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UNIT – I

INTRODUCTION: Algorithm, Performance Analysis-Space 

complexity, Time complexity, Asymptotic Notations- Big oh notation, 

Omega notation, Theta notation and Little oh notation. Divide and 

conquer: General method, applications-Binary search, Quick sort, 

Merge sort, Stassen's  matrix multiplication.

UNIT – II

Disjoint Sets: Disjoint set operations, union and find algorithms 

Backtracking: General method, applications, n-queen’s problem, sum 

of subsets problem, graph coloring 

 

SYLLABUS
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UNIT - III 

Dynamic Programming: General method, applications- 

Optimal binary search trees, 0/1 knapsack problem, All 

pairs shortest path problem, Traveling sales person 

problem, Reliability design.

UNIT – IV

Greedy method: General method, applications-Job 

sequencing with deadlines, knapsack problem, Minimum 

cost spanning trees, Single source shortest path problem.
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UNIT - V 

Branch and Bound: General method, applications - 

Travelling sales person problem, 0/1 knapsack problem - LC 

Branch and Bound solution, FIFO Branch and Bound solution. 

NP-Hard and NP-Complete problems: Basic concepts, non 

deterministic algorithms, NP - Hard and NP-Complete classes, 

Cook’s theorem.

TEXT BOOKS 

1. Fundamentals of Computer Algorithms, Ellis Horowitz, 

Satraj Sahni and Rajasekharan,3rd Edition University Press. 



REFERENCES

 Design and Analysis of Algorithms, Aho, Ullman and, 

Pearson education.

 Introduction to Algorithms, second edition, T.H. 

Coremen, C.E Leiserson, R.L.Rivest and C. Stien, PHI Pvt 

. Ltd./Pearson Education.

 Algorithm Design; Foundations, Analysis and Internet 

Examples, M.T. Goodrich and R. Tamassia, John Wiley 

and sons.
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INTRODUCTION

➢The word algorithm comes from the name of the person author

-Abu Jafar Mohammed Ibn Musa Al khowarizmi who wrote 

A text book entitled-”Algorithmi de numero indorum” Now term” Algorithmi 

”in the title of the book led to the term Algorithm.

➢An algorithm is an effective method for finding out the solution for a given 

problem. It is a sequence of instruction 

That conveys the method to address a problem

➢Algorithm : Step by step procedure to solve a computational problem is 

called Algorithm.

     or

➢An Algorithm is a step-by-step plan for a computational procedure 

that possibly begins with an input and yields an output value in a finite 

number of steps in order to solve a particular problem.
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INTRODUCTION

➢ An algorithm is a set of steps of operations to solve a problem 
performing calculation, data processing, and automated reasoning 
tasks. 

➢ An algorithm is an efficient method that can be expressed within finite 
amount of  Time and space.

➢ The important aspects of algorithm design include creating an efficient 
algorithm to solve a problem in an efficient way using minimum time 
and space.

➢ To solve a problem, different approaches can be followed. Some of 
them can be efficient with respect to time consumption, whereas other 
approaches may be memory efficient.
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PROPERTIES OF ALGORITHM

TO EVALUATE AN ALGORITHM WE HAVE TO SATISFY THE FOLLOWING 

CRITERIA:

1.INPUT:  The Algorithm should be given zero or more input.

2.OUTPUT: At least one quantity is produced. For each input the algorithm 

                       produced value from specific task.

3.DEFINITENESS: Each instruction is clear and unambiguous.

4.FINITENESS: If we trace out the instructions of an algorithm, then for all cases, 

the algorithm terminates after a finite number of steps.

5.EFFECTIVENESS: Every instruction must very basic so that it can be carried 

out, in principle, by a person using only pencil & paper.
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ALGORITHM (CONTD…)

➢ A well-defined computational procedure that takes some value, or 

set of values, as input and produces some value, or set of values, 

as output.

➢ Written in a pseudo code which can be implemented in the 

language of programmer’s choice.

PSEUDO CODE: A notation resembling a simplified programming 

language, used in program design.
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How To Write an Algorithm
Step-1:start Step-1: start

Step-2:Read a,b,c Step-2: Read a,b,c

Step-3:if a>b Step-3:if a>b then go to step 4

if a>c otherwise go to step 5

print a is largest               Step-4:if a>c then

else                                         print a is largest  otherwise

if b>c                                     print c is largest

print b is largest               Step-5: if b>c then 

else print b is largest   otherwise

print c is largest print c is largest

Step-4 : stop step-6: stop



Differences

Algorithm     Program

1.At design phase       1.At Implementation phase

2.Natural language       2.written in any        

   programming language

3.Person should have      3.Programmer

Domain knowledge

4.Analyze         4.Testing
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Algorithm can be described (Represent) in four  ways.

1.Natural language like English:

            When this way is chooses, care should be taken, we                                                        

should ensure that each & every statement is definite.

               (no ambiguity)

2. Graphic representation called flowchart:

             This method will work well when the algorithm is small& simple.

3. Pseudo-code Method:

 In this method, we should typically describe algorithms as program,         

which resembles language like Pascal & Algol(Algorithmic Language).

4.Programming Language:

       we have to use programming language to write algorithms like 

         C, C++,JAVA etc.

    

           

ALGORITHM SPECIFICATION
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PSEUDO-CODE CONVENTIONS

1. Comments begin with // and continue until the end of line. 

2. Blocks are indicated with matching braces {  and   }. 

3. An identifier begins with a letter. The data types of variables are not 

explicitly declared. 

                node= record 

{ 

data type 1 data 1; 

data type n data n; 

node *link;

}

4. There are two Boolean values TRUE  and   FALSE.

     Logical Operators

    AND, OR, NOT

    Relational Operators

   <, <=,>,>=, =, !=
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5. Assignment of values to variables is done using the assignment statement. 

  <Variable>:= <expression>;

6. Compound data types can be formed with records. Here is an example,

Node. Record

   {

     data type – 1   data-1;

   .

   .

   .

    data type – n  data – n;

     node * link;

   }

  Here link is a pointer to the record type node. Individual data items of 

a record can be accessed with → and period.
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Contd…      

7. The following looping statements are employed.

     For, while and repeat-until While Loop:

     While < condition > do  

       {

             <statement-1>

                 ..

                  ..

         <statement-n>

       }
For Loop:
 For variable: = value-1 to value-2 step step do

{
 <statement-1>
  .
  .
  .
<statement-n>
}
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repeat-until:

  repeat

   <statement-1>

    .

    .

    .

 <statement-n>

  until<condition>

8.  A conditional statement has the following forms. 

→ If <condition> then <statement>

→ If <condition> then <statement-1> 

     Else <statement-1>
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Case statement:

Case

{

 : <condition-1> : <statement-1>

    .

    .

    .

 : <condition-n> : <statement-n>

 : else : <statement-n+1>

}

9. Input and output are done using the instructions read & write. No 

format is used to specify the size of input or output quantities
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10. There is only one type of procedure: Algorithm, the heading takes the 
form, 

Algorithm Name (Parameter lists)

consider an example, the following algorithm fields & returns the 
maximum of n given numbers:

1. algorithm Max(A,n) 

2. // A is an array of size n 

3. { 

4. Result := A[1]; 

5. for i:= 2 to n do 

6. if A[i] > Result then 

7. Result :=A[i]; 

8. return Result; 

9. } 

Contd…
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Issue in the study of algorithm

1.    How to create an algorithm.

2.    How to validate an algorithm.

3.    How to analyses an algorithm

4.    How to test a program. 

1 .How to create an algorithm: To create an algorithm we have following design 

technique

     a) Divide & Conquer

     b) Greedy method

     c) Dynamic Programming

    d)  Branch & Bound

    e)  Backtracking
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2.How to validate an algorithm: Once an algorithm is created it is 

necessary to show that it computes the correct output for all possible legal 

input , this process is called algorithm validation.

3.How to analyses an algorithm: Analysis of an algorithm or performance 

analysis refers to task of determining how much computing

Time & storage algorithms required.

a) Computing time-Time complexity: Frequency or Step count method

b) Storage space- To calculate space complexity we have to use number 

       of input used in algorithms.

4.How to test the program: Program is nothing but an expression

    for the algorithm using any programming language. To test a program 

    we need following

a) Debugging: It is processes of executing programs on sample data sets 

       to determine whether faulty results occur & if so correct them.

b) Profiling or performance measurement is the process of executing a 

        correct program on data set and measuring  the time & space it takes

        to compute the result.



ANALYSIS OF ALGORITHM

PRIORI    POSTERIORI

1.Done priori to run algorithm 1.Analysis after running on a 
specific system                 it on system.

2.Hardware independent          2.Dependent on 

hardware

3.Approximate analysis           3.Actual 
statistics of an     algorithm

4.Dependent on no of time           4.They do 
not do posteriori

  statements are executed   analysis



Problem: Suppose there are 60 students in 

the class. How will you calculate the 

number of absentees in the class?

Pseudo Approach

1.Initialize a variable called as Count to zero, absent to 

zero, total to 60

2.FOR EACH Student PRESENT DO the following:

Increase the Count by One

3.Then Subtract Count from total and store the result 

in absent

4.Display the number of absent students



Problem: Suppose there are 60 students in 

the class. How will you calculate the 

number of absentees in the class?

Algorithmic Approach:

1.Count <- 0, absent <- 0, total <- 60

2.REPEAT till all students counted

Count <- Count + 1

3.absent <- total - Count

4.Print "Number absent is:" , absent



Need of Algorithm

1. To understand the basic idea of the problem.

2. To find an approach to solve the problem.

3. To improve the efficiency of existing techniques.

4. To understand the basic principles of designing the 
algorithms. To compare the performance of the 
algorithm with respect to other techniques.

6. It is the best method of description without describing 
the implementation detail.

7. The Algorithm gives a clear description of requirements 
and goal of the problem to the designer.

8. A good design can produce a good solution.

9. To understand the flow of the problem.



PERFORMANCE ANALYSIS

Performance Analysis: An algorithm is said to be efficient and fast 

if it take less time to execute and consumes less memory space at run time 

is called Performance Analysis.

1. SPACE COMPLEXITY:

 The space complexity of an algorithm is the amount of Memory 

Space  required by an algorithm during course of execution is called 

space complexity .There are  three types of space 

a) Instruction space :executable program

b) Data space: Required to store all the constant and variable data 

space.

c) Environment: It is required to store environment information needed 

to resume the suspended space. 
2. TIME COMPLEXITY:

 The time complexity of an algorithm is the total amount of time 

required by an algorithm to complete its execution.



Space complexity

Now there are two types of space complexity

a) Constant space complexity

b) Linear(variable)space complexity



1.Constant space complexity: A fixed amount of space for all the input 

values.

Example : int square(int a)

   {

    return a*a;

   }

Here algorithm requires fixed amount of space  for all the input values.



2.Linear space complexity: The space needed for algorithm is based on 

size.

➢ Size of the variable ‘n’ = 1 word

➢ Array of a values          = n word

➢ Loop variable             = 1 word

➢ Sum variable         = 1 word

Example: 

int sum(int A[],int n)

{    n

int sum=0,i;  1

for (i=0;i<n;i++) 1 

Sum=sum+A[i]; 1

Return sum;

}     Ans : 1+n+1+1   =  n+3 words





Examples:

1.Algorithm sum(a,,b,c)        

{

a=10;                a-1

b=20;                b-1

c=a+b;              c-1

}

s(p)=c+sp

3+0=3

0(n)=3



2. algorithm sum(a,n)

{

total-=0; - 1

Fori=1 to n do -1,1

Total=total+a[i]--n

Return total



DAA

Algorithm-1      Algorithm-2                 Algorithm-3:recursive procedure 



DAA



1.Constant time complexity : If a program required fixed amount of 

time for all input values is called Constant time complexity .

Example : int sum(int a , int b)

   {

   return a+b;

   }



2.Linear time complexity: If the input values are increased then the 

time complexity will changes.

➢  comments = 0 step

➢ Assignment statement= 1 step

➢ condition statement= 1 step

➢ loop condition for n times = n+1 steps

➢    body of the loop = n steps



Example : int sum(int A[],int n)

        {

                  int sum=0,i;

         for (i=0;i<n;i++)

         sum=sum+A[i];

   return sum;

 cost   repetation   total

    1    1       1

1+1+1   1+(n+1)+n   2n+2

   2    n   2n

   1      1      1

        4n+4



DAA



Statement S/e Frequency Total

1. Algorithm Sum(a,n) 0 - 0

2.{ 0 - 0

3. S=0.0; 1 1 1

4. for i=1 to n do 1 n+1 n+1

5. s=s+a[I]; 1 n n

6. return s; 1 1 1

7. } 0 - 0

Total 2n+3

The time T(p) taken by a program P is the sum of the 

compile time and the run time(execution time)

TIME COMPLEXITY
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KINDS OF ANALYSIS

1.Worst-case: (usually)

 • T(n) = maximum time of algorithm on any input of size  n.

2.Average-case: (sometimes)

 • T(n) = expected time of algorithm over all inputs of size n.

 • Need assumption of statistical distribution of inputs.

3.Best-case:

 • T(n) = minimum time of algorithm on any input of size n.

COMPLEXITY:

                    Complexity refers to the rate at which the storage time grows as a 

function of the problem size

 



Analysis of an Algorithm

➢ The goal of analysis of an algorithm is to compare 
algorithm in running time and also Memory 
management.

➢ Running time of an algorithm depends on how long it 
takes a computer to run the lines of code of the 
algorithm.

Running time of an algorithm depends on

1.Speed of computer

2.Programming language

3.Compiler and translator

  Examples: binary search, linear search



ASYMPTOTIC ANALYSIS:

➢   Expressing the complexity in term of its relationship 

to know function. This type analysis is called 

asymptotic analysis.

➢The main idea of Asymptotic analysis is to have a 

measure of efficiency of an algorithm , that doesn’t 

depends on 

1.Machine constants.

2.Doesn’t require algorithm to be implemented.

3.Time taken by program to be prepare.
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ASYMPTOTIC NOTATION

ASYMPTOTIC NOTATION: The mathematical way of 

representing the Time complexity.

The notation we use to describe the asymptotic running time of

an algorithm are defined in terms of functions whose domains

are the set of natural numbers.

Definition : It is the way to describe the behavior of functions in 

the limit or without bounds.

Asymptotic growth: The rate at which the function grows…

“growth rate” is the complexity of the function or the amount of 

resource it takes up to compute.

       Growth rate                Time +memory



Classification of growth

1.Growing with the same rate.

2. Growing with the slower rate.

3.Growing with the faster rate.



They are 3 asymptotic notations are mostly used to represent time 

complexity of algorithm.

1.Big oh (O)notation

2.Big omega (Ω) notation

3.Theta(Θ) notation

4.Little oh notation

5.Little omega(Ω) notation



1.Big oh (O)notation

1.Big oh (O)notation : Asymptotic “less than”(slower rate).This 
notation mainly represent upper bound of algorithm run time. 

   Big oh (O)notation is useful to calculate maximum amount of time of 
execution.

   By using Big-oh notation we have to calculate worst case time 
complexity.

Formula : f(n)<=c g(n)               n>=n0  , c>0 ,n0 >=1

Definition: Let f(n) ,g(n) be two non negative (positive) function

       now the f(n)=O(g(n)) if there exist two positive constant c,n0 such 
that

       f(n)<= c.g(n)  for all value of n>0 & c>0
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1.Big O-notation

❖ For a given function          ,  we denote by              the set 

of functions

❖We use O-notation to give an asymptotic upper bound of 

a function, to within a constant factor.

❖ means that there existes some constant c  

s.t.         is always              for large enough n.  

)(ng ))(( ngO










=

0

0

 allfor )()(0

s.t.and  constants positiveexist  there:)(
))((

nnncgnf

ncnf
ngO

))(()( ngOnf =

)(ncg)(nf
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Examples

Example :     f(n)=2n +3   &  g(n)= n

Formula : f(n)<=c g(n)               n>=n0  , c>0 ,n0 >=1

   f(n)=2n+3 & g(n)=n

Now 3n+2<=c.n

       3n+2<=4.n

Put the value of n =1  

         5<=4 false

N=2    8<=8 true     now n0>2 For all value of n>2   & c=4     

       now f(n)<= c.g(n)

3n+2<=4n for all value of  n>2

Above condition is satisfied this      notation takes maximum amount 
of time to execute .so that  it is called worst case complexity.      



2.Ω-Omega notation
Ω-Omega notation : Asymptotic “greater than”(faster 

rate).

                                      It represent Lower bound of algorithm run 

time.

      By using Big Omega notation we can calculate minimum 

amount of   

      time. We can say that it is best case time complexity.

Formula : f(n)>=c g(n)          n>=n0  , c>0 ,n0 >=1

where c is constant, n is function

❖ Lower bound

❖ Best case
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Ω-Omega notation

❖ For a given function          ,  we denote by                 the set of 

functions

❖ We use Ω-notation to give an asymptotic lower bound on a function, 

to within a constant factor.

❖ means that there exists some constant c s.t.                                     

is always            for large enough n.  

)(ng ))(( ng










=

0

0

 allfor )()(0

s.t.and  constants positiveexist  there:)(
))((

nnnfncg

ncnf
ng

))(()( ngnf =

)(nf )(ncg
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Examples

Example :     f(n)=3n +2

Formula : f(n)>=c g(n)          n>=n0  , c>0 
,n0 >=1

   f(n)=3n+2 

   3n+2>=1*n, c=1 put the value of n=1

   n=1                    5>=1 true    n0>=1 for all value 
of n

                   It means that f(n)= Ω g(n).

         



3.  -Theta notation

Theta (Θ) notation : Asymptotic “Equality”(same 
rate). 

                            It represent average bond of algorithm 
running time.

        By using theta notation we can calculate average 
amount of time.

       So it called average case time complexity of algorithm.

Formula : c1 g(n)<=f(n)<=c2 g(n)

where c is constant,  n is function

❖ Average bound


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-Theta notation

❖ For a given function        ,  we denote by                the set 

of functions

❖ A function          belongs to the set                 if there exist 

positive constants     and      such that it can be “sand-

wiched” between            and             or sufficienly large n.

❖ means that there exists some constant c1

and c2       s.t. for large enough n.

)(ng ))(( ng










=

021

021

 allfor )()()(c0

s.t.and,,  constants positiveexist  there:)(
))((

nnngcnfng

nccnf
ng

)(nf ))(( ng

1c 2c
)(1 ngc )(2 ngc

Θ

))(()( ngnf =

)()()( 21 ngcnfngc 
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Examples

Example : f(n)=3n+2

Formula : c1 g(n)<=f(n)<=c2 g(n)

    f(n)=2n+3 

   1*n<=3n+2<=4*n  now put the value of n=1 
we get  1<=5<=4 false

   n=2 we get 2<=8<=8 true

 n=3 we get 3<=11<=12 true

Now all value of n>=2 it is true above condition is 
satisfied.



4.Little oh notation
 Little o notation is used to describe an upper bound that cannot be 

tight. In other words, loose upper bound of f(n).

Slower growth rate

f(n) grows slower than g(n)

 Let f(n) and g(n) are the functions that map positive real numbers. 

We can say that the function f(n) is o(g(n)) if for any real positive 

constant c, there exists an integer constant n0 ≤ 1 such that f(n) > 0.



❖ Using mathematical relation, we can say that f(n) = o(g(n)) 

means,

        if 

❖ Example on little o asymptotic notation:

 

 1.If f(n) = n2 and g(n) = n3 then check whether 

   f(n) = o(g(n)) or not.



The result is 0, and it satisfies the equation mentioned 

above. So we can say that f(n) = o(g(n)).

Sol:



5.Little omega(ω) notation

 Another asymptotic notation is little omega notation. it is denoted by 

(ω).

 Little omega (ω) notation is used to describe a loose lower bound of 

f(n). 

 Faster growth rate

 F(n) grows faster than g(n)

    ∞

 If 

                                     ∞

   Formally stated as f(n)=ωg(n)



Example of asymptotic notation

Problem:-Find upper bond ,lower bond & tight bond range for 

         functions: f(n)= 2n+5

Solution:-Let us given that f(n)= 2n+5  ,  now g(n)= n

   lower bond=2n, upper bond =3n, tight bond=2n

   For Big –oh notation(O):- according to definition 

           f(n)<=cg(n) for Big oh we use upper bond so

      f(n)=2n+5, g(n)=n and c=3 according to definition

                          2n+5<=3n    

Put n=1     7<=3  false       Put n=2    9<=6 false     Put n=3    14<=9 
false   Put n=4     13<=12 false    Put  n=5    15<=15 true 

 now for all value of n>=5 above condition is satisfied.  C=3 n>=5



2. Big - omega notation :- f(n)>=c.g(n) we know that this 

Notation is lower bond  notation so c=2 

Let f(n)=2n+5 & g(n)=2.n

Now 2n+5>=c.g(n);

        2n+5>=2n put n=1

We get 7>=2 true  for all value of n>=1,c=2 condition is satisfied.

3. Theta notation :- according to definition 

    c1.g(n)<=f(n)<=c2.g
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ANALYSIS OF INSERTION-SORT(CONTD.)

•The worst case: The array is reverse  sorted 

(tj =j for j=2,3, ...,n).

)12/)1(()1()( 521 −++−+= nncncncnT

)1()2/)1(()2/)1(( 876 −+−+−+ ncnncnnc

ncccccccnccc )2/2/2/()2/2/2/( 8765421

2

765 +−−++++++=

2

)1(

1

+
=

=

nn
j

n

j

cbnannT ++= 2)(



 A randomized algorithm is an algorithm that employs a degree of randomness as 

part of its logic. 

 The algorithm typically uses uniformly random bits as an auxiliary input to guide its 

behavior, in the hope of achieving good performance in the "average case" over all 

possible choices of random bits.

 An algorithm that uses random numbers to decide what to do next anywhere in its 

logic is called Randomized Algorithm.. 

 Example: Quick sort

RANDOMIZED ALGORITHMS



Select: pick an arbitrary element x in 
S to be the pivot.

 Partition: rearrange elements so that 
elements with value less than x go to 
List L to the left of x and elements 
with value greater than x go to the 
List R to the right of x.

 Recursion: recursively sort the lists L 
and R.

  

QUICK SORT



DIVIDE AND CONQUER

•  Given a function to compute on ‘n’ inputs the divide-and-conquer 

strategy suggests splitting the inputs into ‘k’ distinct subsets, 1<k<=n, 

yielding ‘k’ sub problems.

 

• These sub problems must be solved, and then a method must be found 

to combine sub solutions into a solution of the whole.

• If the sub problems are still relatively large, then the divide-and-

conquer strategy can possibly be reapplied.



 If the problem p and the size is  n , sub problems are n1, n2 ….nk, respectively, then 
the computing time of D And C is described by the recurrence relation. 

 T(n)= { g(n) n small

 T(n1)+T(n2)+……………+T(nk)+f(n);  

 otherwise.

    “Where T(n)  is the time for D And C  on any I/p of size n.

 g(n)  is the time of compute the answer directly for small I/p s. f(n)  is the time for 
dividing P & combining the solution to sub problems.



DIVIDE AND CONQUER :GENERAL 

METHOD

1. Algorithm D And C(P) 

2. { 

3. if small(P) then return S(P); 

4. else 

5. { 

6. divide P into smaller instances 

7. P1, P2… Pk, k>=1;

8. Apply D And C to each of these sub problems; 

9. return combine (D And C(P1), D And C(P2),…….,D And C(Pk)); 

10. } 

11. } 



EXAMPLE

Consider the case in which a=2 and b=2. Let T(1)=2 & f(n)=n. We have, 

T(n) = 2T(n/2)+n 

2[2T(n/2/2)+n/2]+n 

[4T(n/4)+n]+n 

4T(n/4)+2n 

4[2T(n/4/2)+n/4]+2n 

4[2T(n/8)+n/4]+2n 

8T(n/8)+n+2n 

8T(n/8)+3n 



23T(n/23)+3n

By using substitution method

Let n=2k

K=logn
2

K=3

2kT(n/n)+3n

nT(1)+3N

2n+kn

2n+nlogn

Time complexity is O(nlogn)



APPLICATIONS

1. Binary Search  is a searching algorithm. In each step, the algorithm 

compares the input element x with the value of the middle element 

in array. If the values match, return the index of middle. Otherwise, 

if x is less than the middle element, then the algorithm recurs for 

left side of middle element, else recurs for right side of middle 

element.



2.Quick sort is a sorting algorithm. The algorithm picks a pivot element, 

rearranges the array elements in such a way that all elements smaller than 

the picked pivot element move to left side of pivot, and all greater elements 

move to right side. Finally, the algorithm recursively sorts the sub arrays on 

left and right of pivot element.

3.Merge Sort is also a sorting algorithm. The algorithm divides the array in 

two halves, recursively sorts them and finally merges the two sorted halves.



1. Algorithm Bin search(a,n,x) 

2. // Given an array a[1:n] of elements in non-decreasing 

3. //order, n>=0,determine whether x is present and 

4. // if so, return j such that x=a[j]; else return 0. 

5. { 

6. low:=1; high:=n; 

7. while (low<=high) do 

8. { 

9. mid:=[(low+high)/2]; 

10. if (x<a[mid]) then high; 

11. else if(x>a[mid]) then 

12. low=mid+1;

13. else return mid; 

14. } 

15. return 0;  } 

BINARY SEARCH



EXAMPLE

1) Let us select the 14 entries. 

–15,6,0,7,9,23,54,82,101,112,125,131,142,151.

Place them in a[1:14] and simulate the steps Binsearch goes through as it 
searches for different values of x. 

Only the variables low, high & mid need to be traced as we simulate the 
algorithm. 

We try the following values for x: 151, -14 and 9. 

for 2 successful searches & 1 unsuccessful search.



X=151 low high mid

1 14 7

8 14 11

12 14 13

14 14 14

Found

x=-14 low high mid

1 14 7

1 6 3

1 2 1

2 2 2

2 1 Not found

x=9 low high mid

1 14 7

1 6 3

4 6 5

Found

Table. Shows the traces of Bin search on these 3 steps. 



 Another application of Divide and conquer is merge sort.

 Given a sequence of n elements a[1],…,a[n] the general idea is to imagine 

then split into 2 sets a[1],…..,a[n/2] and a[[n/2]+1],….a[n]. 

 Each set is individually sorted, and the resulting sorted sequences are 

merged to produce a single sorted sequence of n elements. 

 Thus, we have another ideal example of the divide-and-conquer strategy in 

which the splitting is into 2 equal-sized sets & the combining operation is 

the merging of 2 sorted sets into one. 

MERGE SORT



ALGORITHM FOR MERGE SORT

 Algorithm MergeSort(low,high) 

 //a[low:high] is a global array to be sorted 

 //Small(P) is true if there is only one element 

 //to sort. In this case the list is already sorted. 

 { 

 if (low<high) then    //if there are more than one element 

 { 

 //Divide P into subproblems 

 //find where to split the set 

 mid = [(low+high)/2]; 

 //solve the subproblems. 

 mergesort (low,mid); 

 mergesort(mid+1,high);  //combine the solutions . 

 merge(low,mid,high); 

 } 

 } 



Algorithm: Merging 2 sorted subarrays using auxiliary storage.

1. Algorithm merge(low,mid,high) 

2. /*a[low:high] is a global array containing  two sorted subsets in a[low:mid]  and in a[mid+1:high].The 

goal is to merge these 2 sets into  a single set residing in a[low:high].b[] is an auxiliary global array. 

*/

3. { 

4. h=low; I=low; j=mid+1; 

5. while ((h<=mid) and (j<=high)) do { 

6. if (a[h]<=a[j]) then { 

7. b[I]=a[h]; 

8. h = h+1; } 

9. else { 

10.b[I]= a[j]; 

11.j=j+1; } 

12.I=I+1; } 

13.if (h>mid) then 

14.for k=j to high do { 

15.b[I]=a[k]; 

16.I=I+1; 

17.} 

18.else 

19.for k=h to mid do 

20.{ 

21.b[I]=a[k]; 

22.I=I+1; } 

23.for k=low to high do a[k] = b[k]; } 



 Consider the array of 10 elements a[1:10] =(310, 285, 179, 

652, 351, 423, 861, 254, 450, 520) 

Algorithm Mergesort begins by splitting a[] into 2 sub 

arrays each of size five (a[1:5] and a[6:10]). 

 The elements in a[1:5] are then split into 2 sub arrays of 

size 3 (a[1:3] ) and 2(a[4:5]) 

 Then the items in  a [1:3] are split into sub arrays of size 2 

a[1:2] & one(a[3:3]) 

 The 2 values in a[1:2] are split to find time into one-

element sub arrays and now the merging begins. 

EXAMPLE
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

(1)

h = lg n

cn

cn

cn

#leaves = n (n)

Total = (n lg n)

…



 In Quick sort, the division into 2 sub arrays is made so that the sorted sub 

arrays do not need to be merged later. 

 This is accomplished by rearranging the elements in a[1:n] such that 

a[I]<=a[j] for all I between 1 & n and all j between (m+1) & n for some m, 

1<=m<=n. 

 Thus the elements in a[1:m] & a[m+1:n] can be independently sorted. 

 No merge is needed. This rearranging is referred to as partitioning. 

QUICK SORT



1. Algorithm: Partition the array a[m:p-1] about a[m]

2. Algorithm Partition(a,m,p) 

3. /*within a[m],a[m+1],…..,a[p-1] the elements  are rearranged in such a manner that if  initially t=a[m],then after 
completion  a[q]=t for some q between m and 

4. p-1,a[k]<=t for m<=k<q, and a[k]>=t for q<k<p. q is returned Set a[p]=infinite. */

5. { 

6. v=a[m];I=m;j=p; 

7. repeat 

8. { 

9. repeat 

10. I=I+1; 

11. until(a[I]>=v); 

12. repeat 

13. j=j-1; 

14. until(a[j]<=v); 

15. if (I<j) then interchange(a,i.j); 

16. }until(I>=j); 

17. a[m]=a[j]; a[j]=v; 

18. retun j; 

19. } 

20. Algorithm Interchange(a,I,j)  //Exchange a[I] with a[j] 

21. { 

22. p=a[I]; 

23. a[I]=a[j]; 

24. a[j]=p; 

25. } 



 Algorithm: Sorting by Partitioning

 Algorithm Quicksort(p,q) 

 //Sort the elements a[p],….a[q] which resides 

 //is the global array a[1:n] into ascending 
//order; a[n+1] is considered to be defined 

 // and must be >= all the elements in a[1:n] 

 { 

 if(p<q) then // If there are more than one element 

 { 

 // divide p into 2 subproblems 

 j=partition(a,p,q+1); 

 //‟j‟ is the position of the partitioning element. 

 //solve the subproblems. 

 quicksort(p,j-1); 

 quicksort(j+1,q); 

 //There is no need for combining solution. 

 } 

 } 



Graph Coloring using 
Backtracking



Backtracking

 In many real world problems, a solution can be 
obtained by exhaustively searching through a 
large but finite number of possibilities. Hence, the 
need arose for developing systematic 
techniques of searching, with the hope of 
cutting down the search space to possibly a 
much smaller space. 

 Here, we present a general technique for 
organizing the search known as backtracking. 
This algorithm design technique can be 
described as an organized exhaustive search 
which often avoids searching all possibilities.



The 3-Coloring Problem

Given an undirected graph G=(V, E), it is 
required to color each vertex in V with 
one of three colors, say 1, 2, and 3, such 
that no two adjacent vertices have the 
same color. We call such a coloring 
legal; otherwise, if two adjacent vertices 
have the same color, it is illegal.

 A coloring can be represented by an n-
tuple (c1, c2, …, cn) such that ci{1, 2, 3}, 
1in.

 For example, (1, 2, 2, 3, 1) denotes a 
coloring of a graph with five vertices.



The 3-Coloring Problem

 There are 3n possible colorings (legal and illegal) to 
color a graph with n vertices.

 The set of all possible colorings can be represented 
by a complete ternary tree called the search tree. 
In this tree, each path from the root to a leaf node 
represents one coloring assignment.

 An incomplete coloring of a graph is partial if no 
two adjacent colored vertices have the same color.

 Backtracking works by generating the underlying 
tree one node at a time.

 If the path from the root to the current node 
corresponds to a legal coloring, the process is 
terminated (unless more than one coloring is 
desired).



The 3-Coloring Problem

 If the length of this path is less than n and the 
corresponding coloring is partial, then one 
child of the current node is generated and is 
marked as the current node.

 If, on the other hand, the corresponding path 
is not partial, then the current node is marked 
as a dead node and a new node 
corresponding to another color is generated.

 If, however, all three colors have been tried 
with no success, the search backtracks to the 
parent node whose color is changed, and so 
on.



The 3-Coloring Problem

 Example:

a

b c

d e



The 3-Coloring Problem

There are two important observations to be 
noted, which generalize to all backtracking 
algorithms:

(1) The nodes are generated in a depth-first-
search manner.

(2) There is no need to store the whole search 
tree; we only need to store the path from the 
root to the current active node. In fact, no 
physical nodes are generated at all; the whole 
tree is implicit. We only need to keep track of 
the color assignment.



The 3-Coloring Problem

Recursive Algorithm

Input: An undirected graph G=(V, E).

Output: A 3-coloring c[1…n] of the vertices of G, where each c[j] is 1, 2, or 3.

1. for k1 to n

2.     c[k]0;

3. end for;

4. flagfalse;

5. graphcolor(1);

6. if flag then output c;

7. else output “no solution”;

graphcolor(k)

1. for color=1 to 3

2.     c[k]color;

3.     if c is a legal coloring then set flag true and exit;

4.     else if c is partial then graphcolor(k+1);

5. end for;



The 3-Coloring Problem

Iterative Algorithm

Input: An undirected graph G=(V, E).

Output: A 3-coloring c[1…n] of the vertices of G, where each c[j] is 1, 2, or 3.

1. for k1 to n

2.     c[k]0;

3. end for;

4. flagfalse;

5. k1;

6. while k1

7.     while c[k]2

8.         c[k]c[k]+1;

9.         if c is a legal coloring then set flagtrue and exit from the two while loops;

10.       else if c is partial then kk+1;

11.    end while;

12.    c[k]0;

13.    kk-1;

14. end while;

15. if flag then output c;

16. else output “no solution”;



 Given an undirected graph and a number m, determine if the graph can 
be colored with at most m colors such that no two adjacent vertices of the 
graph are colored with same color. Here coloring of a graph means 
assignment of colors to all vertices.

 Input:
1) A 2D array graph[V][V] where V is the number of vertices in graph and 
graph[V][V] is adjacency matrix representation of the graph. A value 
graph[i][j] is 1 if there is a direct edge from i to j, otherwise graph[i][j] is 0.
2) An integer m which is maximum number of colors that can be used.

 Output:
An array color[V] that should have numbers from 1 to m. color[i] should 
represent the color assigned to the ith vertex. The code should also return 
false if the graph cannot be colored with m colors.



 #include<stdio.h>

int G[50][50],x[50]; //G:adjacency matrix,x:colors

void next_color(int k){

 int i,j;

 x[k]=1; //coloring vertex with color1

 for(i=0;i<k;i++)

    { //checking all k-1 vertices-backtracking

 if(G[i][k]!=0 && x[k]==x[i])  //if connected and has same color

  x[k]=x[i]+1; //assign higher color than x[i]

 }

}





 int main(){
 int n,e,i,j,k,l;
 printf("Enter no. of vertices : ");
 scanf("%d",&n); //total vertices
 printf("Enter no. of edges : ");
 scanf("%d",&e); //total edges

 for(i=0;i<n;i++)
 for(j=0;j<n;j++)
  G[i][j]=0; //assign 0 to all index of adjacency matrix
 

 printf("Enter indexes where value is 1-->\n");
 for(i=0;i<e;i++){

 scanf("%d %d",&k,&l);
 G[k][l]=1;
 G[l][k]=1;

 }



 for(i=0;i<n;i++)

 next_color(i); //coloring each vertex



 printf("Colors of vertices -->\n");
 for(i=0;i<n;i++) //displaying color of each vertex

 printf("Vertex[%d] : %d\n",i+1,x[i]);

 return 0;
}



Union-Find

structure



Basic set operations

Given several sets. Find the one, 

where a belongs.

Form union of sets and    .

Usually supposed that .

Does element belong to set        .

Add element to set       .                    .

Remove element from set     if it is

in that set.

Suppose that set     is linearly ordered. 

Find the smallest element of set     .

),,( 21 SSSunion
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Union-Find structure

 An abstract data type

type set(T) has

procedure createset(x: T) returns set

procedure findset(x: T) returns set

procedure union(S1,S2: set) returns set



 createset(x) forms a set consisting of one element {x}

 findset(x) returns the set where x belongs

 union(S1,S2) forms the union of the sets S1 and S2.

 In union-operation the sets S1 and S2 are destroyed. So no element

can belong to more than one set.

 We are interested in a task, which consists of a sequence of 

operations createset, union and findset.



Trivial solution

Represeting a set by a list

 can be formed in constant time by combining

the lists

 findset O(n), when there are n elements

BA
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Trivial solution

Representing a set by a bit vector

 Let U be an ordered base set and |U| = n

 Representing subset as an n-bit vector

’s i:th bit is 1, if U’s i:th element belongs to S.

 Union can be implemented as bit vector operations

(in one step, if n is not too big); rquires time O(|U|) 

and each set requires space O(|U|).

 Findset requires time O(n).  

US 

ss vv :





Trivial solution

Representing a set as a table

 union requires time O(n)

 findset can be implemented in constant time, if

elements have order, otherwise O(n)



Tree representation

 Sets are represented by a forest (a single set is 

represented as a tree)

 We choose the root node of a tree to be the 

representative of the set

 if vertex x is the root of the tree T, then by notation [x] 

we mean the set formed be the vertices of the tree T. 
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Tree implementation

 Operation makeset(x) forms a tree, the only vertex will

be the root x

 In operation findset(x) a path is followed from vertex x 

upwards until the root y is reached. Then [y] is the 

result.

 Operation union([x],[y]) is implemented by setting

vertex x as a child of vertex y. Then [y] is the union set.

 Problem: the tree may come inbalanced



Solutions to inbalanced trees

Solution 1: Balancing. In operation union([x],[y]) 

the new root will be that element x or y, of 

which tree is highest.

Solution 2: Path compression. When a root y has

been found as a result of operation findset(x), 

the father of all the vertices in the path leading

from x to y will be set y.
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Time complexity

 We examine an operation sequence, where there are

n makeset-operations and m findset

–operations

 New elements are created only with makeset

operation, so n is the number of elements and n-1 is an 

upper bound for union-operations.

 In spite of balancing, a tree may be formed, of which

height is log n. If we estimate all find -operations this

difficult, the whole task would require time O(m log n). 

This estimate is too pessimistic. 



Time complexity

 A more accurate analysis is based on the idea of balancing the costs

 Let A be Ackerman function and                its one kind of inverse

function

 grows extremely slowly.              <= 3 with all thinkable values

of arguments m and n.

 If union-find task has n union- and m findset

-operations, it can be executed in time

.   (proof omitted).

),( nm

),( nm ),( nm

)),(( nmmnO +



Applications



School of CSE                                                                                                                NRCM

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



School of CSE                                                                                                                NRCM

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



School of CSE                                                                                                                NRCM



Using a Stack

This presentation 

shows another use 

called backtracking 

to solve the N-
Queens problem.

Data Structures

and Algorithms



The N-Queens Problem

 Suppose you have 8 chess 
queens...

 ...and a chess board



The N-Queens Problem

Can the queens be placed on 
the board so that no two queens 
are attacking each other  

?



The N-Queens Problem

Two queens are not allowed in 
the same row...



The N-Queens Problem

Two queens are not allowed in 
the same  row, or in the same 
column...



The N-Queens Problem

Two queens are not allowed in 
the same  row, or in the same 
column, or along the same 
diagonal.



The N-Queens Problem

The number of queens, and the 
size of the board can vary.

N Queens

N columns



The N-Queens Problem

We will write a program which 
tries to find a way to place N 
queens on an N x N chess 
board.



How the program works

The program uses a 
stack to keep track of 
where each queen is 
placed.



How the program works

Each time the 
program decides to 
place a queen on the 
board,       the 
position of the new 
queen is stored in a 
record which is 
placed in the stack.

ROW 1, COL 1



How the program works

We also have an 
integer variable to 
keep track of how 
many rows have 
been filled so far.

ROW 1, COL 1

1 filled



How the program works

Each time we try to 
place a new queen in 
the next row, we start 
by placing the queen 
in the first column...

ROW 1, COL 1

1 filled

ROW 2, COL 1



How the program works

...if there is a conflict 
with another queen, 
then we shift the new 
queen to the next 
column.

ROW 1, COL 1

1 filled

ROW 2, COL 2



How the program works

If another conflict 
occurs, the queen is 
shifted rightward 
again.

ROW 1, COL 1

1 filled

ROW 2, COL 3



How the program works

When there are no 
conflicts, we stop and 
add one to the value 
of filled.

ROW 1, COL 1

2 filled

ROW 2, COL 3



How the program works

Let's look at the third 
row.  The first position 
we try has a conflict...

ROW 1, COL 1

2 filled

ROW 2, COL 3

ROW 3, COL 1



How the program works

...so we shift to 
column 2.  But 
another conflict 
arises...

ROW 1, COL 1

2 filled

ROW 2, COL 3

ROW 3, COL 2



How the program works

...and we shift to the 
third column.

Yet another conflict 

arises...

ROW 1, COL 1

2 filled

ROW 2, COL 3

ROW 3, COL 3



How the program works

...and we shift to 
column 4.  There's still 
a conflict in column 4, 
so we try to shift 
rightward again...

ROW 1, COL 1

2 filled

ROW 2, COL 3

ROW 3, COL 4



How the program works

...but there's nowhere 
else to go.

ROW 1, COL 1

2 filled

ROW 2, COL 3

ROW 3, COL 4



How the program works

When we run out of 

room in a row:

 pop the stack,

 reduce filled by 1

 and continue                       

working on the previous 

row.

ROW 1, COL 1

1 filled

ROW 2, COL 3



How the program works

Now we continue 
working on row 2, 
shifting the queen to 
the right.

ROW 1, COL 1

1 filled

ROW 2, COL 4



How the program works

This position has no 
conflicts, so we can 
increase filled by 1, 
and move to row 3.

ROW 1, COL 1

2 filled

ROW 2, COL 4



How the program works

In row 3, we start 
again at the first 
column.

ROW 1, COL 1

2 filled

ROW 2, COL 4

ROW 3, COL 1



How the program works

In row 3, we start 
again at the first 
column.

ROW 1, COL 1

2 filled

ROW 2, COL 4

ROW 3, COL 1



How the program works

In row 3, we start 
again at the 2nd 
column.

ROW 1, COL 1

2 filled

ROW 2, COL 4

ROW 3, COL 2



How the program works

In row 4, we start 
again at the first 
column.

ROW 1, COL2

2 filled

ROW 2, COL 4

ROW 3, COL 1

ROW 4,COL 3



How the program works

SOLVED!!!

ROW 1, COL 1

2 filled

ROW 2, COL 4

ROW 3, COL 2



Pseudocode for N-Queens

Initialize a stack where we can keep 
track of our decisions.

Place the first queen, pushing its position 
onto the stack and setting filled to 0.

repeat these steps
 if there are no conflicts with the queens...

 else if there is a conflict and there is room to shift the current queen 

rightward...

 else if there is a conflict and there is no room to shift the current 

queen rightward...



Pseudocode for N-Queens

repeat these steps
 if there are no conflicts with the queens...

Increase filled by 1.  If filled is now N, then

the algorithm is done.  Otherwise, move to

the next row and place a queen in the

first column.



Pseudocode for N-Queens

repeat these steps
 if there are no conflicts with the queens...

 else if there is a conflict and there is room to shift the current queen 

rightward...

Move the current queen rightward,

adjusting the record on top of the stack

to indicate the new position.



Pseudocode for N-Queens

repeat these steps
 if there are no conflicts with the queens...

 else if there is a conflict and there is room to shift the current queen 

rightward...

 else if there is a conflict and there is no room to shift the current 

queen rightward...

Backtrack!

Keep popping the stack, and reducing filled

 by 1, until you reach a row where the queen

 can be shifted rightward. Shift this queen right.



Pseudocode for N-Queens

repeat these steps
 if there are no conflicts with the queens...

 else if there is a conflict and there is room to shift the current queen 

rightward...

 else if there is a conflict and there is no room to shift the current 

queen rightward...

Backtrack!

Keep popping the stack, and reducing filled

 by 1, until you reach a row where the queen

 can be shifted rightward. Shift this queen right.



Summary

Stacks have many applications.

The application which we have shown is 
called backtracking.

The key to backtracking: Each choice is 
recorded in a stack.

When you run out of choices for the 
current decision, you pop the stack, and 
continue trying different choices for the 
previous decision.
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