

MICROPROCESSOR AND MICROCONTROLLERS

 Associate Professor

Dept of ECE

Mrs. V. Nagalakshmi

Pavi Neelam
Rectangle

CONTENTS

UNIT-I

8086 ARCHITECTURE

8086 Functional

Diagram Register

Organization

Memory

Segmentation

Programming

Model Memory

Addresses

Physical Memory

Organization

Architecture of 8086

Signal descriptions of

8086 Pin Diagram of

8086

Minimum & Maximum

mode signals

Timing

Diagrams

Interrupts

of 8086

UNIT-II

INSTRUCTION SET & ASSEMBLY LANGUAGE

PROGRAMMING OF 8086

Instruction Formats

Addressing Modes

Instruction Set

Assembler Directives

Macros

Simple Programs involving

Logical Instructions

Simple Programs involving

Branch and Call Instructions

Sorting

Evaluating Arithemetic

Expressions

String Manipulations

UNIT-III

I/O INTERFACE, INTERFACING WITH ADVANCED DEVICES

&COMMUNICATION INTERFACE

8255 PPI

Various Modes of operation of

8255

8255 PPI Interfacing to 8086

Keyboard Interface

Memory Interfacing to 8086

Interrupt Structure of 8086

Vector Interrupt Table, ISR

DOS & BIOS Interrupts

Serial Communication

Standards

Serial Data Transfer Schemes

8251 USART Interfacing to

8086

UNIT-IV

INTRODUCTION TO MICROCONTROLLERS

Overview of 8051

Microcontroller

Architecture

Pin Diagram of 8051,I/O Ports

Memory Organization

Addressing Modes

Instruction set

Simple Programs

UNIT-V

8051 REAL TIME CONTROL

Interrupts

Timer/Counter & Serial

Communication

Programming Timer Interrupts

Programming external

hardware Interrupts

Programming the serial

communication Interrupts

Programming 8051

Timers,Counters

UNIT -1

INTRODUCTION TO 8 BIT/16 BIT MICRO PROCESSORS

1. 8086 flag register

Psw (program status word) is a 16-bit register containing 9 1-bit flags:

• Overflow Flag (OF) - set if the result is too large positive number, or is too small

negative number to fit into destination operand.

• Direction Flag (DF) - if set then string manipulation instructions will auto-decrement

index registers. If cleared then the index registers will be auto-incremented.

• Interrupt-enable Flag (IF) - setting this bit enables maskable interrupts.

• Single-step Flag (TF) - if set then single-step interrupt will occur after the next

instruction.

• Sign Flag (SF) - set if the most significant bit of the result is set.

• Zero Flag (ZF) - set if the result is zero.

• Auxiliary carry Flag (AF) - set if there was a carry from or borrow to bits 0-3 in the AL

register.

• Parity Flag (PF) - set if parity (the number of "1" bits) in the low-order byte of the result

is even.

• Carry Flag (CF) - set if there was a carry from or borrow to the most significant bit

during last result calculation

1.2.4. 8086 pin diagram:

Figure shows the Pin diagram of 8086. The description follows it.

Fig 1.4. 8086 pin diagram

• The Microprocessor 8086 is a 16-bit CPU available in different clock rates and packaged

in a 40 pin CERDIP or plastic package.

• The 8086 operates in single processor or multiprocessor configuration to achieve high

performance. The pins serve a particular function in minimum mode (single processor

mode) and other function in maximum mode configuration (multiprocessor mode).

• The 8086 signals can be categorized in three groups.

o The first are the signal having common functions in minimum as well as

maximum mode.

o The second are the signals which have special functions for minimum mode

o The third are the signals having special functions for maximum mode.

• The following signal descriptions are common for both modes.

• AD15-AD0: These are the time multiplexed memory I/O address and data lines.

o Address remains on the lines during T1 state, while the data is available on the

data bus during T2, T3, Tw and T4. These lines are active high and float to a

tristate during interrupt acknowledge and local bus hold acknowledge cycles.

• A19/S6,A18/S5,A17/S4,A16/S3 : These are the time multiplexed address and status

lines.

o During T1 these are the most significant address lines for memory operations.

o During I/O operations, these lines are low.

o During memory or I/O operations, status information is available on those lines

for T2,T3,Tw and T4.

o The status of the interrupt enable flag bit is updated at the beginning of each clock

cycle.

o The S4 and S3 combinely indicate which segment register is presently being used

for memory accesses as in below fig.

o These lines float to tri-state off during the local bus hold acknowledge. The status

line S6 is always low.

o The address bit are separated from the status bit using latches controlled by the

ALE signal.

S4 S3 Indication

0 0 Alternate Data

0 1 Stack

1 0 Code or None

1 1 Data

0 0 Whole word

0 1 Upper byte from or to even address

1 0 Lower byte from or to even address

Table 1.1. 8086 status signals

• BHE/S7: The bus high enable is used to indicate the transfer of data over the higher order

(D15-D8) data bus as shown in table. It goes low for the data transfer over D15-D8 and

is used to derive chip selects of odd address memory bank or peripherals. BHE is

low during T1 for read, write and interrupt acknowledge cycles, whenever a byte is to

be transferred on higher byte of data bus. The status information is available during T2,

T3 and T4. The signal is active low and tristated during hold. It is low during T1 for the

first pulse of the interrupt acknowledges cycle.

• RD – Read: This signal on low indicates the peripheral that the processor is performing

memory or I/O read operation. RD is active low and shows the state for T2, T3, Tw of

any read cycle. The signal remains tristated during the hold acknowledge.

• READY: This is the acknowledgement from the slow device or memory that they have

completed the data transfer. The signal made available by the devices is synchronized by

the 8284A clock generator to provide ready input to the 8086. the signal is active high.

• INTR-Interrupt Request: This is a triggered input. This is sampled during the last clock

cycles of each instruction to determine the availability of the request. If any interrupt

request is pending, the processor enters the interrupt acknowledge cycle. This can be

internally masked by resulting the interrupt enable flag. This signal is active high and

internally synchronized.

• TEST: This input is examined by a ‘WAIT’ instruction. If the TEST pin goes low,

execution will continue, else the processor remains in an idle state. The input is

synchronized internally during each clock cycle on leading edge of clock.

• CLK- Clock Input: The clock input provides the basic timing for processor operation

and bus control activity. Its an asymmetric square wave with 33% duty cycle.

• ALE- Address Latch Enable. A HIGH on this line causes the lower order 16bit address

bus to belatched that stores the addresses and then, the lower order 16bit of the address

bus can be usedas data bus.

• NMI- non-maskable interrupt: an edge triggered input which causesan interrupt request

to the MP. A subroutine is vectored to via an interrupt vectorlookup table located in

system memory. NMI is not maskable internallyby software.

• RESET: causes the processor to immediately terminate its present

activity. The signal must be active HIGH for at least four clock cycles. Itrestarts

execution

• MN/MX -MINIMUM/MAXIMUM: indicates what mode the processor is to operate in.

The two modes arediscussed in the following sections.

• M/IO: Differentiate between the Memory and I/O operation. A LOW on this pin

indicated I/Ooperation and a HIGH indicated a Memory Operation

• HOLD: The 8086 has a pin called HOLD. This pin is used by external devices to gain

control ofthe busses.

• HLDA:When the HOLD signal is activated by an external device, the 8086 stops

executing instructionsand stops using the busses. This would allow external devices to

control the information on the8086 MINIMUM AND MAXIMUM MODES of operation

MN/MX

• Minimum mode The 8086 processor works in a single processor environment.

All control signals for memory and I/O are generated by the microprocessor.

• Maximum mode is designed to be used when a coprocessor exists in the system.

• 8086 works in a multiprocessor environment. Control signals for memory and

I/O are generated by an external BUS Controller.

1.2.5. 8086 Minimum Mode System

When the Minimum mode operation is selected, the 8086

Provides all control signals needed to implement the memory and I/O interface.

• The minimum mode signal can be divided into the following basic groups: address/data bus,

status, control, interrupt and DMA.

• Address/Data Bus: these lines serve two functions. As an address bus is 20 bits long and

consists of signal lines A0 through A19. A19 represents the MSB and A0 LSB. A 20bit address

gives the 8086 a 1Mbyte memory address space. More over it has an independent I/O address

space which is 64K bytes in length.

The 16 data bus lines D0 through D15 are actually multiplexed with address lines A0 through

A15 respectively. By multiplexed we mean that the bus work as an address bus during first

machine cycle and as a data bus during next machine cycles. D15 is the MSB and D0 LSB.

• When acting as a data bus, they carry read/write data for memory, input/output data for I/O

devices, and interrupt type codes from an interrupt controller.

Fig 1.5. 8086 minimum mod system

Status signal: The four most significant address lines A19 through A16 are also multiplexed but

in this case with status signals S6 through S3. These status bits are output on the bus at the same

time that data are transferred over the other bus lines.

• Bit S4 and S3 together from a 2 bit binary code that identifies which of the 8086 internal

segment registers are used to generate the physical address that was output on the address bus

during the current bus cycle.

• Code S4 S3 = 00 identifies a register known as extra segment register as the source of the

segment address.

S4 S3 Segment Register

0 0 Extra

0 1 Stack

1 0 Code / none

1 1 Data

Status line S5 reflects the status of another internal characteristic of the 8086. It is the logic level

of the internal enable flag. The last status bit S6 is always at the logic 0 level.

• Control Signals: The control signals are provided to support the 8086 memory I/O interfaces.

They control functions such as when the bus is to carry a valid address in which direction data

are to be transferred over the bus, when valid write data are on the bus and when to put read data

on the system bus.

ALE is a pulse to logic 1 that signals external circuitry when a valid address word is on the bus.

This address must be latched in external circuitry on the 1-to-0 edge of the pulse at ALE.

• Another control signal that is produced during the bus cycle is BHE bank high enable. Logic 0

on this used as a memory enable signal for the most significant byte half of the data bus D8

through D1. These lines also serve a second function, which is as the S7 status line.

• Using the M/IO and DT/R lines, the 8086 signals which type of bus cycle is in progress and in

which direction data are to be transferred over the bus.

The logic level of M/IO tells external circuitry whether a memory or I/O transfer is taking place

over the bus. Logic 1 at this output signals a memory operation and logic 0 an I/O operation.

• The direction of data transfer over the bus is signaled by the logic level output at DT/R. When

this line is logic 1 during the data transfer part of a bus cycle, the bus is in the transmit mode.

Therefore, data are either written into memory or output to an I/O device.

• On the other hand, logic 0 at DT/R signals that the bus is in the receive mode. This corresponds

to reading data from memory or input of data from an input port

• The signal read RD and writes WR indicates that a read bus cycle or a write bus cycle is in

progress. The 8086 switches WR to logic 0 to signal external device that valid write or output

data are on the bus.

• On the other hand, RD indicates that the 8086 is performing a read of data of the bus. During

read operations, one other control signal is also supplied. This is DEN (data enable) and it signals

external devices when they should put data on the bus.

• There is one other control signal that is involved with the memory and I/O interface. This is the

READY signal. READY signal is used to insert wait states into the bus cycle such that it is

extended by a number of clock periods. This signal is provided by an external clock generator

device and can be supplied by the memory or I/O subsystem to signal the 8086 when they are

ready to permit the data transfer to be completed.

• Interrupt signals: The key interrupt interface signals are interrupt request (INTR) and interrupt

acknowledge (INTA).

• INTR is an input to the 8086 that can be used by an external device to signal that it needs to be

serviced. Logic 1 at INTR represents an active interrupt request. When an interrupt request has

been recognized by the 8086, it indicates this fact to external circuit with pulse to logic 0 at the

INTA output.

• The TEST input is also related to the external interrupt interface. Execution of a WAIT

instruction causes the 8086 to check the logic level at the TEST input.

• If the logic 1 is found, the MPU suspend operation and goes into the idle state. The 8086 no

longer executes instructions; instead it repeatedly checks the logic level of the TEST input

waiting for its transition back to logic 0.

• As TEST switches to 0, execution resume with the next instruction in the program. This feature

can be used to synchronize the operation of the 8086 to an event in external hardware.

• There are two more inputs in the interrupt interface: the non makeable interrupt NMI and the

reset interrupt RESET.

• On the 0-to-1 transition of NMI control is passed to a non maskable interrupt service routine.

The RESET input is used to provide a hardware reset for the 8086. Switching RESET to logic 0

initializes the internal register of the 8086 and initiates a reset service routine.

DMA Interface signals: The direct memory access DMA interface of the 8086 minimum mode

consist of the HOLD and HLDA signals.

• When an external device wants to take control of the system bus, it signals to the 8086 by

switching HOLD to the logic 1 level. At the completion of the current bus cycle, the 8086 enters

the hold state. In the hold state, signal lines AD0 through AD15, A16 /S3 through A19 /S6 ,

BHE, M/IO, DT/R, RD, WR, DEN and INTR are all in the high Z state. The 8086 signals

external device that it is in this state by switching its HLDA output to logic 1 level.

\

Timing diagrams of minimum mode:

Fig 1.6. Minimum mode timing diagram in read cycle

Fig 1.7. Minimum nod timing signals in write cycle

1.2.6. Maximum Mode 8086 System

• In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.

• In this mode, the processor derives the status signal S2, S1, S0. Another chip called bus

controller derives the control signal using this status information.

• In the maximum mode, there may be more than one microprocessor in the system

configuration.

• The components in the system are same as in the minimum mode system.

The basic function of the bus controller chip IC8288, is to derive control signals like RD and WR

(for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on

the status lines.

• The bus controller chip has input lines S2 , S1 , S0 and CLK. These inputs to 8288 are driven

by CPU.

• It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC.

The AEN, IOB and CEN pins are especially useful for multiprocessor systems.

AEN and IOB are generally grounded. CEN pin is usually tied to +5V. The significance of the

MCE/PDEN output depends upon the status of the IOB pin.

• If IOB is grounded, it acts as master cascade enable to control cascade 8259A, else it acts as

peripheral data enable used in the multiple bus configurations.

• INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an

interrupting device.

IORC, IOWC are I/O read command and I/O write command signals respectively. These signals

enable an IO interface to read or write the data from or to the address port.

• The MRDC, MWTC are memory read command and memory write command signals

respectively and may be used as memory read or write signals.

• All these command signals instructs the memory to accept or send data from or to the bus.

• For both of these write command signals, the advanced signals namely AIOWC and AMWTC

are available.

They also serve the same purpose, but are activated one clock cycle earlier than the IOWC and

MWTC signals respectively.

• The maximum mode system timing diagrams are divided in two portions as read (input) and

write (output) timing diagrams.

• The address/data and address/status timings are similar to the minimum mode.

• ALE is asserted in T1, just like minimum mode. The only difference lies in the status signal

used and the available control and advanced command signals.

Fig 1.8. 8086 maximum mode system

Here the only difference between in timing diagram between minimum mode and maximum mode is the

status signals used and the available control and advanced command signals.

• S0 , S1 , S2 are set at the beginning of bus cycle.8288 bus controller will output a pulse as on the ALE

and apply a required signal to its DT / R pin during T1.

In T2 , 8288 will set DEN=1 thus enabling transceivers, and for an input it will activate MRDC or IORC.

These signals are activated until T4. For an output, the AMWC or AIOWC is activated from T2

to T4 and MWTC or IOWC is activated from T3 to T4.

• The status bit S0 to S2 remains active until T3 and become passive during T3 and T4

• If reader input is not activated before T3, wait state will be inserted between T3 and T4.

Timings for RQ/ GT Signals: The request/grant response sequence contains a series of three pulses. The

request/grant pins are checked at each rising pulse of clock input.

• When a request is detected and if the condition for HOLD request is satisfied, the processor

issues a grant pulse over the RQ/GT pin immediately during T4 (current) or T1 (next) state.

• When the requesting master receives this pulse, it accepts the control of the bus, it sends a release pulse

to the processor using RQ/GT pin.

Timing diagrams of max mode.

Fig 1.9. Timing diagram of max mode system in read cycle

Fig 1.10. Timing diagram of max mode system in write cycle

1.2.7. 8086 Interrupts

The processor has the following interrupts:

• INTR is a maskable hardware interrupt. The interrupt can be enabled/disabled using STI/CLI

instructions or using more complicated method of updating the FLAGS register with the help of

the POPF instruction.

• When an interrupt occurs, the processor stores FLAGS register into stack, disables further

interrupts, fetches from the bus one byte representing interrupt type, and jumps to interrupt

processing routine address of which is stored in location 4 * <interrupt type>. Interrupt

processing routine should return with the IRET instruction.

NMI is a non-maskable interrupt. Interrupt is processed in the same way as the INTR interrupt.

Interrupt type of the NMI is 2, i.e. the address of the NMI processing routine is stored in

location 0008h. This interrupt has higher priority then the maskable interrupt.

• Software interrupts can be caused by:

• INT instruction - breakpoint interrupt. This is a type 3 interrupt.

• INT <interrupt number>instruction - any one interrupt from available 256 interrupts.

• INTO instruction - interrupt on overflow.

Single-step interrupt - generated if the TF flag is set. This is a type 1 interrupt. When the CPU

processes this interrupt it clears TF flag before calling the interrupt processing routine.

• Processor exceptions: Divide Error (Type 0), Unused Opcode (type 6) and Escape opcode (type

7).

• Software interrupt processing is the same as for the hardware interrupts.

UNIT-2

ASSEMBLY LANGUAGE PROGRAMMING

2.1. Addressing modes of 8086

Various addressing modes of 8086/8088

1) Register Addressing mode

2) Immediate Addressing mode

3) Register indirect addressing mode

4) Direct Addressing mode

5) Indexed Addressing mode

6) Base Relative Addressing mode

7) Base Indexed Addressing mode

Register Addressing Mode

Data transfer using registers is called register addressing mode. Here operand value is present in

register. For example

MOV AL,BL;

MOV AX,BX;

Immediate Addressing mode

When data is stored in code segment instead of data segment immediate addressing mode is

used. Here operand value is present in the instruction. For example

MOV AX, 12345;

Direct Addressing mode

When direct memory address is supplied as part of the instruction is called direct addressing

mode. Operand offset value with respect to data segment is given in instruction. For example

MOV AX, [1234];

ADD AX, [1234];

Register indirect addressing mode: Here operand offset is given in a cpu register. Register

used are BX, SI(source index), DI(destination index), or BP(base pointer). BP holds offset w.r.t

Stack segment, but SI,DI and BX refer to data segment. For example

MOV [BX],AX;

ADD AX, [SI];

Indexed Addressing mode

Here operand offset is given by a sum of a value held in either SI, or DI register and a constant

displacement specified as an operand. For example

Lets take arrays as an example. This is very efficient way of accessing arrays.

My_array DB ‘1’, ‘2’, ‘3’,’4,’5’;

MOV SI, 3;

MOV AL, My_array[3];

So AL holds value 4.

Base Relative addressing mode

Operand offset given by a sum of a value held either in BP, or BX and a constant offset specified

as an operand. For example

MOV AX,[BP+1];

JMP [BX+1];

Base Indexed

Here operand offset is given by sum of either BX or BP with either SI or DI. For example

MOV AX, [BX+SI]

JMP [BP+DI]

2.2. 8086 Assembler directives

ASSUME Directive - The ASSUME directive isused to tell the assembler that the name of the

logical segmentshould be used for a specified segment. The 8086 works directly with only 4

physical segments: a Code segment, a data segment, a stack segment, and an extra segment.

Example:

ASUME CS: CODE; This tells the assembler that the logical segment named CODE contains the

; instruction statements for the program and should be treated as a code segment.

ASUME DS: DATA; This tells the assembler that for any instruction which refers to a data in

the ;data segment, data will found in the logical segment DATA.

DB - DB directive is used to declare a bytetype variable or to store a byte in memory location.

Example:

1. PRICE DB 49h, 98h, 29h ;Declare an array of 3 bytes, named as PRICE and initialize.

2. NAME DB ‘ABCDEF’ ;Declare an array of 6 bytes and initialize with ASCII code for letters

3. TEMP DB 100 DUP(?) ;Set 100 bytes of storage in memory and give it the name as TEMP,

;but leave the 100 bytes uninitialized. Program instructions will load values into these locations

DW - The DW directive is used to define a variable of type word or to reserve storage location

of type word in memory.

Example:

MULTIPLIER DW437Ah ; this declares a variable of type word and named it as MULTIPLIER.

;This variable is initialized with the value 437Ah when it is loaded into memory to run.

EXP1 DW 1234h, 3456h, 5678h ; this declares an array of 3 words and initialized with specified

;values.

STOR1 DW 100 DUP(0); Reserve an array of 100 words of memory and initialize all words with

;0000.Array is named as STOR1

END - END directive is placed after the last statement of a program to tell the assembler that this

is the end of the program module. The assembler will ignore any statement after an END

directive. Carriage return is required after the END directive.

ENDP - ENDP directive is used along with the name of the procedure to indicate the end of a

procedure to the assembler

Example:

SQUARE_NUM PROCE ; It start the procedureSome steps to find the square root of a number

ENDS - This ENDS directive is used with name of the segment to indicate the end of that logic

segment.

Example:

CODE SEGMENT ;Hear it Start the logic segment containing code

; Some instructions statements to perform the logical

;operation

CODE ENDS ;End of segment named as CODE

EQU - This EQU directive is used to give a name to some value or to a symbol. Each time the

assembler finds the name in the program, it will replace the name with the value or symbol you

given to that name.

Example:

FACTOR EQU 03H ; you has to write this statement at the starting of your program and later in

;the program you can use this as follows

ADD AL, FACTOR; When it codes this instruction the assembler will code it as ADDAL, 03H

;The advantage of using EQU in this manner is, if FACTOR is used many no of times in a

;program and you want to change the value, all you had to do is change the EQU statement at

;beginning, it will changes the rest of all.

EVEN - This EVEN directive instructs the assembler to increment the location of the counter to

the next even address if it is not already in the even address. If the word is at even address 8086

can read a memory in 1 bus cycle. If the word starts at an odd address, the 8086 will take 2 bus

cycles to get the data. A series of words can be read much more quickly if they are at even

address. When EVEN is used the location counter will simply incremented to next address and

NOP instruction is inserted in that incremented location

GROUP - The GROUP directive is used to group the logical segments named after the directive

into one logical group segment.

INCLUDE - This INCLUDE directive is used to insert a block of source code from the named

file into the current source module.

PROC - The PROC directive is used to identify the start of a procedure. The term near or far is

used to specify the type of the procedure.

Example:

SMART PROC FAR; This identifies that the start of a procedure named as SMART and

;instructs the assembler that the procedure is far .

SMART ENDP;This PROC is used with ENDP to indicate the break of the procedure.

PTR - This PTR operator is used to assign a specific type of a variable or to a label.

Example:

INC [BX] ; This instruction will not know whether to increment the byte pointed to by BX or a

;word pointed to by BX.

INC BYTE PTR [BX] ;increment the byte pointed to by BX

This PTR operator can also be used to override the declared type of variable. If we want to

access the a byte in an

Array WORDS DW 437Ah, 0B97h,

MOV AL, BYTE PTR WORDS

PUBLIC - The PUBLIC directive is used to instruct the assembler that a specified name or label

will be accessed from other modules.

Example:

PUBLIC DIVISOR, DIVIDEND; these two variables are public so these are available to all

;modules. If an instruction in a module refers to a variable in another assembly module, we can

;access that module by declaring as EXTRN directive.

TYPE - TYPE operator instructs the assembler to determine the type of a variable and

determines the number of bytes specified to that variable.

Example:

Byte type variable – assembler will give a value 1

Word type variable – assembler will give a value 2

Double word type variable – assembler will give a value 4

ADD BX, TYPE WORD_ ARRAY; hear we want to increment BX to point to next word in an

array of words.

2.3. Instruction set of 8086

DATA TRANSFER INSTRUCTIONS

GENERAL – PURPOSE BYTE OR WORD TRANSFER INSTRUCTIONS:

MOV

PUSH

POP

XCHG

XLAT

SIMPLE INPUT AND OUTPUT PORT TRANSFER INSTRUCTIONS

IN

OUT

SPECIAL ADDRESS TRANSFER INSTRUCTIONS

LEA

LDS

LES

FLAG TRANSFER INSTRUCTIONS:

LAHF

SAHF

PUSHF

POPF

ADITION INSTRUCTIONS:

ADD

ADC

INC

AAA

DAA

SUBTSUBTRACTION INSTRUCTIONS:

SUB

SBB

DEC

NEG

CMP

AAS

DAS

MULTIPLICATION INSTRUCTIONS:

MUL

IMUL

AAM

DIVISION INSTRUCTIONS:

DIV

IDIV

AAD

CBW

CWD

LOGICAL INSTRUCTIONS:

NOT

AND

OR

XOR

TEST

SHIFT INSTRUCTIONS:

SHL / SAL

SHR

SAR

PROGRAM EXECUTION TRANSFER INSTRUCTIONS

UNCONDITIONAL TRANSFER INSTRUCTIONS:

CALL

RET

JMP

CONDITIONAL TRANSFER INSTRUCTIONS:

JA / JNBE

JAE / JNB

JB / JNAE

JBE / JNA

JC/ JNC

JE / JZ

JG / JNLE

JGE / JNL

JL / JNGE

JLE / JNG

JNE / JNZ

JNO

JNP / JPO

JNS

JO

ITERATION CONTROL INSTRUCTIONS:

LOOP

LOOPE / LOOPZ

LOOPNE / LOOPNZ

JCXZ

INTERRUPT INSTRUCTIONS:

INT

INTO

IRET

PROCESS CONTROL INSTRUCTIONS

FLAG SET / CLEAR INSTRUCTIONS:

STC

CLC

CMC

STD

CLD

STI

CLI

EXTERNAL HARDWARE SYNCHRONIZATION INSTRUCTIONS:

HLT

WAIT

ESC

LOCK

NOP

AAA Instruction - ASCII Adjust after Addition

AAD Instruction - ASCII adjust before Division

AAM Instruction - ASCII adjust after Multiplication

AAS Instruction - ASCII Adjust for Subtraction

AAA Instruction -AAA converts the result of the addition of two valid unpacked BCD digits to a

valid 2-digit BCD number and takes the AL register as its implicit operand. Two operands of the

addition must have its lower 4 bits contain a number in the range from 0-9.The AAA instruction

then adjust AL so that it contains a correct BCD digit. If the addition produce carry (AF=1), the

AH register is incremented and the carry CF and auxiliary carry AF flags are set to 1. If the

addition did not produce a decimal carry, CF and AF are cleared to 0 and AH are not altered. In

both cases the higher 4 bits of AL are cleared to 0. AAA will adjust the result of the two ASCII

characters that were in the range from 30h (“0”) to 39h(“9”).This is because the lower 4 bits of

those character fall in the range of 0-9.The result of addition is not a ASCII character but it is a

BCD digit.

AAM Instruction - AAM converts the result of the multiplication of two valid unpacked BCD

digits into a valid 2-digit unpacked BCD number and takes AX as an implicit operand. To give a

valid result the digits that have been multiplied must be in the range of 0 – 9 and the result

should have been placed in the AX register. Because both operands of multiply are required to be

9 or less, the result must be less than 81 and thus is completely contained in AL. AAM unpacks

the result by dividing AX by 10, placing the quotient (MSD) in AH and the remainder (LSD) in

AL.

AAS Instruction - AAS converts the result of the subtraction of two valid unpacked BCD digits

to a single valid BCD number and takes the AL register as an implicit operand. The two

operands of the subtraction must have its lower 4 bit contain number in the range from 0 to 9

.The AAS instruction then adjust AL so that it contain a correct BCD digit.

2.4. Assembly language programs

1. Addition of two 16-bit numbers-signed & unsigned

Registers used: AX,DS

Flags affected: AF,CF,OF,PF,SF,ZF

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

OPR1 DW 4269H

OPR2 DW 1000H

RES DW ?

DATA ENDS

CODE SEGMENT

START:

MOV AX,DATA

MOV DS,AX

MOV AX,OPR1

ADD AX,OPR2

MOV RES,AX

MOV AH,4CH

INT 21H

CODE ENDS

END START

END

Result:

INPUT: OPR1 = 4269H

OPR2 = 1000H

OUTPUT: RES = 5269H

2. Multiplication of two 16-bit unsigned numbers

Registers used: AX,DS

Flags affected: OF,CF

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

OPR1 DW 2000H

OPR2 DW 4000H

RESLW DW ?

RESHW DW ?

DATA ENDS

CODE SEGMENT

START:

MOV AX,DATA

MOV DS,AX

MOV AX,OPR1

MUL OPR2

MOV RESLW,AX

MOV RESHW,DX

MOV AH,4CH

INT 21H

CODE ENDS

END START

END

Result:

INPUT: OPR1 = 2000H

OPR2 = 4000H

OUTPUT: RESLW = 0000H (AX)

RESHW = 0800H (DX)

3. division of unsigned numbers

Registers used: AX,DS

Flags affected: IF

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

OPR1 DW 2C58H

OPR2 DB 56H

RESQ DB ?

RESR DB ?

DATA ENDS

CODE SEGMENT

START:

MOV AX,DATA

MOV DS,AX

MOV AX,OPR1

DIV OPR2

MOV RESQ,AL

MOV RESR,AH

MOV AH,4CH

INT 21H

CODE ENDS

END START

END

Result:

INPUT: OPR1 = 2C58H (DIVIDEND)

OPR2 = 56H (DIVISOR)

OUTPUT: RESQ = 84H (AL)

RESR = 00H (AH)

4. Logical and operation

Registers used: AX,DS

Flags affected: PF,SF,ZF

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

OPR1 DW 6493H

OPR2 DW 1936H

RES DW ?

DATA ENDS

CODE SEGMENT

START:

MOV AX,DATA

MOV DS,AX

MOV AX,OPR1

AND AX,OPR2

MOV RES,AX

MOV AH,4CH

INT 21H

CODE ENDS

END START

END

Result:

INPUT: OPR1 = 6493H

OPR2 = 1936H

OUTPUT: RES = 0012H

5. Shift arithmetic / logical left operation

Registers used: AX,DS

Flags affected: SF,ZF,PF

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

OPR1 DW 1639H

RES DW ?

DATA ENDS

CODE SEGMENT

START:

MOV AX,DATA

MOV DS,AX

MOV AX,OPR1

SAL AX,01H (or)➔ SHL AX,01H

MOV RES,AX

MOV AH,4CH

INT 21H

CODE ENDS

END START

END

Result:

INPUT: OPR1 = 1639H

OUTPUT: RES = 2C72H

6. Rotate right with carry

Registers used: AX,DS

Flags affected: CF,OF

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

OPR1 DW 1639H

RES DW ?

DATA ENDS

CODE SEGMENT

START:

MOV AX,DATA

MOV DS,AX

MOV AX,OPR1

RCR AX,01H

MOV RES,AX

MOV AH,4CH

INT 21H

CODE ENDS

END START

END

Result:

INPUT: OPR1 = 1639H

OUTPUT: RES = 0B1CH

7. Ascending order

Registers used: AX,DS,ES,SI,DI

Flags affected: AX,DS,SI,CX,DX

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

LIST DW 05H,04H,01H,03H,02H

COUNT EQU 05H

DATA ENDS

CODE SEGMENT

START:MOV AX,DATA

MOV DS,AX

MOV DX,COUNT-1

BACK:MOV CX,DX

MOV SI,OFFSET LIST

AGAIN:MOV AX,[SI]

CMP AX,[SI+2]

JC GO

XCHG AX,[SI+2]

XCHG AX,[SI]

GO:INC SI

INC SI

LOOP AGAIN

DEC DX

JNZ BACK

MOV AH,4CH

INT 21H

CODE ENDS

END START

END

Result:

INPUT: LIST (DS: 0000H) = 05H,04H,01H,03H,02H

OUTPUT: LIST (DS: 0000H) = 01H,02H,03H,04H,05H

8. Packed bcd to unpacked

bcd Registers used:

AX,DS,BL,CL Flags affected:

PF

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

BCD DB 49H

COUNT DB 04H

UBCD1 DB ?

UBCD2 DB ?

DATA ENDS

CODE SEGMENT

START:MOV AX,DATA

MOV DS,AX

MOV AL,BCD

MOV BL,AL

AND AL,0FH

MOV UBCD1,AL

MOV AL,BL

AND AL,0F0H

MOV CL,COUNT

ROR AL,CL

MOV UBCD2,AL

MOV AH,4CH

INT 21H

CODE ENDS

END START

END

Result:

INPUT: BCD = 49

OUTPUT: UBCD1 = 09

UBCD2 = 04

9. Reverse string

Registers used: AX,DS,SI,DI,CL

Flags affected: ZF,PF

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

STR DB 01H,02H,03H,04H

COUNT EQU 02H

DATA ENDS

CODE SEGMENT

START:MOV AX,DATA

MOV DS,AX

MOV CL,COUNT

MOV SI,OFFSET STR

MOV DI,0003H

BACK:MOV AL,[SI]

XCHG [DI],AL

MOV [SI],AL

INC SI

DEC DI

DEC CL

JNZ BACK

MOV AH,4CH

INT 21H

CODE ENDS

END START

END

Result:

INPUT: STR (DS:0000H) = 01H,02H,03H,04H

OUTPUT: STR (DS:0000H) = 04H,03H,02H,01H

10. Length of the string

Registers used: AX,DS,SI,CL

Flags affected: ZF,PF,SF,AF,CF

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

STR DB 01H,03H,08H,09H,05H,07H,02H

LENGTH DB ?

DATA ENDS

CODE SEGMENT

START:MOV AX,DATA

MOV DS,AX

MOV AL,00H

MOV CL,00H

MOV SI,OFFSET STR

BACK:CMP AL,[SI]

JNC GO

INC CL

INC SI

JNZ BACK

GO:MOV LENGTH,CL

MOV AH,4CH

INT 21H

CODE ENDS

END START

END

Result:

INPUT: STR (DS:0000H) = 01H, 03H,08H,09H,05H,07H,02H

OUTPUT: LENGTH = 07H (CL)

11. String comparison

Registers used: AX,DS,SI,DI,CL

Flags affected: ZF,CF

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

STR DB 04H,05H,07H,08H

COUNT EQU 04H

ORG 0010H

STR1 DB 04H,06H,07H,09H

DATA ENDS

CODE SEGMENT

START:MOV AX,DATA

MOV DS,AX

MOV SI,OFFSET STR

MOV DI,OFFSET STR1

MOV CL,COUNT

CLD

REP CMPSB

MOV AH,4CH

INT 21H

CODE ENDS

END START

END

Result:

INPUT: STR (DS:0000H) = 04H,05H,07H,08H

STR1 (DS:0010H) = 04H,06H,07H,09H

OUTPUT: I): IF STR = STR1 THEN ZF = 1 &

II): IF STR ≠ STR1 THEN ZF = 0

12. Display the string

Registers used: AX,DS,DX

Flags affected: No flags are affected

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

MSG DB 0DH,0AH,"MICROPROCESSORS ",0DH,0AH,"$"

DATA ENDS

CODE SEGMENT

START:

MOV AX,DATA

MOV DS,AX

MOV AH,09H

MOV DX,OFFSET MSG

INT 21H

MOV AH,4CH

INT 21H

CODE ENDS

END START

END

Result:

MICROPROCESSORS

UNIT-3

INPUT/ OUTPUT INTERFACE

3.1. 8255 ppi

3.1.1. 8255 architecture

The parallel input-output port chip 8255 is also called as programmable peripheral input-output

port. The Intel’s 8255 is designed for use with Intel’s 8- bit, 16-bit and higher capability

microprocessors. It has 24 input/output lines which may be individually programmed in two

groups of twelve lines each, or three groups of eight lines.

• The two groups of I/O pins are named as Group A and Group B. Each of these two groups

contains a subgroup of eight I/O lines called as 8-bit port and another subgroup of four lines or a

4-bit port. Thus Group A contains an 8-bit port A along with a 4-bit port C upper.

• The port A lines are identified by symbols PA0-PA7 while the port C lines are identified as

PC4-PC7. Similarly, Group B contains an 8-bit port B, containing lines PB0-PB7 and a 4-bit port

C with lower bits PC0- PC3.

• Both the port C are assigned the same address. Thus one may have either three 8- bit I/O ports

or two 8-bit and two 4-bit ports from 8255. All of these ports can function independently either

as input or as output ports. This can be achieved by programming the bits of an internal register

of 8255 called as control word register (CWR).

The internal block diagram and the pin configuration of 8255 are shown in fig.3.1. as below

Fig 3.1. 8255 Architecture

The 8-bit data bus buffer is controlled by the read/write control logic. The read/write control

logic manages all of the internal and external transfers of both data and control words.

• RD , WR , A1, A0 and RESET are the inputs provided by the microprocessor to the READ/

WRITE control logic of 8255. The 8-bit, 3-state bidirectional buffer is used to interface the 8255

internal data bus with the external system data bus.

• This buffer receives or transmits data upon the execution of input or output instructions by the

microprocessor. The control words or status information is also

transferred through the buffer

Description

It has a 40 pins of 4 groups.

1. Data bus buffer

2. Read Write control logic

3. Group A and Group B controls

4. Port A, B and C

• Data bus buffer: This is a tri state bidirectional buffer used to interface the 8255 to system data

bus. Data is transmitted or received by the buffer on execution of input or output instruction by

the CPU.

• Control word and status information are also transferred through this unit.

• Read/Write control logic: This unit accepts control signals (RD , WR) and also inputs from

address bus and issues commands to individual group of control blocks (Group A, Group B).

• It has the following pins.

a) CS – Chip select : A low on this PIN enables the communication between CPU and 8255.

b) RD (Read) – A low on this pin enables the CPU to read the data in the ports or the status word

through data bus buffer.

c) WR (Write) : A low on this pin, the CPU can write data on to the ports or on to the control

register through the data bus buffer.

d) RESET: A high on this pin clears the control register and all ports are set to the input mode

e) A0 and A1 (Address pins): These pins in conjunction with RD and WR pins control the

selection of one of the 3 ports.

• Group A and Group B controls : These block receive control from the CPU and issues

commands to their respective ports.

• Group A - PA and PCU (PC7 –PC4)

• Group B - PCL (PC3 – PC0)

• Control word register can only be written into no read operation of the CW register is allowed.

• a) Port A: This has an 8 bit latched/buffered O/P and 8 bit input latch. It can be programmed in

3 modes – mode 0, mode 1, mode 2.

b) Port B: This has an 8 bit latched / buffered O/P and 8 bit input latch. It can be programmed in

mode 0, mode1.

c) Port C : This has an 8 bit latched input buffer and 8 bit output latched/buffer. This port can be

divided into two 4 bit ports and can be used as control signals for port A and port B.

3.1.2. 8255 Pin Description

The 8255 is a 40 pin integrated circuit (IC), designed to perform a variety of interface functions

in a computer environment. The 8255 wasn't originally designed to be connected to the Z80. It

was manufactured by Intel for the 8080 microprocessor.

Fig 3.2. 8255 pin diagram

The signal description of 8255 are briefly presented as follows :

• PA7-PA0: These are eight port A lines that acts as either latched output orbuffered input lines

depending upon the control word loaded into the control wordregister.

• PC7-PC4: Upper nibble of port C lines. They may act as either output latches orinput buffers

lines.This port also can be used for generation of handshake lines in mode 1 or mode2.

• PC3-PC0: These are the lower port C lines, other details are the same as PC7-PC4lines.

• PB0-PB7 : These are the eight port B lines which are used as latched output linesor buffered

input lines in the same way as port A.

• RD : This is the input line driven by the microprocessor and should be low toindicate read

operation to 8255.

• WR : This is an input line driven by the microprocessor. A low on this lineindicates write

operation.

• CS : This is a chip select line. If this line goes low, it enables the 8255 to respondto RD and

WR signals, otherwise RD and WR signal are neglected.

• A1-A0 : These are the address input lines and are driven by the microprocessor.These lines A1-

A0 with RD , WR and CS from the following operations for8255. These address lines are used

for addressing any one of the four registers

• In case of 8086 systems, if the 8255 is to be interfaced with lower order data bus,the A0 and A1

pins of 8255 are connected with A1 and A2 respectively.

• D0-D7 : These are the data bus lines those carry data or control word to/from

themicroprocessor.

• RESET : A logic high on this line clears the control word register of 8255. Allports are set as

input ports by default after reset.

3.1.3. 8255 Control Word Register

Before going to discuss the detailed description about the usage of the 8255 in the MZ-700, you

should see the bit definitions of the 8255 control word register (port $E003 of the MZ-700).If bit

7 of the control word is a logical 1 then the 8255 will be configured.

Fig 3.3. 8255 control word register

Mode definition of the 8255 control register to configure the 8255 Bit definitions of the 8255

control register to modify single bits of port C

Examples:

If you want to set/reset bit 0 of port C then set D3 to D1 to 000.

Bit 1 of port C will be set/reset if you code 001 to D3 to D1.

Bit 6 of port C is set/reset if D3 to D1 is 110.

3.1.4. Modes Of Operation Of 8255

• These are two basic modes of operation of 8255. I/O mode and Bit Set-Resetmode (BSR).

• In I/O mode, the 8255 ports work as programmable I/O ports, while in BSR modeonly port C

(PC0-PC7) can be used to set or reset its individual port bits.

• Under the I/O mode of operation, further there are three modes of operation of8255, so as to

support different types of applications, mode 0, mode 1 and mode2.

• BSR Mode: In this mode any of the 8-bits of port C can be set or reset dependingon D0 of the

control word. The bit to be set or reset is selected by bit select flagsD3, D2 and D1 of the CWR.

• I/O Modes :

a) Mode 0 (Basic I/O mode): This mode is also called as basic input/outputmode. This mode

provides simple input and output capabilities using each of the threeports. Data can be simply

read from and written to the input and output portsrespectively, after appropriate initialization

The salient features of this mode are as listed below:

1. Two 8-bit ports (port A and port B)and two 4-bit ports (port C upper and lower)are

available. The two 4-bit ports can be combinedly used as a third 8-bit port.

2. Any port can be used as an input or output port.

3. Output ports are latched. Input ports are not latched.

4. A maximum of four ports are available so that overall 16 I/O configurations arepossible.

• All these modes can be selected by programming a register internal to 8255known as CWR.

• The control word register has two formats. The first format is valid for I/O modesof operation,

i.e. modes 0, mode 1 and mode 2 while the second format is validfor bit set/reset (BSR) mode of

operation.

b) Mode 1: (Strobed input/output mode) In this mode the handshaking control the inputand

output action of the specified port. Port C lines PC0-PC2; provide strobe orhandshake lines for

port B. This group which includes port B and PC0-PC2 is called asgroup B for Strobed data

input/output. Port C lines PC3-PC5 provides strobe lines for portA.This group including port A

and PC3-PC5 from group A. Thus port C is utilized forgenerating handshake signals. The salient

features of mode 1 are listed as follows:

1. Two groups – group A and group B are available for strobed data transfer.

2. Each group contains one 8-bit data I/O port and one 4-bit control/data port.

3. The 8-bit data port can be either used as input and output port. The inputs andoutputs both are

latched.

4. Out of 8-bit port C, PC0-PC2 are used to generate control signals for port B andPC3-PC5 are

used to generate control signals for port A. the lines PC6, PC7 maybe used as independent data

lines.

• The control signals for both the groups in input and output modes are

explained as follows:

Input control signal definitions (mode 1):

• STB(Strobe input) – If this lines falls to logic low level, the data available at 8-bit input port is

loaded into input latches.

• IBF (Input buffer full) – If this signal rises to logic 1, it indicates that data hasbeen loaded into

latches, i.e. it works as an acknowledgement. IBF is set by a lowon STB and is reset by the rising

edge of RD input.

• INTR (Interrupt request) – This active high output signal can be used tointerrupt the CPU

whenever an input device requests the service. INTR is set by ahigh STB pin and a high at IBF

pin. INTE is an internal flag that can be controlledby the bit set/reset mode of either

PC4(INTEA) or PC2(INTEB).

• INTR is reset by a falling edge of RD input. Thus an external input device can be request the

service of the processor by putting the data on the bus and sending thestrobe signal.

Output control signal definitions (mode 1) :

• OBF (Output buffer full) – This status signal, whenever falls to low, indicatesthat CPU has

written data to the specified output port. The OBF flip-flop will beset by a rising edge of WR

signal and reset by a low going edge at the ACKinput.

• ACK (Acknowledge input) – ACK signal acts as an acknowledgement to begiven by an

output device. ACK signal, whenever low, informs the CPU that thedata transferred by the CPU

to the output device through the port is received bythe output device.

• INTR (Interrupt request) – Thus an output signal that can be used to interruptthe CPU when

an output device acknowledges the data received from the CPU.INTR is set when ACK, OBF

and INTE are 1. It is reset by a falling edge on WRinput. The INTEA and INTEB flags are

controlled by the bit set-reset mode ofPC6 and PC2 respectively.

• Mode 2 (Strobed bidirectional I/O): This mode of operation of 8255 is alsocalled as strobed

bidirectional I/O. This mode of operation provides 8255 with additional features for

communicating with a peripheral device on an 8-bit databus. Handshaking signals are provided

to maintain proper data flow andsynchronization between the data transmitter and receiver. The

interruptgeneration and other functions are similar to mode 1.

• In this mode, 8255 is a bidirectional 8-bit port with handshake signals. The Rdand WR signals

decide whether the 8255 is going to operate as an input port oroutput port.

• The Salient features of Mode 2 of 8255 are listed as follows:

1. The single 8-bit port in group A is available.

2. The 8-bit port is bidirectional and additionally a 5-bit control port is available.

3. Three I/O lines are available at port C.(PC2 – PC0)

4. Inputs and outputs are both latched.

5. The 5-bit control port C (PC3-PC7) is used for generating / accepting handshakesignals for the

8-bit data transfer on port A.

• Control signal definitions in mode 2:

• INTR – (Interrupt request) As in mode 1, this control signal is active high and isused to

interrupt the microprocessor to ask for transfer of the next data byteto/from it. This signal is used

for input (read) as well as output (write)operations.

• Control Signals for Output operations:

• OBF (Output buffer full) – This signal, when falls to low level, indicates that theCPU has

written data to port A.

• ACK (Acknowledge) This control input, when falls to logic low level,acknowledges that the

previous data byte is received by the destination and nextbyte may be sent by the processor. This

signal enables the internal tristate buffersto send the next data byte on port A.

• INTE1 (A flag associated with OBF) This can be controlled by bit set/resetmode with PC6.

• Control signals for input operations :

• STB (Strobe input) A low on this line is used to strobe in the data into the inputlatches of

8255.

• IBF (Input buffer full) When the data is loaded into input buffer, this signal risesto logic ‘1’.

This can be used as an acknowledge that the data has been receivedby the receiver.

• The waveforms in fig show the operation in Mode 2 for output as well as inputport.

.3.2. Interfacing key board with 8086

When you press a key on your computer, you are activating a switch. There are many different

ways of making these switches. An overview of the construction and operation of some of the

most common types.

1. Mechanical key switches: In mechanical-switch keys, two pieces of metal are pushed

together when you press the key. The actual switch elements are often made of a phosphor-

bronze alloy with gold platting on the contact areas. The key switch usually contains a spring to

return the key to the nonpressed position and perhaps a small piece of foam to help damp out

bouncing.

• Some mechanical key switches now consist of a molded silicon dome with a small piece of

conductive rubber foam short two trace on the printed-circuit board to produce the key pressed

signal.

• Mechanical switches are relatively inexpensive but they have several disadvantages. First, they

suffer from contact bounce. A pressed key may make and break contact several times before it

makes solid contact.

• Second, the contacts may become oxidized or dirty with age so they no longer make a

dependable connection.

• Higher-quality mechanical switches typically have a rated life time of about 1 million

keystrokes. The silicone dome type typically last 25 million keystrokes.

2. Membrane key switches: These switches are really a special type of mechanical switches.

They consist of a three-layer plastic or rubber sandwich.

• The top layer has a conductive line of silver ink running under each key position. The bottom

layer has a conductive line of silver ink running under each column of keys.

• When u press a key, you push the top ink line through the hole to contact the bottom ink line.

• The advantages of membrane keyboards is that they can be made as very thin, sealed units.

• They are often used on cash registers in fast food restaurants. The lifetime of membrane

keyboards varies over a wide range.

3. Capacitive key switches: A capacitive keyswitch has two small metal plates on the printed

circuit board and another metal plate on the bottom of a piece of foam.

• When u press the key, the movable plate is pushed closer to fixed plate. This changes the

capacitance between the fixed plates. Sense amplifier circuitry detects this change in capacitance

and produce a logic level signal that indicates a key has been pressed.

• The big advantages of a capacitive switch is that it has no mechanical contacts to become

oxidized or dirty.

• A small disadvantage is the specified circuitry needed to detect the change in capacitance.

• Capacitive keyswitches typically have a rated lifetime of about 20 million keystrokes.

4. Hall effect keys witches: This is another type of switch which has no mechanical contact. It

takes advantage of the deflection of a moving charge by a magnetic field.

• A reference current is passed through a semiconductor crystal between two opposing faces.

When a key is pressed, the crystal is moved through a magnetic field which has its flux lines

perpendicular to the direction of current flow in the crystal.

• Moving the crystal through the magnetic field causes a small voltage to be developed between

two of the other opposing faces of the crystal.

• This voltage is amplified and used to indicate that a key has been pressed. Hall effect sensors

are also used to detect motion in many electrically controlled machines.

• Hall effect keyboards are more expensive because of the more complex switch mechanism, but

they are very dependable and have typically rated lifetime of 100 million or more keystrokes.

• In most keyboards, the keyswitches are connecting in a matrix of rows and columns• We will

use simple mechanical switches for our examples, but the principle is same for other type of

switches.

• Getting meaningful data from a keyboard, it requires the following three major tasks:

1. Detect a keypress.

2. Debounce the keypress.

3. Encode the keypress

• Three tasks can be done with hardware, software, or a combination of two, depending on the

application.

1. Software Keyboard Interfacing:

• Circuit connection and algorithm :

• The rows of the matrix are connected to four output port lines. The column lines of matrix are

connected to four input-port lines. To make the program simpler, the row lines are also

connected to four input lines.

• When no keys are pressed, the column lines are held high by the pull-up resistor connected to

+5V. Pressing a key connects a row to a column. If a low is output on a row and a key in that

row is pressed, then the low will appear on the column which contains that key and can be

detected on the input port.

• If you know the row and column of the pressed key, you then know which key was pressed,

and you can convert this information into any code you want to represent that key.

• An easy way to detect if any key in the matrix is pressed is to output 0’s to all rows and then

check the column to see if a pressed key has connected a low to a column.

• In the algorithm we first output lows to all the rows and check the columns over and over until

the column are all high. This is done before the previous key has been released before looking

for the next one. In the standard keyboard terminology, this is called two-key lockout.

• Once the columns are found to be all high, the program enters another loop, which waits until a

low appears on one of the columns, indicating that a key has been pressed. This second loop does

the detect task for us. A simple 20-ms delay procedure then does the debounce task.

• After the debounce time, another check is made to see if the key is still pressed. If the columns

are now all high, then no key is pressed and the initial detection was caused by a noise pulse or a

light brushing past a key. If any of the columns are still low, then the assumption is made that it

was a valid keypress.

• The final task is to determine the row and column of the pressed key and convert this row and

column information to the hex code for the pressed key. To get the row and column information,

a low is output to one row and the column are read. If none of the columns is low, the pressed

key is not in that row. So the low is rotated to the next row and the column are checked again.

The process is repeated until a low on a row produces a low on one of the column.

• The pressed key then is in the row which is low at that time.

• The connection fig shows the byte read in from the input port will contain a 4-bit code which

represents the row of the pressed key and a 4-bit code which represent the column of the pressed

key.

• Error trapping: The concept of detecting some error condition such as “ no match found” is

called error trapping. Error trapping is a very important part of real programs. Even in simple

programs, think what might happen with no error trap if two keys in the same row were pressed

at exactly at the same time and a column code with two lows in it was produced.

• This code would not match any of the row-column codes in the table, so after all the values in

the table were \checked, assigned register in program would be decremented from 0000H to

FFFFH. The compare decrement cycle would continue through 65,536 memory locations until,

by change the value in a memory location matched the row-column code. The contents of the

lower byte register at hat point would be passed back to the calling routine. The changes are 1 in

256 that would be the correct value for one of the pressed keys. You should keep an error trap in

a program whenever there is a chance for it.

Example

• Interface a 4 * 4 keyboard with 8086 using 8255 an write an ALP for detecting a key closure

and return the key code in AL. The debounce period for a key is 10ms. Use software debouncing

technique. DEBOUNCE is an available 10ms delay routine.

Solution: Port A is used as output port for selecting a row of keys while Port B is used as an

input port for sensing a closed key. Thus the keyboard lines are selected one by one through port

A and the port B lines are polled continuously till a key closure is sensed. The routine

DEBOUNCE is called for key debouncing. The key code is depending upon the selected row and

a low sensed column.

• The higher order lines of port A and port B are left unused. The address of port A and port B

will respectively 8000H and 8002H while address of CWR will be 8006H. The flow chart of the

complete program is as given. The control word for this problem will be 82H. Code segment CS

is used for storing the program code.

• Key Debounce : Whenever a mechanical push-button is pressed or released once, the

mechanical components of the key do not change the position smoothly, rather it generates a

transient response .

• These transient variations may be interpreted as the multiple key pressure and responded

accordingly by the microprocessor system.

• To avoid this problem, two schemes are suggested: the first one utilizes a bistable multivibrator

at the output of the key to debounce .

• The other scheme suggests that the microprocessor should be made to wait for the transient

period (usually 10ms), so that the transient response settles down and reaches a

steady state.

• A logic ‘0’ will be read by the microprocessor when the key is pressed.

• In a number of high precision applications, a designer may have two options- the first is to have

more than one 8-bit port, read (write) the port one by one and then from the multibyte data, the

second option allows forming 16-bit ports using two 8-bit ports and use 16-bit read or write

operations.

Fig 3.4. key board interfacing

3.3. Interfacing 7- Segment display with 8086

• To give directions or data values to users, many microprocessor-controlledinstruments and

machines need to display letters of the alphabet and numbers. Insystems where a large amount of

data needs to be displayed a CRT is used todisplay the data. In system where only a small

amount of data needs to bedisplayed, simple digit-type displays are often used.

• There are several technologies used to make these digit-oriented displays but weare discussing

only the two major types.

• These are light emitting diodes (LED) and liquid-crystal displays (LCD).

• LCD displays use very low power, so they are often used in portable,

batterypoweredinstruments. They do not emit their own light, they simply change thereflection

of available light. Therefore, for an instrument that is to be used in lowlightconditions, you have

to include a light source for LCDs or use LEDs whichemit their own light.

• Alphanumeric LED displays are available in three common formats. Fordisplaying only

number and hexadecimal letters, simple 7-segment displays suchas that as shown in fig are used.

• To display numbers and the entire alphabet. The 7-segment type is the least expensive, most

commonly used and easiest to interfacewith, so we will concentrate first on how to interface with

this type.

1. Directly Driving LED Displays: Figure shows a circuit that you might connect toa parallel

port on a microcomputer to drive a single 7-segment , common-anodedisplay. For a common-

anode display, a segment is turned on by applying a logiclow to it.

• The 7447 converts a BCD code applied to its inputs to the pattern of lowsrequired to display

the number represented by the BCD code. This circuitconnection is referred to as a static display

because current is being passedthrough the display at all times.

• Each segment requires a current of between 5 and 30mA to light. Let’s assumeyou want a

current of 20mA. The voltage drop across the LED when it is lit isabout 1.5V.

• The output low voltage for the 7447 is a maximum of 0.4V at 40mA. So assume that it is about

0.2V at 20mA.Subtracting these two voltage drop from the supplyvoltage of 5V leaves 3.3V

across the current limiting resistor. Dividing 3.3V by20mA gives a value of 168Ω for the

current-limiting resistor. The voltage dropsacross the LED and the output of 7447 are not exactly

predictable and exactcurrent through the LED is not critical as long as we don’t exceed its

maximumrating.

2. Software-Multiplexed LED Display:

• The circuit in fig works for driving just one or two LED digits with a paralleloutput port.

However, this scheme has several problems if you want to drive, eightdigits.

• The first problem is power consumption. For worst-case calculations, assume thatall 8 digits

are displaying the digit 8, so all 7 segments are all lit. Seven segment times 20mA per segment

gives a current of 140mA per digit. Multiplying this by 8digits gives a total current of 1120mA

or 1.12A for 8 digits.

• A second problem of the static approach is that each display digit requires aseparate 7447

decoder, each of which uses of another 13mA. The current requiredby the decoders and the LED

displays might be several times the current requiredby the reset of the circuitry in the instrument.

• To solve the problem of the static display approach, we use a multiplex method,example for an

explanation of the multiplexing.

• The question that may occur to you on first seeing this is: Aren’t all the digitsgoing to display

the same number? The answer is that they would if all the digitswere turned on at the same time.

The tricky of multiplexing displays is that onlyone display digit is turned on at a time.

• The PNP transistor is series with the common anode of each digit acts as on/offswitch for that

digit. Here’s how the multiplexing process works.

• The BCD code for digit 1 is first output from port B to the 7447. the 7447 outputsthe

corresponding 7-segment code on the segment bus lines. The transistorconnected to digit 1 is

then turned on by outputting a low to the appropriate bit ofport A. All the rest of the bits of port

A are made high to make sure no other digitsare turned on. After 1 or 2 ms, digit 1 is turned off

by outputting all highs to portA.

• The BCD code for digit 2 is then output to the 7447 on port B, and a word to turnon digit 2 is

output on port A.

• After 1 or 2 ms, digit 2 is turned off and the process is repeated for digit 3. Theprocess is

continued until all the digits have had a turn. Then digit 1 and thefollowing digits are lit again in

turn.

• A procedure which is called on an interrupt basis every 2ms to keep these displaysrefreshed

with some values stored in a table. With 8 digits and 2ms per digit, youget back to digit 1 every

16ms or about 60 times a second.

• This refresh rate is fast enough so that the digits will each appear to be lit all time.

Refresh rates of 40 to 200 times a second are acceptable.

• The immediately obvious advantages of multiplexing the displays are that onlyone 7447 is

required, and only one digit is lit at a time. We usually increase thecurrent per segment to

between 40 and 60 mA for multiplexed displays so thatthey will appear as bright as they would if

they were not multiplexed. Even withthis increased segment current, multiplexing gives a large

saving in power andparts.

• The software-multiplexed approach we have just described can also be used todrive 18-segment

LED devices and dot-matrix LED device. For these devices,however you replace the 7447 in fig

with ROM which generates the requiredsegment codes when the ASCII code for a character is

applied to the addressinputs of the ROM.

Fig 3.5. 7- Segment display interfacing with 8086

Program:

;**

;**

; Odd addressed 8255 used ; Port A lines, PA0-PA7 are connected to the FND display

; To energize an FND segment the corresponding bit on PA should be active LOW

;**

CODE SEGMENT

ASSUME CS:CODE,DS:CODE,ES:CODE,SS:CODE

PORT_CON EQU 1FH ; Control Port 8-bit Address

PORTC EQU 1DH ; Port C 8-bit Address

PORTB EQU 1BH ; Port B 8-bit Address

PORTA EQU 19H ; Port A 8-bit Address

ORG 1000H ; Program Effective Address, IP = 1000H ;

MOV AX, CS

MOV DS, AX ; CS = DS ;

MOV AL, 10000000B ; Configure all ports of 8255 as output

OUT PORT_CON, AL ;

L1: MOV BL, 16 ; Setup number

MOV SI, OFFSET FONT ; Setup address of font

L2: MOV AL, [SI] ; Transfer font data

OUT PORTA, AL ; Output data

MOV CX, 0B000H ; Delay

LOOP $

INC SI ; Font address + 1

DEC BL ; Next digit

JNZ L2

JMP L1

; Dgfedcba ; Segment Display

FONT DB 11000000B ; 0

DB 11111001B ; 1

DB 10100100B ; 2

DB 10110000B ; 3

DB 10011001B ; 4

DB 10010010B ; 5

DB 10000010B ; 6

DB 11011000B ; 7

DB 10000000B ; 8

DB 10010000B ; 9

DB 100010000B ; A

DB 10000011B ; B

DB 11000110B ; C

DB 10100001B ; D

DB 10000110B ; E

DB 11000000B ; F

CODE ENDS

END ; End of Assembly Program

3.4. Interfacing stepper motor with 8086

The stepping motor is a device which can transfer the incoming pulses to stepping motion of

predetermined angular displacement. By using suitable control circuitry, the angular

displacement can be made proportional to the number of pulses. Using microcomputer, one can

have better control of the angular displacement resolution and angular speed of a stepping motor.

Stepping motors are suitable for translating digital inputs into mechanical motion. In general,

there are three types of stepping motor:

VR (Variable Reluctance) stepping motors

Hybrid stepping motors

PM (Permanent Magnet) stepping motors

Theory of operation

Stepper motors operate differently from normal DC motors, which simply spin when voltage is

applied to their terminals. Stepper motors, on the other hand, effectively have multiple "toothed"

electromagnets arranged around a central metal gear, as shown in Fig. 3.6

Fig 3.6. Toothed stepper motor and state of motion at different coil excitation.

To make the motor shaft turn, first one electromagnet is given power, which makes the

gear's teeth magnetically attracted to the electromagnet's teeth. When the gear's teeth are thus

aligned to the first electromagnet, they are slightly offset from the next electromagnet. So, when

the next electromagnet is turned on and the first is turned off, the gear rotates slightly to align

with the next one, and from there the process is repeated. Each of those slight rotations is called a

"step." In that way, the motor can be turned a precise angle. There are two basic arrangements

for the electromagnetic coils: bipolar and unipolar. We will experiment on a unipolar 4-phase six

wire stepper motor. The step angle for each step depends on the number of teethes on the rotor

and pole faces. Stepper motors are mostly Hybrid type. In this experiment we will use a hybrid

stepper motor with full step angle of 1.80 and half step angle of 0.90.Commercial stepping motor

uses multimotor rotor, the rotor features two bearlike PM cylinders that are turned one-half of

tooth spacing. One gear is south pole, the other gear is north pole. If a 50-tooth rotor gear is used,

the following movement sequences will proceed.

Hardware Interface

To run a stepper motor from a microprocessor trainer (microcomputer), we need a parallel port

interface. Here we will be using Intel 8255 PPI (programmable peripheral interface) that has

three 8-bit ports configurable in few modes. The 8255 has one control port where one can send

the control word for configuring the 8255 ports (For details see 8255 data sheet). In this

application, one port of 8255 should be configured as output port for stepper motor control

signals to pass through. In MDA8086 trainer, the stepper motor interface is built in the

motherboard, as shown in Figs. 8-1, 8-2. Upper 4-bits of Port B of the odd addressed 8255 are

connected to the stepper motor circuitry. The signal mappings of the port lines are as follows:

Port Bit Phase Terminal

 Connector
 P10

PB4 Coil A1 1
PB5 Coil B1 4

PB6 Coil A2 3
PB7 Coil B2 6
- TAPA 2

- TAPB 5

Fig 3.7. Stepper motor interfacing through 8255

Assembly Program

Running a stepper motor in Full-Steps

;**

;**

; PROG1

; Odd addressed 8255 used

; Port B (upper 4-lines, PB4-PB7) is connected to the Stepping Motor Interface

; PB4 □ Coil 1 (A)

;PB5 □ Coil 1 (B)

; PB6 □ Coil 2 (A)

; PB7 □ Coil 2 (B)

; To energize a coil the corresponding bit on PB should be active LOW

;**

CODE SEGMENT ASSUME CS:CODE,DS:CODE,ES:CODE,SS:CODE

PORT_CON EQU 1FH ; Control Port 8-bit Address

PORTC EQU 1DH ; Port C 8-bit Address

PORTB EQU 1BH ; Port B 8-bit Address

PORTA EQU 19H ; Port A 8-bit Address ;

ORG 1000H ; Program Effective Address, IP = 1000H ;

MOV AX, 0

MOV DS, AX ; Initialize Data Segment register DS to 0000H ;

MOV AL, 10000000B ; Configure all ports of 8255 as output

OUT PORT_CON, AL ;

MOV AL, 11111111B ; Can write 0FFH as well

OUT PORTA, AL ; All pins of Port A to HIGH

MOV AL, 00000000B

OUT PORTC, AL ; All pins of Port C to

;MOV AL, 11101110B ; Only one coil to be energized at a time

L1: OUT PORTB, AL

CALL DELAY ; Call DELAY subroutine

ROL AL, 1 ; Rotate AL left by 1 bit

JMP L1

;;Subroutine of DELAY

DELAY: MOV CX, 0 ; Similar to loading CX by FFFFH

AGAIN:

NOP

NOP ; Dummy instructions to cause time delay

NOP

NOP

LOOP AGAIN

RET ; Return from subroutine call ;

CODE ENDS ; End of Subroutine DELAY

END ; End of Assembly Program

3.5. Interfacing Analog to Digital Data Converters

• In most of the cases, the PIO 8255 is used for interfacing the analog to digitalconverters with

microprocessor.

• We have already studied 8255 interfacing with 8086 as an I/O port, in previoussection. This

section we will only emphasize the interfacing techniques of analogto digital converters with

8255.

• The analog to digital converters is treated as an input device by themicroprocessor that sends an

initializing signal to the ADC to start the analogy todigital data conversation process. The start of

conversation signal is a pulse of aspecific duration.

• The process of analog to digital conversion is a slow process, and themicroprocessor has to

wait for the digital data till the conversion is over. After theconversion is over, the ADC sends

end of conversion EOC signal to inform themicroprocessor that the conversion is over and the

result is ready at the outputbuffer of the ADC. These tasks of issuing an SOC pulse to ADC,

reading EOCsignal from the ADC and reading the digital output of the ADC are carried out

bythe CPU using 8255 I/O ports.

• The time taken by the ADC from the active edge of SOC pulse till the activeedge of EOC

signal is called as the conversion delay of the ADC.

• It may range anywhere from a few microseconds in case of fast ADC to even afew hundred

milliseconds in case of slow ADCs.

• The available ADC in the market use different conversion techniques forconversion of analog

signal to digitals. Successive approximation techniques anddual slope integration techniques are

the most popular techniques used in theintegrated ADC chip.

• General algorithm for ADC interfacing contains the following steps:

1. Ensure the stability of analog input, applied to the ADC.

2. Issue start of conversion pulse to ADC

3. Read end of conversion signal to mark the end of conversion processes.

4. Read digital data output of the ADC as equivalent digital output.

5. Analog input voltage must be constant at the input of the ADC right from the startof

conversion till the end of the conversion to get correct results. This may beensured by a sample

and hold circuit which samples the analog signal and holds itconstant for a specific time

duration. The microprocessor may issue a hold signalto the sample and hold circuit.

6. If the applied input changes before the complete conversion process is over, thedigital

equivalent of the analog input calculated by the ADC may not be correct.

ADC 0808/0809 :

• The analog to digital converter chips 0808 and 0809 are 8-bit CMOS, successiveapproximation

converters. This technique is one of the fast techniques for analogto digital conversion. The

conversion delay is 100μs at a clock frequency of 640KHz, which is quite low as compared to

other converters. These converters do notneed any external zero or full scale adjustments as they

are already taken care ofby internal circuits. These converters internally have a 3:8 analog

multiplexer sothat at a time eight different analog conversion by using address lines -ADD A,

ADD B, ADD C. Using these address inputs, multichannel data acquisitionsystem can be

designed using a single ADC. The CPU may drive these lines using outputport lines in case of

multichannel applications. In case of single input applications, thesemay be hardwired to select

the proper input.

• There are unipolar analog to digital converters, i.e. they are able to convert onlypositive analog

input voltage to their digital equivalent. These chips do not containany internal sample and hold

circuit.

Table 3.1. ADC interfacing through 8255

• If one needs a sample and hold circuit for the conversion of fast signal into equivalent digital

quantities, it has to be externally connected at each of the analog inputs.

• Vcc Supply pins +5V

• GND GND

• Vref + Reference voltage positive +5 Volts maximum.

• Vref _ Reference voltage negative 0Volts minimum.

• I/P0 –I/P7 Analog inputs

• ADD A,B,C Address lines for selecting analog inputs.

• O7 – O0 Digital 8-bit output with O7 MSB and O0 LSB

• SOC Start of conversion signal pin

• EOC End of conversion signal pin

• OE Output latch enable pin, if high enables output

• CLK Clock input for ADC

Fig 3.7. Block diagram of 0809 ADC

Example: Interfacing ADC 0808 with 8086 using 8255 ports. Use port A of 8255for transferring

digital data output of ADC to the CPU and port C for controlsignals. Assume that an analog

input is present at I/P2 of the ADC and a clockinput of suitable frequency is available for ADC.

• Solution: The analog input I/P2 is used and therefore address pins A,B,C shouldbe 0,1,0

respectively to select I/P2. The OE and ALE pins are already kept at +5Vto select the ADC and

enable the outputs. Port C upper acts as the input port toreceive the EOC signal while port C

lower acts as the output port to send SOC tothe ADC.

• Port A acts as a 8-bit input data port to receive the digital data output from theADC. The 8255

control word is written as follows:

D7 D6 D5 D4 D3 D2 D1 D0

1 0 0 1 1 0 0 0

• The required ALP is as follows:

MOV AL, 98h ;initialise 8255 as

OUT CWR, AL ;discussed above.

MOV AL, 02h ;Select I/P2 as analog

OUT Port B, AL ;input.

MOV AL, 00h ;Give start of conversion

OUT Port C, AL ; pulse to the ADC

MOV AL, 01h

OUT Port C, AL

MOV AL, 00h

OUT Port C, AL

WAIT: IN AL, Port C ;Check for EOC by

RCR ; reading port C upper and

JNC WAIT ;rotating through carry.

IN AL, Port A ;If EOC, read digital equivalent in AL
HLT ;Stop.

3.6. Interfacing Digital To Analog Converters

INTERFACING DIGITAL TO ANALOG CONVERTERS: The digital to analogconverters convert

binary number into their equivalent voltages. The DAC findapplications in areas like digitally

controlled gains, motors speed controls, programmablegain amplifiers etc.AD 7523 8-bit

Multiplying DAC : This is a 16 pin DIP, multiplying digital toanalog converter, containing R-2R

ladder for D-A conversion along with single poledouble thrown NMOS switches to connect the

digital inputs to the ladder.

Fig 3.8. Pin diagram of 7253

• The pin diagram of AD7523 is shown in fig the supply range is from +5V to +15V, while Vref

may be anywhere between -10V to +10V. The maximum analog output voltage will be any

where between -10V to +10V, when all the digital inputs are at logic high state.

• Usually a zener is connected between OUT1 and OUT2 to save the DAC from negative

transients. An operational amplifier is used as a current to voltage converter at the output of AD

to convert the current output of AD to a proportional output voltage.

• It also offers additional drive capability to the DAC output. An external feedback resistor acts

to control the gain. One may not connect any external feedback resistor, if no gain control is

required.

• EXAMPLE: Interfacing DAC AD7523 with an 8086 CPU running at 8MHZ and write an

assembly language program to generate a sawtooth waveform of period 1ms with Vmax 5V.

Solution: Fig shows the interfacing circuit of AD 74523 with 8086 using 8255. program gives an

ALP to generate a sawtooth waveform using circuit.

ASSUME CS:CODE

CODE SEGMENT

START :MOV AL,80h ;make all ports output
OUT CW, AL

AGAIN :MOV AL,00h ;start voltage for ramp

BACK : OUT PA, AL
INC AL

CMP AL, 0FFh
JB BACK

JMP AGAIN
CODE ENDS

END START

3.7 INTRFACING WITH ADVANCED DEVICS

3.7.1. Memory interfacing

• We have four common types of memory:

• Read only memory (ROM)

• Flash memory (EEPROM)

• Static Random access memory (SARAM)

• Dynamic Random access memory (DRAM).

• Pin connections common to all memory devices are: The address input, dataoutput or

input/outputs, selection input and control input used to select a read orwrite operation.

• Address connections: All memory devices have address inputs that select amemory location

within the memory device. Address inputs are labeled from A0to An.

• Data connections: All memory devices have a set of data outputs orinput/outputs. Today many

of them have bi-directional common I/O pins.

• Selection connections: Each memory device has an input, that selects or enablesthe memory

device. This kind of input is most often called a chip select (CS),chip enable (CE) or simply

select (S) input

Fig 4.1. Diagram of memory component

• RAM memory generally has at least one CS or S input and ROM at least oneCE .

• If the CE , CS, S input is active the memory device perform the read or write.

• If it is inactive the memory device cannot perform read or write operation.

• If more than one CS connection is present, all must be active to perform read orwrite data.

• Control connections: A ROM usually has only one control input, while a RAMoften has one or

two control inputs.

• The control input most often found on the ROM is the output enable (OE) orgate (G), this

allows data to flow out of the output data pins of the ROM.

• If OE and the selected input are both active, then the output is enable, if OE isinactive, the

output is disabled at its high-impedance state.

• The OE connection enables and disables a set of three-state buffer located withinthe memory

device and must be active to read data.

• A RAM memory device has either one or two control inputs. If there is onecontrol input it is

often called R/W.

• This pin selects a read operation or a write operation only if the device is selectedby the

selection input (CS).

• If the RAM has two control inputs, they are usually labeled WE or W and OEor G .

• (WE) write enable must be active to perform a memory write operation and OEmust be active

to perform a memory read operation.

• When these two controls WE and OE are present, they must never be active atthe same time.

• The ROM read only memory permanently stores programs and data and data wasalways

present, even when power is disconnected.

• It is also called as nonvolatile memory.

• EPROM (erasable programmable read only memory) is also erasable if exposedto high

intensity ultraviolet light for about 20 minutes or less, depending upon thetype of EPROM.

• We have PROM (programmable read only memory)

• RMM (read mostly memory) is also called the flash memory.

• The flash memory is also called as an EEPROM (electrically erasable programmable ROM),

EAROM (electrically alterable ROM), or a NOVROM(nonvolatile ROM).

• These memory devices are electrically erasable in the system, but require moretime to erase

than a normal RAM.

• EPROM contains the series of 27XXX contains the following part numbers :2704(512 * 8),

2708(1K * 8), 2716(2K * 8), 2732(4K * 8), 2764(8K * 8),27128(16K * 8) etc..

• Each of these parts contains address pins, eight data connections, one or morechip selection

inputs (CE) and an output enable pin (OE).

• This device contains 11 address inputs and 8 data outputs.

• If both the pin connection CE and OE are at logic 0, data will appear on the output connection

If both the pins are not at logic 0, the data output connectionsremains at their high impedance or

off state.

• To read data from the EPROM Vpp pin must be placed at a logic 1.

Fig 4.2. Pin diagram of 2716 EPROM

• Static RAM memory device retain data for as long as DC power is applied. Because no special

action is required to retain stored data, these devices are called as static memory. They are also

called volatile memory because they will not retain data without power.

• The main difference between a ROM and RAM is that a RAM is written under normal

operation, while ROM is programmed outside the computer and is only normally read.

• The SRAM stores temporary data and is used when the size of read/write memory is relatively

small.

Fig 4.3. Pin diagram of 4016 SRAM

• The control inputs of this RAM are slightly different from those presented earlier. The OE pin

is labeled G , the CS pin S and the WE pin W.

• This 4016 SRAM device has 11 address inputs and 8 data input/output connections.

Static RAM Interfacing

• The semiconductor RAM is broadly two types – Static RAM and Dynamic RAM.

• The semiconductor memories are organized as two dimensional arrays of memory locations.

• For example 4K * 8 or 4K byte memory contains 4096 locations, where each locations contains

8-bit data and only one of the 4096 locations can be selected at a time. Once a location is

selected all the bits in it are accessible using a group of conductors called Data bus.

• For addressing the 4K bytes of memory, 12 address lines are required.

• In general to address a memory location out of N memory locations, we will require at least n

bits of address, i.e. n address lines where n = Log2 N.

• Thus if the microprocessor has n address lines, then it is able to address at the most N locations

of memory, where 2n=N. If out of N locations only P memory locations are to be interfaced, then

the least significant p address lines out of the available n lines can be directly connected from the

microprocessor to the memory chip while the remaining (n-p) higher order address lines may be

used for address decoding as inputs to the chip selection logic.

• The memory address depends upon the hardware circuit used for decoding the chip select (CS).

The output of the decoding circuit is connected with the CS pin of the memory chip.

• The general procedure of static memory interfacing with 8086 is briefly described as follows:

1. Arrange the available memory chip so as to obtain 16- bit data bus width. The upper 8-bit

bank is called as odd address memory bank and the lower 8-bit bank is called as even address

memory bank.

2. Connect available memory address lines of memory chip with those of the microprocessor and

also connect the memory RD and WR inputs to the corresponding processor control signals.

Connect the 16-bit data bus of the memory bank with that of the microprocessor 8086.

3. The remaining address lines of the microprocessor, BHE and A0 are used for decoding the

required chip select signals for the odd and even memory banks. The CS of memory is derived

from the o/p of the decoding circuit.

• As a good and efficient interfacing practice, the address map of the system should be

continuous as far as possible, i.e. there should not be no windows in the map and no fold back

space should be allowed.

• A memory location should have a single address corresponding to it, i.e. absolute decoding

should be preferred and minimum hardware should be used for decoding.

Dynamic RAM

• Whenever a large capacity memory is required in a microcomputer system, the memory

subsystem is generally designed using dynamic RAM because there are various advantages of

dynamic RAM.

• E.g. higher packing density, lower cost and less power consumption. A typical static RAM cell

may require six transistors while the dynamic RAM cell requires only a transistors along with a

capacitor. Hence it is possible to obtain higher packaging density and hence low cost units are

available.

• The basic dynamic RAM cell uses a capacitor to store the charge as a representation of data.

This capacitor is manufactured as a diode that is reverse biased so that the storage capacitance

comes into the picture.

• This storage capacitance is utilized for storing the charge representation of data but the reverse-

biased diode has leakage current that tends to discharge the capacitor giving rise to the

possibility of data loss. To avoid this possible data loss, the data stored in a dynamic RAM cell

must be refreshed after a fixed time interval regularly. The process of refreshing the data in

RAM is called as Refreshcycle.

• The refresh activity is similar to reading the data from each and every cell of memory,

independent of the requirement of microprocessor. During this refresh period all other operations

related to the memory subsystem are suspended. Hence the refresh activity causes loss of time,

resulting in reduces system performance.

• However keeping in view the advantages of dynamic RAM, like low power consumption, high

packaging density and low cost, most of the advanced computing system are designed using

dynamic RAM, at the cost of operating speed.

• A dedicated hardware chip called as dynamic RAM controller is the most important part of the

interfacing circuit.

• The Refresh cycle is different from the memory read cycle in the following aspects.

1. The memory address is not provided by the CPU address bus, rather it is generated by a

refresh mechanism counter called as refresh counter.

2. Unlike memory read cycle, more than one memory chip may be enabled at a time so as to

reduce the number of total memory refresh cycles.

3. The data enable control of the selected memory chip is deactivated, and data is not allowed to

appear on the system data bus during refresh, as more than one memory units are refreshed

simultaneously. This is to avoid the data from the different chips to appear on the bus

simultaneously.

4. Memory read is either a processor initiated or an external bus master initiated and carried out

by the refresh mechanism.

• Dynamic RAM is available in units of several kilobits to megabits of memory. This memory is

arranged internally in a two dimensional matrix array so that it will have n rows and m columns.

The row address n and column address m are important for the refreshing operation.

• For example, a typical 4K bit dynamic RAM chip has an internally arranged bit array of

dimension 64 * 64 , i.e. 64 rows and 64 columns. The row address and column address will

require 6 bits each. These 6 bits for each row address and column address will be generated by

the refresh counter, during the refresh cycles.

• A complete row of 64 cells is refreshed at a time to minimize the refreshing time. Thus the

refresh counter needs to generate only row addresses. The row addresses are multiplexed, over

lower order address lines.

• The refresh signals act to control the multiplexer, i.e. when refresh cycle is in process the

refresh counter puts the row address over the address bus for refreshing. Otherwise, the address

bus of the processor is connected to the address bus of DRAM, during normal processor initiated

activities.

• A timer, called refresh timer, derives a pulse for refreshing action after each refresh interval.

• Refresh interval can be qualitatively defined as the time for which a dynamic RAM cell can

hold data charge level practically constant, i.e. no data loss takes place.

• Suppose the typical dynamic RAM chip has 64 rows, then each row should be refreshed after

each refresh interval or in other words, all the 64 rows are to refreshed in a single refresh

interval.

• This refresh interval depends upon the manufacturing technology of the dynamic RAM cell. It

may range anywhere from 1ms to 3ms.

• Let us consider 2ms as a typical refresh time interval. Hence, the frequency of the refresh

pulses will be calculated as follows:

• Refresh Time (per row) tr = (2 * 10 -3) / 64.

• Refresh Frequency fr = 64 / (2 * 10 -3) = 32 * 103 Hz.

• The following block diagram explains the refreshing logic and 8086 interfacing with dynamic

RAM.

• Each chip is of 16K * 1-bit dynamic RAM cell array. The system contains two 16K byte

dynamic RAM units. All the address and data lines are assumed to be available from an 8086

microprocessor system.

• The OE pin controls output data buffer of the memory chips. The CE pins are active high chip

selects of memory chips. The refresh cycle starts, if the refresh output of the refresh timer goes

high, OE and CE also tend to go high.

• The high CE enables the memory chip for refreshing, while high OE prevents the data from

appearing on the data bus, as discussed in memory refresh cycle. The 16K * 1-bit dynamic RAM

has an internal array of 128*128 cells, requiring 7 bits for row address. The lower order seven

lines A0-A6 are multiplexed with the refresh counter output A10-A16.

Fig 4.4. Dynamic ram 2164

• The pin assignment for 2164 dynamic RAM is as in above fig.

• The RAS and CAS are row and column address strobes and are driven by thedynamic RAM

controller outputs. A0 –A7 lines are the row or column addresslines, driven by the OUT0 –

OUT7 outputs of the controller. The WE pinindicates memory write cycles. The DIN and DOUT

pins are data pins for write andread operations respectively.

• In practical circuits, the refreshing logic is integrated inside dynamic RAMcontroller chips like

8203, 8202, 8207 etc.

• Intel’s 8203 is a dynamic RAM controller that support 16K or 64K dynamicRAM chip. This

selection is done using pin 16K/64K. If it is high, the 8203 isconfigured to control 16K dynamic

RAM, else it controls 64K dynamic RAM.The address inputs of 8203 controller accepts address

lines A1 to A16 on linesAL0-AL7 and AH0-AH7.

• The A0 lines is used to select the even or odd bank. The RD and WR signalsdecode whether

the cycle is a memory read or memory write cycle and areaccepted as inputs to 8203 from the

microprocessor.

• The WE signal specifies the memory write cycle and is not output from 8203 thatdrives the WE

input of dynamic RAM memory chip. The OUT0 – OUT7 set ofeight pins is an 8-bit output bus

that carries multiplexed row and columnaddresses are derived from the address lines A1-A16

accepted by the controller onits inputs AL0-AL7 and AH0-AH7.

• An external crystal may be applied between X0 and X1 pins, otherwise with the

OP2 pin at +12V, a clock signal may be applied at pin CLK.

• The PCS pin accepts the chip select signal derived by an address decoder. The

REFREQ pin is used whenever the memory refresh cycle is to be initiated by anexternal signal.

• The XACK signal indicates that data is available during a read cycle or it has been written if it

is a write cycle. It can be used as a strobe for data latches or as aready signal to the processor.

• The SACK output signal marks the beginning of a memory access cycle.

• If a memory request is made during a memory refresh cycle, the SACK signal isdelayed till the

starring of memory read or write cycle.

• Following fig shows the 8203 can be used to control a 256K bytes memorysubsystem for a

maximum mode 8086 microprocessor system.

• This design assumes that data and address busses are inverted and latched, hencethe inverting

buffers and inverting latches are used (8283-inverting buffer and8287- inverting latch).

3.7.2. 8086 Interrupts

• Interrupts provide a mechanism for quickly changing program environment. Transfer of

program control is initiated by the occurrence of either an event internal to the

microprocessor or an event in its external hardware

• When an interrupt signal occurs in external hardware indicating that an external device,

such as a printer, requires service, the MPU must suspend what it is doing in the main

part of the program and pass control to a special routine (interrupt-service routine) that

performs the function required by the device. In the case of our example of a printer, the

routine is usually called the printer driver, which is the piece of software when executed

drives the printer output interface.

• The 8088 and 8086 microcomputers are capable of implementing any combination of up

to 256 interrupts.

As Fig. 11-2, they are divided into five groups: external hardware interrupts, nonmaskable

interrupt, software interrupts, internal interrupts, and reset

Fig 4.5. Types of interrupts and their priority

• The user defines the function of the external hardware, software, and nonmaskable

interrupt. For instant, hardware interrupt are often assigned to devices such as the

keyboard, printer, and timers. On the other hand, the function of the internal interrupts

and reset are not user defined. They perform dedicated system functions.

• Hardware, software, and internal interrupts are serviced on a priority basis. Priority is

achieved in two ways. First, the interrupt-processing sequence implemented in the

8088/8086 tests the occurrence of the various groups based on the hierarchy shown in

Fig. 4.5. Thus, we see that internal interrupts are the highest-priority group, and the

external hardware interrupts are the lowest-priority group.

• Second, each of the interrupts is given a different priority level by assigning it a type

number. Type 0 identifies the highest-priority interrupt, and type 255 identifies the

lowest-priority interrupt. Actually, a few of the type numbers are not available for use

with software or hardware interrupts. This is because they are reserved for special

interrupt functions of the 8088/8086, such as internal interrupts

• For instant, within the internal interrupt group, the interrupt known as divide error is

assigned to type number 0. Therefore, it has the highest priority of the internal interrupts.

Another internal interrupt, called overflow, is assigned the type number 4, Overflow is

lowest-priority internal interrupt

• The importance of priority lies in the fact that, if an interrupt-service routine has been

initiated to perform a function assigned to s specific priority level, only devices with

higher priority are allowed are allowed to interrupt the active service routine. Lower-

priority devices will have to wait until the current routine is completed before their for

service can be acknowledged

• For hardware interrupts, this priority scheme is implemented in external hardware. For

this reason, the user normally assigns tasks that must not be interrupted frequently to

higher-priority levels and those cannot be interrupted to lower-priority levels.

• An example of a high-priority service routine that should not be interrupted is that for

power failure. Once initiated, this routine should be quickly run to completion to assure

that the microcomputer goes through an orderly power-down.

• A keyboard should also be assigned to a high-priority interrupt. This will assure that the

keyboard buffer does not get full and lock out additional entries. On the other hand,

device such as the floppy disk or hard disk controller are typically assigned to a lower

priority level.

• An interrupt vector table is used to link the interrupt type numbers to the location of their

service routine in the program-storage memory.

• Fig. 4.6 contains 256 address pointers (vectors), which are identified as vector 0 through

vector 255. That is, one pointer corresponds to each of the interrupt types 0 through 255.

These pointers identify the starting location of their service routines in program memory.

The contents of this table may be either held as firmware in EPROMs or loaded into

RAM as part of the system initialization routine.

• Fig. 11-3 starts at address 0000016 and end at 003FE16. This represents the first 1Kbytes

of memory.

• Each of the 256 pointers requires two words (4 bytes) of memory and is always stored at

an even-address boundary. The higher-addressed word of the two-word vector is called

the base address. IT identifies the program memory segment in which the service routine

resides.

Fig 4.6. Interrupt vector table of 8086

• For example, the offset and base address for type number 255, IP255 and CS255, are stored

at word addresses 003FC16 and 003FE16, respectively. When loaded into the MPU, it

points to the instruction at CS255:IP255

• Looking more closely at the table in Fig. 11-3, we find that the first 31 pointers either

have dedicated functions or are reserved. For instance, pointers 1, 2, 3, and 4 are used by

the 8088’s and 8086’s internal interrupts: divide error, single step, breakpoint, and

overflow. Pointer 2 is used to identify the starting location of the nonmaskable interrupt’s

service routine. The next 27 pointers, 5 through 31, represent a reserved portion of the

pointer table and should not be used.

3.7.3. DOS and BIOS interrupts in 8086

INT 10h / AH = 0 - set video mode.

input:

AL = desired video mode.

these video modes are supported:

00h - text mode. 40x25. 16 colors. 8 pages.

03h - text mode. 80x25. 16 colors. 8 pages.

13h - graphical mode. 40x25. 256 colors. 320x200 pixels. 1 page

INT 10h / AH = 01h - set text-mode cursor shape.

input:

CH = cursor start line (bits 0-4) and options (bits 5-7).

CL = bottom cursor line (bits 0-4).

when bit 5 of CH is set to 0, the cursor is visible. when bit 5 is 1, the cursor is not visible.

INT 10h / AH = 2 - set cursor position.

input:

DH = row.

DL = column.

BH = page number (0..7).

INT 10h / AH = 03h - get cursor position and size.

input:

BH = page number.

return:

DH = row.

DL = column.

CH = cursor start line.

CL = cursor bottom line.

INT 10h / AH = 05h - select active video page.

input:

AL = new page number (0..7).

the activated page is displayed.

INT 10h / AH = 06h - scroll up window.

INT 10h / AH = 07h - scroll down window.

input:

AL = number of lines by which to scroll (00h = clear entire window).

BH = attribute used to write blank lines at bottom of window.

CH, CL = row, column of window's upper left corner.

DH, DL = row, column of window's lower right corner.

INT 10h / AH = 08h - read character and attribute at cursor position.

input:

BH = page number.

return:

AH = attribute.

AL = character.

INT 10h / AH = 09h - write character and attribute at cursor position.

input:

AL = character to display.

BH = page number.

BL = attribute.

CX = number of times to write character.

INT 10h / AH = 0Ah - write character only at cursor position.

input:

AL = character to display.

BH = page number.

CX = number of times to write character.

INT 10h / AH = 0Eh - teletype output.

input:

AL = character to write.

this functions displays a character on the screen, advancing the cursor and scrolling the screen as

necessary. the printing is always done to current active page.

INT 10h / AH = 13h - write string.

input:

AL = write mode:

bit 0: update cursor after writing;

bit 1: string contains attributes.

BH = page number.

BL = attribute if string contains only characters (bit 1 of AL is zero).

CX = number of characters in string (attributes are not counted).

DL,DH = column, row at which to start writing.

ES:BP points to string to be printed.

INT 10h / AX = 1003h - toggle intensity/blinking.

input:

BL = write mode:

0: enable intensive colors.

1: enable blinking (not supported by the emulator and windows command prompt).

BH = 0 (to avoid problems on some adapters).

INT 11h - get BIOS equipment list.

return:

AX = BIOS equipment list word, actually this call returns the contents of the word at

0040h:0010h.

Currently this function can be used to determine the number of installed number of floppy disk

drives.

Bit fields for BIOS-detected installed hardware:

bit(s) Description

15-14 Number of parallel devices.

13 Reserved.

12 Game port installed.

11-9 Number of serial devices.

8 Reserved.

7-6 Number of floppy disk drives (minus 1):

00 single floppy disk;

01 two floppy disks;

10 three floppy disks;

11 four floppy disks.

5-4 Initial video mode:

00 EGA,VGA,PGA, or other with on-board video BIOS;

01 40x25 CGA color.

10 80x25 CGA color (emulator default).

11 80x25 mono text.

3 Reserved.

2 PS/2 mouse is installed.

1 Math coprocessor installed.

0 Set when booted from floppy

INT 12h - get memory size.

return:

AX = kilobytes of contiguous memory starting at absolute address 00000h, this call returns the

contents of the word at 0040h:0013h.

INT 15h / AH = 86h - BIOS wait function.

input:

CX:DX = interval in microseconds

return:

CF clear if successful (wait interval elapsed),

CF set on error or when wait function is already in progress.

Note:

the resolution of the wait period is 977 microseconds on many systems (1 million microseconds -

1 second).

Windows XP does not support this interrupt (always sets CF=1).

INT 16h / AH = 00h - get keystroke from keyboard (no echo).

return:

AH = BIOS scan code.

AL = ASCII character.

(if a keystroke is present, it is removed from the keyboard buffer).

INT 16h / AH = 01h - check for keystroke in the keyboard buffer.

return:

ZF = 1 if keystroke is not available.

ZF = 0 if keystroke available.

AH = BIOS scan code.

AL = ASCII character.

(if a keystroke is present, it is not removed from the keyboard buffer).

INT 21h / AH=1 - read character from standard input, with echo, result is stored in AL.

if there is no character in the keyboard buffer, the function waits until any key is pressed.

INT 21h / AH=2 - write character to standard output.

entry: DL = character to write, after execution AL = DL.

INT 21h / AH=5 - output character to printer.

entry: DL = character to print, after execution AL = DL

INT 21h / AH=6 - direct console input or output.

parameters for output: DL = 0..254 (ascii code)

parameters for input: DL = 255

for output returns: AL = DL

for input returns: ZF set if no character available and AL = 00h, ZF clear if character available.

AL = character read; buffer is cleared.

INT 21h / AH=9 - output of a string at DS:DX. String must be terminated by '$'.

INT 21h / AH=0Ah - input of a string to DS:DX, fist byte is buffer size, second byte is number

of chars actually read. this function does not add '$' in the end of string. to print using INT

21h / AH=9 you must set dollar character at the end of it and start printing from address DS:DX

+ 2.

INT 21h / AH=0Ch - flush keyboard buffer and read standard input.

entry: AL = number of input function to execute after flushing buffer (can be 01h,06h,07h,08h,

or 0Ah - for other values the buffer is flushed but no input is attempted); other registers as

appropriate for the selected input function.

INT 21h / AH= 0Eh - select default drive.

Entry: DL = new default drive (0=A:, 1=B:, etc)

Return: AL = number of potentially valid drive letters

3.7.4. 8259 Interrupt controller

General Description

The Digital Blocks DB8259A Programmable Interrupt Controller core is a full

functionequivalent to the Intel 8259A / Intersil 82C59A / NEC uPD8259A devices.

TheDB8259A Interrupt Controller manages up to eight vectored priority interrupts for

amicroprocessor. Using multiple instantiations of the DB8259A core and programming itto

cascade mode enables up to sixty-four vectored priority interrupts. More than sixtyfour vectored

interrupts can be accomplished by programming the DB8259A core to PollCommand Mode.

Interrupt sources may be either edge or level triggered.

Features

The DB8259A supports eight vectored priority interrupts per core, sixty-four vectoredpriority

interrupts with cascading, and more than sixty-four vectored interrupts withprogramming in Poll

Command Mode.

Programming for all 8259A modes and operational features:

• MCS-80/85 and 8088/8086 processor modes

• Fully Nested Mode and Special Fully Nested Mode

• Special Mask Mode

• Buffered Mode

• Poll Command Mode

• Cascade Mode with Master or Slave selection

• Automatic End-of-Interrupt Mode

• Specific and Non-Specific End-of-Interrupt Commands

• Automatic & Specific Rotation

• Edge and level triggered interrupt input modes

• Reading of Interrupt Request Register (IRR) and In-Service Register (ISR) through data

bus

• Writing and reading of Interrupt Mask Register (IMR) through data bus

• Cost-effective CPLD/FPGA replacement solution for 8259A merchant components

(Intel/Intersil/NEC)

Fig 4.7. 8259 PIC

Functional Description

The DB8259A core is partitioned into modules as shown in Figure 1 and described

below.

Data Bus Buffer

The 3-state, bi-directional 8-bit buffer is used to interface the DB8259A core to

themicroprocessor system data bus. Control words and status information are transferredthrough

the Data Bus Buffer.

Read / Write Logic

The Read / Write Logic processes the data bus control signals and stores the outputcommands

from the microprocessor. The commands are the four Initialization CommandWord (ICW)

registers and the three Operation Command Word (OCW) registers. Theseregisters contain the

various programming control formats for device operation. TheRead/Write Logic block also

enables the status of the DB8259A core to be transferred tothe system data bus.

Cascade Buffer Comparator

The Cascade Buffer Comparator stores and compares the IDs of all DB8259A coresinstantiated

in the system. The associated three I/O pins (CAS0-2) are outputs when theDB8259A is used as

a Master and are inputs when the DB8259A is used as a Slave. As aMaster, the DB8259A core

sends the ID of the interrupting slave device onto the CAS0-2lines. The selected Slave will send

its preprogrammed subroutine address onto the systemdata bus during the next one or two

consecutive INTAn pulses.

Control Logic

The Control Logic checks for INTAn pulses which cause the DB8259A to release

vectorinformation onto the system data bus. The format of this data depends on the systemmode

of the DB8259A.

Interrupt Request Register (IRR) and In-Service Register (ISR)

The interrupts at the IR input lines are handled by two registers in tandem, the InterruptRequest

Register (IRR) and the In-Service Register (ISR). The IRR is used to store all theinterrupt levels

which are requesting service. The ISR is used to store all the interruptlevels that are being

serviced by the microprocessor.

Priority Resolver

The Priority Resolver determines the priorities of the bits set in the IRR. The highestpriority is

selected and strobed into the corresponding bit of the ISR during an INTAncycle.

Interrupt Mask Register (IMR)

The Interrupt Mask Register (IMR) stores the bits that control the interrupt lines to bemasked.

The IMR operates on the IRR. Masking of a higher priority input will not affectthe interrupt

request lines of lower priority

Fig 4.8. 8259 pin diagram

Each of the lines in the above image displays each of the controllers electronic pins. These

electronic pins are the connections between the controller and the rest of the system.

This is the chip that we will need to program in order to handle IRQ's within an operating

system. Let's look at this closer at each pin.

• WR Pin: This pin connects to a write strobe signal (One of 8 on a Pentium)

• RD Pin: This connects to the IOCR (Input Output Control Routine) signal.

• INT Pin: Connects to the INTR pin on the microprocessor.

• INTA Pin: Connects to the INTA pin on the microprocessor.

• A0 Pin: Selects different Command WORDS

• CS Pin: Enables the chip for programming and control.

• SP/EN Pin: Slave program (SP) / Enable Buffer (EN).

o Slave Program (1=Master, 0=Slave)

o Enable Buffer (Controls data bus transievers when in buffered mode)

• CAS0, CAS1, CAS2 Pins: Used to output from master to slave PIC controllers in

cascaded systems.

• D0 - D7 Pins: 8 bit Data connector pins.

There are a couple of important pins here. Pins D0-D7 provide a way for an external device to

communicate with the PIC. This is like a small data bus--It provides a way to send data over to

the PIC, like...An interrupt number, perhaps?

Remember that we can connect PIC's together. This allows us to provide support for up to 64 IR

numbers. In other words--64 hardware interrupts. CAS0, CAS1, and CAS2 pins provide a way to

send signals between these PIC's.

Look at the INT and INTA pins. Remember from the Processor Perspective section that the

processors' own INT and INTA pins connect to these pins on the PIC. Remember that, when

about to execute an interrupt, the processor clears the Interrupt (IF) and Trap flags (TF) from the

FLAGS register, which disables the INTR pin. The PIC's INT pin connects to the processors'

INTR pin.

This means that the processor, essentially, disables the PIC's INT pin when executing an

interrupt.With this, the pins IR0-IR7 can be streamed to other PIC's. These 8 pins represent the 8

bit interrupt number to be executed. Notice that this, as being an 8 bit value, provides a way to

allow up to 256 hardware interrupts. these lines provide a way to send the interrupt number to

another PIC controller, so that controller could handle it instead.

The important thing to note is that We can combine multiple PIC's to support more interrupt

routine numbers. The IR lines connect to another PIC's data lines to transfer data over. As there

are only 8 lines (8 bits), we can only connect up to 8 PIC's together, providing support for up to

64 interrupt numbers.

Programming the PIC revolves around the use of sending Command Bytes through the 8 bit

data line that the PIC's have. This 8 bit command byte follows specific formats that describe

what the PIC is to do.

8259A Registers

The 8259A has several internal registers, similar to the processor.

Command Register

This is a write only register that is used to send commands to the microcontroller. There are a lot

of different commands that you can send. Some commands are used to read from other registers,

while other command are used to initialize and sending data, such as End of Interrupt (EOI). We

will cover these commands later.

Status register

This is a read only register that can be accessed to determine the status of the PIC.

Interrupt Request Register (IRR)

This register specifies which interrupts is pending acknowledgment.

Note: This register is internal, and cannot be accessed directly.

Interrupt Request Register (IRR)

Bit Number IRQ Number (Primary controller) IRQ Number (Slave controller)

0 IRQ0 IRQ8

1 IRQ1 IRQ9

2 IRQ2 IRQ10

3 IRQ3 IRQ11

4 IRQ4 IRQ12

5 IRQ5 IRQ13

6 IRQ6 IRQ14

7 IRQ7 IRQ15

If a bit is set, the interrupt has been signaled by a device, and the PIC has signaled the CPU, but

is awaiting acknowledgment from the CPU to go ahead with the interrupt.

In-Sevice Register (ISR)

This register specifies which interrupts have already been acknowledged, but are awaiting for

the End of Interrupt (EOI) signal. The EOI signal is very important as it determins the end of

an interrupt.

Note: We will need to send the EOI signal upon completion of the interrupt to let the 8259A

acknowledge the interrupt. Not doing so will result in undefined behavior or malfunction. More

on this later.

Note: This register is internal, and cannot be accessed directly.

In Service Register (ISR)

Bit Number IRQ Number (Primary controller) IRQ Number (Slave controller)

0 IRQ0 IRQ8

1 IRQ1 IRQ9

2 IRQ2 IRQ10

3 IRQ3 IRQ11

4 IRQ4 IRQ12

5 IRQ5 IRQ13

6 IRQ6 IRQ14

7 IRQ7 IRQ15

in al, 0x21 ; read in the primary PIC Interrupt Mask

Register (IMR)

and al, 0xEF ; 0xEF => 11101111b. This sets the IRQ4 bit

(Bit 5) in AL

out 0x21, al ; write the value back into IMR

If a bit is set, the current IRQ has been acknowledged by the CPU to go ahead and begin

executing. The PIC uses this register to determine what IRQ is currently being executed.

Interrupt Mask Register (IMR)

This specifies what interrupts are to be ignored, and not acknowledged. this allows us to focus on

executing certain, more important interrupts before executing the interrupts specified in this

register.This is an 8 bit register, where each bit determines if an interrupt is disabled or not. If the

bit is 0, it is enabled. If it is a 1, the interrupt device is disabled.

Interrupt Mask Register (IMR)

Bit Number IRQ Number (Primary controller) IRQ Number (Slave controller)

0 IRQ0 IRQ8

1 IRQ1 IRQ9

2 IRQ2 IRQ10

3 IRQ3 IRQ11

4 IRQ4 IRQ12

5 IRQ5 IRQ13

6 IRQ6 IRQ14

7 IRQ7 IRQ15

This is an important register, as it allows us to enable and disable interrupts from certain devices.

Each of these IRQ's represent the device listed in the x86 Hardware Interrupts table shown

above.

For example, lets say we want to enable COM1 (Serial Port 1). Looking at the x86 Hardware

Interrupt Table, we can see that this is mapped to IRQ 4. So, in order to enable COM1 interrupts,

all we need to do is set the IRQ4 bit for the primary PIC's Interrupt Mask Register. This register

is mapped to the software port number 0x21 (We will cover this later.) So, all we need to do is

set the bit by writing to this port location.

When a hardware interrupt occurs, The 8259A Masks out all other interrupts until it recieves

an End of Interrupt (EOI) signal. We will need to send the EOI upon completion of the

interrupt. We will look at this later.

8259A Software Port Mappings

Like all hardware controllers, the BIOS POST maps each controller to use a specific region of

software ports. Because of this, in order to communicate with the PIC controllers, we need to use

software ports.

8259A Software Port Map

Port Address Description

0x20 Primary PIC Command and Status Register

0x21 Primary PIC Interrupt Mask Register and Data Register

0xA0 Secondary (Slave) PIC Command and Status Register

0xA1 Secondary (Slave) PIC Interrupt Mask Register and Data Register

Notice the Primary PIC's Interrupt Mask Register is mapped to Port 0x21. We have seen this

before, havn't we?

The Command Register and Status Register are to different registers that share the same port

number. The command register is write only, while the status register is read only. This is an

important difference, as the PIC determins what register to access depending on weather the

write or read lines are set.

We will need to be able to write to these ports to communicate with individual device registers

and control the PICs. Lets now take a look at the commands for the PIC.

8259A Commands

Setting up the PIC is fairly complex. It is done through a series of Command Words, which are

a bit pattern that contains various of states used for initialization and operation. This might seem

a little complex, but it is not too hard.Because of this, lets first look at how to initialize the PIC

controllers for our use, followed by operating and controlling the PICs.

Initialization Control Words (ICW)

The purpose of initializing the PIC is to remap the PIC's IRQ numbers to our own. this insures

the proper IRQ is generated when a hardware interrupt happens.In order to initialize the PIC, we

must send a command byte (Known as an Initialization Control Word (ICW)) to the primary

PIC Command Register. This is ICW 1.There can be up to 4 Initialization Control Words. These

are not required, but are often needed. Let’s take a look at them.

Note: If there are multiple PICs in the system that is to be cascaded with each other, we

must send the ICW's to both of the PICs!

ICW 1

This is the primary control word used to initialize the PIC. this is a 7 bit value that must be put in

the primary PIC command register. This is the format:

Initialization Control Word (ICW) 1

Bit

Number Value Description

0 IC4 If set(1), the PIC expects to recieve IC4 during initialization.

1 SNGL
If set(1), only one PIC in system. If cleared, PIC is cascaded with slave
PICs, and ICW3 must be sent to controller.

2 ADI
If set (1), CALL address interval is 4, else 8. This is useually ignored by
x86, and is default to 0

3 LTIM
If set (1), Operate in Level Triggered Mode. If Not set (0), Operate in
Edge Triggered Mode

4 1 Initialization bit. Set 1 if PIC is to be initialized

5 0 MCS-80/85: Interrupt Vector Address. x86 Architecture: Must be 0

6 0 MCS-80/85: Interrupt Vector Address. x86 Architecture: Must be 0

7 0 MCS-80/85: Interrupt Vector Address. x86 Architecture: Must be 0

As you can see, there is alot going on here. We have seen some of these before. This is not as

hard as it seems, as most of these bits are not used on the x86 platform.

To initialize the primary PIC, all we need to do is create the initil ICW and set the appropraite

bits. So, lessee...

• Bit 0 - Set to 1 so we can sent ICW 4

• Bit 1 - PIC cascading bit. x86 architectures have 2 PICs, so we need the primary PIC

cascaded with the slave. Keep it 0

• Bit 2 - CALL address interval. Ignored by x86 and kept at 8, so keep it 0

• Bit 3 - Edge triggered/Level triggered mode bit. By default, we are in edge triggered, so

leave it 0

• Bit 4 - Initialization bit. Set to 1

• Bits 5...7 - Unused on x86, set to 0.

Looking at the above, the final bit pattern becomes 00010001, or 0x11. So, to initialize the PIC,

send 0x11 to the primary PIC controller register, mapped to port 0x20...

; Setup to initialize the primary PIC. Send ICW 1

mov al, 0x11

out 0x20, al

; send ICW 2 to primary PIC

mov al, 0x20 ; Primary PIC handled IRQ 0..7. IRQ 0

is now mapped to interrupt number 0x20

Because we have enabled cascading, we need to send ICW 3 to the controller as well. Also,

because we have set bit 0, we must also send ICW 4. More on those later. For now, let’s take a

look at ICW 2.

ICW 2

This control word is used to map the base address of the IVT of which the PIC are to use. This is

important!

Initialization Control Word (ICW) 2

Bit

Number
Value Description

0-2 A8/A9/A10
Address bits A8-A10 for IVT when in

MCS-80/85 mode.

3-7

A11(T3)/A12(T4)/A13(T5)/A14(T6)/A15(T7)

Address bits A11-A15 for IVT when

in MCS-80/85 mode. In 80x86

mode, specifies the interrupt

vector address. May be set to 0 in
x86 mode.

During initialization, we need to send ICW 2 to the PICs to tell them where the base address of

the IRQ's to use. If an ICW1 was sent to the PICs (With the initialization bit set), you must send

ICW2 next. Not doing so can result in undefined results. Most likley the incorrect interrupt

handler will be executed.

Unlike ICW 1, which is placed into the PIC's data registers, ICW 2 is sent to the data Registers,

as software ports 0x21 for the primary PIC, and port 0xA1 for the secondary PIC. (Please see

the8259A Software Port Map table for a complete listing of PIC software ports).

Okay, so assuming we have just sent an ICW 1 to both PICs (Please see the above section), lets

send an ICW 2 to both PICs. This will map a base IRQ address to both PICs.This is very simple,

but we must be careful at where we map the PICs to. Remember that the first 31 interrupts (0x0-

0x1F) are reserved (Please see the above x86 Interrupt Vector Table (IVT)table). As such, we

have to insure we do not use any of these IRQ numbers.Instead, lets map them to IRQs 32-47,

right after these reserved interrupts. the first 8 IRQ's are handled by the primary PIC, so we map

the primary PIC to the base address of 0x20 (32 decimal), and the secondary PIC at 0x28 (40

decimal). Remember there are 8 IRQ's for each PIC.

; Remember that we have 2 PICs. Because we are cascading with this

second PIC, send ICW 1 to second PIC command register

out 0xA0, al ; slave PIC command register

ICW 3

This is an important command word. It is used to let the PICs know what IRQ lines to use when

communicating with each other.

ICW 3 Command Word for Primary PIC

Initialization Control Word (ICW) 3 - Primary PIC

Bit Number Value Description

0-7 S0-
S7

Specifies what Interrupt Request (IRQ) is connected to slave PIC

ICW 3 Command Word for Secondary PIC

Initialization Control Word (ICW) 3 - Secondary PIC

Bit Number Value Description

0-2 ID0 IRQ number the master PIC uses to connect to (In binary notation)

3-7 0 Reserved, must be 0

We must send an ICW 3 whenever we enable cascading within ICW 1. this allows us to set

which IRQ to use to communicate with each other. Remember that the 8259A Microcontroller

relies on the IR0-IR7 pins to connect to other PIC devices. With this, it uses the CAS0-CAS2

pins to communicate with each other.We need to let each PIC know about each other and how

they are connected. We do this by sending the ICW 3 to both PICs containing which IRQ line to

use for both the master and associated PICs.

Remember: The 80x86 architecture uses IRQ line 2 to connect the master PIC to the slave

PIC.

Knowing this, and remembering that we need to write this to the data registers for both PICs, we

need to follow the formats shown above.Note that, in the ICW 3 for the primary PIC, Each bit

represents an interrupt request. That is...

IRQ Lines for ICW 2 (Primary PIC)

Bit Number IRQ Line

out 0x21, al

; send ICW 2 to secondary controller

mov al, 0x28 ; Secondary PIC handles IRQ's 8..15.

IRQ 8 is now mapped to use interrupt 0x28

out 0xA1, al

; Send ICW 3 to primary PIC

mov al, 0x4

out 0x21, al

; 0x4 = 0100 Second bit (IR Line 2)

; write to data register of primary PIC

; Send ICW 3 to primary PIC

mov al, 0x4

out 0x21, al

; 0x04 => 0100, second bit (IR line 2)

; write to data register of primary PIC

; Send ICW 3 to secondary PIC

0 IR0

1 IR1

2 IR2

3 IR3

4 IR4

5 IR5

6 IR6

7 IR7

Notice that IRQ 2 is Bit 2 within ICW 3. So, in order to set IRQ 2, we need to set bit 2 (Which

is at 0100 binary, or 0x4).Here is an example of sending ICW 3 to the primary PIC:

To send this to the secondary PIC, we must remember that we must send this in binary notation.

Please refer to the table above. Note that only Bits 0...2 are used to represent the IRQ line. By

using binary notation, we can refer to the 8 IRQ lines to choose from:

IRQ Lines for ICW 2 (Secondary PIC)

Binary IRQ Line

000 IR0

001 IR1

010 IR2

011 IR3

100 IR4

101 IR5

110 IR6

111 IR7

Simple enough. Notice that this just follows a binary<->decimal conversation in the above

table.Because we are connected by IRQ line 2, we need to use bit 1 (Shown above).Here is a

complete example, that sends a ICW 2 to both primary and secondary PIC controllers:

Reserved, must be 0 0 5-7

cascaded controllers.
SFNM

Special Fully Nested Mode. Used in systems with a large amount of
4

BUF If set, controller operates in buffered mode 3

Only use if BUF is set. If set (1), selects buffer master. Cleared if buffer
slave.

M/S 2

If set, on the last interrupt acknowledge pulse, controller automatically
performs End of Interrupt (EOI) operation

AEOI 1

uPM If set (1), it is in 80x86 mode. Cleared if MCS-80/86 mode 0

Description Value
Bit

Number

Initialization Control Word (ICW) 4

mov al, 1 ; bit 0 enables 80x86 mode

; send ICW 4 to both primary and secondary PICs

out 0x21, al

out 0xA1, al

mov al, 0x2 ; 010=> IR line 2

out 0xA1, al ; write to data register of secondary PIC

Okay, so now both PICs are connected to use IR line 2 to communicate with each other. We have

also set a base interrupt number for both PICs to use.This is great, but we are not done yet.

Remember that, when building up ICW 1, if bit 0 is set, the PIC will be expecting us to send it

ICW 4. As such, we need to send ICW 4, the final ICW, to the PICs.

ICW 4

Yey! This is the final initialization control word. This controls how everything is to operate.

This is a pretty powerful function. Bits 5..7 are always 0, so lets focus on the other bits and

peices (pun entended ;))

The PIC was originally designed to be a generic microcontroller, even before the 80x86 existed.

As such, it containes alot of different operation modes designed for different systems. one of

these modes is the Special Fully Nested Mode.The x86 family does not support this mode, so

you can saftley set bit 4 to 0.

Bit 3 is used for buffered mode. For now, set this to 0. We will cover modes of operation later.

Bit 2 is only used when bit 3 is set, so set this to 0. With this, Bit 1 is rairly used either.As such,

we only need to set bit 0, which enables the PIC for 80x86 mode.Simple enough. So, to send

ICW 4, all we need to do is this:

Initializing the PIC - Putting it together

Believe it or not, but we have already went over this. In initilizing the PIC, all we need to do is

send the correct ICW's to the PIC.Lets put everything from the previous section together to

initialize the PIC for better understanding of how everything is put together:

;**

; Map the 8259A PIC to use interrupts 32-47 within our interrupt table

;**

%define ICW_1 0x11 ; 00010001 binary. Enables

initialization mode and we are sending ICW 4

%define PIC_1_CTRL 0x20

register

%define PIC_2_CTRL 0xA0

register

; Primary PIC control

; Secondary PIC control

%define PIC_1_DATA 0x21

register

%define PIC_2_DATA 0xA1

register

; Primary PIC data

; Secondary PIC data

%define IRQ_0 0x20 ; IRQs 0-7 mapped to use

interrupts 0x20-0x27

%define IRQ_8 0x28 ; IRQs 8-15 mapped to use

interrupts 0x28-0x36

MapPIC:

; Send ICW 1 - Begin initialization -------------------------

; Setup to initialize the primary PIC. Send ICW 1

mov

out

al, ICW_1

PIC_1_CTRL, al

; Send ICW 2 - Map IRQ base interrupt numbers ---------------

; Remember that we have 2 PICs. Because we are cascading with this

second PIC, send ICW 1 to second PIC command register

out PIC_2_CTRL, al

; send ICW 2 to primary PIC

mov

out

al, IRQ_0

PIC_1_DATA, al

; send ICW 2 to secondary controller

mov

out

al, IRQ_8

PIC_2_DATA, al

Now the PIC is initialized. Whenever an hardware interrupt accors, it will call our interrupts 32 -

47 that we have previously defined somewhere within the Interrupt Vector Table (IVT). This

allows us to track hardware interrupts.

Operation Command Words (OCW)

Yippee! Now that the ugly initialization stuff is out of the way, we can finally focus on standard

controlling and operation of the PIC. This is done by writing and reading from various registers

throughOperation Control Words (OCW)'s.

OCW 1

OCW 1 represents the value inside of the Interrupt Mask register (IMR). To abtain the current

OCW 1, all you need to do is read from the IMR.

Remember that the IMR is mapped to the same port that the status register is at. Because the

status register is read only, the PIC can determin what register to access based off if this is a read

or write operation.

We have looked at the IMR register above when we covered the PIC registers.

; Send ICW 3 - Set the IR line to connect both PICs ---------

; Send ICW 3 to primary PIC

mov

out

al, 0x4

PIC_1_DATA, al

; 0x04 => 0100, second bit (IR line 2)

; write to data register of primary PIC

; Send ICW 3 to secondary PIC

mov

out

al, 0x2

PIC_2_DATA, al

; 010=> IR line 2

; write to data register of secondary

PIC

; Send ICW 4 - Set x86 mode

mov al, 1 ; bit 0 enables 80x86 mode

; send ICW 4 to both primary and secondary PICs

out

out

PIC_1_DATA, al

PIC_2_DATA, al

; All done. Null out the data registers

mov

out

out

al, 0

PIC_1_DATA, al

PIC_2_DATA, al

; send EOI to primary PIC

mov

out

al, 0x20

0x20, al

; set bit 4 of OCW 2

; write to primary PIC command register

OCW 2

This is the primary control word used to control the PIC. Lets take a look...

Operation Command Word (OCW) 2

Bit Number Value Description

0-2 L0/L1/L2 Interrupt level upon which the controller must react

3-4 0 Reserved, must be 0

5 EOI End of Interrupt (EOI) request

6 SL Selection

7 R Rotation option

OCW2 Commands

R Bit SL Bit EOI Bit Description

0 0 0 Rotate in Automatic EOI mode (CLEAR)

0 0 1 Non specific EOI command

0 1 0 No operation

0 1 1 Specific EOI command

1 0 0 Rotate in Automatic EOI mode (SET)

1 0 1 Rotate on non specific EOI

1 1 0 Set priority command

1 1 1 Rotate on specific EOI

Sending End of Interrupt (EOI)

As you know, when a hardware interrupt triggers, all other interrupts are masked off inside of

the Interrupt Mask Register until an EOI signal is sent to the primary controller. This means,

we must send an EOI to insure all hardware interrupts are enabled at the end of our Interrupt

Routine (IR).

Looking at the above table, we can send a non specific EOI command to signal EOI to the
controller. Because the EOI bit is bit 4 within the OCW 2, all we need to do is set bit 4 (010000

= 0x20):

3.7.5. 8251 DMA controller

• It is a device to transfer the data directly between IO device and memory without through

the CPU. So it performs a high-speed data transfer between memory and I/O device.

The features of 8257 is,

• The 8257 has four channels and so it can be used to provide DMA to four I/O devices

• Each channel can be independently programmable to transfer up to 64kb of data by

DMA.

• Each channel can be independently perform read transfer, write transfer and verify

transfer.

Functional Block Diagram of 8257:

• The functional blocks of 8257 are data bus buffer, read/write logic, control logic, priority

resolver and four numbers of DMA channels.

The functional block diagram of 8257 is shown in fig.

Fig 4.8. 8257 DMA controller

• Each channel of 8257 Block diagram has two programmable 16-bit registers named as

address register and count register.

• Address register is used to store the starting address of memory location for DMA data

transfer.

• The address in the address register is automatically incremented after every

read/write/verify transfer.

• The count register is used to count the number of byte or word transferred by DMA. The

format of count register is,

Fig 4.9. 8257 count register

• 14-bits B0-B13 is used to count value and a 2-bits is used for indicate the type of DMA

transfer (Read/Write/Veri1 transfer).

• In read transfer the data is transferred from memory to I/O device.

• In write transfer the data is transferred from I/O device to memory.

• Verification operations generate the DMA addresses without generating the DMA

memory and I/O control signals.

• The 8257 has two eight bit registers called mode set register and status register. The

format of mode set register is,

Fig 4.7. 8257 mode set register

• The use of mode set register is,

1. Enable/disable a channel.

2. Fixed/rotating priority

3. Stop DMA on terminal count.

4.Extended/normal write time.

5. Auto reloading of channel-2.

• The bits B0, B1, B2, and B3 of mode set register are used to enable/disable channel -0, 1,

2 and 3 respectively. A one in these bit position will enable a particular channel and a

zero will disable it.

• If the bit B4 is set to one, then the channels will have rotating priority and if it zero then

the channels wilt have fixed priority.

1. In rotating priority after servicing a channel its priority is made as lowest.

2. In fixed priority the channel-0 has highest priority and channel-2 has lowest priority.

• If the bit B5 is set to one, then the timing of low write signals (MEMW and IOW) will be

extended.

• If the bit B6 is set to one then the DMA operation is stopped at the terminal count.

• The bit B7 is used to select the auto load feature for DMA channel-2.

• When bit B7 is set to one, then the content of channel-3 count and address registers are

loaded in channel-2 count and address registers respectively whenever the channel-2

reaches terminal count. When this mode is activated the number of channels available for

DMA reduces from four to three.

• The format of status register of 8257 is shown in fig.

Fig 4.10. 8257 status register

• The bit B0, B1, B2, and B3 of status register indicates the terminal count status of

channel-0, 1,2 and 3 respectively. A one in these bit positions indicates that the particular

channel has reached terminal count.

• These status bits are cleared after a read operation by microprocessor.

• The bit B4 of status register is called update flag and a one in this bit position indicates

that the channel-2 register has been reloaded from channel-3 registers in the auto load

mode of operation.

• The internal addresses of the registers of 8257 are listed in table.

Table 4.1. Register addresses of 8257

PIN DIAGRAM

Fig 4.11.8257 pin diagram

• D0-D7: it is a bidirectional, tri state, Buffered, Multiplexed data (D0-D7)and (A8-

A15).In the slave mode it is a bidirectional (Data is moving).In the Master mode it is a

unidirectional (Address is moving).

• IOR: It is active low, tristate ,buffered ,Bidirectional lines.In the slave mode it functions

as a input line. IOR signal is generated by microprocessor to read the contents 8257

registers. In the master mode it functions as a output line. IOR signal is generated by

8257 during write cycle

• IOW:It is active low ,tristate ,buffered ,Bidirectional control lines.In the slave mode it

function as a input line. IOR signal is generated by microprocessor to write the contents

8257 registers.In the master mode it function as a output line. IOR signal is generated by

8257 during read cycle

• CLK:It is the input line ,connected with TTL clock generator.This signal is ignored in

slave mode.

• RESET:Used to clear mode set registers and status registers

• A0-A3:These are the tristate, buffer, bidirectional address lines.In slave mode ,these lines

are used as address inputs lines and internally decoded to access the internal registers.In

master mode, these lines are used as address outputs lines,A0-A3 bits of memory address

on the lines.

• CS:It is active low, Chip select input line.In the slave mode, it is used to select the chip.

• In the master mode, it is ignored.

• A4-A7:

• These are the tristate, buffer, output address lines.In slave mode ,these lines are used as

address outputs lines.In master mode, these lines are used as address outputs lines,A0-A3

bits of memory address on the lines.

• READY:It is an asynchronous input line. In master mode,When ready is high it is

received the signal.When ready is low, it adds wait state between S1 and S3In slave

mode, this signal is ignored.

• HRQ:It is used to receiving the hold request signal from the output device

• HLDA:It is acknowledgment signal from microprocessor.

• MEMR:It is active low ,tristate ,Buffered control output line.In slave mode, it is

tristated.In master mode ,it activated during DMA read cycle.

• MEMW:It is active low ,tristate ,Buffered control input line.In slave mode, it is

tristated.In master mode ,it activated during DMA write cycle.

• AEN (Address enable):It is a control output line.In master mode ,it is highIn slave mode

,it is lowUsed it isolate the system address ,data ,and control lines.

• ADSTB: (Address Strobe)It is a control output line.Used to split data and address line.It

is working in master mode only.In slave mode it is ignore.

• TC (Terminal Count):It is a status of output line.It is activated in master mode only.It is

high ,it selected the peripheral.It is low ,it free and looking for a new peripheral.

• MARK:It is a modulo 128 MARK output line.It is activated in master mode only.It goes

high, after transferring every 128 bytes of data block.

• DRQ0-DRQ3(DMA Request):These are the asynchronous peripheral request input

signal.The request signal is generated by external peripheral device.

• DACK0-DACK3: These are the active low DMA acknowledge output lines.Low level

indicate that, peripheral is selected for giving the information (DMA cycle).In master

mode it is used for chip select.

Example:

Interface DMA with 8086 so that the channel 0 DMA addresses reg.,TC reg. and MSR has

an I/O address 80 H, 81 H and 88 H . Initialize the 8257 with normal priority, TC stop and

non-extended write. Auto load is not required. Write an ALP to move 2KB of data from

peripheral device to memory address 2000 H: 5000 H, with the above initialization. The

transfer has to take place using channel 0.

MSR = 41 H

DMA address register = 5000 H

TC = 47FF H

ADDREG EQU 80 H

TC EQU 81 H

MSR EQU 88 H

Code segment

Asssume cs:code

Start: MOV AX, 2000 H

MOV DS,AX

MOV AX,5000 H

OUT ADDREG, AL

OUT ADDREG, AH

MOV AX,47FF H

OUT TC, AL

OUT TC, AH

MOV AL,41 H

OUT MSR, AL

HLT

Code ends

End start

3.8.SERIAL COMMUNICATION INTERFACE

3.8.1 Serial data transfer schemes

Data transfer schemes in Microprocessor: - Data can be transferred between memory,

microprocessor and input output devices. the speed and format of all the input output devices

does not matches microprocessor. For example some input output devices like ABC' and DAC's

are slow as compared to microprocessor. Some devices are serial in nature while microprocessor

is parallel in nature. Because of this, number of data transfer schemes have been divided to cope

with this problem. The data transfer schemes can be broadly classified into two categories :-

Programmed Data Transfer

Direct Memory Access Data Transfer

Programmed Data Transfer:-In this scheme, data transfer takes place under the control of a

program residing in the main memory of the microcomputer system. So microprocessor executes

a program to perform all data transfers between the memory and i/o device via register. This data

transfer takes place under the control microprocessor. As the transfer of data takes place through

a register, generally accumulator and requires execution of several instructions, so programmed

data transfer is slow and suitable for small data. It can be classified in four types:-

Synchronous Data Transfer:- In this scheme, timing characteristics of I/O device are precisely

known. Speed og I/O devices matches microprocessor always consider the I/O device to ready

for data transfer.

Synchronous Data Transfer With Delay: -In this scheme, of I/O device is slow as compare to

microprocessor but timing characteristics are precisely known. Microprocessor imitates I/o

device to get ready and then waits for some predetermined than executes I/O instruction to

complete the data transfer.

Asynchronous Data transfer: -In this scheme data transfer between external device and

microprocessor occurs via hand shaking process there is some exchange of signals between I/O

and microprocessor before the actual data transfer takes place.

Interrupt Driven Data Transfer:-In this scheme, microprocessor initiates data transfer by

requesting the device' to get ready' and then goes executing its main problem instead of wasting

its time by continuously checking the statues of input output device. Whenever device is ready to

accept or supply data, it informs microprocessor through a special interrupt line.

Direct Memory Access: - In this scheme data is transferred between memory and I/O device

without any involvement of microprocessor. Microprocessor is sidelined in this process by tri

stating its address bus, data bus and control bus. A direct link is establishment between memory

and I/O device. Data transfer takes place under the control of an external circuit DMA controller.

This technique is used to transfer blocks of data between memory and I/O devices

3.8.2. Serial communication standards

5.2.1. RS 232

DCE and DTE Devices

DTE stands for Data Terminal Equipment, and DCE stands for Data

CommunicationsEquipment. These terms are used to indicate the pin-out for the connectors on a

device and the direction of the signals on the pins. Your computer is a DTE device, while most

other devicessuch as modem and other serial devices are usually DCE devices.

RS-232 has been around as a standard for decades as an electrical interface betweenData

Terminal Equipment (DTE) and Data Circuit-Terminating Equipment (DCE) such as modems or

DSUs. It appears under different incarnations such as RS-232C, RS-232D, V.24,

V.28 or V.10. RS-232 is used for asynchronous data transfer as well as synchronous links such

as SDLC, HDLC, Frame Relay and X.25

Synchronous data transfer

In program-to-program communication, synchronous communication requires that each end of

an exchange of communication respond in turn without initiating a new communication. A

typical activity that might use a synchronous protocol would be a transmission of files from one

point to another. As each transmission is received, a response is returned indicating success or

the need to resend.

Asynchronous data transfer

The term asynchronous is usually used to describe communications in which data can be

transmitted intermittently rather than in a steady stream. For example, a telephone conversation

is asynchronous because both parties can talk whenever they like. If the communication were

synchronous, each party would be required to wait a specified interval before speaking. The

difficulty with asynchronous communications is that the receiver must have a way to distinguish

between valid data and noise. In computer communications, this is usually accomplished through

a special start bit and stop bit at the beginning and end of each piece of data. For this reason,

asynchronous communication is sometimes called start-stop transmission.

RS232

RS-232 (Recommended standard-232) is a standard interface approved by the Electronic

Industries Association (EIA) for connecting serial devices. In other words, RS-232 is a

longestablished standard that describes the physical interface and protocol for relatively low-

speed serial data communication between computers and related devices.

An industry trade group, the Electronic Industries Association (EIA), defined it originally for

teletypewriter devices. In 1987, the EIA released a new version of the standard and changed the

name to EIA-232-D. Many people, however, still refer to the standard as RS-232C, or just RS-

232.

RS-232 is the interface that your computer uses to talk to and exchange data with your modem

and other serial devices. The serial ports on most computers use a subset of the RS-232C

standard.

RS232 on DB9 (9-pin D-type connector)

There is a standardized pin out for RS-232 on a DB9 connector, as shown below

Pin SIG. Signal Name DTE (PC)

1 DCD Data Carrier Detect in

2 RXD Receive Data in

3 TXD Transmit Data out

4 DTR Data Terminal Ready out

5 GND Signal Ground -

6 DSR Data Set Ready in

7 RTS Request to Send out

8 CTS Clear to Send in

9 RI Ring Indicator in

RS232 on DB25 (25-pin D-type connector)

In DB-25 connector most of the pins are not needed for normal PC communications, and indeed,

most new PCs are equipped with male D type connectors having only 9 pins. Using a 25-pin

DB-25 or 9-pin DB-9 connector, its normal cable limitation of 50 feet can be extended to several

hundred feet with high-quality cable. RS-232 defines the purpose and signal timing for each of

the 25 lines; however, many applications use less than a dozen. There is a standardized

pinout for RS-232 on a DB25 connector, as shown below

1

GND

Shield Ground

2

TXD

—»

Transmit Data

3

RXD

«—

Receive Data

4

RTS

—»

Request to Send

5

CTS

«—

Clear to Send

6

DSR

«—

Data Set Ready

7

GND

System Ground

8

CD

«—

Carrier Detect

9

-

-

RESERVED

10

-

-

RESERVED

11

STF

—»

Select Transmit Channel

12

S.CD

«—

Secondary Carrier Detect

13

S.CTS

«—

Secondary Clear to Send

14

S.TXD

—»

Secondary Transmit Data

15

TCK

«—

Transmission Signal Element Timing

16

S.RXD

«—

Secondary Receive Data

17

RCK

«—

Receiver Signal Element Timing

18

LL

—»

Local Loop Control

19

S.RTS

—»

Secondary Request to Send

20

DTR

—»

Data Terminal Ready

21

RL

—»

Remote Loop Control

22

RI

«—

Ring Indicator

23

DSR

—»

Data Signal Rate Selector

24

XCK

—»

Transmit Signal Element Timing

25

TI

«—

Test Indicator

Signal Description

TxD: - This pin carries data from the computer to the serial device

RXD: - This pin carries data from the serial device to the computer

DTR signals: - DTR is used by the computer to signal that it is ready to communicate with the

serial device like modem. In other words, DTR indicates to the Dataset (i.e., the modem or

DSU/CSU) that the DTE (computer) is ON.

DSR: - Similarly to DTR, Data set ready (DSR) is an indication from the Dataset that it isON.

DCD: - Data Carrier Detect (DCD) indicates that carrier for the transmit data is ON.

RTS: - This pin is used to request clearance to send data to a modem

CTS: - This pin is used by the serial device to acknowledge the computer's RTS Signal. In most

situations, RTS and CTS are constantly on throughout the communication session.

Clock signals (TC, RC, and XTC): - The clock signals are only used for synchronous

communications. The modem or DSU extracts the clock from the data stream and provides a

steady clock signal to the DTE. Note that the transmit and receive clock signals do not have to be

the same, or even at the same baud rate.

CD: - CD stands for Carrier Detect. Carrier Detect is used by a modem to signal that it has a

made a connection with another modem, or has detected a carrier tone. In other words, this is

used by the modem to signal that a carrier signal has been received from a remote modem.

RI: - RI stands for Ring Indicator. A modem toggles(keystroke) the state of this line when an

incoming call rings your phone. In other words, this is used by an auto answer modem to signal

the receipt of a telephone ring signal The Carrier Detect (CD) and the Ring Indicator (RI) lines

are only available in connections to a modem. Because most modems transmit status

information to a PC when either a carrier signal is detected (i.e. when a connection is made to

another modem) or when the line is ringing, these two lines are rarely used.

Limitations of RS-232

RS-232 has some serious shortcomings as an electrical interface.

Firstly, the interface presupposes a common ground between the DTE and DCE. This is a

reasonable assumption where a short cable connects a DTE and DCE in the same room, but with

longer lines and connections between devices that may be on different electrical busses, this may

not be true. We have seen some spectacular electrical events causes by "uncommon grounds".

Secondly, a signal on a single line is impossible to screen effectively for noise. By screening the

entire cable one can reduce the influence of outside noise, but internally generated noise remains

a problem. As the baud rate and line length increase, the effect of capacitance between the cables

introduces serious crosstalk until a point is reached where the data itself is unreadable. Using low

capacitance cable can reduce crosstalk. Also, as it is the higher frequencies that are the problem,

control of slew rate in the signal (i.e., making the signal more rounded, rather than square) also

decreases the crosstalk. The original specifications for RS-232 had no specification for

maximum slew rate.

Voltage levels with respect to ground represent the RS 232 signals. There is a wire for each

signal, together with the ground signal (reference for voltage levels). This interface is useful for

point-to-point communication at slow speeds. For example, port COM1 in a PC can be used for a

mouse, port COM2 for a modem, etc. This is an example of point-to-point communication: one

port, one device. Due to the way the signals are connected, a common ground is required. This

implies limited cable length - about 30 to 60 meters maximum. (Main problems are interference

and resistance of the cable.) Shortly, RS 232 was designed for communication of local devices,

and supports one transmitter and one receiver.

5.2.2. IEEE- 488

Hewlett-Packard originally developed the interfacing technique for computer controlled

measurement systems in 1960’s. It was called HP-IB(Hewlett-Packard interface bus).HP-IB

quickly became very popular, thus IEEE (Institute of Electrical andElectronics Engineers) made

a standard of it and renamed it GP-IB (General Purpose Interface Bus).IEEE-488 was first

established in 1978. Later on, during 1980, a new layer was added to IEEE-488 standard and the

old standard was renamed IEEE-488.1 and the new one IEEE-488.2. In modern professional

measurementdevices equipped with the IEEE-488.2 interface.

IEEE-488.2 provides minimum set requirements for controller and devicecapabilities (talker,

listener, controller). Also, data coding and format, message and communication protocol

structures between controller and deviceare defined more specificly compared to IEEE-488.1.

Properties of IEEE-488

• 1 Mbyte/sec maximum data transfer rate

• up to 15 devices parallel can be connected to one bus

• total bus length 20 m max. (distance between devices up to 2 m max.)

• messages are sent one byte (8 bits) at time

• message transactions are hardware handshake

GPIB operation

The operation of GPIB is based around the handshaking protocol. Three lines, DAV (DAta

Valid), NDAC (Not Data ACepted), and NRFD (Not Ready For Data), control this. All the

listeners on the bus use the NRFD line to indicate their state of readiness to accept data. If one

listener holds the line low then this prevents any data transfer being initiated. This means that

when all the instruments are ready as indicated by the NRFD being line is high and then data can

be transferred. Once all the instruments have released the NRFD line and it is in the high state,

only then can the next stage be initiated.

Data is placed onto the data lines by the talker and once this has settled, the DAV line is pulled

low. This signals to all the listeners that they are able to read the data that is present. During this

operation the NDAC line will be held low by all the active listeners, i.e. those which have been

instructed to receive the data. Only when they have read the data will each device stop trying to

hold this line low. When the last device removes its hold, the level of the line will rise and the

talker will know that all the data has been accepted and the next byte of data can be transferred.

By transferring data in this way the data is placed onto the bus at a rate which is suitable for the

talker, and it is held until the slowest listener has accepted it. In this way the optimum data

transfer rate is always used, and there are no specifications and interface problems associated

with the speeds at which data must be transferred.

GPIB Polling

There are two ways in which instruments on GPIB can be polled. One is called parallel polling

and the other is serial.

Parallel polling can only operate with up to eight instruments. This is because each of the devices

will return a status bit one of the eight data lines. To assert a parallel poll the controller pulls the

ATN and EOI lines low. When this occurs each instrument responds by transmitting a one-bit

status report.A serial poll is more flexible but takes longer to accomplish. Here the controller

sends each of the instruments a serial poll enable command in turn. This is one of the GPIB

commands that can be sent when the ATN line is held low. When an instrument receives a serial

poll enable it responds by returning eight bits of status information. When the controller has

received the status data it sends a serial poll disable command and returns the bus and

instruments on it to the normal data mode.

The advantage of a serial poll is that it is far more flexible and enables eight bits of data to be

returned. However it is much slower because each instrument has to be polled in turn to find out

which one pulled the SRQ line in the first place. In practice the GPIB interface is very easy to

use. Ready-made GPIB cables are widely available even if they appear to be a little expensive.

However these GPIB cables are fully screened and have the correct lines as twisted pairs. This

considerably reduces the susceptibility of the bus to data corruptions. Manufacture of full

specification GPIB cables can be difficult in view of the complexity of the cable and having to

ensure the integrity of the screening.

A cheap and convenient alternative for GPIB cables is available in the form of insulation

displacement connectors. While cables made in this way are much cheaper they are not screened

and do not conform to the GPIB / IEEE 488 specifications. In view of this they should only be

used where there are a very limited number of instruments, where data rates are likely to be low,

for long runs, and where electrical noise is not likely to be a problem. If a cable of this nature is

used then it is worth being aware that it could be the cause of random errors when the system is

operating.

When setting up a GPIB system linked by the bus few rules need to be observed. The cables can

generally be routed as required, linking the instruments as is most convenient. As the connectors

can be "piggy backed", this makes linking the instruments very easy. However a little common

sense is required, and not too many connectors should be linked to one point.

Before firing up the system, check all the instrument GPIB addresses to ensure that they are

correct and match what the software in the controller requires. Also check that none are

duplicated. Unfortunately checking the addresses can be a time consuming operation because not

all the instruments will have switches that are easily available. To overcome this it is best to have

standard addresses for different types of instruments within a factory. This will eliminate the

need for any swapping and changing as test stacks are taken down and erected.

Although GPIB normally works very well, occasionally some problems inevitably arise.

Sometimes it has been known for the bus to hang, even though all the instruments are operating

correctly on their own. Some instruments can be sensitive to their physical position on the bus,

particularly if they are at a remote end. In instances like this the topology of the cable routing can

be changed to bring the offending instrument closer to the controller

The GPIB / IEEE 488 interface is well established in the electronics industry as a means of

providing control of remote test and measurement instruments. Although the GPIB interface has

been in widespread use since the early 1970s, the use of the GPIB interface continues in view of

its convenience and availability The GPIB cables and GPIB connectors are in widespread use

and are available from many stockiest and suppliers.

While GPIB connectors and GPIB cables are widely available and can be used with little

knowledge, some background information can be useful.

GPIB connector

The connector used for the IEEE 488 bus is standardized as a 24-way Amphenol 57 series type.

This provides an ideal physical interface for the standard. The IEEE 488 or GPIB connector is

very similar in format to those that were used for parallel printer ports on PCs. This makes the

GPIB connector a sufficiently rugged connector for use in a variety of test equipment and test

and measurement environments where unprotected connectors may not survive well.

An additional advantage of the GPIB connector is that it has a screw-lock. In this way, once the

connectors have been mated the screw-lock can be used to secure the connectors together. In this

way movements of the GPIB cables are unlikely to cause any intermittent connections. With

complicated electronics systems such as automatic test systems, intermittent cable connections

can cause significant problems which can be difficult to isolate and cure. By using a GPIB

connector that has a screw-lock this problem can be overcome.

The basic female connector used on the GPIB equipments follows the standard format for the

Amphenol 57 series, the GPIB cable connector has some differences. The basic GPIB cable

connector has a male to female capability. In this several GPIB cables connectors can be "piggy-

backed" on top of each other. This helps the physical setting up of the bus and prevents

complications with special connection boxes or star points, etc.

There are two different types of screw lock used on the GPIB connectors. The metric threads are

Black whereas English threads are Silver. Unfortunately the two will not mate together. The

most common type of screw lock is the black metric version.

GPIB cables

In practice the GPIB interface is very easy to use. Ready-made GPIB cables are widely available

even if they appear to be a little expensive. However these GPIB cables are fully screened and

have the correct lines as twisted pairs. This considerably reduces the susceptibility of the bus to

data corruptions. Manufacture of full specification GPIB cables can be difficult in view of the

complexity of the cable and having to ensure the integrity of the screening.

A cheap and convenient alternative for GPIB cables is available in the form of insulation

displacement connectors. While cables made in this way are much cheaper they are not screened

and do not conform to the GPIB / IEEE 488 specifications. In view of this they should only be

used where there are a very limited number of instruments, where data rates are likely to be low,

for long runs, and where electrical noise is not likely to be a problem. If a cable of this nature is

used then it is worth being aware that it could be the cause of random errors when the system is

operating.

Although there is a considerable degree of flexibility when setting up a GPIB system, there are

some restrictions on the way the GPIB cables are set up. Up to fifteen instruments may be

connected together with a maximum bus length not exceeding 20 meters. There must also be no

more than 2 meters between any two instruments. Devices on the GPIB can be connected in

either a star or linear configuration.

Although a variety of GPIB cable products are available, typically they are available in set

lengths. The most common lengths for GPIB cables are: 1 meter and 2 meters. Longer GPIB

cables are not normally available in view of the GPIB overall bus restrictions. Some 0.5 meter

GPIB cables are available, but these are often too short for many applications in view of the lack

of cable flexibility.

Although GPIB cables are normally quite reliable, their construction means that they are not easy

to flex. As a result, GPIB cables seem to have a limited life and as a result, care should be taken

when re-using old GPIB cables.

GPIB pin-outs

The connections or pinouts for the GPIB connector are given in the table below:

GPIB PIN NO

GPIB LINE NAME

1 Data Input / Output 1 DIO1

2 Data Input / Output 2 DIO2

3 Data Input / Output 3 DIO3

4 Data Input / Output 4 DIO4

5 End or Identify EOI

6 Data Valid DAV

7 Not Ready For Data NRFD

8 Not Data Accepted NDAC

9 Interface Clear IFC

10 Service Request SRQ

11 Attention ATN

12 Shield (Connected to Earth)

13 Data Input / Output 5 DIO5

14 Data Input / Output 6 DIO6

15 Data Input / Output 7 DIO7

GPIB PIN NO

GPIB LINE NAME

16 Data Input / Output 8 DIO8

17 Remote Enable REN

18 Twisted pair with pin 6

19 Twisted pair with pin 7

20 Twisted pair with pin 8

21 Twisted pair with pin 9

22 Twisted pair with pin 10

23 Twisted pair with pin 11

24 Signal Ground

GPIB is widely used for test instrumentation and data acquisition. Despite the fact that it has

been in use for many years, the GPIB standard offers flexibility and convenience, allowing

stand-alone bench test equipment to be sued in an automated fashion. Accordingly many GPIB

cables and GPIB connectors are required and these are also in plentiful supply. It is also useful to

have a table of the GPIB pinouts for occasions when individual connections may be required

Test and measurement is a key area of electronic engineering.

Test technology is used throughout the life of electronic products from initial development,

through verification of the product and manufacture, to maintenance and repair during its service

life.

According test techniques, test equipment and test technology are at the very heart of any

electronic product from mobile phone, consumer electronics device through to industrial

products and systems.

To meet the needs of the industry, there is an enormous variety of test technologies, test

equipment and test techniques that can be used.

5.3. 8251 USART

The Intel 8251 Universal Synchronous/Asynchronous Receiver/Transmitter (USART), designed

for data communication with Intel's microprocessor families. It is used as a peripheral device and

is programmed by the CPU to operate using many serial data transmission techniques. The

USART accepts data characters from the CPU in parallel format and then converts them into a

continuous serial data stream. It accepts serial data streams and converts them into parallel data

characters for the CPU. The USART will signal the CPU whenever it can accept a new character

for transmission or whenever it has received a character for the CPU. The CPU can read the

status of the USART at any time. The status includes data transmission errors and control

signals SYNDET/BD, TxEMPTY, TxRDY, RxRDY

Fig 5.1. 8251 USART Architecture

Ports

RESET (1 BIT, INPUT PORT) : This is the master reset for the 8251 chip.

 D_7 to D_0 (8 PINS, 1 BIT each, INOUT PORTS) : These are the bi-directional data bus pins

(8 bits) used for transferringdata/control/status words transfer the USART and the CPU. These

are usually connected to the CPU's data-bus, although the CPU always remains in control of the

bus and initiates all transfers.

CS_BAR (1 BIT, INPUT PORT) : This is the Chip-Select line. A low on this line enables data

communication between the CPU and the USART.

RD_BAR (1 BIT, INPUT PORT) : This is the read line. A low on this line causes the USART

to place the status word or the (received) data word on the data bus pins("D_7" to "D_0").

 WR_BAR (1 BIT, INPUT PORT) : This is the write line. A low on this line causes the USART

to accept the data on the data bus pins ("D_7" to "D_0") as either a control word or as a data

character (for transmission).

C_D_BAR (1 BIT, INPUT PORT) : This is the "Control/Data" pin. It is used while transferring

data to/from the CPU using the data bus pins ("D_7" to "D_0"). During a read operation : If

C_D_BAR - 1, the USART places its status on the data bus pins. If C_D_BAR - 0, the USART

places the (received) data character on the data bus pins. During a write operation : If C_D_BAR

- 1, the USART reads a control word from the data bus pins. If C_D_BAR - 0, the USART reads

a data character (for transmission) from the data bus pins.

 RxD (1 BIT, INPUT PORT) : This is the receiver data pin. Characters are received serially on

this pin and assembled into parallel characters.

 TxD (1 BIT, OUTPUT PORT) : This is the transmitter data pin. Parallel characters received by

the CPU are transmitted serially by the USART on this line.

 RxC_BAR (1 BIT, INPUT PORT) : This is the receiver clock. Data on "RxD" is sampled by

the USART on the rising edge of "RxC_BAR".

TxC_BAR (1 BIT, INPUT PORT) : This is the transmitter clock. Data is shifted out serially on

"TxD" by the USART, on the falling edge of "TxC_BAR".

CLK (1 BIT, INPUT PORT) : This clock is used for internal device timing. It needs to be

faster than "TxC_BAR" and "RxC_BAR".

TxEMPTY (1 BIT, OUTPUT PORT) : A high on this line indicates that the serial buffer in the

transmitter is empty. This line goes low only while a data character is being transmitted by the

USART. It goes high as soon as the USART completes transmitting a character and a new one

has not been loaded in time.

 TxRDY (1 BIT, OUTPUT PORT) : This pin signals the CPU that the USART is ready to

accept a new data character for transmission. "TxRDY" is reset when the USART receives a

data character from the CPU.

RxRDY (1 BIT, OUTPUT PORT) : This pin signals the CPU that the USART has received a

character on its serial input "RxD" and is ready to transfer it to the CPU. "RxRDY" is reset when

the character is read by the CPU.

SYNDET_BD (1 BIT, INOUT PORT) : In the Synchronous mode, this line can be in two ways

(while receiving characters). In the "Internal-Synchronization" mode, this line is used as an

output which goes high when the programmed "SYNC-characters" are detected on the "RxD"

line. In the "ExternalSynchronization" mode, this line is used as an input and the USART starts

assembling data characters at the next clock ("RxC_BAR") edge after a rising edge on this line.

In the Asynchronous mode, this line is used as a "Break-Detect" output which goes high if the

"RxD" line has stayed low for two consecutive character lengths (including start, stop and parity

bits).

RTS_BAR (1 BIT, OUTPUT PORT) : This "Request-To_Send" is a general purpose output

signal that can be asserted by a "command word" from the CPU. It may be used to request that

the modem prepare itself to transmit.

CTS_BAR (1 BIT, INPUT PORT) : This "Clear-To-Send" is an input signal that can be read by

the CPU as part of the "status-word". A low on this line enables the USART to transmit data. A

low on "CTS_BAR" is normally generated as a response to an assertion on "RTS_BAR".

DTR_BAR (1 BIT, OUTPUT PORT) : This "Data-Terminal-Ready" is a general purpose output

signal that can be asserted by a "command word" from the CPU.

DSR_BAR (1 BIT, INPUT PORT) : This "Data-Set-Ready" is a general purpose input signal that

can be read by the CPU as part of the "status-word".

General Operation

Programming the 8251

The complete functional definition of the 8251 is programmed by the system's software. A set of

control words must be sent out by the CPU to initialize the 8251 to support the desired

communication format. These words must immediately follow a reset (internal/external).

The Mode word

Immediately after a reset, the CPU has to send the 8-bit "mode" word. The 8251 can be used for

either synchronous/asynchronous data communication. To understand how the mode instruction

works, its best to view the device as two separate components, one synchronous and the other

asynchronous.

Synchronous mode word

| Bit 0 | Bit 1 |

| 0 | 0 |

The two least significant bits must be both 0 in Synchronous mode.

Character length : (bits per character)

| Bit 3 | Bit 2 || |

| | || |

| 0 | 0 || 5 bits |

| | || |

| | || |

| 0 | 1 || 6 bits |

| | || |

| | || |

| 1 | 0 || 7 bits |

| | || |

| | || |

| 1 | 1 || 8 bits |

| | || |

Parity :

| Bit 5 | Bit 4 || |

| | || |

| 0 | 0 || No parity |

| | || |

| | || | Bit 4 -- Parity Enable

| 0 | 1 || Odd parity |

| | || | Bit 5 -- Even Parity

| | || |

| 1 | 0 || No parity |

| | || |

| | || |

| 1 | 1 || Even parity |

Synchronization scheme :

| Bit 7 | Bit 6 || |

| | || |

| 0 | 0 || Internal sync detect, Double Sync character |

| | || |

| | || |

| 0 | 1 || External sync detect (from SYNDET_BD input) |

| | || |

| | || |

| 1 | 0 || Internal sync detect, Single Sync character |

| | || |

| | || |

| 1 | 1 || External sync detect (from SYNDET_BD input) |

| | || |

Bit 6 -- External Synchronization

Bit 7 -- Single Sync character (Internal Synchronization)

Asynchronous mode word

Baud Rate In asynchronous mode, the baud rate defines the number of clock

(RxC_BAR/TxC_BAR) cycles over which each bit is transmitted/received. (e.g. At baud rate

64X, each bit is transmitted over 64 clock cycles).

| Bit 1 | Bit 0 || |

| | || |

| 0 | 0 || Not relevant (Synchronous mode) |

| | || |

| | || |

| 0 | 1 || 1X baud rate |

| | || |

| | || |

| 1 | 0 || 16X baud rate |

| | || |

| | || |

| 1 | 1 || 64X baud rate |

| | || |

Character length : (bits per character)

| Bit 3 | Bit 2 || |

| | || |

| 0 | 0 || 5 bits |

| | || |

| | || |

| 0 | 1 || 6 bits |

| | || |

| | || |

| 1 | 0 || 7 bits |

| | || |

| | || |

| 1 | 1 || 8 bits |

| | || |

Parity :

| Bit 5 | Bit 4 || |

| | || |

| 0 | 0 || No parity | Bit 4 -- Parity Enable

| | || |

| | || | Bit 5 -- Even Parity

| 0 | 1 || Odd parity |

| | || |

| | || |

| 1 | 0 || No parity |

| | ||_ |

| | || |

| 1 | 1 || Even parity |

| | || |

No of Stop Bits :

| Bit 7 | Bit 6 || |

| | || |

| 0 | 0 || Invalid |

| | || |

| | || |

| 0 | 1 || 1 stop bit |

| | || |

| | || |

| 1 | 0 || 1.5 stop bits |

| | || |

| | || |

| 1 | 1 || 2 stop bits |

| | || |

The Command word and SYNC characters

In the "Internal Synchronization" mode, the control words (from the CPU) that follow the

modeword, must be SYNC characters. In Single-Sync mode, only one SYNC character (SYNC1)

is loaded. In Double-Sync mode, two consecutive SYNC characters (SYNC1 followed by

SYNC2) must be loaded. The SYNC character(s) have the same number of bits as the data

characters (as programmed in the mode word).The SYNC characters (if present, i.e. in "Internal

Synchronization" mode) are followed by the command word from the CPU. Data words (for

transmission) can follow that.Actually, the command word can be written by the CPU at any

time in the data block during the operation of the USART. To write a new Mode word, the

master reset in the Command instruction can be set to initiate an "Internal Reset".

Command Word

Bit 0 : Transmitter Enable

Bit 1 : DTR (Data Terminal Ready) -- Controls DTR_BAR output(if this is high, DTR_BAR is

low)

Bit 2 : Receiver enable

Bit 3 : Send Break -- Assertion of this forces "TxD" pin low

Bit 4 : Error Reset -- Reset all error flags (parity error, framing error overrun error) in the status

word .

Bit 5 : RTS (Request To Send) -- Controls RTS_BAR output (if this is high, RTS_BAR is low)

Bit 6 : Internal Reset -- Resets the USART and makes it ready to accept a new mode word.

Bit 7 : Enter Hunt Mode -- (used only in synchronous receive). If this is high, the USART tries

to achieve synchronization by entering the "hunt mode". In "Internal Synchronization" mode,

the USART starts looking for the programmed SYNC character(s) at the "RxD" input. In

"External Synchronization" mode, the USART starts looking for a rising edge on the

"SYNDET_BD" input. Once synchronization is achieved, the USART gets out of "hunt mode"

and starts assembling characters at the next rising edge of "RxC_BAR".

The Status Word

The CPU can read the "status word" from the USART at any time.

Bit 0 : TxRDY -- This signifies whether the transmitter is ready to receive a new character for

transmission from the CPU. However, in order for the "TxRDY" PIN to be high, three

conditions must be satisfied :

(a) TxRDY STATUS BIT must be high

(b) "CTS_BAR" must be low

(c) The transmitter must be enabled (Bit 0 in the Command word must be high).

Bit 1 : RxRDY -- Same as "RxRDY" pin.

Bit 2 : TxEMPTY -- Same as "TxEMPTY" pin.

Bit 3 : Parity Error -- When parity is enabled and a parity error is detected in any received

character, this bit is set.

Bit 4 : Overrun Error -- When the CPU does not read a received character before the next one

becomes available, this bit is set. However, the previous character is lost.

Bit 5 : Framing Error -- Used only in asynchronous mode. When a valid stop bit (high) is not

detected at the end of a received character, this bit is set.

(Note : All three error flags are reset by the "Error Reset" command bit. Also, the setting of

these error flags does not inhibit the USART operation.)

Bit 6 : SYNDET_BD -- Same as "SYNDET_BD" pin.

Bit 7 : DSR (Data Set Ready) -- Controlled by "DSR_BAR" pin. (If "DSR_BAR" pin is low,

his status bit is high.)

UNIT-4

INTRODUCTION TO MICROCONTROLLERS

4.1. Overview of 8051 microcontroller

Microcontroller manufacturers have been competing for a long time for attracting choosy

customers and every couple of days a new chip with a higher operating frequency, more memory

and upgraded A/D converters appeared on the market.

However, most of them had the same or at least very similar architecture known in the world of

microcontrollers as “8051 compatible”. What is all this about?

The whole story has its beginnings in the far 80s when Intel launched the first series of

microcontrollers called the MCS 051. Even though these microcontrollers had quite modest

features in comparison to the new ones, they conquered the world very soon and became a

standard for what nowadays is called the microcontroller.

The main reason for their great success and popularity is a skillfully chosen configuration which

satisfies different needs of a large number of users allowing at the same time constant expansions

(refers to the new types of microcontrollers). Besides, the software has been developed in great

extend in the meantime, and it simply was not profitable to change anything in the

microcontroller’s basic core. This is the reason for having a great number of various

microcontrollers which basically are solely upgraded versions of the 8051 family.

4.1.1 Architecture of 8051

Features:

The main features of 8051 microcontroller are:

i. RAM – 128 Bytes (Data memory)

ii. ROM – 4Kbytes (ROM signify the on – chip program space)

iii. Serial Port – Using UART makes it simpler to interface for serial

communication.

iv. Two 16 bit Timer/ Counter

v. Input/output Pins – 4 Ports of 8 bits each on a single chip.

vi. 6 Interrupt Sources

vii. 8 – bit ALU (Arithmetic Logic Unit)

viii. Harvard Memory Architecture – It has 16 bit Address bus (each of RAM

and ROM) and 8 bit Data Bus.

ix. 8051 can execute 1 million one-cycle instructions per second with a clock

frequency of 12MHz.

Fig 6.1. 8051 Architecture

The architecture of the 8051 family of microcontrollers is referred to as the MCS-51 architecture,

or sometimes simply as MCS-51. The microcontrollers have an 8-bit data bus. They are capable

of addressing 64K of program memory and a separate 64K of data memory. The 8051 has 4K of

code memory implemented as on-chip Read Only Memory (ROM). The 8051 has 128 bytes of

internal Random Access Memory (RAM). The 8051 has two timer/counters, a serial port, 4

general purpose parallel input/output ports, and interrupt control logic with five sources of

interrupts.

Besides internal RAM, the 8051 has various Special Function Registers (SFR), which are the

control and data registers for on-chip facilities. The SFRs also include the accumulator, the B

register, and the Program Status Word (PSW), which contains the CPU flags. Programming the

various internal hardware facilities of the 8051 is achieved by placing the appropriate control

words into the corresponding SFRs. The 8031 is similar to the 8051, except it lacks the on-chip

ROM.As stated, the 8051 can address 64K of external data memory and 64K of external program

memory. These may be separate blocks of memory, so that up to 128K of memory can be

attached to the microcontroller. Separate blocks of code and data memory are referred to as the

Harvard architecture. The 8051 has two separate read signals, RD# (P3.7) and PSEN#. The first

is activated when a byte is to be read from external data memory, the other, from external

program memory. Both of these signals are so-called active low signals. That is, they are

cleared to logic level 0 when activated. All external code is fetched from external program

memory. In addition, bytes from external program memory may be read by special read

instructions such as the MOVC instruction. There are separate instructions to read from external

data memory, such as the MOVX instruction. That is, the instructions determine which block of

memory is addressed, and the corresponding control signal, either RD# or PSEN# is activated

during the memory read cycle. A single block of memory may be mapped to act as both data and

program memory. This is referred to as the Von Neumann architecture. In order to read from

the same block using either the RD#signal or the PSEN# signal, the two signals are combined

with a logic AND operation. This way, the output of the AND gate is low when either input is

low. The advantage of the Harvard architecture is not simply doubling the memory capacity of

the microcontroller. Separating program and data increases the reliability of the microcontroller,

since there are no instructions to write to the program memory. A ROM device is ideally suited

to serve as program memory. The Harvard architecture is somewhat awkward in evaluation

systems, where code needs to be loaded into program memory.

6.1.2. 8051 pin diagram

Fig 6.2. 8051 pin diagram

Pins 1-8: Port 1 Each of these pins can be configured as an input or an output.

Pin 9: RS A logic one on this pin disables the microcontroller and clears the contents of most

registers. In other words, the positive voltage on this pin resets the microcontroller. By applying

logic zero to this pin, the program starts execution from the beginning.

Pins10-17: Port 3 Similar to port 1, each of these pins can serve as general input or output.

Besides, all of them have alternative functions:

Pin10: RXD Serial asynchronous communication input or Serial synchronous communication

output.

Pin11: TXD Serial asynchronous communication output or Serial synchronous communication

clock output.

Pin 12: INT0 Interrupt 0 input.

Pin 13: INT1 Interrupt 1 input.

Pin 14: T0 Counter 0 clock input.

Pin 15: T1 Counter 1 clock input.

Pin 16: WR Write to external (additional) RAM.

Pin 17: RD Read from external RAM.

Pin 18, 19: X2, X1 Internal oscillator input and output. A quartz crystal which specifies

operating frequency is usually connected to these pins. Instead of it, miniature ceramics

resonators can also be used for frequency stability. Later versions of microcontrollers operate at

a frequency of 0 Hz up to over 50 Hz.

Pin 20: GND Ground.

Pin 21-28: Port 2 If there is no intention to use external memory then these port pins are

configured as general inputs/outputs. In case external memory is used, the higher address byte,

i.e. addresses A8-A15 will appear on this port. Even though memory with capacity of 64Kb is

not used, which means that not all eight port bits are used for its addressing, the rest of them are

not available as inputs/outputs.

Pin 29: PSEN If external ROM is used for storing program then a logic zero (0) appears on it

every time the microcontroller reads a byte from memory.

Pin 30: ALE Prior to reading from external memory, the microcontroller puts the lower address

byte (A0-A7) on P0 and activates the ALE output. After receiving signal from the ALE pin, the

external register (usually 74HCT373 or 74HCT375 add-on chip) memorizes the state of P0 and

uses it as a memory chip address. Immediately after that, the ALU pin is returned its previous

logic state and P0 is now used as a Data Bus. As seen, port data multiplexing is performed by

means of only one additional (and cheap) integrated circuit. In other words, this port is used for

both data and address transmission.

Pin 31: EA By applying logic zero to this pin, P2 and P3 are used for data and address

transmission with no regard to whether there is internal memory or not. It means that even there

is a program written to the microcontroller, it will not be executed. Instead, the program written

to external ROM will be executed. By applying logic one to the EA pin, the microcontroller will

use both memories, first internal then external (if exists).

Pin 32-39: Port 0 Similar to P2, if external memory is not used, these pins can be used as general

inputs/outputs. Otherwise, P0 is configured as address output (A0-A7) when the ALE pin is

driven high (1) or as data output (Data Bus) when the ALE pin is driven low (0).

Pin 40: VCC +5V power supply.

6.2. 8051 in/ out ports

All 8051 microcontrollers have 4 I/O ports each comprising 8 bits which can be configured as

inputs or outputs. Accordingly, in total of 32 input/output pins enabling the microcontroller to be

connected to peripheral devices are available for use.

Pin configuration, i.e. whether it is to be configured as an input (1) or an output (0), depends on

its logic state. In order to configure a microcontroller pin as an input, it is necessary to apply a

logic zero (0) to appropriate I/O port bit. In this case, voltage level on appropriate pin will be 0.

Similarly, in order to configure a microcontroller pin as an input, it is necessary to apply a logic

one (1) to appropriate port. In this case, voltage level on appropriate pin will be 5V (as is the

case with any TTL input

Fig 6.3. input/ output pin structure

Input /Output (I/O)pin

Figure above illustrates a simplified schematic of all circuits within the microcontroller

connected to one of its pins. It refers to all the pins except those of the P0 port which do not have

pull-up resistors built-in.

Output pin

A logic zero (0) is applied to a bit of the P register. The output FE transistor is turned on, thus

connecting the appropriate pin to ground.

Input pin

Logic one (1) is applied to a bit of the P register. The output FE transistor is turned off and the

appropriate pin remains connected to the power supply voltage over a pull-up resistor of high

resistance.

Port 0

The P0 port is characterized by two functions. If external memory is used then the lower address

byte (addresses A0-A7) is applied on it. Otherwise, all bits of this port are configured as

inputs/outputs.

The other function is expressed when it is configured as an output. Unlike other ports consisting

of pins with built-in pull-up resistor connected by its end to 5 V power supply, pins of this port

have this resistor left out. This apparently small difference has its consequences:

If any pin of this port is configured as an input then it acts as if it “floats”. Such an input has

unlimited input resistance and in determined potential.

When the pin is configured as an output, it acts as an “open drain”. By applying logic 0 to a port

bit, the appropriate pin will be connected to ground (0V). By applying logic 1, the external

output will keep on “floating”. In order to apply logic 1 (5V) on this output pin, it is necessary to

built in an external pull-up resistor.

Port 1

P1 is a true I/O port, because it doesn't have any alternative functions as is the case with P0, but

can be configured as general I/O only. It has a pull-up resistor built-in and is completely

compatible with TTL circuits.

Port 2

P2 acts similarly to P0 when external memory is used. Pins of this port occupy addresses

intended for external memory chip. This time it is about the higher address byte with addresses

A8-A15. When no memory is added, this port can be used as a general input/output port showing

features similar to P1.

Port 3

All port pins can be used as general I/O, but they also have an alternative function. In order to

use these alternative functions, a logic one (1) must be applied to appropriate bit of the P3

register. In tems of hardware, this port is similar to P0, with the difference that its pins have a

pull-up resistor built-in.

Special functions of port 3 are given by

Table 6.1. port 3 special functions

6.3. Memory organization

The 8051 has two types of memory and these are Program Memory and Data Memory. Program

Memory (ROM) is used to permanently save the program being executed, while Data Memory

(RAM) is used for temporarily storing data and intermediate results created and used during the

operation of the microcontroller. Depending on the model in use (we are still talking about the

8051 microcontroller family in general) at most a few Kb of ROM and 128 or 256 bytes of RAM

is used. All 8051 microcontrollers have a 16-bit addressing bus and are capable of addressing 64

kb memory. It is neither a mistake nor a big ambition of engineers who were working on basic

core development. It is a matter of smart memory organization which makes these

microcontrollers a real “programmers’ goody“.

Program Memory

The first models of the 8051 microcontroller family did not have internal program memory. It

was added as an external separate chip. These models are recognizable by their label beginning

with 803 (for example 8031 or 8032). All later models have a few Kbyte ROM embedded. Even

though such an amount of memory is sufficient for writing most of the programs, there are

situations when it is necessary to use additional memory as well. A typical example are so called

lookup tables. They are used in cases when equations describing some processes are too

complicated or when there is no time for solving them. In such cases all necessary estimates and

approximates are executed in advance and the final results are put in the tables

How does the microcontroller handle external memory depend on the EA pin logic state?

Fig 6.3. 8051 program memory

EA=0 In this case, the microcontroller completely ignores internal program memory and

executes only the program stored in external memory.

EA=1 In this case, the microcontroller executes first the program from built-in ROM, then the

program stored in external memory.

In both cases, P0 and P2 are not available for use since being used for data and address

transmission. Besides, the ALE and PSEN pins are also used.

Data Memory

As already mentioned, Data Memory is used for temporarily storing data and intermediate results

created and used during the operation of the microcontroller. Besides, RAM memory built in the

8051 family includes many registers such as hardware counters and timers, input/output ports,

serial data buffers etc. The previous models had 256 RAM locations, while for the later models

this number was incremented by additional 128 registers. However, the first 256 memory

locations (addresses 0-FFh) are the heart of memory common to all the models belonging to the

8051 family. Locations available to the user occupy memory space with addresses 0-7Fh, i.e.

first 128 registers. This part of RAM is divided in several blocks.

The first block consists of 4 banks each including 8 registers denoted by R0-R7. Prior to

accessing any of these registers, it is necessary to select the bank containing it. The next memory

block (address 20h-2Fh) is bit- addressable, which means that each bit has its own address (0-

7Fh). Since there are 16 such registers, this block contains in total of 128 bits with separate

addresses (address of bit 0 of the 20h byte is 0, while address of bit 7 of the 2Fh byte is 7Fh).

The third group of registers occupies addresses 2Fh-7Fh, i.e. 80 locations, and does not have any

special functions or features.

Additional RAM

In order to satisfy the programmers’ constant hunger for Data Memory, the manufacturers

decided to embed an additional memory block of 128 locations into the latest versions of the

8051 microcontrollers. However, it’s not as simple as it seems to be… The problem is that

electronics performing addressing has 1 byte (8 bits) on disposal and is capable of reaching only

the first 256 locations, therefore. In order to keep already existing 8-bit architecture and

compatibility with other existing models a small trick was done.

What does it mean? It means that additional memory block shares the same addresses with

locations intended for the SFRs (80h- FFh). In order to differentiate between these two

physically separated memory spaces, different ways of addressing are used. The SFRs memory

locations are accessed by direct addressing, while additional RAM memory locations are

accessed by indirect addressing.

Fig 6.4. Data memory organization

Register Banks: 00h to 1Fh

The 8051 uses 8 general-purpose registers R0 through R7 (R0, R1, R2, R3, R4, R5,R6, and R7).

These registers are used in instructions such as:

ADD A, R2 ; adds the value contained in R2 to the accumulator

Note since R2 happens to be memory location 02h in the Internal RAM the following instruction

has the same effect as the above instruction.

ADD A, 02h; Now, things get more complicated when we see that there are four banks of the

general-purpose registers defined within the Internal RAM. For the moment we will consider

register bank 0 only. Register banks 1 to 3 can be ignored when writing introductory level

assembly language programs.

Bit Addressable RAM: 20h to 2Fh

The 8051 supports a special feature which allows access to bit variables. This is where

individual memory bits in Internal RAM can be set or cleared. In all there are 128 bits numbered

00h to 7Fh. Being bit variables any one variable can have a value 0 or 1. A bit variable can be set

with a command such as SETB and cleared with a command such as CLR. Example instructions

are:

SETB 25h ; sets the bit 25h (becomes 1)

CLR 25h ; clears bit 25h (becomes 0)

Note, bit 25h is actually bit b5 of Internal RAM location 24h.

The Bit Addressable area of the RAM is just 16 bytes of Internal RAM located between 20h and

2Fh. So if a program writes a byte to location 20h, for example, it writes 8 bit variables, bits 00h

to 07h at once. Note bit addressing can also be performed on some of the SFR registers,

General Purpose RAM: 30h to 7Fh

These 80 bytes of Internal RAM memory are available for general-purpose data storage. Access

to this area of memory is fast compared to access to the main memory and special instructions

with single byte operands are used. However, these 80 bytes are used by the system stack and in

practice little space is left for general storage. The general purpose RAM can be accessed using

direct or indirect addressing modes.

Examples of direct addressing:

MOV A, 6Ah ; reads contents of address 6Ah to accumulator

Examples for indirect addressing (use registers R0 or R1):

MOV R1, #6Ah ; move immediate 6Ah to R1

MOV A, @R1 ; move indirect: R1 contains address of Internal RAM which contains data that is

moved to A. These two instructions have the same effect as the direct instruction above.

SFR Registers

The SFR registers are located within the Internal Memory in the address range 80h to FFh, as

shown in figure 6.7. Not all locations within this range are defined. Each SFR has a very specific

function. Each SFR has an address (within the range 80h to FFh) and a name which reflects the

purpose of the SFR. Although 128 byes of the SFR address space is defined only 21 SFR

registers are defined in the standard 8051. Undefined SFR addresses should not be accessed as

this might lead to some unpredictable results. Note some of the SFR registers are bit

addressable. SFRs are accessed just like normal Internal RAM locations.

6.4. 8051 addressing modes

There are a number of addressing modes available to the 8051 instruction set, as follows:

Immediate Addressing Register Addressing Direct Addressing

Indirect Addressing Relative Addressing Absolute addressing

Long Addressing Indexed Addressing

Immediate Addressing

Immediate addressing simply means that the operand (which immediately follows the instruction

op. code) is the data value to be used.

For example the instruction:

MOV A, #99d-- Moves the value 99 into the accumulator (note this is 99 decimal since we used

99d).

The # symbol tells the assembler that the immediate addressing mode is to be used.

One of the eight general-registers, R0 to R7, can be specified as the instruction operand. The

assembly language documentation refers to a register generically as Rn. An example instruction

using register addressing is :

ADD A, R5 ; Adds register R5 to A (accumulator)-Here the contents of R5 is added to the

accumulator. One advantage of register addressing is that the instructions tend to be short, single

byte instructions.

Direct Addressing

Direct addressing means that the data value is obtained directly from the memory location

specified in the operand.

For example consider the instruction:

MOV A, 47h

The instruction reads the data from Internal RAM address 47h and stores this in the accumulator.

Direct addressing can be used to access Internal RAM , including the SFR registers.

Indirect Addressing

Indirect addressing provides a powerful addressing capability, which needs to be appreciated. An

example instruction, which uses indirect addressing, is as follows:

MOV A, @R0

Note the @ symbol indicated that the indirect addressing mode is used. R0 contains a value, for

example 54h, which is to be used as the address of the internal RAM location, which contains the

operand data. Indirect addressing refers to Internal RAM only and cannot be used to refer to SFR

registers. Note, only R0 or R1 can be used as register data pointers for indirect addressing when

using MOV instructions.

The 8052 (as opposed to the 8051) has an additional 128 bytes of internal RAM. These 128 bytes

of RAM can be accessed only using indirect addressing.

Relative Addressing

This is a special addressing mode used with certain jump instructions. The relative address, often

referred to as an offset, is an 8-bit signed number, which is automatically added to the PC to

make the address of the next instruction. The 8-bit signed offset value gives an address range of

+ 127 to –128 locations.

Consider the following example:

SJMP LABEL_X

An advantage of relative addressing is that the program code is easy to relocate in memory in

that the addressing is relative to the position in memory.

Absolute addressing

Absolute addressing within the 8051 is used only by the AJMP (Absolute Jump) and ACALL

(Absolute Call) instructions, which will be discussed later.

Long Addressing

The long addressing mode within the 8051 is used with the instructions LJMP and LCALL. The

address specifies a full 16 bit destination address so that a jump or a call can be made to a

location within a 64KByte code memory space (216 = 64K).

An example instruction is:

LJMP 5000h ; full 16 bit address is specified in operand

Indexed Addressing

With indexed addressing a separate register, either the program counter, PC, or the data pointer

DTPR, is used as a base address and the accumulator is used as an offset address. The effective

address is formed by adding the value from the base address to the value from the offset address.

Indexed addressing in the 8051 is used with the JMP or MOVC instructions. Look up tables are

easy to implement with the help of index addressing.

Consider the example instruction:

MOVC A, @A+DPTR

MOVC is a move instruction, which moves data from the external code memoryspace. The

address operand in this example is formed by adding the content of theDPTR register to the

accumulator value. Here the DPTR value is referred to as thebase address and the accumulator

value us referred to as the index address.

6.5. 8051 instruction set

The assembly level instructions include: data transfer instructions, arithmeticinstructions, logical

instructions, program control instructions, and some specialinstructions such as the rotate

instructions.

Data Transfer

Many computer operations are concerned with moving data from one location toanother. The

8051 uses five different types of instruction to move data:

MOV MOVX MOVC

PUSH POP XCH

MOV

In the 8051 the MOV instruction is concerned with moving data internally, i.e.between Internal

RAM, SFR registers, general registers etc. MOVX and MOVC areused in accessing external

memory data. The MOV instruction has the followingformat:

MOV destination <- source

The instruction copies (copy is a more accurate word than move) data from a definedsource

location to a destination location. Example MOV instructions are:

MOV R2, #80h ; Move immediate data value 80h to register R2

MOV R4, A ; Copy data from accumulator to register R4

MOV DPTR, #0F22Ch ; Move immediate value F22Ch to the DPTR register

MOV R2, 80h ; Copy data from 80h (Port 0 SFR) to R2

MOV 52h, #52h ; Copy immediate data value 52h to RAM location 52h

MOV 52h, 53h ; Copy data from RAM location 53h to RAM 52h

MOV A, @R0 ; Copy contents of location addressed in R0 to A(indirect addressing).

MOVX

The 8051 the external memory can be addressed using indirect addressing only. TheDPTR

register is used to hold the address of the external data (since DPTR is a 16-bitregister it can

address 64KByte locations: 216 = 64K). The 8 bit registers R0 or R1 canalso be used for indirect

addressing of external memory but the address range islimited to the lower 256 bytes of memory

(28 = 256 bytes).

The MOVX instruction is used to access the external memory (X indicates externalmemory

access). All external moves must work through the A register (accumulator).

Examples of MOVX instructions are:

MOVX @DPTR, A ; Copy data from A to the address specified in DPTR

MOVX A, @DPTR ; Copy data from address specified in DPTR to A

MOVC

MOVX instructions operate on RAM, which is (normally) a volatile memory.Program tables

often need to be stored in ROM since ROM is non volatile memory.The MOVC instruction is

used to read data from the external code memory (ROM).Like the MOVX instruction the DPTR

register is used as the indirect address register.The indirect addressing is enhanced to realize an

indexed addressing mode whereregister A can be used to provide an offset in the address

specification. Like theMOVX instruction all moves must be done through register A. The

followingsequence of instructions provides an example:

MOV DPTR, # 2000h ; Copy the data value 2000h to the DPTR register

MOV A, #80h ; Copy the data value 80h to register A

MOVC A, @A+DPTR ; Copy the contents of the address 2080h (2000h + 80h) to register A

Note, for the MOVC the program counter, PC, can also be used to form the address.

PUSH and POP

PUSH and POP instructions are used with the stack only. The SFR register SPcontains the

current stack address. Direct addressing is used as shown in the following

examples:

PUSH 4Ch ; Contents of RAM location 4Ch is saved to the stack. SP isincremented.

PUSH 00h ; The content of R0 (which is at 00h in RAM) is saved to the stack andSP is

incremented.

POP 80h ; The data from current SP address is copied to 80h and SP isdecremented.

XCH

The above move instructions copy data from a source location to a destinationlocation, leaving

the source data unaffected. A special XCH (exchange) instructionwill actually swap the data

between source and destination, effectively changing thesource data. Immediate addressing may

not be used with XCH. XCH instructionsmust use register A. XCHD is a special case of the

exchange instruction where justthe lower nibbles are exchanged. Examples using the XCH

instruction are:

XCH A, R3 ; Exchange bytes between A and R3

XCH A, @R0 ; Exchange bytes between A and RAM location whose address is in R0

XCH A, A0h ; Exchange bytes between A and RAM location A0h (SFR port 2)

Arithmetic

Some key flags within the PSW, i.e. C, AC, OV, P, are utilized in many of thearithmetic

instructions. The arithmetic instructions can be grouped as follows:

Addition

Subtraction

Increment/decrement

Multiply/divide

Decimal adjust

Addition

Register A (the accumulator) is used to hold the result of any addition operation.Some simple

addition examples are:

ADD A, #25h ; Adds the number 25h to A, putting sum in A

ADD A, R3 ; Adds the register R3 value to A, putting sum in A

The flags in the PSW register are affected by the various addition operations, asfollows:

The C (carry) flag is set to 1 if the addition resulted in a carry out of the accumulator’sMSB bit,

otherwise it is cleared.

The AC (auxiliary) flag is set to 1 if there is a carry out of bit position 3 of theaccumulator,

otherwise it is cleared.

For signed numbers the OV flag is set to 1 if there is an arithmetic overflow(described elsewhere

in these notes)

Simple addition is done within the 8051 based on 8 bit numbers, but it is oftenrequired to add 16

bit numbers, or 24 bit numbers etc. This leads to the use ofmultiple byte (multi-precision)

arithmetic. The least significant bytes are first added,and if a carry results, this carry is carried

over in the addition of the next significantbyte etc. This addition process is done at 8-bit

precision steps to achieve multiprecisionarithmetic. The ADDC instruction is used to include the

carry bit in theaddition process. Example instructions using ADDC are:

ADDC A, #55h ; Add contents of A, the number 55h, the carry bit and put thesum in A

ADDC A, R4 ; Add the contents of A, the register R4, the carry bit and putthe sum in A.

Subtraction

Computer subtraction can be achieved using 2’s complement arithmetic. Mostcomputers also

provide instructions to directly subtract signed or unsigned numbers.The accumulator, register A,

will contain the result (difference) of the subtractionoperation. The C (carry) flag is treated as a

borrow flag, which is always subtractedfrom the minuend during a subtraction operation. Some

examples of subtractioninstructions are:

SUBB A, #55d ; Subtract the number 55 (decimal) and the C flag from A; andput the result in A.

SUBB A, R6 ; Subtract R6 the C flag from A; and put the result in A.

SUBB A, 58h ; Subtract the number in RAM location 58h and the C flagFrom A; and put the

result in A.

Increment/Decrement

The increment (INC) instruction has the effect of simply adding a binary 1 to anumber while a

decrement (DEC) instruction has the effect of subtracting a binary 1from a number. The

increment and decrement instructions can use the addressingmodes: direct, indirect and register.

The flags C, AC, and OV are not affected by theincrement or decrement instructions. If a value

of FFh is increment it overflows to00h. If a value of 00h is decrement it underflows to FFh. The

DPTR can overflowfrom FFFFh to 0000h. The DPTR register cannot be decremented using a

DECinstruction (unfortunately!). Some example INC and DEC instructions are as follows:

INC R7 ; Increment register R7

INC A ; Increment A

INC @R1 ; Increment the number which is the content of the address in R1

DEC A ; Decrement register A

DEC 43h ; Decrement the number in RAM address 43h

INC DPTR ; Increment the DPTR register

Multiply / Divide

The 8051 supports 8-bit multiplication and division. This is low precision (8 bit)arithmetic but is

useful for many simple control applications. The arithmetic isrelatively fast since multiplication

and division are implemented as singleinstructions. If better precision, or indeed, if floating point

arithmetic is required thenspecial software routines need to be written. For the MUL or DIV

instructions the Aand B registers must be used and only unsigned numbers are supported.

Multiplication

The MUL instruction is used as follows (note absence of a comma between the A and

B operands):

MUL AB ; Multiply A by B.

The resulting product resides in registers A and B, the low-order byte is in A and thehigh order

byte is in B.

Division

The DIV instruction is used as follows:

DIV AB ; A is divided by B.

The remainder is put in register B and the integer part of the quotient is put in registerA.

Decimal Adjust (Special)

The 8051 performs all arithmetic in binary numbers (i.e. it does not support BCDarithmetic). If

two BCD numbers are added then the result can be adjusted by usingthe DA, decimal adjust,

instruction:

DA A ; Decimal adjust A following the addition of two BCD numbers.

Logical

Boolean Operations

Most control applications implement control logic using Boolean operators to act onthe data.

Most microcomputers provide a set of Boolean instructions that act on bytelevel data. However,

the 8051 (somewhat uniquely) additionally provides Booleaninstruction which can operate on bit

level data.The following Boolean operations can operate on byte level or bit level data:

ANL Logical AND

ORL Logical OR

CPL Complement (logical NOT)

XRL Logical XOR (exclusive OR)

Logical operations at the BYTE level

The destination address of the operation can be the accumulator (register A), ageneral register, or

a direct address. Status flags are not affected by these logicaloperations (unless PSW is directly

manipulated). Example instructions are:

ANL A, #55h ; AND each bit in A with corresponding bit in number 55h, leavingthe result in A.

ANL 42h, R4 ; AND each bit in RAM location 42h with corresponding bit in R4,leaving the

result in RAM location 42h.

ORL A,@R1 ; OR each bit in A with corresponding bit in the number whose addressis contained

in R1 leaving the result in A.

XRL R4, 80h ; XOR each bit in R4 with corresponding bit in RAM location 80h(port 0), leaving

result in A.

CPL R0 ; Complement each bit in R0

Logical operations at the BIT level

The C (carry) flag is the destination of most bit level logical operations. The carry flagcan easily

be tested using a branch (jump) instruction to quickly establish programflow control decisions

following a bit level logical operation.The following SFR registers only are addressable in bit

level operations:

PSW IE IP TCON SCON

Examples of bit level logical operations are as follows:

SETB 2Fh ; Bit 7 of Internal RAM location 25h is set

CLR C ; Clear the carry flag (flag =0)

CPL 20h ; Complement bit 0 of Internal RAM location 24h

MOV C, 87h ; Move to carry flag the bit 7of Port 0 (SFR at 80h)

ANL C,90h ; AND C with the bit 0 of Port 1 (SFR at 90)

ORL C, 91h ; OR C with the bit 1 of Port 1 (SFR at 90)

Rotate Instructions

The ability to rotate the A register (accumulator) data is useful to allow examinationof individual

bits. The options for such rotation are as follows:

RL A ; Rotate A one bit to the left. Bit 7 rotates to the bit 0 position

RLC A ; The Carry flag is used as a ninth bit in the rotation loop

RR A ; Rotates A to the right (clockwise)

RRC A ; Rotates to the right and includes the carry bit as the 9th bit.

Swap = special

The Swap instruction swaps the accumulator’s high order nibble with the low-ordernibble using

the instruction:

SWAP A

Program Control Instructions

The 8051 supports three kinds of jump instructions:

LJMP SJMP AJMP

LJMP

LJMP (long jump) causes the program to branch to a destination address defined bythe 16-bit

operand in the jump instruction. Because a 16-bit address is used theinstruction can cause a jump

to any location within the 64KByte program space (216 =64K). Some example instructions are:

LJMP LABEL_X ; Jump to the specified label

LJMP 0F200h ; Jump to address 0F200h

LJMP @A+DPTR ; Jump to address which is the sum of DPTR and Reg. A

SJMP

SJMP (short jump) uses a single byte address. This address is a signed 8-bit numberand allows

the program to branch to a distance –128 bytes back from the current PC address or +127 bytes

forward from the current PC address. The address mode usedwith this form of jumping (or

branching) is referred to as relative addressing,introduced earlier, as the jump is calculated

relative to the current PC address.

AJMP

This is a special 8051 jump instruction, which allows a jump with a 2KByte addressboundary (a

2K page)There is also a generic JMP instruction supported by many 8051 assemblers.

Theassembler will decide which type of jump instruction to use, LJMP, SJMP or AJMP,so as to

choose the most efficient instruction.

Subroutines and program flow control

A subroutine is called using the LCALL or the ACALL instruction.

LCALL

This instruction is used to call a subroutine at a specified address. The address is 16bits long so

the call can be made to any location within the 64KByte memory space.When a LCALL

instruction is executed the current PC content is automaticallypushed onto the stack of the PC.

When the program returns from the subroutine thePC contents is returned from the stack so that

the program can resume operation fromthe point where the LCALL was made.The return from

subroutine is achieved using the RET instruction, which simply popsthe PC back from the stack.

ACALL

The ACALL instruction is logically similar to the LCALL but has a limited addressrange similar

to the AJMP instruction.CALL is a generic call instruction supported by many 8051 assemblers.

Theassembler will decide which type of call instruction, LCALL or ACALL, to use so asto

choose the most efficient instruction.

Program control using conditional jumps

Most 8051 jump instructions use an 8-bit destination address, based on relativeaddressing, i.e.

addressing within the range –128 to +127 bytes.When using a conditional jump instruction the

programmer can simply specify aprogram label or a full 16-bit address for the conditional jump

instruction’sdestination. The assembler will position the code and work out the correct 8-

bitrelative address for the instruction. Some example conditional jump instructions are:

JZ LABEL_1 ; Jump to LABEL_1 if accumulator is equal to zero

JNZ LABEL_X ; Jump to LABEL_X if accumulator is not equal to zero

JNC LABEL_Y ; Jump to LABEL_Y if the carry flag is not set

DJNZ R2, LABEL ; Decrement R2 and jump to LABEL if the resulting value ofR2 is not zero.

CJNE R1, #55h , LABEL_2; Compare the magnitude of R1 and the number 55h and jump to

LABEL_2 if themagnitudes are not equal.

UNIT – 5

8051 REAL TIME CONTROL

7.1. Special function registers:

Special Function Registers (SFRs) are a sort of control table used for running and monitoring the

operation of the microcontroller. Each of these registers as well as each bit they include, has its

name, address in the scope of RAM and precisely defined purpose such as timer control,

interrupt control, serial communication control etc. Even though there are 128 memory locations

intended to be occupied by them, the basic core, shared by all types of 8051 microcontrollers,

has only 21 such registers. Rest of locations is intentionally left unoccupied in order to enable the

manufacturers to further develop microcontrollers keeping them compatible with the previous

versions. It also enables programs written a long time ago for microcontrollers which are out of

production now to be used today.

Fig 7.1. 8051 SFR’S

A Register (Accumulator)

Fig 7.2. 8051 Accumulator

A register is a general-purpose register used for storing intermediate results obtained during

operation. Prior to executing an instruction upon any number or operand it is necessary to store it

in the accumulator first. All results obtained from arithmetical operations performed by the ALU

are stored in the accumulator. Data to be moved from one register to another must go through the

accumulator. In other words, the A register is the most commonly used register and it is

impossible to imagine a microcontroller without it. More than half instructions used by the 8051

microcontroller use somehow the accumulator.

B Register

Multiplication and division can be performed only upon numbers stored in the A and B registers.

All other instructions in the program can use this register as a spare accumulator (A).

Fig 7.3. 8051 b register

R Registers (R0-R7)

Fig 7.4. 8051 Register banks

This is a common name for 8 general-purpose registers (R0, R1, R2 ...R7). Even though they are

not true SFRs, they deserve to be discussed here because of their purpose. They occupy 4 banks

within RAM. Similar to the accumulator, they are used for temporary storing variables and

MOV A,R3; Means: move number from R3 into accumulator

ADD A,R4; Means: add number from R4 to accumulator (result remains in

accumulator)

MOV R5,A; Means: temporarily move the result from accumulator into R5

MOV A,R1; Means: move number from R1 to accumulator

ADD A,R2; Means: add number from R2 to accumulator

SUBB A,R5; Means: subtract number from R5 (there are R3+R4)

intermediate results during operation. Which one of these banks is to be active depends on two

bits of the PSW Register. Active bank is a bank the registers of which are currently used.

The following example best illustrates the purpose of these registers. Suppose it is necessary to

perform some arithmetical operations upon numbers previously stored in the R registers:

(R1+R2) - (R3+R4). Obviously, a register for temporary storing results of addition is needed.

This is how it looks in the program:

Program Status Word (PSW) Register

Fig 7.5. 8051 PSW

PSW register is one of the most important SFRs. It contains several status bits that reflect the

current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two register

bank select bits, Overflow flag, parity bit and user-definable status flag.

P - Parity bit. If a number stored in the accumulator is even then this bit will be automatically

set (1), otherwise it will be cleared (0). It is mainly used during data transmit and receive via

serial communication.

- Bit 1. This bit is intended to be used in the future versions of microcontrollers.

OV Overflow occurs when the result of an arithmetical operation is larger than 255 and cannot

be stored in one register. Overflow condition causes the OV bit to be set (1). Otherwise, it will be

cleared (0).

RS0, RS1 - Register bank select bits. These two bits are used to select one of four register

banks of RAM. By setting and clearing these bits, registers R0-R7 are stored in one of four banks

of RAM.

R S 1 R S 2 S P A C E I N R A M

0 0 Bank0 00h-07h

0 1 Bank1 08h-0Fh

1 0 Bank2 10h-17h

1 1 Bank3 18h-1Fh

Table 7.1. Register bank selection

F0 - Flag 0. This is a general-purpose bit available for use.

AC - Auxiliary Carry Flag is used for BCD operations only.

CY - Carry Flag is the (ninth) auxiliary bit used for all arithmetical operations and shift

instructions.

Data Pointer Register (DPTR)

DPTR register is not a true one because it doesn't physically exist. It consists of two separate

registers: DPH (Data Pointer High) and (Data Pointer Low). For this reason it may be treated as a

16-bit register or as two independent 8-bit registers. Their 16 bits are primarly used for external

memory addressing. Besides, the DPTR Register is usually used for storing data and

intermediate results.

Fig 7.6. 8051 Data Pointer

Stack Pointer (SP) Register

Fig 7.7. 8051 Stack Pointer

A value stored in the Stack Pointer points to the first free stack address and permits stack

availability. Stack pushes increment the value in the Stack Pointer by 1. Likewise, stack pops

decrement its value by 1. Upon any reset and power-on, the value 7 is stored in the Stack Pointer,

which means that the space of RAM reserved for the stack starts at this location. If another value

is written to this register, the entire Stack is moved to the new memory location.

P0, P1, P2, P3 – Input/Output Registers

If neither external memory nor serial communication system are used then 4 ports with in total of

32 input/output pins are available for connection to peripheral environment. Each bit within these

ports affects the state and performance of appropriate pin of the microcontroller. Thus, bit logic

state is reflected on appropriate pin as a voltage (0 or 5 V) and vice versa, voltage on a pin

reflects the state of appropriate port bit.

As mentioned, port bit state affects performance of port pins, i.e. whether they will be configured

as inputs or outputs. If a bit is cleared (0), the appropriate pin will be configured as an output,

while if it is set (1), the appropriate pin will be configured as an input. Upon reset and power-on,

all port bits are set (1), which means that all appropriate pins will be configured as inputs.

7.2. Counters and Timers

As you already know, the microcontroller oscillator uses quartz crystal for its operation. As the

frequency of this oscillator is precisely defined and very stable, pulses it generates are always of

the same width, which makes them ideal for time measurement. Such crystals are also used in

quartz watches. In order to measure time between two events it is sufficient to count up pulses

coming from this oscillator. That is exactly what the timer does. If the timer is properly

programmed, the value stored in its register will be incremented (or decremented) with each

coming pulse, i.e. once per each machine cycle. A single machine-cycle instruction lasts for 12

quartz oscillator periods, which means that by embedding quartz with oscillator frequency of

12MHz, a number stored in the timer register will be changed million times per second, i.e. each

microsecond.

The 8051 microcontroller has 2 timers/counters called T0 and T1. As their names suggest, their

main purpose is to measure time and count external events. Besides, they can be used for

generating clock pulses to be used in serial communication, so called Baud Rate.

Timer T0

As seen in figure below, the timer T0 consists of two registers – TH0 and TL0 representing a low

and a high byte of one 16-digit binary number.

Fig 7.8. Timer-0 register

Accordingly, if the content of the timer T0 is equal to 0 (T0=0) then both registers it consists of

will contain 0. If the timer contains for example number 1000 (decimal), then the TH0 register

(high byte) will contain the number 3, while the TL0 register (low byte) will contain decimal

number 232.

Formula used to calculate values in these two registers is very simple:

TH0 × 256 + TL0 = T

Matching the previous example it would be as follows:

3 × 256 + 232 = 1000

Since the timer T0 is virtually 16-bit register, the largest value it can store is 65 535. In case of

exceeding this value, the timer will be automatically cleared and counting starts from 0. This

condition is called an overflow. Two registers TMOD and TCON are closely connected to this

timer and control its operation.

TMOD Register (Timer Mode)

The TMOD register selects the operational mode of the timers T0 and T1. As seen in figure

below, the low 4 bits (bit0 - bit3) refer to the timer 0, while the high 4 bits (bit4 - bit7) refer to

the timer 1. There are 4 operational modes and each of them is described herein.

Fig 7.9. 8051 TMOD Register

Bits of this register have the following function:

• GATE1 enables and disables Timer 1 by means of a signal brought to the INT1 pin

(P3.3):

o 1 - Timer 1 operates only if the INT1 bit is set.

o 0 - Timer 1 operates regardless of the logic state of the INT1 bit.

• C/T1 selects pulses to be counted up by the timer/counter 1:

o 1 - Timer counts pulses brought to the T1 pin (P3.5).

o 0 - Timer counts pulses from internal oscillator.

• T1M1,T1M0 These two bits select the operational mode of the Timer 1.

T 1 M 1 T 1 M 0 M O D E D E S C R I P T I O N

0 0 0 13-bit timer

0 1 1 16-bit timer

1 0 2 8-bit auto-reload

1 1 3 Split mode

Table 7.2. Timer Mode Selection

• GATE0 enables and disables Timer 1 using a signal brought to the INT0 pin (P3.2):

•

o 1 - Timer 0 operates only if the INT0 bit is set.

o 0 - Timer 0 operates regardless of the logic state of the INT0 bit.
• C/T0 selects pulses to be counted up by the timer/counter 0:

o 1 - Timer counts pulses brought to the T0 pin (P3.4).

o 0 - Timer counts pulses from internal oscillator.
• T0M1,T0M0 These two bits select the oprtaional mode of the Timer 0.

Timer 0 in mode 0 (13-bit timer)

This is one of the rarities being kept only for the purpose of compatibility with the previuos

versions of microcontrollers. This mode configures timer 0 as a 13-bit timer which consists of all

8 bits of TH0 and the lower 5 bits of TL0. As a result, the Timer 0 uses only 13 of 16 bits. How

does it operate? Each coming pulse causes the lower register bits to change their states. After

receiving 32 pulses, this register is loaded and automatically cleared, while the higher byte (TH0)

is incremented by 1. This process is repeated until registers count up 8192 pulses. After that,

both registers are cleared and counting starts from 0.

fig 7.10. Timer-0 in Mode -0

Timer 0 in mode 1 (16-bit timer)

Mode 1 configures timer 0 as a 16-bit timer comprising all the bits of both registers TH0 and

TL0. That's why this is one of the most commonly used modes. Timer operates in the same way

as in mode 0, with difference that the registers count up to 65 536 as allowable by the 16 bits.

Fig 7.11. Timer -0 in Mode -1

Timer 0 in mode 2 (Auto-Reload Timer)

Mode 2 configures timer 0 as an 8-bit timer. Actually, timer 0 uses only one 8-bit register for

counting and never counts from 0, but from an arbitrary value (0-255) stored in another (TH0)

register.The following example shows the advantages of this mode. Suppose it is necessary to

constantly count up 55 pulses generated by the clock.

If mode 1 or mode 0 is used, It is necessary to write the number 200 to the timer registers and

constantly check whether an overflow has occured, i.e. whether they reached the value 255.

When it happens, it is necessary to rewrite the number 200 and repeat the whole procedure. The

same procedure is automatically performed by the microcontroller if set in mode 2. In fact, only

the TL0 register operates as a timer, while another (TH0) register stores the value from which the

counting starts. When the TL0 register is loaded, instead of being cleared, the contents of TH0

will be reloaded to it. Referring to the previous example, in order to register each 55th pulse, the

best solution is to write the number 200 to the TH0 register and configure the timer to operate in

mode 2.

Fig 7.12. Timer-0 in Auto Reload Mode

Timer 0 in Mode 3 (Split Timer)

Mode 3 configures timer 0 so that registers TL0 and TH0 operate as separate 8-bit timers. In

other words, the 16-bit timer consisting of two registers TH0 and TL0 is split into two

independent 8-bit timers. This mode is provided for applications requiring an additional 8-bit

timer or counter. The TL0 timer turns into timer 0, while the TH0 timer turns into timer 1. In

addition, all the control bits of 16-bit Timer 1 (consisting of the TH1 and TL1 register), now

control the 8-bit Timer 1. Even though the 16-bit Timer 1 can still be configured to operate in

any of modes (mode 1, 2 or 3), it is no longer possible to disable it as there is no control bit to do

it. Thus, its operation is restricted when timer 0 is in mode 3.

Fig 7.13. Timer -0 in Split Timer Mode

The only application of this mode is when two timers are used and the 16-bit Timer 1 the

operation of which is out of control is used as a baud rate generator.

Timer Control (TCON) Register

TCON register is also one of the registers whose bits are directly in control of timer operation.

Only 4 bits of this register are used for this purpose, while rest of them is used for interrupt

control to be discussed later.

Fig 7.14. 8051 TCON Register

• TF1 bit is automatically set on the Timer 1 overflow.

• TR1 bit enables the Timer 1.

o 1 - Timer 1 is enabled.

o 0 - Timer 1 is disabled.

• TF0 bit is automatically set on the Timer 0 overflow.

• TR0 bit enables the timer 0.

o 1 - Timer 0 is enabled.

o 0 - Timer 0 is disabled.

How to use the Timer 0 ?

In order to use timer 0, it is first necessary to select it and configure the mode of its operation.

Bits of the TMOD register are in control of it:

Referring to figure above, the timer 0 operates in mode 1 and counts pulses generated by internal

clock the frequency of which is equal to 1/12 the quartz frequency.

Turn on the timer:

The TR0 bit is set and the timer starts operation. If the quartz crystal with frequency of 12MHz is

embedded then its contents will be incremented every microsecond. After 65.536 microseconds,

the both registers the timer consists of will be loaded. The microcontroller automatically clears

them and the timer keeps on repeating procedure from the beginning until the TR0 bit value is

logic zero (0).

How to 'read' a timer?

Depending on application, it is necessary either to read a number stored in the timer registers or

to register the moment they have been cleared.

- It is extremely simple to read a timer by using only one register configured in mode 2 or 3. It is

sufficient to read its state at any moment. That's all!

- It is somehow complicated to read a timer configured to operate in mode 2. Suppose the lower

byte is read first (TL0), then the higher byte (TH0). The result is:

TH0 = 15 TL0 = 255

Everything seems to be ok, but the current state of the register at the moment of reading was:

TH0 = 14 TL0 = 255

In case of negligence, such an error in counting (255 pulses) may occur for not so obvious but

quite logical reason. The lower byte is correctly read (255), but at the moment the program

counter was about to read the higher byte TH0, an overflow occurred and the contents of both

registers have been changed (TH0: 14→15, TL0: 255→0). This problem has a simple solution.

The higher byte should be read first, then the lower byte and once again the higher byte. If the

number stored in the higher byte is different then this sequence should be repeated. It's about a

short loop consisting of only 3 instructions in the program.

There is another solution as well. It is sufficient to simply turn the timer off while reading is

going on (the TR0 bit of the TCON register should be cleared), and turn it on again after reading

is finished.

Timer 0 Overflow Detection

Usually, there is no need to constantly read timer registers. It is sufficient to register the moment

they are cleared, i.e. when counting starts from 0. This condition is called an overflow. When it

occurrs, the TF0 bit of the TCON register will be automatically set. The state of this bit can be

constantly checked from within the program or by enabling an interrupt which will stop the main

program execution when this bit is set. Suppose it is necessary to provide a program delay of

0.05 seconds (50 000 machine cycles), i.e. time when the program seems to be stopped:

First a number to be written to the timer registers should be calculated:

Then it should be written to the timer registers TH0 and TL0:

When enabled, the timer will resume counting from this number. The state of the TF0 bit, i.e.

whether it is set, is checked from within the program. It happens at the moment of overflow, i.e.

after exactly 50.000 machine cycles or 0.05 seconds.

How to measure pulse duration?

Fig 7.14. Internal operation of the timer

Suppose it is necessary to measure the duration of an operation, for example how long a device

has been turned on? Look again at the figure illustrating the timer and pay attention to the

function of the GATE0 bit of the TMOD register. If it is cleared then the state of the P3.2 pin

doesn't affect timer operation. If GATE0 = 1 the timer will operate until the pin P3.2 is cleared.

Accordingly, if this pin is supplied with 5V through some external switch at the moment the

device is being turned on, the timer will measure duration of its operation, which actually was

the objective.

How to count up pulses?

Similarly to the previous example, the answer to this question again lies in the TCON register.

This time it's about the C/T0 bit. If the bit is cleared the timer counts pulses generated by the

internal oscillator, i.e. measures the time passed. If the bit is set, the timer input is provided with

pulses from the P3.4 pin (T0). Since these pulses are not always of the same width, the timer

cannot be used for time measurement and is turned into a counter, therefore. The highest

frequency that could be measured by such a counter is 1/24 frequency of used quartz-crystal.

Timer 1

Timer 1 is identical to timer 0, except for mode 3 which is a hold-count mode. It means that they

have the same function, their operation is controlled by the same registers TMOD and TCON

and both of them can operate in one out of 4 different modes.

7.3. Serial Communication

One of the microcontroller features making it so powerful is an integrated UART, better known

as a serial port. It is a full-duplex port, thus being able to transmit and receive data

simultaneously and at different baud rates. Without it, serial data send and receive would be an

enormously complicated part of the program in which the pin state is constantly changed and

checked at regular intervals. When using UART, all the programmer has to do is to simply select

serial port mode and baud rate. When it's done, serial data transmit is nothing but writing to the

SBUF register, while data receive represents reading the same register. The microcontroller takes

care of not making any error during data transmission.

Fig 7.15. 8051 SBUF register

Serial port must be configured prior to being used. In other words, it is necessary to determine

how many bits is contained in one serial “word”, baud rate and synchronization clock source.

The whole process is in control of the bits of the SCON register (Serial Control).

Serial Port Control (SCON) Register

Fig 7.16. Serial Control Register

• SM0 - Serial port mode bit 0 is used for serial port mode selection.

• SM1 - Serial port mode bit 1.

• SM2 - Serial port mode 2 bit, also known as multiprocessor communication enable bit.

When set, it enables multiprocessor communication in mode 2 and 3, and eventually

mode 1. It should be cleared in mode 0.

• REN - Reception Enable bit enables serial reception when set. When cleared, serial

reception is disabled.

• TB8 - Transmitter bit 8. Since all registers are 8-bit wide, this bit solves the problem of

transmiting the 9th bit in modes 2 and 3. It is set to transmit a logic 1 in the 9th bit.

• RB8 - Receiver bit 8 or the 9th bit received in modes 2 and 3. Cleared by hardware if 9th

bit received is a logic 0. Set by hardware if 9th bit received is a logic 1.

• TI - Transmit Interrupt flag is automatically set at the moment the last bit of one byte is

sent. It's a signal to the processor that the line is available for a new byte transmite. It

must be cleared from within the software.

• RI - Receive Interrupt flag is automatically set upon one byte receive. It signals that byte

is received and should be read quickly prior to being replaced by a new data. This bit is

also cleared from within the software.

S M 0 S M 1 M O D E D E S C R I P T I O N B A U D R A T E

0

0

0
8-bit Shift
Register

1/12 the quartz frequency

0 1 1 8-bit UART Determined by the timer 1

1 0 2 9-bit UART
1/32 the quartz frequency (1/64 the

quartz frequency)

1 1 3 9-bit UART Determined by the timer 1

Table 7.3. Serial communication mode selection

Fig 7.16. Serial communication overview

In mode 0, serial data are transmitted and received through the RXD pin, while the TXD pin

output clocks. The bout rate is fixed at 1/12 the oscillator frequency. On transmit, the least

significant bit (LSB bit) is sent/received first.

TRANSMIT - Data transmit is initiated by writing data to the SBUF register. In fact, this

process starts after any instruction being performed upon this register. When all 8 bits have been

sent, the TI bit of the SCON register is automatically set.

RECEIVE - Data receive through the RXD pin starts upon the two following conditions are

met: bit REN=1 and RI=0 (both of them are stored in the SCON register). When all 8 bits have

been received, the RI bit of the SCON register is automatically set indicating that one byte

receives is complete.

Since there are no START and STOP bits or any other bit except data sent from the SBUF

register in the pulse sequence, this mode is mainly used when the distance between devices is

short, noise is minimized and operating speed is of importance. A typical example is I/O port

expansion by adding a cheap IC (shift registers 74HC595, 74HC597 and similar).

Mode 1

Fig 7.17. Serial communication in mode1

In mode 1, 10 bits are transmitted through the TXD pin or received through the RXD pin in the

following manner: a START bit (always 0), 8 data bits (LSB first) and a STOP bit (always 1).

The START bit is only used to initiate data receive, while the STOP bit is automatically written

to the RB8 bit of the SCON register.

TRANSMIT - Data transmit is initiated by writing data to the SBUF register. End of data

transmission is indicated by setting the TI bit of the SCON register.

RECEIVE - The START bit (logic zero (0)) on the RXD pin initiates data receive. The

following two conditions must be met: bit REN=1 and bit RI=0. Both of them are stored in the

SCON register. The RI bit is automatically set upon data reception is complete.

The Baud rate in this mode is determined by the timer 1 overflow.

Mode 2

Fig 7.18. Serial communication in mode 2

In mode 2, 11 bits are transmitted through the TXD pin or received through the RXD pin: a

START bit (always 0), 8 data bits (LSB first), a programmable 9th data bit and a STOP bit

(always 1). On transmit, the 9th data bit is actually the TB8 bit of the SCON register. This bit

usually has a function of parity bit. On receive, the 9th data bit goes into the RB8 bit of the same

register (SCON).The baud rate is either 1/32 or 1/64 the oscillator frequency.

TRANSMIT - Data transmit is initiated by writing data to the SBUF register. End of data

transmission is indicated by setting the TI bit of the SCON register.

RECEIVE - The START bit (logic zero (0)) on the RXD pin initiates data receive. The

following two conditions must be met: bit REN=1 and bit RI=0. Both of them are stored in the

SCON register. The RI bit is automatically set upon data reception is complete.

Mode 3

Mode 3 is the same as Mode 2 in all respects except the baud rate. The baud rate in Mode 3 is

variable.

Baud Rate

Baud Rate is a number of sent/received bits per second. In case the UART is used, baud rate

depends on: selected mode, oscillator frequency and in some cases on the state of the SMD bit of

the

SC

ON

regi

ster

.

All

the

nec

 B A U D R A T E B I T S M O D

Mode 0 Fosc. / 12

Mode 1
1 Fosc.

16 12 (256-TH1)
BitSMOD

Mode 2
Fosc. / 32

Fosc. / 64

1

0

Mode 3
1 Fosc.

16 12 (256-TH1)

essary formulas are specified in the table:

Timer 1 as a clock generator

Timer 1 is usually used as a clock generator as it enables various baud rates to be easily set. The

whole procedure is simple and is as follows:

• First, enable Timer 1 overflow interrupt.

• Configure Timer T1 to operate in auto-reload mode.

• Depending on needs, select one of the standard values from the table and write it to the

TH1 register. That's all.

Multiprocessor Communication

As you may know, additional 9th data bit is a part of message in mode 2 and 3. It can be used for

checking data via parity bit. Another useful application of this bit is in communication between

two or more microcontrollers, i.e. multiprocessor communication. This feature is enabled by

setting the SM2 bit of the SCON register. As a result, after receiving the STOP bit, indicating

end of the message, the serial port interrupt will be generated only if the bit RB8 = 1 (the 9th bit).

Suppose there are several microcontrollers sharing the same interface. Each of them has its own

address. An address byte differs from a data byte because it has the 9th bit set (1), while this bit

is cleared (0) in a data byte. When the microcontroller A (master) wants to transmit a block of

data to one of several slaves, it first sends out an address byte which identifies the target slave.

An address byte will generate an interrupt in all slaves so that they can examine the received byte

and check whether it matches their address.

Of course, only one of them will match the address and immediately clear the SM2 bit of the

SCON register and prepare to receive the data byte to come. Other slaves not being addressed

leave their SM2 bit set ignoring the coming data bytes.

7.4. 8051 Interrupts

There are five interrupt sources for the 8051, which means that they can recognize 5 different

events that can interrupt regular program execution. Each interrupt can be enabled or disabled by

setting bits of the IE register. Likewise, the whole interrupt system can be disabled by clearing

the EA bit of the same register. Refer to figure below.

Now, it is necessary to explain a few details referring to external interrupts- INT0 and INT1. If

the IT0 and IT1 bits of the TCON register are set, an interrupt will be generated on high to low

transition, i.e. on the falling pulse edge (only in that moment). If these bits are cleared, an

interrupt will be continuously executed as far as the pins are held low.

Fig 7.19. Interrupt sources of 8051

IE Register

(InterruptEnable)

Fig 7.20. IE register of 8051

• EA - global interrupt enable/disable:

o 0 - disables all interrupt requests.

o 1 - enables all individual interrupt requests.
• ES - enables or disables serial interrupt:

o 0 - UART system cannot generate an interrupt.

o 1 - UART system enables an interrupt.

• ET1 - bit enables or disables Timer 1 interrupt:

o 0 - Timer 1 cannot generate an interrupt.

o 1 - Timer 1 enables an interrupt.
• EX1 - bit enables or disables external 1 interrupt:

o 0 - change of the pin INT0 logic state cannot generate an interrupt.

o 1 - enables an external interrupt on the pin INT0 state change.

• ET0 - bit enables or disables timer 0 interrupt:

o 0 - Timer 0 cannot generate an interrupt.

o 1 - enables timer 0 interrupt.

• EX0 - bit enables or disables external 0 interrupt:

o 0 - change of the INT1 pin logic state cannot generate an interrupt.

o 1 - enables an external interrupt on the pin INT1 state change.

Interrupt Priorities

It is not possible to forseen when an interrupt request will arrive. If several interrupts are

enabled, it may happen that while one of them is in progress, another one is requested. In order

that the microcontroller knows whether to continue operation or meet a new interrupt request,

there is a priority list instructing it what to do.

The priority list offers 3 levels of interrupt priority:

1. Reset! The absolute masterInterrupt priority 1 can be disabled by Reset only.

2. Interrupt priority 0 can be disabled by both Reset and interrupt priority 1.

The IP Register (Interrupt Priority Register) specifies which one of existing interrupt sources

have higher and which one has lower priority. Interrupt priority is usually specified at the

beginning of the program. According to that, there are several possibilities:

• If an interrupt of higher priority arrives while an interrupt is in progress, it will be

immediately stopped and the higher priority interrupt will be executed first.

• If two interrupt requests, at different priority levels, arrive at the same time then the

higher priority interrupt is serviced first.

• If the both interrupt requests, at the same priority level, occur one after another, the one

which came later has to wait until routine being in progress ends.

• If two interrupt requests of equal priority arrive at the same time then the interrupt to be

serviced is selected according to the following priority list:

1. External interrupt INT0

2. Timer 0 interrupt

3. External Interrupt INT1

4. Timer 1 interrupt

5. Serial Communication Interrupt

IP Register (Interrupt Priority)

The IP register bits specify the priority level of each interrupt (high or low priority).

I N T E R R U P T S O U R C E V E C T O R (A D D R E S S)

IE0 3 h

TF0 B h

TF1 1B h

RI, TI 23 h

Fig 7.21. IP register of 8051

• PS - Serial Port Interrupt priority bit

o Priority 0

o Priority 1

• PT1 - Timer 1 interrupt priority

o Priority 0

o Priority 1

• PX1 - External Interrupt INT1 priority

o Priority 0

o Priority 1

• PT0 - Timer 0 Interrupt Priority

o Priority 0

o Priority 1

• PX0 - External Interrupt INT0 Priority

o Priority 0

o Priority 1

Handling Interrupt

When an interrupt request arrives the following occurs:

• Instruction in progress is ended.

• The address of the next instruction to execute is pushed on the stack.

• Depending on which interrupt is requested, one of 5 vectors (addresses) is written to the program

counter in accordance to the table below:

Table 7.4. vector Addresses of 8051 Interrupts

• These addresses store appropriate subroutines processing interrupts. Instead of them, there are

usually jump instructions specifying locations on which these subroutines reside.

• When an interrupt routine is executed, the address of the next instruction to execute is popped

from the stack to the program counter and interrupted program resumes operation from where it

left off.

Reset

Reset occurs when the RS pin is supplied with a positive pulse in duration of at least 2 machine

cycles (24 clock cycles of crystal oscillator). After that, the microcontroller generates an internal

reset signal which clears all SFRs, except SBUF registers, Stack Pointer and ports (the state of

the first two ports is not defined, while FF value is written to the ports configuring all their pins

as inputs). Depending on surrounding and purpose of device, the RS pin is usually connected to a

power-on reset push button or circuit or to both of them. Figure below illustrates one of the

simplest circuit providing safe power-on reset.

Fig 7.22. 8051 Reset

Basically, everything is very simple: after turning the power on, electrical capacitor is being

charged for several milliseconds throgh a resistor connected to the ground. The pin is driven high

All addresses are in hexadecimal format

during this process. When the capacitor is charged, power supply voltage is already stable and

the pin remains connected to the ground, thus providing normal operation of the microcontroller.

Pressing the reset button causes the capacitor to be temporarily discharged and the

microcontroller is reset. When released, the whole process is repeated…

Through the program- step by step...

Microcontrollers normally operate at very high speed. The use of 12 Mhz quartz crystal enables

1.00.00 instructions to be executed per second. Basically, there is no need for higher operating

rate. In case it is needed, it is easy to built in a crystal for high frequency. The problem arises

when it is necessary to slow down the operation of the microcontroller. For example during

testing in real environment when it is necessary to execute several instructions step by step in

order to check I/O pins' logic state.

Interrupt system of the 8051 microcontroller practically stops operation of the microcontroller

and enables instructions to be executed one after another by pressing the button. Two interrupt

features enable that:

• Interrupt request is ignored if an interrupt of the same priority level is in progress.

• Upon interrupt routine execution, a new interrupt is not executed until at least one

instruction from the main program is executed.

In order to use this in practice, the following steps should be done:

• External interrupt sensitive to the signal level should be enabled (for example INT0).

• Three following instructions should be inserted into the program (at the 03hex. address):

As soon as the P3.2 pin is cleared (for example, by pressing the button), the microcontroller will

stop program execution and jump to the 03hex address will be executed. This address stores a

short interrupt routine consisting of 3 instructions.

The first instruction is executed until the push button is realised (logic one (1) on the P3.2 pin).

The second instruction is executed until the push button is pressed again. Immediately after that,

the RETI instruction is executed and the processor resumes operation of the main program. Upon

execution of any program instruction, the interrupt INT0 is generated and the whole procedure is

repeated (push button is still pressed). In other words, one button press - one instruction.

2.9 8051 Microcontroller Power Consumption Control

Generally speaking, the microcontroller is inactive for the most part and just waits for some

external signal in order to takes its role in a show. This can cause some problems in case

batteries are used for power supply. In extreme cases, the only solution is to set the whole

electronics in sleep mode in order to minimize consumption. A typical example is a TV remote

controller: it can be out of use for months but when used again it takes less than a second to send

a command to TV receiver. The AT89S53 uses approximately 25mA for regular operation,

which doesn't make it a pover-saving microcontroller. Anyway, it doesn’t have to be always like

that, it can easily switch the operating mode in order to reduce its total consumption to

approximately 40uA. Actually, there are two power-saving modes of operation:Idle and Power

Down.

Fig 7.23. power down and idle modes of 8051

Idle mode

Upon the IDL bit of the PCON register is set, the microcontroller turns off the greatest power

consumer- CPU unit while peripheral units such as serial port, timers and interrupt system

continue operating normally consuming 6.5mA. In Idle mode, the state of all registers and I/O

ports remains unchanged.

In order to exit the Idle mode and make the microcontroller operate normally, it is necessary to

enable and execute any interrupt or reset. It will cause the IDL bit to be automatically cleared

and the program resumes operation from instruction having set the IDL bit. It is recommended

that first three instructions to execute now are NOP instructions. They don't perform any

operation but provide some time for the microcontroller to stabilize and prevents undesired

changes on the I/O ports.

Power Down mode

By setting the PD bit of the PCON register from within the program, the microcontroller is set to

Power down mode, thus turning off its internal oscillator and reduces power consumption

enormously. The microcontroller can operate using only 2V power supply in power- down mode,

while a total power consumption is less than 40uA. The only way to get the microcontroller back

to normal mode is by reset.

While the microcontroller is in Power Down mode, the state of all SFR registers and I/O ports

remains unchanged. By setting it back into the normal mode, the contents of the SFR register is

lost, but the content of internal RAM is saved. Reset signal must be long enough, approximately

10mS, to enable stable operation of the quartz oscillator.

PCON register

Fig 7.24. PCON register of 8051

The purpose of the Register PCON bits is:

• SMOD Baud rate is twice as much higher by setting this bit.

• GF1 General-purpose bit (available for use).

• GF1 General-purpose bit (available for use).

• GF0 General-purpose bit (available for use).

• PD By setting this bit the microcontroller enters the Power Down mode.

• IDL By setting this bit the microcontroller enters the Idle mode.

CONTENTS BEYOND SYLLABUS

THE AVR RISC MICROCONTROLLER ARCHITECTURE

8.1. Introduction

Features

• Utilizes the AVR® RISC Architecture

• AVR – High-performance and Low-power RISC Architecture

– 118 Powerful Instructions – Most Single Clock Cycle Execution

– 32 x 8 General Purpose Working Registers

– Up to 10 MIPS Throughput at 10 MHz

• Data and Non-volatile Program Memory

– 2K Bytes of In-System Programmable FlashEndurance 1,000 Write/Erase Cycles

– 128 Bytes of SRAM

– 128 Bytes of In-System Programmable EEPROM

Endurance: 100,000 Write/Erase Cycles

– Programming Lock for Flash Program and EEPROM Data Security

• Peripheral Features

– One 8-bit Timer/Counter with Separate Prescalar

– One 16-bit Timer/Counter with Separate Prescalar,Compare, Capture Modes and 8-, 9-, or 10-

bit PWM

– On-chip Analog Comparator

– Programmable Watchdog Timer with On-chip Oscillator

– SPI Serial Interface for In-System Programming

– FullDuplexUART

• • Special Microcontroller Features

– Low-power Idle and Power-down Modes

– External and Internal Interrupt Sources

• • Specifications

– Low-power, High-speed CMOS Process Technology

– Fully Static Operation

• Power Consumption at 4 MHz, 3V, 25°C

– Active: 2.8 mA

– Idle Mode: 0.8 mA

– Power-down Mode: <1 μA

• Operating Voltages

– 2.7 - 6.0V (AT90S2313-4)

– 4.0 - 6.0V (AT90S2313-10)

• Speed Grades

– 0 - 4 MHz (AT90S2313-4)

– 0 - 10 MHz (AT90S2313-10)

8.2. Architecture of AT90S2313

The AT90S2313 is a low-power CMOS 8-bit microcontroller based on the AVR RISC

architecture. By executing powerful instructions in a single clock cycle, the AT90S2313

achieves throughputs approaching 1 MIPS per MHz allowing the system designer to

optimize power consumption versus processing speed.The AVR core combines a rich instruction

set with 32 general purpose working registers.All the 32 registers are directly connected to the

Arithmetic Logic Unit (ALU), allowingtwo independent registers to be accessed in one single

instruction executed in one clockcycle. The resulting architecture is more code efficient while

achieving throughputs up toten times faster than conventional CISC microcontrollers.

Fig 8.1. Architecture of AT90S2313

The AT90S2313 provides the following features: 2K bytes of In-System ProgrammableFlash,

128 bytes EEPROM, 128 bytes SRAM, 15 general purpose I/O lines, 32 generalpurpose working

registers, flexible Timer/Counters with compare modes, internal andexternal interrupts, a

programmable serial UART, programmable Watchdog Timer withinternal Oscillator, an SPI

serial port for Flash memory downloading and two software selectable power-saving modes. The

Idle mode stops the CPU while allowing theSRAM, Timer/Counters, SPI port and interrupt

system to continue functioning. ThePower-down mode saves the register contents but freezes the

Oscillator, disabling allother chip functions until the next external interrupt or Hardware Reset.

The device is manufactured using Atmel’s high-density non-volatile memory technology.

The On-chip In-System Programmable Flash allows the Program memory to be

reprogrammedin-system through an SPI serial interface or by a conventional non-

volatilememory programmer. By combining an enhanced RISC 8-bit CPU with In-System

ProgrammableFlash on a monolithic chip, the Atmel AT90S2313 is a powerfulmicrocontroller

that provides a highly flexible and cost-effective solution to many embeddedcontrol applications.

The AT90S2313 AVR is supported with a full suite of program and system developmenttools

including: C compilers, macro assemblers, program debugger/simulators, In-CircuitEmulators

and evaluation kits.

8.3. Pin diagram of AT90S2313

Fig 8.2. Pin diagram of AT90S2313

VCC Supply voltage pin.

GND Ground pin.

Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port. Port pins can provide internal pull-

up resistors(selected for each bit). PB0 and PB1 also serve as the positive input (AIN0) and

thenegative input (AIN1), respectively, of the On-chip Analog Comparator. The Port B

outputbuffers can sink 20 mA and can drive LED displays directly. When pins PB0 to PB7are

used as inputs and are externally pulled low, they will source current if the internalpull-up

resistors are activated. The Port B pins are tri-stated when a reset conditionbecomes active, even

if the clock is not active.

Port D (PD6..PD0) Port D has seven bi-directional I/O ports with internal pull-up resistors,

PD6..PD0. ThePort D output buffers can sink 20 mA. As inputs, Port D pins that are externally

pulledlow will source current if the pull-up resistors are activated. The Port D pins are tri-

statedwhen a reset condition becomes active, even if the clock is not active.

RESET Reset input. A low level on this pin for more than 50 ns will generate a Reset, even if

theclock is not running. Shorter pulses are not guaranteed to generate a Reset.

XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating

circuit.

XTAL2 Output from the inverting Oscillator amplifier.

Crystal Oscillator XTAL1 and XTAL2 are input and output, respectively, of an inverting

amplifier that canbe configured for use as an On-chip Oscillator, as shown in Figure 2. Either a

quartzcrystal or a ceramic resonator may be used. To drive the device from an external

clocksource, XTAL2 should be left unconnected while XTAL1 is driven

8.4. AT90S2313 Architectural Overview

Fig 8.3. Architectural Overview

The fast-access Register File concept contains 32 x 8-bit general purpose working registerswith a

single clock cycle access time. This means that during one single clockcycle, one ALU

(Arithmetic Logic Unit) operation is executed. Two operands are outputfrom the Register File,

the operation is executed, and the result is stored back in the

Register File – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers forData Space

addressing – enabling efficient address calculations. One of the threeaddress pointers is also used

as the address pointer for the constant table look-up function.These added function registers are

the 16-bit X-register, Y-register, and Z-register.The ALU supports arithmetic and logic functions

between registers or between a constantand a register. Single register operations are also

executed in the ALU.

In addition to the register operation, the conventional memory addressing modes can beused on

the Register File as well. This is enabled by the fact that the Register File isassigned the 32

lowermost Data Space addresses ($00 - $1F), allowing them to beaccessed as though they were

ordinary memory locations.

A flexible interrupt module has its control registers in the I/O space with an additionalGlobal

Interrupt Enable bit in the Status Register. All the different interrupts have a separateInterrupt

Vector in the Interrupt Vector table at the beginning of the programmemory. The different

interrupts have priority in accordance with their Interrupt Vectorposition. The lower the Interrupt

Vector address, the higher the priority.

8.5. Register file

Fig 8.4 AT90S2313 Register file

All the register operating instructions in the instruction set have direct and single-cycleaccess to

all registers. The only exception is the five constant arithmetic and logicinstructions SBCI,

SUBI, CPI, ANDI, ORI between a constant and a register and the LDIinstruction for load

immediate constant data. These instructions apply to the second halfof the registers in the

Register File (R16..R31). The general SBC, SUB, CP, AND, OR,and all other operations

between two registers or on a single register apply to the entireRegister File.

Each register is also assigned a data memory address, mappingthem directly into the first 32

locations of the user Data Space. Although the RegisterFile is not physically implemented as

SRAM locations, this memory organization providesgreat flexibility in access of the registers, as

the X-, Y-, and Z-registers can be setto index any register in the file.

X-register, Y-register, and Zregister

The registers R26..R31 have some added functions to their general purpose usage.These registers

are the address pointers for indirect addressing of the Data Space.

Fig 8.5. x,y, z registers

In the different addressing modes these address registers have functions as fixed

displacement,automatic increment and decrement (see the descriptions for the

differentinstructions).

ALU – Arithmetic LogicUnit

The high-performance AVR ALU operates in direct connection with all the 32 generalpurpose

working registers. Within a single clock cycle, ALU operations between registersin the Register

File are executed. The ALU operations are divided into three maincategories – arithmetic,

logical, and bit functions.

In-SystemProgrammableFlash Program Memory

The AT90S2313 contains 2K bytes On-chip In-System Programmable Flash memory forprogram

storage. Since all instructions are 16- or 32-bit words, the Flash is organized as1K x 16. The

Flash memory has an endurance of at least 1,000 write/erase cycles.The AT90S2313 Program

Counter (PC) is 10 bits wide, thus addressing the 1,024 programmemory addresses.

See page 60 for a detailed description on Flash data downloading. See page 10 for thedifferent

addressing modes.

EEPROM Data Memory The AT90S2313 contains 128 bytes of EEPROM data memory. It is

organized as a separatedata space in which single bytes can be read and written. The EEPROM

has anendurance of at least 100,000 write/erase cycles.

8.6. Memory access and instruction execution

The AVR CPU is driven by the System Clock Ø, directly generated from the externalclock

crystal for the chip. No internal clock division is used.This is the basicpipelining concept to

obtain up to 1 MIPS per MHz with the corresponding unique resultsfor functions per cost,

functions per clocks and functions per power-unit.

Fig 8.6. Parallel instruction fetch and instruction execution

Fig 8.7. Single cycle memory operation

8.7. I/ O Memory

AT90S2313 I/O Space(1)

Address Hex

Name

Function

$3F ($5F) SREG Status Register

$3D ($5D) SPL Stack Pointer Low

$3B ($5B) GIMSK General Interrupt MaSK Register

$3A ($5A) GIFR General Interrupt Flag Register

$39 ($59) TIMSK Timer/Counter Interrupt MaSK Register

$38 ($58) TIFR Timer/Counter Interrupt Flag Register

$35 ($55) MCUCR MCU general Control Register

$33 ($53) TCCR0 Timer/Counter 0 Control Register

$32 ($52) TCNT0 Timer/Counter 0 (8-bit)

$2F ($4F) TCCR1A Timer/Counter 1 Control Register A

$2E ($4E) TCCR1B Timer/Counter 1 Control Register B

$2D ($4D) TCNT1H Timer/Counter 1 High Byte

$2C ($4C) TCNT1L Timer/Counter 1 Low Byte

$2B ($4B) OCR1AH Output Compare Register 1 High Byte

$2A ($4A) OCR1AL Output Compare Register 1 Low Byte

$25 ($45) ICR1H T/C 1 Input Capture Register High Byte

$24 ($44) ICR1L T/C 1 Input Capture Register Low Byte

$21 ($41) WDTCR Watchdog Timer Control Register

$1E ($3E) EEAR EEPROM Address Register

$1D ($3D) EEDR EEPROM Data Register

$1C ($3C) EECR EEPROM Control Register

$18 ($38) PORTB Data Register, Port B

$17 ($37) DDRB Data Direction Register, Port B

$16 ($36) PINB Input Pins, Port B

$12 ($32) PORTD Data Register, Port D

$11 ($31) DDRD Data Direction Register, Port D

$10 ($30) PIND Input Pins, Port D

$0C ($2C) UDR UART I/O Data Register

$0B ($2B) USR UART Status Register

$0A ($2A) UCR UART Control Register

$09 ($29) UBRR UART Baud Rate Register

$08 ($28) ACSR Analog Comparator Control and Status

All AT90S2313 I/O and peripherals are placed in the I/O space. The I/O locations areaccessed by

the IN and OUT instructions transferring data between the 32 general purposeworking registers

and the I/O space. I/O Registers within the address range $00 -$1F are directly bit-accessible

using the SBI and CBI instructions. In these registers, thevalue of single bits can be checked by

using the SBIS and SBIC instructions. When using the I/O specific commands INand OUT, the

I/O addresses $00 - $3F must be used. When addressing I/O Registers asSRAM, $20 must be

added to this address.

For compatibility with future devices, reserved bits should be written to zero if accessed.

Reserved I/O memory addresses should never be written.Some of the Status Flags are cleared by

writing a logical “1” to them. Note that the CBIand SBI instructions will operate on all bits in the

I/O Register, writing a “1” back into anyflag read as set, thus clearing the flag. The CBI and SBI

instructions work with registers$00 to $1F only.

Status Register – SREG The AVR Status Register (SREG) at I/O space location $3F ($5F) is

defined as:

• Bit 7 – I: Global Interrupt Enable

The Global Interrupt Enable bit must be set (one) for the interrupts to be enabled. Theindividual

interrupt enable control is then performed in separate control registers. If theGlobal Interrupt

Enable bit is cleared (zero), none of the interrupts are enabled independentof the individual

interrupt enable settings. The I-bit is cleared by hardware after aninterrupt has occurred, and is

set by the RETI instruction to enable subsequentinterrupts.

• Bit 6 – T: Bit Copy Storage

The Bit Copy instructions BLD (Bit Load) and BST (Bit Store) use the T-bit as sourceand

destination for the operated bit. A bit from a register in the Register File can be copiedinto T by

the BST instruction, and a bit in T can be copied into a bit in a register in theRegister File by the

BLD instruction.

• Bit 5 – H: Half-carry Flag

The Half-carry Flag H indicates a Half-carry in some arithmetic operations. See theInstruction

Set description for detailed information.

• Bit 4 – S: Sign Bit, S = N □□V

The S-bit is always an exclusive or between the Negative Flag N and the Two’s

ComplementOverflow Flag V. See the Instruction Set description for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetic. Seethe

Instruction Set description for detailed information.

• Bit 2 – N: Negative Flag

The Negative Flag N indicates a negative result after the different arithmetic and logicoperations.

See the Instruction Set description for detailed information.

• Bit 1 – Z: Zero Flag

The Zero Flag Z indicates a zero result after the different arithmetic and logic operations.See the

Instruction Set description for detailed information.

• Bit 0 – C: Carry Flag

The Carry Flag C indicates a Carry in an arithmetic or logic operation. See the InstructionSet

description for detailed information.Note that the Status Register is not automatically stored

when entering an interrupt routineand restored when returning from an interrupt routine. This

must be handled bysoftware.

Stack Pointer – SP An 8-bit register at I/O address $3D ($5D) forms the Stack Pointer of the

AT90S2313. 8bits are used to address the 128 bytes of SRAM in locations $60 - $DF.The Stack

Pointer points to the data SRAM stack area where the Subroutine and InterruptStacks are

located. This stack space in the data SRAM must be defined by theprogram before any

subroutine calls are executed or interrupts are enabled. The StackPointer must be set to point

above $60. The Stack Pointer is decremented by 1 whendata is pushed onto the stack with the

PUSH instruction, and it is decremented by 2when an address is pushed onto the stack with

subroutine calls and interrupts. TheStack Pointer is incremented by 1 when data is popped from

the stack with the POPinstruction, and it is incremented by 2 when an address is popped from the

stack withreturn from subroutine RET or return from interrupt RETI.

8..8.Timer/Counters

The AT90S2313 provides two general purpose Timer/Counters – one 8-bit T/C and one16-bit

T/C. The Timer/Counters have individual prescaling selection from the same 10-bit prescaling

timer. Both Timer/Counters can either be used as a timer with an internalclock time base or as a

counter with an external pin connection that triggers thecounting.

Fig 8.8. Timer/ Counter prescalar

The four different prescaled selections are: CK/8, CK/64, CK/256, and CK/1024, whereCK is the

Oscillator clock. For the two Timer/Counters, added selections such as CK,external clock source

and stop can be selected as clock sources.

8-bit Timer/Counter0

The 8-bit Timer/Counter0 can select clock source from CK, prescaled CK or an externalpin. In

addition, it can be stopped as described in the specification for theTimer/Counter0 Control

Register (TCCR0). The Overflow Status Flag is found in theTimer/Counter Interrupt Flag

Register (TIFR). Control signals are found in theTimer/Counter0 Control Register (TCCR0). The

interrupt enable/disable settings forTimer/Counter0 are found in the Timer/Counter Interrupt

Mask Register (TIMSK).When Timer/Counter0 is externally clocked, the external signal is

synchronized with theOscillator frequency of the CPU. To assure proper sampling of the external

clock, theminimum time between two external clock transitions must be at least one internal

CPUclock period. The external clock signal is sampled on the rising edge of the internal

CPUclock.

The 8-bit Timer/Counter0 features both a high-resolution and a high-accuracy usagewith the

lower prescaling opportunities. Similarly, the high prescaling opportunities makethe

Timer/Counter0 useful for lower speed functions or exact timing functions with

infrequentactions

Fig 8.9. TCCR0 Register

• Bits 7..3 – Res: Reserved Bits

These bits are reserved bits in the AT90S2313 and always read zero.

• Bits 2,1,0 – CS02, CS01, CS00: Clock Select0, Bit 2,1 and 0

The Clock Select0 bits 2, 1, and 0 define the prescaling source of Timer/Counter0.

Timer/Counter0 – TCNT0

The Timer/Counter0 is realized as an up-counter with read and writes access. If

theTimer/Counter0 is written and a clock source is present, the Timer/Counter0

continuescounting in the timer clock cycle following the write operation.

16-bit Timer/Counter1

The 16-bit Timer/Counter1 can select clock source from CK, prescaled CK or an externalpin. In

addition, it can be stopped as described in the specification for the Timer/Counter1 Control

Register (TCCR1B). The different Status Flags (Overflow, CompareMatch and Capture Event)

and control signals are found in the Timer/CounterInterrupt Flag Register (TIFR). The interrupt

enable/disable settings for Timer/Counter1are found in the Timer/Counter Interrupt Mask

Register (TIMSK).When Timer/Counter1 is externally clocked, the external signal is

synchronized with theOscillator frequency of the CPU. To assure proper sampling of the external

clock, theminimum time between two external clock transitions must be at least one internal

CPUclock period. The external clock signal is sampled on the rising edge of the internal

CPUclock.

The 16-bit Timer/Counter1 features both a high-resolution and a high-accuracy usagewith the

lower prescaling opportunities. Similarly, the high prescaling opportunitiesmakes the

Timer/Counter1 useful for lower speed functions or exact timing functionswith infrequent

actions.The Timer/Counter1 supports an Output Compare function using the Output

CompareRegister 1A (OCR1A) as the data source to be compared to the Timer/Counter1

contents.The Output Compare functions include optional clearing of the counter oncompare

matches, and actions on the Output Compare pin 1 on compare matches.

Timer/Counter1 can also be used as an 8-, 9-, or 10-bit Pulse Width Modulator. In thismode the

counter and the OCR1 Register serve as a glitch-free standalone PWM withcentered pulses

Timer/Counter1 Control

Register A – TCCR1A

• Bits 7, 6 – COM1A1, COM1A0: Compare Output Mode1, Bits 1 and 0

The COM1A1 and COM1A0 control bits determine any output pin action following acompare

match in Timer/Counter1. Any output pin actions affect pin OC1 (Output Comparepin 1) (PB3).

This is an alternative function to the I/O port, and the correspondingdirection control bit must be

set (one) to control an output pin.

Compare 1 Mode Select(

COM1A1 COM1A0 Description

0 0 Timer/Counter1 disconnected from output pin OC1

0 1 Toggle the OC1 output line.

1 0 Clear the OC1 output line (to zero).

1 1 Set the OC1 output line (to one).

• Bits 5..2 – Res: Reserved Bits

These bits are reserved bits in the AT90S2313 and always read zero.

• Bits 1, 0 – PWM11, PWM10: Pulse Width Modulator Select Bits

PWM11 PWM10 Description

0 0 PWM operation of Timer/Counter1 is disabled

0 1 Timer/Counter1 is an 8-bit PWM

1 0 Timer/Counter1 is a 9-bit PWM

1 1 Timer/Counter1 is a 10-bit PWM

Timer/Counter1 Control

Register B – TCCR1B

• Bit 7 – ICNC1: Input Capture1 Noise Canceller (4 CKs)

When the ICNC1 bit is cleared (zero), the input capture trigger noise canceller function

isdisabled. The input capture is triggered at the first rising/falling edge sampled on the ICP(input

capture pin) as specified. When the ICNC1 bit is set (one), four successive samples are

measured on the ICP (input capture pin), and all samples must be high/low according to the input

capture trigger specification in the ICES1 bit. The actual sampling frequency is the XTAL clock

frequency.

• Bit 6 – ICES1: Input Capture1 Edge Select

While the ICES1 bit is cleared (zero), the Timer/Counter1 contents are transferred to theInput

Capture Register (ICR1) on the falling edge of the input capture pin (ICP). While the ICES1 bit

is set (one), the Timer/Counter1 contents are transferred to the Input CaptureRegister (ICR1) on

the rising edge of the input capture pin (ICP).

• Bits 5, 4 – Res: Reserved Bits

These bits are reserved bits in the AT90S2313 and always read zero.

• Bit 3 – CTC1: Clear Timer/Counter1 on Compare Match

When the CTC1 control bit is set (one), the Timer/Counter1 is reset to $0000 in the clockcycle

after a compareA match. If the CTC1 control bit is cleared, Timer/Counter1 continuescounting

and is unaffected by a compare match. Since the compare match isdetected in the CPU clock

cycle following the match, this function will behave differentlywhen a prescaling higher than 1 is

used for the timer. When a prescaling of 1 is used,and the Compare A Register is set to C, the

timer will count as follows if CTC1 is set:

... | C-2 | C-1 | C | 0 | 1 |...

When the prescaler is set to divide by 8, the timer will count like this:

... | C-2, C-2, C-2, C-2, C-2, C-2, C-2, C-2 | C-1, C-1, C-1, C-1, C-1, C-1, C-1, C-1 | C, 0,

0, 0, 0, 0, 0, 0 |...

In PWM mode, this bit has no effect.

• Bits 2,1,0 – CS12, CS11, CS10: Clock Select1, Bits 2, 1 and 0

The Clock Select1 bits 2, 1, and 0 define the prescaling source of Timer/Counter1.

Clock 1 Prescale Select

CS12

0

CS11

0

CS10

0

Description

Stop, the Timer/Counter1 is stopped.

0 0 1 CK

0 1 0 CK/8

0 1 1 CK/64

1 0 0 CK/256

1 0 1 CK/1024

1 1 0 External Pin T1, falling edge

1 1 1 External Pin T1, rising edge

The Stop condition provides a Timer Enable/Disable function. The CK down dividedmodes are

scaled directly from the CK Oscillator clock. If the external pin modes areused for

Timer/Counter1, transitions on PD5/(T1) will clock the counter even if the pin isconfigured as an

output. This feature can give the user software control of the counting.

Timer/Counter1 – TCNT1Hand TCNT1L

This 16-bit register contains the precaled value of the 16-bit Timer/Counter1. Toensure that both

the high and low bytes are read and written simultaneously when the CPU accesses these

registers, the access is performed using an 8-bit temporary register(TEMP). This temporary

register is also used when accessing OCR1A and ICR1. Ifthe main program and interrupt

routines perform access to registers using TEMP, interruptsmust be disabled during access from

the main program or interrupts if interruptsare re-enabled.

• TCNT1 Timer/Counter1 Write:

When the CPU writes to the high byte TCNT1H, the written data is placed in theTEMP Register.

Next, when the CPU writes the low byte TCNT1L, this byte of datais combined with the byte

data in the TEMP Register, and all 16 bits are written tothe TCNT1 Timer/Counter1 Register

simultaneously. Consequently, the high byteTCNT1H must be accessed first for a full 16-bit

register write operation.

• TCNT1 Timer/Counter1 Read:

When the CPU reads the low byte TCNT1L, the data of the low byte TCNT1L is sentto the CPU

and the data of the high byte TCNT1H is placed in the TEMP Register.When the CPU reads the

data in the high byte TCNT1H, the CPU receives the datain the TEMP Register. Consequently,

the low byte TCNT1L must be accessed firstfor a full 16-bit register read operation. The

Timer/Counter1 is realized as an up or up/down (in PWM mode) counter with readand write

access. If Timer/Counter1 is written to and a clock source is selected, theTimer/Counter1

continues counting in the timer clock cycle after it is preset with the writtenvalue.

Timer/Counter1 Output

Compare Register A –OCR1AH and OCR1AL

The Output Compare Register is a 16-bit read/write register.The Timer/Counter1 Output

Compare Register contains the data to be continuouslycompared with Timer/Counter1. Actions

on compare matches are specified in theTimer/Counter1 Control and Status Registers.

Since the Output Compare Register (OCR1A) is a 16-bit register, a temporary registerTEMP is

used when OCR1A is written to ensure that both bytes are updated simultaneously.When the

CPU writes the high byte, OCR1AH, the data is temporarily stored inthe TEMP Register. When

the CPU writes the low byte, OCR1AL, the TEMP Register issimultaneously written to

OCR1AH. Consequently, the high byte OCR1AH must be writtenfirst for a full 16-bit register

write operation.

The TEMP Register is also used when accessing TCNT1, and ICR1. If the main programand

interrupt routines perform access to registers using TEMP, interrupts must bedisabled during

access from the main program or interrupts if interrupts are re-enabled.

Timer/Counter1 Input Capture

Register – ICR1H and ICR1L

The Input Capture Register is a 16-bit read-only register.When the rising or falling edge

(according to the input capture edge setting [ICES1]) ofthe signal at the input capture pin (ICP)

is detected, the current value of theTimer/Counter1 is transferred to the Input Capture Register

(ICR1). At the same time,the Input Capture Flag (ICF1) is set (one).Since the Input Capture

Register (ICR1) is a 16-bit register, a temporary register TEMPis used when ICR1 is read to

ensure that both bytes are read simultaneously. When theCPU reads the low byte ICR1L, the

data is sent to the CPU and the data of the high byteICR1H is placed in the TEMP Register.

When the CPU reads the data in the high byteICR1H, the CPU receives the data in the TEMP

Register. Consequently, the low byteICR1L must be accessed first for a full 16-bit register read

operation.The TEMP Register is also used when accessing TCNT1 and OCR1A. If the main

programand interrupt routines perform access to registers using TEMP, interrupts must

bedisabled during access from the main program or interrupts if interrupts are re-enabled.

8.9.UART

The AT90S2313 features a full duplex (separate Receive and Transmit Registers)

UniversalAsynchronous Receiver and Transmitter (UART). The main features are:

• Baud Rate Generator that can Generate a Large Number of Baud Rates (bps)

• High Baud Rates at Low XTAL Frequencies

• 8 or 9 Bits Data

• Noise Filtering

• Overrun Detection

• Framing Error Detection

• False Start Bit Detection

• Three separate Interrupts on TX Complete, TX Data Register Empty and RX Complete

Data Transmission A block schematic of the UART transmitter is shown in Figure 8.10.Data

transmission is initiated by writing the data to be transmitted to the UART I/O DataRegister

(UDR). Data is transferred from UDR to the Transmit Shift Register when:

• A new character has been written to UDR after the stop bit from the previouscharacter has been

shifted out. The Shift Register is loaded immediately.

• A new character has been written to UDR before the stop bit from the previouscharacter has

been shifted out. The Shift Register is loaded when the stop bit of thecharacter currently being

transmitted has been shifted out.

Fig 8.10. UART Transmitter

If the 10(11)-bit Transmitter Shift Register is empty, data is transferred from UDR to theShift

Register. At this time the UDRE (UART Data Register Empty) bit in the UART Status Register

(USR) is set. When this bit is set (one), the UART is ready to receive thenext character. At the

same time as the data is transferred from UDR to the 10(11)-bitShift Register, bit 0 of the Shift

Register is cleared (start bit) and bit 9 or 10 is set (stopbit). If 9-bit data word is selected (the

CHR9 bit in the UART Control Register [UCR] isset), the TXB8 bit in UCR is transferred to bit

9 in the Transmit Shift Register.On the Baud Rate clock following the transfer operation to the

Shift Register, the start bitis shifted out on the TXD pin. Then follows the data, LSB first. When

the stop bit hasbeen shifted out, the Shift Register is loaded if any new data has been written to

theUDR during the transmission. During loading, UDRE is set. If there is no new data in

theUDR Register to send when the stop bit is shifted out, the UDRE Flag will remain setuntil

UDR is written again. When no new data has been written, and the stop bit hasbeen present on

TXD for one bit length, the TX Complete Flag (TXC) in USR is set.The TXEN bit in UCR

enables the UART transmitter when set (one). When this bit iscleared (zero), the PD1 pin can be

used for general I/O. When TXEN is set, the UARTTransmitter will be connected to PD1, which

is forced to be an output pin regardless ofthe setting of the DDD1 bit in DDRD

Data Reception

Fig 8.11. UART receiver

The Receiver front-end logic samples the signal on the RXD pin at a frequency of 16times the

baud rate. While the line is idle, one single sample of logical “0” will be interpretedas the falling

edge of a start bit, and the start bit detection sequence is initiated.Let sample 1 denote the first

zero-sample. Following the 1-to-0 transition, the receiversamples the RXD pin at samples 8, 9

and 10. If two or more of these three samples are found to be logical “1”s, the start bit is rejected

as a noise spike and the receiver startslooking for the next 1-to-0 transition.

If, however, a valid start bit is detected, sampling of the data bits following the start bit

isperformed. These bits are also sampled at samples 8, 9 and 10. The logical value foundin at

least two of the three samples is taken as the bit value. All bits are shifted into theTransmitter

Shift Register as they are sampled.When the stop bit enters the Receiver, the majority of the

three samples must be “1” toaccept the stop bit. If two or more samples are logical “0”s, the

Framing Error (FE) Flagin the UART Status Register (USR) is set. Before reading the UDR

Register, the usershould always check the FE bit to detect Framing Errors.Whether or not a valid

stop bit is detected at the end of a character-reception cycle, thedata is transferred to UDR and

the RXC Flag in USR is set. UDR is in fact two physicallyseparate registers; one for transmitted

data and one for received data. When UDR isread, the Receive Data Register is accessed, and

when UDR is written, the TransmitData Register is accessed. If 9-bit data word is selected (the

CHR9 bit in the UART ControlRegister [UCR] is set), the RXB8 bit in UCR is loaded with bit 9

in the Transmit ShiftRegister when data is transferred to UDR.If, after having received a

character, the UDR Register has not been read since the lastreceive, the OverRun (OR) Flag in

UCR is set. This means that the last data byte shiftedinto the Shift Register could not be

transferred to UDR and has been lost. The OR bit is buffered and is updated when the valid data

byte in UDR is read. Thus, the user should always check the OR bit after reading the UDR

Register in order to detect any overrunsif the baud rate is high or CPU load is high.

When the RXEN bit in the UCR Register is cleared (zero), the receiver is disabled. Thismeans

that the PD0 pin can be used as a general I/O pin. When RXEN is set, the UARTReceiver will be

connected to PD0, which is forced to be an input pin regardless of thesetting of the DDD0 bit in

DDRD. When PD0 is forced to input by the UART, thePORTD0 bit can still be used to control

the pull-up resistor on the pin.When the CHR9 bit in the UCR Register is set, transmitted and

received characters arenine bits long plus start and stop bits. The ninth data bit to be transmitted

is the TXB8 bitin UCR Register. This bit must be set to the wanted value before a transmission is

initiatedby writing to the UDR Register. The ninth data bit received is the RXB8 bit in theUCR

Register.

UART Control

The UART I/O Data Register –UDR

The UDR Register is actually two physically separate registers sharing the same I/Oaddress.

When writing to the register, the UART Transmit Data Register is written.When reading from

UDR, the UART Receive Data Register is read.

UART Status Register – USR

The USR Register is a read-only register providing information on the UART status.

• Bit 7 – RXC: UART Receive Complete

This bit is set (one) when a received character is transferred from the Receiver ShiftRegister to

UDR. The bit is set regardless of any detected framing errors. When theRXCIE bit in UCR is set,

the UART Receive Complete interrupt will be executed whenRXC is set (one). RXC is cleared

by reading UDR. When interrupt-driven data reception is used, the UART Receive Complete

Interrupt routine must read UDR in order to clearRXC, otherwise a new interrupt will occur once

the interrupt routine terminates.

• Bit 6 – TXC: UART Transmit Complete

This bit is set (one) when the entire character (including the stop bit) in the TransmitShift

Register has been shifted out and no new data has been written to UDR. This flagis especially

useful in half-duplex communications interfaces, where a transmitting applicationmust enter

Receive mode and free the communications bus immediately aftercompleting the transmission.

When the TXCIE bit in UCR is set, setting of TXC causes the UART Transmit

Completeinterrupt to be executed. TXC is cleared by hardware when executing the

correspondinginterrupt handling vector. Alternatively, the TXC bit is cleared (zero) by writing a

logical“1” to the bit.

• Bit 5 – UDRE: UART Data Register Empty

This bit is set (one) when a character written to UDR is transferred to the Transmit ShiftRegister.

Setting of this bit indicates that the transmitter is ready to receive a new characterfor

transmission.

When the UDRIE bit in UCR is set, the UART Transmit Complete interrupt is executedas long

as UDRE is set. UDRE is cleared by writing UDR. When interrupt-driven datatransmittal is

used, the UART Data Register Empty Interrupt routine must write UDR inorder to clear UDRE,

otherwise a new interrupt will occur once the interrupt routineterminates.UDRE is set (one)

during reset to indicate that the transmitter is ready.

• Bit 4 – FE: Framing Error

This bit is set if a Framing Error condition is detected (i.e., when the stop bit of an

incomingcharacter is zero).The FE bit is cleared when the stop bit of received data is one.

• Bit 3 – OR: OverRun

This bit is set if an OverRun condition is detected (i.e., when a character already presentin the

UDR Register is not read before the next character has been shifted into theReceiver Shift

Register). The OR bit is buffered, which means that it will be set once thevalid data still in

UDRE is read.The OR bit is cleared (zero) when data is received and transferred to UDR.

• Bits 2..0 – Res: Reserved Bits

These bits are reserved bits in the AT90S2313 and will always read as zero.

UART Control Register – UCR

• Bit 7 – RXCIE: RX Complete Interrupt Enable

When this bit is set (one), a setting of the RXC bit in USR will cause the Receive

CompleteInterrupt routine to be executed provided that global interrupts are enabled.

• Bit 6 – TXCIE: TX Complete Interrupt Enable

When this bit is set (one), a setting of the TXC bit in USR will cause the Transmit

CompleteInterrupt routine to be executed provided that global interrupts are enabled.

• Bit 5 – UDRIE: UART Data Register Empty Interrupt Enable

When this bit is set (one), a setting of the UDRE bit in USR will cause the UART DataRegister

Empty Interrupt routine to be executed provided that global interrupts areenabled.

• Bit 4 – RXEN: Receiver Enable

This bit enables the UART Receiver when set (one). When the Receiver is disabled, theRXC,

OR and FE Status Flags cannot become set. If these flags are set, turning offRXEN does not

cause them to be cleared.

• Bit 3 – TXEN: Transmitter Enable

This bit enables the UART Transmitter when set (one). When disabling the Transmitter while

transmitting a character, the Transmitter is not disabled before the character in theShift Register

plus any following character in UDR has been completely transmitted.

• Bit 2 – CHR9: 9 Bit Characters

When this bit is set (one), transmitted and received characters are nine bits long plusstart and

stop bits. The ninth bit is read and written by using the RXB8 and TXB8 bits inUCR,

respectively. The ninth data bit can be used as an extra stop bit or a parity bit.

• Bit 1 – RXB8: Receive Data Bit 8

When CHR9 is set (one), RXB8 is the ninth data bit of the received character.

• Bit 0 – TXB8: Transmit Data Bit 8

When CHR9 is set (one), TXB8 is the ninth data bit in the character to be transmitted.

Baud Rate Generator The baud rate generator is a frequency divider that generates baud rates

according tothe following equation:

• BAUD = Baud Rate = fCK/ 16(UBRR + 1)

• fCK = Crystal Clock frequency

• UBRR = Contents of the UART Baud Rate Register (UBRR) (0 - 255)

For standard crystal frequencies, the most commonly used baud rates can be generatedby using

the UBRR settings in Table 15. UBRR values that yield an actual baud rate differingless than 2%

from the target baud rate, are boldfaced in the table. However, usingbaud rates that have more

than 1% error is not recommended. High error ratings giveless noise resistance.

MICROPROCESSORS VIVA AND INTERVIEW QUESTIONS

1) How many bit 8086 microprocessor is?

2) What is the size of data bus of 8086?

3) What is the size of address bus of 8086?

4) What is the max memory addressing capacity of 8086?

5) Which are the basic parts of 8086?

6) What are the functions of BIU?

7) What are the functions of EU?

8) How many pin IC 8086 is?

9) What IC8086 is?

10) What is the size of instruction queue in 8086?

11) What is the size of instruction queue in 8088?

12) Which are the registers present in 8086?

13) What do you mean by pipelining in 8086?

14) How many 16 bit registers are available in 8086?

15) Specify addressing modes for any instruction?

16) What do you mean by assembler directives?

17) What .model small stands for?

18) What is the supply requirement of 8086?

19) What is the relation between 8086 processor frequency & crystal frequency?

20) Functions of Accumulator or AX register?

21) Functions of BX register?

22) Functions of CX register?

23) Functions of DX register?

24) How Physical address is generated?

25) Which are pointers present in this 8086?

26) Which is by default pointer for CS/ES?

27) How many segments present in it?

28) What is the size of each segment?

29) Basic difference between 8085 and 8086?

30) Which operations are not available in 8085?

31) What are the flags in 8086?

In 8086 Carry flag, Parity flag, Auxiliary carry flag, Zero flag, Overflow flag, Trace flag,
Interrupt flag, Direction flag, and Sign flag.

32) What are the various interrupts in 8086?

Maskable interrupts, Non-Maskable interrupts.

33) What is meant by Maskable interrupts?

An interrupt that can be turned off by the programmer is known as Maskable interrupt.

34) What is Non-Maskable interrupts?

An interrupt which can be never be turned off (ie.disabled) is known as Non-Maskable interrupt.

35) Which interrupts are generally used for critical events?

Non-Maskable interrupts are used in critical events. Such as Power failure, Emergency, Shut off

etc.,

36) Give examples for Maskable interrupts?

RST 7.5, RST6.5, RST5.5 are Maskable interrupts

37) Give example for Non-Maskable interrupts?

Trap is known as Non-Maskable interrupts, which is used in emergency condition.

38) What is the Maximum clock frequency in 8086?

5 Mhz is the Maximum clock frequency in 8086.

39) What are the various segment registers in 8086?

Code, Data, Stack, Extra Segment registers in 8086.

40) Which Stack is used in 8086?

FIFO (First In First Out) stack is used in 8086.In this type of Stack the first stored information is

retrieved first.

41) What are the address lines for the software interrupts?

RST 0 0000 H

RST1 0008 H

RST2 0010 H

RST3 0018 H

RST4 0020 H

RST5 0028 H

RST6 0030 H

RST7 0038 H

42) What is SIM and RIM instructions?

SIM is Set Interrupt Mask. Used to mask the hardware interrupts.

RIM is Read Interrupt Mask. Used to check whether the interrupt is Masked or not.

43) Which is the tool used to connect the user and the computer?

Interpreter is the tool used to connect the user and the tool.

44) What is the position of the Stack Pointer after the PUSH instruction?

The address line is 02 less than the earlier value.

45) What is the position of the Stack Pointer after the POP instruction?

The address line is 02 greater than the earlier value.

46) Logic calculations are done in which type of registers?

Accumulator is the register in which Arithmetic and Logic calculations are done.

47) What are the different functional units in 8086?

Bus Interface Unit and Execution unit, are the two different functional units in 8086.

48) Give examples for Micro controller?

Z80, Intel MSC51 &96, Motorola are the best examples of Microcontroller.

49) What is meant by cross-compiler?

A program runs on one machine and executes on another is called as cross-compiler.

50) What are the address lines for the hardware interrupts?

RST 7.5 003C H

RST 6.5 0034 H

RST 5.5 002C H

TRAP 0024 H

51) Which Segment is used to store interrupt and subroutine return address registers?

Stack Segment in segment register is used to store interrupt and subroutine return address

registers.

52) Which Flags can be set or reset by the programmer and also used to control the operation of

the processor?

Trace Flag, Interrupt Flag, Direction Flag.

53) What does EU do?

Execution Unit receives program instruction codes and data from BIU, executes these

instructions and store the result in general registers.

54) Which microprocessor accepts the program written for 8086 without any changes?

8088 is that processor.

55) What is the difference between 8086 and 8088?

The BIU in 8088 is 8-bit data bus & 16- bit in 8086.Instruction queue is 4 byte long in
8088and 6 byte in 8086.

56) What is the difference between min mode and max mode of 8086?

57) What is the difference between near and far procedure?

58) What is the difference between Macro and procedure?

59) What is the difference between instructions RET & IRET?

60) What is the difference between instructions MUL & IMUL?

61) What is the difference between instructions DIV & IDIV?

62) What is difference between shifts and rotate instructions?

63) Which are strings related instructions?

64) Which are addressing modes and their examples in 8086?

65) What does u mean by directives?

66) What does u mean by Prefix?

67) What .model small means?

68) Difference between small, medium, tiny, huge?

69) What is dd, dw, db?

70) Interrupts in 8086 and there function.

71) What is the function of 01h of Int 21h?

72) What is the function of 02h of Int 21h?

73) What is the function of 09h of Int 21h?

74) What is the function of 0Ah of Int 21h?

75) What is the function of 4ch of Int 21h?

76) What is the reset address of 8086?

77) What is the size of flag register in 8086? Explain all.

78) What is the difference between 08H and 01H functions of INT 21H?

79) Which is faster- Reading word size data whose starting address is at even or at odd address

of memory in 8086?

80) Which are the default segment base: offset pairs?

81) Can we use SP as offset address holder with CS?

82) Which are the base registers in 8086?

83) Which is the index registers in 8086?

84) What do you mean by segment override prefix?

85) Whether micro reduces memory requirements?

86) What do you mean by macro?

87) What is diff between macro and procedure?

88) Types of procedure?

89) What TASM is?

90) What TLINK is?

91) What TD is?

92) What do u mean by assembler?

93) What do u mean by linker?

94) What do u mean by loader?

95) What do u mean by compiler?

96) What do u mean by emulator?

97) Stack related instruction?

98) .stack 100 means?

99) What do you mean by 20 dup (0)?

100) Which flags of 8086 are not present in 8085?

101) What is the size of flag register?

102) Can you perform 32 bit operation with 8086? How?

103) Whether 8086 is compatible with Pentium processor?

104) What is 8087? How it is different from 8086?

105) While accepting no. from user why u need to subtract 30 from that?

106) While displaying no. from user why u need to add 30 to that?

107) What are ASCII codes for nos. 0 to F?

108) How does U differentiate between positive and negative numbers?

109) What is range for these numbers?

110) Which no. representation system you have used?

111) What is LEA?

112) What is @data indicates in instruction- MOV ax, @data?

113) What is maximum size of the instruction in 8086?

114) Why we indicate FF as 0FF in program?

115) What is mul BX and div BX? Where result goes?

116) Where queue is present?

117) What is the advantage of using internal registers?

118) What is SI, DI and their functions?

119) Which are the pointers used in 8086 and their functions?

120) What is a type of queue in 8086?

121) What is minimum mode of 8086?

122) What is maximum mode of 8086?

123) Which are string instructions?

124) In string operations which is by default string source pointer?

125) In string operations which is by default string destination pointer?

126) what is segmentation?

127) how many bit processor does 8086?

128) how many address lines in 8086

129) how many data lines in 8086?

130) multiplexed lines in 8086?

131) over flow flag, interrupt flag ,direction flag, trap flag?

132) role of pointers ?

133) how 16 bit processor generates 20 bit addresses

134) instructions set of 8086

135) timing diagram of 8086

136) min/max mode working of 8086?

137) pin difference in min/max mode

138) interrupt structure in 8086?

139) how an interrupt is acknowledged?

140) how the cs:ip is working during interrupt

141) new cs:ip during interrupt

142) how the even odd address are assigned through 8086?

PROGRAMS:

1) What do you mean by assembler?

2) What do you mean by linker?

3) What do you mean by debugger?

4) What do you mean by compiler?

5) What do you mean by locator?

6) What do you mean by emulator?

7) When divide overflow error occurs?

8) What .startup stands for?

9) Explain the logic of array addition program.

10) Explain the logic of finding out negative nos. from an array of signed nos.

11) Explain the logic of code conversion (BCD to hex and hex to BCD) program.

12) Explain the logic of multiplication (by successive addition and shift and add method)

program.
13) Explain the logic of non overlap and overlap block transfer program

14) Explain the logic of string related programs.

15) Which assembler directives are used with near procedure?

16) Which assembler directives are used with far procedure?

80386 (microprocessor):

1) What IC 80386 is?

2) How many pin IC 80836 is?

3) 80386 is how many bit processor?

4) What is the size of instruction queue in 80386?

INTERRUPTS:

1) What do you mean by interrupt?

2) Which are the hardware and software interrupts in 8086?

3) Mention the priority of interrupts in8086.

4) What is int1, int2, int3?

5) What do you mean by NMI interrupt?

6) What do you mean by IVT in 8086?

7) What is the size of IVT?

8) Where IVT is located?

9) Which steps 8086 follows to handle any interrupt?

INTERFACING:

1) What are the types of interfacing?

2) Compare memory interfacing and IO interfacing.

3) What are the types of IO interfacing?

4) What is the difference between direct and indirect IO interfacing?

5) What is the difference between memory mapped IO and IO mapped IO interfacing?

8255 (programmable peripheral interface) :

1) What IC 8255 is?

2) How many pin IC 8255 is?

3) Explain control word format of 82

INTERVIEW QUESTIONS:

1. What is a Microprocessor?

Microprocessor is a program-controlled device, which fetches the instructions from

memory, decodes and executes the instructions. Most Micro Processor are single- chip

devices.

2. Give examples for 8 / 16 / 32 bit Microprocessor?

8-bit Processor - 8085 / Z80 / 6800;

16-bit Processor - 8086 / 68000 / Z8000;

32-bit Processor - 80386 / 80486.

3. Why 8085 processor is called an 8 bit processor?

Because 8085 processor has 8 bit ALU (Arithmetic Logic Review). Similarly

8086 processor has 16 bit ALU.

4. What is 1st / 2nd / 3rd / 4th generation processor?

The processor made of PMOS / NMOS / HMOS / HCMOS technology is called

1st / 2nd / 3rd / 4th generation processor, and it is made up of 4 / 8 / 16 / 32 bits.

5. Define HCMOS?

High-density n- type Complimentary Metal Oxide Silicon field effect transistor.

6. What does microprocessor speed depend on?

The processing speed depends on DATA BUS WIDTH.

7. Is the address bus unidirectional?

The address bus is unidirectional because the address information is always given

by the Micro Processor to address a memory location of an input / output devices.

8. Is the data bus is Bi-directional?

The data bus is Bi-directional because the same bus is used for transfer of data

between Micro Processor and memory or input / output devices in both the direction.

9. What is the disadvantage of microprocessor?

It has limitations on the size of data. Most Microprocessor does not support

floating-point operations.

10. What is the difference between microprocessor and microcontroller?

In Microprocessor more op-codes, few bit handling instructions. But in

Microcontroller: fewer op-codes, more bit handling Instructions, and also it is

defined as a device that includes micro processor, memory, & input / output

signal lines on a single chip.

11. What is meant by LATCH?

Latch is a D- type flip-flop used as a temporary storage device controlled by a

timing signal, which can store 0 or 1. The primary function of a Latch is data

storage. It is used in output devices such as LED, to hold the data for display.

12. Why does microprocessor contain ROM chips?

Microprocessor contain ROM chip because it contain instructions to execute data.

13. What is the difference between primary & secondary storage device?

In primary storage device the storage capacity is limited. It has a volatile memory.

In secondary storage device the storage capacity is larger. It is a nonvolatile

memory.
Primary devices are: RAM / ROM.

Secondary devices are: Floppy disc / Hard disk.

14. Difference between static and dynamic RAM?

Static RAM: No refreshing, 6 to 8 MOS transistors are required to form one

memory cell, Information stored as voltage level in a flip flop.

 Dynamic RAM: Refreshed periodically, 3 to 4 transistors are required to form

one memory cell, Information is stored as a charge in the gate to substrate capacitance.

15. What is interrupt?

Interrupt is a signal send by external device to the processor so as to request the

processor to perform a particular work.

16. What is cache memory?

Cache memory is a small high-speed memory. It is used for temporary storage of

data & information between the main memory and the CPU (center processing unit). The

cache memory is only in RAM.

16. What is called .Scratch pad of computer.?

Cache Memory is scratch pad of computer.

17. Which transistor is used in each cell of EPROM?

Floating .gate Avalanche Injection MOS (FAMOS) transistor is used in each cell

of EPROM.

18. Differentiate between RAM and ROM?

RAM: Read / Write memory, High Speed, Volatile Memory. ROM: Read only memory,
Low Speed, Non Voliate Memory.

19. What is a compiler?

Compiler is used to translate the high-level language program into machine code at a

time. It doesn.t require special instruction to store in a memory, it stores automatically.

The Execution time is less compared to Interpreter.

20. Which processor structure is pipelined?

All x86 processors have pipelined structure.

21. What is flag?

Flag is a flip-flop used to store the information about the status of a

processor and the status of the instruction executed most recently

22. What is stack?

Stack is a portion of RAM used for saving the content of Program

Counter and general purpose registers.

23. Can ROM be used as stack?

ROM cannot be used as stack because it is not possible to write to ROM.

24. What is NV-RAM?

Nonvolatile Read Write Memory, also called Flash memory. It is also

know as shadow RAM.

