register ES.

* (REG) & (EA)
 (ES)e (EA+2)
 Example :

« LESDI, [BX]

* [N accumulator, port

* This (Input) instruction transfers a byte or a word from an input port to the
accumulator (AL or AX).

* (DEST) «(SRC)

Example:

* IN AX, DX
 INAL, 062H
ouT

 OUT port, accumulator
* This (Output) instruction transfers a byte or a word from the accumulator (AL or AX)
to an output port.

 (DEST)e=(SRC)
e Example:

e OUTDX, AL

« OUT31], AX

Arithmetic Instructions
ADD

ADD destination, source

This (Add) instruction adds the two operands (byte or word) and stores
the result in destination operand.

(DEST) € (DEST) + (SRC)
Example :

ADD CX, DX

ADD AX, 1257 H

ADD BX, [CX]

ADC

ADC destination, source

This (Add with carry) instruction adds the two operands and adds one if
carry flag (CF) is set and stores the result in destination operand.

(DEST) < (DEST) + (SRC) + 1
Example :

ADC AX, BX

ADCAL, 8

ADC CX, [BX]

SUB
 SUB destination, source

* This (Subtract) instruction subtracts the source operand from the
destination operand and the result is stored in destination operand.

 (DEST)e (DEST) - (SRC)
 Example :

e SUBAX, 6541H

e SUB BX, AX

e SUBSI,5780H

SBB

 SBB destination, source

* This (Subtract with Borrow) instruction subtracts the source from the
destination and subtracts 1 if carry flag (CF) is set. The result is stored
in destination operand.

 (DEST)e (DEST) - (SRC) -1
 Example :

* SBB BX, CX

 SBB AX, 2

CMP
e CMP destination, source

* This (Compare) instruction subtracts the source from the
destination, but does not store the result.

e (DEST) - (SRC)
 Example :

e CMP AX, 18

e CMP BX, CX
INC

 INC destination

e This (Increment) instruction adds 1 to the destination
operand (byte or word).

« (DEST)< (DEST)+1
 Example :
 INCBL

e INCCX

DEC
e DEC destination

* This (Decrement) instruction subtracts 1 from the
destination operand. (DEST) < (DEST) -1

e Example :

« DECBL

 DEC AX

NEG

 NEG destination

* This (Negate) instruction subtracts the destination
operand from 0 and stores the result in destination.
This forms the 2’s complement of the number.

* (DEST)<0— (DEST)
e Example :

* NEG AX

e NEGCL

DAA

* This (Decimal Adjust for Addition) instruction converts the
binary result of an ADD or ADC instruction in AL to packed
BCD format.

DAS

* This (Decimal Adjust for Subtraction) instruction converts
the binary result of a SUB or SBB instruction in AL to packed
BCD format.

AAA

e This (ASCII Adjust for Addition) instruction adjusts the
binary result of ADD or ADC instruction.

* |f bits 0-3 of AL contain a value greater than 9, or if the
auxiliary carry flag (AF) is set, the CPU adds 06 to AL and
adds 1 to AH. The bits 4-7 of AL are set to zero.

¢ (Al)e (AL)+6
* (AH¥ (AH)+1
+ (AF)e 1

AAS

e This (ASCII Adjust for Subtraction) instruction adjusts the binary
result of a SUB or SBB instruction.

* |f D;—D,of AL> 9,
* (Al)e (AL)—6
 (AH)e (AH)-1

* (AF)e1

MUL

* MUL source

e This (Multiply) instruction multiply AL or AX register by register or
memory location contents. Both operands are unsigned numbers. If
the source is a byte (8 bit), then it is multiplied by register AL and
the result is stored in AH and AL.

* If the source operand is a word (16 bit), then it is multiplied by
register AX and the result is stored in AX and DX registers.

o If8bitdata, (AX)e (AL{XESRC)
If 16 bit data, (AX), (DX)e- (AX) x (SRC)

Example :
e MUL?25
e MULCX

IMUL
IMUL Source

This (Integer Multiply) instruction performs a signed
multiplication of the source operand and the accumulator.

If 8 bit data, (AX)< (AL) x (SRC)

If 16 bit data, (AX), (DX) < (AX) x (SRC)
Example :

IMUL 250

IMUL BL

AAM
* This (ASCII Adjust for Multiplication) instruction adjusts

the binary result of a MUL instruction. AL is divided by
10(0AH) and quotient is stored in AH. The remainder is
stored in AL.

* (AH)< (AL/OAH)
* (AL) «Remainder

DIV
* DIV Source

e This (Division) instruction performs an unsigned
division of the accumulator by the source operand. It
allows a 16 bit unsigned number to be divided by an 8
bit unsigned number, or a 32 bit unsigned number to
be divided by a 16 bit unsigned number.

 For 8 bitdata, AX/source
(AL) <LQuotient
(AH)e—Remainder

* For 16 bit data, AX, DX/ Source
(AX)< Quotient
(DX)< Remainder

e Example:

* DIVCX

* DIV 321

IDIV
* IDIV source

* This (Integer Division) instruction performs a signed division of the accumulator by
the source operand.

* For8bitdata, AX/ Source
(AL)< Quotient
(AH)e Remainder
* For 16 bit data, AX, DX/ Source
(AX)<- Quotient
(DX)s Remainder

 Example :
« IDIVCL
 IDIV AX
AAD

* This (ASCII Adjust for Division) instruction adjusts the unpacked BCD dividend in
AX before a division operation. AH is multiplied by 10(0AH) and added to AL. AH is
set to zero.

« (AL) — (AH x OAH) + (AL)
 (AH)< O

CBW
* This (Convert Byte to Word) instruction converts

* I[FAL<80H,thenAH=00H
* |IFAL> 80 H, then AH = FFH

a byte to a word. It extends the sign of the byte in
register AL through register AH. This instruction
can be used for 16 bit IMUL or IDIV instruction.

CWD:

This (Convert Word to Double word) instruction
converts a word to a double word.

It extends the sign of the word in register AX
through register DX.

If AX <8000 H, then DX =0000 H
If AX > 8000 H, then DX = FFFFH

Bit Manipulation Instructions

(i)Logical Instructions: AND, OR, XOR, NOT,
TEST

(ii)Shift Instructions: SHL, SAL, SHR, SAR
(iii)Rotate Instructions: ROL, ROR, RCL, RCR

AND
 AND destination, source

e This (AND) instruction performs the logical “AND” of the source
operand with the destination operand and the result is stored in
destination.

 (DEST) - (DEST) “AND” (SRC)
« Example :

« ANDBL, CL

« ANDAL, 001111008

OR

* OR destination, source

e This (OR) instruction performs the logical “OR” of the source
operand with the destination operand and the result is stored in
destination.

 (DEST) - (DEST) “OR” (SRC)
 Example :

« ORAX, BX

e ORAL,000011118B

2=0R: LOGICOR

OR instruction source operand immediate, register or memory location to the
destination operand

OR AX,0098H contentof AX if 3FOFH
OR AX,BX

0011 1111 0000 1111 =3FOFH [AX]
OR
0000 0000 1001 1000 =0098H

0011 1111 1001 1111 =3F9FH [AX]
v

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

XOR
 XOR destination, source

e This (Exclusive OR) instruction performs the logical “XOR”
of the two operands and the result is stored in destination
operand.

e (DEST) - (DEST) “XOR” (SRC)
 Example :

 XOR BX, AX

e XORAL, 111111118B

NOT

* NOT destination
e This (NOT) instruction inverts the bits (forms the 1’s
complement) of the byte or word.

e (DEST) - 1's complement of (DEST)
 Example :
* NOT AX

TEST

 TEST destination, source

* This (TEST) instruction performs the logical “AND” of the two operands and
updates the flags but does not store the result.

e (DEST) “AND” (SRC)

« Example:

* TESTAL, 15H
e TESTSI, DI
SHL

* SHL destination, count

e This (Shift Logical Left) instruction performs the shift operation. The number
of bits to be shifted is represented by a variable count, either 1 or the number
contained in the CL register.

 Example
 SHLAL 1
* Before execution :
CF AL
fof [t | 1f ofo| 1| 1| 0| ©
After execution :
CF AL
1 1 o| o 1 1| o]l o| o

SAL
* SAL destination, count

* SAL (Shift Arithmetric Left) and SHL (Shift Logical Left) instructions perform the same
operation and are physically the same instruction.

 Example

e SALAL, CL
« SALAL 1
SHR

* SHR destination, count

e This (Shift Logical Right) instruction shifts the bits in the destination operand to the
right by the number of bits specified by the count operend, either 1 or the number
contained in the CL register.

 Example
e SHRBL1
e SHRBL,CL

CF EL
—# 0 — — —% —3» — —}‘

The SHE instuction mav be used to divide a number by 2. For example, we can divide

32 hwv 2.
% 2.
MOWVBL.32 . 0010 0000 (32)
SHR BL, 1 . 0D01 0000 (16)
SHE BL., 1 - 0000 1000 (8)
SHR BL, 1 - 0000 0100 D'éj@t of ECE.NRCM
SHR BL, 1 - 0000 ’

DD{PNéE&:a}Jlakshmi.Asst nrof

SAR
 SAR destination, count

e This (Shift Arithmetic Right) instruction shifts the bits in the
destination operand to the right by the number of bits specified in
the count operand. Bits equal to the original high-order (sign) bits are
shifted in on the left, thereby preserving the sign of the original value.

= — —

CF ‘ '
> IMsSB—> — — [p

ROL
ROL destination, count

This (Rotate Left) instruction rotates the bits in the byte/word destination operand to the
left by the number of bits specified in the count operand.

CF
(—4'7- < < < <
+
Example :

ROL AT 1
CF AT

Before execution - | 0 1 1 0 0 1 1 ol 0
CF Dept of EcENRCM

Afterexecution: [1],/ 11 0] 0] . 1} 1] Q) 0] 1

ROR
* ROR destination, count

* This (Rotate Right) instruction rotates the bits in the byte/word
destination operand to the right by the number of bits specified in the

count operand.

CF

W
w

W
L

B

Example :
POP. AT, 1
CTF AT,
Before execution : I DI 1| 1| 0f © 1| 1 0 0O
CF AT,
Afterexecution: |o| | of 1| 1| o of 1| 1| ©

RCL
RCL destination, count
This (Rotate through Carry Left) instruction rotates the contents left through

carry by the specified number of bits in count operand.

CF
1k = =
-
Exarmiple =
RCIL AT 1
L
Before execution : I 1| | Cll Dl Cll Dl 1| 1| 1| 1 |

A frer execurnon - I i;iell Ql ;jl ’l_i: 1 1 1 1

\VV Nagalakshmi As<st nrof

RCR
* RCR destination, count

* This (Rotate through Carry Right) instruction rotates the contents right
through carry by the specified number of bits in the count operand.

CF
Al
Example :
RCERAL.1
CF AL
Before execution - | 1 1| 1| 0o Of 0 O] 1|0
CF AL
Afterexecution: |0 1| 1| 1| O of Of Of 1

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

STRING INSTRUCTIONS
REP

* REP MOVS destination, Source

e This (Repeat) instruction converts any string primitive
instruction into a re-executing loop. It specifies a termination
condition which causes the string primitive instruction to
continue executing until the termination condition is met.

 Example :

e REP MOVSCL, AL

 The other Repeat instructions are :
 REPE - Repeat while Equal

* REPZ - Repeat while zero

* REPNE - Repeat while Not Equal

* REPNZ - Repeat while Not Zero

e The above instructions are used with the CMPS and SCAS
instructions.

MOVS

MOVS destination - string, source-string

This (Move String) instruction transfers a byte/word
from the source string (addressed by Sl) to the
destination string (addressed by DI) and updates Sl and
DI to point to the next string element.

(DEST) «(SRC)
Example :
MOVS Buffer 1, Buffer 2

CMPS

CMPS destination-string, source-string

This (Compare String) instruction subtracts the
destination byte/word (addressed by DI) from the source
byte/word (addressed by Sl). It affects the flags but does
not affect the operands.

Example :
CMPS Buffer 1, Buffer 2

SCAS

SCAS destination-string

This (Scan String) instruction subtracts the destination string element (addressed by
DI) from the contents of AL or AX and updates the flags.

Example :
SCAS Buffer

LODS

LODS source-string

This (Load String) instruction transfers the byte/word string element addressed by SI
to register AL or AX and updates Sl to point to the next element in the string.

(DEST) < (SRC)
Example :
LODSB name
LODSW name

STOS

STOS destination - string

This (Store String) instruction transfers a byte/word from register AL or AX to the
string element addressed by DI and updates DI to point to the next location in the
string.

(DEST)e. (SRC)

Example :

STOS display

Program Transfer Instructions

(i)Unconditional instructions: CALL, RET, JMP
(ii)Conditional instructions: JC, JZ, JA.....
(iii)Iteration control instructions :LOOP, JCXZ
(iv)Interrupt instructions: INT, INTO, IRET

CALL

CALL procedure - name

This (CALL) instruction is used to transfer execution
to a subprogram or procedure. RET (return)
instruction is used to go back to the main program.
There are two basic types of CALL : NEAR and FAR

Example :
CALL NEAR
CALL AX

RET

e This (Return) instruction will return execution from a
procedure to the next instruction after the CALL
instruction in the main program.

e Example :
* RET

* RET6
JMP

* JMP target

e This (Jump) instruction unconditionally transfers control to
the target location. The target operand may be obtained
from the instruction itself (direct JMP) or from memory or
a register referenced by the instruction (indirect IMP).

e Example :
 JMP BX

Conditdonal JAP

+|
Instruction Operation
J Jummp if carmxy
JIC Jump ifno carmry
JZ Jump 1f Zero
JINE Jump i1f not zero
JS Jump i1f s1gn or negative
JINS Jump 1if positive
JE/TPE Jump if panty/panty even
JNP/TPO Jump ifnot panty/odd panty
JC Jurmp if overflow
JIICh Jump ifno overflow
JATNEBE Jump if above/not below or equal
JAE/JNB Jump i1f abowve or equal’not below
JB/JNAE Jump i1f belownot abowe or equal
JEBE/JINA Jump 1f below or equal/ not abowve
JG/INLE Jump 1if greater’notless than nor egual
JGE/JINL Jummp 1if greater or equal'notlessthan
JLAINGE Jump ifless/neither greater nor egqual
JLE/JING Jurmp ifless T'b@ﬁ-f qg:fEHE_EN.th greater

\VV Nagalakshmi As<st nrof

LOOP
e [OOP label

* This (Loop if CX not zero) instruction
decrements CX by 1 and transfers control to
the target operand if CX is not zero. Otherwise
the instruction following LOOP is executed.

* |If CX%0, CX = CX-1
* [P =IP+displacement

* |f CX=0, then the next sequential instruction is
executed.

* Example :
* LOOP again

Processor Control Instructions
HLT

* This (Halt) instruction will cause the 8086 to stop fetching
and executing instructions. The 8086 will enter a halt
state.

WAIT

* This (Wait) instruction causes the 8086 to enter the wait
state while its test line is not active.

ESC

* This (Escape) instruction provides a mechanism by which
other coprocessors may receive their instructions from
the 8086 instruction stream and make use of the 8086
addressing modes. The 8086 does a no operation (NOP)
for the ESC instruction other than to access a memory
operand and place it on the bus.

NOP

* This (No operation) instruction causes the
CPU to do nothing. NOP does not affect any
flags.

Flag operations

Instruction Operation

CLC Clear the carrv flag (CF)

CMC Complement the carry flag (CF)
STC Set the carrv flag (CF)

CLD Clear the direction flag (DF)
STD Set the direction flag (DF)

CLI Clear the interrutp flag (IF)

STI Set the intermupt flag (IF)

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

ASSEMBLER DIRECTIVES

An assembler is a program which translates an

assembly language program into machine language
program.

An assembler directive is a statement to give
direction to the assembler to perform the task of
assembly process.

The assembler directives control organization of the
program and provide necessary information to the
assembler to understand assembly language
programs to generate machine codes.

An assembler supports directives to define data, to
organize segments, to control procedures, to define
macros etc.

An assembly language program consists of two
types of statements: Instructions and Directives.

Some assembler directives are,

* Borland Turbo Assembler (TASM)

* |BM Macro Assembler (MASM)

* Intel 8086 Macro Assembler (ASM)
* Microsoft Macro Assembler

The general assembler direcaowves are
ASSTUME EXTRIN
DB ROTUTRP
i ey INCILITIDE
DD LABEL
IO MNMIACERE O
DT ORG
ENID PITE
ENDP PEOWC
ENDDM PUUBLIC
ENDS EECORD
EOTUT SEAAMEINT
ENVEI STRIIC

Dept of ECE,NRCM
VV Nagalakshmi Asst nrof

ASSUME

* The ASSUME directive enables error-checking
for register values.

* |tis used to inform the assembler the names
of the logical segments, which are to be
assigned to the different segments used in an
assembly language program

* Format:

 ASSUME segregister:-name [[, segregister:-namel]...

 ASSUME dataregister:type [[, dataregister:typel]...
 ASSUME register:ERROR [[, register:ERROR]]...
e ASSUME [[register:]] NOTHING [[, register:NOTHING]]...

DB (Define Byte)

* |t can be used to define data like BYTE.

* Format:

* Name of the Variable DB Initial values
 Example:

« WEIGHTS DB 18, 68, 45

DW (Define Word)

* |t can be used to define data like WORD (2 bytes).
* Format:

 Name of the VariableDW Initial values

 Example:
e« SUM DW 4589

DD (Define Double Word)

* |t can be used to define data like DWORD (4
oytes).

* Format:

* Name of the VariableDD Initial values
 Example:

 NUMBER DD 12345678

DQ (Define Quad Word)

* |t can be used to define data like QWORD (8
oytes).

* Format:

 Name of the VariableDQ Initial values

 Example:
TABLE DQ 1234567812345678

DT (Define Ten Bytes)

* |t can be used to define data like TBYTE (10 bytes).
* Format:

* Name of the Variable DT |Initial values

 Example:
 AMOUNT DT 12345678123456781234
END (End of program)

* |t marks the end of a program module and, optionally,
sets the program entry point to address.

* Format:
END [[address] |

Example:
END label

ENDP (End Procedure)

e |t marks the end of procedure.

* name previously begun with PROC.
e Format:

* nameENDP
 Example:

CONTROL PROC FAR

CONTROL ENDP
« ENDM (End Macro)
* It terminates a macro or repeat block.
e Format:

 ENDM
 Example:
CODE MACRO

ENDM

 ENDS (End of Segment)

* It marks the end of segment, structure, or union name previously
begun with SEGMENT, STRUCT, UNION, or a simplified segment
directive.

* Format:
* name ENDS

 Example:
CODE SEGMENT

CODEENDS

EQU (Equate)

* It assigns numeric value of expression or text to name. The name
cannot be redefined later.

* Format:

* name EQU expression
* name EQU <text>

e Example:

* CLEAR_CARRY EQUept GLE

EVEN (Align on Even memory Address)
Format:

EVEN

Example:

SALES DB 9

EVEN

DATA_ARRAY DW 100 DUP (?)

INCLUDE

This directive inserts source code from the source file given by
filename into the current source file during assembly. The filename
must be enclosed in angle brackets if it includes a backslash,
semicolon, greater-than symbol, less-than symbol, single quotation
mark, or double quotation mark.

Format:

INCLUDE filename

Example:

INCLUDE C: \ MICRO \ ASSEM.LEV

The above directive informs assembler to include all statements
mentioned in the file, ASSEM.LEV from the directory C: \ MICRO.

MACRO

* A sequence of instructions to which a name is
assigned is called a macro. The name of a macro
is used in assembly language programming.
Macros and subroutines are similar. Macros are
used for short sequences of instructions, where
as subroutines for longer ones. Macros execute
faster than subroutines. A subroutine requires
CALL and RET instructions whereas macros do
not.

* Format:

 name MACRO [optional arguments]
* statements ENDM

ASSEMBLY LANGUAGE
PROGRAMMING

Program

A computer can only do what the programmer
asks to do. To perform a particular task the
programmer prepares a sequence of instructions,
called a program.

Programming languages

* Microcomputer programming languages can
typically be divided into three main types:

1.Machine language
2.Assembly language
3.High-level language

Machine language

* A program written in the form of Os and 1s is
called a machine language program. In the
machine language program there is a specific
binary code for each instruction.

* A microprocessor has a unique set of machine
language instructions defined by its
manufacturer.

* For example, the Intel 8085 uses the code
1000 1110, for its addition instruction while
the Motorola 6800 uses the code 1011 1001,.

The machine language program has the following
demerits:

* |tis very difficult to understand or debug a
program.

* Program writing is difficult.
* Programs are long.
* More errors occur in writing the program.

* Since each bit has to be entered individually
the entry of a program is very slow.

Assembly language

* Assembly language programming is writing machine
instructions in mnemonic form, using an assembler to
convert these mnemonics into actual processor
instructions and associated data.

The advantages of assembly language programming
1.The computation time is
less. 2.1t is faster to produce
result.
The disadvantages of assembly language programming
* many instructions are required to achieve small tasks

e source programs tend to be large and difficult to follow

High-level language

* High level language programs composed of English-
language-type statements rectify all deficiencies of
machine and assembly language programming. The
high level languages are FORTRON, COBAL, BASIC, C,
C++, Pascal, Visual Basic etc.

The high level language program has the following
demerits:

* One has to learn the special rules for writing
programs in a particular high level language.

* Low speed.

* A compiler has to be provided to convert a high level
language program into a machine language
program. The compiler is costly.

Assembly language program

* Assembly language statements are written one
per line.

* A machine code program thus consists of a
sequence of assembly language statements,
where each statement contains a mnemonic.

e Each line of an assembly language program is split
into four fields, as below:

1.Label field
2.Mnemonic or Opcode field

3.0perand field

4.Comment field

As an example, a typical program for block transfer
of data written in 8086 assembly language is
given here.

LABEL | OPCODE | OPERAND COMMENTS
CLD Clear direction flag DF

MOV SL 0200 Source addressin SI
MOV DL 0302 Destination addressin DI
MOV | CX.[S] | CountinCX

INC SI Increment SI
INC SI Increment SI
BACK. |MOV SB Move byte
LOOP BACK Jump to BACK until CX =0
INT Interrupt program

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

LABEL

* The label field is optional. A label is an identifier.

* Alabel can be used to refer to a memory location
the value of a piece of data the address of a

program, sub-routine, code portion etc.
START: LDAA #24H

JMP START

* Here, the label START is equal to the adc
instruction LDAA #24H. The label is usec

program as a reference. This would resu

ress of the
in the
tin the

processor jumping to the location (address)
associated with the label START, thus executing the
instruction LDAA #24H immediately after the JMP

instruction.

OPCODE

e Each instruction consists of an opcode
(Mnemonic) and possible one or more operands.
In the above instruction

JMP START

* The opcode is JMP and the operand is the
address of the label START.

Mnemonics are used because they
* are more meaningful than hex or binary values
* reduce the chances of making an error

e are easier to remember than bit values

OPERAND

The operand field consists of additional information or data that the
opcode requires. In certain types of addressing modes, the operand is
used to specify

constants or labels

immediate data

data contained in another accumulator or register
an address

Examples of operands are

JNZ STEP1

MOV AX, 5000 H
MOV AX, BX
MOV AX, [3000 H]

COMMENTS

The comment field is optional, and is used by the programmer to

explain how the coded program works. Comments are preceded by a
semi-colon. The assembler, when generating instructions from the
source file, ignores all comments.

Assembly Language Program - Development Tools

Editor

Assembler

Linker

Locator

Loader

Debugger

Emulator

ouree 1o Maodule Object

uree 18X _—

| Assembler_} Module
1 Module Object |] .. Load | |Relocating

Source Tex== Assembler | Module | Linker _'hl'u'mdule | Loadar

Object v

> —X -

Source Tex CDI’TI[JLIIEF Module Machine Code

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Instructions

Editor:

* An editoris a program which allows creating a file containing the assembly
language statements for the program.

Assembler:

* An assembler is a program which translates an assembly language program into
machine language program.

Linker:

e Alinker is a program which links smaller programs together to form a large
program. It is used to join several object files into one large object file. It also
links the subroutines with the main program.

Locator:

* Alocator is a program which assigns specific memory addresses for the machine
codes of the program, which is to be loaded into the memory.

Loader:

 Aloaderis a program which loads object code into system memory. It can
accept programs in absolute or relocatable format.

Debugger:
A debuggeris a program which allows user to test and debug programs.
Emulator:

 An emulator is a mixture of software and hardware. It is usually used to test and
debug the software and hardware of an external system.

1. Addition of two 16-Bit Data

Label Mnemonics Comments

MOV AX, DATAI| Load the first datain AX remster

MOV CL,00H | Clearthe CLregister for camy
ADD AX DATA2| Add 2nd datato AX, sum will be in AX

MOV 2000H, AX | Store sum in memory location 1
JNC STEP Check the status of carry flag

INC CL If camrv 15 set; increment CL by one
STEP: | MOV 2002H,CL | Store carry in memory location 2
HLT Halt

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

3.

Multiplication of Two 16-Bit Data

Label

Mnemonics

Comments

MOV AX. [2000]

MUL [2002]

MOV [2100], DX

MOV [2102] AX

HLT

Move the first datato AX register from memory
location 2000 H

Multiply the data m AX with the datain memory
location 2002 H

Save the MSW (high order) of theresult m DX
register

Save the LSW (Lower Order) or the resultin AX
TegIster

Halt

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

MODULAR PROGRAMMING

Modular programming is subdividing the complex
program into separate subprograms such as
functions and subroutines.

Similar functions are grouped in the same unit of
programming code and separate functions are
developed as separate units of code so that the code
can be reused by other applications.

For example, if a program needs initial and boundary
conditions, use subroutines to set them.

Then if someone else wants to compute a different
solution using the program, only these subroutines
need to be changed. This is very easier than having
to read through a program line by line, trying to
figure out what each line is supposed to do and
whether it needs to be changed.

* Subprograms make the actual program shorter,
hence easier to read and understand. Further, the
arguments show exactly what information a
subprogram is using. That makes it easier to
figure out whether it needs to be changed when
modifying the program.

ALPs are developed by essentially the same
procedure as high-level language programs by,

* Exactly stating what the program is to do.
e Splitting the overall problem into tasks.

* Defining exactly what each task must do and how
it is to communicate with the other tasks.

* Putting the tasks into assembler language
modules and connecting the modules together to
form the program.

* Debugging and testing the program.

* Documenting the program.

The benefits of using modular programming are,

* Modular programming allows many
programmers to collaborate on the same
application.

* Same code can be used in many applications.
* Code is short, simple and easy to understand.
* Code is stored across multiple files.

* Asingle procedure can be developed for reuse,
eliminating the need to retype the code many
times.

* Errors can easily be identified, as they are
localized to a subroutine- or.function.

LINKING AND RELLOCATION

Cperating system

Commands
‘ : Fiw] drwers
Source Cbject Load I ‘
module : module i module

Q_' Aﬁﬁemblﬂr-a@ Linkar_-.__-. L E.\:E!I:u’[ll'lg
= -
i |

l A A
IWTETTILTY
LESHNg

AR
Other O_

Make ohiect. . O O
comections dules.
i m@ Library

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

The process combines the following.

Find the object modules to be linked.

Construct the load module by assigning the
positions of all of all the segments in all of the
object modules being linked.

Fill in all offset that could not be determined by
the assembler.

Fill in all segment address.
Load the program for execution.

Segment combination

* |n addition to the linker commands, the
assembler provides a means of regulating the way
segments in different object modules are
organized by the linker. Segments with same
name are joined together by using the modifiers
attached to the SEGMENT directives. SEGMENT

directive may have the form:
* Segment name SEGMENT Combination-type

PROCEDURES & MACROS

* Asingle instruction that expands automatically
into a set of instructions to perform a particular
task.

* A macro (which stands for "macroinstruction") is
a programmable pattern which translates a
certain sequence of input into a preset sequence
of output. Macros can be used to make tasks less
repetitive by representing a complicated
sequence of keystrokes, mouse movements,
commands, or other types of input.

Macro definition:

name MACRO [parameters,...]
statements >

ENDM
Example:
MvMacro MACROPIL, P2, P53
MOV AX, Pl
MOV BX, P2
MOV CX, P3
ENDM

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Advantages of macros

Repeated small groups of instructions replaced by one macro
Errors in macros are fixed only once, in the definition
Duplication of effort is reduced

In effect, new higher level instructions can be created
Programming is made easier, less error prone

Generally quicker in execution than subroutines

Disadvantages of macros

In large programs, produce greater code size than procedures

When to use Macros

To replace small groups of instructions not worthy of
subroutines

To create a higher instruction set for specific applications
To create compatibility with other computers

To replace code portions which are repeated often throughout
the program

Procedure (PROC)

 This directive marks the start and end of a
procedure block called label. The statements in
the block can be called with the CALL instruction.

PROC definition:
label PROC [[near / far]]
<Procedure instructions>
label ENDP

Example:
WEST PROC FAR

WEST ENDP

Overlapping Proc Nested Proc

2t Outside Proc Procedure “

™~ Qutside Proc Procedure

. Inside Proc Procedure

~ Inside Proc Procedure

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Differences between Macros and

Procedures
5.3'[1 PROCEDURES MACROS
1.| Touseaprocedure CALLandRET | Touse a macro, just type its name.
instructions are needed
2.| Itoccupies less memory. It occuples more memaory.
3.| Stackisused. Stack 15 not used.
4.| Tomark the end of the procedure, tvpe | To mark the end of the macro ENDM

Ly

the name of the procedure before the
ENDP directive.

Overhead time 15 required to call the No
and retumn to the calling execution

PIOSTAIT.

directive 1s enough.

overhead ime during the procedure

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

INTERRUPTS AND INTERRUPT SERVICE
ROUTINES

Interrupts

* A signal to the processor to halt its current
operation and immediately transfer control to
an interrupt service routine is called as
interrupt. Interrupts are triggered either by
hardware, as when the keyboard detects a key

press, or by software, as when a program
executes the INT instruction.

Interrupts can be seen as a number of functions.
These functions make the programming much
easier, instead of writing a code to print a character,
simply call the interrupt and it will do everything.

There are also interrupt functions that work with
disk drive and other hardware. They are called as
software interrupts.

Interrupts are also triggered by different hardware,
these are called hardware interrupts.

To make a software interrupt there is an INT
instruction, it has very simple syntax: INT value.

Where value can be a number between 0 to 255 (or
00 to FF H).

Interrupt Service Routines (ISRs)

* SR is a routine that receives processor control
when a specific interrupt occurs.

* The 8086 will directly call the service routine
for 256 vectored interrupts without any
software processing. This is in contrast to non
vectored interrupts that transfer control
directly to a single interrupt service routine,
regardless of the interrupt source.

Interrupt vector table:

3FF H TYPE 255 POINTER:
AVAILABLE IFC H (AVAILABLE)
INTERRUPT _
TYPE 33 POINTER:
084 H (AVAILABLE)
TYPE 32 POINTER:
080 H
(AVAILABLE)
TYPE 31 POINTER:
RESERVED 07F H (AVAILABLE)
IMTERRUPT =
TYPE 5 POINTER:
014 H
(RESERVED)
110 b TYPE 4 POINTER:
OVERFLOW
TYPE 3 POINTER:
EFF;E—SLEEF} 00CH | 41 BvTE INT INSTRUCTION
TYPE 2 POINTER:
008 H NON MASKABLE
TYPE 1 POINTER:
004 H SINGLE STEP
100 H TYPE 0 POINTER:

Dplnf nf

eceE NRCnDIWIDE ERROR

\VV Nagalakshmi As<st nrof

When an interrupt occurs, regardless of source, the
8086 does the following:

The CPU pushes the flags register onto the stack.

The CPU pushes a far return address (segment:offset)
onto the stack, segment value first.

The CPU determines the cause of the interrupt (i.e., the
interrupt number) and fetches the four byte interrupt
vector from address O : vector x 4 (0:0, 0:4, 0:8 etc)

The CPU transfers control to the routine specified by the
interrupt vector table entry.

After the completion of these steps, the interrupt service
routine takes control. When the interrupt service routine
wants to return control, it must execute an IRET
(interrupt return) instruction. The interrupt return pops
the far return address and the flags off the stack

Types of Interrupts

Hardware Interrupt - External uses INTR and NMI
Software Interrupt - Internal - from INT or INTO

Processor Interrupt - Traps and 10 Software
Interrupts

External - generated outside the CPU by other
hardware (INTR, NMI)

Internal - generated within CPU as a result of an
instruction or operation (INT, INTO, Divide Error
and Single Step)

MMI Requesting
Device

MM
006 CPU

Interrupt Logic

Progammable

Interrupt Controller

INTR

'I \ ivide| |Single
INT JNTO Errar || Step

Software Traps

Intel
B2E0A

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

TITTTT10

=

el el el

Dedicated Interrupts
* Divide Error Interrupt (Type 0)

This interrupt occurs automatically following the
execution of DIV or IDIV instructions when the
guotient exceeds the maximum value that the
division instructions allow.

e Single Step Interrupt (Type 1)

This interrupt occurs automatically after execution
of each instruction when the Trap Flag (TF) is set to
1.1t is used to execute programs one instruction at a
time, after which an interrupt is requested.
Following the ISR, the next instruction is executed
and another single stepping interrupt request
occurs.

 Non Maskable Interrupt (Type 2)

It is the highest priority hardware interrupt that
triggers on the positive edge.

This interrupt occurs automatically when it
receives a low-to-high transition on its NMI input

pin.

This interrupt cannot be disabled or masked. It is
used to save program data or processor status in
case of system power failure.

* Breakpoint Interrupt (Type 3)

This interrupt is used to set break points in
software debugging programs.

* Overflow Interrupt (Type 4)

Software Interrupts (INT n)

* The software interrupts are non maskable

interrupts. They are higher priority than
hardware interrupts.

Hardware Interrupts

* INTR and NMI are called hardware interrupts.

INTR is maskable and NMI is non-maskable
Interrupts.

Interrupt Priority

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Interrupt Priority
INTn, INTO, Divide Error Highest
NMI v
INTR !
Single Step Lowest

Byte And String Manipulation

* The 8086 microprocessor is equipped with
special instructions to handle string
operations.

* By string we mean a series of data words or
bytes that reside in consecutive memory
locations.

* The string instructions of the 8086 permit a
programmer to implement operations such as
to move data from one block of memory to a
block elsewhere in memory.

e A second type of operation that is easily
performed is to scan a string and data elements
stored in memory looking for a specific value.

e Other examples are to compare the elements
and two strings together in order to determine
whether they are the same or different.

Move String : MOV SB, MOV SW: An element of
the string specified by the source index (Sl)
register with respect to the current data
segment (DS) register is moved to the location
specified by the destination index (DI) register
with respect to the current extra segment (ES)
register.

 The move can be performed on a byte (MOV SB)
or a word (MOV SW) of data. After the move is
complete, the contents of both SI & DI are
automatically incremented or decremented by 1
for a byte move and by 2 for a word move.

 Address pointers SI and DI increment or
decrement depends on how the direction flag DF
s set.

Load and store strings : (LOD SB/LOD SW and STO
SB/STO SW) LOD SB: Loads a byte from a string in
memory into AL. The address in Sl is used relative to
DS to determine the address of the memory location
of the string element. (AL) <= [(DS) + (SI)] (SI) <= (SI)
+1

LOD SW : The word string element at the physical
address derived from DS and Sl is to be loaded into
AX. Sl is automatically incremented by 2. (AX) <=
[(DS) + (SI)] (SI) <= (SI) + 2

STO SB : Stores a byte from AL into a string location
in memory. This time the contents of ES and DI are

used to form the address of the storage location in
memory [(ES) + (DI)] <= (AL) (DI) <=(Dl) + 1

STO SW : [(ES) + (DI)] <= (AX) (DI) <= (DI) + 2

LA 16 BIT ADDITION USING 3086

ADDEESS | LABEL | MMEMONICS | OPCODE COMMENTS
100K MOV Al Claar C r2ister
ASL [1200TH
0
12
. ADD . Mova the immeadista data] to
1003 03
AX [1200H accumulatod
0
L2,
12
1007 3'-1*3"5[1%:'4]1-1_& 3 Move the immeadiata data 2 to B ragistar
0
12
1004 HLT F4 End the prosram

Dept of ECE,NRCM
VV Nagalakshmi Asst nrof

INPUT OUTPUT
1200 04 1104 05
1201 02 1203 07
1201 01
1203 03

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

 16BIT SUBTRACTION USING B086

ADDEESS | LABEL | MNEMONICS | OPCODE COMMENTS
1044 MOV Al Clear C register
AX [12001H
00
12
1003 sUB "B hMove the immediata data 1 to
} AN [12021H - accumulator
06
02
12
1007 MDT[&“H Al Move the immadiata data 2 to B register
04
12
100A HLT F4 End the program

Dept of ECE,NRCM
VV Nagalakshmi Asst nrof

INPUT OUTPUT
1200 08 1204 06
1201 04 1205 1
1202 02
1203 03

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

INPUT OUTPLUT
2000 02 2100 06
2001 03 2101 00
2002 03 2102 09
2003 03 2103 00

Dept of ECE,NRCM

\VV Nagalakshmi As<st nrof

INPUT OUTPUT
2000 00 2100 00
2001 0 2101 00
2002 00 2102 03
2003 30 2103 00

Dept of ECE,NRCM

\VV Nagalakshmi As<st nrof

8086 program to determine largest number in an
array of n numbers

Algorithm —

* Load data from offset 500 to register CL and set register CH
to 00 (for count).

e Load first number(value) from next offset (i.e 501) to
register AL and decrease count by 1.

 Now compare value of register AL from data(value) at next
offset, if that data is greater than value of register AL then
update value of register AL to that data else no change, and
increase offset value for next comparison and decrease
count by 1 and continue this till count (value of register CX)
becomes 0.

» Store the result (value of register AL) to memory address
2000 : 600.

400 MOV 51, 500 Sl=-500

403 MOV CL, [SI] CL=-[sI1]

405 MOV CH, 00 CH=<-00

407 INC Si Sl=-SI+1

408 MOV AL, [SI] Al =-[sI]

404 DEC CL CL<=-CL-1

40C INC Si Sl=-SI+1

400 CMP AL, [S1] AL-[S1]

40F JMC 473 JUMP TO 473 IF CY=0
411 MOV AL, [SI] Al <-[SI]

413 INC Si Sl=-SI+1

414 LOOPR 400 CxR=-CX¥-1 & JUMP TO 40D IF CX NOT O
416 MOV [600], AL AlL-=[600]

474 HLT END

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Input Data > 04 10 40 20 | 30

Memory Addressi{offset) > 500 501 502 so3 | soa
Output Data > 40
Memory Address(offset) > 600

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Explanation —

e MOV SI, 500 : set the value of SI to 500

e MOV CL, [SI] : load data from offset Sl to register CL
e MOV CH, 00 : set value of register CH to 00

* INCSI: increase value of Sl by 1.

e MOV AL, [SI] : load value from offset Sl to register AL
 DECCL : decrease value of register CL by 1
 INCSI:increase value of Sl by 1

« CMP AL, [SI] : compares value of register AL and [SI] (AL-[SI])
e JNC413:jump to address 413 if carry not generated
« MOV AL, [SI] : transfer data at offset Sl to register AL
 INCSI :increase value of Sl by 1

 LOOP 40C : decrease value of register CX by 1 and jump to address
40D if value of register CX is not zero

« MOV [600], AL : store the value of register AL to offset 600
* HLT : stop

8086 program to find the min value in

a given array
Algorithm —

* Assign value 500 in Sl and 600 in DI

* Move the contents of [SI] in CL and increment Sl by 1
* Assign the value OO H to CH

 Move the content of [SI] in AL

* Decrease the value of CX by 1

* Increase the value of Sl by 1

 Move the contents of [SI] in BL

 Compare the value of BL with AL

 Jump to step 11 if carry flag is set

 Move the contents of BL in AL

e Jump to step 6 until the value of CX becomes 0, and decrease CX by 1
 Move the contents of AL in [Dl]

* Halt the program

0400 hMOW S, 500 Sl < 500
0403 POW DI, 600 Dl =- 00
040a MOV CL, [S1] CL =- [sI]
0408 PADY CH, 00 CH =- 00
04048 IMC SI Sl = S1+1
o40B MOV AL, [S1] AL =- [SI]
o400y DEC CX S = T
040E INC Si Sl = S1+1
040F MOV BL, [S1] BL =- [SI]

0411 ChP AL, BEL AlL-BL

0473 JC 0477 Jump if carry is 1
04715 MOW AL, BEL AL =- BL
0417 LOOF 040E Jump if CX not equal to 0
0479 MOV [DI], AL [DI] =- AL
041B HLT End of the program

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

INPUT

DATA v >

MEMORY - . ==
aopRess v | W -

OUTPUT I~ ‘
DATA /

MEMORY ;

ADDRESS™ > 4

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

PIN DIAGRAM

|
T (AMax mode)
G}TD: 1 40 I
AD [4 19l—1 AD..
AT I 3 ig I A8y
a4 3Tl] As.
ATy I 5 i I A8
ATy I o] i5 I A8
ar | 7 34 | B /8-
AaD | g 13 | ux i
an- [9 12 | =0
an: | 10 i1 | RQ/GT.
m: i1 8086 30 | GT
_-'-I';I 1z 29 I LK
ADy[13 28 | =.
f‘anI: 14 27 1 f
AD,[15 26 | =
AD:[16 25 | Qs.
s 17 24 | gs,
TH 18 23] 1EsT
k| 19 22 | READY
axof 20 21 | RESET
————Papi—ei—=d E NRCM

\VV Nagalakshmi As<st nrof

(Min mode)
HOL D)
{HLD A)

(WE]

o /0]

(DT /R)
(DEN)

(ALE)

MINIMUM MODE SIGNALS

Address/data/status

4
ADqs-ADy Address/data bus Bidirectional, 3-state
A1o/Ss-Ars'S3 Address/status bus output,3-state
RD Read from memory/ IO output,3-state
READY Readv signal Input
M/TO Select memory or IO output,3-state
WR Write to memory/I0 output,3-state
ALE Address latch enable output
DT'K Data transmit/receive output
DER Data bus enable output
BHE /5, Bus high enable output
INTR Interrupt request Input
NMI Non-maskable interrupt Input
RESET Reset Input
NTA | irempracki@etadgt SN0 | oupu

HOLD Hold request Input

HLDA Hold acknowledge output
TEST Test pin tested by WAIT instruction Input

MN/MX Minimum/maximummode, 5V Input

CLK Clock pin for basic timing signal Input

Vcc Power supply, 75 V

GND Ground connection, 0V

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

MAXIMUM MODE SIGNALS

Address/data/status

ADs-ADyg

A10/S5-A16'S3

Address/data bus

Address/status bus

Bidirectional, 3-state

output_3-state

ED Read from memorv/10 output,3-state
READY Ready signal input
BHE /S- Bus high enable output
5,.51.5; Status/handshake bits indicating the
function of the current bus cycle output
INTR Interrupt request input
NMI Non-maskable interrupt input
RESET Reset input

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Q/GT;, RQGTy | Request/arant pins forbus access bidirectional

LOCK Used to lock the bus, activated by output
LOCK prefix on any instruction

Q51.05 Queue status output
TEST Test pin tested by WAIT mstruction input
MN/SX Minimum maximum mode, 0V Input
CLK Clock pin for basic imimg signal nput
Vcc Power supply, +5 V

GND Ground connection, 0V

Bept o ECE,NRCM

\VV Nagalakshmi As<st nrof

Address / Data Bus (AD-—AD,)

 The multiplexed Address/ Data bus acts as
address bus during the first part of machine
cycle (T1) and data bus for the remaining part
of the machine cycle.

Address/Status (A;o/Sg, A1s/Ss, A17/S,, A6l S3)

* During T1 these are the four most significant
address lines for memory operations.

* During I/O operations these lines are LOW.

.y 53 Function
0 0 | ES. Extra segment
0 1 S5, Stack Segment
1 0 | [C5, Code segment
1 1 DS, Data segment
A -
BHE | Characteristics
0| 0 | Wholeword
0 | 1 | Upperbyte from'to odd address
1 | 0 [Lowerbyte from'to evenaddress
1 1 [None

Dept of ECE,NRCM

\VV Nagalakshmi As<st nrof

Read(RD)

* This signal Is used to read data from memory or 1/O
device which reside on the 8086 local bus.

Ready
* If this signal is low the 8086 enters into WAIT state.

 The READY signal from memory/ 10 Is synchronized
by the 8284A clock generator to form READY.

* This signal is active HIGH.
Interrupt Request (INTR)
e Itisa I@&Itﬂggﬂ@ maskable interrupt request.

A subroutine is vectored via an interrupt vector lookup
table located in system memory.

TEST
« This Input Is examined by the “Wait” Instruction.

 If the TEST Input is LOW execution continues,
 otherwise the processor waits in an "‘Idle’ state.

Non-Maskable Interrupt (NMI)
It is an edge triggered input which causes a type 2 interrupt.
« NMI is not maskable internally by software.

Reset
« This signal is used to reset the 8086.

It causes the processor to immediately terminate its present
activity.

« The signal must be active HIGH for at least four clock
cycles.

* |t restarts execution when RESET returns LOW.

Clock (CLK)

* This signal provides the basic timing for the
processor and bus controller.

* The clock frequency may be 5 MHz or 8 MHz or
10 MHz depending on the version of 8086.

VCC
* [tisa +5V power supply pin.
Ground (GND)

* Two pins (1 and 20) are connected to ground ie, 0
V power supply.
Minimum/Maximum (MN/ MX))

* This pin indicates what mode the processor Is to
operate In.

MEMORY /10 (M/ 10)

* |t Is used to distinguish a memory access from an
1/O access. M = HIGH, 1/0 = LOW.

WRITE(WR)

|t Indicates that the processor Is performing a
write memory or write 1/O cycle, depending on
the state of the M/ 10 signal.

* Interrupt Acknowledge (INTA)
This signal indicates recognition of an interrupt
request. It Is used as a read strobe for interrupt
acknowledge cycles.

Address Latch Enable (ALE)

» This signal Is used to demultiplex the ADy-AD s
Into Ay-Asand Dy-Dys. It 1s @ HIGH pulse active
during T1 of any bus cycle.

Data Enable(DEN)

This signal informs the transceivers
(8286/8287) that the 8086 Is ready to send or
recelve data.

Hold

 This signal Indicates that another master
(DMA or processor) Is requesting the host
8086 to handover the system bus.

Hold Acknowledge (HLDA)

 On receiving HOLD signal 8086 outputs
HLDA signal HIGH as an acknowledgement.

E ST ST Machine cvcle

0 0 0 Interrupt acknowledge
0 O 1 L'O read

O 1 O L'O write

O 1 1 Halrz

1 O O Opcode fetch

1 0 1 Memorv read

1 1 0 MMemory write

1 1 1 Passive

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Request/Grant (RQ/GT,,RQ/GT,)

« These pins are used by other local bus masters to force
RQ / GT the processor to release the local bus at the
end of the processor’s current bus cycle

LOCK

* This signal indicates that other system bus masters are
not to gain control of the system bus while LOCK is
active LOW.

 The LOCK signal is activated by the “LOCK” prefix
instruction and remains active until the completion of
the next instruction.

QUEUEue Status (QS,, QS,)

* The queue status is valid during the CLK cycle after
which the queue operation is performed.

Q% Characteristics

0 | Nooperation
| Trstbyte of opcode from Queue

0 Empty the Queue

| | Subsequent byte from Queue
O

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

SYSTEM BUS STRUCTURE

« System bus Is a single computer bus that
connects the major components of a computer
system.

* |t consists of data bus, address bus and control
bus.

« To communicate with external world,
microprocessor make use of buses.

DATA BUS

It is used for the exchange of data between the
processor, memory and peripherals.

It 1S bi-directional so that i1t allows data flow In
both directions.

The width of the data bus can differ for every
MICroprocessor.

When the microprocessor issues the address of
the Instruction, It gets back the Instruction
through the data bus.

ADDRESS BUS

 The address bus contains the connections
between the microprocessor and memory or
output devices

e |tis unidirectional.

* The width of the address bus corresponds to
the maximum addressing capacity

CONTROL BUS

* The control bus carries the signals relating to
the control and coordination of the various
activities across the computer, which can be
sent from the control unit within the CPU.

* Microprocessor uses control bus to process
data, that Is what to do with the selected
memory location.

System Bus

e N e YR

CPU
ALU Memory Input and
Registers Qutput
and Controls
—

| | DataBus

N
| AddessBus

| Control Bus \

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

MIN-MAX MODE OF OPERATION

Intel 8086 has two modes of operation. They are:
* Minimum mode
* Maximum mode

* When only 8086 microprocessor Is to be used in a
microcomputer system, the 8086 Is used iIn the
minimum mode of operation.

* In this mode, the microprocessor Issues the

control signals required by memory or 1/O
devices.

* In a multiprocessor system It operates Iin the
maximum mode. In this mode, the control
signals are issued by Intel 8288 bus controller.

* The pin MN/ MX (33) decides the operating
mode of 8086.

e When MN/ MX =0, maximum mode of
operation.

= 1, minimum mode of
operation.

e PiIns 24 to 31 have different functions for
minimum mode and maximum mode.

Minimum Mode

* For minimum mode of operation MN/ MX Is
connected to V¢ (+5 volts).

 All control signals for controlling memory and
/O devices are generated inside the 8086

MICroprocessor.

* In this mode , peripheral devices can be used
with the microprocessor without any special
consideration

Crystal Vo
Oscillator .]{
o —)J
3284 A cLk WMMX RD
MO M RAM
EPROM
From Intemupt
Controller —21 INTR STB Address /0 Devices
ALE — Intermupt
To Intermupt _ GND 202 Controller
Controlier INTA BE atch
Fram DA INTEL Ay
Caontroller HOL BOBE
To DWIA CPU
Controlier HLDA
::> 0206 _ Dats
[Transcener '(,‘_::3
TR ¥ T (2)
DEN

[

Dept of ECE,IQIIlI%'CM

\VV Nagalakshmi As<st nrof

MIO|RD | WR Operation

0 |0 | 1 |T0ORead
0 |1 | 0 |TI0Wnt
1 10 | 1 | MemoryRead
L | 1T | 0 | Memory Wnte

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

READ CYCLE

One Bus Cycle

CLEK
e >
and BHE/S-

Al s—ADyg

ALE ’ b

I | I
T Tz Tz T

— Address, BHEOUT

! r

1

< J < StausouT >
| |

= |

<Address OUT ¢ DatalM

T

MO o,

LOW =1/0 Read, HIGH=Memory Read

™~ d

~ o

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

WRITE CYCLE

le ne ous ycie

| | | |

w

T T Ts T
CLK ‘ - -
/f,.,.- Address, BHE OUT
Aial S5 s 153
and BAE/S, 3—< f >-<: Status OUT :‘>
i
ADs—AD, <Address OUT »<_ DatalN__ >
1
ALE / A\ /
MG > LOW = IfO Write, HIGH = Memory Write >
R s J’
TR S—
DEN .
______ - '\\ /

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Maximum mode operation’

Crystal GHD
O=cillator l
r||:||—| L "
s, MMNX S0 AN MRDC
3234 A S0
Gock Genergior] o CLK _ 51, B2EE MWTC
— = BUS IORC
a2 > Controller =
NG« | AMWC —
DEN IMNTA
_ ALE | »NC
RO GT1 €— |
TS INTEL - Address Bus
| E
QI6T2 —3 8086 o = >
CPU — . 6202
INTR € BHE A | Laten
ADO-AD15 ~] L2 [
MBS [y R
|
T Ciata Bus
—o——
o 8286
Transceiver

De bt o ECE HIRCM?)

RAM

EPRC M
1D Devices

Interrupt
Controller

O
Controller

\VV Nagalakshmi As<st nrof

* In maximum mode 8086 based system, an
external Bus Controller (Intel 8288) has to be
employed to generate the bus control signals.

* The important signals are :

® vroc - Memory Read Command
vwTe - Memory Write Command
ore - 1/0 Read Command
owe - /O Write Command
amwe -Advanced Memory Write Command
alowe -Advanced I/0 Write Command

Three numbers of 8 bit latches (Intel 8282) are
employed to demultiplex the address lines.

The latches are enabled by using the ALE signal
generated by the bus controller.

Two numbers of octal bus transceivers (Intel
8286) are used as data transceivers.

The signals DEN and DT/ R are generated by the
bus controller are used as enable and direction
control respectively.

The clock generator (Intel 8284) Is used to
generate clock, reset and ready signals for 8086.

A quartz crystal of frequency 15 MHz s
connected to 8284.

Read cycle

| One Bus Cycle ,‘
| | | |
3 3 1 3
CLE
S rs. N q._q. /5.8, Inactive————-
I -
BHE. B 16
Address/Status - - | /’f- Fl
el] e — oat
and BHE/S7 oo ,—/\’i L ><_ S;-Sa >
| |
Address/data L“’ “ I Data IN Dys—Do
A A
AD;5-ADg S , g
|
*ALE I M
*MRDC :
orlORC ™ i
*OTIE oo . Vd
*DEN yd N

*8268 Bus Controller Ouiputs

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Write cycle

One Bus Cycle

| | |
T, T, Ts T,

s

CLK

T N____S:.8, /5 S;lnactive -

BHE. ‘ﬂhs 16
Address/Status- .., Float

and BHE/S oo ; :: I >{ 57—_53 >

Address/data Data IN D45 -Dy

ADADy < Ashs >
“ALE / \
“AMWC
or ATOWC N
“WIC
or lOWC AN /

“DEN - . yd ™

*8268 Bus Controller Outputs

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

N —

SYSTEM DESIGN USING 8086

The specification of the system iIncludes the
following:

* 1/O devices

* Memory requirement
 System clock frequency
 Peripheral devices required
» Application

/0O devices

Input devices : 8279 — keyboard and display
controller

The popular output devices are,

« LED display
 LCD

* Printer

* Floppy disk / CD

 CRT terminal

Memory requirement

* The memory of the system Is splitted between
EPROM and RAM.

 The popular EPROM used in 8086 based
system are 2708 (1K x 8), 2716 (2K x 8), 2732
(4K x 8), 2764 (8K x 8) and 27256 (32K x 8).

* The popular static RAM used In 8086 based
system are 6208 (1K x 8), 6216 (2K x 8), 6232
(4K x 8), 6264 (8K x 8) and 62256 (32 K x 8).

System clock frequency

 The 8086 does not have an internal clock
circuit. Hence clock has to be supplied from an
external device.

* The Intel 8284 clock generator Is employed to
generate the clock.

An external quartz crystal has to be connected
to 8284 to generate the clock signal.

Peripheral devices

Intel 8253 - Programmable Interval Timer
Intel 8251 - USART

Intel 8255 - Programmable Peripheral
Interface

Intel 8279 - Keyboard / Display controller
Intel 8257 - DMA controller
ADC, DAC etc.

Application

* The specifications of the microprocessor itself
depends on the applications for the proposed
system and the nature of work.

* The 1/0O device, memory, peripheral device are
all depends on the nature of work to be
performed by the system.

Device 1

Device 2

Device 3

Interface

Interface

Interface

CPU and bus
control logic

L it |

Interrupt Interrupt
lacknowleda P
request

=

aisy chain [laisy chain
logic VDpen Logic V

[

aisy chain
=]y

!

N\ m—

+5Y

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Interrupt priority management
hardware
By designing a programmable interrupt

priority management c
logic.

The duty Is placed on t
request the Interrupt anc

Ircuit and bus control

ne requesting device to
Identify itself.

The i1dentity could be a branching address .

If the device just supplies an identification
number, this can be used In conjunction with a

lookup table to determ

Ine the address of the

required service routine.,

Direct Memory Access Block Transfer

A DMA controller allows devices to transfer
data to or from the system’s memory without
the intervention of the processor.

« Components connected to the system bus Is
given control of the bus.

* This component is said to be the master during
that cycle and the component It s
communicating with Is said to be the slave.

» Taking control of the bus for a bus cycle Is
called cycle stealing.

« The Interface sends the DMA controller a
request for DMA service.

A Bus request is made to the HOLD pin
(active High) on the 8086 microprocessor and
the controller gains control of the bus.

* A Bus grant iIs returned to the DMA controller
from the Hold Acknowledge (HLDA) pin
(active High) on the 8086 microprocessor.

« The DMA controller places contents of the
address register onto the address bus.

 The controller sends the interface a DMA
acknowledgment, which tells the interface to
put data on the data bus.

 The data byte iIs transferred to the memory
location indicated by the address bus.

* The interface latches the data.

 The Bus request Is dropped, the HOLD pin
goes Low, and the controller relinquishes the
bus.

The Bus grant from the 8086 microprocessor Is
dropped and the HLDA pin goes Low.

The address register Is incremented by 1.
The byte count Is decremented by 1.

If the byte count iIs non-zero, return to step 1,
otherwise stop.

MULTIPROGRAMMING

* Multiprogramming can execute several jobs
concurrently by switching the attention of the
CPU back and forth among them.

* Multiprogramming enable the CPU to be
utilized more efficiently. If the operating
system can quickly switch the CPU to another
task

The 8086 fetches the instructions.

The coprocessor monitors the instruction sequence and
captures its own instructions.

The ESC is decoded by the CPU and coprocessor
simultaneously.

The CPU computes the 20 bit address of memory operand
and does a dummy read. The coprocessor captures the
address of the data and obtains control of the bus to load or
store as needed.

The coprocessor sends BUSY (high) to the TEST pin.

The CPU goes to the next instruction and if this is an 8086
Instruction, the CPU and coprocessor execute in parallel.

If another coprocessor instruction occurs, the 8086 must
wait until BUSY goes low ie, TEST pin become active. To
Implement this, a WAIT Instruction is put In front of most
8087 Instructions by the Assembler.

The WAIT Instruction does the operations ie, wait until the
TEST pin is active.

05 Operation

0 | Noaction
l First byte of current nstruction taken
from quene

0 | | Queue flushed

l Byte other than first byte taken from quene

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

CLOSELY COUPLED CONFIGURATION

Share :
 Memory

* |/O system
» Bus and Bus control logic

* Clock generator

6086
LIUCK
goritrol $ystem Bus generato > <;>
Logic

Coprocessor

:> Indep%ndent (::

Processor

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

E0DED

Indepandeant
Proc==s=or

independant processor Wait for "
with an LT request

in=tructon

Fetch
message
Execute
the 8085"s program
SEquUenoe .
Performn

=s=signead task

Wiait for

Moty P
o coimmp e tion

|
Fig.. 4:19, Interaction between 3036 and 3039

FReady or Intermupt
request

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

LOOSELY COUPLED CONFIGURATION

* In loosely coupled configuration a number of
modules of 8086 can be interfaced through a
common system bus to work as a
multiprocessor.

« Each module has an Independent
microprocessor based system with Its own
clock source, and its own memory and 1/O
devices interfaced through a local bus.

 Each module can also be a closely coupled
configuration of a processor or coprocessor.

Dept of ECE,NRCM

. -
B vasncsvrissnmisssnssssrnnnssvsrnsnssdovnssssmassdmsssssnsnsnns “esessnmnad JR

\V/ Nacalakshmi Asst orof-

Advantages

 Better system throughput by having more than
one processor.

* The system can be expanded in modular form.

* A failure in one module normally does not
affect the breakdown of the entire system and
faulty module can be easily detected and
replaced.

Bus allocation schemes

 Daisy chaining

* Polling method

* Independent Priority

DAISY CHAINING METHOD

* In daisy chaining method all masters make use of
the same line for bus request.

In response to a bus request, the controller sends
a bus grant if the bus is free.

* The bus grant signal serially propagates through
each master until it encounters the first one that Is
requesting access to the bus.

* This master blocks the propagation of the bus
grant signal, activates the busy line and gains
control of the bus.

Controller

Master 1 Master 2 Master N
Bus access fus ancess|| Bus access
logic logic logic
]
]

Bus Grant
Bus Request |, | |
s busy | " !

L

Dept of ECE,NRCM

\VV Nagalakshmi As<st nrof

POLLING

In polling method, the controller sends address of
device to grant bus access.

The number of address lines required is depend on the
number of masters connected in the system.

In response to a bus request, controller generates a
sequence of master addresses.

When the requesting master recognizes the address, it
activates the busy line and begins to use the bus.

The priority can be changed by altering the polling
sequence stored In the controller.

Another one advantage of this method Is, If one module
fails entire system does not fail.

Controller

Master1 Master 2 Master N
fls 3C0ess Al 3C0ess Bus ar:r:es|5
logic logic logic
[Y moA A A A
Module adgress
] &
Module address
] ¥ l
Module address
+ * ¥
HEEZLIS Reques! y |
Bus Busy
¥ L i '
A

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Independent priority

* Each master has a separate pair of bus request
(BRQ) and bus grant (BGR) lines and each
pair has a priority assigned to It.

 The built In priority decoder within the
controller selects the highest priority request
and asserts the corresponding bus grant signal.

Master 1 Master 2 Master N

Bus access Blis 3CCESS Bus access
F i F 1 b
Bus Grant 1
Bus Requast 1
"
Bus Grant 2
Controller 1Eu:-'. Request2
o
Bus Busy & ; v

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Generation| Microprocessor Features

PI 8086 16-bitregisters and data bus, real mode onlv
S088 Same as 8086 with 8-bit external data bus

P2 80286 Added protected mode

P3 B0386Dx 32-bitregisters and buses, added virtual 8086 mode
B03865x Same as 80386Dx with 16-bit external data bus

P4 80486Dx Same as 803 836Dx with integrated FPU and 1.1 cache
8048658x Same as 80486Dx without coprocessor
80486Dx2 and Same as 80486Dx with faster (2x or 3x)intemal clock
80486Dx4

P5 Pentum Classic | Dual instruction pipelines, 64 bit external data bus
Pentium MMX | Same as Classic with support for MMX

P6 Pentium pro Dvnamic execution, .2 cachein same package, no MMMX
Pentum II Same as Pro new cartridge package, MMX support
Celeron Same as Pentium II but no integrated L2
Pentium IIT Same as Pentium II with S5E support
Pentium 4 Microburst architecture

P7 I[tanium 64-bitregisters, 128 bit instruction bundles with explicit

paralielism, I 28 bit data bus, 64 bit address bus

AW e W e W N W P AN A WA Ta W A W AN ok I A W e

X66 Eamily,

Real Mode Protected Mode

Virtual 8086 mode

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

* In real mode, the advanced processors,
Including the Pentium, simply operate like
very fast 8086, with the associated 1 MB
memory limit.

* Real mode operation Is automatically selected
upon power-up.

* Pentium-based PC that boots up into DOS is
operating In real mode.

* In protected mode, the full 4 GB of memory
IS available to the processor.

It supports for multitasking, virtual memory
addressing, memory management, protection
and control over the iInternal data and
Instruction cache.

« The Windows operating system runs In
protected mode to take advantage of these
Improvements.

PENTIUM PROCESSOR

* The term “’Pentium processor’ refers to a family
of MICroprocessors t_hat share a common
architecture and instruction set.

* The first Pentium processors were introduced iIn
1993.

It runs at a clock frequency of either 60 or 66
MHz and has 3.1 million transistors.

The features of Pentium architecture are
* Improved instruction execution time

* Bus cycle pipelining

» Address parity .

* Internal parity checking

 Functional redundancy checking

FEATURES

Wider (64-bit) Data Bus: With its 64-bit-wide external data
bus the Pentium processor can handle up to twice the data
load of the Intel486 processor at the same clock frequency.

Superscalar Architecture: Dual Instruction Pipeline

Dynamic Branch Prediction Logic: The Pentium processor
fetches the branch target instruction before it executes the
branch instruction.

Enhanced Floating Point Unit: The Pentium processor
executes individual iInstructions faster through execution
pipelining, which allows multiple floating point instructions
to be executed at the same time.

Dedicated Instruction and Data Cache: The Pentium
processor has two separate 8 KB caches on chip-one for
Instructions and one for data.

Write-Back MESI Protocol in Data Cache: When data is
modified; only the data in the cache is changed.

STAGES OF PENTIUM PROCESSOR

Pre-fetch/Fetch : Instructions are fetched from the
Instruction cache and aligned in pre-fetch buffers for
decoding.

Decodel : Instructions are decoded into the Pentium's
Internal instruction format. Branch prediction also takes
place at this stage.

Decode2 : Same as above, and microcode ROM kicks
In here, If necessary. Also, address computations take
place at this stage.

Execute : The Integer hardware executes the
Instruction.

Write-back : The results of the computation are written
back to the register file.

FLOATING POINT UNIT

 There are 8 general-purpose 80-bit floating
point registers.

 Floating point unit has 8 stages of pipelining.
=irst five are similar to integer unit.

* Since the possibility of error Is more In
floating point unit (FPU) than In integer unit

Dept of ECE,NRCM

Multi-core processor

* A multi-core processor I1s a single chip that
contains more than one microprocessor core.

« Each core can simultaneously execute
processor instructions in parallel.

* This effectively multiplies the processor’s
potential performance by the number of cores.

» Because the cores are physically close to each
other, they can communicate with each other
much faster than separate processors In a
multiprocessor system.

* It improves overall system performance.

S S

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

UNIT- 3

/O INTERFACING

Memory Interfacing

* While executing a program, the microprocessor
needs to access memory frequently to read
Instruction code and data stored in memory; the
Interfacing circuit enables that access.

Memory has some signal requirements to write
Into and read from Iits registers.

« Similary, the microprocessor initiates a set of
signals when it wants to read from and write Into
memory.

1/0 INTERFACING

* The Input/Output devices such as keyboards and
displays are the communication channels to the
outside world.

 Latches and buffers are used for 1/O interfacing.
They once hardwired, perform only one function
(either as input device If It is buffer and as output
device If 1t Is a latch). Thus limiting their
capabilities.

 To improve the overall system performance the

Intel has designed various programmable 1/O
devices.

Some of the peripheral devices developed by
Intel for 8085/8086/8088 based system are:

8255 - Parallel Communication Interface
8251 - Serial Communication Interface
8254 - Programmable Timer

8279 - Keyboard / Display Controller
8257 - DMA Controller

8259 - Programmable Interrupt Controller

 The microprocessor can communicate with
external world or other systems using two
types of communication interfaces. They are:

e Serial Communication Interface

e Parallel Communication Interface.

Serial Communication Interface

* The serial communication interface gets a byte
of data from the microprocessor and sends it
bit by bit to the other system serially or it
receives data bit by bit serially from the
external system.

* Then It converts the data into bytes and sends
to the microprocessor.

Parallel Communication Interface

A parallel communication interface gets a byte
from the microprocessor and sends all the bits
In that byte simultaneously (parallel) to the
external system and vice-versa.

SERIAL COMMUNICATION INTERFACE

* The primary difference between parallel I/O and
serial 1/0 1s the number of lines used for data
transfer; the parallel 1/0 uses the entire data bus
and serial 1/0O uses one data line.

* In serial 1/O transmission the microprocessor
selects the peripheral through chip select (CS)
and uses the control signals read to receive data
and write to transmit data.

* The address decoding can be either 1/0O-mapped
1/O or memory-mapped I/0O.

Serial data transmission i1s classified as

Simplex

Half duplex

Full duplex

Simplex

* The data are transmitted in only one direction.
There I1s no possibility of data transfer in the
other direction.

« Example : Transmission from a computer to
the printer.

Half duplex

 The data are transmitted in both directions, but
not simultaneously.

« Example : Walky - Talky

Full duplex

« The data are transmitted in both directions
simultaneously.

« Example : Telephone

The data In the serial communication may be
sent In two formats:

* Asynchronous
* Synchronous

Synchronous Transmission

* In synchronous transmission, a receiver and
transmitter work in same speed and could be
synchronized.

 Both will use a common clock and start at the
same time

Transmitter I 1 § T RECEver

L 1

Clock

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Asynchronous transmission

The asynchronous transmission Is character-
oriented. Each character carries the information of
the Start and Stop bits

When no data are being transmitted, a receiver
stays high at logic 1, called Mark and logic O is
called Space.

Transmission begins with one start bit (Low),
followed by 7 or 8 bits to represent a character
and 1 or 2 Stop bits (high).

A start bit, character and stop bits are called as
Frame.

ANk

olart b

Mark

Stuptz

f

Space

0

]

‘

[;

s

Frame

I}

[;

-t

T

i —— Charcter ——|

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

LI0CK

PARALLEL COMMUNICATION INTERFACE OR
(8255 A - Programmable Peripheral
Interface)

* |t has a 3-state bi-directional 8-bit buffer which
Interfaces the 8255Ato the sys-tem data bus.

* It has 24 programmable 1/O Pins.

* It reduces the external logic normally needed
to interface peripheral devices.

* It has two 8 bit ports: Port A, Port B, and two 4
bit ports: Cypper aNd C| ower.

* Available in 40-Pin DIP and 44-Pin PLCC.

OPERATING MODES

* |t can be operated In two basic modes:
— Bit Set/Reset Mode
— 1/0O Mode

* |/O mode is further divided into 3 modes:
— Simple 1/0 mode (Mode 0)
— Strobed 1/0 mode (Mode 1)
— Bidirectional Data Transfer mode (Mode 2)

Pin diagram of 8255A

- 44

Pa: [A] Pas
Pa: [=2 39) P
Pa, [2 3 | P
Pa. [4 3IA_] Pas
RO s 34] (L u]
= [ds aq] RESET
ano T 7 =41 D,
s [s 34] Dw
. I: = G ! :I D:
c- [1o 3] D=
ce [44 8255A 301 o.
C: [12 291 Ds
Ce. [13 2d] D«
PCo [14 241 D+
=,] 45 24— Ve
C: [18 24 1 PB-
c: 1 17 >4 1 PB:
PEBy [18 24] PBs
PE, [19 2471 PB.
FEB: [=20 21) FB=

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

The 8255 consists of Four sections namely
Data Bus Buffer

Read/Write Control Logic
Group A Control

Group B Control

— +5V
— GND

Fower
Supply

Bidirectional Data Bus

Data
4 > Bus l(:
D7 - De Buffer

"

Group
A

-)I Control

Group
Port A
(8)

Y

™~ 8.Bit

Internal
Data
Bus

Internal Bus

RD—>0
WR—=>0
Jql
iy : Fead
a i
RESET 3 Control
Logic

(aroup

B
CominG

[0
PA--PAg

lle
PC, -PC,

Ile
PC; -PC,

Ilo
FB, -PB,

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

DATA BUS BUFFER

e Used to Interface the iInternal data bus of
8255A 10 the system data bus of 8085.

* Using IN or OUT instructions, CPU can read
or write the data from/to the data bus buffer.

* |t can also be used to transfer control words
and status information between CPU and

8255A.

Read/Write Control Logic

* This block controls the Chip Selection (CS),
Read (RD) and Write (WR) operations.

It consists of A, and A, signals which are
generally connected to the CPU address lines
A, and A, respectively.

« When CS (Chip Select) signal goes LOW,
different values of Ayand A, select one of the
1/O ports or control register

cs Ay | Ay Selected
0 0 0 PORT A

0 0 1 | PORT B

0 1 0 | PORT C

0 1 1 | Control Register

1 X X | 8255A1snot Selected

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

—=, PortA=0H
{cs
o 8255 [—> PortB=81H
Fllﬁ
108 —9RD. — PortC =582 H
0N — R
RESET

Fig.1.3. Chip Select Logic

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

 Group A : Port A and Most Significant Bits
(MSB) of Port C (PC, — PC-)

« Group B : Port B and Least Significant Bits
(LSB) of Port C (PC,— PC,)

 Port A: One 8-bit data output latch/buffer and
one 8-bit input latch buffer.

* Port B: One 8-bit data input/output latch/buffer.

 Port C: One 8-bit data output latch/buffer and
one 8-bit data Input buffer. This port can be
divided into two 4-bit ports and it can be used for
the control signal outputs and status signal inputs
In conjunction with ports Aand B.

E 4 Z 1 5]
0/1
|
BSR mode o
Mode () Mode 1
Simple /O Handshake /O
for Ports A, B and C for Port A andlor

Port B
Port C bits are used as

handshake signals

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

l

Mode 2
Bi-Directional Data bus for Port A
Port B in either Mode 0 or 1
Part C bits are
used as handshake signals

BSR (Bit Set/Reset) Mode

* This mode is applicable only for Port C.

. A control word with bit D; = 0 Is recognized
as BSR control word.

* This control word can set or reset a single bit
In the Port C.

Dy Dg Dz Dy Dg Dz O Dy
O x = A =R
| |
+
Mot used = Set- 1
BSR Mode . Reset- 0

D0 Bat O
001 Bit 1
o110 Bit 2
011 Bit 3
100 Bit 4
101 Bit &
110 Bit &
111 Bit 7

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

The 1/0O mode Is divided into three modes
Mode 0, Mode 1 and Mode 2 as given below.

 Mode 0 — Basic I/0 Mode
* Mode 1 — Strobed I/0O Mode
 Mode 2 — Bi-directional data transfer mode

Control Word

L)

D, I D, Il::-____ D, D, =
——

Sroup B \""'-..

Poart G__I-I:Ic:w'er— PC.-PGC.)

= Input
0= Cutput
Port B
1 = Input
0 = Cutput

Mode Selection
0=Maode 0
1= Maode 1

Group A \

Port C (Upper-PC.-PC,)

1 = Input
0= Output
Part A

1 = Input

0 = Cutput

Mode Selection
00 = Mode O
01 = Mode 1
1¥ = Mode 2

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

3
0

O Mode
BESRK Mode

Mode 0 — Basic I/O mode

The features of Mode O are :

Two 8-bit ports (Port A, Port B) and two 4-bit

ports (Port C, Port C,). Any port can be input
or output.

Outputs are latched.
Inputs are not latched.

> PortA (Output

<: Port Cusess (Input)

> Port CLowes (Output)

T th on M o

> PortE (Output)

Fig.3.6. Ports in Mode 0

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Mode 1 - Strobed Input/Output

 In this mode, handshake signals are exchanged between the
microprocessor and peripherals prior to data transfer

The features of mode 1 are :
* Two Groups (Group Aand Group B).

« Each group contains one 8-bit data port and one 4-bit
control/data port. The 8-bit data port can be either input or
output

« The 4-bit port is used for control and status of the 8-bit data
port.

e If Port A'is In mode 1 (input), then PC,, PC,, PC; are used
as control signals. If Port B iIs in mode 1 (input), then PC,,
PC,, PC, are used as control signals.

« Both inputs and outputs are latched.

Dept of ECE,NRCM

\VV Nagalakshmi As<st nrof

0D DDED DD D
Pho PA
|NTE:"’ K—JPortA (input o 11 {m]1]1]|x
I . |_||
= |BFa /0 Mode™ Fort Ain — Port B {Input})
g Mode 1 — PortB in
) PortA (INPUT)— Mode 1
2 —= IMNTRa — PCsPC;
5 1-Input
Ex — _
A IMNT BC, STBs 0 - Output
Control Word
PC+——=IBFs
PCd *|MNTRs D D Ds Dy D3 Dz Dy Dg
PR-PEL—IPortB (Input) [1O | 0 [IBFA [INTE,|INTR.[INTE,| IBF, [INTR,
Fle-PL1=7 710 Status Word for Mode 1 (Input)

 STB (Strobe Input) — A “low” signal on this
pin indicates that the peripheral device has
transmitted a byte of data.

* The 8255A In response to STB , generates IBF
and INTR.

* IBF (Input Buffer Full) — A “high” signal
Issued by 8255A Is an acknowledge to Indicate
that the input latch has received the data byte.
This 1s reset when the CPU reads the data.

* INTR (Interrupt Request) — This Is an output
signal, used to interrupt the CPU. This will be
In active state when STB , IBF and INTE
(internal Flip-Flop) are all at logic 1. This will
be reset by the falling edge of RD signal.

* INTE (Interrupt Enable) — This Is an Internal
Flip-Flop used to enable or disable the
generation of INTR signal. There are two Flip-
Flops INTE,and INTEg are set/reset using the
BSR mode.

Mode 2 — Bi-directional Data
Transfer Mode

This mode provides a means for communicating
with a peripheral device or structure on a single 8-
bit bus for both transmitting and receiving data
(bidirectional bus 1/0).

The features of Mode 2 are :
Used In Group Aonly.
Port Aonly acts as bi-directional bus port

Port C (PC;5-PC,) Is used for handshaking
DuUrpose.

PAPA {—> Port A

PC: > [NTH,
8
2 P * OBF,
4] PC: ¥ ACK.
D
A F”:_.'_ > ETE:
PCg; = |BF,

PC—PC. %

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

INTR (Interrupt Request):

* A high on this output can be used to interrupt
the CPU for Iinput or output operations.
OBF(Output Buffer Full):
This signal will go LOW to indicate that the
CPU has written data out to Port A.
ACK(Acknowledge):

A LOW on this input enables the tri-state
output buffer of Port Ato send out the data.

 Otherwise, the output buffer will be in the high
Impedance state.

O Mode ™=

D L) D] D] D D
1 O x X O 17D ‘
7 !
PortAin PC—PCo
Mode 1 1-Input
4 O-Output
+ Port B (Input})
Port B
Mode O

Mode 2 - Input Configuration

WO Mode <—

O O D D Dz D Oy Do
1 1 E X X 1 o X ‘
; |
FortAin P —PCy
kMode 2 1-lnput
C-Output
J FPort B
Port B (Output)
Mode 1

Mode 2 - Output Configuration
Dept of ECE,NRCM

\VV Nagalakshmi As<st nrof

DIGITAL TO ANALOG
CONVERTERS (DAC)

The digital to analog converters (DAC)
convert binary numbers into their analog
equivalent voltages or currents. Several
techniques are employed for digital to analog
conversion.

Weighted resistor network

R-2R ladder network
Current output D/A converter

APPLICATIONS

Digitally controlled gains
Motor speed control
Programmable gain amplifiers
Digital voltmeters

Panel meters, etc.

* Resolution: It is a change in analog output for
one LSB change In digital input.

(1/2n)*Vref
« 1/256*5 V=39.06 mV (since n=8 for 8-bit
DAC)

« Settling time: It 1s the time required for the
DAC to settle for a full scale code change.

DAC 0800 8-bit Digital to Analog
converter

DACO0800 1i1s a monolithic 8-bit DAC
manufactured by National semiconductor.

It has settling time around 100ms.

It can operate on a range of power supply
voltage 1.e. from 4.5V to +18V.

Jsually the supply V+ Is 5V or +12V. The V-
nin can be kept at a minimum of -12V.

Resolution of the DAC 1s 39.06mV

Threshold

Cnn1-i|l S

v _
lL'F_ 1 16 Compensation
Lo 2 154 Mres(-)
v4 | 3 14| Vier(+)
h —
o | 4 Da00 130 v+
B41 5 12| | BelLSB
B4 5 11) B7
B4 | 7 10[| B

—{ &
B. a 9 B

—{ s

Fig.3.13. Pin Diagram of DAC 0300

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Interfacing of DAC0S00 with 8086

2p 1

B-5

13
DAC0800

16

W W

W

13 © 45V or
+12V

; N\
PA-PA
T v
W —
8235 {E.Ek
01
12V
0.1uFE
Y

\VV Nagalakshmi As<st nrof

Dept of ECE,NRCM

The V. should be tied to +5 V to generate a
wave of +5V amplitude.

The required frequency of the output Is 500
Hz, 1.e. the period Is 2 ms.

Assuming the wave to be generated

IS symmetric, the waveform will rise for 1 ms
and fall for 1 ms.

This will be repeated continuously.

ASS5TUME
CODE
START -

BACEK :

BACEKI :

CODE

CS : CODE
SEGMENT
MOV AT..BOH
OUT CWER, AL
MAON AT, O0OH
OUT Port A AT
INC AT

ChMP AT.. FFH
JBE BACEK

OUT Port A AT
DEC AT

ChP AT OO0

JA BACKI1

JMMP BACE
ENDS

END START

: Initialise 8255 ports

: suitably.

. Start rising ramp from

0% bv sending 0O0H to DAC.
: Increment ramp tll 5V

. compare with FFH

- Ifiti1s FFH then

: Output it and start the falling
:ramp bv decrementing the

- counter till it reaches

LR e e o

- for the next cvde.

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

ANALOG TO DIGITAL INTERFACE

* ADC 0808/0809

|

SD‘LC EI#_H
Contral, — EOC
= Timing unit and
successive l
Py =— approximation
P2 — register | -
IP3—| 8Channel i -
Py Mﬂln_allng U:> |
t
IPg HHPTERE Output [| &bt
P, 25 R Latch ™ [op
Reqgister |
Pz ladder and
Switch tree)
1]
C B A T 1 Output
Address Lines ref+ f— Enable
Dept of EC%,“%IPCI\/IH[E”

\VV Nagalakshmi As<st nrof

=0 Ar.d. d

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

(bate ‘tl b2 10
Output (n=4)
o — L

Output 1=} b3 432 10

e

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

A WAL wf ot 'l.l"tﬂ.l LLLCLLPLL LML Whie | T

T]
' |RD |WR Operation

0 | 0 [0 | MPUwntesthedatais §279

0 10 |1 | MPUreadsthe data from8279

L [1 |0 | MPUwntescontrol wordto 8279

1 [0 |1 | MPUreads status word from 8279

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Keyboard Section

 This section has keyboard debounce and
control, 8x8 FIFO/Sensor RAM, 8 Return lines
(RL, — RL;) and CNTL/STB and shift lines.

* In the keyboard debounce and control unit,
keys are automatically debounced and the
keyboard can be operated In two modes.

* Two key lock out
* N —key roll over

FEATURES

High integration of functionality :

* Microcontrollers are called as single chip
computers because they have on - chip
memory and 1I/O circuitry and other circuitries
that enable them to function as small stand -
alone computers without other supporting
circultry.

Advantages of microcontrollers

« The overall system cost Is low, as the
peripherals are integrated in a single chip.

* The product is of small size as compared to the
microprocessor based system and IS very
handy.

* The system is more reliable.

 The system Is easy to troubleshoot and
maintain.

* If required additional RAM, ROM and I/O
ports may be interfaced

ARCHITECTURE OF 8051

PO.O-PO.7 P2 0-P2.7

A B A

Moo
S O Post O Port 2
| Port2 ep:z«.i‘
NV Latch =ROR
ME= P j‘r ‘| r
>
1
Stacik Program
L Fonte E52. KT
TASE=D . b | |
e - TP -~ -~ I =: -~ ;d Buffer
ALU 'k -
i s1aali gt |
THITLIIlE = Lo d kil
lnterrubt. Senal Program
PSSV, Port & Timer Countor
ESEN € Es Bilocks
< n P
AlE €——— Timing —
and - - >_>[—i h
= — controt Jd J
- Poet 1 P 3
RST — > Latch Latch
I-:)sc:zie:or Por 1
XTAL 1 —|D|— XTALZ2 P1.0-P1.7 FIP 3T

—":l:".- Dept of ECE,NRCM
= \/ Nagalakshmi Acc<t EdEnfl S 8051 Architecture

The features of the 8051 are :

8 bit CPU with registers A (the accumulator) and B

16 bit Program Counter (PC) and Data Pointer (DPTR)
* 8 bit Program Status Word (PSW)

* 64K Program memory address space

« 64K Data memory address space

128 bytes of on chip data memory

« 32 1/0O pins for four 8 bit ports : Port 0, Port 1, Port 2,
Port 3

* Two 16 bit timers / counters : Ty and T,

* Full duplex UART : SBUF

« Two external and three internal interrupt sources
* On chip clock oscillator.

Central processing unit

 The CPU is the brain of the microcontrollers
reading user’s programs and executing the
expected task as per instructions stored there
In. It’s primary elements are an Accumulator
(ACC), B reqgister (B), Stack pointer (SP),
Program counter (PC), Program status word
(PSW), Data pointer register (DPTR) and few
more 8 bit registers.

Accumulator

* The accumulator performs arithmetic and logic
functions on 8 bit input variables.

* Arithmetic operations include basic addition,
subtraction, multiplication and division.

 Logical operations are AND, OR XOR as well
as rotate, clear, complement etc.

« Apart from all the above, accumulator Is
responsible for conditional branching decisions
and provides a temporary place In a data
transfer operations within the device.

B Register

B register i1s used In multiply and divide
operations.

* During execution B register either keeps one
of the two Inputs and then retains a portion of
the result.

* For other Instructions It Is used as general
purpose register.

Stack Pointer

Stack Pointer (SP) Is an 8 bit register.

This pointer keeps track of memory space where
the important register information are stored when
the program flow gets into executing a subroutine.

The stack portion may be placed in anywhere In
the onchip RAM.

But normally SP is initialized to O7H after a
device reset and grows up from the location 08H.

The SP 1s automatically incremented or
decremented for all PUSH or POP Instructions
and for all subroutine calls and returns.

Program Counter

 The Program Counter (PC) iIs the 16 bit
register giving address of next instruction to be
executed during program execution.

* |t always points to the program memory space.

Data Pointer Register

* The Data Pointer Register (DPTR) Is the 16 bit
addressing register that can be used to fetch
any 8 bit data from the data memory space.

* When it is not being used for this purpose, It
can be used as two eight bit registers, DPH and
DPL.

Program Status Word

 The Program Status Word (PSW) keeps the
current status of the arithmetic and logic
operations in different bits.

 The 8051 has four math flags that respond
automatically to the outcomes of arithmetic and
logic operations and 3 general purpose user flags
that can be set 1 or cleared to 0 by the
programmer as desired.

 The math flags are carry (C), auxiliary carry
(AC), overflow (OV) and parity (P).

« User flags are named flag 0 (FO), Register bank
select bits RSO and RS1.

CY | AC | FO | RS1 | H30 | OV — F

Carry J User Owverflow Farity
| fag d
® Auxiliary flag flag
Carry
flag v v
0 0 - Select register bank 0
0 1- Select register bank 1
1 0- Select register bank 2

1 1 - Select register bank 3

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Input / Output Ports

» 8051 has 32 I/O pins configured as 4 eight bit
parallel ports (PO, P1, P2 and P3).

Each pin can be used as an input or as an
output under the software control.

* These 1/O pins can be accessed directly by
memory Instructions during program execution
to get require flexibility.

Timers / Counters

8051 has two 16 bit Timers / Counters, TO and T1
capable of working in different modes.

» Each consists of a ‘HIGH’ byte and a ‘LOW’ byte
which can be accessed under software.

* There I1s a mode control register (TMOD) and a
control register (TCON) to configure these timers
/ counters In number of ways.

* These timers are used to measure time intervals,
determine pulse widths or Initiate events with one
microsecond resolution upto a maximum 65ms.

Serial Port

* The 8051 has a high speed full duplex serial
port which is software configurable in 4 basic
modes :

* Shift register mode
 Standard UART mode
* Multiprocessor mode
* 9 bit UART mode

Interrupts

* The 8051 has five interrupt sources : One from
the serial port (Rl / T1) when a transmission or
reception operation Is executed : two from the
timers (TFO, TF1) when overflow occurs and two
come from the two input pins INTO, INT1.

» Each interrupt may be independently enabled or
disabled to allow polling on same sources and
each may be classified as high or low priority.

* These operations are selected by Interrupt Enable
(IE) and Interrupt Priority (IP) registers.

Oscillator and Clock

* The 8051 generates the clock pulses by which
all internal operations are synchronized.

* Pins XTAL 1 and XTAL 2 are provided for
connecting a resonant network to form an
oscillator.

» Aquartz crystal Is used for oscillator.

 The crystal frequency iIs the basic internal
clock frequency of the microcontroller.

SPECIALFUNCTION REGISTERS (SFRS)

* The address of the Special Function Registers
are above 80H, since the addresses O0H to
/FH are the addresses of RAM memory.

 The SFRs have addresses between 80H and
FFH.

 But all the address space of 80H to FFH is not
used by the SFRs.

« The unused locations are reserved and must
not be used by the programmer.

1anie 4.3, 3peclal Funcoen Negisielrs

Name Functdon Address (Hex)
Acc(A) Accumulator E0|
B Anthmetic FO
DPH (Data Pomnter High byte) Addressing 23

extermal memory
DPL Data Pomter Low byte 32
IE Intermupt Enable Control AB
IP Intermupt Pnonty Control BE
PO 'O Port 0 Latch 80
Pl 'O Port 1 Latch o0
P2 'O Port 2 Latch AO
P3 'O Port 3 Latch BO
PCOMN Power Control 87
PSW Program Status Word DO
SCON Senal Port Control 08
SBUF Senal Port Data Buffer 00
SP Stack Pomter 21
ThOD Timer/ Counter Mode Control 209
TCON Tiumer/ Counter Control 28
TLO Tmer 0 low byte 2A
THO Timer 0 lngh byte 2C
TL1 Timer 1 low byte 2B
TH1 Timer 1 high byte 2D

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

ADDRESSING MODES

Immediate addressing mode
Register addressing mode

Direct addressing mode

Register indirect addressing mode
Indexed addressing mode

Immediate Addressing Mode

 When a source operand Is a constant rather
than a variable, then the constant can be
embedded into the instruction itself.

* This kind of Instructions take two bytes and
first one specifies the opcode and second byte
gives the required constant.

 The operand comes Immediately after the
opcode. The mnemonic for immediate data Is
the pound sign (#).

* This addressing mode can be used to load

Information into any of the registers including
DPTR register.

Examples :
MOV A #18H

18H

A

MOV EB,%65H

MOV DPTER., #2040H
DPL +— 40H
DPH =+— 20H

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Register Addressing Mode

 Register addressing accesses the eight working
registers (R, - R-) of the selected register bank.

 The least significant three bits of the
Instruction opcode Indicate which register Is to
be used for the operation.

* One of the four banks of registers iIs to be
predefined In the PSW before using register
addressing Instruction.

« ACC, B and DPTR can also be addressed In
this mode.

EHEII:[EIEE :

A R3
RO A
MOV RO, A vy

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Direct Addressing Mode

* In the direct addressing mode, all 128 bytes of
Internal RAM and the SFRs may be addressed
directly using the single - byte address
assigned to each RAM location and each SFR.

* Internal RAM uses address from O0H to 7FH
to address each byte.

Examples

R —1 64
] v

MOV R2. 61H) XX E;:
MOV 6FH. A ACC —
XX -

| “-~ > | 6FH

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Register Indirect Addressing Mode

* In this mode a register Is used as a pointer to
the data.

If the data Is inside the CPU, only registers RO
and R1 are used for this purpose.

 When RO and R1 hold the addresses of RAM
locations, they must be preceded by the “@”
sign.

Exampli

MOV@RLA - Movecontents of Atoto RAM locaton whose adches s held by 1.
|

MOVB, @GR - Noveconet of RA oation whos: s s el b R0 o

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Indexed Addressing Mode

 Only the program memory can be accessed by this
mode.

* This mode Is intended for reading lookup tables In the
program memory.

* A 16 bit base register (DPTR or PC) points to the base
of the lookup tables and accumulator carries the
constant indicating table entry number.

 The address of the exact location of the table 1s formed
by adding the accumulator data to the base pointer.

Example
MOVCA, @A+ DPTR

 The contents of A are added to the DPTR to form the 16
bit address of the needed data. ‘C’ means code.

I/OPORTS
Port 0 (P0.0 - 0.7)

Port O 1s used for both address and data bus (AD,
—AD>).
When the microcontroller chip Is connected to an

external memory, Port O provides both address
and data.

ALE pin indicates if Port 0 has address or data.
When ALE =0, Port O provides data (D, — D-)
=1, Port O provides address (A, —A,)

ALE Is used for demultiplexing address and data
with the help of a latch

Port1 (P1.0 - P1.7)
 Port 1 pins are used as Input or output.

* To make port 1 as an input port, write 1 to all
Its 8 bits.

* To make port 1 as output port, write 0 to all its
8 bits.

* Thus port 1 pins have no dual functions.

Port 2 (P2.0 - P2.7)

* Port 2 pins are used as Input / output pins
similar in operation to port 1.

* The alternate use of port 2 is to supply a high
order address byte (Ag — Aj;s) when the
microcontroller 1s connected to external
memory

Port 3 (P3.0 - P3.7)
* Port 3 pins are used as input or output

Pin Function
P3i.0-RXD Serial data input
P3i1-TXD Serial data output
P32- INTD External interrupt 0
P33 - INTI External interrupt 1
P3i4-TO External imer 0 input
P3i5-T1 External timer 1 input
P36- WR External memory write pulse
P37-ED External memory read pulse

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

INSTRUCTION SET

An Instruction Is a command given to the
computer to perform a specified operation on
given data.

The Instruction set 1s the collection of
Instructions that the microcontroller iIs
designed to execute.

The programmer can write the program In
assembly language using these instructions.

Data transfer group
Arithmetic group

Logical group

Boolean variable manipulation
Program branching

Data Transfer Instructions

Ahimnemomnic

Description

Ofperation

IO A Rn

IO A direct
IO A G Ri
OO A = data
IO Fo, A

IO Fn, direct
IO Fln, ==data
IO direct, A
IO direct, FEn
BAO direct, direct
IO dirsct, (@R
BAO direct, =data
LIOW, B Fi, &
IO B Ri_ direct
IO DPTE = data 16

MOV C A, @A+ DETRE

MOVC A, @A+ PC

MOV X A, @ Ri
MOV X A, @ DPTR
IOV X @ Ri, A
MOV X @ DPTE. A

FILI5H direct

S —FHn

A — (addr])

A — [Fi)

A s— data

Fn «— &

En «— {addr)

Fmn <— data
{addr) «— &
{addr) «— En
{addr 1) «— {addr)
(addr) <«— {Fi)
{addr) «— data
(Fi) «— A

(Ri) +— (addr)
DPFTF «— data 16
A e— A +DPFTE)

A (A +PC)

A e (R
A« (DPTR)”
{(FLA)}™ «— A

(DPTER)™ «— A

(SR A=A DDRE~- nipe
LJ\.HL Ul \)

I\ /

hiowe register to acciomlastor

Mlowea direct bete to accimmnlator
hiowe indirect FAMN to accurmilator
Mlowve immediate datato accunrmmlator
hiowe accumulator to registar

Mlowve direct bwta to resistar

hiowe imnmediate datato register
Mlove accunmulator to diresct bt
hiowe register to direct byta

Mlowve direct bwta to diract bwts
hiowe indirect E AN to direct beta
Mlove immediate datato direct bwts
hiowe accumulator to indirsct B A
Mlowve direct bete into indirsct EANT
L oad data poimterwrith 16 bit constant
howe cods bete relative to DPFTE to

accurmulator

howe code bete relative to PLC to

Mlove external EAN {8 bit addr=ss}to
accurmulator

hMove extermal RAM {16 bit address)
to accumulator.

IhAowe accurmulator to extermaal AT
{2 bitaddrass])

hovwe accumulator to external BRART
{18 bit address)

FPush direct byte omto stack

O, TNTY

v

\VV Nagalakshmi As<st nrof

Mnemonic Description Operation

POP direct (addr) < (3P) POP direct byte fromstack

XCHA En Ao En Exchangs registar with acoumlator

XCHA direct A4 (addr) Exchangs direct bvtawith accumulator

XCHA, @Ri A (R Exchangs indiract RAM with
accumulator

XCHD A, @Ri AL < (Ri)L Exchangs low ordardigit indirect
EAM with accumulator

Dept of ECE,NRCM

\VV Nagalakshmi As<st nrof

ARITHMETIC INSTRUCTIONS

Anemonic

Description

Operation

ADD_ A En
ADD A direct
ADD A, @Ri
ADD A = data
ADDVC A En
ADDVC A dirsct
ADDNC A, @R
ADDVNC A= data
SUTEBE A. Rn
SUBE A, dirsct

SUBE A, @ Fi
SUUBE A, = data

INGC A
INC Rn
IMC dirsct
INC @Ri
INCDETR
DEC A
DECRn
DEC diract
DEC @& Ri
MMLUL AR
DIV AB

DA A

A e A+ Fn

A e— A+ (adds)
Ao A+ (Ri)

A A+ data

A e A+Fn+C

A o— A+ {adds) +1C
A e— A+ (Ri)+C
A e A+ data
A A -Fn T

A oe— A {adds) - C

A A {Ri-O
SAow— A - data -1

A A+ 1

FEn+«+ Fn-—+1

{addr) «— (addr)+1

(Ri) «— (Ri) + 1

DFTE « DFTE +1

Ae— A -1

En« Fn-1

(addr) «— {addr)-1

(Ri) «— (Ri) -1

AB«—AxB

AR« AH

A <« a Dept of EC
- -

-

A

Add resister to accummulator

Add direct byte to accurmm lator

Add indirect FANR to accummlator

Add immediate data to accurmmlstor

Add resister to accumulator writh caro

Add direct byte to accumulatorwrith carrer

Add indirect AN to acciurmmlator writh caroer
Add immediatedata to accumulstor writh carce
Subtract resister from accumnulator writh bomonsr

Subtract direct byte from accurmulator writh
borrows

Subtract indirect AN from scoummlstorw-ith
borrows

Subtract immmediate dats from ascmmnmlstore-ith

borrows

Increment accurmualator
Incremernt resistar
Incremernt direct beta
Increment indirsct B AT
Increment data pointer
Dracrement acciurnulator
Dracrement resistar
Dracrement direct byta
Dracrement indirect AN
EIultiply A and B
Ddwide A b B

E,NRCM

Drercimal adjustaccurmilator

AL AL L1 1
V. INAPAIAKSTIIT

<<t—DT01

Al emsom ic Dhescrip fiom 1D era fom
ANL. A FEn AN AND {Bnj) AN remster to aoonimnlatar
ANT. A dirscr A AN (addr) AN direct byte 1o aconimm latar
ANMNL A, @R AN AN (R ANTY indirect FLAN to aconmmlatar

AN A =d=t=
AT, dirsct, A
AMNL direct, =data
OFT. A FEmn
OFL A, dirsct
OFL A, @Fi
ORI A =d=t=
OFL dirsot, A
OFRL dirsct, = data
=FEL A . FEmn
HEL A dissect
XKFL A, @Ri
=EL A =d=t=
APEL dirsci, A
KEL direct, #data
FIl. A

Fl.iooA

EE A

FRT A
CLLE A

CPL A
SWADR A

(A AND data
(addry AN (A
(addr) AN data
(A OFR (Fmn)

(A OF (addr)
A OF ((Bi)
(A OR data
(addry OF (A
(addry OF data
(A XOR (Fnj
(A HOFR (adds)
(A XOR ((Fi))
(A XOFR data
(addry JOF (A)
(addr) 30OF data

Ape—AT =S

A= A

Ce—Fme—Be e AT

A AT —* A

— -

S e — Ay

A — 00

fs— A

Ay o= Augy

AT imaresd iats dats to @ccnmnlatar
AND aconmmmlator o dirsct byt

AN imanediate data to direct byvite
OF rezister 1o aoonmmulator

OF dirsct byvrs 1o aoonmmlator

OF indirect FoA M 1o aconmm latar

OF imerediste datas 1o aoonmolstos
OF aoconmmn lator o direct byt=

OF imanadiate data to direct byte
Ex - OF rezister t0 aconimmlatar

EX - OF direct byvie to aoonmulator
EX - OF indirect FFAR 10 accnmnlatar
EX - OF immmadists dats 1o sconsmmlstar
EX - OF zoonmulatar to digect byis
EX - OF imanedizte data to direct byt
Fatats acocnmmlatar 1t

Fotats aconmulator 1= thronsh ceary
Fotats aconionlatar risht

Foatats aconsmmlatar risht thoansh ceamy

Mnemonic Description Operation
CLRC C«0 Clear carry

CLR bit bit « 0 Clear direct bit

SETBC C«l Set camry

SETB it bit & | Set direct bit

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

CPLC

CPL bit
JANL C bit

ANLC, @
ORL C, bit
ORL C. bit
MOV C, bit
MOV bit, C
JC radd

INC radd

JTB bit, radd
TNB bit, radd
TBC bit, radd

C

bit « bit
(CIAND bit
(CYAND
(C)} OR bit
(C)}OR. bit
C « bit
bit «— C
[C=1].PC
[C=0].PC
[bit = 1]: PC
[bit = 0]: PC
[bit = 1]: PC

Complement carry

Complement direct bit

AND direct bit to carrv

AND complement of direct bit to carry
OR direct bit to carrvy

OFR. complement of direct bit to carry
Mowe direct bit to carry
Mowve carrv to direct bit

«— PC + 2 +radd Jump if carrvis set
«— PC+2 +radd Jump if carrvis not set.

«— PC+3 +radd Jump if direct bitis set
« PC+3 +radd Jump if direct bitis not set
«— PC+3 +radd Jump if direct bitis set and clear bit

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Admernmomic

Descriptiomn

Operation

ACALL sadd

LCALL ladd

RET
RETI

ATUMP sadd
LIUMP ladd
STUMP radd,

IMP @ A+ DPTR

JZ radd,

JNZ radd

CINE A, direct, radd,

CINE A, # data, radd

CINE En.# data, radd

DINZRa. radd

DJNZE direct, radd.

NOF

(SPY—PC+ 2;

PC « sadd

(SPY«— PC+ 3
PC « ladd
PC «— (SP)

PC — (5P El

PC « sadd
PC «— ladd
PC «— PC +2 + radd,
PC «— DPTE + A

[A =00];
PC — PC +:"'+E§q!i:-d-

[& = O] ;
PC—PC +2 + gadd

[== (addr)]:
PC—PC +3 + gadd

[A == (data)];
PC « PC +3 + gadd,

[(Bn) <> data];
PC—PC +3 + gadd

[Fp-1 === 00];
PC—PC +3 + gadd

[(addy -1 = =] ;
PC—PC +3 + gadd

PC—PC +1

Absoluts subroutmes call

Leong subroutine o=l

Eetyun from sub - routins

Eetymnm from misrrap

Absoluts jump

Long jump

Short jump (relatire address)
Jump indirect relative to the DEPTE

Jump if sccumulator iz Zero

Jumpr if accumulator 1= ot Zero.

Compare direct byte to Avcc and jump if not
squal.

Compars immedizte data to Aoc and jump
i not equal.

Compars immediste data to register and
Jump if not egual.
Drecrement register and jump if not zero.

Diecrement direct byte and jump if not z=ro.

INo operation.

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

UNIT —3

INTERFACING
MICROCONTROLLER

PROGRAMMING 8051 TIMERS

Mode 1 Programming
Operations of mode 1:

e |t allows values of 0000 H to FFFF H to be loaded
Into the timer’s registers TL and TH.

o After TH and TL are loaded with a 16 - bit initial value,
the timer must be started.

* This is done by “SET B TRO” for Timer 0 and “SET B
TR1” for Timer 1.

 After the timer Is started, It starts to count up. It counts
up until it reaches its limit of FFFF H. When it rolls
over from FFFF H to O000OH, it sets high a flag bit
called TF (Timer Flag). This timer flag can be
monitored. When this timer flag Is raised, one option
would be to stop the timer with the instructions “CLR
TRO” or “CLR TR1” for Timer 0 and Timer 1

respectively.
 After the timer reaches its limit and rolls over to repeat

the process the registers TH and TL must be reloaded
with the original value and TF must be reset to 0

TIMER FOR MODE 1

n Overfow fag
Osciltor | [-
Frequency 1 } 1| A)E
— [(IF qogs high

IR When FFFF =0

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

PROCEDURE

Load the TMOD value register indicating which
timer (Timer O or Timer 1) iIs to be used and
which timer mode (0 or 1) Is selected.

Load registers TL and TH with Initial count
values.

Start the Timer.

Keep monitoring the timer flag (TF). When TF
becomes high get out of the loop.

Stop the timer.
Clear the TF flag for the next round.

- - E -

Load TMOD DELAY SUBROUTINE

(Timer 3= Mode 1) Start Timer 0
e i =
Load The initial value h
into THO—TLO Monitor Timer 0O flag
until it rolls over
.
Toggle P2 .2
Mo s
J{ TF = 1
Call Delay Subroutine
Yes

Stop Timer 0O

b

Clear Timer 0 Flag

Retum

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

PROGRAM

EL -0 NF LN -

BACNT ThIODD F 01
PN TIL.O. & OF2 H
TP 1: BAC N THO_ # OFF H
CPI. P2 2
A AT T, IDET AN
ST T.OORP 1
IDDET A Y SET TEO
T 22 JINIE TEFO_ T2
CT.R TEO
CIT.E TED
RET

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

TMOD register:

e Timer 1 ¢ Timer { —
GATE | CT M1 M0 GATE | CM M1 M0
0 0 0 0 0 0 0 1

Timer 0. Mode 1 -16 bit Timer mode.

"o et e o et ettt e et e et e e et e

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

=01H

Progcram :

LOOP 1:

LOOP2:

CLE
hAON
BAON
BAON
SET B
SET B

CLE
CLE
CLE
LIMP

Pl 4

THhiOD, w01 H
TT.0O, #0B0 H
THO, #3CH
Pl1. 4

TEO

TFO, LOOP2
TER.O

TFOD

Pl1. 4

LOOP1

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Mode 2 Programming
Operations of Mode 2:

Mode 2 allows only values of 00 H to FF H to be loaded
Into the timer’s register TH.

After TH is loaded with the 8 bit value, the 8051 gives a
copy of it to TL. Then the timer must be started. This Is
done by “SET B TRO” for Timer 0 and “SET B TR 1” for
Timer 1.

After the timer Is started, it started it starts to count up by
Incrementing the TL register. It counts up until it reaches its
limit of FFH. When it rolls over from FFH to O0H, it sets
high the timer flag (TF) TFO is raised for Timer 0 and TF 1
IS raised for Timer 1.

When the TL register rolls from FF H to 00 H and TF is set
to 1, TL is reloaded automatically with the original value
kept by the TH register. To repeat the process clear TF (anti
- reloading).

Oscillator
Frequency

T Overflow flag

12 } i —r— T
CT=0 F ! |
TR i TF goes high
Reload when FF —= (
THx

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

PROCEDURE

Load the TMOD value register indicating which
timer (Timer 0 or 1) Is to be used and select the
timer mode 2.

Load the TH registers with the initial count value.
Start the timer.

Keep monitoring the timer flag (TF) with “JNB
TFx” instruction. When TF becomes high get out
of the loop.

Clear the TF flag
Go back to step 4, since Mode 2 Is auto - reload.

TMOD register :

je— Timer 1 >|€ Timer 0 —|
GATE CIT M1 MO GATE CIT M1 M0
0 0 1 0 0 0 0 0
Timer 1. Mode 2 — Auto reload
Program ;
MOV TMOD. = 20H
MOV THI1_ %6
SETE TR1
LOOP: JNB JF1, LOOP
CPL P13
CLE TF 1
SINP LOOP

Dept of ECE,NRCM

\VV Nagalakshmi As<st nrof

=20H

COUNTER PROGRAMMING

« When C/T = 1, the timer Is used as a counter and gets
Its pulses from outside the 8051. The counter counts up
as pulses are fed from pins TO (Timer O input) and T1
(Timer 1 input). These two pins belong to port 3. For
Timer 0, when C/T =1 pin 3.4 provides the clock pulse
and counter counts up for each clock pulse coming
from that pin.

« Similarly for Timer 1, when C/T = 1 each clock pulse
coming in from pin 3.5 makes the counter countup.
P3.4 -TO - Timer/Counter 0 external input

P3.5 -T1 -Timer/Counter 1 external input

* In counter mode, the TMOD, TH and TL registers are
the same as for the timer. Counter programming also
same as timer programming.

LOOP1:
LOOP 2:

MOV
MOV

SETB
SETB
MOV
MOV

CLR
CLE
SIMP

TMOD,#01100000B
TH1,#00H

P35

IR 1

A TLI
P2 A
TF1,LOOP2
TR1

IF 1

LOOP 1

Counter |, Mode 2, o7 =1
Clear TH1

Make T1 input
Start the counter

. Getcopy of count TL 1

Displav it on Port 2

. Goto Loop 21f TF=0

Stop the counter 1
Make TF=0
Jump to Loop 1.

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

SERIALPORT PROGRAMMING

Programming the 8051 to transfer data
serially

 The TMOD reqister 1s loaded with the value
20H, Indicating the use of Timer 1 Iin mode 2

TMOD Remster

GATE| CT | MI | MO | GATE| CT | MI | MO
0 0 l 0 0 0 0 0

If M; M; =10, 8 it Auto - reload counter

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Table to set the baud rate for serial

transfer.
Baud rate TH 1 (Decimal) TH 1 (Hex)
9600 -3 D
4800 -6 FA
2400 -12 F4
1200 -24 E8

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

"he TH 1 1s loaded with one of the values In

data

he SCON register Is loaded with the value 50
H, indicating serial mode 1, where 8-bit data Is
framed with start and stop bits.

SCONregster
SMO | SM1| SM2| REN| TBS| RB8| T | HI

0 1) 1 0 01 0 [0
£ SM0, SM1=01, Semal Mode 1, 8 bt data, I stop bt 1 start but

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

'R 1 1s set to start Timer 1.

Tl 1s cleared by the “CLR TI” instruction.

The character byte to be transferred serially Is

written into the SBUF registers.
The TI flag bit is monitored with the use of the

nstruction “JNB TI, XX > to see If the

character has been transferred completely.
To transfer next character, go to step 5.

Program

Write an ALP to transfer letter ‘E” senally at 4800 baud continuously.

Solution:
MOV
MOV
MOV
SETB

LOOP1: MOV

LOOP2: INB
CLR
SIMP

TMOD.#20H ;. Timer 1, Mode 2 (Auto-reload)
TH1 #-6 - 4800 baud rate

SCON.#50H . 8-hit, 1 stop, 1 start, REN enabled
TR 1 - Start Timer 1

SBUF. = ‘E - Letter ‘E” to be transferred

T LOOP2 - Wait for the last bit

TI - Clear TI for next character
LOOP1 . GotoLoop 1 forsending “E°

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Programming the 8051 to recelve data serially

The first 4 steps are as same In programming
to transfer data serially.

RI is cleared with “CLR RI ¢ instruction.

The RI flag bit 1s monitored with the use of the
Instruction “JNB RI, XX to see If the
character has been received yet.

When RI Is raised, SBUF has the byte. Its
contents are moved Into a safe place.

To receive the next character, go to step 5.

Program

Write an ALP to receive bytes of data serially and put them in Port 2. Set the baud rate at
2400, 8 bit dataand 1 stop bit |

Solution:
MOV TMOD,#20H : Timerl, mode?
MOV THI1,#F4H . For 2400 baud TH1=12 (F4 H)
MOV SCON,Z50H ; 8-bit, 1 stop, REN enabled
SETBE TR1 - Start Timer 1
LOOP1; INB RLLOOP1 - Wait for character to come in
MOV A, SBUF . Saveincoming byte in A
MOV P2 A - SendtoPort 2
CLR RI . Getready to receive next byte
SIMP LOOPI . GotoLoop | ,tokeepgetting data.

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

INTERRUPT PROGRAMMING

An interrupt Is an internal or external event that
interrupts the microcontroller to inform it that a device
needs Its service. Every interrupt has a program
assoclated with it called the interrupt service routine
(ISR).

The 8051 has 6 interrupts:

Reset

Timer interrupts :Timer O interrupt and Timer 1
Interrupt

External hardware interrupts : INTO INT 1
Serial communication interrupt

The 8051 can be programmed to enable or disable an
Interrupt and the interrupt priority can be altered.
Register IE is responsible for enabling and disabling the
Interrupts.

Programming Timer Interrupts

* The timer flag (TF) is raised when the timer rolls over.
In polling TF, we have to wait until the TF is raised.

* In problem with polling method 1Is that the
microcontroller is tied down while waiting for TF to be
raised and cannot do anything else.

* Using interrupts solves this problem and avoids tying
down the microcontroller.

« If the timer Interrupt In the IE register Is enabled,
whenever the timer rolls over, TF Is raised and the
microcontroller Is interrupted In whatever it iIs doing
and jumps to the interrupt vector table to service the

ISR.

* In this way the microcontroller can do other things until
It 1s notified that the timer has rolled over.

TFO Times (0 interrupt Vector

‘ 1 I—,l 000BH ‘
Jumps to

TF1 Times 1 interrupt Vector

Jumps to

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Programming External Hardware Interrupts

* The 8051 has two external hardware interrupts
INT O and INT 1.

« Upon activation of these interrupts through
Port pins P3.2 and P3.3, the 8051 gets
Interrupted In whatever it is doing and jumps
to the iInterrupt vector table to perform the
Interrupt service routine (ISR).

 There are two types of activation for the
external hardware interrupts: Level triggered
and Edge triggered.

KEYBOARD INTERFACING

* The rows are connected to an output port and
the columns are connected to an Input port.

 When a key Is pressed, a row and a column
make a contact, otherwise there 1S no
connection between rows and columns.

« If all the rows are grounded and a key Is
pressed, one of the columns will have 0 since
the key pressed provides the path to ground.

 If no key has been pressed, reading the input
port will yield 1s for all columns since they are
connected to Vcc.

+5V

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

If any key Is pressed, the columns are scanned
again and again until one of them has a 0 on it.

After the key press detection, it waits 20 milli
seconds for the bounce and then scans the
columns again.

After 20 ms delay, the key Is still pressed, it goes
to detect which row It belongs to. To detect the
row It grounds one row at a time, reading the
columns each time.

If all columns are high, the pressed key cannot
belong to that row. Therefore it grounds the next
row and continues until it finds the row the key
press belongs to.

After finding the row, It sets up the starting
address for the look-up table holding the
ASCII codes for that row and goes to the next
stage to identify the key.

« Now It rotates the column bits, one bit at a
time into the carry flag and checks if it is low.

* When carry flag is zero, it pulls out the ASCII
code for that key from look-up table; otherwise
It Increments the pointer to point to the next
element of the look-up table.

Progoram
Write 8051 AT P to interface 4x4 matrix kevboard
Soluation =

ROW_1: MOV DPTR, #KEY 1]
SINP FIND
ROW_2: MOV DPTR, F#FKEY2
STNP FIND
ROW_3 : MOV DPTR.E#KEYS3
FIND - RRC A

JINC DNIATCH

INC IDPTE

SIMWAP FIINID
MATCH: CLR A

DAOW CA (A TDPTR

IO PO A

NIOSN P11 F00H
1.5 NWIOO™N A P2

ANIL A F0OFH

CIINE A _ #0FH. 1.3

CAT.T IDET. A

=SJInapP 1.2
Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

ASCII-Look up table for each row

ORG 3000H
EEY 0 : DB 07 -*17 - 27 - #3°
EKEY 1: DE 4" - 57 - “§" - * 7~
EEY 2: DE 8 -“9° - “A° - ‘B
EEY3 - DB C” - ‘D" - “E° - “F°
END

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

FProgram for Kevboard

PAON P2 FOFF H
AT P11 F=00EL

r2- PAO™ST S P2
ST A FFH0F EH
CIE A +F#=0F H_OWER
S=JhAE T2

W ER - ST AT T IOET Ay
PAO™ST S P2
ST & F=0F B
CIE A +FOFH OWER1
S=JhAE T2

%W ER1- AN P11 =0DFE-
PAO™ST S P2
ST & ==0F EL
CIE A F=OFH EAOOWT O
AN P1_=0FI> H
PAO™ST S P2
ST & F=0F B
CINE A +F#=OFH EFEOW 1
A Pl1_~=0FE K
PAO™ST S P2
ST & F=0F B
CIE A +F0OF H_ EOOW 2
PAOS 1 _F=0F 7 H
PAO™ST S P2
ST & FH0F B
CIE A #=0FH EFEOW 35
Dept of ECE,NRCM o

\VV Nagalakshmi As<st nrof

LCD INTERFACING

* The various types of LCD displays are, 16x2,
20x1, 20x2, 20x4, 40x2 and 40x4 LCDs. 16x2
LCD means that it having two lines, 16
characters per line.

* The 8 bit data pins (D,—D-) are used to send
Information tot he LCD or read the contents of
the LCD’s Internal registers.

* The data lines are connected to Port 1. Register
Select (RS),

* Read/Write (gy) and Enable (EN) plans are
connected to Port 3.

202
LCD

Il
=

EM

On D4 04 D] 3 Oz _,-‘M RS RAW | EN
Y
=
[N
L] y '
b j
5]
P1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 F3z2 33 34
P01 Dept of ECENRCM O |

\VV Nagalakshmi As<st nrof

GMND

There are two important registers are available inside the LCD. They
are (1) instruction command register, (ii) data register.

The RS pin is used to select the register. If RS=0, the instruction
command code register is selected, allowing the user to send a

command. If RS=1, the data register is selected, allowing the user to
send data to be displayed on the LCD.

rw PIN IS used to write information to the LCD or read information
from it. EN (enable) pin is used to latch information presented to its
data pins.

When data is supplied to data pins, a high-to-low pulse must be
applied to EN pin in order for the LCD to latch in the data present at
the data pins.

This pulse must be a minimum of 450 ns.

If RS=0 and gy =0
When busy flag (D;)=1, the LCD is busy and will not accept any

new Information.

When busy flag (D;) = 0, the LCD is ready to receive new
Information.

ADC interfacing

ADCs are used to convert the analog signals to digital
numbers so that the microcontroller can read them.

ADC [like ADC 0804 IC] works with +5 volts and has a
resolution of 8 bits.

Conversion time iIs defined as the time taken to convert the
analog Input to digital (binary) number. The conversion
time varies depending upon the clock signals; it cannot be
faster than 110 ps .

Analog input is given to the pins V;, (+) and V;, (-).
Vi, (-) 1s connected to ground.

Digital output pins are Dy- D;. D, is the MSB and Dy is the
LSB.

There are two pins for ground, analog ground and digital
ground. Analog ground Is connected to the ground of the
analog V;,and digital ground Is connected to the ground of
the V¢ pin.

The following steps are followed for data
conversion :

Make chip select (CS) =0 and send a low - to
- high pulse to pin WR to start the conversion.

Keep monitoring the INTR pin. If INTR Is
low, the conversion Is finished and go to the
next step. If INTR Is high, keep polling until it
goes low.

After the INTR has become low, we make CS

= 0 and send a high- to-low pulse to the RD
pin to get the data out.

B

8051 ADC 804

P25 RD Veoe e 5V
P2.6 WR CLK in —e

P1.0 —~—1D0

P1.1 l—<—1D1 _ +5V
P12 - D2 Vin (+) »
F1.3 ~ D3 Vin |:—]|

P14l D4

P15 |—<1D5 —
P16 —<~—1D6 AGND]

P1.7 < D7 Vrefl2 _
P27 ~—]INTR GND —

5

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

The program presents the concept to monitor the
INTR pins and bring an analog Input Into
register A. Then call a hex - to - ASCII
conversion and data display subroutines
continuously.

* P2.6 = WR (start conversion needs to low - to -
nigh pulse)
« P2.7=INTR, when low, end - of - conversion

« P2.5 = RD (a high-to-low will read the data
from ADC chip)

* P1.0-P1.7=D, - D; of ADC 804

MOV P1 =z0FFH -make P = mput

BACK: (LR P16 WR=0

SETB P16 :WR =1Low - to - high to start conversion.
HERE: JB P27 HERE - Wait for end of conversion

CLE P25 - Conversion finished. enable RD

MOV A Pl - read the data

ACALL CONVERSION - hex - to - ASCII conversion

ACALL DATA DISPLAY ; displav the data
SETB P25 - make RD =1 for next round
SIMP BACK

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

DAC INTERFACING

-5V
+SV
g 3K
P32 cs W0 Vel
P3.3 WR 5K
P3.4 BRD AN
8051
DAC
- 03808
P1.0 Do
P11 > D+
P1.2 2| D2
P13 > D:
P1.4 > D. -
P15 > Ds
P16 > D: Vref(-)
P1.7 > D+
GND

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

V oul

* The digital - to - analog converter (DAC) Is used
to convert digital pulses to analog signals.

The methods of creating a DAC are:

* Binary weighted

* R/2R ladder.

* Mostly R/2R method with DAC 0808 (MC 1408)
IS used since It can achieve a much higher degree
of precision. Port 1 furnishes the digital byte to be

converted to an analog Voltage and port 3 controls
the conversion process.

* In DAC 0808, the digital inputs are converted to
current. The total courrent provided by the I, pin
Is a function of the binary numbers at the D,— D,
Inputs of DAC and the reference current | .

Ll

D D D D D D DD,
Ly T+ —+ ¢

2 4 8 16 32 o 128 D6,
Where [.;= 2 mA.

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

SENSOR INTERFACING
Sensor :

Sensor converts the physical Pressure, Temperature or other variable
to a proportional voltage or current.

Types of Sensors :

Light Sensor
Temperature Sensor
Pressure Sensor
Force Sensor

Flow Sensor

Temperature Sensor

There are many types of temperature sensors. Now we discuss about
Semiconductor Temperature Sensor (LM 35). The LMS35 series
sensors are precision integrated circuit temperature sensor whose
output voltage is proportional to the Celsius (centigrade)
temperature.

It outputs 10 mV for each degree of centigrade temperature. If the
output IS connected to a negative reference voltage Vs, the sensor
will give a meaningful output for a temperature range of —559C to
+1500C. The output voltage can be amplified or filtered for a
particular application.

+5V

LM 35

Setto
2.56V

(4 = I:_S
il
R
CH1 MADD,
CH2 MATD
CH3 _ MA2ID;
=t
CH4 & MA3D:
CHS 2 madD,
L}5
or
D
r
Vief(+) INTR
] SEND

L

L 3

i

A

L

il

L &

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

ki

F2.4
F2.5
F2.6

F1.0
F1.1
F1.2
F1.3
F1.4

F1.5
F1.6

F1.7

o P2.7

2051

EXTERNALMEMORY INTERFACING

 When the data is located in the code space of
8051, MOVC Instruction Is used to get the data,
where ‘C’ stands for code.

« When the data memory space must be
implemented externally, MOVX instruction IS
used, where ‘X’ stands for external.

External data RAM interfacing

 To connect the 8051 to an external SRAM, we
must use both RD (P3.7) and WR (P3.6).

* In writing data to external data RAM, the
Instruction “MOVX @DPTR, A” Is used, where
the contents of register A are written to external
RAM whose address Is pointed to by the DPTR
register.

Program:

Write a program to read 200 bytes of data from Port 1 and save the data in external RAM
starting at RAM location 5000H.

H
RAMDATA EQU

COUNT EQU
MOV
MOV

AGAIN: MOV
MOVX

ACALL

INC

DINZ
HERE: SIMP

5000H

200

DPTR, # RAMDATA ; pointer to external NV-RAM
R3, #COUNT - counfer

APl -read data from P1

@DPTR. A -save it external NV-RAM
DELAY - wait before next sample
DPTR -next data location

R3. AGAIN -untl all are read

HERE - stay here when finished

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

P3T g
A&
P36 -
N ,_m[:p_} CE WE OF
= AZ__AI3 i:@

8051 P20 I 16KxB
ALE 6 Data
ki ADT T EQ AT RAM
- 74LS373 N

ADO o A) D7 DO
o2
. 4 D7
D0

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

STEPPER MOTOR INTERFACING

A stepper motor is a widely used device that translates electrical
pulses into mechanical movement. In applications such as disk
drives, dot matrix printers and robotics the stepper motor is used for
position control. Every stepper motor has a permanent magnet rotor
surrounded by four stator windings, that are paired with a center-
tapped common.

The center tap allows a change of current direction in each of two
coils when a winding Is grounded, thereby resulting in a polarity
change of the stator. The stepper motor shaft runs in a fixed
repeatable increment which allows one to move it to a precise
position.

This repeatable fixed movement is possible as a result of basic
magnetic theory where poles of the same polarity repel and opposite
poles attract. The direction of the rotation Is dictated by the stator
poles. The stator poles are determined by the current sent through
the wire coills.

As the direction of the current is changed, the polarity is also
changed causing the reverse motion of the rotor As the sequence of
power is applied to each stator winding, the rotor will rotate. There
are several used sequences where each has a different degree of
precision.

+5\

A
]

Stepper
Motor

|
g‘ :

rague
[::I If-] i - 18
+5% drver
J:., /\ A A A
Microcontroller
W)4 Y z
.-.EM, I Lat_n:h Fcl_h: TAHC595
LK Shit cl Shift register + latch
ouT Datz ol g

Fig 5.20 Drive circniiry for a stepper motor

The mowvement of the stepper motor with a simgle step 1= depends on the mtemal

construction ofthe motor, m particular the number ofteeth onthe stator and the rotor. The step

angle 1= the munirmmnm degree of rotation associated with a simmgle step. Vanous motors have

different step angles. Table 3.3 shows some step angles for vanous motors.

Steps per revolution = Totalnumber of stepsneeded to rotate one complete

Steps persecond=

rotation or 360 degrees.

FPM x Steps per revolution

60

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

WAVEFORM GENERATION:

Steps to generate sine wave on 8051 microcontroller.
Generate digital values of sine wave on a port that is 8 bit binary value.

Convert that digital value into analog value to take that 8 bit output on 1

pin.
Generated sine wave Is in steps hence to obtain a pure sine wave, pass it
through low pass filter. Thus by remove high frequency part, obtain
smoother sine wave.

First, generate digital values for sine wave. For this example take 16 points
in 1 cycle. Thus 1 value will hold for 1/16th of 360 degree. Hence use
sine(360 * (i1/16)) where i runs from 0 to 15.

This will cover 16 equally spaced points in one cycle. Place this cycle in
while (1) loop so that will get continuous sine wave.

In a cycle of sine wave, half cycle is positive and remaining half cycle is
negative. Since microcontroller cannot have negative voltage, will shift
sine wave to half of maximum value.

As maximum value is 255 for 8 bits, half of it is 127.5.Thus digital value to
be assigned to port is 127.5 + 127.5 * sine(360*(i/16)) where I runs from O
to 15. Here minimum value is 127.5 - 127.5 = 0 and maximum value is
1275+ 127.5 =255

Hence sine wave will be between 0 and 255 and which can be assigned to
port. Since most of the values will come in fraction, have to round figure to
assign integer value.

Program:
#include<reg51.h> |

int main(void)

{

//Digital values of sine wave
unsigned char x[16]={127.176,218_ 245 255 245 218.176_,128.79.37.10.0,10,37,79};

unsigned char i;

while(1)

{
for(i=0;i<16:;1++)
{

P1=x[i]:

¥

h

h

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Dept of ECE,NRCM
VV Nacalakshmi Asst nrof

COMPARISON OF MICROPROCESSOR,
MICROCONTROLLER, PIC AND ARM
PROCESSORS

Microprocessor

« Microprocessor has only a CPU inside them in one or
few Integrated Circuits. Like microcontrollers it does
not have RAM, ROM and other peripherals. They are
dependent on external circuits of peripherals to work.
But microprocessors are not made for specific task but
they are required where tasks are complex and tricky
like development of software’s, games and other
applications that require high memory and where input
and output are not defined. It may be called heart of a
computer system. Some examples of microprocessor
are Pentium, 13, and 15 etc.

Microcontroller

« A micro-controller can be comparable to a little stand alone
computer; it is an extremely powerful device, which is able
of executing a series of pre- programmed tasks and
Interacting with extra hardware devices. Being packed In a
tiny iIntegrated circuit (IC) whose size and weight Is
regularly negligible, it is becoming the perfect controller for
as robots or any machines required some type of intelligent
automation.

« A single microcontroller can be enough to manage a small
mobile robot, an automatic washer machine or a security
system. Several microcontrollers contains a memory to
store the program to be executed, and a lot of input/output
lines that can be a used to act jointly with other devices, like
reading the state of a sensor or controlling a motor.8051
microcontroller is an 8-bit family of microcontroller is
developed by the Intel in the year 1981.

https://www.elprocus.com/8051-microcontroller-architecture-and-applications/

PIC Microcontroller

« Peripheral Interface Controller (PIC) is microcontroller
developed by a Microchip, PIC microcontroller is fast and
simple to implement program when we contrast other
microcontrollers like 8051. The ease of programming and
simple to interfacing with other peripherals PIC become
successful microcontroller. Microcontroller is an integrated
chip which is consists of RAM, ROM, CPU, TIMER and
COUNTERS.

« The PIC is a microcontroller which as well consists of
RAM, ROM, CPU, timer, counter, ADC (analog to digital
converters), DAC (digital to analog converter). PIC
Microcontroller also support the protocols like CAN, SPI,
UART for an interfacing with additional peripherals. PIC
mostly used to modify Harvard architecture and also
supports RISC (Reduced Instruction Set Computer) by the
above requirement RISC and Harvard we can simply that
PIC Is faster than the 8051 based controllers which is
prepared up of Von-Newman architecture.

https://www.elprocus.com/introduction-to-pic-microcontrollers-and-its-architecture/
https://www.elprocus.com/8051-microcontroller-8-16-bit-timers-and-counters/
https://www.elprocus.com/analog-digital-converters/
https://www.elprocus.com/what-is-risc-and-cisc-architecture-and-their-workings/

ARM Processor

 An ARM processor Is also one of a family of CPUs based
on the RISC (Reduced Instruction Set Computer)
architecture developed by Advanced RISC Machines
(ARM). An ARM makes at 32-bit and 64-bit RISC multi-
core processors. RISC processors are designed to perform a
smaller number of types of computer instructions so that
they can operate at a higher speed, performing extra
millions of instructions per second (MIPS).

« By stripping out unnecessary instructions and optimizing
pathways, RISC processors give outstanding performance at
a part of the power demand of CISC (complex instruction
set computing) procedure. ARM processors are widely used
In customer electronic devices such as smart phones,
tablets, multimedia players and other mobile devices, such
as wearables. Because of their reduced to instruction set,
they need fewer transistors, which enable a smaller die size
of the integrated circuitry(IC).

https://www.elprocus.com/arm-architecture/
https://www.elprocus.com/different-types-of-integrated-circuits/

ARM PROCESSORS
UNIT 4

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Contents

= Introducing ARM

= EXceptions

= Interrupts

= Interrupt handling schemes
= Summary

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Introducing ARM

= Modes of operation

*ARM processor has 7 modes of operation.

*Switching between modes can be done manually through
modifying the mode bits in the CPSR register.

*Most application programs execute in user mode

*Non user modes (called privileged modes) are entered to
serve interrupts or exceptions

*The system mode is special mode for accessing protected

resources. It don‘t use registers used by exception hanlders, so it
can't be corrupted by any exception handler error!!!

Introducing ARM

= Modes of operation

Processor Mode

Description

User (usr)

Normal program execution mode

FIQ (fig)

Fast data processing mode

IRQ (irq)

For general purpose interrupts

Supervisor (svc)

A protected mode for the operating system

Abort (abt)

When data or instruction fetch is aborted

Undefined (und)

For undefined instructions

System (sys)

Privileged mode for OS Tasks

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Introducing ARM

s ARM register set

*ARM processor has 37 32-bit registers.
*31 registers are general purpose registers.
*6 registers are control registers

*Registers are named from RO to R16 with some registers
banked in different modes

*R13 is the stack pointer SP (Banked)

*R14 is subroutine link register LR (Banked)

*R15 is progrm counter PC

*R16 is current program status register CPSR (Banked)

Introducing ARM

s ARM register set

M state general registers and program counter

More banked
reqgisters, so
context switching
is faster

Sysiltam and

Usar F 1 Superv iisor Abeorrt IR Undefined
0 i 0 0 0 0
ri r r1 | r1 |
rz2 ra ra rz2 ra ra2
r3 r3 r3 r3 r3 r3
r< r<t r< r<t r< r<
r5 rS rS rS rS rS
G G g nG g rG
rv EE rv r¥ rv r¥
rg r8_ fiq rg r8 rg r8
rs rs rs rs
r10 ri10 r10 10
r11 r11 r11 r11
ri1z ri1z ri1z ri1z
r13 _swc r13_abt r13_irq r13_ wnd
rid swe ri4 _abt ri4_iirg r14 wnd
r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC)
ARM state program status registers
CPSR CPSR CPsSR CPSR CPSR CPSR
SPSR_fig SPSR_swo SPSRE_abt SPSRE_im SPSR_und

u= banked register

Dept of ECE,NRCM
VV Nacgalakshmi As<st nrof

Contents

Introducing ARM

Exceptions
Interrupts

Interrupt handling schemes

Summary

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Exceptions

= What is an exception?

= Examples

*Resetting ARM core
Failure of fetching instructions
‘HWI

SWI

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Exceptions

= Exceptions and modes

Each exception causes the ARM core to enter a specific mode.

Exception Mode Purpose

Fast Interrupt Request FIQ Fast interrupt handling

Interrupt Request IRQ Normal interrupt handling

SWI and RESET SVC Protected mode for OS

Pre-fetch or data abort ABT Memory protection handling
Undefined Instruction UND SW emulation of HW coprocessors

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Exceptions

s Vector table

4

At this place in memory, we
find a branching instruction

Idr pc, [pc, # IRQ_handler_offset]

.

Dept of

Address Exception Mode on entry
0x00000000 | Reset Supervisor
Ox0C0C0004 | Undefined instruction | Undefined
Ox00000008 | Software interrupt Supervisor
0x0000000C | Abort (prefetch) Abort
O0x00000010 | Abort (data) Abort
0x0C000014 | Ressrved Reserved
000000018 | IRQ IRQ

FIQ Fla

\VV Nagalakshmi As<st nrof

Exceptions

= EXxception priorities

Exception Priority I bit | F bit
Reset 1 1 1
Data Abort 2 1
FIQ & 1 1
IRQ 4 1
Prefetch abort 5 1
SWI 5 i

Dept of EC{, \@ndefjped instruction | 6 1

\VV Nagalakshmi As<st nrof

Exceptions

m Link Register Offset

This register is used to return the PC to the appropriate place in
the interrupted task since this is not always the old PC value.lt is

modified depending on the type of exception.

Exception Returning
Address

Reset None

Data Abort LR-8

FIQ, IRQ, prefetch Abort LR-4

SWI, Undefined Instruction LR

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Exceptions

= Entering exception handler

1.

2.
3.
4.

Save the address of the next instruction in the
appropriate Link Register LR.

Copy CPSR to the SPSR of new mode.
Change the mode by modifying bits in CPSR.
Fetch next instruction from the vector table.

= Leaving exception handler

1.
2.

3.

Move the Link Register LR (minus an offset) to the PC.
Copy SPSR back to CPSR, this will automatically
changes the mode back to the previous one.

Clear the interrupt disable flags (if they were set).

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Contents

Introducing ARM

Exceptions
Interrupts

Interrupt handling schemes

Summary

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Interrupts

= Assigning interrupts

But system designers have adopted a standard
design for assigning interrupts:

*SWI are used to call privileged OS routines.

*IRQ are assigned to general purpose interrupts like
periodic timers.

*FIQ is reserved for one single interrupt source that requires
fast response time.

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Interrupts

= Interrupt latency

System architects try to achieve two main goals:

*To handle multiple interrupts simultaneously.
*To minimize the interrupt latency.
And this can be done by 2 methods:

allow nested interrupt handling
give priorities to different interrupt sources

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Interrupts

= Enabling and disabling Interrupt

This is done by modifying the CPSR, this is done using only
3 ARM instruction:

MRS Toread CPSR

MSR To store in CPSR

BIC Bit clear instruction

ORR OR instruction

Enabling an IRQ/FIQ Disabling an IRQ/FIQ
Interrupt: Interrupt:

MRS rl, cpsr MRS rl, cpsr

BIC rl, rl, #0x80/0x40 ORR rl, rl, #0x80/0x40

MSR cpsr_c,rl MSR cpsr_c,rl

Interrupts

s Interrupt stack

Stacks are needed extensively for context switching between
different modes when interrupts are raised.

The design of the exception stack depends on two factors:
*OS Requirements.
*Target hardware.

A good stack design tries to avoid stack overflow because it
cause instability in embedded systems.

Dept of ECE,NRCM
VV Nagalakshmi Asst nrof

Interrupts

s Interrupt stack

Two design decisions need to be made for the stacks:
*The location

*The size
User stack v Interrupt stack v
User stack *
Heap
A
Heap
Code ¢
Code
Interrupt stack *
Vector Table Vector Table

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Contents

Introducing ARM

Exceptions
Interrupts

Interrupt handling schemes

Summary

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Interrupt handling schemes

= Non-nested interrupt handling scheme

*This is the simplest interrupt handler, ™™, Disable

interrupts
Interrupts are disabled until control is Save context
returned back to the interrupted task. v
Interrupt handler
*One interrupt can be served at a time. +ISR

v
Restore context

Return to
task
S Enable l

interrupts

*Not suitable for complex embedded
systems.

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Interrupt handling schemes

= Nested interrupt handling scheme(1)

*Handling more than one interrupt at a interrupt | Disable
time is possible by enabling interrupts ” L Interrupts
before fully serving the current interrupt.

\ 4

Save context

Latency is improved. T——

_ handler
*System is more complex. I

ISR

No difference between interrupts by _Enable W
riorities, so normal interrupts can block | NPt
P o ! P somewhere Restore context
critical interrupts. here

Return to task

<
«

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Interrupt handling schemes

= Nested interrupt handling scheme(2)

*The handler tests a flag that is Not complete
updated by the ISR

*Re enabling interrupts requires
switching out of current interrupt mode
to either SVC or system mode.

«Context switch involves emptying the
IRQ stack into reserved blocks of
memory on SVC stack called stack
frames.

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

\ 4

Prepare stack.
Switch mode.

Enable interrupts.

Construct a frame.

A

y

Complete serving

interrupt

Interrupt

Interrupt l

Interrupt handling schemes

» Prioritized simple interrupt handling

associate a priority level with a particular interrupt source.

Handling prioritization can be done by means of software
or hardware.

When an interrupt signal is raised, a fixed amount of
comparisons is done.

« So the interrupt latency is deterministic.

« But this could be considered a disadvantage!!

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Interrupt handling schemes

s Other schemes

There are some other schemes, which are actually
modifications to the previous schemes as follows:

*“Re-entrant interrupt handler”: re-enable interrupts earlier
and support priorities, so the latency is reduced.

“Prioritized standard interrupt handler”: arranges priorities in
a special way to reduce the time needed to decide on
which interrupt will be handled.

*“Prioritized grouped interrupt handler”: groups some
interrupts into subset which has a priority level, this is
good for large amount of interrupt sources.

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

Contents

Introducing ARM

Exceptions
Interrupts

Interrupt handling schemes

Summary

Dept of ECE,NRCM
\VV Nagalakshmi As<st nrof

	Slide 1
	Slide 2: UNIT -1 THE 8086 MICROPROCESSORS
	Slide 3: Evolution of Microprocessor
	Slide 4
	Slide 5: UNIT 1 THE 8086 MICROPROCESSOR
	Slide 6: UNIT 1 THE 8086 MICROPROCESSOR
	Slide 7: 8086 MICROPROCESSOR ARCHITECTURE
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: ADDRESSING MODES
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: INSTRUCTION SET
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Arithmetic Instructions
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: STRING INSTRUCTIONS
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65: ASSEMBLER DIRECTIVES
	Slide 66
	Slide 67: ASSUME
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75: ASSEMBLY LANGUAGE PROGRAMMING
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81: As an example, a typical program for block transfer of data written in 8086 assembly language is given here.
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89: MODULAR PROGRAMMING
	Slide 90
	Slide 91
	Slide 92
	Slide 93: LINKING AND RELLOCATION
	Slide 94
	Slide 95
	Slide 96: PROCEDURES & MACROS
	Slide 97
	Slide 98
	Slide 99
	Slide 100: Nested Proc
	Slide 101: Differences between Macros and Procedures
	Slide 102: INTERRUPTS AND INTERRUPT SERVICE ROUTINES
	Slide 103
	Slide 104: Interrupt Service Routines (ISRs)
	Slide 105: Interrupt vector table:
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112: Interrupt Priority
	Slide 113: Byte And String Manipulation
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123: 8086 program to determine largest number in an array of n numbers
	Slide 124
	Slide 125
	Slide 126
	Slide 127: 8086 program to find the min value in a given array
	Slide 128
	Slide 129
	Slide 130: PIN DIAGRAM
	Slide 131: MINIMUM MODE SIGNALS
	Slide 132
	Slide 133: MAXIMUM MODE SIGNALS
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145: SYSTEM BUS STRUCTURE
	Slide 146: DATA BUS
	Slide 147: ADDRESS BUS
	Slide 148: CONTROL BUS
	Slide 149
	Slide 150: MIN-MAX MODE OF OPERATION
	Slide 151
	Slide 152: Minimum Mode
	Slide 153
	Slide 154
	Slide 155: READ CYCLE
	Slide 156: WRITE CYCLE
	Slide 157: Maximum mode operation’
	Slide 158
	Slide 159
	Slide 160: Read cycle
	Slide 161: Write cycle
	Slide 162: SYSTEM DESIGN USING 8086
	Slide 163: I/O devices
	Slide 164: Memory requirement
	Slide 165: System clock frequency
	Slide 166: Peripheral devices
	Slide 167: Application
	Slide 168
	Slide 169: Interrupt priority management hardware
	Slide 170: Direct Memory Access Block Transfer
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175: MULTIPROGRAMMING
	Slide 176
	Slide 177
	Slide 178: CLOSELY COUPLED CONFIGURATION
	Slide 179
	Slide 180
	Slide 181: LOOSELY COUPLED CONFIGURATION
	Slide 182
	Slide 183: Advantages
	Slide 184: Bus allocation schemes
	Slide 185: DAISY CHAINING METHOD
	Slide 186
	Slide 187: POLLING
	Slide 188
	Slide 189: Independent priority
	Slide 190
	Slide 191: ADVANCED PROCESSOR
	Slide 192
	Slide 193
	Slide 194
	Slide 195: PENTIUM PROCESSOR
	Slide 196: FEATURES
	Slide 197: STAGES OF PENTIUM PROCESSOR
	Slide 198: FLOATING POINT UNIT
	Slide 199
	Slide 200: Multi-core processor
	Slide 201
	Slide 202
	Slide 203
	Slide 204: Memory Interfacing
	Slide 205: I/O INTERFACING
	Slide 206
	Slide 207
	Slide 208: Serial Communication Interface
	Slide 209: Parallel Communication Interface
	Slide 210: SERIAL COMMUNICATION INTERFACE
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216: Asynchronous transmission
	Slide 217
	Slide 218: PARALLEL COMMUNICATION INTERFACE OR (8255 A - Programmable Peripheral Interface)
	Slide 219: OPERATING MODES
	Slide 220: Pin diagram of 8255A
	Slide 221
	Slide 222
	Slide 223: DATA BUS BUFFER
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229: BSR (Bit Set/Reset) Mode
	Slide 230
	Slide 231
	Slide 232
	Slide 233: Mode 0 – Basic I/O mode
	Slide 234
	Slide 235: Mode 1 - Strobed Input/Output
	Slide 236
	Slide 237
	Slide 238
	Slide 239: Mode 2 – Bi-directional Data Transfer Mode
	Slide 240
	Slide 241
	Slide 242
	Slide 243: DIGITAL TO ANALOG CONVERTERS (DAC)
	Slide 244: APPLICATIONS
	Slide 245
	Slide 246: DAC 0800 8-bit Digital to Analog converter
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251: ANALOG TO DIGITAL INTERFACE
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256: FEATURES
	Slide 257
	Slide 258: ARCHITECTURE OF 8051
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275: ADDRESSING MODES
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285: I/OPORTS Port 0 (P0.0 - 0.7)
	Slide 286
	Slide 287
	Slide 288: Port 3 (P3.0 - P3.7)
	Slide 289
	Slide 290
	Slide 291: Data Transfer Instructions
	Slide 292
	Slide 293: ARITHMETIC INSTRUCTIONS
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299: PROGRAMMING 8051 TIMERS
	Slide 300
	Slide 301: TIMER FOR MODE 1
	Slide 302: PROCEDURE
	Slide 303
	Slide 304: PROGRAM
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309: PROCEDURE
	Slide 310
	Slide 311
	Slide 312
	Slide 313
	Slide 314
	Slide 315
	Slide 316
	Slide 317
	Slide 318
	Slide 319
	Slide 320
	Slide 321
	Slide 322
	Slide 323
	Slide 324
	Slide 325
	Slide 326
	Slide 327
	Slide 328
	Slide 329
	Slide 330
	Slide 331
	Slide 332
	Slide 333
	Slide 334
	Slide 335
	Slide 336
	Slide 337
	Slide 338
	Slide 339: DAC INTERFACING
	Slide 340
	Slide 341
	Slide 342
	Slide 343
	Slide 344
	Slide 345
	Slide 346
	Slide 347
	Slide 348
	Slide 349
	Slide 350
	Slide 351
	Slide 352
	Slide 353
	Slide 354
	Slide 355
	Slide 356
	Slide 357: Contents
	Slide 358: Introducing ARM
	Slide 359: Introducing ARM
	Slide 360: Introducing ARM
	Slide 361: Introducing ARM
	Slide 362: Contents
	Slide 363: Exceptions
	Slide 364: Exceptions
	Slide 365: Exceptions
	Slide 366: Exceptions
	Slide 367: Exceptions
	Slide 368: Exceptions
	Slide 369: Contents
	Slide 370: Interrupts
	Slide 371: Interrupts
	Slide 372: Interrupts
	Slide 373: Interrupts
	Slide 374: Interrupts
	Slide 375: Contents
	Slide 376: Interrupt handling schemes
	Slide 377: Interrupt handling schemes
	Slide 378: Interrupt handling schemes
	Slide 379: Interrupt handling schemes
	Slide 380: Interrupt handling schemes
	Slide 381: Contents

