
23CS405:Software Engineering

UNIT-I
Topic: Introduction about Software Engineering

Sunitha

Assistant Professor
Computer science and Engineering

Software

Software is a program or set of programs containing
instructions that provide the desired functionality.

Engineering
Engineering is the process of designing and building
something that serves a particular purpose and finds a cost-
effective solution to problems.

Computer Science and

Engineering

What is Software Engineering
Software Engineering is the process of designing,

developing, testing, and maintaining software. It is a

systematic and disciplined approach to software

development that aims to create high-quality, reliable,

and maintainable software.

Lexical
Analyzer

Parser

Computer Science and

Engineering

Characteristics of Software:

 Software is developed or engineered ;it is not

manufactured in the classical sense.

 Software does not “wear out ” (not susceptible to

environment effects).

 Reusability of components.

Computer Science and

Engineering

Importance of Software Engineering

Computer Science and

Engineering

Evolving role of Software

There is a dual role of software in the industry. The first one is as a product and
the other one is as a vehicle for delivering the product. We will discuss both of
them.
1. As a Product It delivers computing potential across networks of Hardware. It
enables the Hardware to deliver the expected functionality. It acts as an
information transformer because it produces, manages, acquires, modifies,
displays, or transmits information.
2. As a Vehicle for Delivering a Product It provides system functionality (e.g.,
payroll system). It controls other software (e.g., an operating system). It helps
build other software (e.g., software tools).

Computer Science and

Engineering

Changing Nature of Software
Nowadays, seven broad categories of computer software present

continuing challenges for software engineers

System Software: System software is a collection of programs that

are written to service other programs.

Application Software: Application software is defined as

programs that solve a specific business need.

Engineering and Scientific Software: This software is used to

facilitate the engineering function and task. However modern

applications within the engineering and scientific area are moving

away from conventional numerical algorithms.

Computer Science and

Engineering

Software Myths
Most, experienced experts have seen myths or superstitions (false beliefs or
interpretations) or misleading attitudes (naked users) which creates major
problems for management and technical people. The types of software-related
myths are listed below. `Types of Software Myths
(i) Management Myths: We have all the standards and procedures available for
software development.
Ii) Customer Myths: The customer can be the direct users of the software, the
technical team, marketing / sales department, or other company. Customer has
myths leading to false expectations (customer) & that’s why you create
dissatisfaction with the developer.
Iii) Practitioner’s Myths: They believe that their work has been completed with
the writing of the plan.

Computer Science and

Engineering

A Generic view of process: Layered
Technology in Software Engineering
Software engineering is a fully layered technology, to develop
software we need to go from one layer to another. All the layers
are connected and each layer demands the fulfillment of the
previous layer.

Computer Science and

Engineering

Fig: The diagram shows the layers of

software development

Computer Science and

Engineering

What is a Software Process Framework
Software Process Framework details the steps and chronological
order of a process. Since it serves as a foundation for them, it is
utilized in most applications. Task sets, umbrella activities, and
process framework activities all define the characteristics of the
software development process. Software Process includes :
1. Tasks: They focus on a small, specific objective.
2. Action: It is a set of tasks that produce a major work product.
3. Activities: Activities are groups of related tasks and actions for
a major objective.

Computer Science and

Engineering

Capability MaturityModel
Integration(CMMI)
A maturity level is a well-defined evolutionary plateau toward
achieving a mature software process. Each maturity level provides
a layer in the foundation for continuous process improvement.
In CMMI models with a staged representation, there are five
maturity levels designated by the numbers 1 through 5
Initial
Managed
Defined
Quantitatively Managed
Optimizing

Computer Science and

Engineering

CMMI Staged Representation-
Maturity Levels

Computer Science and

Engineering

Waterfall Model

The Waterfall Model is a classical software development
methodology. It was first introduced by Winston W. Royce in
1970. It is a linear and sequential approach to software
development that consists of several phases. It must be
completed in a specific order.

Computer Science and

Engineering

Waterfall Model-Software Engineering

Computer Science and

Engineering

The Spiral Model
is one of the most important Software Development Life Cycle
models. The Spiral Model is a combination of the waterfall model
and the iterative model. It provides support for Risk Handling. The
Spiral Model was first proposed by Barry Boehm.

Computer Science and

Engineering

https://www.geeksforgeeks.org/top-8-software-development-models-used-in-industry/

Spiral Model

Computer Science and

Engineering

What is Agile Model

The Agile Model was primarily designed to help a project adapt
quickly to change requests. So, the main aim of the Agile model is
to facilitate quick project completion. To accomplish this task,
agility is required. Agility is achieved by fitting the process to the
project and removing activities that may not be essential for a
specific project.

Computer Science and

Engineering

Steps in the Agile Model
The agile model is a combination of iterative and incremental
process models. The steps involve in agile SDLC models are:
Requirement gathering
Design the Requirements
Construction / Iteration
Testing / Quality Assurance
Deployment
Feedback

Computer Science and

Engineering

https://www.geeksforgeeks.org/software-development-life-cycle-sdlc/
https://www.geeksforgeeks.org/requirements-gathering-introduction-processes-benefits-and-tools
https://www.geeksforgeeks.org/software-testing-basics/
https://www.geeksforgeeks.org/software-engineering-software-quality-assurance/
https://www.geeksforgeeks.org/software-deployment-in-software-development/

Computer Science and

Engineering

Computer Science and

Engineering

UNIT-II

Software Requirements

Functional and non-functional

requirements

Requirements analysis is a very critical process that enables the

success of a system or software projectto be assessed.

Requirements are generally split into two types: Functional and

Non-functional requirements.

Understandinganddistinguishingbetweenthesetypesofrequireme

ntsisessentialforthesuccessof any project. Our comprehensive

System design coursecovers these concepts in detail, providing

you with the knowledge and skills to effectively gather,

document, and analyze requirements.

Computer Science and

Engineering

Types of requirement:

User requirements:

Statementsinnaturallanguageplusdiagramsoftheservicesthesystempr

ovidesanditsoperational constraints. Written for customers.

System requirements:

Astructureddocumentsettingoutdetaileddescriptionsofthesystem’sfu

nctions, services and operational constraints. Defines what should

be implemented so may be part of a contract between client and

contractor.

Computer Science and

Engineering

Requirements Engineering Process
Feasibility Study
Requirements elicitation
Requirements specification
Requirements for verification and validation
Requirements management

Computer Science and

Engineering

SoftwareRequirementDocument:

Software Requirement Specification (SRS) Formats the name

suggests, is a complete specification and description of

requirements of the software that need to be fulfilled for the

successful development of the software system. These

requirements can be functional as well as non-functional

depending upon the type of requirement. The interaction between

different customers and contractors is done because it is

necessary to fully understand the needs of customers.

Computer Science and

Engineering

UNIT-III

Design Engineering

Computer Science and

Engineering

Software Design Process and quality–
Software Engineering

The design phase of software development deals with
transforming the customer requirements as described in the
SRS documents into a form implementable using a
programming language. The software design process can be
divided into the following three levels or phases of design:
• Interface Design
• Architectural Design
• Detailed Design

Computer Science and

Engineering

Software Development Process
Process

Computer Science and

Engineering

Design Concepts

Concepts are designed and documented during the design phase:

• Different modules are required.

• Control relationships among modules.

• Interface among different modules

• Data structure among the different modules Algorithms are

required to be implemented among the individual modules.

Computer Science and

Engineering

Creating an Architectural Design

The software needs an architectural design to represent the

design of the software. IEEE defines architectural design as “the

process of defining a collection of hardware and software

components and their interfaces to establish the framework for

the development of a computer system.” The software that is

built for computer-based systems can exhibit one of these many

architectural styles.

System Category: A set of components (eg: a database,

computational modules) that will perform a function required by

the system. The set of connectors will help in coordination,

communication and cooperation between the components.

Computer Science and

Engineering

Architectural Style, Architectural
Patterns and Design Patterns

The architectural style shows how do we organize our code, or

how the system will look like from 10000 feet helicopter view to

show the highest level of abstraction of our system design.

Furthermore, when building the architectural style of our system

we focus on layers and modules and how they are

communicating with each other.

Computer Science and

Engineering

Architectural Style

Structure architectural styles: such as layered, pipes and filters

and component-based styles.

Messaging styles: such as Implicit invocation, asynchronous

messaging and publish-subscribe style.

Distributed systems: such as service-oriented, peer to peer style,

object request broker, and cloud computing styles.

Shared memory styles: such as role-based, blackboard,

database-centric styles.

Adaptive system styles: such as microkernel style, reflection,

domain-specific language styles.

Computer Science and

Engineering

Architectural Patterns

The architectural pattern shows how a solution can be used to

solve a reoccurring problem. In another word, it reflects how a

code or components interact with each other. Moreover, the

architectural pattern is describing the architectural style of our

system and provides solutions for the issues in our architectural

style. Personally, I prefer to define architectural patterns as a way

to implement our architectural style.

Computer Science and

Engineering

Design Patterns

Design patterns are accumulative best practices and experiences

that software professionals used over the years to solve the

general problem by – trial and error – they faced during software

development. The Gang of Four (GOF, refers to Eric Gamma,

Richard Helm, Ralf Johnson, and John Vlissides) wrote a book in

1994 titled with “Design Pattern – Elements of reusable object-

oriented software” in which they suggested that design patterns

are based on two main principles of object-oriented design:

Develop to an interface, not to an implementation.

Favor object composition over inheritance.

Computer Science and

Engineering

Unified Modeling Language (UML)

Unified Modeling Language (UML) is a standardized visual

modeling language used in the field of software engineering to

provide a general-purpose, developmental, and intuitive way to

visualize the design of a system. UML helps in specifying,

visualizing, constructing, and documenting the artifacts of

software systems.

Computer Science and

Engineering

Unified Modelling Language (UML)

Computer Science and

Engineering

Class Diagram: Class diagrams are one of the most widely
used diagrams. It is the backbone of all the object-oriented
software systems. It depicts the static structure of the
system. It displays the system's class, attributes, and
methods. It is helpful in recognizing the relation between
different objects as well as classes.
Sequence Diagram: It shows the interactions between the
objects in terms of messages exchanged over time. It
delineates in what order and how the object functions are in
a system.

Computer Science and

Engineering

Collaboration Diagrams

Computer Science and

Engineering

A collaboration diagram is a behavioral UML diagram which is

also referred to as a communication diagram. It illustrates how

objects or components interact with each other to achieve

specific tasks or scenarios within a system.

Computer Science and

Engineering

https://www.geeksforgeeks.org/behavior-diagrams-unified-modeling-languageuml/

Use Case Diagram: It represents the functionality of a system

by utilizing actors and use cases. It encapsulates the functional

requirement of a system and its association with actors. It

portrays the use case view of a system.

Component Diagram: It portrays the organization of the

physical components within the system. It is used for modeling

execution details. It determines whether the desired functional

requirements have been considered by the planned development

or not, as it depicts the structural relationships between the

elements of a software system.

Computer Science and

Engineering

UNIT-IV

Testing Strategies

Computer Science and

Engineering

Testing Strategies
A Strategic Approach to Software Testing

Softwaretestingistheprocessofevaluatingasoftwareapplicationtoiden

tifyifitmeetsspecified requirements and to identify any defects. The

following are common testing strategies:

1. Black box testing–

Teststhefunctionalityofthesoftwarewithoutlookingattheinternalcode

structure.

2. White box testing–Tests the internal code structure and logic of

the software.

3. Unit testing– Tests individual units or components of the

software to ensure they are functioning as intended.

Computer Science and

Engineering

Test Strategies for Conventional
Software:

Conventional testing is defined as traditional testing where the

main aim is to check whether all the requirements stated by the

user are achieved.

The difference between conventional testing and other testing

approach is that it concentrates on checking all the requirements

given by the user rather than following a software development

life cycle.

Conventional testing mainly focuses on functional testing.

Computer Science and

Engineering

TEST STRATEGIES FOR CONVENTIONAL
SOFTWARE
Unit Testing The unit test focuses on the internal
processing logic and data structures within the boundaries
of a component. This type of testing can be conducted in
parallel for multiple components. Unit-test considerations:-
1. The module interface is tested to ensure proper
information flows (into and out). 2. Local data structures are
examined to ensure temporary data store during execution.

Computer Science and

Engineering

Test Strategies for Conventional
Software

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Computer Science and

Engineering

White Box Testing
White box testing is a software testing technique that
involves testing the internal structure and workings of a
software application. The tester has access to the source
code and uses this knowledge to design test cases that can
verify the correctness of the software at the code level.

Computer Science and

Engineering

Types Of White Box Testing
White box testing can be done for different purposes. The
three main types are:
1. Unit Testing
2. Integration Testing
3. Regression Testing
Unit Testing Checks if each part or function of the
application works correctly. Ensures the application meets
design requirements during development.
Integration Testing Examine show different parts of the
application work together.
Regression Testing Verifies that changes or updates don’t
break existing functionality. Ensures the application still
passes all existing tests after updates.

Computer Science and

Engineering

Validation

Validation is the process of checking whether the software
product is up to the mark or in other words product has
high-level requirements. It is the process of checking the
validation of the product i.e. it checks what we are
developing is the right product. It is validation of the actual
and expected products. Validation is dynamic testing.

Computer Science and

Engineering

System Testing

System Testing is a type of software testing that is
performed on a completely integrated system to evaluate
the compliance of the system with the corresponding
requirements. In system testing, integration testing passed
components are taken as input. The goal of integration
testing is to detect any irregularity between the units that
are integrated.

Computer Science and

Engineering

Debugging

Debugging in Software Engineering is the process of
identifying and resolving errors or bugs in a software
system. It’s a critical aspect of software development,
ensuring quality, performance, and user satisfaction.
Despite being time-consuming, effective debugging is
essential for reliable and competitive software products.

Computer Science and

Engineering

Metrics for Process and products

Software Metrics A metric is a measurement of the level at
which any impute belongs to a system product or process.
Software metrics are a quantifiable or countable assessment
of the attributes of a software product. There are 4 functions
related to software metrics:
1. Planning
2. Organizing
3. Controlling
4. Improving

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Metrics for Software Quality

In Software Engineering, Software Measurement is done
based on some Software Metrics where these software
metrics are referred to as the measure of various
characteristics of a Software. In Software engineering
Software Quality Assurance (SAQ)assures the quality of the
software. A set of activities in SAQ is continuously applied
throughout the software process. Software Quality is
measured based on some software quality metrics.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

UNIT-V

Risk management & Quality management

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Black Box Testing

Black-box testing is a type of software testing in which the
tester is not concerned with the software’s internal
knowledge or implementation details but rather focuses on
validating the functionality based on the provided
specifications or requirements.

Computer Science and

Engineering

Reactive and Proactive Risk
Strategies:

Computer Science and

Engineering

one of the best methods to identify main cause or root cause
of problems or events in very systematic way or process.
RCA is based on the idea that for effective management, we
need to find out way to prevent arising or occurring
problems.
The main question that arises is whether RCA is reactive or
proactive Some people think that RCA is only required to
solve problems or failures that have already occurred. But,
it’s not true. One should know that RCA can be both i.e.
reactive and proactive as given below –

Computer Science and

Engineering

Advantages:
Helps one to prioritize tasks according to its severity and
then resolve it. Increases team work and their knowledge.
Disadvantages: Sometimes, resolving equipment after
failure can be more costly than preventing failure from an
occurrence. Failed equipment can cause greater damage to
system and interrupts production activities.

Computer Science and

Engineering

SoftwareRisks:

Software risk analysis in software development is a system
atic process that involves identifying and evaluating any
problem that might happen during the creation,
implementation and maintaining of software systems. It can
guarantee that projects are finished on schedule, within
budget, and with the appropriate quality. It is a crucial
component of software development.

Computer Science and

Engineering

Software risk analysis in
Software Development

Software risk analysis in Software Development involves

identifying which application risks should be tested first.

Risk is the possible loss or harm that an organization might

face. Risk can include issues like project management,

technical challenges, resource constraints, changes in

requirements, and more Finding every possible risk and

estimating are the two goals of risk analysis.

Computer Science and

Engineering

Why perform software risk analysis

Using different technologies, software developers add new

features in Software Development. Software system

vulnerabilities grow in combination with technology. Software

goods are therefore more vulnerable to malfunctioning or

performing poorly. Many factors, including timetable delays,

inaccurate cost projections, a lack of resources, and security

hazards, contribute to the risks associated with software in

Software Development.
Computer Science and

Engineering

Risks Identification:
Identifying risk is one of most important or essential and initial

steps in risk management process. By chance, if failure occurs in

identifying any specific or particular risk, then all other steps that

are involved in risk management will not be implemented for that

particular risk. For identifying risk, project team should review

scope of program, estimate cost, schedule, technical maturity,

parameters of key performance, etc. To manage risk, project

team or organization are needed to know about what risks it

faces, and then to evaluate them. Generally, identification of risk

is an iterative process

Computer Science and

Engineering

Risk Mitigation, Monitoring and

Management(RMMM)

A risk management technique is usually seen in the software

Project plan. This can be divided into Risk Mitigation,

Monitoring, and Management Plan (RMMM). In this plan, all

works are done as part of risk analysis. As part of the overall

project plan project manager generally uses this RMMM plan. In

some software teams, risk is documented with the help of a Risk

Information Sheet (RIS). This RIS is controlled by using a

database system for easier management of information i.e

creation, priority ordering, searching, and other analysis.

Computer Science and

Engineering

QUALITY CONCEPTS:
(1) A quality management approach,
(2) Effective software engineering technology(methods and

tools),
(3) Formal technical reviews that are applied throughout

the software process,
(4) a multitier testing strategy,
(5) Control of software documentation and the changes

made to it,
(6) A procedure to ensure compliance with software

development standards(when applicable),
(7) measurement and reporting mechanisms.

Computer Science and

Engineering

Software Quality Assurance

Software Quality Assurance (SQA)is simply a way to assure

quality in the software. It is the set of activities that ensure

processes, procedures as well as standards are suitable for the

project and implemented correctly. Software Quality Assurance

is a process that works parallel to Software Development. It

focuses on improving the process of development of software so

that problems can be prevented before they become major issues.

Software Quality Assurance is a kind of Umbrella activity that is

applied throughout the software process.

Computer Science and

Engineering

Major Software Quality Assurance
(SQA) Activities

SQA Management Plan : Make a plan for how you will carry out

the SQA throughout the project. Think about which set of

software engineering activities are the best for project. check

level of SQA team skills.

2. Set The Check Points : SQA team should set checkpoints.

Evaluate the performance of the project on the basis of collected

data on different check points.

3. Measure Change Impact : The changes for making the

correction of an error sometimes re introduces more errors keep

the measure of impact of change on project. Reset the new

change to check the compatibility of this fix with whole project.

Computer Science and

Engineering

Process of Software Review

Computer Science and

Engineering

FormalTechnicalReviews:
FormalReview
generallytakesplaceinpiecemealapproachthatconsistsofsix
different steps that are essential. Formal review generally
obeys formal process. It is also one of the most important
and essential techniques required in static testing.

Computer Science and

Engineering

Phases of Formal Reviews

Computer Science and

Engineering

ISO9000Certification
TheInternationalorganizationforStandardizationisaworldwi
defederationofnational standard bodies. The International
standards organization (ISO) is a standard which serves as a
for contract between independent parties. It specifies
guidelines for development of quality system.

Computer Science and

Engineering

ISO9000Certification

Computer Science and

Engineering

