
School of CSE NRCM

DAA
DESIGN AND ANALYSIS

OF ALGORITHMS

Mohd Nawazuddin

Asst.Prof

School of CSE NRCM

UNIT – I

INTRODUCTION: Algorithm, Performance Analysis-Space

complexity, Time complexity, Asymptotic Notations- Big oh notation,

Omega notation, Theta notation and Little oh notation. Divide and

conquer: General method, applications-Binary search, Quick sort,

Merge sort, Stassen's matrix multiplication.

UNIT – II

Disjoint Sets: Disjoint set operations, union and find algorithms

Backtracking: General method, applications, n-queen’s problem, sum

of subsets problem, graph coloring

SYLLABUS

School of CSE NRCM

UNIT - III

Dynamic Programming: General method, applications-

Optimal binary search trees, 0/1 knapsack problem, All

pairs shortest path problem, Traveling sales person

problem, Reliability design.

UNIT – IV

Greedy method: General method, applications-Job

sequencing with deadlines, knapsack problem, Minimum

cost spanning trees, Single source shortest path problem.

School of CSE NRCM

UNIT - V

Branch and Bound: General method, applications -

Travelling sales person problem, 0/1 knapsack problem - LC

Branch and Bound solution, FIFO Branch and Bound solution.

NP-Hard and NP-Complete problems: Basic concepts, non

deterministic algorithms, NP - Hard and NP-Complete classes,

Cook’s theorem.

TEXT BOOKS

1. Fundamentals of Computer Algorithms, Ellis Horowitz,

Satraj Sahni and Rajasekharan,3rd Edition University Press.

REFERENCES

 Design and Analysis of Algorithms, Aho, Ullman and,

Pearson education.

 Introduction to Algorithms, second edition, T.H.

Coremen, C.E Leiserson, R.L.Rivest and C. Stien, PHI Pvt

. Ltd./Pearson Education.

 Algorithm Design; Foundations, Analysis and Internet

Examples, M.T. Goodrich and R. Tamassia, John Wiley

and sons.

School of CSE NRCM

INTRODUCTION

➢The word algorithm comes from the name of the person author

-Abu Jafar Mohammed Ibn Musa Al khowarizmi who wrote

A text book entitled-”Algorithmi de numero indorum” Now term” Algorithmi

”in the title of the book led to the term Algorithm.

➢An algorithm is an effective method for finding out the solution for a given

problem. It is a sequence of instruction

That conveys the method to address a problem

➢Algorithm : Step by step procedure to solve a computational problem is

called Algorithm.

 or

➢An Algorithm is a step-by-step plan for a computational procedure

that possibly begins with an input and yields an output value in a finite

number of steps in order to solve a particular problem.

School of CSE NRCM

INTRODUCTION

➢ An algorithm is a set of steps of operations to solve a problem
performing calculation, data processing, and automated reasoning
tasks.

➢ An algorithm is an efficient method that can be expressed within finite
amount of Time and space.

➢ The important aspects of algorithm design include creating an efficient
algorithm to solve a problem in an efficient way using minimum time
and space.

➢ To solve a problem, different approaches can be followed. Some of
them can be efficient with respect to time consumption, whereas other
approaches may be memory efficient.

School of CSE NRCM

PROPERTIES OF ALGORITHM

TO EVALUATE AN ALGORITHM WE HAVE TO SATISFY THE FOLLOWING

CRITERIA:

1.INPUT: The Algorithm should be given zero or more input.

2.OUTPUT: At least one quantity is produced. For each input the algorithm

 produced value from specific task.

3.DEFINITENESS: Each instruction is clear and unambiguous.

4.FINITENESS: If we trace out the instructions of an algorithm, then for all cases,

the algorithm terminates after a finite number of steps.

5.EFFECTIVENESS: Every instruction must very basic so that it can be carried

out, in principle, by a person using only pencil & paper.

School of CSE NRCM

ALGORITHM (CONTD…)

➢ A well-defined computational procedure that takes some value, or

set of values, as input and produces some value, or set of values,

as output.

➢ Written in a pseudo code which can be implemented in the

language of programmer’s choice.

PSEUDO CODE: A notation resembling a simplified programming

language, used in program design.

School of CSE NRCM

How To Write an Algorithm
Step-1:start Step-1: start

Step-2:Read a,b,c Step-2: Read a,b,c

Step-3:if a>b Step-3:if a>b then go to step 4

if a>c otherwise go to step 5

print a is largest Step-4:if a>c then

else print a is largest otherwise

if b>c print c is largest

print b is largest Step-5: if b>c then

else print b is largest otherwise

print c is largest print c is largest

Step-4 : stop step-6: stop

Differences

Algorithm Program

1.At design phase 1.At Implementation phase

2.Natural language 2.written in any

 programming language

3.Person should have 3.Programmer

Domain knowledge

4.Analyze 4.Testing

School of CSE NRCM

Algorithm can be described (Represent) in four ways.

1.Natural language like English:

 When this way is chooses, care should be taken, we

should ensure that each & every statement is definite.

 (no ambiguity)

2. Graphic representation called flowchart:

 This method will work well when the algorithm is small& simple.

3. Pseudo-code Method:

 In this method, we should typically describe algorithms as program,

which resembles language like Pascal & Algol(Algorithmic Language).

4.Programming Language:

 we have to use programming language to write algorithms like

 C, C++,JAVA etc.

ALGORITHM SPECIFICATION

School of CSE NRCM

PSEUDO-CODE CONVENTIONS

1. Comments begin with // and continue until the end of line.

2. Blocks are indicated with matching braces { and }.

3. An identifier begins with a letter. The data types of variables are not

explicitly declared.

 node= record

{

data type 1 data 1;

data type n data n;

node *link;

}

4. There are two Boolean values TRUE and FALSE.

 Logical Operators

 AND, OR, NOT

 Relational Operators

 <, <=,>,>=, =, !=

School of CSE NRCM

5. Assignment of values to variables is done using the assignment statement.

 <Variable>:= <expression>;

6. Compound data types can be formed with records. Here is an example,

Node. Record

 {

 data type – 1 data-1;

 .

 .

 .

 data type – n data – n;

 node * link;

 }

 Here link is a pointer to the record type node. Individual data items of

a record can be accessed with → and period.

School of CSE NRCM

Contd…

7. The following looping statements are employed.

 For, while and repeat-until While Loop:

 While < condition > do

 {

 <statement-1>

 ..

 ..

 <statement-n>

 }
For Loop:
 For variable: = value-1 to value-2 step step do

{
 <statement-1>
 .
 .
 .
<statement-n>
}

School of CSE NRCM

repeat-until:

 repeat

 <statement-1>

 .

 .

 .

 <statement-n>

 until<condition>

8. A conditional statement has the following forms.

→ If <condition> then <statement>

→ If <condition> then <statement-1>

 Else <statement-1>

School of CSE NRCM

Case statement:

Case

{

 : <condition-1> : <statement-1>

 .

 .

 .

 : <condition-n> : <statement-n>

 : else : <statement-n+1>

}

9. Input and output are done using the instructions read & write. No

format is used to specify the size of input or output quantities

School of CSE NRCM

10. There is only one type of procedure: Algorithm, the heading takes the
form,

Algorithm Name (Parameter lists)

consider an example, the following algorithm fields & returns the
maximum of n given numbers:

1. algorithm Max(A,n)

2. // A is an array of size n

3. {

4. Result := A[1];

5. for i:= 2 to n do

6. if A[i] > Result then

7. Result :=A[i];

8. return Result;

9. }

Contd…

School of CSE NRCM

Issue in the study of algorithm

1. How to create an algorithm.

2. How to validate an algorithm.

3. How to analyses an algorithm

4. How to test a program.

1 .How to create an algorithm: To create an algorithm we have following design

technique

 a) Divide & Conquer

 b) Greedy method

 c) Dynamic Programming

 d) Branch & Bound

 e) Backtracking

School of CSE NRCM

2.How to validate an algorithm: Once an algorithm is created it is

necessary to show that it computes the correct output for all possible legal

input , this process is called algorithm validation.

3.How to analyses an algorithm: Analysis of an algorithm or performance

analysis refers to task of determining how much computing

Time & storage algorithms required.

a) Computing time-Time complexity: Frequency or Step count method

b) Storage space- To calculate space complexity we have to use number

 of input used in algorithms.

4.How to test the program: Program is nothing but an expression

 for the algorithm using any programming language. To test a program

 we need following

a) Debugging: It is processes of executing programs on sample data sets

 to determine whether faulty results occur & if so correct them.

b) Profiling or performance measurement is the process of executing a

 correct program on data set and measuring the time & space it takes

 to compute the result.

ANALYSIS OF ALGORITHM

PRIORI POSTERIORI

1.Done priori to run algorithm 1.Analysis after running on a
specific system it on system.

2.Hardware independent 2.Dependent on

hardware

3.Approximate analysis 3.Actual
statistics of an algorithm

4.Dependent on no of time 4.They do
not do posteriori

 statements are executed analysis

Problem: Suppose there are 60 students in

the class. How will you calculate the

number of absentees in the class?

Pseudo Approach

1.Initialize a variable called as Count to zero, absent to

zero, total to 60

2.FOR EACH Student PRESENT DO the following:

Increase the Count by One

3.Then Subtract Count from total and store the result

in absent

4.Display the number of absent students

Problem: Suppose there are 60 students in

the class. How will you calculate the

number of absentees in the class?

Algorithmic Approach:

1.Count <- 0, absent <- 0, total <- 60

2.REPEAT till all students counted

Count <- Count + 1

3.absent <- total - Count

4.Print "Number absent is:" , absent

Need of Algorithm

1. To understand the basic idea of the problem.

2. To find an approach to solve the problem.

3. To improve the efficiency of existing techniques.

4. To understand the basic principles of designing the
algorithms. To compare the performance of the
algorithm with respect to other techniques.

6. It is the best method of description without describing
the implementation detail.

7. The Algorithm gives a clear description of requirements
and goal of the problem to the designer.

8. A good design can produce a good solution.

9. To understand the flow of the problem.

PERFORMANCE ANALYSIS

Performance Analysis: An algorithm is said to be efficient and fast

if it take less time to execute and consumes less memory space at run time

is called Performance Analysis.

1. SPACE COMPLEXITY:

 The space complexity of an algorithm is the amount of Memory

Space required by an algorithm during course of execution is called

space complexity .There are three types of space

a) Instruction space :executable program

b) Data space: Required to store all the constant and variable data

space.

c) Environment: It is required to store environment information needed

to resume the suspended space.
2. TIME COMPLEXITY:

 The time complexity of an algorithm is the total amount of time

required by an algorithm to complete its execution.

Space complexity

Now there are two types of space complexity

a) Constant space complexity

b) Linear(variable)space complexity

1.Constant space complexity: A fixed amount of space for all the input

values.

Example : int square(int a)

 {

 return a*a;

 }

Here algorithm requires fixed amount of space for all the input values.

2.Linear space complexity: The space needed for algorithm is based on

size.

➢ Size of the variable ‘n’ = 1 word

➢ Array of a values = n word

➢ Loop variable = 1 word

➢ Sum variable = 1 word

Example:

int sum(int A[],int n)

{ n

int sum=0,i; 1

for (i=0;i<n;i++) 1

Sum=sum+A[i]; 1

Return sum;

} Ans : 1+n+1+1 = n+3 words

Examples:

1.Algorithm sum(a,,b,c)

{

a=10; a-1

b=20; b-1

c=a+b; c-1

}

s(p)=c+sp

3+0=3

0(n)=3

2. algorithm sum(a,n)

{

total-=0; - 1

Fori=1 to n do -1,1

Total=total+a[i]--n

Return total

DAA

Algorithm-1 Algorithm-2 Algorithm-3:recursive procedure

DAA

1.Constant time complexity : If a program required fixed amount of

time for all input values is called Constant time complexity .

Example : int sum(int a , int b)

 {

 return a+b;

 }

2.Linear time complexity: If the input values are increased then the

time complexity will changes.

➢ comments = 0 step

➢ Assignment statement= 1 step

➢ condition statement= 1 step

➢ loop condition for n times = n+1 steps

➢ body of the loop = n steps

Example : int sum(int A[],int n)

 {

 int sum=0,i;

 for (i=0;i<n;i++)

 sum=sum+A[i];

 return sum;

 cost repetation total

 1 1 1

1+1+1 1+(n+1)+n 2n+2

 2 n 2n

 1 1 1

 4n+4

DAA

Statement S/e Frequency Total

1. Algorithm Sum(a,n) 0 - 0

2.{ 0 - 0

3. S=0.0; 1 1 1

4. for i=1 to n do 1 n+1 n+1

5. s=s+a[I]; 1 n n

6. return s; 1 1 1

7. } 0 - 0

Total 2n+3

The time T(p) taken by a program P is the sum of the

compile time and the run time(execution time)

TIME COMPLEXITY

School of CSE NRCM

KINDS OF ANALYSIS

1.Worst-case: (usually)

 • T(n) = maximum time of algorithm on any input of size n.

2.Average-case: (sometimes)

 • T(n) = expected time of algorithm over all inputs of size n.

 • Need assumption of statistical distribution of inputs.

3.Best-case:

 • T(n) = minimum time of algorithm on any input of size n.

COMPLEXITY:

 Complexity refers to the rate at which the storage time grows as a

function of the problem size

Analysis of an Algorithm

➢ The goal of analysis of an algorithm is to compare
algorithm in running time and also Memory
management.

➢ Running time of an algorithm depends on how long it
takes a computer to run the lines of code of the
algorithm.

Running time of an algorithm depends on

1.Speed of computer

2.Programming language

3.Compiler and translator

 Examples: binary search, linear search

ASYMPTOTIC ANALYSIS:

➢ Expressing the complexity in term of its relationship

to know function. This type analysis is called

asymptotic analysis.

➢The main idea of Asymptotic analysis is to have a

measure of efficiency of an algorithm , that doesn’t

depends on

1.Machine constants.

2.Doesn’t require algorithm to be implemented.

3.Time taken by program to be prepare.

School of CSE NRCM

ASYMPTOTIC NOTATION

ASYMPTOTIC NOTATION: The mathematical way of

representing the Time complexity.

The notation we use to describe the asymptotic running time of

an algorithm are defined in terms of functions whose domains

are the set of natural numbers.

Definition : It is the way to describe the behavior of functions in

the limit or without bounds.

Asymptotic growth: The rate at which the function grows…

“growth rate” is the complexity of the function or the amount of

resource it takes up to compute.

 Growth rate Time +memory

Classification of growth

1.Growing with the same rate.

2. Growing with the slower rate.

3.Growing with the faster rate.

They are 3 asymptotic notations are mostly used to represent time

complexity of algorithm.

1.Big oh (O)notation

2.Big omega (Ω) notation

3.Theta(Θ) notation

4.Little oh notation

5.Little omega(Ω) notation

1.Big oh (O)notation

1.Big oh (O)notation : Asymptotic “less than”(slower rate).This
notation mainly represent upper bound of algorithm run time.

 Big oh (O)notation is useful to calculate maximum amount of time of
execution.

 By using Big-oh notation we have to calculate worst case time
complexity.

Formula : f(n)<=c g(n) n>=n0 , c>0 ,n0 >=1

Definition: Let f(n) ,g(n) be two non negative (positive) function

 now the f(n)=O(g(n)) if there exist two positive constant c,n0 such
that

 f(n)<= c.g(n) for all value of n>0 & c>0

School of CSE NRCM

1.Big O-notation

❖ For a given function , we denote by the set

of functions

❖We use O-notation to give an asymptotic upper bound of

a function, to within a constant factor.

❖ means that there existes some constant c

s.t. is always for large enough n.

)(ng))((ngO










=

0

0

 allfor)()(0

s.t.and constants positiveexist there:)(
))((

nnncgnf

ncnf
ngO

))(()(ngOnf =

)(ncg)(nf

School of CSE NRCM

Examples

Example : f(n)=2n +3 & g(n)= n

Formula : f(n)<=c g(n) n>=n0 , c>0 ,n0 >=1

 f(n)=2n+3 & g(n)=n

Now 3n+2<=c.n

 3n+2<=4.n

Put the value of n =1

 5<=4 false

N=2 8<=8 true now n0>2 For all value of n>2 & c=4

 now f(n)<= c.g(n)

3n+2<=4n for all value of n>2

Above condition is satisfied this notation takes maximum amount
of time to execute .so that it is called worst case complexity.

2.Ω-Omega notation
Ω-Omega notation : Asymptotic “greater than”(faster

rate).

 It represent Lower bound of algorithm run

time.

 By using Big Omega notation we can calculate minimum

amount of

 time. We can say that it is best case time complexity.

Formula : f(n)>=c g(n) n>=n0 , c>0 ,n0 >=1

where c is constant, n is function

❖ Lower bound

❖ Best case

School of CSE NRCM

Ω-Omega notation

❖ For a given function , we denote by the set of

functions

❖ We use Ω-notation to give an asymptotic lower bound on a function,

to within a constant factor.

❖ means that there exists some constant c s.t.

is always for large enough n.

)(ng))((ng










=

0

0

 allfor)()(0

s.t.and constants positiveexist there:)(
))((

nnnfncg

ncnf
ng

))(()(ngnf =

)(nf)(ncg

School of CSE NRCM

Examples

Example : f(n)=3n +2

Formula : f(n)>=c g(n) n>=n0 , c>0
,n0 >=1

 f(n)=3n+2

 3n+2>=1*n, c=1 put the value of n=1

 n=1 5>=1 true n0>=1 for all value
of n

 It means that f(n)= Ω g(n).

3. -Theta notation

Theta (Θ) notation : Asymptotic “Equality”(same
rate).

 It represent average bond of algorithm
running time.

 By using theta notation we can calculate average
amount of time.

 So it called average case time complexity of algorithm.

Formula : c1 g(n)<=f(n)<=c2 g(n)

where c is constant, n is function

❖ Average bound



School of CSE NRCM

-Theta notation

❖ For a given function , we denote by the set

of functions

❖ A function belongs to the set if there exist

positive constants and such that it can be “sand-

wiched” between and or sufficienly large n.

❖ means that there exists some constant c1

and c2 s.t. for large enough n.

)(ng))((ng










=

021

021

 allfor)()()(c0

s.t.and,, constants positiveexist there:)(
))((

nnngcnfng

nccnf
ng

)(nf))((ng

1c 2c
)(1 ngc)(2 ngc

Θ

))(()(ngnf =

)()()(21 ngcnfngc 

School of CSE NRCM

Examples

Example : f(n)=3n+2

Formula : c1 g(n)<=f(n)<=c2 g(n)

 f(n)=2n+3

 1*n<=3n+2<=4*n now put the value of n=1
we get 1<=5<=4 false

 n=2 we get 2<=8<=8 true

 n=3 we get 3<=11<=12 true

Now all value of n>=2 it is true above condition is
satisfied.

4.Little oh notation
 Little o notation is used to describe an upper bound that cannot be

tight. In other words, loose upper bound of f(n).

Slower growth rate

f(n) grows slower than g(n)

 Let f(n) and g(n) are the functions that map positive real numbers.

We can say that the function f(n) is o(g(n)) if for any real positive

constant c, there exists an integer constant n0 ≤ 1 such that f(n) > 0.

❖ Using mathematical relation, we can say that f(n) = o(g(n))

means,

 if

❖ Example on little o asymptotic notation:

 1.If f(n) = n2 and g(n) = n3 then check whether

 f(n) = o(g(n)) or not.

The result is 0, and it satisfies the equation mentioned

above. So we can say that f(n) = o(g(n)).

Sol:

5.Little omega(ω) notation

 Another asymptotic notation is little omega notation. it is denoted by

(ω).

 Little omega (ω) notation is used to describe a loose lower bound of

f(n).

 Faster growth rate

 F(n) grows faster than g(n)

 ∞

 If

 ∞

 Formally stated as f(n)=ωg(n)

Example of asymptotic notation

Problem:-Find upper bond ,lower bond & tight bond range for

 functions: f(n)= 2n+5

Solution:-Let us given that f(n)= 2n+5 , now g(n)= n

 lower bond=2n, upper bond =3n, tight bond=2n

 For Big –oh notation(O):- according to definition

 f(n)<=cg(n) for Big oh we use upper bond so

 f(n)=2n+5, g(n)=n and c=3 according to definition

 2n+5<=3n

Put n=1 7<=3 false Put n=2 9<=6 false Put n=3 14<=9
false Put n=4 13<=12 false Put n=5 15<=15 true

 now for all value of n>=5 above condition is satisfied. C=3 n>=5

2. Big - omega notation :- f(n)>=c.g(n) we know that this

Notation is lower bond notation so c=2

Let f(n)=2n+5 & g(n)=2.n

Now 2n+5>=c.g(n);

 2n+5>=2n put n=1

We get 7>=2 true for all value of n>=1,c=2 condition is satisfied.

3. Theta notation :- according to definition

 c1.g(n)<=f(n)<=c2.g

School of CSE NRCM

ANALYSIS OF INSERTION-SORT(CONTD.)

•The worst case: The array is reverse sorted

(tj =j for j=2,3, ...,n).

)12/)1(()1()(521 −++−+= nncncncnT

)1()2/)1(()2/)1((876 −+−+−+ ncnncnnc

ncccccccnccc)2/2/2/()2/2/2/(8765421

2

765 +−−++++++=

2

)1(

1

+
=

=

nn
j

n

j

cbnannT ++= 2)(

 A randomized algorithm is an algorithm that employs a degree of randomness as

part of its logic.

 The algorithm typically uses uniformly random bits as an auxiliary input to guide its

behavior, in the hope of achieving good performance in the "average case" over all

possible choices of random bits.

 An algorithm that uses random numbers to decide what to do next anywhere in its

logic is called Randomized Algorithm..

 Example: Quick sort

RANDOMIZED ALGORITHMS

Select: pick an arbitrary element x in
S to be the pivot.

 Partition: rearrange elements so that
elements with value less than x go to
List L to the left of x and elements
with value greater than x go to the
List R to the right of x.

 Recursion: recursively sort the lists L
and R.

QUICK SORT

DIVIDE AND CONQUER

• Given a function to compute on ‘n’ inputs the divide-and-conquer

strategy suggests splitting the inputs into ‘k’ distinct subsets, 1<k<=n,

yielding ‘k’ sub problems.

• These sub problems must be solved, and then a method must be found

to combine sub solutions into a solution of the whole.

• If the sub problems are still relatively large, then the divide-and-

conquer strategy can possibly be reapplied.

 If the problem p and the size is n , sub problems are n1, n2 ….nk, respectively, then
the computing time of D And C is described by the recurrence relation.

 T(n)= { g(n) n small

 T(n1)+T(n2)+……………+T(nk)+f(n);

 otherwise.

 “Where T(n) is the time for D And C on any I/p of size n.

 g(n) is the time of compute the answer directly for small I/p s. f(n) is the time for
dividing P & combining the solution to sub problems.

DIVIDE AND CONQUER :GENERAL

METHOD

1. Algorithm D And C(P)

2. {

3. if small(P) then return S(P);

4. else

5. {

6. divide P into smaller instances

7. P1, P2… Pk, k>=1;

8. Apply D And C to each of these sub problems;

9. return combine (D And C(P1), D And C(P2),…….,D And C(Pk));

10. }

11. }

EXAMPLE

Consider the case in which a=2 and b=2. Let T(1)=2 & f(n)=n. We have,

T(n) = 2T(n/2)+n

2[2T(n/2/2)+n/2]+n

[4T(n/4)+n]+n

4T(n/4)+2n

4[2T(n/4/2)+n/4]+2n

4[2T(n/8)+n/4]+2n

8T(n/8)+n+2n

8T(n/8)+3n

23T(n/23)+3n

By using substitution method

Let n=2k

K=logn
2

K=3

2kT(n/n)+3n

nT(1)+3N

2n+kn

2n+nlogn

Time complexity is O(nlogn)

APPLICATIONS

1. Binary Search is a searching algorithm. In each step, the algorithm

compares the input element x with the value of the middle element

in array. If the values match, return the index of middle. Otherwise,

if x is less than the middle element, then the algorithm recurs for

left side of middle element, else recurs for right side of middle

element.

2.Quick sort is a sorting algorithm. The algorithm picks a pivot element,

rearranges the array elements in such a way that all elements smaller than

the picked pivot element move to left side of pivot, and all greater elements

move to right side. Finally, the algorithm recursively sorts the sub arrays on

left and right of pivot element.

3.Merge Sort is also a sorting algorithm. The algorithm divides the array in

two halves, recursively sorts them and finally merges the two sorted halves.

1. Algorithm Bin search(a,n,x)

2. // Given an array a[1:n] of elements in non-decreasing

3. //order, n>=0,determine whether x is present and

4. // if so, return j such that x=a[j]; else return 0.

5. {

6. low:=1; high:=n;

7. while (low<=high) do

8. {

9. mid:=[(low+high)/2];

10. if (x<a[mid]) then high;

11. else if(x>a[mid]) then

12. low=mid+1;

13. else return mid;

14. }

15. return 0; }

BINARY SEARCH

EXAMPLE

1) Let us select the 14 entries.

–15,6,0,7,9,23,54,82,101,112,125,131,142,151.

Place them in a[1:14] and simulate the steps Binsearch goes through as it
searches for different values of x.

Only the variables low, high & mid need to be traced as we simulate the
algorithm.

We try the following values for x: 151, -14 and 9.

for 2 successful searches & 1 unsuccessful search.

X=151 low high mid

1 14 7

8 14 11

12 14 13

14 14 14

Found

x=-14 low high mid

1 14 7

1 6 3

1 2 1

2 2 2

2 1 Not found

x=9 low high mid

1 14 7

1 6 3

4 6 5

Found

Table. Shows the traces of Bin search on these 3 steps.

 Another application of Divide and conquer is merge sort.

 Given a sequence of n elements a[1],…,a[n] the general idea is to imagine

then split into 2 sets a[1],…..,a[n/2] and a[[n/2]+1],….a[n].

 Each set is individually sorted, and the resulting sorted sequences are

merged to produce a single sorted sequence of n elements.

 Thus, we have another ideal example of the divide-and-conquer strategy in

which the splitting is into 2 equal-sized sets & the combining operation is

the merging of 2 sorted sets into one.

MERGE SORT

ALGORITHM FOR MERGE SORT

 Algorithm MergeSort(low,high)

 //a[low:high] is a global array to be sorted

 //Small(P) is true if there is only one element

 //to sort. In this case the list is already sorted.

 {

 if (low<high) then //if there are more than one element

 {

 //Divide P into subproblems

 //find where to split the set

 mid = [(low+high)/2];

 //solve the subproblems.

 mergesort (low,mid);

 mergesort(mid+1,high); //combine the solutions .

 merge(low,mid,high);

 }

 }

Algorithm: Merging 2 sorted subarrays using auxiliary storage.

1. Algorithm merge(low,mid,high)

2. /*a[low:high] is a global array containing two sorted subsets in a[low:mid] and in a[mid+1:high].The

goal is to merge these 2 sets into a single set residing in a[low:high].b[] is an auxiliary global array.

*/

3. {

4. h=low; I=low; j=mid+1;

5. while ((h<=mid) and (j<=high)) do {

6. if (a[h]<=a[j]) then {

7. b[I]=a[h];

8. h = h+1; }

9. else {

10.b[I]= a[j];

11.j=j+1; }

12.I=I+1; }

13.if (h>mid) then

14.for k=j to high do {

15.b[I]=a[k];

16.I=I+1;

17.}

18.else

19.for k=h to mid do

20.{

21.b[I]=a[k];

22.I=I+1; }

23.for k=low to high do a[k] = b[k]; }

 Consider the array of 10 elements a[1:10] =(310, 285, 179,

652, 351, 423, 861, 254, 450, 520)

Algorithm Mergesort begins by splitting a[] into 2 sub

arrays each of size five (a[1:5] and a[6:10]).

 The elements in a[1:5] are then split into 2 sub arrays of

size 3 (a[1:3]) and 2(a[4:5])

 Then the items in a [1:3] are split into sub arrays of size 2

a[1:2] & one(a[3:3])

 The 2 values in a[1:2] are split to find time into one-

element sub arrays and now the merging begins.

EXAMPLE

School of CSE NRCM

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

(1)

h = lg n

cn

cn

cn

#leaves = n (n)

Total = (n lg n)

…

 In Quick sort, the division into 2 sub arrays is made so that the sorted sub

arrays do not need to be merged later.

 This is accomplished by rearranging the elements in a[1:n] such that

a[I]<=a[j] for all I between 1 & n and all j between (m+1) & n for some m,

1<=m<=n.

 Thus the elements in a[1:m] & a[m+1:n] can be independently sorted.

 No merge is needed. This rearranging is referred to as partitioning.

QUICK SORT

1. Algorithm: Partition the array a[m:p-1] about a[m]

2. Algorithm Partition(a,m,p)

3. /*within a[m],a[m+1],…..,a[p-1] the elements are rearranged in such a manner that if initially t=a[m],then after
completion a[q]=t for some q between m and

4. p-1,a[k]<=t for m<=k<q, and a[k]>=t for q<k<p. q is returned Set a[p]=infinite. */

5. {

6. v=a[m];I=m;j=p;

7. repeat

8. {

9. repeat

10. I=I+1;

11. until(a[I]>=v);

12. repeat

13. j=j-1;

14. until(a[j]<=v);

15. if (I<j) then interchange(a,i.j);

16. }until(I>=j);

17. a[m]=a[j]; a[j]=v;

18. retun j;

19. }

20. Algorithm Interchange(a,I,j) //Exchange a[I] with a[j]

21. {

22. p=a[I];

23. a[I]=a[j];

24. a[j]=p;

25. }

 Algorithm: Sorting by Partitioning

 Algorithm Quicksort(p,q)

 //Sort the elements a[p],….a[q] which resides

 //is the global array a[1:n] into ascending
//order; a[n+1] is considered to be defined

 // and must be >= all the elements in a[1:n]

 {

 if(p<q) then // If there are more than one element

 {

 // divide p into 2 subproblems

 j=partition(a,p,q+1);

 //‟j‟ is the position of the partitioning element.

 //solve the subproblems.

 quicksort(p,j-1);

 quicksort(j+1,q);

 //There is no need for combining solution.

 }

 }

Graph Coloring using
Backtracking

Backtracking

 In many real world problems, a solution can be
obtained by exhaustively searching through a
large but finite number of possibilities. Hence, the
need arose for developing systematic
techniques of searching, with the hope of
cutting down the search space to possibly a
much smaller space.

 Here, we present a general technique for
organizing the search known as backtracking.
This algorithm design technique can be
described as an organized exhaustive search
which often avoids searching all possibilities.

The 3-Coloring Problem

Given an undirected graph G=(V, E), it is
required to color each vertex in V with
one of three colors, say 1, 2, and 3, such
that no two adjacent vertices have the
same color. We call such a coloring
legal; otherwise, if two adjacent vertices
have the same color, it is illegal.

 A coloring can be represented by an n-
tuple (c1, c2, …, cn) such that ci{1, 2, 3},
1in.

 For example, (1, 2, 2, 3, 1) denotes a
coloring of a graph with five vertices.

The 3-Coloring Problem

 There are 3n possible colorings (legal and illegal) to
color a graph with n vertices.

 The set of all possible colorings can be represented
by a complete ternary tree called the search tree.
In this tree, each path from the root to a leaf node
represents one coloring assignment.

 An incomplete coloring of a graph is partial if no
two adjacent colored vertices have the same color.

 Backtracking works by generating the underlying
tree one node at a time.

 If the path from the root to the current node
corresponds to a legal coloring, the process is
terminated (unless more than one coloring is
desired).

The 3-Coloring Problem

 If the length of this path is less than n and the
corresponding coloring is partial, then one
child of the current node is generated and is
marked as the current node.

 If, on the other hand, the corresponding path
is not partial, then the current node is marked
as a dead node and a new node
corresponding to another color is generated.

 If, however, all three colors have been tried
with no success, the search backtracks to the
parent node whose color is changed, and so
on.

The 3-Coloring Problem

 Example:

a

b c

d e

The 3-Coloring Problem

There are two important observations to be
noted, which generalize to all backtracking
algorithms:

(1) The nodes are generated in a depth-first-
search manner.

(2) There is no need to store the whole search
tree; we only need to store the path from the
root to the current active node. In fact, no
physical nodes are generated at all; the whole
tree is implicit. We only need to keep track of
the color assignment.

The 3-Coloring Problem

Recursive Algorithm

Input: An undirected graph G=(V, E).

Output: A 3-coloring c[1…n] of the vertices of G, where each c[j] is 1, 2, or 3.

1. for k1 to n

2. c[k]0;

3. end for;

4. flagfalse;

5. graphcolor(1);

6. if flag then output c;

7. else output “no solution”;

graphcolor(k)

1. for color=1 to 3

2. c[k]color;

3. if c is a legal coloring then set flag true and exit;

4. else if c is partial then graphcolor(k+1);

5. end for;

The 3-Coloring Problem

Iterative Algorithm

Input: An undirected graph G=(V, E).

Output: A 3-coloring c[1…n] of the vertices of G, where each c[j] is 1, 2, or 3.

1. for k1 to n

2. c[k]0;

3. end for;

4. flagfalse;

5. k1;

6. while k1

7. while c[k]2

8. c[k]c[k]+1;

9. if c is a legal coloring then set flagtrue and exit from the two while loops;

10. else if c is partial then kk+1;

11. end while;

12. c[k]0;

13. kk-1;

14. end while;

15. if flag then output c;

16. else output “no solution”;

 Given an undirected graph and a number m, determine if the graph can
be colored with at most m colors such that no two adjacent vertices of the
graph are colored with same color. Here coloring of a graph means
assignment of colors to all vertices.

 Input:
1) A 2D array graph[V][V] where V is the number of vertices in graph and
graph[V][V] is adjacency matrix representation of the graph. A value
graph[i][j] is 1 if there is a direct edge from i to j, otherwise graph[i][j] is 0.
2) An integer m which is maximum number of colors that can be used.

 Output:
An array color[V] that should have numbers from 1 to m. color[i] should
represent the color assigned to the ith vertex. The code should also return
false if the graph cannot be colored with m colors.

 #include<stdio.h>

int G[50][50],x[50]; //G:adjacency matrix,x:colors

void next_color(int k){

 int i,j;

 x[k]=1; //coloring vertex with color1

 for(i=0;i<k;i++)

 { //checking all k-1 vertices-backtracking

 if(G[i][k]!=0 && x[k]==x[i]) //if connected and has same color

 x[k]=x[i]+1; //assign higher color than x[i]

 }

}



 int main(){
 int n,e,i,j,k,l;
 printf("Enter no. of vertices : ");
 scanf("%d",&n); //total vertices
 printf("Enter no. of edges : ");
 scanf("%d",&e); //total edges

 for(i=0;i<n;i++)
 for(j=0;j<n;j++)
 G[i][j]=0; //assign 0 to all index of adjacency matrix

 printf("Enter indexes where value is 1-->\n");
 for(i=0;i<e;i++){

 scanf("%d %d",&k,&l);
 G[k][l]=1;
 G[l][k]=1;

 }

 for(i=0;i<n;i++)

 next_color(i); //coloring each vertex



 printf("Colors of vertices -->\n");
 for(i=0;i<n;i++) //displaying color of each vertex

 printf("Vertex[%d] : %d\n",i+1,x[i]);

 return 0;
}

Union-Find

structure

Basic set operations

Given several sets. Find the one,

where a belongs.

Form union of sets and .

Usually supposed that .

Does element belong to set .

Add element to set . .

Remove element from set if it is

in that set.

Suppose that set is linearly ordered.

Find the smallest element of set .

),,(21 SSSunion

)(afind

21: SSS =
1S 2S

),(Samember

= 21 SS

a S

),(Saadd a S }{: aSS =

a S

S

S

),(Saremove

)min(S

Union-Find structure

 An abstract data type

type set(T) has

procedure createset(x: T) returns set

procedure findset(x: T) returns set

procedure union(S1,S2: set) returns set

 createset(x) forms a set consisting of one element {x}

 findset(x) returns the set where x belongs

 union(S1,S2) forms the union of the sets S1 and S2.

 In union-operation the sets S1 and S2 are destroyed. So no element

can belong to more than one set.

 We are interested in a task, which consists of a sequence of

operations createset, union and findset.

Trivial solution

Represeting a set by a list

 can be formed in constant time by combining

the lists

 findset O(n), when there are n elements

BA

School of CSE NRCM

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Trivial solution

Representing a set by a bit vector

 Let U be an ordered base set and |U| = n

 Representing subset as an n-bit vector

’s i:th bit is 1, if U’s i:th element belongs to S.

 Union can be implemented as bit vector operations

(in one step, if n is not too big); rquires time O(|U|)

and each set requires space O(|U|).

 Findset requires time O(n).

US 

ss vv :



Trivial solution

Representing a set as a table

 union requires time O(n)

 findset can be implemented in constant time, if

elements have order, otherwise O(n)

Tree representation

 Sets are represented by a forest (a single set is

represented as a tree)

 We choose the root node of a tree to be the

representative of the set

 if vertex x is the root of the tree T, then by notation [x]

we mean the set formed be the vertices of the tree T.

School of CSE NRCM

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Tree implementation

 Operation makeset(x) forms a tree, the only vertex will

be the root x

 In operation findset(x) a path is followed from vertex x

upwards until the root y is reached. Then [y] is the

result.

 Operation union([x],[y]) is implemented by setting

vertex x as a child of vertex y. Then [y] is the union set.

 Problem: the tree may come inbalanced

Solutions to inbalanced trees

Solution 1: Balancing. In operation union([x],[y])

the new root will be that element x or y, of

which tree is highest.

Solution 2: Path compression. When a root y has

been found as a result of operation findset(x),

the father of all the vertices in the path leading

from x to y will be set y.

School of CSE NRCM

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Time complexity

 We examine an operation sequence, where there are

n makeset-operations and m findset

–operations

 New elements are created only with makeset

operation, so n is the number of elements and n-1 is an

upper bound for union-operations.

 In spite of balancing, a tree may be formed, of which

height is log n. If we estimate all find -operations this

difficult, the whole task would require time O(m log n).

This estimate is too pessimistic.

Time complexity

 A more accurate analysis is based on the idea of balancing the costs

 Let A be Ackerman function and its one kind of inverse

function

 grows extremely slowly. <= 3 with all thinkable values

of arguments m and n.

 If union-find task has n union- and m findset

-operations, it can be executed in time

. (proof omitted).

),(nm

),(nm),(nm

)),((nmmnO +

Applications

School of CSE NRCM

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

School of CSE NRCM

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

School of CSE NRCM

Using a Stack

This presentation

shows another use

called backtracking

to solve the N-
Queens problem.

Data Structures

and Algorithms

The N-Queens Problem

 Suppose you have 8 chess
queens...

 ...and a chess board

The N-Queens Problem

Can the queens be placed on
the board so that no two queens
are attacking each other

?

The N-Queens Problem

Two queens are not allowed in
the same row...

The N-Queens Problem

Two queens are not allowed in
the same row, or in the same
column...

The N-Queens Problem

Two queens are not allowed in
the same row, or in the same
column, or along the same
diagonal.

The N-Queens Problem

The number of queens, and the
size of the board can vary.

N Queens

N columns

The N-Queens Problem

We will write a program which
tries to find a way to place N
queens on an N x N chess
board.

How the program works

The program uses a
stack to keep track of
where each queen is
placed.

How the program works

Each time the
program decides to
place a queen on the
board, the
position of the new
queen is stored in a
record which is
placed in the stack.

ROW 1, COL 1

How the program works

We also have an
integer variable to
keep track of how
many rows have
been filled so far.

ROW 1, COL 1

1 filled

How the program works

Each time we try to
place a new queen in
the next row, we start
by placing the queen
in the first column...

ROW 1, COL 1

1 filled

ROW 2, COL 1

How the program works

...if there is a conflict
with another queen,
then we shift the new
queen to the next
column.

ROW 1, COL 1

1 filled

ROW 2, COL 2

How the program works

If another conflict
occurs, the queen is
shifted rightward
again.

ROW 1, COL 1

1 filled

ROW 2, COL 3

How the program works

When there are no
conflicts, we stop and
add one to the value
of filled.

ROW 1, COL 1

2 filled

ROW 2, COL 3

How the program works

Let's look at the third
row. The first position
we try has a conflict...

ROW 1, COL 1

2 filled

ROW 2, COL 3

ROW 3, COL 1

How the program works

...so we shift to
column 2. But
another conflict
arises...

ROW 1, COL 1

2 filled

ROW 2, COL 3

ROW 3, COL 2

How the program works

...and we shift to the
third column.

Yet another conflict

arises...

ROW 1, COL 1

2 filled

ROW 2, COL 3

ROW 3, COL 3

How the program works

...and we shift to
column 4. There's still
a conflict in column 4,
so we try to shift
rightward again...

ROW 1, COL 1

2 filled

ROW 2, COL 3

ROW 3, COL 4

How the program works

...but there's nowhere
else to go.

ROW 1, COL 1

2 filled

ROW 2, COL 3

ROW 3, COL 4

How the program works

When we run out of

room in a row:

 pop the stack,

 reduce filled by 1

 and continue

working on the previous

row.

ROW 1, COL 1

1 filled

ROW 2, COL 3

How the program works

Now we continue
working on row 2,
shifting the queen to
the right.

ROW 1, COL 1

1 filled

ROW 2, COL 4

How the program works

This position has no
conflicts, so we can
increase filled by 1,
and move to row 3.

ROW 1, COL 1

2 filled

ROW 2, COL 4

How the program works

In row 3, we start
again at the first
column.

ROW 1, COL 1

2 filled

ROW 2, COL 4

ROW 3, COL 1

How the program works

In row 3, we start
again at the first
column.

ROW 1, COL 1

2 filled

ROW 2, COL 4

ROW 3, COL 1

How the program works

In row 3, we start
again at the 2nd
column.

ROW 1, COL 1

2 filled

ROW 2, COL 4

ROW 3, COL 2

How the program works

In row 4, we start
again at the first
column.

ROW 1, COL2

2 filled

ROW 2, COL 4

ROW 3, COL 1

ROW 4,COL 3

How the program works

SOLVED!!!

ROW 1, COL 1

2 filled

ROW 2, COL 4

ROW 3, COL 2

Pseudocode for N-Queens

Initialize a stack where we can keep
track of our decisions.

Place the first queen, pushing its position
onto the stack and setting filled to 0.

repeat these steps
 if there are no conflicts with the queens...

 else if there is a conflict and there is room to shift the current queen

rightward...

 else if there is a conflict and there is no room to shift the current

queen rightward...

Pseudocode for N-Queens

repeat these steps
 if there are no conflicts with the queens...

Increase filled by 1. If filled is now N, then

the algorithm is done. Otherwise, move to

the next row and place a queen in the

first column.

Pseudocode for N-Queens

repeat these steps
 if there are no conflicts with the queens...

 else if there is a conflict and there is room to shift the current queen

rightward...

Move the current queen rightward,

adjusting the record on top of the stack

to indicate the new position.

Pseudocode for N-Queens

repeat these steps
 if there are no conflicts with the queens...

 else if there is a conflict and there is room to shift the current queen

rightward...

 else if there is a conflict and there is no room to shift the current

queen rightward...

Backtrack!

Keep popping the stack, and reducing filled

 by 1, until you reach a row where the queen

 can be shifted rightward. Shift this queen right.

Pseudocode for N-Queens

repeat these steps
 if there are no conflicts with the queens...

 else if there is a conflict and there is room to shift the current queen

rightward...

 else if there is a conflict and there is no room to shift the current

queen rightward...

Backtrack!

Keep popping the stack, and reducing filled

 by 1, until you reach a row where the queen

 can be shifted rightward. Shift this queen right.

Summary

Stacks have many applications.

The application which we have shown is
called backtracking.

The key to backtracking: Each choice is
recorded in a stack.

When you run out of choices for the
current decision, you pop the stack, and
continue trying different choices for the
previous decision.

 1. www.mit.edu

 2. www.soe.stanford.edu

 3. www.grad.gatech.edu

 4. www.gsas.harward.edu

 5. www.eng.ufl.edu

 6. www.iitk.ac.in

 7. www.iitd.ernet.in

 8. www.ieee.org

 9. www.ntpel.com

 10. WWW.JNTUWORLD.COM

 11. www.firstrankers.com

 12. www. studentgalaxi.blogspot.com

WEBSITES

http://www.ieee.org/
http://www.ntpel.com/
http://www.jntuworld.com/
http://www.firstrankers.com/

TEXT BOOKS

 1. Fundamentals of Computer Algorithms, Ellis

Horowitz,Satraj Sahni and

 Rajasekharam,Galgotia publications pvt. Ltd.

2. Algorithm Design: Foundations, Analysis and Internet

examples,

 M.T.Goodrich and R.Tomassia,John wiley and sons.

SUGGESTED BOOKS

1. Introduction to Algorithms, secondedition,T.H.Cormen,C.E.Leiserson,

 R.L.Rivest,and C.Stein,PHI Pvt. Ltd./ Pearson Education

2. Introduction to Design and Analysis of Algorithms A strategic
approach,

 R.C.T.Lee, S.S.Tseng, R.C.Chang and T.Tsai, Mc Graw Hill.

3. Data structures and Algorithm Analysis in C++, Allen Weiss, Second

 edition, Pearson education.

REFERENCES

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: REFERENCES
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Differences
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: ANALYSIS OF ALGORITHM
	Slide 22: Problem: Suppose there are 60 students in the class. How will you calculate the number of absentees in the class?
	Slide 23: Problem: Suppose there are 60 students in the class. How will you calculate the number of absentees in the class?
	Slide 24: Need of Algorithm
	Slide 25: PERFORMANCE ANALYSIS
	Slide 26: Space complexity
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Analysis of an Algorithm
	Slide 41
	Slide 42
	Slide 43: Classification of growth
	Slide 44
	Slide 45: 1.Big oh (O)notation
	Slide 46
	Slide 47
	Slide 48: Examples
	Slide 49: 2.Ω-Omega notation
	Slide 50
	Slide 51
	Slide 52: Examples
	Slide 53: 3. -Theta notation
	Slide 54
	Slide 55
	Slide 56: Examples
	Slide 57: 4.Little oh notation
	Slide 58
	Slide 59
	Slide 60: 5.Little omega(ω) notation
	Slide 61: Example of asymptotic notation
	Slide 62
	Slide 64
	Slide 65
	Slide 66
	Slide 67: DIVIDE AND CONQUER
	Slide 68
	Slide 69: DIVIDE AND CONQUER :GENERAL METHOD
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86: Backtracking
	Slide 87: The 3-Coloring Problem
	Slide 88: The 3-Coloring Problem
	Slide 89: The 3-Coloring Problem
	Slide 90: The 3-Coloring Problem
	Slide 91: The 3-Coloring Problem
	Slide 92: The 3-Coloring Problem
	Slide 93: The 3-Coloring Problem
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98: Union-Find structure
	Slide 99: Basic set operations
	Slide 100: Union-Find structure
	Slide 101
	Slide 102: Trivial solution
	Slide 103
	Slide 104: Trivial solution
	Slide 105: Trivial solution
	Slide 106: Tree representation
	Slide 107
	Slide 108: Tree implementation
	Slide 109: Solutions to inbalanced trees
	Slide 110
	Slide 111: Time complexity
	Slide 112: Time complexity
	Slide 113: Applications
	Slide 114
	Slide 115
	Slide 116
	Slide 117: Using a Stack
	Slide 118: The N-Queens Problem
	Slide 119: The N-Queens Problem
	Slide 120: The N-Queens Problem
	Slide 121: The N-Queens Problem
	Slide 122: The N-Queens Problem
	Slide 123: The N-Queens Problem
	Slide 124: The N-Queens Problem
	Slide 125: How the program works
	Slide 126: How the program works
	Slide 127: How the program works
	Slide 128: How the program works
	Slide 129: How the program works
	Slide 130: How the program works
	Slide 131: How the program works
	Slide 132: How the program works
	Slide 133: How the program works
	Slide 134: How the program works
	Slide 135: How the program works
	Slide 136: How the program works
	Slide 137: How the program works
	Slide 138: How the program works
	Slide 139: How the program works
	Slide 140: How the program works
	Slide 141: How the program works
	Slide 142: How the program works
	Slide 143: How the program works
	Slide 144: How the program works
	Slide 145: Pseudocode for N-Queens
	Slide 146: Pseudocode for N-Queens
	Slide 147: Pseudocode for N-Queens
	Slide 148: Pseudocode for N-Queens
	Slide 149: Pseudocode for N-Queens
	Slide 150: Summary
	Slide 151
	Slide 152
	Slide 153
	Slide 154: Thank You

