NRCM

EGE

DESIGN AND ANALYSIS OF ALGORITHMS

Course Code	Category	Hours/ Week			Credits	Maximum Marks		
23CS501	Professional	L	Τ	Р	4	CIE	SEE	TOTAL
	Core	3	1	0	4	40	60	100
Contact Classes: 48	Tutorial Classes: Nil	Pra	actio	al Cl	asses: -	Total Classes:48		

B.Tech. III Year I Sem.

Prerequisites:

1. A course on "Computer Programming and Data Structures".

2. A course on "Advanced Data Structures".

Course Objectives:

- Introduces the notations for analysis of the performance of algorithms and the data structure of disjoint sets.
- Describes major algorithmic techniques (divide-and-conquer, backtracking, dynamic programming, greedy, branch and bound methods) and mention problems for which each technique is appropriate
- Describes how to evaluate and compare different algorithms using worst-, average-, and best case analysis.
- Explains the difference between tractable and intractable problems, and introduces the problems that are P, NP and NP complete.

Course Outcomes:

- Analyze the performance of algorithms
- Choose appropriate data structures and algorithm design methods for a specified application
- Understand the choice of data structures and the algorithm design methods

UNIT - I

Introduction: Algorithm, Performance Analysis-Space complexity, Time complexity, Asymptotic Notations- Big oh notation, Omega notation, Theta notation and Little oh notation.

Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen's matrix multiplication.

UNIT - II

Disjoint Sets: Disjoint set operations, union and find algorithms, Priority Queue-Heaps, Heapsort **Backtracking:** General method, applications, n-queen's problem, sum of subsets problem, graph Coloring, hamitonian cycles.

UNIT - III

Dynamic Programming: General method, applications- Optimal binary search tree, 0/1 knapsack problem, All pairs shortest path problem, Traveling salesperson problem, Reliability design.

UNIT - IV

Greedy method: General method, applications-Job sequencing with deadlines, knapsack problem, Minimum cost spanning trees, Single source shortest path problem.

Basic Traversal and Search Techniques: Techniques for Binary Trees, Techniques for Graphs, Connected components, Biconnected components.

UNIT - V

Branch and Bound: General method, applications - Traveling salesperson problem, 0/1 knapsack problem - LC Branch and Bound solution, FIFO Branch and Bound solution.

NP-Hard and NP-Complete problems: Basic concepts, non-deterministic algorithms, NP-Hard and NP-Complete classes, Cook's theorem.

GINEERING COL

TEXT BOOK:

1. Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni and Rajasekharan, University press, 1998.

LEGE

REFERENCE BOOKS:

- 1. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearson education.
- 2. Introduction to Algorithms, second edition, T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, PHI Pvt. Ltd./ Pearson Education.
- 3. Algorithm Design: Foundations, Analysis and Internet Examples, M.T. Goodrich and R. Tamassia, John Wiley and sons.