
SoftwareEngineering(23CS405)

Dept of CSE, NRCM D.Sunitha, Asst.Prof Page1

UNIT-1

Introduction to Software Engineering: The evolving role of software, changing nature of software,

software myths. A Generic view of process: Software engineering- a layered technology, a process

framework, the capability maturity model integration (CMMI). Process models: The waterfall model,

Spiral model and Agile methodology

 Software: Software is a program or set of programs containing instructions that provides the desired functionality.

Engineering is the process of designing and building something that serves a particular purpose and finds a cost-effecti

 ve solution to problems.

Engineering: Engineering is the application of scientific and practical knowledge to invent, design,

build, maintain, and improve frameworks, processes, etc.

What is Software Engineering?

Software Engineering is the process of designing, developing, testing, and maintaining software. It is a

systematic and disciplined approach to software development that aims to create high-quality, reliable,

and maintainable software.

1. Software engineering includes a variety of techniques, tools, and methodologies, including

requirements analysis, design, testing, and maintenance.

2. It is a rapidly evolving field, and new tools and technologies are constantly being developed to

improve the software development process.

3. By following the principles of software engineering and using the appropriate tools and

methodologies, software developers can create high-quality, reliable, and maintainable software that

meets the needs of its users.

4. Software Engineering is mainly used for large projects based on software systems rather than single

programs or applications.

5. The main goal of Software Engineering is to develop software applications for improving quality,

budget, and time efficiency.

6. Software Engineering ensures that the software that has to be built should be consistent, correct, also

on budget, on time, and within the required requirements.

KeyPrinciplesofSoftware Engineering

1. Modularity: Breaking the software in to smaller, reusable components that can be developed and

tested independently.

2. Abstraction: Hiding the implementation details of a component and exposing only the necessary

functionality to other parts of the software.

3. Encapsulation: Wrapping up the data and functions of an object into a single unit, and protecting the

internal state of an object from external modifications.

SoftwareEngineering(23CS405)

Dept of CSE, NRCM D.Sunitha, Asst.Prof Page2

4. Reusability: Creating components that can be used in multiple projects, which can save time and

resources.

5. Maintenance: Regularly updating and improving the software to fix bugs, add new features, and

address security vulnerabilities.

6. Testing: Verifying that the software meets its requirements and is free of bugs.

7. Design Patterns: Solving recurring problems in software design by providing templates for

solvingthem.

8. Agile methodologies: Using iterative and incremental development processes that focus on customer

satisfaction, rapid delivery, and flexibility.

9. Continuous Integration & Deployment: Continuously integrating the code changes and

deployingthem into the production environment.

CharacteristicsofSoftwareEngineering:

Software Engineering is a systematic, disciplined, quantifiable study and approach to the design,

development, operation, and maintenance of a software system. There are four main Attributes of

Software Engineering.

1. Efficiency: It provides a measure of the resource requirementof asoftware product efficiently.

2. Reliability: It assures that the product will deliver the same results when used in similar working

environment.

3. Reusability: This attribute makes surethat the module can beused in multiple applications.

4. Maintainability: It is the ability of the software to be modified, repaired, or enhanced easilywith

changing requirements.

Evolving role(or)Dual RoleofSoftware:

There is a dual role of software in the industry. The first one is as a product and the other one is as a

vehicle for delivering the product. We will discuss both of them.

1. Asa Product

 ItdeliverscomputingpotentialacrossnetworksofHardware.

 ItenablestheHardwaretodelivertheexpectedfunctionality.

 Itactsasaninformationtransformerbecauseitproduces, manages, acquires, modifies, displays, or

transmits information.

2. Asa Vehiclefor Delivering a Product

 It provides system functionality (e.g., payroll system).

 It controls other software (e.g., an operating system).

 It helps build other software (e.g., software tools).

ObjectivesofSoftwareEngineering

1. Maintainability:It should be feasible for the software to evolve to meet changing requirements.

2. Efficiency:The softwareshouldnotmakewastefuluseofcomputingdevicessuchasmemory,processor

cycles, etc.

3. Correctness: A software product is correct if the different requirements specified in the

SRSDocument have been correctly implemented.

4. Reusability: A software product has good reusability if the different modules of the product can

easily be reused to develop new products.

5. Testability: Here software facilitates both the establishment of test criteria and the evaluation of

thesoftware concerning those criteria.

6. Reliability: It is an attribute of software quality. The extent to which a program can be expected to

perform its desired function, over an arbitrary time period.

https://www.geeksforgeeks.org/software-requirement-specification-srs-format/
https://www.geeksforgeeks.org/software-requirement-specification-srs-format/

DeptofCSE,NRCM D. Sunitha,Asst.Prof Page3

 SoftwareEngineering(23CS405)

7. Portability: In this case, the software can be transferred from one computer system or environment to

another.

8. Adaptability: In this case, the software allows differing system constraints and the user needs to

besatisfied by making changes to the software.

9. Interoperability: Capability of2ormorefunctional unitstoprocessdatacooperatively.

ProgramvsSoftwareProduct

Parameters Program SoftwareProduct

Definition

A program is a set of instructionsthat

are given to a computer in order to

achieve a specific task.

Software is when a program is made

available for commercial businessand

is properly documented along with its

licensing.

Software Product = Program +

Documentation + Licensing.

StagesInvolved

Program is one of the stagesinvolved

in the development of the software.

Software Development usually

follows a life cycle, which involves

the feasibility study of the project,

requirement gathering, development

of a prototype, system design,coding,

and testing.

AdvantagesofSoftware Engineering

There are several advantages to using a systematic and disciplined approach to software development,

such as:

1. Improved Quality: By following established software engineering principles and techniques, the

software can be developed with fewer bugs and higher reliability.

2. Increased Productivity: Using modern tools and methodologies can streamline the development

process, allowing developers to be more productive and complete projects faster.

3. Better Maintainability: Software that is designed and developed using sound software engineering

practices is easier to maintain and update over time.

4. Reduced Costs: By identifying and addressing potential problems early in the development process,

software engineering can help to reduce the cost of fixing bugs and adding new features later on.

5. Increased Customer Satisfaction:By involving customers in the development process and

developing software that meets their needs, software engineering can help to increase customer

satisfaction.

6. Better Team Collaboration: By using Agile methodologies and continuous integration, software

engineering allows for better collaboration among development teams.

7. Better Scalability: By designing software with scalability in mind, software engineering can help to

ensure that software can handle an increasing number of users and transactions.

8. BetterSecurity: By following the Software Development Life Cycle(SDLC)andperforming security

testing, software engineering can help to prevent security breaches and protect sensitive data.

In summary, software engineering offers a structured and efficient approach to software development,

which can lead to higher-quality software that is easier to maintain and adapt to changing requirements.

This can help to improve customer satisfaction and reduce costs, while also promoting better

collaboration among development teams.

https://www.geeksforgeeks.org/software-development-life-cycle-sdlc/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page4

DisadvantagesofSoftwareEngineering

While Software Engineering offers many advantages, there are also some potential disadvantages to consider:

1. High upfront costs: Implementing a systematic and disciplined approach

 tosoftwaredevelopmentcan be resource-intensive and require a significant investment in tools

and training.

2. Limited flexibility: Following established software engineering principles and methodologies can be

rigid and may limit the ability to quickly adapt to changing requirements.

3. Bureaucratic: Software Engineering can create an environment that is bureaucratic, with a lot of

processes and paperwork, which may slow down the development process.

4. Complexity: With the increase in the number of tools and methodologies, software engineering canbe

complex and difficult to navigate.

5. Limitedcreativity: The focus on structure and process can stifle creativity and innovation among

developers.

6. High learning curve: The development process can be complex, and it requires a lot of learning and

training, which can be challenging for new developers.

7. Highdependenceontools: Softwareengineeringheavilydependsonthetools, and if the tools are not

properly configured or are not compatible with the software, it can cause issues.

8. High maintenance: The software engineering process requires regular maintenance to ensure that the

software is running efficiently, which can be costly and time-consuming.

In summary, software engineering can be expensive and time-consuming, and it may limit flexibility and

creativity. However, the benefits of improved quality, increased productivity, and better maintainability

can outweigh the costs and complexity. It’s important to weigh the pros and cons of using software

engineering and determine if it is the right approach for a particular software project.

ChangingNatureofSoftware:

Nowadays, seven broad categories of computer software present continuing challenges for software

engineers. Which is given below?

1. System Software: System software is a collection of programs that are written to service other

programs. Some system software processes complex but determinate, information structures. Other

system application processes largely indeterminate data. Sometimes when, the system software areais

characterized by the heavy interaction with computer hardware that requires scheduling, resource

sharing, and sophisticated process management.

2. Application Software: Application software is defined as programs that solve a specific business

need. Application in this area processes business or technical data in a way that facilitates business

operation or management technical decision-making. In addition to conventional data processing

applications, application software are used to control business functions in real-time.

3. Engineering and Scientific Software: This software is used to facilitate the engineering functionand

task. However modern applications within the engineering and scientific area are moving away from

conventional numerical algorithms. Computer-aided design, system simulation, and other interactive

applications have begun to take real-time and even system software characteristic.

4. Embedded Software: Embedded software resides within the system or product and is used to

implement and control features and functions for the end-user and for the system itself. Embedded

software can perform limited and esoteric functions or provide significant function and control

capability.

5. Product-line Software: Designed to provide a specific capability for use by many customers,

product-line software can focus on the limited and esoteric marketplace or address the massconsumer

market.

https://www.geeksforgeeks.org/difference-between-traditional-and-agile-software-development/
https://www.geeksforgeeks.org/difference-between-traditional-and-agile-software-development/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page5

6. WebApplication: Itisaclient-servercomputerprogramthattheclientrunsonthewebbrowser. In their

simplest form, Web apps can be little more than a set of linked hypertext files that present

informationusingtextandlimitedgraphics.However, as e-commerce and B2 B applications grow in

importance. Web apps are evolving into a sophisticated computing environment that not only

provides a standalone feature, computing function, and content to the end user.

7. Artificial Intelligence Software: Artificial intelligence software makes use of a non numerical

algorithm to solve a complex problem that is not amenable to computation or straight forward

analysis. Applications within this are a include robotics, expert systems, pattern recognition, artificial

neural networks, theorem proving, and game playing.

SoftwareMyths

Most, experienced experts have seen myths or superstitions (falsebeliefsorinterpretations)ormisleading

attitudes (naked users) which creates major problems for management and technical people. The types of

software-related myths are listed below.

`TypesofSoftwareMyths

(i) Management Myths:

Myth1:

We have all the standards and procedures available for software development.

Fact:

 Softwareexperts donotknowall therequirements forthe software development.

 Andallexistingprocessesareincompleteasnew softwaredevelopmentisbasedonnewanddifferent

problem.

Myth2:

The addition of the latest hardware programs will improve the software development.

Fact:

 The role of the latest hardware is not very high on standard software development; instead (CASE)

Engineering tools help the computer, they are more important than hardware to produce quality and

productivity.

 Hence, the hardware resources are misused.

Myth3:

 With the addition of more people and program planners to Software development can help meet

project deadlines (If lagging behind).

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page6

Fact:

 If software is late, adding more people will merely make the problem worse. This is because the

peoplealready workingon theproject nowneed to spend timeeducating thenewcomers, and arethus

taken away from their work. The newcomers are also far less productive than the existing software

engineers, and so the work put into training them to work on the software does not immediately meet

with an appropriate reduction in work.

(ii) CustomerMyths:

The customer can be the direct users of the software, the technical team, marketing / sales department, or

other company. Customer has myths leading to false expectations (customer) & that’s why you create

dissatisfaction with the developer.

Myth1:

A general statement of intent is enough to start writing plans (software development) and details of

objectives can be done over time.

Fact:

 Officialanddetaileddescriptionofthedatabasefunction,ethicalperformance,communication,structural

issues and the verification process are important.

 Unambiguous requirements(usuallyderivediteratively)are developed only through effective and

continuous

Communication between customer and developer.

Myth2:

Software requirements continually change, but change can be easily accommodated because software is

flexible

Fact:

 It is true that software requirements change, but the impact of change varies with the time at which it

is introduced. When requirements changes are requested early (before design or code has been

started), the cost impact is relatively small. However, as time passes, the cost impact grows rapidly—

resources have been committed, a design framework has been established, and change can cause

upheaval that requires additional resources and major design modification.

DifferentStagesofMyths

(iii) Practitioner’sMyths:

Myths1:

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page7

They believe that their work has been completed with the writing of the plan.

Fact:

 It is true that every 60-80% effort goes into the maintenance phase (as of the latter software release).

Efforts are required, where the product is available first delivered to customers.

Myths2:

There is no other way to achieve system quality, until itis“running”.

Fact:

 Systematic review of project technology is the quality of effective software verification method.

These updates are quality filters and more accessible than test.

Myth3:

An operating system is the only product that can be successfully exported project.

Fact:

 Aworking system is not enough, the right document brochures and booklets are also required to

provide guidance & software support.

Myth4:

Engineering software will enable us tobuild powerful andunnecessary document &always delay us.

Fact:

 Software engineering isnot about creating documents. It is about creating a quality product.

Betterquality leads to reduced rework. And reduced rework results in faster delivery times.

A Generic view of process:

LayeredTechnology in SoftwareEngineering



Software engineeringis a fully layered technology, to develop software we need to go from one layer to

another. All the layers are connected and each layer demands the fulfillment of the previous layer.

Fig:The diagram shows thelayers of softwaredevelopment

https://www.geeksforgeeks.org/software-engineering-introduction-to-software-engineering/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page8

Layeredtechnologyisdividedintofour parts:

1. A quality focus:It defines the continuous process improvement principles of software. It provides

integrity that means providing security to the software so that data can be accessed by only an authorized

person, no outsider can access the data. It also focuses on maintainability and usability.

2. Process: It is the foundation or base layer of software engineering. It is key that binds all the layers

together which enables the development of software before the deadline or on time.Process defines a

framework that must be established for the effective delivery of software engineering technology. The

software process covers all the activities, actions, and tasks required to be carried out for software

development.

Processactivitiesarelistedbelow:-

 Communication: It is the first and foremost thing for the development of software. Communicationis

necessary to know the actual demand of the client.

 Planning: It basically means drawing a map for reduced the complication of development.

 Modeling: In this process, amodeliscreated accordingto theclient forbetterunderstanding.

 Construction: It includes thecodingandtestingoftheproblem.

 Deployment:-Itincludes thedeliveryofsoftwaretotheclientforevaluationand feedback.

3. Method: During the process of software development the answers to all “how-to-do” questions are

given by method. It has the information of all the tasks which includes communication, requirement

analysis, design modeling, program construction, testing, and support.

4. Tools: Software engineering tools provide a self-operating system for processes and methods. Tools

are integrated which means information created by one tool can be used by another.

SoftwareProcessFramework–Software Engineering

ASoftware Process Framework is a structured approach that defines the steps, tasks, and activities

involved in software development. This framework serves as afoundation for software engineering,

guiding the development team through various stages to ensure asystematic and efficient process. A

Software Process Framework helps in project planning, risk management and quality assurance by

detailing the chronological order of actions.

WhatisaSoftwareProcess Framework?

Software Process Framework details the steps and chronological order of a process. Since it serves as a

foundation for them, it is utilized in most applications. Task sets, umbrella activities, and process

frameworkactivitiesalldefinethecharacteristicsofthesoftwaredevelopmentprocess.SoftwareProcessincludes

:

1. Tasks: They focus onasmall, specificobjective.

2. Action: It is a set of tasks that produce a major work product.

3. Activities: Activities are groups ofrelated tasks andactions foramajorobjective.

What Is a Software Development Framework?

https://www.geeksforgeeks.org/software-processes-in-software-engineering/
https://www.geeksforgeeks.org/software-processes-in-software-engineering/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page9

Asoftware development frameworkis a structured set of tools, libraries, best practices, and guidelines that

help developers buildsoftware applications. Think of it as a template or foundation that provides the basic

structure and components needed for a software project.

Key Points

1. Foundation: It gives a basic structure or template for developing software, so developers don’t have

to start from scratch.

2. ComponentsandTools: It includes pre-builtcomponentsandtoolsthatmakedevelopmentfaster and

easier.

3. Best Practices and Guidelines: It offers best practices and guidelines to ensure the software is built

in an organized and efficient way.

4. Customization: Developers can modify and add new functions to customize the framework to their

specific needs.

AdvantagesofSoftware DevelopmentFramework

ASoftware Development Framework offers numerous benefits that streamline thesoftware

development process and enhance the quality and efficiency of the final product. Here are some key

advantages:

1. IncreasedProductivity: Frameworks provide pre-built components and tools, allowing developers to

focus on specific application logic rather than reinventing the wheel.

2. ConsistentQuality: Byfollowing best practices and standardized processes, frameworks help ensure

consistent code quality and structure across the project.

3. ReducedDevelopmentTime: With ready-to-usetemplatesandlibraries, developers can significantly

cut down on the time needed to build applications from scratch.

4. Better Maintainability: A structured framework makes the code base more organized and easier

tounderstand, which simplifies maintenance and updates.

5. EnhancedSecurity: Frameworks often include built-insecurity features and follow industry best

practices, reducing the risk of vulnerabilities.

6. Scalability: Frameworks are designed to handle growth, making it easier to scale applications as user

demand increases.

DisadvantagesofSoftwareDevelopmentFramework

WhileSoftwareDevelopmentFrameworks offer several advantages, they also come with certain drawbacks

that developers and organizations should consider:

1. Learning Curve: Frameworks often have a steep learning curve, requiring developers to invest time

and effort in understanding the framework’s architecture, conventions, and best practices.

2. Restrictions: Some frameworks impose constraints and limitations on how developers can designand

implement certain features, potentially limiting flexibility and creativity.

3. Complexity Overhead: In some cases, frameworks introduce unnecessary complexity, especially for

smaller or simpler projects, which can lead to over-engineering.

4. Performance Overhead: Using a framework may introduce additional layers of abstraction and

overhead, which can impact the performance of the application, particularly in resource-intensive

environments.

5. Vendor Lock-in: Depending heavily on a specific framework can lead to vendor lock-in, making it

challenging to switch to alternative technologies or frameworks in the future.

HowtoChooseaSuitableDevelopment Framework

Choosing a suitable development framework is crucial for the success of a software project. Here are key

steps to help you make an informed decision. Here is a simple and effective strategy to help you selectthe

most suitable framework for your project

https://www.geeksforgeeks.org/5-most-commonly-used-software-development-methodologies/
https://www.geeksforgeeks.org/what-is-application-software/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page10

1. ConsidertheFramework’s Language

Popular Languages: Start with frameworks in popular programming languages like Java, Python, or

Ruby if you have no preference. These languages often have robust frameworks with strong

community support.

2. Open-Sourcevs.PaidFrameworks

Open-Source: Generally havealargeuserbase,frequent updates,andcommunitycontributions.

Paid: Often more reliable with better support but may lack customization and timely updates.

3. CommunityandSupport

Community Size: A large, active community means better support, more tutorials, and a moremature

framework. Look for frameworks with extensive community resources and engagement.

4. ReviewCaseStudies and Example Applications

Practical Insights: Check the framework’s website or repositories for case studies or example

applications. These can provideinsights intodevelopment processesandmethods thatwork well with the

framework.

5. TesttheFrameworkYourself

Hands-On Experience: Try out the framework in your own project to see how it fits your needs.

Testing helps you understand the framework’s functionality and whether it suits your development

scenario.

SoftwareProcessFramework Activities

The Softwareprocess framework is required forrepresenting common process activities. Five framework

activities are described in a process framework forsoftware engineering. Communication, planning,

modeling, construction, and deployment are all examples of framework activities. Each engineering

actiondefinedbyaframeworkactivitycomprisesalistofneededworkoutputs,project milestones, and software

quality assurance (SQA)points.

Capability MaturityModel Integration(CMMI)



The Capability Maturity Model Integration (CMMI) is an advanced framework designed to improve and

integrate processes across various disciplines such as software engineering, systems engineering, and

people management. It builds on the principles of the original CMM, enabling organizations to enhance

their processes systematically. CMMI helps organizations fulfill customer needs, create value for

investors, and improve product quality and market growth. It offers two representations, staged and

continuous, to guide organizations in their process improvement efforts.

What is Capability Maturity Model Integration (CMMI)?

Capability Maturity Model Integration (CMMI) is a successor of CMMand is a more evolved model that

incorporates best components of individual disciplines of CMM like Software CMM, Systems

Engineering CMM, People CMM, etc. Since CMM is a reference model of matured practices in aspecific

discipline, so it becomes difficult to integrate these disciplines as per the requirements. This is why

CMMI is used as it allows the integration of multiple disciplines as and when needed.

ObjectivesofCMMI

1. Fulfillingcustomerneedsandexpectations.

2. Valuecreationforinvestors/stockholders.

3. Marketgrowthisincreased.

4. Improvedqualityofproducts andservices.

https://www.geeksforgeeks.org/software-engineering-introduction-to-software-engineering/
https://www.geeksforgeeks.org/software-engineering-software-quality-assurance/
https://www.geeksforgeeks.org/software-engineering-software-quality-assurance/
https://www.geeksforgeeks.org/software-engineering-capability-maturity-model-cmm/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page11

5. Enhancedreputationin Industry.

CMMIRepresentation–StagedandContinuous

Arepresentationallowsanorganizationtopursueadifferentsetofimprovementobjectives.Thereare two

representations for CMMI :

 StagedRepresentation:

o Uses a pre-defined set of process areas to define improvement path.
o Provides a sequence of improvements, where each part in the sequence serves as a

foundation for the next.

o An improved path is defined by maturity level.

o Maturity level describes the maturity of processes in organization.
o Staged CMMI representation allows comparison between different organizations for

multiple maturity levels.

 ContinuousRepresentation:

o Allows selection ofspecificprocessareas.

o Uses capability levels that measures improvement of an individual process area.
o Continuous CMMIrepresentation allows comparison between different organizations on a

process-area-by-process-area basis.

o Allows organizations to select processes which require more improvement.
o In this representation, order of improvement of various processes can be selected

whichallows the organizations to meet their objectives and eliminate risks.

CMMIModel –MaturityLevels

InCMMIwithstagedrepresentation, therearefive maturitylevelsdescribedasfollows:

1. Maturitylevel1: Initial

 Processes are poorly managed or controlled.

 Unpredictable outcomes of processes involved.

 Adhoc and chaotic approach used.

 NoKPAs (KeyProcessAreas) defined.

 Lowest quality and highest risk.

2. Maturitylevel2: Managed

 Requirements are managed.

 Processes are planned and controlled.

 Projects are managed and implemented according to their documented plans.

 This risk involved is lower than Initial level, but still exists.

 Quality is better than Initial level.

3. Maturitylevel3: Defined

 Processes are well characterized and described using standards, proper procedures, and methods,

tools, etc.

 Mediumqualityand mediumrisk involved.

 Focusisprocessstandardization.

4. Maturitylevel4: Quantitatively managed

 Quantitative objectives for process performance and quality are set.

 Quantitative objectives arebased on customer requirements, organization needs, etc.

 Process performance measures are analyzed quantitatively.

 Higher quality ofprocesses is achieved.

 lowerrisk

5. Maturitylevel5: Optimizing

https://www.geeksforgeeks.org/different-types-of-risks-in-software-project-development/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page12

 Continuous improvement in processes and their performance.

 Improvement has to be both incremental and innovative.

 Highest quality ofprocesses.

 Lowest risk in processes and their performance.

CMMIModel –CapabilityLevels

A capability level includes relevant specific and generic practices for a specific process area that can

improve the organization’s processes associated with that process area. For CMMI models with

continuous representation, there are six capability levels as described below:

1. Capabilitylevel 0 : Incomplete

 In completeprocess – partially or not performed.

 One or more specific goals of process are not met.

 Nogenericgoals arespecifiedforthis level.

 thiscapabilitylevelissameasmaturitylevel1.

2. Capabilitylevel 1: Performed

 Process performance may not be stable.

 Objectives of quality cost and schedule may not be met.

 A capability level1 process is expected to performall specific and generic practices for this level.

 Only a start-step for process improvement.

3. Capabilitylevel 2 : Managed

 Process isplanned, monitored and controlled.

 Managing the process by ensuringthatobjectives are achieved.

 Objectives are both model and other including cost, quality, schedule.

 Actively managing processing with the help of metrics.

4. Capabilitylevel 3: Defined

 A defined process is managed and meets the organization’s set of guidelines and standards.

 Focus is process standardization.

5. Capabilitylevel4: Quantitatively Managed

 Process is controlled using statistical and quantitative techniques.

 Process performance and quality is understood in statistical terms and metrics.

 Quantitative objectives forprocessquality andperformanceareestablished.

6. Capabilitylevel 5 : Optimizing

 Focuses on continually improving process performance.

 Performance is improved in both ways–incremental and innovation.

 Emphasizes on studyingthe performance resultsacross the organization to ensure

thatcommoncauses or issues are identified and fixed.

ProcessModels:

WaterfallModel–Software Engineering



The waterfall model is the basicsoftware development life cyclemodel. It is very simple but idealistic.

Earlier this model was very popular but nowadays it is not used. However, it is very important becauseall

the other software development life cycle models are based on the classical waterfall model.

What is the SDLC Water fall Model ?

https://www.geeksforgeeks.org/software-development-life-cycle-sdlc/
https://www.geeksforgeeks.org/software-development-life-cycle-sdlc/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page13

The waterfall model is asoftware development modelused in the context of large, complex projects,

typicallyinthefieldofinformation technology.Itischaracterizedbyastructured,sequentialapproach to

project managementand software development.

The waterfall model is useful in situations where the project requirements are well-defined and theproject

goals are clear. It is often used for large-scale projects with long timelines, where there is little room for

error and the project stakeholders need to have a high level of confidence in the outcome.

Featuresof theSDLCWaterfallModel

1. Sequential Approach: The waterfall model involves a sequential approach to software development,

where each phase of the project is completed before moving on to the next one.

2. Document-Driven:The waterfall model relies heavily on documentation to ensure that the project is

well-defined and the project team is working towards a clear set of goals.

3. Quality Control:The waterfall model places a high emphasis on quality control and testing at each

phase of the project, to ensure that the final product meets the requirements and expectations of the

stakeholders.

4. Rigorous Planning: The waterfall model involves a rigorous planning process, where the project

scope, timelines, and deliverables are carefully defined and monitored throughout the projectlifecycle.

Overall, the waterfall model is used in situations where there is a need for a highly structured and

systematic approach to software development. It can be effective in ensuring that large, complex projects

are completed on time and within budget, with a high level of quality and customer satisfaction.

ImportanceofSDLCWaterfall Model

1. ClarityandSimplicity: The linear form of the WaterfallModel offers a simple and unambiguous

foundation for project development.

2. ClearlyDefinedPhases: TheWaterfall Model’sphases each has unique inputs and outputs,

guaranteeing a planned development with obvious checkpoints.

3. Documentation: A focus on thorough documentation helps with software comprehension, upkeep,

and future growth.

4. StabilityinRequirements: Suitable for projects when the requirements are clear and steady, reducing

modifications as the project progresses.

5. ResourceOptimization: It encourages effective task-focused work without continuously changing

contexts by allocating resources according to project phases.

6. RelevanceforSmallProjects: Economical for modest projects with simple specifications and minimal

complexity.

PhasesofSDLCWaterfall Model– Design

The Waterfall Model is a classical software development methodology that was first introduced by

Winston W. Royce in 1970. It is a linear and sequential approach to software development that consistsof

several phases that must be completed in a specific order.

TheWaterfall Modelhassix phaseswhichare:

1. Requirements: The first phase involves gathering requirements from stakeholders and analyzing them

to understand the scope and objectives of the project.

2. Design: Once the requirements are understood, the design phase begins. This involves creating a

detailed design document that outlines the software architecture, user interface, and system components.

https://www.geeksforgeeks.org/top-8-software-development-models-used-in-industry/
https://www.geeksforgeeks.org/software-engineering-software-project-management-plan-spmp/
https://www.geeksforgeeks.org/software-development/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page14

3. Development: The Development phase includes implementation involvescoding the softwarebased on

the design specifications. This phase also includes unit testing to ensure that each component of the

software is working as expected.

4. Testing: In the testing phase, the software is tested as a whole to ensure that it meets the requirements

and is free from defects.

5. Deployment: Once the software has been tested and approved, it is deployed to the production

environment.

6. Maintenance: The final phase of the Waterfall Model is maintenance, which involves fixing any

issues that arise after the software has been deployed and ensuring that it continues to meet the

requirements over time.

The classical waterfall model divides the life cycle into a set of phases. This model considers that one

phase can be started after the completion of the previous phase. That is the output of one phase will be the

input to the next phase. Thus the development process can be considered as a sequential flow in the

waterfall. Here the phases do not overlap with each other. The different sequential phases of the classical

waterfall model are shown in the below figure.

WaterfallModel-Software Engineering

Let us now learn about each of the sex phases in detail which include further phases.

1. FeasibilityStudy:

The main goal of this phase is to determine whether it would be financially and technically feasible to

develop the software. The feasibility study involves understanding the problem and then determining the

various possible strategies to solve the problem. These different identified solutions are analyzed based

on their benefits

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page15

And drawbacks, The best solution is chosen and all the other phases arecarried out as per this solution strategy.

2. RequirementsAnalysisandSpecification:

Therequirementanalysisandspecificationphaseaimstounderstandtheexactrequirementsofthe customer and

document them properly. This phase consists of two different activities.

 Requirement gathering and analysis: Firstly all the requirements regarding the software aregathered

from the customer and then the gathered requirements are analyzed. The goal of the analysis part is to

remove incompleteness (an incomplete requirement is one in which some parts of the actual

requirements have been omitted) and inconsistencies (an inconsistent requirement is one in which

some part of the requirement contradicts some other part).

 Requirement specification: These analyzed requirements are documented in a software requirement

specification (SRS) document. SRS document serves as a contract between the development team and

customers. Any future dispute between the customers and the developers can be settled by examining

the SRS document.

3. Design:

The goal of this phase is to convert the requirements acquired in the SRS into a format that can be coded

in a programming language. It includes high-level and detailed design as well as the overall software

architecture. A Software Design Documentis used to document all of this effort (SDD).

4. CodingandUnitTesting:

In the coding phase software design is translated into source code using any suitable programming

language. Thus each designed module is coded. The unit testing phase aims to check whether each

module is working properly or not.

5. IntegrationandSystem testing:

Integration of different modules is undertaken soon after they have been coded and unit tested.Integration

of various modules is carried out incrementally over several steps. During each integration step,

previously planned modules are added to the partially integrated system and the resultant system is tested.

Finally, after all the modules have been successfully integrated and tested, the full working system

obtained and system is testing. System testing consists of three different kinds of testing activities as

described below.

 Alphatesting: Alpha testing is the system testing performed by the development team.

 Betatesting: Beta testing is the system testing performed by a friendly set of customers.

 Acceptance testing: After the software has been delivered, the customer performs acceptance testing

to determine whether to accept the delivered software or reject it.

6. Maintenance: Maintenance is the most important phase of a software lifecycle.The effort spent on

maintenance is 60% of the total effort spent to develop a full software. There are three types of

maintenance.

 CorrectiveMaintenance: This type of maintenance is carried out to correct errors that were not

discovered during the product development phase.

 Perfective Maintenance: This type of maintenance is carried out to enhance the functionalities of the

system based on the customer’s request.

 AdaptiveMaintenance: Adaptivemaintenance isusually requiredforporting thesoftwareto work in a

new environment such as working on a new computer platform or with a new operating system. 

AdvantagesoftheSDLCWaterfall Model

https://www.geeksforgeeks.org/activities-involved-in-software-requirement-analysis/
https://www.geeksforgeeks.org/design-documentation-in-software-engineering/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page16

The classical waterfall model is an idealistic model for software development. It is very simple, so it can

be considered the basis for other software development life cycle models. Below are some of the major

advantages of this SDLC model.

 EasytoUnderstand: The Classical Water fall Model is verysimpleandeasyto understand.

 IndividualProcessing: Phases intheClassicalWaterfallmodelareprocessedoneata time.

 ProperlyDefined: In the classical water fall model, each stage in the model is clearly defined.

 ClearMilestones: The classical Waterfall model has very clear and well-understood milestones.

 ProperlyDocumented: Processes, actions, and results are very well documented.

 Reinforces Good Habits: The Classical Waterfall Model reinforces good habits like define-before-

design and design-before-code.

 Working: Classical Waterfall Model works well for smaller projects and projects where requirements

are well understood.

DisadvantagesoftheSDLCWaterfallModel

The Waterfall Model suffers from various shortcomings we can’t use it in real projects, but we use other

softwaredevelopment lifecycle models whichare basedontheclassical waterfall model. Below are some

major drawbacks of this model.

 No Feedback Path: In the classical waterfall model evolution of software from one phase to another

phase is like a waterfall. It assumes that no error is ever committed by developers during any phase.

Therefore, it does not incorporate any mechanism for error correction. 

 Difficult to accommodateChange Requests:This model assumes that all the customer requirements

can be completely and correctly defined at the beginning of the project, but the customer’s

requirements keep on changing with time. It is difficult to accommodate any change requests after the

requirements specification phase is complete.

 No Overlapping of Phases:This model recommends that a new phase can start only after the

completion of the previous phase. But inreal projects, this can’t be maintained. To increase efficiency

and reduce cost, phases may overlap.

 Limited Flexibility:The Waterfall Model is a rigid and linear approach to software development,

which means that it is not well-suited for projects with changing or uncertain requirements. Once a

phase has been completed, it is difficult to make changes or go back to a previous phase. 

 Limited Stakeholder Involvement:The Waterfall Model is a structured and sequential approach,

which means that stakeholders are typically involved in the early phases of the project (requirements

gathering and analysis) but may not be involved in the later phases(implementation, testing,

anddeployment).

 Late Defect Detection: In the Waterfall Model, testing is typically done toward the end of the

development process. This means that defects may not be discovered until late in the development

process, which can be expensive and time-consuming to fix.

 Lengthy Development Cycle:The Waterfall Model can result in a lengthy development cycle, as each

phase must be completed before moving on to the next. This can result in delays and increased costs if

requirements change or new issues arise.

SpiralModelinSoftware Engineering

TheSpiralModel isoneofthemostimportantSoftwareDevelopmentLifeCyclemodels.TheSpiral

Modelisacombinationofthewaterfallmodelandtheiterativemodel.Itprovidessupportfor Risk

https://www.geeksforgeeks.org/post-deployment-testing-in-software-testing/
https://www.geeksforgeeks.org/post-deployment-testing-in-software-testing/
https://www.geeksforgeeks.org/post-deployment-testing-in-software-testing/
https://www.geeksforgeeks.org/top-8-software-development-models-used-in-industry/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page17

Handling. The Spiral Model was first proposed byBarry Boehm. This article focuses on discussing the

Spiral Model in detail.

Whatis the Spiral Model?

The Spiral Model is aSoftware Development Life Cycle (SDLC)model that provides a systematic and

iterative approach to software development. In its diagrammatic representation, looks like a spiral with

many loops. The exact number of loops of the spiral is unknown and can vary from project to project.

Each loop of the spiral is called a phase of the software development process.

SomeKeyPointsregardingthe phaseof aSpiral Model:

1. The exact number of phases needed to develop the product can be varied by the project manager

depending upon the project risks.

2. As the project manager dynamically determines the number of phases, the project manager has an

important role in developing a product using the spiral model.

3. It is based on the idea of a spiral, with each iteration of the spiral representing a complete software

development cycle, fromrequirements gatheringand analysis to design, implementation, testing, and

maintenance.

What Are the Phases of the Spiral Model?

The Spiral Model is a risk-driven model, meaning that the focus is on managing risk through multiple iterations

of the software development process. It consists of the following phases:

1. ObjectivesDefined: In first phase of the spiral model we clarify what the project aims to achieve,

including functional and non-functional requirements.

2. RiskAnalysis: In the risk analysis phase, the risks associated with the project are identified and

evaluated.

3. Engineering: In the engineering phase, the software is developed based on the requirements gathered

in the previous iteration.

4. Evaluation: In the evaluation phase, the software is evaluated to determine if it meets the customer’s

requirements and if it is of high quality.

5. Planning: The next iteration of the spiral begins with a new planning phase, based on the results

ofthe evaluation.

The Spiral Model is often used for complex and large software development projects, as it allows for a

more flexible and adaptable approach tosoftware development. It is also well-suited to projects with

significant uncertainty or high levels of risk.

The Radius of the spiral at any point represents the expenses (cost) of the project so far, and the angular

dimension represents the progress made so far in the current phase.

EachphaseoftheSpiralModelisdividedintofourquadrantsasshownintheabovefigure.The functions of these

four quadrants are discussed below:

1. Objectives determination and identify alternative solutions: Requirements are gathered from the

customers and the objectives are identified, elaborated, and analyzed at the start of every phase. Then

alternative solutions possible for the phase are proposed in this quadrant.

2. Identify and resolve Risks: During the second quadrant, all the possible solutions are evaluated to

select the best possible solution. Then the risks associated with that solution are identified and the

risks are resolved using the best possible strategy. At the end of this quadrant, the Prototype is built

for the best possible solution.

https://www.geeksforgeeks.org/software-development-life-cycle-sdlc/
https://www.geeksforgeeks.org/requirements-gathering-introduction-processes-benefits-and-tools/
https://www.geeksforgeeks.org/software-development/?ref=lbp

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page18

3. Develop the next version of the Product: During the third quadrant, the identified features are

developed and verified through testing. At the end of the third quadrant, the next version of the

software is available.

4. Review and plan for the next Phase: In the fourth quadrant, the Customers evaluate the so-far

developed version of the software. In the end, planning for the next phase is started.

Risk Handling in Spiral Model

A risk is any adverse situation that might affect the successful completion of a software project. Themost

important feature of the spiral model is handling these unknown risks after the project has started. Such

risk resolutions are easier done by developing a prototype.

1. The spiral model supports coping with risks by providing the scope to build a prototype at every

phase of software development.

2. The Prototyping Model also supports risk handling, but the risks must be identified completely

before the start of the development work of the project.

3. But in real life, project risk may occur after the development work starts, in that case, we cannot use

the Prototyping Model.

4. In each phaseofthe Spiral Model, the features of the product dated and analyzed, and therisks at that

point in time are identified and are resolved through prototyping.

5. Thus,this modelis muchmoreflexiblecomparedtootherSDLC models.

WhySpiralModeliscalledMeta Model?

TheSpiral model is called aMeta-Modelbecause it subsumes all the otherSDLC models. Forexample, a

single loop spiral actually represents the Iterative Waterfall Model.

1. ThespiralmodelincorporatesthestepwiseapproachoftheClassicalWaterfall Model.

2. The spiral modeluses the approach of thePrototyping Modelby buildinga prototypeat thestartof each

phase as a risk-handling technique.

3. Also, the spiral model can be considered as supporting theEvolutionary model– the iterations along

the spiral can be considered as evolutionary levels through which the complete system is built.

AdvantagesoftheSpiral Model

Below are some advantages of the Spiral Model.

1. Risk Handling:The projects with many unknown risks that occur as the development proceeds, in

that case, Spiral Model is the best development model to follow due to the risk analysis and risk

handling at every phase.

2. Goodforlargeprojects:It is recommended to use the Spiral Model in large andcomplex projects.

3. Flexibility in Requirements:Change requests in the Requirements at a later phase can be

incorporated accurately by using this model.

4. Customer Satisfaction: Customers can see the development of the product at the early phase of the

software development and thus, they habituated with the system by using it before completion of the

total product.

5. Iterative and Incremental Approach: The Spiral Model provides an iterative and incremental

approach to software development, allowing for flexibility and adaptability in response to changing

requirements or unexpected events.

6. Emphasis on Risk Management: The Spiral Model places a strong emphasis on risk management,

which helps to minimize the impact of uncertainty and risk on the software development process.

7. Improved Communication: The Spiral Model provides for regular evaluations and reviews, which

can improve communication between the customer and the development team.

https://www.geeksforgeeks.org/software-engineering-prototyping-model/
https://www.geeksforgeeks.org/why-spiral-model-is-called-meta-model/
https://www.geeksforgeeks.org/software-engineering-iterative-waterfall-model/
https://www.geeksforgeeks.org/software-engineering-classical-waterfall-model/
https://www.geeksforgeeks.org/software-engineering-prototyping-model/
https://www.geeksforgeeks.org/software-engineering-evolutionary-model/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page19

8. Improved Quality:The Spiral Model allows for multiple iterations of the software development

process, which can result in improved software quality and reliability.

Disadvantages oftheSpiralModel

Below are some main disadvantagesofthespiralmodel.

1. Complex: TheSpiral Model is muchmorecomplexthanotherSDLC models.

2. Expensive: Spiral Model is notsuitableforsmall projects asitis expensive.

3. Too much dependability on Risk Analysis: The successful completion of the project is very much

dependent on Risk Analysis. Without very highly experienced experts, it is going to be a failure to

develop a project using this model.

4. Difficultyin timemanagement: As the number of phases is unknown at thestart ofthe project, time

estimation is very difficult.

5. Complexity: The Spiral Model can be complex, as it involves multiple iterations of the software

development process.

6. Time-Consuming: The Spiral Model can be time-consuming, as it requires multiple evaluations and

reviews.

7. Resource Intensive: The Spiral Model can be resource-intensive, as it requires a significant

investment in planning, risk analysis, and evaluations.

The most serious issue we face in the cascademodel is that taking a long length to finish the item, andthe

product became obsolete. To tackle this issue, we have another methodology, which is known as the

Winding model or spiral model. The winding model is otherwise called the cyclic model.

Agile Methodology in Software Engineering



Agile Software Development is asoftware development methodologythat values flexibility, collaboration,

and customer satisfaction. It is based on the Agile Manifesto, a set of principles for software development

that prioritize individuals and interactions, working software, customer collaboration, and responding to

change.

Agile Software Development is an iterative and incremental approach tosoftware developmentthat

emphasizes the importance of delivering a working product quickly and frequently. It involves close

collaboration between the development team and the customer to ensure that the product meets their

needs and expectations.

Why Agile is Used?

1. Creating Tangible Value:Agile places a high priority on creating tangible value as soon as possible

in a project. Customers can benefit from early delivery of promised advantages and opportunity for

prompt feedback and modifications.

2. Concentrate on Value-Added Work: Agile methodology promotes teams to concentrate on

producing functional and value-added product increments, hence reducing the amount of time and

energy allocated to non-essential tasks.

3. Agile as a Mindset: Agile represents a shift in culture that values adaptability, collaboration, and

client happiness. It gives team members more authority and promotes a cooperative and upbeat work

atmosphere.

https://www.geeksforgeeks.org/5-most-commonly-used-software-development-methodologies/?ref=lbp
https://www.geeksforgeeks.org/software-development/?ref=lbp

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page20

4. Quick Response to Change: Agile fosters a culture that allows teams to respond swiftly

toconstantlyshiftingprioritiesandrequirements.This adaptability isparticularly usefulinsectorsofthe

economy or technology that experience fast changes.

5. Regular Demonstrations: Agile techniques place a strong emphasis on regular demonstrations of

project progress. Stakeholders may clearly see the project’s status, upcoming problems, and

upcoming new features due to this transparency.

6. Cross-Functional Teams: Agile fosters self-organizing, cross-functional teams that share

information effectively, communicate more effectively and feel more like a unit.

4 CoreValues of Agile Software Development

The Agile Software Development Methodology Manifesto describe four core values of Agile in software

development.

4 Values of Agile

1. Individuals and Interactions over Processes andTools

2. Working Software over Comprehensive Documentation

3. Customer Collaboration over Contract Negotiation

4. Responding to Change over Following a Plan

Principles of Agile Software Development

The Agile Mani festo is based on four values and twelve principles that form the basis, for methodologies.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page21

12 Principles of AgileMethodology

Theseprinciples include:

1. Ensuringcustomersatisfaction throughtheearlydeliveryofsoftware.

2. Beingopentochangingrequirements in thestagesofthedevelopment.

3. Frequentlydeliveringworkingsoftwarewithamain focusonpreferencefortimeframes.

4. Promotingcollaboration betweenbusinessstakeholdersanddevelopersasanelement.

5. Structuringtheprojectsaroundindividuals.Providingthemwiththenecessaryenvironmentand support.

6. Prioritizingfacetofacecommunicationwhenever needed.

7. Consideringworking software asthemeasureoftheprogress.

8. Fosteringdevelopment byallowingteams tomaintainapaceindefinitely.

9. Placingattentiononexcellenceandgooddesign practices.

10. Recognizingthesimplicityascrucialfactoraimingtomaximizeproductivitybyminimizingthe work.

11. Encouragingselforganizing teamsastheapproachtodesignandbuild systems.

12. Regularlyreflectingonhowtoenhanceeffectiveness andtomakeadjustmentsaccordingly.

TheAgile SoftwareDevelopment Process

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page22

Agile Software Development

1. RequirementsGathering: The customer’s requirements for the software are gathered and prioritized.

2. Planning: The development team creates a plan for delivering the software, including the features

that will be delivered in each iteration.

3. Development: The development team works to build the software, using frequent and rapid

iterations.

4. Testing: The software is thoroughly tested to ensure that it meets the customer’s requirements and is

of high quality.

5. Deployment: The software is deployed and put into use.

6. Maintenance:The software is maintained to ensure that itcontinues to meet the customer’s needs and

expectations.

Agile Software Developmentis widely used by software development teams and is considered to be a

flexibleandadaptableapproachtosoftwaredevelopmentthatiswell-suitedtochangingrequirementsand the fast

pace of software development.

Agile is atime-bound, iterative approach to softwaredelivery that builds software incrementally from the

start of the project, instead of trying to deliver all at once.

AgileSoftwaredevelopment cycle

Let’s see a brief over view of how development occurs inAgile philosophy.

1. concept

2. inception

3. iteration/construction

4. release

5. production

6. retirement

https://www.geeksforgeeks.org/requirements-gathering-introduction-processes-benefits-and-tools/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page23

Agilesoftwaredevelopment cycle

 Step1: In the first step, concept, and business opportunities in each possible project are identified and

the amount of time and work needed to complete the project is estimated. Based on their technicaland

financial viability, projects can then be prioritized and determined which ones are worthwhile

pursuing.

 Step2: In the second phase, known as inception, the customer is consulted regarding the initial

requirements, team members are selected, and funding is secured. Additionally, a schedule outlining

each team’s responsibilities and the precise time at which each sprint’s work is expected to befinished

should be developed.

 Step3: Teams begin building functional software in the third step, iteration/construction, based on

requirements and ongoing feedback. Iterations, also known as single development cycles, are the

foundation of the Agile software development cycle.

DesignProcessof Agilesoftware Development

 In Agile development, Design and Implementation are considered to be the central activities in the

software process.

 The design and Implementation phase also incorporates other activities such as requirements

elicitation and testing.

 In an agile approach, iteration occurs across activities. Therefore, the requirements and the design are

developed together, rather than separately.

 The allocation of requirements and the design planning and development as executed in a series of

increments. In contrast with the conventional model, where requirements gathering needs to be

completed to proceed to the design and development phase, it gives Agile development an extra level

of flexibility.

 Anagileprocessfocusesmoreoncodedevelopmentratherthandocumentation. 10

months. The company’s head assigned two teams

AdvantagesAgileSoftware Development

 Deploymentofsoftware isquickerandthushelpsinincreasing thetrustof the customer.

 Canbetteradapttorapidlychangingrequirementsandrespondfaster.

 Helpsingettingimmediatefeedbackwhichcanbeusedtoimprovethesoftwareinthenext increment.

 People–Not Process.Peopleand interactions aregivenahigherpriority thanprocesses and tools.

 Continuousattentiontotechnicalexcellenceand gooddesign.

 Increasedcollaborationandcommunication: AgileSoftwareDevelopmentMethodologyemphasize

collaboration and communication among team members, stakeholders, and customers. This leads to

improved understanding, better alignment, and increased buy-in from everyone involved.

https://www.geeksforgeeks.org/what-is-agile-framework-and-methodology-in-software-development/
https://www.geeksforgeeks.org/what-is-agile-framework-and-methodology-in-software-development/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page24

 Flexibility and adaptability:Agile methodologies are designed to be flexible and adaptable, making

it easier to respond to changes in requirements, priorities, or market conditions. This allows teams to

quickly adjust their approach and stay focused on delivering value.

 Improved quality and reliability:Agile methodologies place a strong emphasis on testing, quality

assurance, and continuous improvement. This helps to ensure that software is delivered with high

quality and reliability, reducing the risk of defects or issues that can impact the user experience.

 Enhanced customer satisfaction:Agile methodologies prioritize customer satisfaction and focus on

delivering value to the customer. By involving customers throughout the development process, teams

can ensure that the software meets their needs and expectations.

 Increased team morale and motivation:Agile methodologies promote a collaborative, supportive,

and positiveworkenvironment. This can lead to increased team morale, motivation, and engagement,

which can in turn lead to better productivity, higher quality work, and improved outcomes.

DisadvantagesAgileSoftware Development

 In the case of large software projects, it is difficult to assess the effort required at the initial stages of

the software development life cycle.

 AgileDevelopmentismorecode-focusedandproduces less documentation.

 Agile development is heavily dependent on the inputs of the customer. If the customer has ambiguity

in his vision of the outcome, it is highly likely that the project to get off track.

 Face-to-facecommunicationisharderinlarge-scaleorganizations.

 Only senior programmers are capable of making the kind of decisions required during the

development process. Hence, it’s a difficult situation for new programmers to adapt to the

environment.

 Lack of predictability: Agile Development relies heavily on customer feedback and continuous

iteration, which can make it difficult to predict project outcomes, timelines, and budgets.

 Limited scopecontrol: Agile Development is designed to be flexible and adaptable, which means that

scope changes can be easily accommodated. However, this can also lead to scope creep and a lack of

control over the project scope.

 Lack of emphasis on testing: Agile Development places a greater emphasis on delivering working

code quickly, which can lead to a lack of focus on testing and quality assurance. This can result in

bugs and other issues that may go undetected until later stages of the project.

 Risk of team burnout: Agile Development can be intense and fast-paced, with frequent sprints and

deadlines. This can put a lot of pressure on team members and lead to burnout, especially if the team

is not given adequate time for rest and recovery.

 Lack of structure and governance: Agile Development is often less formal and structured thanother

development methodologies, which can lead to a lack of governance and oversight. This can result in

inconsistent processes and practices, which can impact project quality and outcomes.

Agile is a framework that defines how software development needs to be carried on. Agile is not a single

method, it represents the various collection of methods and practices that follow the value statements

provided in the manifesto. Agile methods and practices do not promise tosolve every problem present in

the software industry (No Software model ever can). But they sure help to establish a culture and

environment where solutions emerge. Agile software development is an iterative and incremental

approach to software development. It emphasizes collaboration between the development team and the

customer, flexibility, and adaptability in the face of changing requirements, and the delivery of working

software in short iterations.The Agile Manifesto, which outlines the principles of agile development,

values individuals and interactions, working software, customer collaboration, and response to change.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page25

UNIT-II

SoftwareRequirements: Functional and non-functional requirements, user requirement system requirements,

interface specification, the software requirements document.

Requirementsengineeringprocess: Feasibility studies, requirements elicitation and analysis, requirements

validation, requirements management.

SoftwareRequirements:

FunctionalandNonFunctionalRequirements

Requirements analysis is a very critical process that enables the success of a system or software projectto

be assessed. Requirements are generally split into two types: Functional and Non-functional

requirements.

Understandinganddistinguishingbetweenthesetypesofrequirementsisessentialforthesuccessof any project.

Our comprehensive System design coursecovers these concepts in detail, providing you with the

knowledge and skills to effectively gather, document, and analyze requirements.

FunctionalRequirements

These are the requirements that the end user specifically demands as basic facilities that the

systemshouldoffer.Allthesefunctionalitiesneedtobenecessarilyincorporatedintothesystemasapartof the

contract.

These are represented or stated in the form of input to be given to the system, the operation performedand

the output expected. They are the requirements stated by the user which one can see directly in the final

product, unlike the non-functional requirements.

Example:

 Whatarethefeaturesthatweneedtodesignforthissystem?

 Whataretheedgecasesweneedtoconsider,if any,in our design?

Non-FunctionalRequirements

These are the quality constraints that the system must satisfy according to the project contract. The

https://gfgcdn.com/tu/Q1Y/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page26

priority or extent to which these factors are implemented varies from one project to another. They arealso

called non-behavioral requirements. They deal with issues like:

 Portability

 Security

 Maintainability

 Reliability

 Scalability

 Performance

 Reusability

 Flexibility

Example:

 Each request should be processed with the minimum latency?

 System should be highly valuable.

Extended Requirements

These are basically “nice to have” requirements that might be out of the scope of the System.

Example:

 Our system should record metrices and analytics.

 Service heath and performance monitoring.

Difference between Functional Requirements and Non-Functional Requirements:

FunctionalRequirements NonFunctionalRequirements

A functional requirement defines a system or

itscomponent.

A non-functional requirement defines the quality

attribute of a software system.

Itspecifies“Whatshouldthesoftwaresystemdo?” It places constraints on “How should the software

system fulfill the functional requirements?”

FunctionalrequirementisspecifiedbyUser.

Non-functional requirement is specified by

technicalpeoplese.g.Architect,Technical leaders

and software developers.

Itismandatory. Itisnotmandatory.

Itiscapturedinusecase. Itiscapturedasaqualityattribute.

Definedatacomponentlevel. Appliedtoasystemasawhole.

Helps you verify the functionality of the

software.

Helpsyoutoverifytheperformanceofthe software.

Functional Testing like System, Integration, Endto

End, API testing, etc are done.

Non-Functional Testing like Performance, Stress,

Usability, Security testing, etc are done.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page27

Usuallyeasytodefine. Usuallymoredifficulttodefine.

FunctionalRequirements NonFunctionalRequirements

Example

1) Authentication of user whenever he/she logs

into the system.

2) Systemshutdownincaseofacyberattack.

3) A Verification email is sent to user whenever

he/she registers for the first time on somesoftware

system.

Example

1) Emailsshouldbesentwithalatencyofno

greaterthan12hoursfromsuchanactivity.

2) The processing of each request should be done

within 10 seconds

3) Thesiteshouldloadin3secondswhenthe number

of simultaneous users are > 10000

RequirementsEngineeringProcessinSoftwareEngineering:



Requirements Engineeringis the process of identifying, eliciting, analyzing, specifying, validating, and

managing the needs and expectations of stakeholders for a software system.

Inthisarticle,we’lllearn aboutitsprocess,advantages, anddisadvantages.

Typesofrequirement:

 Userrequirements

Statementsinnaturallanguageplusdiagramsoftheservicesthesystemprovidesanditsoperational constraints. Written

for customers.

 Systemrequirements

Astructureddocumentsettingoutdetaileddescriptionsofthesystem’sfunctions, services and operational

constraints. Defines what should be implemented so may be part of a contract between client and

contractor.

WhatisRequirementsEngineering?

A systematic and strict approach to the definition, creation, and verification of requirements for asoftware

system is known as requirements engineering. To guarantee the effective creation of a software product,

the requirements engineering process entails several tasks that help in understanding, recording, and

managing the demands of stakeholders.

RequirementsEngineeringProcess

1. FeasibilityStudy

2. Requirementselicitation

3. Requirementsspecification

4. Requirementsforverificationand validation

5. Requirementsmanagement

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page28

1. FeasibilityStudy

The feasibility study mainly concentrates on below five mentioned areas below. Among these Economic

Feasibility Study is the most important part of the feasibility analysis and the Legal Feasibility Study is

less considered feasibility analysis.

1. Technical Feasibility: In Technical Feasibility current resources both hardware software along

required technology are analyzed/assessed to develop the project. This technical feasibility study

reportswhethertherearecorrectrequiredresourcesandtechnologiesthatwillbeusedforproject

development. Along with this, the feasibility study also analyzes the technical skills and capabilities

of the technical team, whether existing technology can be used or not, whether maintenance and up-

gradation are easy or not for the chosen technology, etc.

2. Operational Feasibility: In Operational Feasibility degree of providing service to requirements is

analyzed along with how easy the product will be to operate and maintain after deployment. Along

withthisotheroperational scopesaredetermining theusability oftheproduct, Determining suggested

solution by the software development team is acceptable or not, etc.

3. EconomicFeasibility:In the Economic Feasibility study cost and benefit ofthe project are analyzed.

This means under this feasibility study a detailed analysis is carried out will be cost of the project for

developmentwhichincludesallrequiredcostsforfinaldevelopmenthardwareandsoftwareresources

required,design anddevelopment costs operational costs,andsoon.After that, itisanalyzedwhether the

project will be beneficial in terms of finance for the organization or not.

4. Legal Feasibility:In legal feasibility, the project is ensured to comply with all relevant laws,

regulations, and standards. It identifies any legal constraints that could impact the project and reviews

existing contracts and agreements to assess their effect on the project’s execution. Additionally, legal

feasibility considers issues related to intellectual property, such as patents and copyrights, tosafeguard

the project’s innovation and originality.

5. Schedule Feasibility:In schedule feasibility, the project timeline is evaluated to determine if it is

realistic and achievable. Significant milestones are identified, and deadlines are established to track

progress effectively. Resource availability is assessed to ensure that the necessary resources are

accessible to meet the project schedule. Furthermore, any time constraints that might affect project

delivery are considered to ensure timely completion. This focus on schedule feasibility is crucial for

the successful planning and execution of a project.

2. RequirementsElicitation

It is related to the various ways used to gain knowledge about the project domain and requirements. The

various sources of domain knowledge include customers, business manuals, the existing software of the

same type, standards, and other stakeholders of the project. The techniques used for requirements

elicitation include interviews, brainstorming, task analysis, Delphi technique, prototyping, etc. Some of

these are discussedhere.Elicitation does not produce formal models of the requirements understood.

Instead, it widens the domain knowledge of the analyst and thus helps in providing input to the nextstage.

Requirements elicitation is the process of gathering information about the needs and expectations of

stakeholders for a software system. This is the first step in the requirements engineering process and it is

critical to the success of the software development project. The goal of this step is to understand the

problem that the software system is intended to solve and the needs and expectations of the stakeholders

who will use the system.

Severaltechniquescanbeusedtoelicit requirements, including:

https://www.geeksforgeeks.org/software-engineering-requirements-elicitation/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page29

 Interviews: These are one-on-one conversations with stakeholders to gather information about their

needs and expectations.

 Surveys:Thesearequestionnairesthataredistributedtostakeholderstogatherinformationabout their needs

and expectations.

 FocusGroups:Thesearesmallgroupsofstakeholderswhoarebroughttogethertodiscusstheir needs and

expectations for the software system.

 Observation:Thistechniqueinvolvesobservingthestakeholdersintheir workenvironmenttogather

information about their needs and expectations.

 Prototyping:Thistechniqueinvolvescreating a working modelofthesoftwaresystem, which can be used

to gather feedback from stakeholders and to validate requirements.

It’s important to document, organize, and prioritize the requirements obtained from all these techniquesto

ensure that they are complete, consistent, and accurate.

3. RequirementsSpecification

This activity is used to produce formal software requirement models. All the requirements including the

functional as well as the non-functional requirements and the constraints are specified by these models in

totality. During specification, more knowledge about the problem may be required which can again

trigger the elicitation process. The models used at this stage include ER diagrams, data flow

diagrams(DFDs), function decomposition diagrams(FDDs), data dictionaries, etc.

Requirements specification is the process of documenting the requirements identified in the analysis step

in a clear, consistent, and unambiguous manner. This step also involves prioritizing and grouping the

requirements into manageable chunks.

The goal of this step is to create a clear and comprehensive document that describes the requirements for

the software system. This document should be understandable by both the development team and the

stakeholders.

Severaltypesof requirementsarecommonlyspecifiedin thisstep,including

1. FunctionalRequirements:Thesedescribewhatthesoftwaresystemshoulddo.Theyspecifythe

functionality that the system must provide, such as input validation, data storage, and user interface.

2. Non-FunctionalRequirements:Thesedescribehowwellthesoftwaresystemshoulddoit.They specify the

quality attributes of the system, such as performance, reliability, usability, and security.

3. Constraints:These describe any limitations or restrictions that must be considered when developing

the software system.

4. Acceptance Criteria: These describe the conditions that must be met for the software system to

beconsidered complete and ready for release.

To make the requirements specification clear, the requirements should be written in a natural language

and use simple terms, avoiding technical jargon, and using a consistent format throughout the document.

It is also important to use diagrams, models, and other visual aids to help communicate the requirements

effectively.

Once the requirements are specified, they must be reviewed and validated by the stakeholders and

development team to ensure that they are complete, consistent, and accurate.

4. RequirementsVerificationandValidation

Verification: It refers to the set of tasks that ensures that the software correctly implements a specific

function.

https://www.geeksforgeeks.org/functional-vs-non-functional-requirements/
https://www.geeksforgeeks.org/non-functional-requirements-in-software-engineering/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page30

Validation:It refers to a different set of tasks that ensures that the software that has been built istraceable

to customer requirements. If requirements are not validated, errors in the requirementdefinitions would

propagate to the successive stages resulting in a lot of modification and rework. The main steps for this

process include:

1. Therequirements should beconsistent withall theotherrequirements i.e.notwo requirementsshould

conflict with each other.

2. Therequirementsshould becomplete ineverysense.

3. Therequirementsshouldbepractically achievable.

Reviews,buddy checks,making testcases, etc.aresome ofthemethodsused for this.

Requirementsverificationandvalidation(V&V)istheprocessofcheckingthattherequirementsfora

softwaresystemarecomplete,consistent,andaccurateandthattheymeettheneedsandexpectationsof

the stakeholders. The goal of V&V is to ensure that the software system being developed meets the

requirements and that it is developed on time, within budget, and to the required quality.

1. Verification is checking that the requirements are complete, consistent, and accurate. It involves

reviewing the requirements to ensure that they are clear, testable, and free of errors and

inconsistencies. This can include reviewing the requirements document, models, and diagrams, and

holding meetings and walkthroughs with stakeholders.

2. Validation is the process of checking that the requirements meet the needs and expectations of the

stakeholders. It involves testing the requirements to ensure that they are valid and that the software

system being developed will meet the needs of the stakeholders. This can include testing the software

system through simulation, testing with prototypes, and testing with the final version of the software.

3. Verification and Validation is an iterative process that occurs throughout the software development

life cycle. It is important to involve stakeholders and the development team in the V&V process to

ensure that the requirements are thoroughly reviewed and tested.

It’s important to note that V&V is not a one-time process, but it should be integrated and continue

throughout the software development process and even in the maintenance stage.

5. RequirementsManagement

Requirement management is the process of analyzing, documenting, tracking, prioritizing, and agreeing

on the requirement and controlling the communication with relevant stakeholders. This stage takes careof

the changing nature of requirements. It should be ensured that the SRS is as modifiable as possible to

incorporatechangesinrequirements specifiedbytheendusersatlaterstagestoo.Modifying thesoftware as per

requirements in a systematic and controlled manner is an extremely important part of the requirements

engineering process.

Requirements management is the process of managing the requirements throughout the software

development life cycle, including tracking and controlling changes, and ensuring that the requirementsare

still valid and relevant. The goal of requirements management is to ensure that the software system being

developed meets the needs and expectations of the stakeholders and that it is developed on time, within

budget, and to the required quality.

Severalkey activitiesareinvolvedinrequirementsmanagement,including:

1. Tracking and controlling changes:This involves monitoring and controlling changes to the

requirements throughout the development process, including identifying the source of the change,

assessing the impact of the change, and approving or rejecting the change.

2. Version control: This involves keeping track of different versions of the requirements document and

other related artifacts.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page31

the stakeholders. The goal of V&V is to ensure that the software system being developed meets the

requirements and that it is developed on time, within budget, and to the required quality.

4. Verification is checking that the requirements are complete, consistent, and accurate. It involves

reviewing the requirements to ensure that they are clear, testable, and free of errors and

inconsistencies. This can include reviewing the requirements document, models, and diagrams, and

holding meetings and walkthroughs with stakeholders.

5. Validation is the process of checking that the requirements meet the needs and expectations of the

stakeholders. It involves testing the requirements to ensure that they are valid and that the software

system being developed will meet the needs of the stakeholders. This can include testing the software

system through simulation, testing with prototypes, and testing with the final version of the software.

6. Verification and Validation is an iterative process that occurs throughout the software development

life cycle. It is important to involve stakeholders and the development team in the V&V process to

ensure that the requirements are thoroughly reviewed and tested.

It’s important to note that V&V is not a one-time process, but it should be integrated and continue

throughout the software development process and even in the maintenance stage.

6. RequirementsManagement

Requirement management is the process of analyzing, documenting, tracking, prioritizing, and agreeing

on the requirement and controlling the communication with relevant stakeholders. This stage takes careof

the changing nature of requirements. It should be ensured that the SRS is as modifiable as possible to

incorporatechangesinrequirements specifiedbytheendusersatlaterstagestoo.Modifying thesoftware as per

requirements in a systematic and controlled manner is an extremely important part of the requirements

engineering process.

Requirements management is the process of managing the requirements throughout the software

development life cycle, including tracking and controlling changes, and ensuring that the requirementsare

still valid and relevant. The goal of requirements management is to ensure that the software system being

developed meets the needs and expectations of the stakeholders and that it is developed on time, within

budget, and to the required quality.

Severalkey activitiesareinvolvedinrequirementsmanagement,including:

3. Tracking and controlling changes:This involves monitoring and controlling changes to the

requirements throughout the development process, including identifying the source of the change,

assessing the impact of the change, and approving or rejecting the change.

4. Version control: This involves keeping track of different versions of the requirements document and

other related artifacts.

5. Traceability: This involves linking the requirements to other elements of the development process,

such as design, testing, and validation.

6. Communication:This involves ensuring that the requirements are communicated effectively to all

stakeholders and that any changes or issues are addressed promptly.

7. Monitoring and reporting: This involves monitoring the progress of the development process and

reporting on the status of the requirements.

Requirements management is a critical step in the software development life cycle as it helps to ensure

that the software system being developed meets the needs and expectations of stakeholders and that it is

developed on time, within budget, and to the required quality. It also helps to prevent scope creep and to

ensure that the requirements are aligned with the project goals.

ToolsInvolvedinRequirement Engineering

 Observationreport

 Questionnaire(survey, poll)

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page32

 Use cases

 Userstories

 Requirementworkshop

 Mind mapping

 Roleplaying

 Prototyping

AdvantagesofRequirementsEngineering Process

 Helpsensurethat thesoftwarebeingdevelopedmeets theneedsandexpectationsofthestakeholders

 Canhelpidentifypotentialissuesorproblemsearlyinthedevelopmentprocess,allowingfor adjustments to

be made before significant

 Helpsensurethatthesoftwareisdevelopedina cost-effectiveandefficientmanner

 Canimprovecommunication andcollaborationbetweenthedevelopment team andstakeholders

 Helpstoensurethatthesoftwaresystemmeetstheneeds ofallstakeholders.

 Provides an unambiguous description of the requirements, which helps to reduce misunderstandings

and errors.

 Helpstoidentifypotentialconflictsandcontradictionsintherequirements,whichcanberesolved before the

software development process begins.

 Helpstoensurethatthesoftwaresystemisdeliveredontime,withinbudget,andtotherequired quality

standards.

 Providesasolid foundationforthedevelopment process, whichhelpstoreducetheriskoffailure.

DisadvantagesofRequirementsEngineering Process

 Canbetime-consumingandcostly,particularlyiftherequirements-gatheringprocessisnotwell- managed

 Canbedifficultto ensure thatall stakeholders’needs andexpectations aretakeninto account

 ItCanbechallengingtoensurethattherequirementsareclear,consistent,and complete

 Changesinrequirements canleadtodelaysandincreased costsinthedevelopmentprocess.

 Asabestpractice,Requirementsengineeringshouldbeflexible,adaptable,andshouldbealigned with the

overall project goals.

 Itcanbetime-consumingandexpensive,especially iftherequirements arecomplex.

 Itcanbedifficult toelicitrequirementsfromstakeholders whohavedifferent needsandpriorities.

 Requirementsmaychangeovertime,whichcanresultin delaysandadditionalcosts.

 Theremaybeconflicts betweenstakeholders, whichcan bedifficult to resolve.

 Itmaybechallengingtoensurethat all stakeholdersunderstand andagreeonthe requirements.

InterfaceSpecificationinSoftwareEngineering

 Most systems must operate with other systems and the operating interfaces must

be specified as part of the requirements.

 Threetypesofinterfacemayhavetobedefined

 Procedural interfaces where existing programs or sub-systems offer a

rangeofservicesthatareaccessedbycallinginterfaceprocedures.These

interfaces are sometimes called Applicatin Programming Interfaces

(APIs)

 Data structures that areexchanged that arepassed from onesub-system

to another. Graphical data models are the best notations for this type of

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page33

description

 Datarepresentationsthathavebeenestablishedforanexistingsub-system

 Formalnotationsareaneffectivetechniqueforinterfacespecification.

Theuser interface is the front-end application viewto which theuserinteractsto usethe software. The software

becomes more popular if its user interface is:

1. Attractive

2. Simpletouse

3. Responsiveinashort time

4. Clearto understand

5. Consistentonallinterface screens

TypesofUserInterface

1. Command Line Interface:The Command Line Interface provides a command prompt, where the

user types the command and feeds it to the system. The user needs to remember the syntax of the

command and its use.

2. Graphical User Interface:Graphical User Interface provides a simple interactive interface tointeract

with the system. GUI can be a combination of both hardware and software. Using GUI, the user

interprets the software.

InterfaceSpecificationinSoftwareEngineering:

Theanalysisanddesignprocess of a user interface is iterative and can be represented by aspiral model.

The analysis and design process of user interface consists of four framework activities.

1. User,Task,Environmental Analysis,and Modeling

Initially, the focus is based on the profile of users who will interact with the system, i.e., understanding,

skill and knowledge, type of user, etc., based on the user’s profile users are made into categories. From

each category requirements are gathered. Based on the requirement’s developer understand how to

develop the interface. Once all the requirements are gathered a detailed analysis is conducted. In the

analysis part, the tasks that the user performs to establish the goals of the system are identified, described

and elaborated. The analysis of the user environment focuses on the physical work environment. Among

the questions to be asked are:

1. Wherewill theinterfacebelocated physically?

2. Willtheuserbesitting, standing, orperforming othertasksunrelatedto theinterface?

3. Doestheinterfacehardwareaccommodatespace,light, ornoiseconstraints?

4. Aretherespecialhumanfactorsconsiderations drivenbyenvironmentalfactors?

2. InterfaceDesign

The goal of this phase is to define the set of interface objects and actions i.e., control mechanisms that

enable the user to perform desired tasks. Indicate how these control mechanisms affect the system.

Specify the action sequence of tasks and subtasks, also called a user scenario. Indicate the state of the

system when the user performs a particular task. Always follow the three golden rules stated by Theo

Mandel.Designissuessuchasresponsetime, command and action structure, error handling, and help

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page34

Facilities are considered as the design model is refined. This phase serves as the foundation for the

implementation phase.

3. InterfaceConstructionandImplementation

The implementation activity begins with the creation of a prototype (model) that enables usage scenarios

to be evaluated. As iterative design process continues a User Interface toolkit that allows the creation of

windows, menus, device interaction, error messages, commands, and many other elements of an

interactive environment can be used for completing the construction of an interface.

4. InterfaceValidation

This phase focuses on testing the interface. Theinterface should bein such away that it should beable to

perform tasks correctly, and it should be able to handle a variety of tasks. It should achieve all the user’s

requirements. It should be easy to use and easy to learn. Users should accept the interface as a useful one

in their work.

UserInterfaceDesignGoldenRules

The following are the golden rules stated by Theo Mandel that must be followed during the design of the

interface. Place the user in control:

1. Define the interaction modes in such a way that does not force the user into unnecessary or

undesired actions: The user should be able to easily enter and exit the mode with little or no effort.

2. Provide for flexible interaction: Different people will use different interaction mechanisms, some

might use keyboard commands, some might use mouse, some might use touch screen, etc., Hence all

interaction mechanisms should be provided.

3. Allow user interaction to be interruptible and undoable: When a user is doing a sequence of

actions the user must be able to interrupt thesequence to do some other workwithout losing the work

that had been done. The user should also be able to do undo operation.

4. Streamlineinteractionasskillleveladvancesandallowtheinteractiontobe customized:Advanced or

highly skilled user should be provided a chance to customize the interface as user wants which allows

different interaction mechanisms so that user doesn’t feel bored while using the same interaction

mechanism.

5. Hide technical internals from casual users: The user should not be aware of the internal technical

details of the system. He should interact with the interface just to do his work.

6. Design for direct interaction with objects that appear on-screen:The user should be able to use

the objects and manipulate the objects that are present on the screen to perform a necessary task. By

this, the user feels easy to control over the screen.

ReducetheUser’sMemoryLoad

1. Reduce demand on short-term memory:When users are involved in some complex tasks the

demand on short-term memory is significant. So the interface should be designed in such a way to

reduce the remembering of previously done actions, given inputs and results.

2. Establish meaningful defaults:Always an initial set of defaults should be provided to the average

user, if a user needs to add some new features then he should be able to add the required features.

3. Define shortcuts that are intuitive:Mnemonics should be used by the user. Mnemonics means the

keyboard shortcuts to do some action on the screen.

4. The visual layout of the interface should be based on a real-world metaphor: Anything you

represent on a screen if it is a metaphor for a real-world entity then users would easily understand.

5. Discloseinformationinaprogressivefashion: The interface should be organizedhierarchicallyi.e., on

the main screen the information about the task, an object or some behavior should be presented first at

a high level of abstraction. More detail should be presented after the user indicates interestwith a

mouse pick.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page35

MaketheInterfaceConsistent

1. Allow the user to put the current task into a meaningful context: Many interfaces have dozens of

screens. So it is important to provide indicators consistently so that the user know about the doing

work. The user should also know from which page has navigated to the current page and from the

current page where it can navigate.

2. Maintain consistency across a family of applications: in The development of some set of

applications all should follow and implement the same design, rules so that consistency is maintained

among applications.

3. If past interactive models have created user expectations do not make changes unless there is a

compelling reason.

User interface design is a crucial aspect of software engineering, as it is the means by which usersinteract

with software applications. A well-designed user interface can improve the usability and user experience

of an application, making it easier to use and more effective.

KeyPrinciples forDesigningUserInterfaces

1. User-centered design:User interface design should be focused on the needs and preferences of the

user. This involves understanding the user’s goals, tasks, and context of use, and designing interfaces

that meet their needs and expectations.

2. Consistency: Consistency is important in user interface design, as it helps users to understand and

learn how to use an application. Consistent design elements such as icons, color schemes, and

navigation menus should be used throughout the application.

3. Simplicity: User interfaces should be designed to be simple and easy to use, with clear and concise

language and intuitive navigation. Users should be able to accomplish their tasks without being

overwhelmed by unnecessary complexity.

4. Feedback: Feedback is significant in user interface design, as it helps users to understand the results

oftheiractions andconfirms thattheyaremakingprogress towardstheirgoals. Feedbackcantakethe form

of visual cues, messages, or sounds.

5. Accessibility: User interfaces should be designed to be accessible to all users, regardless of their

abilities. This involves considering factors such as color contrast, font size, and assistive technologies

such as screen readers.

6. Flexibility: User interfaces should be designed to be flexible and customizable, allowing users to

tailor the interface to their own preferences and needs.

SoftwareRequirementDocument:

 Software Requirement Specification (SRS) Formatas the name suggests, is a complete specification

anddescriptionofrequirements ofthesoftwarethat needtobefulfilledforthesuccessful development of the

software system. These requirements can be functional as well as non-functional depending upon the

typeofrequirement.Theinteractionbetweendifferentcustomersandcontractorsisdonebecauseitis necessary to

fully understand the

needsof customers.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page36

.

Depending upon information gathered after interaction, SRS is developed which describes requirements

of software that may include changes and modifications that is needed to be done to increase quality of

product and to satisfy customer’s demand.

Introduction

 Purpose of this Document –At first, main aim of why this document is necessary and what’s

purpose of document is explained and described.

 Scope of this document –In this, overall working and main objective of document and what value it

will provide to customer is described and explained. It also includes a description of developmentcost

and time required.

 Overview – In this, description of product is explained. It’s simply summary or overall review of

product.

General description

In this, general functions of product which includes objective of user, a user characteristic, features,

benefits, about why its importance is mentioned. It also describes features of user community.

FunctionalRequirements

In this, possible outcome of software system which includes effects due to operation of program is fully

explained.Allfunctionalrequirementswhichmay includecalculations,dataprocessing,etc.areplacedin a

ranked order. Functional requirements specify the expected behavior of the system-which outputs should

beproduced from the given inputs. They describetherelationship between theinput and output of the

system. For each functional requirement, detailed description all the data inputs and their source, the units

of measure, and the range of valid inputs must be specified.

InterfaceRequirements

In this, software interfaces which mean how software program communicates with each other or users

either in form of any language, code, or message are fully described and explained. Examples can be

shared memory, data streams, etc.

PerformanceRequirements

In this, how a software system performs desired functions under specific condition is explained. It also

explains requiredtime,required memory,maximum error rate, etc.The performancerequirements partof an

SRS specifies the performance constraints on the software system. All the requirements relating to the

performance characteristics of the system must be clearly specified. There are two types of performance

requirements: static and dynamic. Static requirements are those that do not impose constraint on the

execution characteristics of the system. Dynamic requirements specify constraints on the execution

behaviour of the system.

DesignConstraints

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page37

In this, constraints which simply means limitation or restriction are specified and explained for design

team. Examples may include use of a particular algorithm, hardware and software limitations, etc. There

are a number of factors in the client’s environment that may restrict the choices of a designer leading to

design constraints such factors include standards that must be followed resource limits, operating

environment, reliability and security requirements and policies that may have an impact on the design of

the system. An SRS should identify and specify all such constraints.

Non-Functional Attributes

In this, non-functional attributes are explained that are required by software system for better

performance. An example may include Security, Portability, Reliability, Reusability, Application

compatibility, Data integrity, Scalability capacity, etc.

PreliminaryScheduleand Budget

In this, initial version and budget of project plan are explained which include overall time duration

required and overall cost required for development of project.

Appendices

In this, additional information like references from where information is gathered, definitions of some specific

terms, acronyms, abbreviations, etc. are given and explained.

UsesofSRS document

 Developmentteamrequireitfordevelopingproduct accordingtotheneed.

 Testplansaregeneratedby testinggroupbased onthe describe external behaviour.

 Maintenance andsupportstaffneed itto understandwhat thesoftwareproduct is supposedto do.

 Projectmanagerbasetheirplansandestimatesof schedule,effortandresources onit.

 Customer rely on itto know that product they can expect.

 Asacontractbetweendeveloperandcustomer.

 In documentation purpose.

Requirement Engineering Process:

FeasibilityStudy:

Thefeasibilitystudymainlyconcentratesonbelowfivementionedareasbelow.Amongthese

EconomicFeasibilityStudyisthemostimportantpartofthefeasibilityanalysisandtheLegal Feasibility Study is

less considered feasibility analysis.

1. Technical Feasibility: In Technical Feasibility current resources both hardware software along

required technology are analyzed/assessed to develop the project. This technical feasibility study

reports whether there are correct required resources and technologies that will be used for project

development.Alongwiththis,thefeasibilitystudyalsoanalyzesthetechnicalskillsand capabilities of the

technical team, whether existing technology can be used or not, whether maintenance and up-

gradation are easy or not for the chosen technology, etc.

2. Operational Feasibility: In Operational Feasibility degree of providing service to requirements is

analyzed along with how easy the product will be to operate and maintain after deployment. Along

with this other operational scopes are determining the usability of the product, Determiningsuggested

solution by the software development team is acceptable or not, etc.

3. EconomicFeasibility: IntheEconomicFeasibilitystudycostandbenefitoftheprojectare analyzed. This

means under this feasibility study a detailed analysis is carried out will be cost of the project for

development which includes all required costs for final development hardware and

softwareresourcesrequired,designanddevelopmentcostsoperationalcosts,andsoon.Afterthat, it is

analyzed whether the project will be beneficialin terms of finance for the organizationor not.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page38

4. Legal Feasibility: In legal feasibility, the project is ensured to comply with all relevant laws,

regulations, and standards. It identifies any legal constraints that could impact the project andreviews

existing contracts and agreements to assess their effect on the project’s execution. Additionally, legal

feasibility considers issues related to intellectual property, such as patents and copyrights, to

safeguard the project’s innovation and originality.

5. Schedule Feasibility: In schedule feasibility, the project timeline is evaluated to determine if it is

realistic and achievable. Significant milestones are identified, and deadlines are established to track

progress effectively. Resource availability is assessed to ensure that the necessary resources are

accessible to meet the project schedule. Furthermore, any time constraints that might affect project

delivery are considered to ensure timely completion. This focus on schedule feasibility is crucial for

the successful planning and execution of a project.

RequirementsElicitation:

It is related to the various ways used to gain knowledge about the project domain and requirements. The

various sources of domain knowledge include customers, business manuals, the existing software of the

same type, standards, and other stakeholders of the project. The techniques used for requirements

elicitation include interviews, brainstorming, task analysis, Delphi technique, prototyping, etc. Some of

these are discussed here.Elicitation does not produce formal models of the requirements understood.

Instead, it widens the domain knowledge of the analyst and thus helps in providing input to the nextstage.

Requirements elicitation is the process of gathering information about the needs and expectations of

stakeholders for a software system. This is the first step in the requirements engineering process and it is

critical to the success of the software development project. The goal of this step is to understand the

problemthatthesoftwaresystemisintendedtosolveandtheneedsandexpectationsofthe stakeholders who will

use the system.

Severaltechniquescanbeusedtoelicitrequirements, including:

 Interviews: These are one-on-one conversations with stakeholders to gather information about their

needs and expectations.

 Surveys: These are questionnaires that are distributed to stakeholders togather information about their

needs and expectations.

 FocusGroups: These are small groups of stake holders who are brought together to discuss their

needs and expectations for the software system.

 Observation: This technique involves observing the stakeholders in their work environment togather

information about their needs and expectations.

 Prototyping: This technique involves creating a working model of the software system, which canbe

used to gather feedback from stakeholders and to validate requirements.

It’s important to document, organize, and prioritize the requirements obtained from all these

techniquesto ensure that they are complete, consistent, and accurate.

RequirementsVerificationandValidation:

Verification: It refers to these tasks that ensures that the software correctly implements a specific function.

Validation: It refers to a different set of tasks that ensures that the software that has been builtis traceable to

customer requirements. If requirements are not validated, errors in the requirement

https://www.geeksforgeeks.org/software-engineering-requirements-elicitation/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page39

Definitions would propagateto the successive stages resulting in a lot of modification and rework.The

main steps for this process include:

1. The requirements should be consistent with all the other requirements i.e. not requirements should

conflict with each other.

2. The requirements should be complete in every sense.

3. Therequirementsshouldbepracticallyachievable.

Reviews, buddy checks, making testcases, etc. are some of the methods used fort his.

Requirements verification and validation (V&V) is the process of checking that the requirements for a

software system are complete, consistent, and accurate and that they meet the needs and expectations of

the stakeholders. The goal of V&V is to ensure that the software system being developed meets the

requirements and that it is developed on time, within budget, and to the required quality.

1. Verification is checking that the requirements are complete, consistent, and accurate. It involves

reviewing the requirements to ensure that they are clear, testable, and free of errors and

inconsistencies. This can include reviewing the requirements document, models, and diagrams, and

holding meetings and walkthroughs with stakeholders.

2. Validation is the process of checking that the requirements meet the needs and expectations of the

stakeholders. It involves testing the requirements to ensure that they are valid and that the software

system being developed will meet the needs of the stakeholders.Thiscanincludetestingthe software

system through simulation, testing with prototypes, and testing with the final version of the software.

3. Verification and Validation is an iterative process that occurs throughout the software development

life cycle. It is important to involve stakeholders and the development team in the V&V process to

ensure that the requirements are thoroughly reviewed and tested.

It’s important to note that V&V is not a one-time process, but it should be integrated and continue

throughout the software development process and even in the maintenance stage.

4. RequirementsManagement:

Requirement management is the process of analyzing, documenting, tracking, prioritizing, and agreeing

on the requirement and controlling the communication with relevant stakeholders. This stage takes care

of the changing nature of requirements. It should be ensured that the SRS is as modifiable as possible to

incorporate changes in requirements specified by the end users at later stages too. Modifying the software

as per requirements in a systematic and controlled manner is an extremely important part of the

requirements engineering process.

Requirements management is the process of managing the requirements throughout the software

development life cycle, including tracking and controlling changes, and ensuring that the requirementsare

still valid and relevant. The goal of requirements management is to ensure that the software system being

developed meets the needs and expectations of the stakeholders and that it is developed on time, within

budget, and to the required quality.

Severalkeyactivitiesareinvolvedinrequirementsmanagement, including:

1. Tracking and controlling changes: This involves monitoring and controlling changes to the

requirements throughout the development process, including identifying the source of the change,

assessing the impact of the change, and approving or rejecting the change.

2. Versioncontrol: This involves keeping track of different versions of the requirements document and

other related artifacts.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page40

3. Traceability: This involves linking the requirements to other elements of the development

process,such as design, testing, and validation.

4. Communication: This involves ensuring that the requirements are communicated effectively to

allstakeholders and that any changes or issues are addressed promptly.

5. Monitoring and reporting: This involves monitoring the progress of the development process

andreporting on the status of the requirements.

Requirements management is a critical step in the software development life cycle as it helps to ensure

thatthesoftwaresystembeingdevelopedmeetstheneedsandexpectationsofstakeholdersandthatit

isdevelopedontime, within budget, and to the required quality. It also helps to prevents cope creep and to

ensure that the requirements are aligned with the project goals.

UNIT-III

Design Engineering: Design process and design quality, design concepts, the design model. Creating an

architectural design: software architecture, data design, architectural styles and patterns, architectural

design, conceptual model of UML, basic structural modeling, class diagrams, sequence diagrams,

collaboration diagrams, use case diagrams, component diagrams.

SoftwareDesignProcess andquality–Software Engineering



The design phase of software development deals with transforming the customer requirements as

describedintheSRS documents intoaformimplementableusing aprogramming language.Thesoftware

design process can be divided into the following three levels or phases of design:

1. InterfaceDesign

2. ArchitecturalDesign

3. DetailedDesign

Elementsofa System

1. Architecture: Thisistheconceptualmodelthatdefinesthestructure,behavior,andviewsofa system. We

can use flowcharts to represent and illustrate the architecture.

2. Modules: These are components that handle one specific task in a system. A combination of the

modules makes up the system.

3. Components: This provides a particular function or group of related functions. They are made up of

modules.

4. Interfaces: This is the shared boundary across which the components of a system exchange

information and relate.

5. Data: This is the management of the information and data flow.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page41

SoftwareDesignProcess

InterfaceDesign

Interface design is the specification of the interaction between a system and its environment. This phase

proceeds at a high level of abstraction with respect to the inner workings of the system i.e, during

interface design, the internal of the systems are completely ignored, and the system is treated as a black

box. Attention is focused on the dialogue between the target system and the users, devices, and other

systems with which itinteracts. The design problem statement produced during the problem analysis step

should identify the people, other systems, and devices which are collectively called agents.

Interfacedesignshouldincludethefollowing details:

1. Precise description of events in the environment, or messages from agents to which the system must

respond.

2. Precisedescriptionoftheevents ormessages thatthe systemmustproduce.

3. Specificationofthedata,and theformatsofthedata cominginto and goingoutofthesystem.

4. Specificationoftheorderingandtimingrelationshipsbetweenincomingeventsormessages,and outgoing

events or outputs.

ArchitecturalDesign

Architectural design is the specification of the major components of a system, their responsibilities,

properties, interfaces, and the relationships and interactions between them. In architectural design, the

overall structure of the system is chosen, but the internal details of major components are ignored. Issues

in architectural design includes:

1. Grossdecomposition ofthe systemsintomajorcomponents.

2. Allocationoffunctionalresponsibilities tocomponents.

3. Component Interfaces.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page42

4. Component scaling and performance properties, resource consumption properties, reliability

properties, and so forth.

5. Communicationandinteractionbetween components.

The architectural design adds important details ignored during the interface design. Design of the

internals of the major components is ignored until the last phase of the design.

Detailed Design

Detailed design is the specification of the internal elements of all major system components, their

properties, relationships, processing, and often their algorithms and the data structures. The detailed

design may include:

1. Decompositionofmajorsystemcomponentsintoprogramunits.

2. Allocationoffunctionalresponsibilities tounits.

3. Userinterfaces.

4. Unitstates andstatechanges.

5. Dataand controlinteractionbetweenunits.

6. Datapackagingandimplementation, includingissuesofscope andvisibilityofprogramelements.

7. Algorithmsanddatastructures.

DesignConcepts:

Following items are designed and documented during the design phase:

1. Differentmodulesarerequired.
2. Controlrelationships among modules.

3. Interfaceamongdifferentmodules.

4. Datastructureamongthedifferentmodules.

5. Algorithmsarerequiredto beimplemented amongthe individual modules.

ObjectivesofSoftware Design

1. Correctness: Agood design should be correct i.e., it should correctly implementall the functionalities

of the system.

2. Efficiency: A good software design should address the resources, time, and cost optimization issues.

3. Flexibility:A good software design should have the ability to adapt and accommodate changeseasily.

It includes designing the software in a way, that allows for modifications, enhancements, and

scalability without requiring significant rework or causing major disruptions to the existing

functionality.

4. Understandability: A good design should be easily understandable, it should be modular, and all the

modules are arranged in layers.

5. Completeness: The design should have all the components like data structures, modules, external

interfaces, etc.

6. Maintainability: A good software design aims to create a system that is easy to understand, modify,

and maintain over time. This involves using modular and well-structured design principles

e.g.,(employing appropriate naming conventions and providing clear documentation). Maintainability

in Software and design also enables developers to fix bugs, enhance features, and adapt the software

to changing requirements without excessive effort or introducing new issues.

SoftwareDesignConcepts

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page43

Concepts are defined as a principal idea or invention that comes into our mind or in thought tounderstand

something. Thesoftware design conceptsimply means the idea or principle behind the design. It

describes how you plan to solve the problem of designing software, and the logic, or thinking behind how

you will design software. It allows the software engineer to create the model of the system software or

product that is to be developed or built. The software design concept provides a supporting and essential

structure or model for developing the right software. There are many concepts of software design and

some of them are given below:

PointstobeConsideredWhileDesigning Software

1. Abstraction (Hide Irrelevant data):Abstraction simply means to hide the details to reduce

complexity and increase efficiency or quality. Different levels of Abstraction are necessary and must

be applied at each stage of the design process so that any error that is present can be removed to

increase the efficiency of the software solution and to refine the software solution. The solution

should be described in broad ways that cover a wide range of different things at a higher level of

abstraction and a more detailed description of a solution of software should be given at the lowerlevel

of abstraction.

2. Modularity (subdivide the system): Modularity simply means dividing the system or project into

smallerpartstoreducethecomplexityofthe systemorproject. In the same way, modularityindesign means

subdividing a system into smaller parts so that these parts can be created independently and then use

these parts in different systems to perform different functions. It is necessary to divide the software

into components known as modules because nowadays, there are different softwareavailable like

Monolithic software that is hard to grasp for software engineers. So, modularity in design

hasnowbecomeatrendandisalso important. Ifthesystem contains fewercomponentsthen it would mean

the system is complex which requires a lot of effort (cost) but if we can divide thesystem into

components then the cost would be small.

3. Architecture (design a structure of something): Architecture simply means a technique to design a

structure of something. Architecture in designing software is a concept that focuses on various

elements and the data of the structure. These components interact with each other and use the data of

the structure in architecture.

4. Refinement (removes impurities): Refinement simply means to refine something to remove any

impurities if present and increase the quality. The refinement concept of software design is a process

of developing or presenting the software or system in a detailed manner which means elaborating a

systemorsoftware.Refinement isverynecessary tofindoutanyerrorifpresent andthentoreduce it.

5. Pattern (a Repeated form):A pattern simply means a repeated form or design in which the same

shape is repeated several times to form a pattern. The pattern in the design process means the

repetition of a solution to a common recurring problem within a certain context.

6. Information Hiding (Hide the Information): Information hiding simply means to hide the

information so that it cannot be accessed by an unwanted party. In software design, information

hiding is achieved by designing the modules in a manner that the information gathered or containedin

one module is hidden and can’t be accessed by any other modules.

7. Refactoring (Reconstruct something): Refactoring simply means reconstructing something in sucha

way that it does not affect the behavior of any other features. Refactoring in software design means

reconstructing the design to reduce complexity and simplify it without impacting the behavior or its

functions. Fowler has defined refactoring as “the process of changing a software system in a way that

it won’t impact the behavior of the design and improves the internal structure”.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page44

DifferentlevelsofSoftware Design

Therearethreedifferentlevels ofsoftwaredesign.Theyare:

1. Architectural Design: The architecture of a system can be viewed as the overall structure of the

system and the way in which structure provides conceptual integrity of the system. The architectural

design identifies the software as a system with many components interacting with each other. At this

level, the designers get the idea of the proposed solution domain.

2. Preliminary or high-level design: Here the problem is decomposed into a set of modules, thecontrol

relationship among various modules identified, and also the interfaces among variousmodules are

identified. The outcome of this stage is called the program architecture. Design representation

techniques used in this stage are structure chart and UML.

3. Detailed design: Once the high-level design is complete, a detailed design is undertaken. In detailed

design, each module is examined carefully to design the data structure and algorithms. The stage

outcome is documented in the form of a module specification document.

SoftwareDesignProcess–Software Engineering

The design phase of software development deals with transforming the customer requirements as

described in the SRS documents into a form implementable using a programming language. Thesoftware

design process can be divided into the following three levels or phases of design:

1. InterfaceDesign

2. ArchitecturalDesign

3. DetailedDesign

ElementsofaSystem

1. Architecture: This is the conceptual model that defines the structure, behavior, and views of a

system. We can use flowcharts to represent and illustrate the architecture.

2. Modules: These are components that handle one specific task in a system. A combination of the

modules makes up the system.

3. Components: This provides a particular function or group of related functions.They are made up of

modules.

4. Interfaces: This is the shared boundary across which the components of a system exchange

information and relate.

5. Data:This is the management of the information and data flow.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page45

SoftwareDesignProcessModel

InterfaceDesign

Interface design is the specification of the interaction between a system and its environment.This phase

proceeds at a high level of abstraction with respect to the inner workings of the system i.e, during

interface design, the internal of the systems are completely ignored, and the system is treated as a black

box. Attention is focused on the dialogue between the target system and the users, devices, and other

systemswithwhich it interacts.Thedesignproblemstatementproducedduringtheproblemanalysis step should

identify the people, other systems, and devices which are collectivelycalled agents.

Interfacedesignshouldincludethefollowingdetails:

1. Precise description of events in the environment, or messages from agents to which the system must

respond.

2. Precise description of the events or messages that the system must produce.

3. Specification of the data, and the formats of the data coming in to and going out of the system.

4. Specification of the ordering and timing relationships between in coming events or messages, and

outgoing events or outputs.

ArchitecturalDesign

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page46

Architectural design is the specification of the major components of a system, their responsibilities,

properties, interfaces, and the relationships and interactions between them. In architectural design, the

overall structure of the system is chosen, but the internal details of major components are ignored. Issues

in architectural design include:

1. Gross decomposition of the systems into major components.

2. Allocation of functional responsibilities to components.

3. Component Interfaces.

4. Component scaling and performance properties, resource consumption properties, reliability

properties, and so forth.

5. Communication and interaction between components.

The architectural design adds important details ignored during the interface design. Design of the

internals of the major components is ignored until the last phase of the design.

DetailedDesign

Detailed design is the specification of the internal elements of all major system components, their

properties, relationships, processing, and often their algorithms and the data structures. The detailed

design may include:

1. Decompositionofmajorsystemcomponentsintoprogramunits.

2. Allocation of functional responsibilities to units.

3. User interfaces.

4. Unit states and state changes.

5. Data and control interaction between units.

6. Data packaging and implementation, including issues of scope and visibility of program elements.

7. Algorithmsanddatastructures.

CreatinganArchitecturalDesign:



The software needs an architectural design to represent the design of the software. IEEE defines

architectural design as “the process of defining a collection of hardware and software components and

their interfaces to establish the framework for the development of a computer system.” The software that

is built for computer-based systems can exhibit one of these many architectural styles.

SystemCategory:

 A set of components (eg: a database, computational modules) that will perform a function required by

the system.

 The set of connectors will help in coordination,communication,andcooperationbetweenthe

components.

 Conditionsthathowcomponents canbeintegratedtoformthesystem.

 Semanticmodelsthathelpthedesignertounderstandtheoverallpropertiesofthesystem. The

use of architectural styles is to establish a structure for all the components of the system.

Taxonomy of Architectural Styles

1] Datacentered architectures:

 A data store will reside at the center of this architecture and is accessed frequently by the other

components that update, add, delete, or modify the data present within the store.

 The figure illustrates a typical data-centered style. The client software accesses a central repository.

Variationsofthisapproachareusedtotransformtherepositoryintoablackboardwhendatarelatedto the client

or data of interest for the client change the notifications to client software.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page47

 This data-centered architecture will promote integrability. This means that the existing components

canbechangedandnew client componentscanbe addedtothearchitecture without thepermissionor

concern of other clients.

 Datacan bepassed amongclientsusingtheblackboard mechanism.

AdvantagesofDatacenteredarchitecture:

 Repositoryofdataisindependent ofclients

 Clientworkindependentofeachother

 Itmaybesimpleto add additionalclients.

 Modificationcanbeveryeasy

Datacentered architecture

2] Dataflow architectures:

 This kind of architecture is used when input data is transformed into output data through a series of

computational manipulative components.

 The figure represents pipe-and-filter architecture since it uses both pipe and filter and it has a set

ofcomponents called filters connected by lines.

 Pipes are used to transmitting data from one component to thenext.

 Each filter will work independently and is designed to take data input of a certain form and produces

data output to the next filter of a specified form. The filters don’t require any knowledge of the

working of neighboring filters.

 Ifthedata flow degenerates into asinglelineof transforms, then it is termed as batch sequential. This

structure accepts the batch of data and then applies a series of sequential components to transform it.

Advantagesof Data Flow architecture:

 Itencouragesupkeep, re purposing, and modification.

 Withthisdesign,concurrent execution is supported.

Disadvantageof Data Flow architecture:

 Itfrequentlydegeneratestobatchsequentialsystem

 Dataflowarchitecturedoes notallowapplicationsthatrequiregreateruserengagement.

 Itisnot easyto coordinatetwodifferent butrelatedstreams

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page48

Data Flow architecture

3] CallandReturnarchitectures

It is used to create a program that is easy to scaleand modify. Many sub-styles exist withinthiscategory.

Two of them are explained below.

 Remote procedure call architecture: This components is used to present in a main program or sub

program architecture distributed among multiple computers on a network.

 Main program or Subprogram architectures: The main program structure decomposes intonumber

of subprograms or function into a control hierarchy. Main program contains number of subprograms

 that can invoke other components.

4] ObjectOriented architecture

The components of a system encapsulate data and the operations that must be applied to manipulate the

data. The coordination and communication between the components are established via the message

passing.

CharacteristicsofObjectOrientedarchitecture:

 Objectprotectthesystem’sintegrity.

 Anobject is unawareofthedepictionofother items.

AdvantageofObjectOrientedarchitecture:

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page49

 Itenablesthedesignertoseparateachallengeintoacollection ofautonomousobjects.

 Otherobjectsareawareoftheimplementationdetailsoftheobject,allowingchangestobemade without

having an impact on other objects.

5] Layeredarchitecture

 A number of different layers are defined with each layer performing a well-defined set of operations.

Each layer will do some operations that becomes closer to machine instruction set progressively.

 Attheouterlayer,componentswillreceivetheuserinterfaceoperationsandattheinnerlayers, components

will perform the operating system interfacing(communication and coordination with OS)

 Intermediatelayerstoutilityservicesandapplicationsoftwarefunctions.

 OnecommonexampleofthisarchitecturalstyleisOSI-ISO(OpenSystemsInterconnection- International

Organisation for Standardisation) communication system.

Layeredarchitecture

UnifiedModelingLanguage(UML) Diagrams



Unified Modeling Language (UML) is a general-purpose modeling language. The main aim of UML is

to define a standard way tovisualizethe way a system has been designed. It is quite similar to blueprints

used in other fields of engineering. UML is not a programming language, it is rather a visual language.

UnderstandingandeffectivelyusingUMLcansignificantlyimprovethequalityandclarityofyour

softwaredesigns.Ourspecialized courseonSystemdesignprovidesdetailedguidanceandpractical

examplestohelpyoumasterthisvisuallanguage.ByintegratingUMLintoyourworkflow,youcan create more

comprehensive and communicative system models.

1. Whatis UML?

Unified Modeling Language (UML) is a standardized visual modeling language used in the field of

software engineering to provide a general-purpose, developmental, and intuitive way to visualize the

design of a system. UML helps in specifying, visualizing, constructing, and documenting the artifacts of

software systems.

https://gfgcdn.com/tu/Q1W/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page50

 We use UML diagrams to portray the behavior and structure of a system.

 UML helps software engineers, businessmen, and system architects with modeling, design, and

analysis.

 The Object Management Group (OMG) adopted Unified Modeling Language as a standard in 1997.

It’s been managed by OMG ever since.

 The International Organization for Standardization (ISO) published UML as an approved standard in

2005. UML has been revised over the years and is reviewed periodically.

2. Why do we need UML?

 Complex applications need collaboration and planning from multiple teams and hence require a clear

and concise way to communicate amongst them.

 Business men do not understand code. So UML becomes essential to communicate with non-

programmers about essential requirements, functionalities, and processes of the system.

 A lot of time is saved down the line when team scan visualize processes, user interactions, and the

static structure of the system.

3. Different Types of UML Diagrams

UML is linked with object-oriented design and analysis. UML makes use of elements and forms associations

between them to form diagrams. Diagrams in UML can be broadly classified as:

4. Structural UML Diagrams

 Class Diagram

The most widely use UML diagram is the class diagram. It is the building block of all object oriented

software systems. We use class diagrams to depict the static structure of a system by showing system’s

classes, their methods and attributes. Class diagrams also help us identify relationship between different

classes or objects.

https://www.geeksforgeeks.org/structural-diagrams-unified-modeling-languageuml
https://www.geeksforgeeks.org/unified-modeling-language-uml-class-diagrams

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page51

 CompositeStructureDiagram

We use composite structure diagrams to represent the internal structure of a class and its interaction

points with other parts of the system.

 A composite structure diagramrepresents relationship betweenpartsandtheir configuration which

determine how the classifier (class, a component, or a deployment node) behaves.

 Theyrepresentinternalstructureofastructuredclassifiermakingtheuseofparts, ports and connectors.

 Wecanalsomodel collaborations usingcompositestructurediagrams.

 They are similar to class diagrams except they represent individual parts in detail as compared to the

entire class.

 Object Diagram

An Object Diagram can be referred to as a screenshot of the instances in a system and the relationshipthat

exists between them. Since object diagrams depict behaviour when objects have been instantiated, we are

able to study the behaviour of the system at a particular instant.

 An object diagram is similar to a class diagram except it shows the instances of classes in the system.

 Wedepictactual classifiersandtheir relationshipsmakingtheuseofclassdiagrams.

 On the other hand, an Object Diagram represents specific instances of classes and relation ships

between them at a point of time.

 Component Diagram

Component diagrams are used to represent how the physical components in a system have been organized. We

use them for modeling implementation details.

 Component Diagrams depict the structural relationship between software system elements and helpus

in understanding if functional requirements have been covered by planned development.

 ComponentDiagramsbecomeessential tousewhenwedesignandbuildcomplexsystems.

 Interfacesareusedby componentsofthesystemto communicatewitheach other.

 Deployment Diagram

Deployment Diagrams are used to represent system hardware and its software. It tells us what hardware

components exist and what software components run on them.

 Weillustratesystemarchitectureasdistributionof software artifacts overdistributedtargets.

 Anartifactistheinformationthatisgeneratedbysystemsoftware.

 They are primarily used when a software is being used, distributed or deployed over multiple

machines with different configurations.

 PackageDiagram

We use Package Diagrams to depict how packages and their elements have been organized. A package

diagram simply shows us the dependencies between different packages and internal composition of

packages.

 Packages help us to organise UML diagrams into meaningful groups and make the diagram easy

tounderstand.

 Theyareprimarilyusedto organiseclassanduse casediagrams.

5. BehavioralUML Diagrams

 StateMachine Diagrams

A statediagram is used to represent the condition ofthe system orpart ofthesystem at finite instances of

time. It’s a behavioral diagram and it represents the behavior using finite state transitions.

 Statediagramsarealsoreferred toasStatemachines andState-chartDiagrams

 These terms are often used interchangeably. So simply, a state diagram is used to model the dynamic

behavior of a class in response to time and changing external stimuli.

https://www.geeksforgeeks.org/unified-modeling-language-uml-object-diagrams
https://www.geeksforgeeks.org/deployment-diagram-unified-modeling-languageuml
https://www.geeksforgeeks.org/package-diagram-introduction-elements-use-cases-and-benefits
https://www.geeksforgeeks.org/behavior-diagrams-unified-modeling-languageuml
https://www.geeksforgeeks.org/unified-modeling-language-uml-state-diagrams

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page52

 Activity Diagrams

We use Activity Diagrams to illustrate the flow of control in a system. We can also use an activity diagram to

refer to the steps involved in the execution of a use case.

 We model sequential and concurrent activities using activity diagrams. So, we basically depict work

flows visually using an activity diagram.

 Anactivity diagram focuses on condition of flow and the sequence in which hit happens.

 We describe or depict what causes a particular event using an activity diagram.

 Use Case Diagrams

Use Case Diagrams are used to depict the functionality ofasystem orapart ofasystem. They arewidely

used to illustrate the functional requirements of the system and its interaction with external agents

(actors).

 A use case is basically adiagramrepresentingdifferent scenarioswherethesystemcanbeused.

 Ausecasediagram gives us ahighlevel viewofwhat the system orapart ofthe system does without going

into implementation details.

 SequenceDiagram

Asequencediagramsimplydepictsinteractionbetweenobjectsinasequentialorderi.e.theorderin which these

interactions take place.

 Wecanalsousethetermseventdiagrams or eventscenariostorefertoasequencediagram.

 Sequencediagrams describe howand inwhat ordertheobjectsin asystem function.

 Thesediagramsarewidelyusedbybusinessmenandsoftwaredeveloperstodocumentand understand

requirements for new and existing systems.

 Communication Diagram

A Communication Diagram (known as Collaboration Diagram in UML 1.x) is used to show

sequencedmessages exchanged between objects.

 Acommunicationdiagram focusesprimarilyonobjectsandtheirrelationships.

 We can represent similar information using Sequence diagrams, however communication

diagramsrepresent objects and links in a free form.

 TimingDiagram

Timing Diagram are a special form of Sequence diagrams which are used to depict the behavior ofobjects

over a time frame. We use them to show time and duration constraints which govern changes in states

and behavior of objects.

 InteractionOverview Diagram

An Interaction Overview Diagram models a sequence of actions and helps us simplify complex

interactions into simpler occurrences. It is a mixture of activity and sequence diagrams.

6. Object-OrientedConceptsUsedinUML Diagrams

1. Class:Aclassdefines theblueprinti.e.structure and functionsofan object.

2. Objects: Objects help us to decompose large systems and help us to modularize our system.

Modularity helps to divide our system into understandable components so that we can build our

system piece by piece.

3. Inheritance:Inheritance is a mechanism by which child classes inherit the properties of their parent

classes.

4. Abstraction:Abstraction in UML refers to the process of emphasizing the essential aspects of a

system or object while disregarding irrelevant details. By abstracting away unnecessary complexities,

abstraction facilitates a clearer understanding and communication among stakeholders.

5. Encapsulation:Binding data together and protecting it from the outer world is referred to as

encapsulation.

https://www.geeksforgeeks.org/unified-modeling-language-uml-activity-diagrams
https://www.geeksforgeeks.org/use-case-diagram
https://www.geeksforgeeks.org/unified-modeling-language-uml-sequence-diagrams
https://www.geeksforgeeks.org/interaction-overview-diagrams-unified-modeling-language-uml

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page53

6. Polymorphism:Mechanism bywhichfunctionsorentitiesareabletoexist indifferentforms.

AdditionsinUML2.0

 Software development methodologies like agile have been incorporated and scope of original UML

specification has been broadened.

 Originally UML specified 9 diagrams. UML 2.x has increased the number of diagrams from 9 to 13.

The four diagrams that were added are : timing diagram, communication diagram, interaction

overview diagram and composite structure diagram. UML 2.x renamed state chart diagrams to state

machine diagrams.

 UML2.xaddedtheability todecomposesoftwaresystem intocomponentsand sub-components.

7. ToolsforcreatingUMLDiagrams

There are several tools available for creating Unified Modeling Language (UML) diagrams, which are

commonly used in software development to visually represent system architecture, design, and

implementation. Here are some popular UML diagram creating tools:

 Lucid chart:Lucid chart is a web-based diagramming tool that supports UML diagrams. It’s user-

friendly and collaborative, allowing multiple users to work on diagrams in real-time.

 Draw.io:Draw.io is a free, web-based diagramming tool that supports various diagram types,

including UML. It integrates with various cloud storage services and can be used offline.

 Visual Paradigm:Visual Paradigm provides a comprehensive suite of tools for software

development, including UML diagramming. It offers both online and desktop versions and supports a

wide range of UML diagrams.

 Star UML:Star UML is an open-source UML modeling tool with a user-friendly interface. It

supports the standard UML 2.x diagrams and allows users to customize and extend its functionality

through plugins.

 Papyrus:Papyrus is an open-source UML modeling tool that is part of the Eclipse Modeling Project.

It provides a customizable environment for creating, editing, and visualizing UML diagrams.

 Plant UML:Plant UML is a text-based tool that allows you to create UML diagrams using a simple

and human-readable syntax. It’s often used in conjunction with other tools and supports a variety of

diagram types.

7. StepstocreateUML Diagrams

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page54

Creating Unified Modeling Language (UML) diagrams involves a systematic process that typically

includes the following steps:

 Step1:IdentifythePurpose:

o Determine the purpose of creating the UML diagram. Different types of UML diagrams

serve various purposes, such as capturing requirements, designing system architecture, or
documenting class relationships.

 Step2:IdentifyElementsand Relationships:

o Identifythekeyelements (classes,objects,usecases,etc.)andtheirrelationshipsthatneed to be

represented in the diagram. This step involves understanding the structure and behavior of

the system you are modeling.

 Step3:SelecttheAppropriateUMLDiagramType:

o Choose the UML diagram type that best fits your modeling needs. Common types include
Class Diagrams, Use Case Diagrams, Sequence Diagrams, Activity Diagrams, and more.

 Step4:CreateaRoughSketch:

o BeforeusingaUMLmodelingtool,itcanbehelpfultocreatearoughsketchonpaperora
whiteboard. This can help you visualize the layout and connections between elements.

 Step5:ChooseaUMLModelingTool:

o Select a UML modeling tool that suits your preferences and requirements. There are

various tools available, both online and offline, that offer features for creating and editing

UML diagrams.

 Step6:CreatetheDiagram:

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page55

o Open the selected UML modeling tool and create a new project or diagram. Begin adding

elements (e.g., classes, use cases, actors) to the diagram and connect them withappropriate
relationships (e.g., associations, dependencies).

 Step7:DefineElementProperties:

o For each element in the diagram, specify relevant properties and attributes. This might

include class attributes and methods, use case details, or any other information specific to

the diagram type.

 Step8:AddAnnotationsandComments:

o Enhance the clarity of your diagram by adding annotations, comments, and explanatory

notes. This helps anyone reviewing the diagram to understand the design decisions and

logic behind it.

 Step9:ValidateandReview:

o Review the diagram for accuracy and completeness. Ensure that the relationships,

constraints, and elements accurately represent the intended system or process. Validate

your diagram against the requirements and make necessary adjustments.

 Step10:RefineandIterate:

o Refine the diagram based on feedback and additional insights. UML diagrams are often
created iteratively as the understanding of the system evolves.

 Step11:Generate Documentation:
o Some UML tools allow you to generate documentation directly from your diagrams. This

can include class documentation, use case descriptions, and other relevant information.

ClassDiagram|UnifiedModelingLanguage(UML)



Class diagrams are a type ofUML(Unified Modeling Language) diagram used in software engineeringto

visually represent the structure and relationships of classes in a system. UML is a standardized modeling

language that helps in designing and documenting software systems. They are an integral part of the

software development process, helping in both the design and documentation phases.

Whatareclass Diagrams?

Class diagrams are a type of UML (Unified Modeling Language) diagram used in software engineeringto

visually represent the structure and relationships of classes within a system i.e. used to construct and

visualize object-oriented systems.

Inthesediagrams, classesaredepictedasboxes, each containingthreecompartmentsforthe classname,

attributes, and methods. Lines connecting classes illustrate associations, showing relationships such as

one-to-one or one-to-many.

Class diagrams provide a high-level overview of a system’s design, helping to communicate and

document the structure of the software. They are a fundamental tool in object-oriented design and play a

crucial role in the software development lifecycle.

Whatis aclass?

https://www.geeksforgeeks.org/unified-modeling-language-uml-introduction/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page56

In object-oriented programming (OOP), a class isa blueprint or template for creating objects. Objects are

instances of classes, and each class defines a set of attributes (data members) and methods (functions or

procedures) that the objects created from that class will possess. The attributes represent the

characteristics or properties of the object, while the methods define the behaviors or actions that theobject

can perform.

UML ClassNotation

classnotationisagraphical representation usedtodepictclassesandtheirrelationships inobject-oriented

modeling.

1. Class Name:

 The name of the class is typically written in the top compartment of the class box and is centered

and bold.

2. Attributes:

 Attributes, also known as properties or fields, represent the data members of the class. They are

listed in the second compartment of the class box and often include the visibility (e.g., public,

private) and the data type of each attribute.

3. Methods:

 Methods, also known as functions or operations, represent the behavior or functionality of the

class. They are listed in the third compartment of the class box and include the visibility (e.g.,

public, private), return type, and parameters of each method.

4. Visibility Notation:

 Visibility notations indicate the access level of attributes and methods. Common visibility

notations include:

o+forpublic (visibleto all classes)

o -forprivate (visibleonly within theclass)

o #forprotected (visibleto subclasses)

o ~forpackageordefault visibility (visibleto classesin thesame package)

ParameterDirectionality

In class diagrams, parameter directionality refers to the indication of the flow of information between

classesthroughmethodparameters. Ithelpstospecifywhetheraparameter isaninput,anoutput,orboth. This

information is crucial for understanding how data is passed between objects during method calls.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page57

There arethreemain parameterdirectionality notationsusedinclass diagrams:

 In (Input):

o An input parameter is a parameter passed from the calling object (client) to the called
object (server) during a method invocation.

o It is represented by an arrow pointing towards the receiving class (the class that owns the
method).

 Out(Output):

o An output parameter is a parameter passed from the called object (server) back to the
calling object (client) after the method execution.

o Itisrepresentedbyanarrowpointingawayfromthereceivingclass.

 InOut(InputandOutput):

o AnInOutparameterservesasbothinputandoutput.Itcarriesinformation fromthecalling object
to the called object and vice versa.

o Itisrepresented byanarrowpointingtowardsandawayfromthereceivingclass.

Relationshipsbetween classes

In class diagrams, relationships between classes describe how classes are connected or interact with each

otherwithinasystem.Thereareseveraltypesofrelationshipsinobject-orientedmodeling,eachservinga specific

purpose. Here are some common types of relationships in class diagrams:

1. Association

An association represents a bi-directional relationship between two classes. It indicates that instances of

one class are connected to instances of another class. Associations are typically depicted as a solid line

connecting the classes, with optional arrows indicating the direction of the relationship.

Let’sunderstandassociationusinganexample:

Let’sconsiderasimplesystemformanagingalibrary.Inthissystem,wehavetwomain

entities:BookandLibrary.EachLibrarycontainsmultipleBooks,andeachBookbelongstoa specific Library.

This relationship between Library and Book represents an association.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page58

The “Library” class can be considered the source class because it contains a reference to multiple

instances of the “Book” class. The “Book” class would be considered the target class because it belongs

to a specific library.

2. Directed Association

A directed association in a UML class diagram represents a relationship between two classes where the

association has a direction, indicating that one class is associated with another in a specific way.

 In a directed association, an arrowhead is added to the association line to indicate the direction of the

relationship. The arrow points from the class that initiates the association to the class that is being

targeted or affected by the association.

 Directed associations are used when the association has a specific flow or directionality, such as

indicating which class is responsible for initiating the association or which class has a dependency on

another.

Consider a scenario where a “Teacher” class is associated with a “Course” class in a university system.

The directed association arrow may point from the “Teacher” class to the “Course” class, indicating

that a teacher is associated with or teaches a specific course.

 The source class is the “Teacher” class. The “Teacher” class initiates the association by teaching a

specific course.

 The target class is the “Course” class. The “Course” class is affected by the association as it is being

taught by a specific teacher.

3. Aggregation

Aggregation is a specialized form of association that represents a “whole-part” relationship. It denotes a

stronger relationship where one class (the whole) contains or is composed of another class (the part).

Aggregation is represented by a diamond shape on the side of the whole class. In this kind ofrelationship,

the child class can exist independently of its parent class.

Let’sunderstandaggregationusinganexample:

Thecompanycanbeconsideredasthewhole,whiletheemployeesarethe parts.Employeesbelong tothe

company, and the company can have multiple employees. However, if the company ceases to exist, the

employees can still exist independently.

4. Composition

Composition is a stronger form of aggregation, indicating a more significant ownership or dependency

relationship. In composition, the part class cannot exist independently of the whole class. Composition is

represented by a filled diamond shape on the side of the whole class.

Let’sunderstandComposition usinganexample:

Imagine a digital contact book application. The contact book is the whole, and each contact entry is a

part. Each contact entry is fully owned and managed by the contact book. If the contact book is deletedor

destroyed, all associated contact entries are also removed.

This illustrates composition because the existence of the contact entries depends entirely on the presence

of the contact book. Without the contact book, the individual contact entries lose their meaning and

cannot exist on their own.

5. Generalization(Inheritance)

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page59

Inheritance represents an “is-a” relationship between classes, where one class (the subclass or child)

inherits theproperties andbehaviors of another class (thesuperclassor parent). Inheritanceisdepicted by a

solid line with a closed, hollow arrowhead pointing from the subclass to the superclass.

In the example of bank accounts, we can use generalization to represent different types of accounts such

as current accounts, savings accounts, and credit accounts.

The Bank Account class serves as the generalized representation of all types of bank accounts, while the

subclasses (Current Account, Savings Account, Credit Account) represent specialized versions thatinherit

and extend the functionality of the base class.

6. Realization(Interface Implementation)

Realization indicates that a class implements the features of an interface. It is often used in cases where a

classrealizestheoperationsdefinedby an interface.Realizationisdepictedbyadashedlinewithanopen

arrowhead pointing from the implementing class to the interface.

Let’sconsiderthescenario wherea “Person”and a“Corporation”bothrealizingan“Owner”interface.

 Owner Interface:This interface now includes methods such as “acquire(property)” and

“dispose(property)” to represent actions related to acquiring and disposing of property.

 Person Class (Realization):The Person class implements the Owner interface, providing concrete

implementations for the “acquire(property)” and “dispose(property)” methods. For instance, a person

can acquire ownership of a house or dispose of a car.

 Corporation Class (Realization):Similarly, the Corporation class also implements the Owner

interface, offering specific implementations for the “acquire(property)” and “dispose(property)”

methods. For example, a corporation can acquire ownership of real estate properties or dispose of

company vehicles.

Both the Person and Corporation classes realize the Owner interface, meaning they provide concrete

implementations for the “acquire(property)” and “dispose(property)” methods defined in the interface.

7. DependencyRelationship

A dependency exists between two classes when one class relies on another, but the relationship is not as

strong as association or inheritance. It represents a more loosely coupled connection between classes.

Dependencies are often depicted as a dashed arrow.

Let’sconsider ascenario where aPersondepends onaBook.

 Person Class:Represents an individual who reads a book. The Person class depends on the Book

class to access and read the content.

 Book Class:Represents a book that contains content to be read by a person. The Book class is

independent and can exist without the Person class.

The Person class depends on the Book class because it requires access to a book to read its content.

However, the Book class does not depend on the Person class; it can exist independently and does not

rely on the Person class for its functionality.

8. Usage(Dependency)Relationship

A usage dependency relationship in a UML class diagram indicates that one class (the client) utilizes or

depends on another class (the supplier) to perform certain tasks or access certain functionality. The client

class relies on the services provided by the supplier class but does not own or create instances of it.

 Usage dependencies represent a form of dependency where one class depends on another class to

fulfill a specific need or requirement.

 Theclientclassrequiresaccesstospecificfeatures orservicesprovidedbythesupplierclass.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page60

 InUMLclassdiagrams,usagedependenciesaretypicallyrepresentedbyadashedarrowedline pointing from

the client class to the supplier class.

 Thearrowindicatesthedirectionofthedependency,showingthattheclientclassdependsonthe services

provided by the supplier class.

Considerascenariowherea“Car”classdependsona“Fuel Tank” classtomanagefuel consumption.

 The “Car” class may need to access methods or attributes of the “Fuel Tank” class to check the

fuellevel, refill fuel, or monitor fuel consumption.

 In this case, the “Car” class has a usage dependency on the “Fuel Tank” class because it

utilizesitsservices to perform certain tasks related to fuel management.

PurposeofClass Diagrams

Themain purposeofusingclass diagrams is:

 Thisis theonly UMLthat can appropriatelydepictvariousaspects oftheOOPsconcept.

 Properdesignandanalysis ofapplicationscanbe fasterandefficient.

 Itisthebasefordeploymentandcomponent diagram.

 Itincorporates forwardandreverse engineering.

BenefitsofClassDiagrams

 ModelingClassStructure:

o Classdiagramshelpinmodelingthestructureofasystembyrepresentingclassesand their
attributes, methods, and relationships.

o Thisprovidesaclearand organizedviewofthesystem’sarchitecture.

 UnderstandingRelationships:

o Classdiagramsdepictrelationshipsbetweenclasses,suchasassociations,aggregations,
compositions, inheritance, and dependencies.

o Thishelpsstakeholders,includingdevelopers,designers,andbusinessanalysts, understand
how different components of the system are connected.

 Communication:

o Class diagrams serve as a communication tool among team members and stakeholders.

They provide a visual and standardized representation that can be easily understood by

both technical and non-technical audiences.

 Blueprintfor Implementation:

o Classdiagramsserveasablueprintforsoftwareimplementation.Theyguidedevelopersin

writing code by illustrating the classes, their attributes, methods, and the relationships

between them.

o Thiscanhelpensureconsistency betweenthedesignand theactualimplementation.
 Code Generation:

o Some software development tools and frameworks support code generation from class
diagrams.

o Developers can generate a significant portion of the code from the visual representation,
reducing the chances of manual errors and saving development time.

 IdentifyingAbstractionsandEncapsulation:

o Class diagrams encourage the identification of abstractions and the encapsulation of data
and behavior within classes.

o This supports the principles of object-oriented design, such as modularity and information
hiding.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page61

Howto drawClass Diagrams

Drawing class diagrams involves visualizing the structure of a system, including classes, their attributes,

methods, and relationships. Here are the steps to draw class diagrams:

1. Identify Classes:

 Startbyidentifyingtheclassesinyoursystem.Aclassrepresentsablueprintforobjectsand should

encapsulate related attributes and methods.

2. ListAttributesandMethods:

 For each class, list its attributes (properties, fields) and methods (functions, operations).

Includeinformation such as data types and visibility (public, private, protected).

3. Identify Relationships:

 Determine the relationships between classes. Common relationships include associations,

aggregations, compositions, inheritance, and dependencies. Understand the nature andmultiplicity

of these relationships.

4. CreateClassBoxes:

 Draw a rectangle (class box) for each class identified. Place the class name in the topcompartment

of the box. Divide the box into compartments for attributes and methods.

5. AddAttributesandMethods:

 Inside each class box, list the attributes and methods in their respective compartments. Use

visibility notations (+ for public, – for private, # for protected, ~ for package/default).

6. Draw Relationships:

 Draw lines to represent relationships between classes. Use arrows to indicate the direction of

associations or dependencies. Different line types or notations may be used for various

relationships.

7. LabelRelationships:

 Label the relationships with multiplicity and role names if needed. Multiplicity indicates the

number of instances involved in the relationship, and role names clarify the role of each class in

the relationship.

8. ReviewandRefine:

 Review your class diagram to ensure it accurately represents the system’s structure and

relationships. Refine the diagram as needed based on feedback and requirements.

9. UseTools forDigital Drawing:

 While you can draw class diagrams on paper, using digital tools can provide more flexibility and

ease of modification. UML modeling tools, drawing software, or even specialized diagramming

tools can be helpful.

Usecases of Class Diagrams

 SystemDesign:

o During the system design phase, class diagrams are used to model the static structure of a

softwaresystem.Theyhelpinvisualizingandorganizingclasses,theirattributes,methods, and

relationships, providing a blueprint for system implementation.

 Communicationand Collaboration:

o Class diagrams serve as a visual communication tool between stakeholders, including

developers, designers, project managers, and clients. They facilitate discussions about the

system’s structure and design, promoting a shared understanding among team members.

 Code Generation:

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page62

o Some software development environments and tools support code generation based on

class diagrams. Developers can generate code skeletons, reducing manual coding efforts
and ensuring consistency between the design and implementation.

 TestingandTest Planning:

o Testers use class diagrams to understand the relationships between classes and plan test

cases accordingly. The visual representation of class structures helps in identifying areas

that require thorough testing.

 ReverseEngineering:

o Class diagrams can be used for reverse engineering, where developers analyze existing

code to create visual representations of the software structure. This is especially helpful

when documentation is scarce or outdated.

SequenceDiagrams|UnifiedModelingLanguage (UML)



Unified Modeling Language (UML)is a modeling language in the field of software engineering that

aims to set standard ways to visualize the design of a system. UML guides the creation of multiple types

of diagrams such as interaction, structure, and behavior diagrams. Asequence diagram is the most

commonly used interaction diagram.

Interactiondiagram

An interaction diagram is used to show theinteractive behaviorof a system. Since visualizing the

interactions in a system can be difficult, we use different types of interaction diagrams to capture various

features and aspects of interaction in a system.

 A sequence diagram simply depicts the interaction between the objects in a sequential order i.e.

theorder in which these interactions occur.

 Wecanalsousethetermseventdiagrams or eventscenariostorefertoasequencediagram.

 Sequencediagrams describe howand inwhat ordertheobjectsin asystem function.

https://www.geeksforgeeks.org/unified-modeling-language-uml-introduction/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page63

 Thesediagramsarewidelyusedbybusinessmenandsoftwaredeveloperstodocumentand understand

requirements for new and existing systems.

1. SequenceDiagram Notation

Actors

An actor in a UML diagram represents a type of role where it interacts with the system and its objects. It

is important to note here that an actor is always outside the scope of the system we aim to model usingthe

UML diagram.

We use actors to depict various roles including human users and other external subjects. We represent an

actor in a UML diagram using a stick person notation. We can have multiple actors in a sequence

diagram.

For example:

Here the user in seat reservation systemis shown as an actor whereit exists outside the systemandis not a

part of the system.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page64

Lifelines

A lifeline is a named element which depicts an individual participant in a sequence diagram. So basically

each instance in a sequence diagram is represented by a lifeline. Lifeline elements are located at the topin

a sequence diagram. The standard in UML for naming a lifeline follows the following format:

InstanceName:ClassName

Wedisplaya lifelineina rectanglecalledhead withitsnameandtype.The headislocatedontopofa vertical

dashed line (referred to as the stem) as shown above.

 Ifwewanttomodelanunnamedinstance,wefollowthesamepatternexceptnowtheportionof lifeline’s name

is left blank.

 Differencebetweenalifelineandanactor

o Alifelinealwaysportraysanobjectinternaltothesystemwhereasactorsareusedto depict objects
external to the system.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page65

Thefollowing is an exampleofasequencediagram:

Messages

Communication between objects is depicted using messages. The messages appear in a sequential order

on the lifeline.

 Werepresent messagesusingarrows.
 Lifelinesand messages form thecoreofasequence diagram.

Messagescan bebroadlyclassified intothefollowing categories:

Synchronousmessages

A synchronous message waits for a reply before the interaction can move forward. The sender waits until

the receiver has completed the processing of the message. The caller continues only when it knows that

the receiver has processed the previous message i.e. it receives a reply message.

 Alargenumberofcallsin objectorientedprogramming are synchronous.

 Weuseasolidarrow headtorepresent asynchronousmessage.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page66

AsynchronousMessages

An asynchronous message does not wait for a reply from the receiver. The interaction moves forward

irrespective of the receiver processing the previous message or not. We use alined arrow head to

represent an asynchronous message.

Createmessage

WeuseaCreatemessagetoinstantiate anewobjectinthe sequencediagram.Therearesituations when a

particular message call requires the creation of an object. It is represented with a dotted arrow and create

word labelled on it to specify that it is the create Message symbol.

For example:

The creation of a new order on a e-commerce website would require a new object of Order class to be

created.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page67

DeleteMessage

We use a Delete Message to delete an object. When an object is deallocated memory or is destroyed

within the system we use the Delete Message symbol. It destroys the occurrence of the object in the

system.It is represented by an arrow terminating with a x.

For example:

Inthescenario below when theorderis receivedbytheuser, theobjectof orderclasscanbedestroyed.

SelfMessage

Certainscenariosmightarisewheretheobjectneedstosendamessagetoitself.Suchmessagesarecalled Self

Messages and are represented with a U shaped arrow.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page68

Another example:

Consider ascenariowherethedevicewants toaccessits webcam.Sucha scenario isrepresentedusing a self

message.

Reply Message

Reply messages are used to show the message being sent from the receiver to the sender. We represent a

return/reply message using anopen arrow head with a dotted line. The interaction moves forward only

when a reply message is sent by the receiver.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page69

For example:

Consider the scenario where the device requests a photo from the user. Here the message which

showsthe photo being sent is a reply message.

Found Message

AFoundmessageisusedtorepresentascenariowhereanunknownsourcesendsthemessage.Itis represented using an

arrow directed towards a lifeline from an end point.

For example:

Consider thescenarioof ahardware failure.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page70

Itcanbedueto multiplereasons andwearenotcertain asto whatcausedthehardwarefailure.

Lost Message

ALostmessageisusedtorepresentascenariowheretherecipientisnotknowntothesystem.Itis represented using an

arrow directed towards an end point from a lifeline.

For example:

Consider ascenario wherea warningis generated.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page71

The warning might be generated for the user or other software/object that the lifeline is interacting with.

Since the destination is not known before hand, we use the Lost Message symbol.

Guards

To model conditions we use guards in UML. They are used when we need to restrict the flow ofmessages

on the pretext of a condition being met. Guards play an important role in letting software developers

know the constraints attached to a system or a particular process.

For example:

In order to be able to withdraw cash, having a balance greater than zero is a condition that must be met

as shown below.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page72

Theabovesequencediagram depicts thesequence diagram for anemotionbasedmusicplayer:

1. Firstlytheapplicationisopenedbytheuser.

2. Thedevicethengets accesstotheweb cam.

3. Thewebcamcapturestheimageoftheuser.

4. Thedeviceuses algorithms to detectthefaceandpredictthemood.

5. Itthen requests database fordictionaryofpossiblemoods.

6. Themoodis retrievedfrom thedatabase.

7. Themood is displayedto theuser.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page73

8. Themusicisrequestedfrom thedatabase.

9. Theplaylistisgeneratedand finallyshowntotheuser.

2. HowtocreateSequence Diagrams?

Creating a sequence diagram involves several steps, and it’s typically done during the design phase of

software development to illustrate how different components or objects interact over time. Here’s a step-

by-step guide on how to create sequence diagrams:

1. IdentifytheScenario:

 Understand the specific scenario or use case that you want to represent in the sequence diagram.

This could be a specific interaction between objects or the flow of messages in a particular

process.

2. List the Participants:

 Identify the participants (objects or actors) involved in the scenario. Participants can be users,

systems, or external entities.

3. DefineLifelines:

 Draw a vertical dashed line for each participant, representing the lifeline of each object over time.

The lifeline represents the existence of an object during the interaction.

4. ArrangeLifelines:

 Positionthelifelines horizontally intheorderoftheirinvolvementintheinteraction. Thishelps in

visualizing the flow of messages between participants.

5. AddActivation Bars:

 For each message, draw an activation bar on the lifeline of the sending participant. The activation

bar represents the duration of time during which the participant is actively processing themessage.

6. Draw Messages:

 Use arrows to represent messages between participants. Messages flow horizontally between

lifelines, indicating the communication between objects. Different types of messages include

synchronous (solid arrow), asynchronous (dashed arrow), and self-messages.

7. IncludeReturnMessages:

 If a participant sends a response message, draw a dashed arrow returning to the original sender to

represent the return message.

8. IndicateTimingandOrder:

 Use numbers to indicate the order of messages in the sequence. You can also use vertical dashed

lines to represent occurrences of events or the passage of time.

9. IncludeConditionsandLoops:

 Use combined fragments to represent conditions (like if statements) and loops in the interaction.

This adds complexity to the sequence diagram and helps in detailing the control flow.

10. ConsiderParallelExecution:

 If there are parallel activities happening, represent them by drawing parallel vertical dashed lines

and placing the messages accordingly.

11. ReviewandRefine:

 Review the sequence diagram for clarity and correctness. Ensure that it accurately represents the

intended interaction. Refine as needed.

12. AddAnnotations andComments:

 Include any additional information, annotations, or comments that provide context or clarification

for elements in the diagram.

13. DocumentAssumptionsandConstraints:

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page74

 Ifthere are any assumptions orconstraints related to the interaction, document them alongside the

diagram.

14. Tools:

 Use a UML modeling tool or diagramming software to create a neat and professional-looking

sequence diagram. These tools often provide features for easy editing, collaboration, and

documentation.

3. UsecasesofSequence Diagrams

 SystemBehaviorVisualization:

o Sequence diagrams are used to illustrate the dynamic behavior of a system by showingthe
interactions among various components, objects, or actors over time.

o They provide a clear and visual representation of the flow of messages and events in a
specific scenario.

 SoftwareDesign andArchitecture:

o Duringthe designphase ofsoftwaredevelopment, sequencediagrams help developers and

architects plan and understand how different components and objects will interact to

accomplish specific functionalities.

o Theyprovideablueprintforthesystem’s behavior.
 Communicationand Collaboration:

o Sequence diagrams serve as a communication tool among stakeholders, including
developers, designers, project managers, and clients.

o They help in conveying complex interactions in an easy-to-understand visual format,
fostering collaboration and shared understanding.

 RequirementsClarification:

o When refining system requirements, sequence diagrams can be used to clarify and specify

the expected interactions between system components or between the system and external
entities.

o Theyhelpensureacommon understanding ofsystembehavioramong allstakeholders.

 Debuggingand Troubleshooting:

o Developers use sequence diagrams as a debugging tool to identify and analyze issues
related to the order and timing of messages during system interactions.

o It provides a visual representation of the flow of control and helps in locating and
resolving problems.

4. ChallengesofusingSequenceDiagrams

 ComplexityandSize:

o As systems grow in complexity, sequence diagrams can become large and intricate.

Managing the size of the diagram while still accurately representing the interactions canbe

challenging, and overly complex diagrams may become difficult to understand.

 Abstraction Level:

o Striking the right balance in terms of abstraction can be challenging. Sequence diagrams

need to be detailed enough to convey the necessary information, but too much detail can

overwhelmreaders. It’simportanttofocusonthe mostcriticalinteractions withoutgetting

bogged down in minutiae.

 DynamicNature:

o Sequence diagrams represent dynamic aspects of a system, and as a result, they may
changefrequentlyduring thedevelopmentprocess.Keepingsequencediagramsup-to-date

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page75

with the evolving system can be a challenge, especially in rapidly changing or agile

development environments.

 Ambiguityin Messages:

o Sometimes, it can be challenging to define the exact nature of messages between objects.

Ambiguity in message content or meaning may lead to misunderstandings among

stakeholders and impact the accuracy of the sequence diagram.

 Concurrencyand Parallelism:

o Representing concurrent and parallel processes can be complex. While sequence diagrams

have mechanisms to indicate parallel execution, visualizing multiple interactions

happening simultaneously can be challenging and may require additional diagrammatic

elements.

 Real-TimeConstraints:

o Representing real-time constraints and precise timing requirements can be challenging.

While sequence diagrams provide a sequential representation, accurately capturing and

communicating real-time aspects might require additional documentation or

complementary diagrams.

CollaborationDiagrams|UnifiedModelingLanguage(UML)

In UML (Unified Modeling Language), a Collaboration Diagram is a type of Interaction Diagram that

visualizes the interactions and relationships between objects in a system. It shows how

objectscollaboratetoachieveaspecifictaskorbehavior.Collaborationdiagramsareusedtomodelthe dynamic

behavior of a system and illustrate the flow of messages between objects during a particular scenario or

use case.

WhatareCollaborationDiagrams?

Acollaborationdiagram,withintheUnifiedModelingLanguage(UML),isabehavioraldiagram which is also

referred to as a communication diagram, It illustrates how objects or components interact with each other

to achieve specific tasks or scenarios within a system.

In simpler terms, they visually represents the interactions between objects or components in a system,

showing how they collaborate to accomplish tasks or scenarios and depicts the interconnections among

multiple objects within a system, illustrating the system’s object architecture.

ImportanceofCollaborationDiagrams

Collaboration diagrams play a crucial role in system development by facilitating understanding,

communication, design, analysis, and documentation of the system’s architecture and behavior.

 VisualizingInteractions:

o These diagrams offer a clear visual representation of how objects or components interact
within a system.

o This visualization aids stakeholders in comprehending the flow of data and control,
fostering easier understanding.

 UnderstandingSystemBehavior:

o By depicting interactions, collaboration diagrams provide insights into the system’s
dynamic behavior during operation.

https://www.geeksforgeeks.org/unified-modeling-language-uml-introduction/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page76

o Understanding this behavior is crucial for identifying potential issues, optimizing
performance, and ensuring the system functions as intended.

 FacilitatingCommunication:

o Collaborationdiagramsserveaseffectivecommunicationtoolsamongteammembers.
o They facilitate discussions, enabling refinement of the system’s design, architecture, and

functionality. Clearer communication fosters better collaboration and alignment.

 SupportingDesignandAnalysis:

o Thesediagramsassistindesigningandanalyzingsystemarchitectureandfunctionality.
o They help identify objects, their relationships, and message exchanges, which is vital for

creating efficient and scalable systems.

 DocumentationPurposes:

o Collaborationdiagramsserveasvaluabledocumentationassetsforthesystem.
o They offer a visual representation of the system’s architecture and behavior, serving as a

reference for developers, testers, and other stakeholders throughout the development
process.

ComponentsandtheirNotationsinCollaborationDiagrams

Incollaborationdiagramsthereareseveralnotationsthatareusedtorepresent:

1. Objects/Participants

Objects are represented by rectangles with the object’s name at the top. Each object participating in the

interaction is shown as a separate rectangle in the diagram. Objects are connected by lines to indicate

messages being passed between them.

2. MultipleObjects

Multiple objects are represented by rectangles, each with the object’s name inside, and interactions

between them are shown using arrows to indicate message flows.

3. Actors

They are usually depicted at the top or side of the diagram, indicating their involvement in theinteractions

with the system’s objects or components. They are connected to objects through messages, showing the

communication with the system.

4. Messages

Messages represent communication between objects. Messages are shown as arrows between objects,

indicatingtheflowofcommunication.Eachmessagemayincludealabelindicatingthetypeof message (e.g.,

method call, signal). Messages can be asynchronous (indicated by a dashed arrow) or synchronous (solid

arrow).

5. SelfMessage

This is a message that an object sends to itself. It represents an action or behavior that the objectperforms

internally, without involving any other objects. Self-messages are useful for modelingscenarios where an

object triggers its own methods or processes

6. Links

Links represent associations or relationships between objects. Links are shown as lines connecting

objects,withoptionallabelstoindicatethenatureoftherelationship.Linkscanbeuni-directionalor bi-directional,

depending on the nature of the association.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page77

7. ReturnMessages

Return messages represent the return value of a message. They are shown as dashed arrows with a label

indicatingthe returnvalue. Returnmessagesare used to indicate thata message hasbeen processedanda

response is being sent back to the calling object.

HowtodrawCollaborationDiagrams?

Todrawacollaborationdiagram:

 Step 1: Identify Objects/Participants: Begin by identifying the objects or participants involved in

the system. These can be classes, modules, actors, or any other relevant entities.

 Step 2: Define Interactions: Determine how these objects interact with each other to accomplish

tasks or scenarios within the system. Identify the messages exchanged between objects during these

interactions.

 Step3:AddMessages: Drawarrowsbetweenlifelinestorepresentthemessagesexchanged between

objects. Label each arrow with the name of the message and, if applicable, any parametersor data

being transmitted.

 Step4:ConsiderRelationships: Ifthereareassociationsordependenciesbetweenobjects, represent them

using appropriate notations, such as dashed lines or arrows.

 Step 5: Documentation: Once finalized, document the collaboration diagram along with

anyrelevantexplanationsorannotations.Ensurethatthediagrameffectivelycommunicatesthe system’s

interactions to stakeholders.

UsecasesofCollaborationDiagrams

 SoftwareDevelopment: Collaborationdiagramshelpdevelopersunderstandhowdifferentpartsof a

system interact, aiding in building and testing software.

 SystemAnalysisandDesign: Theyassistinvisualizingsysteminteractions,aidinganalystsand designers

in refining system architecture.

 TeamCommunication: Collaborationdiagramsfacilitateteamdiscussionsanddecision-making by

providing a clear visual representation of system interactions.

 Documentation: Theyareessentialfordocumentingsystemarchitectureanddesigndecisions,serving as

valuable reference material for developers and testers.

 DebuggingandTroubleshooting: Collaborationdiagramshelptracemessageflowandidentify system

issues, aiding in debugging and troubleshooting efforts.

Real-WorldExampleofCollaborationDiagram

Let’sunderstandcollaborationdiagramusingtheexampleofJobRecruitmentSystem.

Therecruiterobjectinteractswiththedatabaseobjecttoverifythelogin,checkthejobs,selectatalented applicant,

and send interview details.

 Theapplicantobjectinteractswiththedatabaseobjecttoprovidedetailsandattendthetest.

 Thecollaborationdiagramshowsthesequentialorderoftheseinteractionsandtherelationship between the

objects involved.

1. Applicant

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page78

This object represents the job candidate who applies for a job position. The Applicant object interacts

withtheRecruiterobjecttoprovidepersonalandprofessionaldetailsandattendtheinterview.After the interview,

the Recruiter object selects the talented applicant and sends a joining letter to theApplicant object.

Applicant –attend test –> Database

Applicant–providedetails–>Database

2. Recruiter

This object represents the person or system responsible for hiring new employees. The Recruiter object

interacts with the Applicant object to verify the login, check the job positions, select the talented

applicant,sendinterviewdetails,andsendthejoiningletter.TheRecruiterobjectalsointeractswith the Database

object to retrieve and update the necessary information.

Recruiter –verify login–> DatabaseRecruiter

<– confirms login –> Database Recruiter –

check jobs positions –> Database

Recruiter –select talented applicant –> Applicant

Recruiter –send interview details –> Applicant

Recruiter –send joining letter –> Applicant

3. Database

Thisobjectrepresentsthesystemorcomponentthatstoresthenecessaryinformationfortherecruitmentprocess.T

heDatabaseobjectinteractswiththeRecruiterobjecttoprovidethejob

positions,verifythelogin,andsendthenecessarydetailsabouttheapplicants.TheDatabaseobject also interacts

with the Applicant object to store and retrieve the necessary details about the applicants. Database –send

jobs –> Recruiter

WhentouseCollaborationDiagram

CollaborationdiagramsinUMLaretypicallyusedintheearlystagesofsoftwaredevelopmentto:

 ModelInteraction:Theyareusedtomodeltheinteractionbetweenobjectsinasystem,showing how objects

collaborate to achieve a specific task or behavior.

 ClarifyRequirements:Collaborationdiagramshelpclarifytherequirementsofasystemby visualizing

how objects interact with each other to fulfill specific functionalities.

 DesignCommunicationPatterns:Theyhelpindesigningthecommunicationpatternsbetween objects,

including the sequence of messages exchanged between them.

 Identify PotentialIssues:By visualizingtheinteractionsbetweenobjects,collaborationdiagrams can

help identify potential issues or bottlenecks in the system’s design.

 CommunicateDesign: They are usefulfor communicatingthe design of a systemto stakeholders,

including developers, designers, and project managers.

Overall,collaborationdiagramsareavaluabletoolforunderstanding,designing,andcommunicating the

dynamic aspects of a system’s behavior.

BenefitsofCollaborationDiagrams

 Clear Understanding: Collaboration diagrams make it easy to understand how system components

interact, reducing confusion among team members.

 EffectiveCommunication: Theyfacilitatediscussionsanddecision-makingby providinga visual

representation of system interactions that everyone can understand.

 VisualAid(Clarity): Collaborationdiagramshelpvisualizetheflowofdataandcontrolwithin the system,

aiding in system analysis, design, and documentation.

 DebuggingSupport: Collaborationdiagramsassistindebuggingbyrevealingthesequenceofinteractions

and potential sources of errors.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page79

 DocumentationAssistance: Theyserveasusefuldocumentation,capturingsystemarchitectureand design

decisions for reference throughout the development process.

 Efficiency Improvement: By streamlining development and reducing misunderstandings,

collaboration diagrams improve overall efficiency in system development and maintenance.

ChallengesofCollaborationDiagrams

 Complexity: Keepingcollaborationdiagramsclearinlargesystemswithmanyobjectsand interactions can

be tough.

 Ambiguity: Sometimes,interpretingtheinteractionsindiagramsisn’tstraightforward,leadingto mis-

understandings.

 Dynamic Systems: Diagrams might not fully capture systems where interactions change over time,

like those with continously processing and improvising.

 Scalability: Managingdiagramsbecomesharderassystemsgrow,requiringeffortstokeepthem

manageable.

 Maintainability: Updatingdiagramstoreflectsystemchangescanbechallenging,especiallyin large and

fast evolving systems.

 Communication: Ensuring that diagrams effectively convey complex interactions to all

stakeholders can be challenging.

UseCaseDiagrams|UnifiedModelingLanguage (UML)



A Use Case Diagram is a vital tool in system design, it provides a visual representation of how users

interact with a system. It serves as a blueprint for understanding the functional requirements of a system

from a user’s perspective, aiding in the communication between stakeholders and guiding the

development process.



1. Whatis a UseCaseDiagraminUML?

A Use Case Diagram is a type of Unified Modeling Language (UML) diagram that represents the

interactionbetweenactors(usersorexternalsystems)andasystemunderconsiderationtoaccomplish

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page80

specific goals. It provides a high-level view of the system’s functionality by illustrating the various ways

users can interact with it.

2. UseCaseDiagramNotations

UML notations provide a visual language that enables software developers, designers, and other

stakeholders to communicate and document system designs, architectures, and behaviors in a consistent

and understandable manner.

 Actors

Actors are external entities that interact with the system. These can include users, other systems, or

hardware devices. In the context of a Use Case Diagram, actors initiate use cases and receive the

outcomes. Proper identification and understanding of actors are crucial for accurately modeling system

behavior.

 Use Cases

Use cases are like scenes in the play. They represent specific things your system can do. In the online

shopping system, examples of use cases could be “Place Order,” “Track Delivery,” or “Update Product

Information”. Use cases are represented by ovals.

 SystemBoundary

The system boundary is a visual representation of the scope or limits of the system you are modeling. It

defines what is inside the system and what is outside. The boundary helps to establish a clear distinction

between the elements that are part of the system and those that are external to it. The system boundary is

typically represented by a rectangular box that surrounds all the use cases of the system.

PurposeofSystem Boundary:

 Scope Definition:It clearly outlines the boundaries of the system, indicating which components are

internal to the system and which are external actors or entities interacting with the system.

 Focus on Relevance:By delineating the system’s scope, the diagram can focus on illustrating the

essential functionalities provided by the system without unnecessary details about external entities.

3. UseCaseDiagramRelationships

In a Use Case Diagram, relationships play a crucial role in depicting the interactions between actors and

use cases. These relationships providea comprehensive view ofthe system’s functionality and its various

scenarios. Let’s delve into the key types of relationships and explore examples to illustrate their usage.

 Association Relationship

TheAssociation Relationship represents a communication or interaction between an actor and a use case.

It is depicted by a line connecting the actor to the use case. This relationship signifies that the actor is

involved in the functionality described by the use case.

Example:OnlineBanking System

 Actor:Customer

 UseCase:TransferFunds

 Association:A line connecting the “Customer” actor to the “Transfer Funds” use case, indicating the

customer’s involvement in the funds transfer process.

 IncludeRelationship

The Include Relationship indicates that a use case includes the functionality of another use case. It is

denoted by a dashed arrow pointing from the including use case to the included use case. Thisrelationship

promotes modular and reusable design.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page81

Example:Social MediaPosting

 UseCases:ComposePost,AddImage

 IncludeRelationship:The“ComposePost”usecaseincludesthefunctionalityof“AddImage.” Therefore,

composing a post includes the action of adding an image.

 ExtendRelationship

The Extend Relationship illustrates that a use case can be extended by another use case under specific

conditions. It is represented by a dashed arrow with the keyword “extend.” This relationship is useful for

handling optional or exceptional behavior.

Example:FlightBookingSystem

 UseCases:Book Flight, SelectSeat

 Extend Relationship:The “Select Seat” use case may extend the “Book Flight” use case when the

user wants to choose a specific seat, but it is an optional step.

 Generalization Relationship

The Generalization Relationship establishes an “is-a” connection between two use cases, indicating that

one use case is a specialized version of another. It is represented by an arrow pointing from the

specialized use case to the general use case.

Example:VehicleRentalSystem

 UseCases:Rent Car,RentBike

 Generalization Relationship:Both “Rent Car” and “Rent Bike” are specialized versions of the

general use case “Rent Vehicle.”

GeneralizationRelationship

4. HowtodrawaUseCasediagraminUML?

Step 1: Identify Actors

Determinewhoorwhatinteractswiththesystem.Theseareyouractors.Theycanbeusers,other systems, or

external entities.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page82

Step2:IdentifyUse Cases

Identify the main functionalities or actions the system must perform. These are your use cases. Each use

case should represent a specific piece of functionality.

Step 3:ConnectActorsand Use Cases

Drawlines(associations)betweenactorsandtheusecasestheyareinvolvedin.Thisrepresentsthe interactions between

actors and the system.

Step 4:Add System Boundary

Draw a box around the actors and use cases to represent the system boundary. This defines the scope

ofyour system.

Step5:Define Relationships

Ifcertainusecasesarerelatedorifoneusecaseisanextensionofanother,youcanindicatethese relationships with

appropriate notations.

Step6:Reviewand Refine

Step back and review your diagram. Ensure that it accurately represents the interactions and relationships

in your system. Refine as needed.

Step7:Validate

Shareyourusecasediagramwithstakeholdersandgatherfeedback.Ensurethatitalignswiththeir understanding of the

system’s functionality.

Let’sunderstand howtodraw aUseCasediagramwith thehelpofanOnlineShopping System:

1. Actors:

 Customer

 Admin

2. Use Cases:

1. BrowseProducts

2. AddtoCart

3. Checkout

4. ManageInventory (Admin)

3. Relations:

 TheCustomercan browseproducts,add tothecart,andcompletethecheckout.

 TheAdmin can managetheinventory.

Belowis theusecasediagramofanOnlineShoppingSystem:

5. WhatarecommonUseCaseDiagramTools andPlatforms?

Several tools and platforms are available to create and design Use Case Diagrams. These tools offer

features that simplify the diagram creation process, facilitate collaboration among team members, and

enhance overall efficiency. Here are some popular Use Case Diagram tools and platforms:

 Lucid chart

 Cloud-basedcollaborative platform.

 Intuitivedrag-and-dropinterface.

 Real-timecollaborationand commenting.

 Templatesforvariousdiagram types.

 Integrationwithothertools likeJiraand Confluence.

 draw.io

 Free,open-sourcediagrammingtool.

 Worksoffline andcanbeintegratedwithGoogle Drive,Dropbox,andothers.

 Offersawide rangeofdiagramtypes,including UseCaseDiagrams.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page83

 Customizableshapesandthemes.

 MicrosoftVisio

 PartoftheMicrosoft Officesuite.

 Supportsvariousdiagramtypes,including UseCaseDiagrams.

 IntegrationwithMicrosoft365forcollaborativeediting.

 Extensiveshapelibrariesandtemplates.

 SmartDraw

 User-friendlydiagramming tool.

 Templatesfordifferenttypesofdiagrams,including UseCaseDiagrams.

 IntegrationwithMicrosoftOffice andGoogle Workspace.

 Auto-formattingandalignment features.

 PlantUML

 Open-sourcetool forcreatingUMLdiagrams.

 Text-basedsyntax fordiagram specification.

 Integrateswithvarioustext editorsandIDEs.

 Supportscollaborativeworkusingversioncontrolsystems.

6. WhatareCommonMistakesand PitfallswhilemakingUseCaseDiagram?

Avoiding common mistakes ensures the accuracy and effectiveness of the Use Case Diagram. Here

arekey points for each mistake:

 Over complication:

 Mistake:Includingexcessivedetailinthe diagram.

 Impact:Confusesstakeholdersandcomplicatesunderstanding.

 Prevention:Focusonessentialusecasesandmaintainanappropriatelevelof abstraction.

6.3.AmbiguousRelationships:

 Mistake:Unclearrelationships betweenactorsandusecases.

 Impact:Causesmisinterpretationofsysteminteractions.

 Prevention:Clearlydefineandlabelrelationships withproper notation.

 InconsistentNaming Conventions:

 Mistake:Inconsistentnaming ofactorsanduse cases.

 Impact:Causesconfusionandhinders communication.

 Prevention:Establishand adheretoaconsistentnamingconvention.

 MisuseofGeneralization:

 Mistake:Incorrectuseofgeneralization relationships.

 Impact:Misrepresentation ofthe“is-a”relationship betweenuse casesor actors.

 Prevention:Ensureaccurateusagetorepresentspecialization relationships.

 OverlookingSystem Boundaries:

 Mistake:Notclearly defining thesystem boundary.

 Impact:Challengesunderstanding ofthesystem’s scope.

 Prevention:Clearlyencloserelevantactorsandusecaseswithinasystemboundary.

 Lack ofIteration:

 Mistake:Treatingthediagram as astaticartifact.

 Impact:Maybecomeoutdated andnot reflectthecurrentstateofthesystem.

 Prevention:Use aniterativeapproach,updatingthediagramasthesystemevolves.

7. Whatcan beUseCaseDiagramBestPractices?

Creating effective and clear Use Case Diagramsis crucial for communicating system functionality

andinteractions. Here are some best practices to follow:

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page84

 Keepit Simple:

 Focus on High-Level Functionality:Avoid unnecessary details and concentrate on representing the

system’s primary functionalities.

 UseConciseLanguage: Useclearandconciselanguageforusecaseandactornamestoenhance readability.

 Consistency:

 Naming Conventions:Maintain a consistent naming convention for use cases and actors throughout

the diagram. This promotes clarity and avoids confusion.

 Formatting Consistency:Keep a consistent format for elements like ovals (use cases), stick figures

(actors), and lines to maintain a professional look.

 OrganizeandAlign:

 LogicalGrouping:Organizeusecasesintologicalgroupstorepresentdifferentmodulesor subsystems

within the system.

 Alignment:Maintain proper alignment of elements to make the diagram visually appealing and easy

to follow.

 UseProper Notation:

 ConsistentSymbols:Adheretostandardsymbolsforactors(stickfigures),usecases(ovals),and

relationships to ensure understanding.

 ProperLineTypes:Clearlydistinguishbetweenassociation,include,extend,andgeneralization

relationships using appropriate line types.

 Reviewand Iterate:

 FeedbackLoop:Regularlyreviewthediagramwithstakeholderstoensureaccuracyand completeness.

 IterativeProcess:Useaniterativeprocess,updatingthediagramasthesystemevolvesormore information

becomes available.

By following these best practices, you can create Use Case Diagrams that effectively communicate the

essential aspects of a system, fostering a shared understanding among stakeholders and facilitating the

development process.

8. WhatarethePurposeand Benefits ofUseCaseDiagrams?

The Use Case Diagram offers numerous benefits throughout the system development process. Here are

some key advantages of using Use Case Diagrams:

 VisualizationofSystemFunctionality:

o Use Case Diagrams provide a visual representation of the system’s functionalities and
interactions with external entities.

o This visualization helps stakeholders, including non-technical ones, to understand the
system’s high-level behavior.

 Communication:

o Use Case Diagrams serve as a powerful communication tool, facilitating discussions
between stakeholders, developers, and designers.

o They provide a common language for discussing system requirements, ensuring a shared
understanding among diverse team members.

 RequirementAnalysis:

o During the requirements analysis phase, Use Case Diagrams help in identifying,clarifying,
and documenting user requirements.

o They capture the various ways users interact with the system, aiding in a comprehensive
understanding of system functionality.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page85

 FocusonUser Goals:

o Use Case Diagrams center around user goals and scenarios, emphasizing the perspectiveof
external entities (actors).

o This focus on user interactions ensures that the system is designed to meet user needs and
expectations.

 SystemDesign:

o In the system design phase, Use Case Diagramsaid in designing how users (actors)
willinteract with the system.

o Theycontributetotheplanningoftheuserinterfaceandhelpinorganizingsystemfunctionalities.

 TestingandValidation:

o UseCaseDiagramsarevaluableforderivingtest casesand validatingsystembehavior.
o Testerscanusethediagramstoensurethatallpossiblescenarios,including alternativeand

exceptional paths, are considered during testing.

ComponentBasedDiagram–UnifiedModelingLanguage (UML)



Component-based diagrams are essential tools in software engineering, providing a visual representation

of a system’s structure by showcasing its various components and their interactions. These diagrams

simplify complex systems, making it easier for developers to design, understand, and communicate the

architecture. By breaking down a system into manageable parts, Component-Based Diagrams enhance

modularity, facilitate maintenance, and promote scalability.

WhatisaComponent-Based Diagram?

A Component-Based Diagram, often called a Component Diagram, is a type of structural diagram in the

Unified Modeling Language (UML) that visualizes the organization and interrelationships of the

components within a system.

 Components are modular parts of a system that encapsulate implementation and expose a set of

interfaces.

 These diagrams illustrate how components are wired together to form larger systems, detailing their

dependencies and interactions.

Component-BasedDiagramsarewidelyusedinsystemdesigntopromotemodularity,enhance understanding of

system architecture.

ComponentsofComponent-Based Diagram

Component-BasedDiagramsinUMLcompriseseveralkeyelements,eachservingadistinctrolein illustrating the

system’s architecture. Here are the main components and their roles:

1. Component:

 Role:Representmodularpartsofthesystemthatencapsulatefunctionalities.Componentscanbe software

classes, collections of classes, or subsystems.

 Symbol:Rectangleswiththecomponentstereotype(«component»).

 Function:Defineandencapsulatefunctionality,ensuringmodularityandreusability.

https://www.geeksforgeeks.org/what-is-scalability-and-how-to-achieve-it-learn-system-design

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page86

 SoftwareEngineering(23CS405)

Component

2. Interfaces:

 Role:Specify a set of operations that a component offers or requires, serving as a contract betweenthe

component and its environment.

 Symbol:Circles(lollipops)forprovidedinterfacesandhalf-circles(sockets)forrequiredinterfaces.

 Function:Define how components communicate with each other, ensuring that components can

bedeveloped and maintained independently.

Interfaces

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page87

3. Relationships:

 Role:Depicttheconnections anddependenciesbetweencomponentsandinterfaces.

 Symbol:Linesandarrows.

o Dependency(dashedarrow):Indicatesthatonecomponentreliesonanother.

o Association(solid line):Showsamorepermanentrelationshipbetweencomponents.
o Assemblyconnector:Connectsarequiredinterfaceofonecomponenttoaprovided interface of

another.

 Function:Visualizehowcomponentsinteractanddependoneachother,highlightingcommunication paths

and potential points of failure.

Relationships

4. Ports:

 Role:Representspecificinteractionpointsontheboundaryofacomponentwhereinterfacesare provided or

required.

 Symbol:Smallsquaresonthecomponentboundary.

 Function:Allow for more precise specification of interaction points, facilitating detailed design and

implementation.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page88

Ports

5. Artifacts:

 Role:Representphysicalfilesordatathat aredeployedon nodes.

 Symbol:Rectangleswiththeartifactstereotype(«artifact»).
 Function:Showhowsoftwareartifacts,likeexecutablesordatafiles,relatetothecomponents.

Artifacts

6. Nodes:

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page89

 Role:Represent physicalorvirtualexecutionenvironments wherecomponents aredeployed.

 Symbol:3D boxes.

 Function:Providecontext fordeployment, showing wherecomponents reside and execute within the

system’s infrastructure.

Nodes

StepstoCreateaComponent-Based Diagrams

Creating a Component-Based Diagram involves several steps, from understanding the system

requirements to drawing the final diagram. Here’s a step-by-step explanation to help you create an

effective Component-Based Diagram:

 Step1:IdentifytheSystemScopeandRequirements:

o Understand the system:Gather all relevant information about the system’s functionality,
constraints, and requirements.

o Define the boundaries: Determine what parts of the system will be included in the
diagram.

 Step2:IdentifyandDefine Components:

o Listcomponents:Identifyall themajorcomponents thatmakeupthe system.

o Detailfunctionality:Definetheresponsibilities andfunctionalities ofeachcomponent.

o Encapsulation:Ensureeachcomponentencapsulatesaspecificset of functionalities.

 Step3:IdentifyProvidedandRequiredInterfaces:

o ProvidedInterfaces: Determinewhatservicesorfunctionalitieseachcomponentprovides to
other components.

o RequiredInterfaces:Identifywhatservicesorfunctionalitieseachcomponentrequires from
other components.

o DefineInterfaces:Clearlydefinetheoperations includedineachinterface.

 Step4:IdentifyRelationshipsandDependencies:

o Determine connections:Identify how components are connected and interact with
eachother.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page90

o Specifydependencies:Outlinethedependenciesbetweencomponents,includingwhich
components rely on others to function.

 Step5:Identify Artifacts:

o List artifacts:Identify the physical pieces of information (files, documents, executables)
associated with each component.

o Mapartifacts:Determinehowtheseartifactsaredeployedandusedbythecomponents.

 Step6:Identify Nodes:

o Execution environments: Identify the physicalor virtual nodes where components willbe
deployed.

o Definenodes:Detailthehardwareorinfrastructurespecificationsforeachnode.

 Step7:Drawthe Diagram:

o Use a UML tool:Utilize a UML diagramming tool like Lucid chart, Microsoft Visio,
orany other UML software.

o Drawcomponents:Representeachcomponentasarectanglewiththe«component» stereotype.

o Drawinterfaces:Uselollipopsymbolsforprovidedinterfacesandsocketsymbolsfor required
interfaces.

o Connectcomponents:Useassemblyconnectorstolinkprovidedinterfacestorequired
interfaces.

o Addartifacts:Representartifactsasrectangleswiththe«artifact»stereotypeand associate them
with the appropriate components.

o Draw nodes:Represent nodes as 3D boxes and place the components and artifacts within
these nodes to show deployment.

 Step8:ReviewandRefinetheDiagram:

o Validateaccuracy:Ensureallcomponents,interfaces,andrelationshipsareaccurately
represented.

o Seekfeedback:Reviewthediagramwithstakeholdersorteammemberstoensureit meets the
system requirements.

o Refine as needed:Make necessary adjustments based on feedback to improve clarity and
accuracy.

BestpracticesforcreatingComponentBased Diagrams

CreatingComponent-BasedDiagramsinvolvesseveralbestpracticestoensureclarity,accuracy,and effectiveness in

communicating the system’s architecture. Here are some best practices to follow:

1. Understand the System:

 Gainathoroughunderstandingofthesystem’srequirements,functionalities,andconstraints before

creating the diagram.

 Workcloselywithstakeholders togatherrequirements andclarifyanyambiguities.

2. KeepitSimple:

 Aimfor simplicityandclarityinthediagram.Avoidunnecessarycomplexitythatmayconfuse readers.

 Breakdownthesystemintomanageablecomponentsandfocusonrepresentingthemost important

aspects of the architecture.

3. UseConsistent Naming Conventions:

 Useconsistentandmeaningfulnamesforcomponents,interfaces,artifacts,andnodes.

 Followanamingconventionthatreflectsthesystem’sdomainandisunderstandabletoallstakeholders.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page91

4. GroupRelatedComponents:

 Grouprelatedcomponentstogetherto createcohesive packagesorsubsystems.

 Usepackagediagrams or namespacestoorganizecomponentsintologicalgroupings.

5. DefineClear Interfaces:

 Clearlydefinetheinterfaces provided andrequiredbyeachcomponent.

 Specifytheoperationsandfunctionalitiesexposedbyeachinterfaceinaconciseand understandable

manner.

6. UseStereotypesandAnnotations:

 UseUMLstereotypesandannotationstoprovideadditionalinformationaboutcomponents,interfaces,

and relationships.

 For example, use stereotypes like «component», «interface», «artifact», etc., to denote

differentelements in the diagram.

7. MaintainConsistencywithOtherDiagrams:

 Ensure consistency between Component-Based Diagrams and other types of diagrams (e.g., class

diagrams, sequence diagrams).

 Usethesameterminology,notation,andnamingconventionsacrossalldiagramstoavoid confusion.

ToolsandSoftwareavailableforComponent-BasedDiagrams

Several tools and software are available for creating Component-Based Diagrams, ranging from general-

purpose diagramming tools to specialized UML modeling software. Here are some popular options:

 Lucid chart:Lucid chart is a cloud-based diagramming tool that supports creating various types

ofdiagrams, including Component-Based Diagrams.

 Microsoft Visio:Microsoft Visio is a versatile diagramming tool that supports creating Component-

Based Diagrams and other types of UML diagrams.

 VisualParadigm:VisualParadigmisacomprehensiveUMLmodelingtoolthatsupportsthe creation of

Component-Based Diagrams, along with other UML diagrams.

 EnterpriseArchitect:EnterpriseArchitectisapowerfulUMLmodelinganddesigntoolusedfor creating

Component-Based Diagrams and other software engineering diagrams.

 IBM Rational Software Architect: IBM Rational Software Architect is an integrated development

environment (IDE) for modeling, designing, and developing software systems.

ApplicationsofComponent-BasedDiagrams

Component-BasedDiagramsfindnumerousapplicationsacrossthesoftwaredevelopmentlifecycle, aiding in

design, documentation, and communication. Here are some key applications:

 SystemDesign andArchitecture:

o Component-BasedDiagramshelparchitectsanddesignersvisualizethestructureofa system,
including its components, interfaces, and dependencies.

o Theyfacilitatethedecompositionofcomplexsystemsintomodularandmanageablecomponents,
promoting reusability and maintainability.

 RequirementsAnalysis:

o During requirements analysis, Component-Based Diagrams help stakeholders understand
the functional and non-functional requirements of the system.

o They provide a clear representation of how different system components interact to fulfill
user needs.

 SystemDocumentation:

o Component-BasedDiagramsserveasvaluabledocumentationartifacts,capturingthehigh-level
architecture and design decisions of a system.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page92

o Theyhelpdevelopers,testers,andother stakeholdersunderstandthesystem’sstructure,
behavior, and constraints.

 SoftwareDevelopment:

o In software development, Component-Based Diagrams guide the implementation process
by defining the boundaries and interfaces of software components.

o They facilitate communication between development teams, ensuring consistent

understanding of system architecture and design goals.

 CodeGenerationandImplementation:

o Component-Based Diagrams can be used as a basis for code generation, helping automate
the implementation of software components.

o They provide a blueprint for developers to follow when writing code, ensuring alignment
with the system architecture.

 SystemMaintenanceandEvolution:

o Duringsystemmaintenanceandevolution,Component-BasedDiagramsserveasreference
documentation for understanding existing system architecture.

o They help identify areas of the system that require modification or enhancement, guiding
the evolution of the system over time.

BenefitsofUsingComponent-BasedDiagrams

UsingComponent-BasedDiagramsoffersseveralbenefitsacrossthesoftwaredevelopmentlifecycle, aiding in

design, communication, and maintenance of software systems. Here are some key benefits:

 VisualizationofSystemArchitecture:

o Component-Based Diagrams provide a visual representation of the system’s architecture,
including components, interfaces, and dependencies.

o Theyhelpstakeholdersunderstandthestructureandorganizationofthesystem,facilitating
discussions and decision-making.

 ModularityandReusability:

o Component-Based Diagrams promotemodularity bybreaking down complex systems into
smaller, reusable components.

o Theyfacilitatecomponent-baseddesign,allowingdeveloperstobuildsoftwaresystems using
reusable and interchangeable building blocks.

 ImprovedCommunication:

o Component-BasedDiagramsserveasacommonvisuallanguageforcommunicationamong
stakeholders, including architects, developers, testers, and project managers.

o They help ensure consistent understanding of system architecture, design decisions,
andimplementation details across the development team.

 EaseofMaintenanceandEvolution:

o Component-BasedDiagramsaidinsystemmaintenanceandevolutionbyprovidinga clear
documentation of system architecture.

o They help identify areas of the system that require modification or enhancement, guiding
the evolution of the system over time.

 EnforcementofDesignPrinciples:

o Component-BasedDiagramshelpenforcedesignprinciplessuchasencapsulation, cohesion,
and loose coupling.

o Theyencourageseparationofconcernsand promotecleanandmodulardesignpractices.

 Facilitationof TestingandDebugging:

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page93

o Component-Based Diagrams aid in integration testing by identifying the interactions and
dependencies between components.

o They help testers develop test cases that cover the integration points between components,
ensuring thorough testing of system functionality.

UNIT-IV

TestingStrategies:Astrategicapproachtosoftwaretesting,teststrategiesforconventionalsoftware, black-box

and white-box testing, validation testing, system testing, the art of debugging.

MetricsforProcessandProducts: Softwaremeasurement,metricsforsoftware quality.

TestingStrategies:

AStrategicApprochtoSoftware Testing



Softwaretestingistheprocessofevaluatingasoftwareapplicationtoidentifyifitmeetsspecified requirements and to

identify any defects. The following are common testing strategies:

1. Blackboxtesting–Teststhefunctionalityofthesoftwarewithoutlookingattheinternalcode structure.

2. Whitebox testing–Tests the internalcodestructureandlogicof thesoftware.

3. Unit testing– Tests individual units or components of the software to ensure they are functioning as

intended.

4. Integrationtesting–Teststheintegrationofdifferentcomponentsofthesoftwaretoensurethey work

together as a system.

5. Functionaltesting–Teststhefunctionalrequirementsof thesoftwaretoensurethey aremet.

6. Systemtesting–Teststhecompletesoftwaresystemtoensureitmeetsthespecifiedrequirements.

7. Acceptancetesting–Tests thesoftwareto ensureitmeetsthecustomer’sorend-user’sexpectations.

8. Regression testing– Tests the software after changes or modifications have been made to ensure the

changes have not introduced new defects.

9. Performance testing– Tests the software to determine its performance characteristics such as speed,

scalability, and stability.

10. Securitytesting –Teststhesoftwaretoidentifyvulnerabilitiesandensureitmeetssecurity requirements.

Software Testingis a type of investigation to find out if there is any default or error present in the

software so that the errors can be reduced or removed to increase the quality of the software and to check

whether it fulfills the specifies requirements or not.

According to Glen Myers, software testing has the following objectives:

 The process of investigating and checking a program to find whether there is an error or not and does

it fulfill the requirements or not is called testing.

 When the number of errors found during the testing is high, it indicates that the testing was good and

is a sign of good test case.

 Finding an unknown error that wasn’t discovered yet is a sign of a successful and a good test case.

Themainobjectiveofsoftwaretestingistodesignthetestsinsuchawaythatitsystematicallyfinds

differenttypesoferrorswithouttakingmuchtimeandeffortsothatlesstimeisrequiredforthedevelopment of the

software. The overall strategy for testing software includes:

https://www.geeksforgeeks.org/software-testing-basics/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page94

1. Before testing starts, it’s necessary to identify and specify the requirements of the product in a

quantifiablemanner.Differentcharacteristicsqualityofthesoftwareistheresuchasmaintainability that

means the ability to update and modify, the probability that means to find and estimate any risk, and

usability that means how it can easily be used by the customers or end-users. All these characteristic

qualities should be specified in a particular order to obtain clear test results without any error.

2. Specifying the objectives of testing in a clear and detailed manner. Several objectives of testing

are there such as effectiveness that means how effectively the software can achieve the target, any

failure that means inability to fulfill the requirements and perform functions, and the cost of defectsor

errors that mean the cost required to fix the error. All these objectives should be clearly mentioned in

the test plan.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page95

3. For the software, identifying the user’s category and developing a profile for each user. Use

cases describe the interactions and communication among different classes of users and the system to

achieve the target. So as to identify the actual requirement of the users and then testing the actual use

of the product.

4. Developing a test plan to give value and focus on rapid-cycle testing. Rapid Cycle Testing is atype

of test that improves quality by identifying and measuring the any changes that need to be required

for improving the process of software. Therefore, a test plan is an important and effective document

that helps the tester to perform rapid cycle testing.

5. Robust software is developed that is designed to test itself. The software should be capable of

detectingoridentifyingdifferentclassesoferrors.Moreover,softwaredesignshouldallowautomated and

regression testing which tests the software to find out if there is any adverse or side effect on the

features of software due to any change in code or program.

6. Before testing, using effective formal reviews as a filter.Formal technical reviews is technique to

identify the errors that are not discovered yet. The effective technical reviews conducted beforetesting

reduces a significant amount of testing efforts and time duration required for testing software so that

the overall development time of software is reduced.

7. Conduct formal technical reviews to evaluate the nature, quality or ability of the test strategy

and test cases. The formal technical review helps in detecting any unfilled gap in the testing

approach. Hence, it is necessary to evaluate the ability and quality of the test strategy and test casesby

technical reviewers to improve the quality of software.

8. For the testing process, developing a approach for the continuous development. As a part of a

statistical process control approach, a test strategy that is already measured should be used for

software testing to measure and control the quality during the development of software.

AdvantagesorDisadvantages:

Advantagesofsoftware testing:

1. Improvessoftwarequalityandreliability–Testinghelpstoidentifyandfixdefectsearlyinthe development

process, reducing the risk of failure or unexpected behavior in the final product.

2. Enhancesuserexperience–Testinghelpstoidentifyusabilityissuesandimprovetheoveralluser experience.

3. Increases confidence – By testing the software, developers and stakeholders can have confidence that

the software meets the requirements and works as intended.

4. Facilitates maintenance – By identifying and fixing defects early, testing makes it easier to maintain

and update the software.

5. Reducescosts–Finding andfixing defectsearlyin the development process is lessexpensivethan fixing

them later in the life cycle.

Disadvantagesofsoftware testing:

1. Time-consuming – Testing can take a significant amount of time, particularly if thorough testing

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page96

2. Resource-intensive– Testingrequiresspecializedskillsandresources,whichcanbe expensive.

3. Limited coverage – Testing can only reveal defects that are present in the test cases, and it is possible

for defects to be missed.

9. For the software, identifying the user’s category and developing a profile for each user. Use

cases describe the interactions and communication among different classes of users and the system to

achieve the target. So as to identify the actual requirement of the users and then testing the actual use

of the product.

10. Developing a test plan to give value and focus on rapid-cycle testing. Rapid Cycle Testing is atype

of test that improves quality by identifying and measuring the any changes that need to be required

for improving the process of software. Therefore, a test plan is an important and effective document

that helps the tester to perform rapid cycle testing.

11. Robust software is developed that is designed to test itself. The software should be capable of

detectingoridentifyingdifferentclassesoferrors.Moreover,softwaredesignshouldallowautomated and

regression testing which tests the software to find out if there is any adverse or side effect on the

features of software due to any change in code or program.

12. Before testing, using effective formal reviews as a filter.Formal technical reviews is technique to

identify the errors that are not discovered yet. The effective technical reviews conducted beforetesting

reduces a significant amount of testing efforts and time duration required for testing software so that

the overall development time of software is reduced.

13. Conduct formal technical reviews to evaluate the nature, quality or ability of the test strategy

and test cases. The formal technical review helps in detecting any unfilled gap in the testing

approach. Hence, it is necessary to evaluate the ability and quality of the test strategy and test casesby

technical reviewers to improve the quality of software.

14. For the testing process, developing a approach for the continuous development. As a part of a

statistical process control approach, a test strategy that is already measured should be used for

software testing to measure and control the quality during the development of software.

AdvantagesorDisadvantages:

Advantagesofsoftware testing:

6. Improvessoftwarequalityandreliability–Testinghelpstoidentifyandfixdefectsearlyinthe development

process, reducing the risk of failure or unexpected behavior in the final product.

7. Enhancesuserexperience–Testinghelpstoidentifyusabilityissuesandimprovetheoveralluser experience.

8. Increases confidence – By testing the software, developers and stakeholders can have confidence that

the software meets the requirements and works as intended.

9. Facilitates maintenance – By identifying and fixing defects early, testing makes it easier to maintain

and update the software.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page97

4. Unpredictable results – The outcome of testing is not always predictable, and defects can be hard

toreplicate and fix.

5. Delaysindelivery–Testingcandelaythedeliveryofthesoftwareiftestingtakeslongerthan expected or if

significant defects are identified.

TestStrategiesforConventional Software:



Conventional testing also known as the Traditional approach of software testing involves a series of

activities that aim to identify the defects in the software and ensures that the software meets the specified

requirements. The article focuses on discussing Conventional testing in detail.

Whatis Conventional Testing?

Conventional testing is defined as traditional testing where the main aim is to check whether all the

requirements stated by the user are achieved.

 The difference between conventional testing and other testing approach is that it concentrates on

checking all the requirements given by the user rather than following a software development life

cycle.

 Conventionaltestingmainlyfocusesonfunctionaltesting.

 Thistestingis beingperformedby adedicatedteamofsoftware testers.

StagesofConventional Testing

Conventionaltestingfollowsasequentialapproach.Itconsistsofvariousstages.Suchas

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page98

1. Planning

Planning is the first stage of conventional testing. This stage consists of planning regarding the objective

of testing developing a complete test plan and resources that will be required for performing testing.

2. RequirementAnalysis

SoftwareRequirements arebeing analyzed in this phase. Theserequirements help to identify the scopeof

testing and risks and for the preparation of test cases.

3. Design

In this stage, test cases are designed. If the test cases are successful it means that test cases are achieved.

If not test cases are failed to achieve.

4. Execution

Execution is the process where test cases are executed. The errors encountered during execution are

documented.

5. Reporting

In reportingphase,all thedocumentederrors aresenttothedevelopmentteamfor fixing.

6. Retesting

Retesting is the stage where all the test cases are performed again. It checks whether all the failed test

cases meet. All the requirements specified by the user are achieved.

7. Release

In the last stage, the software is released for the users. It is verified that all the requirements stated by the

user or client are successfully working before the release of the software product.

Types ofConventional Testing

1. UnitTesting

Unit Testing is defined as a type of testing where the various modules and units are being tested

individually. Unit testing makes sure that each individual component of the system works well and

eventually checks whether all the requirements stated by clients are achieved successfully.

2. IntegrationTesting

Integration Testing is defined as a type of testing where multiple modules or components are tested

together in order to check that they work accordingly once integrated with each other. It makes sure that

interaction and communication between different modules work well.

3. PerformanceTesting

Performance Testing is defined as a type of testing that checks for performance-related parameters for a

software product. Performance testing helps to find out the loopholes in the system and improve

performance.

4. AcceptanceTesting

Acceptance Testing is defined as a type of testing that is used to check the requirements according to the

user’s point of view. It makes sure that all requirements specified by the user are achieved.

5. RegressionTesting

Regression Testing is defined as a type of testing in which test cases are executed again in order to check

that the changes made are being fixed and the system is working accordingly.

BenefitsofConventionalTesting

1. Cost Effective:Conventional Testing is cost-effective as manual testing is being used. Manualtesting

requires less financial investment as compared to automation testing.

2. Flexible:Conventional testing hastheadvantage offlexibility. Manualtesting hastheability toadopt the

changes that take place while testing the product.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page99

3. Testing of Non-functional Requirements also:Manual testing can test functional as well as non-

functional requirements such as accessibility, and usability which is different from automationtesting.

4. Understanding User Experience more effectively: Conventional Testing makes use of manual

testing which helps to understand the user experience more effectively as the manual tester can test

the requirements with multiple scenarios.

5. Provides better communication between testers and developers: Manual testing allows better

communication between testers, developers, and other clients regarding issues and wrong outputs.

Limitations ofConventionalTesting

1. Time-consuming:ConventionalTestingcan betime-consumingaswithmanualtestingitcan take more

time for large applications and accordingly delay further deployment process of the project.

2. Subjective:The manual tester performing the testing can have their own views and opinions

whichcan in turn result in the quality of testing that is being performed.

3. Repetitive:Manual testing can lead to repetition by performing the testing for the same test cases. It

can consume more time than it is required.

4. Limited Coverage:Manual testing can miss some of the test cases and it will be not notified by the

tester. This can result in delivering the software product with errors or un tasted test cases.

WhiteboxTesting –Software Engineering



White box testingtechniques analyze the internal structures the used data structures, internal design,

codestructure,andtheworking ofthesoftwareratherthanjust thefunctionality as inblackboxtesting.It is also

called glass box testing clear box testing or structural testing. White Box Testing is also known as

transparent testing or open box testing.

Whatis WhiteBox Testing?

White box testing is asoftware testing techniquethat involves testing the internal structure and workings

of asoftware application. The tester has access to the source code and uses this knowledge to design test

cases that can verify the correctness of the software at the code level.

White box testing is also known asstructural testing orcode-based testing,and it is used to test the

software’s internal logic, flow, and structure. The tester creates test cases to examine the code paths and

logic flows to ensure they meet the specified requirements.

Before we move in depth of the white box testing do you known that their are many different type of

testingusedinindustryandsomeautomationtestingtoolsaretherewhich automatethemostoftestingso if you

wish to learn the latest industry level tools then you check-out ourmanual to automation testingcoursein

which you will learn all these concept and tools

WhatDoesWhiteBoxTesting Focus On?

White box testing uses detailed knowledge of a software’s inner workings to create very specific test

cases.

 Path Checking:Examines the different routes the program can take when it runs. Ensures that all

decisions made by the program are correct, necessary, and efficient.

 OutputValidation:Testsdifferentinputsto seeif thefunctiongivestheright output eachtime.

 Security Testing:Uses techniques like static code analysis to find and fix potential security issues in

the software. Ensures the software is developed using secure practices.

https://www.geeksforgeeks.org/software-testing-techniques/
https://www.geeksforgeeks.org/what-is-code-driven-testing-in-software-testing/
https://gfgcdn.com/tu/QW3/
https://gfgcdn.com/tu/QW3/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page100

 LoopTesting:Checkstheloopsintheprogramtomakesuretheyworkcorrectlyandefficiently. Ensures that

loops handle variables properly within their scope.

 Data Flow Testing:Follows the path of variables through the program to ensure they are

declared,initialized, used, and manipulated correctly.

Types OfWhiteBox Testing

Whiteboxtesting can be donefordifferent purposes.Thethreemain typesare:

1. Unit Testing

2. IntegrationTesting

3. RegressionTesting

UnitTesting

 Checksifeachpartor function oftheapplicationworks correctly.

 Ensurestheapplication meets designrequirements duringdevelopment.

Integration Testing

 Examineshowdifferentpartsoftheapplication worktogether.

 Doneafterunittestingtomakesurecomponents workwell both aloneandtogether.

RegressionTesting

 Verifiesthat changesorupdatesdon’tbreakexistingfunctionality.

 Ensurestheapplication stillpassesallexistingtestsafter updates.

WhiteBox Testing Techniques

One of the main benefits of white box testing is that it allows for testing every part of an application. To

achieve complete code coverage, white box testing uses the following techniques:

1. StatementCoverage

In this technique, the aim is to traverse all statements at least once. Hence, each line of code is tested. In

the case of a flowchart, every node must be traversed at least once. Since all lines of code are covered, it

helps in pointing out faulty code.

StatementCoverageExample

2. BranchCoverage

https://www.geeksforgeeks.org/unit-testing-software-testing/
https://www.geeksforgeeks.org/software-engineering-integration-testing/
https://www.geeksforgeeks.org/software-engineering-regression-testing/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page101

In this technique, test cases are designed so that each branch from all decision points is traversed at least

once. In a flowchart, all edges must be traversed at least once.

4testcasesarerequiredsuchthatallbranchesofalldecisionsarecovered,i.e,alledgesoftheflowchart are covered

3. ConditionCoverage

Inthistechnique,all individual conditions must becoveredasshowninthefollowing example:

 READX,Y

 IF(X ==0||Y==0)

 PRINT ‘0’

 #TC1 – X=0, Y=55

 #TC2 – X=5, Y=0

4. Multiple ConditionCoverage

In this technique, all the possible combinations of the possible outcomes of conditions are tested at least

once. Let’s consider the following example:

 SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page102

 READX,Y

 IF(X ==0||Y==0)

 PRINT ‘0’

 #TC1: X=0, Y=0

 #TC2: X=0, Y=5

 #TC3: X=55, Y=0

 #TC4: X=55, Y=5

5. Basis Path Testing

In this technique, control flow graphs are made from code or flowchart and then Cyclomatic complexity

is calculated which defines the number ofindependent paths so that the minimal numberof test cases can

be designed for each independent path. Steps:

 Makethecorrespondingcontrolflowgraph

 Calculatethecyclomaticcomplexity

 Findtheindependentpaths

 Designtestcasescorrespondingtoeachindependent path

 V(G)=P+1,whereP is thenumberofpredicatenodes intheflowgraph

 V(G)=E– N+2, whereEis thenumberofedges and Nis thetotal numberofnodes

 V(G)= Numberofnon-overlapping regions inthegraph

 #P1: 1– 2 – 4 – 7 – 8

 #P2: 1– 2 – 3 – 5 – 7 – 8

 #P3: 1– 2 – 3 – 6 – 7 – 8

 #P4: 1– 2 – 4 – 7 – 1 – .. . – 7 – 8

6. LoopTesting

Loopsarewidelyusedandthesearefundamentaltomanyalgorithmshence,theirtestingisveryimportant. Errors often

occur at the beginnings and ends of loops.

 Simpleloops: Forsimple loopsofsizen,test casesaredesigned that:

1. Skip theloop entirely

2. Only onepass throughthe loop

3. 2 passes

4. mpasses,wherem <n

5. n-1ansn+1passes

 Nested loops:For nested loops, all the loops are set to their minimum count, and we start from the

innermost loop. Simple loop tests are conducted for the innermost loop and this is worked outwards

till all the loops have been tested.

 Concatenated loops:Independent loops, one after another. Simple loop tests are applied for each. If

they’re not independent, treat them like nesting.

Black Box vsWhiteBox vsGrayBox Testing

HereisasimplecomparisonofBlack Box,White Box, andGray Boxtesting, highlighting key aspects:

Aspect Black Box Testing WhiteBox Testing Gray Box Testing

Knowledge of

Internal Code

Not required

Required

Partiallyrequired

Other Names Functionaltesting,data- Structuraltesting,clearbox Translucenttesting

 SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page103

Aspect Black Box Testing WhiteBox Testing Gray Box Testing

driven testing, closed

box testing

testing,code-basedtesting,

transparent testing

Approach

Trialanderror,basedon

external functionality

Verification of internal

coding, system boundaries,

and data domains

Combination of both

black box and whitebox

approaches

TestCaseInput

Size

Largest
SmallercomparedtoBlack Box SmallerthanbothBlack

Box and White Box

Finding Hidden

Errors

Difficult
Easierduetointernalcode access Challenging, may be

found at user level

Algorithm

Testing

Not suitable
Well-suited and

recommended

Not suitable

Time

Consumption

Dependsonfunctional

specifications

Highduetocomplexcode

analysis

Moderate, faster than

White Box

Process ofWhiteBox Testing

1. Input:Requirements,Functionalspecifications,designdocuments,source code.

2. Processing:Performing riskanalysistoguidethroughtheentire process.

3. Proper test planning:Designing test cases to cover the entire code. Execute rinse-repeat until error-

free software is reached. Also, the results are communicated.

4. Output:Preparing thefinalreportoftheentiretestingprocess.

WhiteTesting isperformedin 2Steps

1. Testershouldunderstandthecodewell
2. Testershouldwritesomecodefortest casesandexecute them

ToolsrequiredforWhitebox testing:

 PyUnit

 Sql map

 Nmap

 ParasoftJ test

 Nunit

 VeraUnit

 Cpp Unit

 Bug zilla

 Fiddler

 JSUnit.net

 OpenGrok

 Wireshark

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page104

 HPFortify

 CS Unit

FeaturesofWhitebox Testing

1. Code coverage analysis:White box testing helps to analyze the code coverage of an application,

which helps to identify the areas of the code that are not being tested.

2. Access to the source code:White box testing requires access to the application’s source code, which

makes it possible to test individual functions, methods, and modules.

3. Knowledgeofprogramminglanguages:Testersperformingwhiteboxtestingmusthaveknowledge of

programming languages like Java, C++, Python, and PHP to understand the code structure and write

tests.

4. Identifying logical errors:White box testing helps to identify logical errors in the code, such as

infinite loops or incorrect conditional statements.

5. Integration testing:White box testing is useful for integration testing, as it allows testers to verify

that the different components of an application are working together as expected.

6. Unittesting:Whitebox testing isalso usedforunit testing, whichinvolvestesting individualunitsof code

to ensure that they are working correctly.

7. Optimization of code:White box testing can help to optimize the code by identifying any

performance issues, redundant code, or other areas that can be improved.

8. Security testing:White box testing can also be used for security testing, as it allows testers toidentify

any vulnerabilities in the application’s code.

9. Verification of Design:It verifiesthat the software’s internal design is implemented in accordance

with the designated design documents.

10. Check for Accurate Code: It verifiesthat the code operates in accordance with the guidelines and

specifications.

11. Identifying Coding Mistakes: It finds and fix programming flaws in your code, including syntactic

and logical errors.

12. Path Examination:It ensures that each possible path of code execution is explored and test various

iterations of the code.

13. Determining the Dead Code: It finds and remove any code that isn’t used when the programme is

running normally (dead code).

AdvantagesofWhiteBox Testing

1. ThoroughTesting: Whitebox testingis thoroughas theentirecodeand structures aretested.

2. CodeOptimization:Itresultsintheoptimizationofcoderemovingerrorsandhelpsinremoving extra lines

of code.

3. Early Detection of Defects: It can start at an earlier stage as it doesn’t require any interface as in the

case of black box testing.

4. IntegrationwithSDLC:WhiteboxtestingcanbeeasilystartedinSoftwareDevelopmentLife Cycle.

5. DetectionofComplexDefects:Testerscanidentifydefectsthatcannotbedetectedthroughother testing

techniques.

6. ComprehensiveTestCases:Testerscancreatemorecomprehensiveandeffectivetestcasesthat cover all

code paths.

7. Testerscanensurethatthe codemeetscodingstandards andis optimizedforperformance.

Disadvantages ofWhiteBox Testing

1. ProgrammingKnowledgeandSourceCode Access: Testersneedtohaveprogramming knowledge and

access to the source code to perform tests.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page105

2. Overemphasis on Internal Workings: Testers may focus too much on the internal workings of the

software and may miss external issues.

3. BiasinTesting:Testersmayhaveabiasedviewofthesoftwaresincetheyarefamiliarwithits internal

workings.

4. TestCaseOverhead:Redesigning codeandrewriting codeneedstestcasestobewrittenagain.

5. Dependency on Tester Expertise:Testers are required to have in-depth knowledge of the code and

programming language as opposed to black-box testing.

6. Inability to Detect Missing Functionalities: Missing functionalities cannot be detected as the code

that exists is tested.

7. IncreasedProductionErrors:Highchancesof errorsinproduction.

BlackBoxTesting –Software Engineering



Black Box Testing is an important part of making sure software works as it should. Instead of peeking

into the code, testers check how the software behaves from the outside, just like users would. This helps

catch any issues or bugs that might affect how the software works.

This simple guide gives you an overview of what Black Box Testing is all about and why it matters in

software development.

Whatis Black Box Testing?

Black-box testing is a type of software testing in which the tester is not concerned with the software’s

internal knowledge or implementation details but rather focuses on validating the functionality based on

the provided specifications or requirements.

BlackBox Testing

Types OfBlack Box Testing

Thefollowing aretheseveralcategories ofblack box testing:

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page106

1. FunctionalTesting

2. RegressionTesting

3. NonfunctionalTesting (NFT)
Before we move in depth of the Black box testing do you known that their are many different type of

testingusedinindustryandsomeautomationtestingtoolsaretherewhich automatethemostoftestingso if you

wish to learn the latest industry level tools then you check-out ourmanual to automation testingcoursein

which you will learn all these concept and tools

Functional Testing

 Functional testing is defined as a type of testing that verifies that each function of the software

application works in conformance with the requirement and specification.

 This testing is not concerned with the source code of the application. Each functionality of the

software application is tested by providing appropriate test input, expecting the output, andcomparing

the actual output with the expected output.

 This testing focuses on checking the user interface, APIs, database, security, client or server

application, and functionality of the Application Under Test. Functional testing can be manual or

automated. It determines the system’s software functional requirements.

RegressionTesting

 Regression Testing is the process oftesting the modified parts ofthe codeand the parts that might get

affected due to the modifications to ensure that no new errors have been introduced in the software

after the modifications have been made.

 Regression means the return of something and in the software field, it refers to the return of a bug. It

ensures that the newly added code is compatible with the existing code.

 In other words, a new software update has no impact on the functionality of the software. This is

carried out after a system maintenance operation and upgrades.

NonfunctionalTesting

 Non-functional testing is a software testing technique that checks the non-functional attributes of the

system.

 Non-functionaltestingisdefinedasatypeofsoftwaretestingtochecknon-functionalaspectsofa software

application.

 Itisdesignedtotestthereadinessofasystemaspernonfunctionalparameterswhicharenever addressed by

functional testing.

 Non-functionaltestingisasimportantasfunctional testing.

 Non-functionaltestingisalsoknownasNFT.Thistestingisnotfunctionaltestingofsoftware.It focuses on

the software’s performance, usability, and scalability.

AdvantagesofBlack Box Testing

 The tester does not need to have more functional knowledge or programming skills to implement the

Black Box Testing.

 Itisefficientforimplementing thetestsinthelargersystem.

 Testsareexecutedfromtheuser’sorclient’spoint of view.

 Testcasesareeasilyreproducible.

 Itisusedtofindtheambiguity andcontradictionsinthefunctionalspecifications.

Disadvantages ofBlackBox Testing

 Thereis apossibility ofrepeating thesametestswhile implementingthetestingprocess.

 Withoutclearfunctional specifications,testcasesaredifficult toimplement.

 Itisdifficultto executethetest casesbecauseofcomplex inputsat differentstagesoftesting.

 Sometimes,thereason forthetestfailurecannotbedetected.

https://www.geeksforgeeks.org/software-testing-functional-testing
https://www.geeksforgeeks.org/software-engineering-regression-testing
https://www.geeksforgeeks.org/software-testing-non-functional-testing
https://gfgcdn.com/tu/QW4/
https://gfgcdn.com/tu/QW4/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page107

 Someprogramsintheapplication arenot tested.

 Itdoesnotrevealtheerrorsinthecontrol structure.

 Workingwith alargesamplespaceofinputs canbeexhaustiveandconsumesalotoftime.

Black BoxandWhiteBox Testing

Black box testing is a testing technique in which the internal workings of the software are not known to

the tester. The tester only focuses on the input and output of the software. Whereas, White box testing isa

testing technique in which the tester has knowledge of the internal workings of the software, and can test

individual code snippets, algorithms and methods.

 Testing objectives:Black box testing is mainly focused on testing the functionality of the software,

ensuring that it meets the requirements and specifications. White box testing is mainly focused on

ensuring that the internal code of the software is correct and efficient.

 Knowledge level: Black box testing does not require any knowledge of the internal workings of the

software, and can be performed by testers who are not familiar with programming languages. White

box testing requires knowledge of programming languages, software architecture and design patterns.

 Testing methods:Black box testing uses methods like equivalence partitioning, boundary value

analysis, and error guessing to create test cases. Whereas, white box testing uses methods like control

flow testing, data flow testing and statement coverage.

 Scope: Black box testing is generally used for testing the software at the functional level. White box

testing is used for testing the software at the unit level, integration level and system level.

GreyBoxTesting

GrayBoxTestingisasoftwaretestingtechniquethatisacombinationoftheBlackBoxTestingtechnique and the

White Box Testingtechnique.

1. In the Black Box Testing technique, the tester isunaware of the internalstructure of the item

beingtested and in White Box Testing the internal structure is known to the tester.

2. Theinternalstructureispartially knowninGrayBox Testing.

3. Thisincludesaccesstointernal datastructures andalgorithms todesignthetest cases.

4. GrayBoxTestingisnamedsobecausethesoftwareprogramislikeasemitransparentorgraybox inside which

the tester can partially see.

5. Itcommonlyfocusesoncontext-specificerrorsrelated towebsystems.

ObjectivesofGrayBoxTesting

 Toprovidecombinedadvantages ofbothblackbox testingandwhitebox testing.

 Tocombinethe inputofdevelopers aswellas testers.

 Toimproveoverallproductquality.

Ways of Black Box Testing Done

1. Syntax-Driven Testing–This type of testing is applied to systems that can be syntactically represented

by some language. For example, language can be represented by context-free grammar. In this, the test

cases are generated so that each grammar rule is used at least once.

2. Equivalence partitioning–It is often seen that many types of inputs work similarly so instead of

giving all of them separately we can group them and test only one input of each group. The idea is to

partition the input domain of the system into severalequivalence classessuch that each member of the

class works similarly, i.e., if a test case in one class results in some error, other members of the class

would also result in the same error.

Thetechniqueinvolvestwosteps:

1. Identification of equivalence class –Partition any input domain into a minimum of two sets:valid

valuesandinvalid values . For example, if the valid range is 0 to 100 then select one valid input like

49 and one invalid like 104.

https://www.geeksforgeeks.org/gray-box-testing-software-testing
https://www.geeksforgeeks.org/software-engineering-black-box-testing
https://www.geeksforgeeks.org/software-engineering-black-box-testing
https://www.geeksforgeeks.org/software-engineering-white-box-testing
https://www.geeksforgeeks.org/keyword-driven-testing-in-software-testing/
https://www.geeksforgeeks.org/equivalence-partitioning-method/
https://www.geeksforgeeks.org/equivalence-class/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page108

2. Generating test cases – (i) To each valid and invalid class of input assign a unique identification

number. (ii) Write a test case covering all valid and invalid test cases considering that no two invalid

inputs mask each other. To calculate the square root of a number, the equivalence classes will be(a)

Valid inputs:

 Thewholenumberwhichis aperfect square-output willbean integer.

 Theentirenumberwhichis notaperfectsquare-outputwill beadecimal number.

 Positive decimals

 Negativenumbers(integerordecimal).

 Charactersotherthannumberslike“a”,”!”,”;”,etc.

3. Boundary value analysis–Boundaries are very good places for errors to occur. Hence, if test cases are

designed for boundary values of the input domain then the efficiency of testing improves and the

probability of finding errors also increases. For example – If the valid range is 10 to 100 then test for

10,100 also apart from valid and invalid inputs.

4. Cause effect graphing –This technique establishes a relationship between logical input called causes

with corresponding actions called the effect. The causes and effects are represented using Booleangraphs.

The following steps are followed:

1. Identifyinputs(causes)andoutputs (effect).

2. Developacause-effect graph.

3. Transformthegraphintoadecisiontable.

4. Convertdecision tablerulesto test cases.

https://www.geeksforgeeks.org/software-testing-boundary-value-analysis/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page109

Forexample,inthefollowingcausegraph: It

can be converted into a decision table like:

Eachcolumn corresponds to arulewhich willbecomeatest casefortesting. Sotherewill be4 test cases.

5. Requirement-based testing–It includes validating the requirements given in the SRS of a software

system.

6. Compatibility testing–The test case results not only depends on the product but is also on the

infrastructure for delivering functionality. When the infrastructure parameters are changed it is still

expected to work properly. Some parameters that generally affect the compatibility of software are:

1. Processor(Pentium3,Pentium 4)andseveralprocessors.

2. Architectureandcharacteristicsofmachine(32-bit or64-bit).

3. Back-endcomponentssuchasdatabase servers.

4. OperatingSystem(Windows,Linux,etc).

Tools UsedforBlackBox Testing:

1. Appium

2. Selenium

3. MicrosoftCodedUI

https://www.geeksforgeeks.org/requirement-based-testing-in-software-development/
https://www.geeksforgeeks.org/compatibility-testing-in-software-engineering/
https://www.geeksforgeeks.org/features-of-appium/
https://www.geeksforgeeks.org/browser-automation-using-selenium/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page110

4. Applitools

5. HP QTP.

Whatcan beidentified byBlackBox Testing

1. Discoversmissingfunctions,incorrect function&interfaceerrors

2. Discoverthe errors facedinaccessingthe database

3. Discoverstheerrorsthat occurwhileinitiating &terminating anyfunctions.

4. Discoverstheerrorsinperformanceorbehaviourofsoftware.

Featuresofblackboxtesting

1. Independent testing:Black box testing is performed by testers who are not involved in the

development of the application, which helps to ensure that testing is unbiased and impartial.

2. Testing from a user’s perspective: Black box testing is conducted from the perspective of an end

user, which helps to ensure that the application meets user requirements and is easy to use.

3. No knowledge of internal code: Testers performing black box testing do not have access to the

application’s internal code, which allows them to focus on testing the application’s externalbehaviour

and functionality.

4. Requirements-based testing:Black box testing is typically based on the application’s requirements,

which helps to ensure that the application meets the required specifications.

5. Different testing techniques:Black box testing can be performed using various testing techniques,

such as functional testing, usability testing, acceptance testing, and regression testing.

6. Easy toautomate:Black box testing is easy to automate using various automation tools, which helps

to reduce the overall testing time and effort.

7. Scalability:Black box testing can be scaled up or down depending on the size and complexity of the

application being tested.

8. Limited knowledge of application: Testers performing black box testing have limited knowledge of

the application being tested, which helps to ensure that testing is more representative of how the end

users will interact with the application.

DifferencesbetweenVerificationandValidationtesting:



Verification and Validationis the process of investigating whether a software system satisfies

specifications and standards and fulfills the required purpose. Verification and Validation both play an

important role in developing good software development. Verification helps in examining whether the

product is built right according to requirements, while validation helps in examining whether the right

product is built to meet user needs. In this article, we will learn the difference between Verification and

Validation.

https://www.geeksforgeeks.org/difference-between-selenium-and-qtp/

 SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page111

DifferencesbetweenVerificationandValidation

Whatis Verification?

Verificationis the process of checking that software achieves its goal without any bugs. It is the process

to ensure whether the product that is developed is right or not. It verifies whether the developed product

fulfills the requirements that we have. Verification is static testing.Verification meansAre we building

the product right?

Whatis Validation?

Validationis the process of checking whether thesoftware productis up to the mark or in other words

product has high-level requirements. It is the process of checking the validation of the product i.e. it

checks what we are developing is the right product. It is validation of the actual and expected products.

Validation is dynamic testing.Validation means Are we building the right product?

DifferencesbetweenVerificationandValidation

Verification Validation

Definition

Verification refers to the set of activities

thatensuresoftwarecorrectlyimplements

the specific function

Validation refers to the set of activities

that ensurethat the softwarethat has been

built is traceable to customer

requirements.

Focus

It includes checking documents, designs,

codes, and programs.

Itincludestestingandvalidatingthe actual

product.

Type ofTesting Verification isthestatic testing. Validationisdynamic testing.

Execution

Itdoesnotincludetheexecutionofthe code.

Itincludestheexecution ofthecode.

https://www.geeksforgeeks.org/software-engineering-verification-and-validation/
https://www.geeksforgeeks.org/software-engineering-software-product/
https://www.geeksforgeeks.org/software-testing-static-testing/
https://www.geeksforgeeks.org/software-testing-dynamic-testing/

 SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page112

Verification Validation

MethodsUsed

Methodsusedinverificationare

reviews,walkthroughs, inspections and

desk-checking.

MethodsusedinvalidationareBlackBoxTes

ting,WhiteBoxTestingandnon-functional

testing.

Purpose

It checks whether the software conforms

to specifications or not.

It checks whether the software meets the

requirements and expectations of a

customer or not.

Bug

Itcanfindthebugsintheearlystageof the

development.

It canonly findthe bugs thatcould not be

found by the verification process.

Goal

Thegoalofverificationisapplicationand

software architecture and specification.

Thegoalofvalidationisanactualproduct.

Responsibility

Qualityassuranceteamdoesverification.
Validationisexecutedonsoftwarecode with

the help of testing team.

Timing Itcomesbefore validation. Itcomesafter verification.

Human or

Computer

It consists of checking of documents/files

and is performed by human.

It consists of execution of program and is

performed by computer.

Lifecycle

Afteravalidandcompletespecification the

verification starts.

Validationbeginsassoonasproject starts.

ErrorFocus Verification is forprevention oferrors. Validationisfordetection oferrors.

Another

Terminology

Verification is also termed as white box

testing or static testing as work product

goes through reviews.

Validation can be termed as black box

testing or dynamic testing as workproduct

is executed.

Performance

Verification finds about 50 to 60% of the

defects.

Validationfindsabout20to30%ofthe defects.

Stability

Verification is based on the opinion of

reviewer and may change from person to

person.

Validationisbasedonthefactandisoften

stable.

Real-WorldExampleofVerification vsValidation

 VerificationExample:Imagineateamisdevelopinganewmobilebankingapp.Duringthe

verificationphase,theyreviewtherequirements and design documents.Theycheck ifall thespecified

https://www.geeksforgeeks.org/walkthrough-in-software-engineering/
https://www.geeksforgeeks.org/software-engineering-black-box-testing/
https://www.geeksforgeeks.org/software-engineering-black-box-testing/
https://www.geeksforgeeks.org/software-engineering-black-box-testing/
https://www.geeksforgeeks.org/software-engineering-white-box-testing/
https://www.geeksforgeeks.org/software-testing-non-functional-testing/
https://www.geeksforgeeks.org/software-testing-non-functional-testing/
https://www.geeksforgeeks.org/software-testing-non-functional-testing/
https://www.geeksforgeeks.org/bugs-in-software-testing/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page113

features like fund transfer, account balance check, and transaction history are included and correctly

detailedinthedesign.Theyalsoperform peerreviewsand inspectionstoensurethedesignalignswith the

requirements. This step ensures that the app is being built according to the initial plan and

specifications without actually running the app.

 ValidationExample:In thevalidation phase, the team starts testing the mobilebankingapp onactual

devices. They check ifusers can log in, transfermoney, and view theirtransaction historyas intended.

Testers perform usability tests to ensure the app is user-friendly and functional tests to ensure all

features work correctly. They might also involve real users to provide feedback on the app’s

performance. This phase ensures that the app works as expected and meets user needs in real-world

scenarios.

AdvantagesofDifferentiating Verificationand Validation

Differentiatingbetween verification andvalidationinsoftwaretestingoffersseveral advantages:

1. Clear Communication:It ensures that team members understand which aspects of the software

development process are focused on checking requirements (verification) and which are focused on

ensuring functionality (validation).

2. Efficiency:By clearly defining verification as checking documents and designs without executing

code, and validation as testing the actual software for functionality and usability, teams avoid

redundant efforts and streamline their testing processes.

3. Minimized Errors:It reduces the chances of overlooking critical requirements or functionalities

during testing, leading to a more thorough evaluation of the software’s capabilities.

4. Cost Savings:Optimizing resource allocation and focusing efforts on the right testing activities based

on whether they fall under verification or validation helps in managing costs effectively.

5. Client Satisfaction:Ensuring that software meets or exceeds client and user expectations by

conducting both verification and validation processes rigorously improves overall software qualityand

user satisfaction.

6. Process Improvement:By distinguishing between verification and validation, organizations can

refine their testing methodologies, identify areas for improvement, and enhance the

overallsoftwaredevelopment lifecycle.

In essence, clear differentiation between verification and validation insoftware testingcontributes to a

more structured, efficient, and successful software development process.

SystemTesting–Software Engineering



System testing is a type of software testing that evaluates the overall functionality and performance of a

complete and fully integrated software solution. It tests if the system meets the specified requirementsand

if it is suitable for delivery to the end-users. This type of testing is performed after the integration testing

and before the acceptance testing.

WhatisSystem Testing?

System Testingis a type ofsoftware testingthat is performed on a completely integrated system to

evaluatethecompliance ofthesystemwiththecorrespondingrequirements.Insystemtesting,integration testing

passed components are taken as input.

 The goal of integration testing is to detect any irregularity between the units that are integrated.

System testing detects defects within both the integrated units and the whole system. The result of

system testing is the observed behavior of a component or a system when it is tested.

https://www.geeksforgeeks.org/software-development-life-cycle-sdlc/
https://www.geeksforgeeks.org/software-development-life-cycle-sdlc/
https://www.geeksforgeeks.org/software-testing-basics/
https://www.geeksforgeeks.org/software-testing-basics

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page114

 System Testingis carried out on the whole system in the context of either system requirement

specifications or functional requirement specifications or the context of both. System testing tests the

design and behavior of the system and also the expectations of the customer.

 It is performed to test the system beyond the bounds mentioned in thesoftware

requirementsspecification (SRS). System Testing is performed by a testing team that is independent

of the development team and helps to test the quality of the system impartial.

 It has both functional and non-functional testing.System Testing is a black-box testing. System

Testing is performed after the integration testing and before the acceptance testing.

System testing is evergreen role in software engineering because every software is needed to test andvery

update is needed to test so the demand of the software tester is always needed. If you wish to learn

softwaretesting fromthe scratchandwanttograb agoodgripontestingtools and concept youcancheck our

new software testing course

System Testing

SystemTestingProcess

SystemTestingisperformedinthefollowingsteps:

 TestEnvironmentSetup:Createtestingenvironmentforthebetterqualitytesting.

 CreateTest Case:Generate testcaseforthetestingprocess.

 CreateTest Data:Generate thedatathat is to betested.

 ExecuteTest Case:After thegeneration ofthetest caseandthetest data,test cases areexecuted.

 DefectReporting:Defects inthesystemaredetected.

 RegressionTesting: Itiscarriedouttotestthesideeffects ofthetestingprocess.

 LogDefects:Defects are fixedinthisstep.

 Retest:Ifthetestisnot successfulthenagaintestis performed.

https://www.geeksforgeeks.org/software-engineering-quality-characteristics-of-a-good-srs
https://www.geeksforgeeks.org/software-engineering-quality-characteristics-of-a-good-srs
https://www.geeksforgeeks.org/software-engineering-quality-characteristics-of-a-good-srs
https://gfgcdn.com/tu/QW7/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page115

SystemTestingProcess

TypesofSystem Testing

 Performance Testing:Performance Testing is a type of software testing that is carried out to test the

speed, scalability, stability and reliability of the software product or application.

 Load Testing:Load Testing is a type of software Testing which is carried out to determine the

behavior of a system or software product under extreme load.

 Stress Testing:Stress Testing is a type of software testing performed to check the robustness of the

system under the varying loads.

 Scalability Testing:Scalability Testing is a type of software testing which is carried out to check the

performance of a software application or system in terms of its capability to scale up or scale down

the number of user request load.

ToolsusedforSystemTesting

1. J Meter

2. GallenFramework

3. HPQualityCenter/ALM

4. IBMRationalQuality Manager

5. MicrosoftTestManager

6. Selenium

7. Appium

8. Load Runner

9. Gatling

10. J Meter

11. ApacheJServ

12. SoapUI

Note:The choice of tool depends on various factors like the technology used, the size of the project, the

budget, and the testing requirements.

AdvantagesofSystem Testing

 Thetestersdonot requiremoreknowledgeofprogrammingto carryout thistesting.

 Itwilltesttheentireproductorsoftwaresothatwewilleasilydetecttheerrorsordefectswhich cannot be

identified during the unit testing and integration testing.

 Thetestingenvironmentissimilarto thatofthereal timeproduction orbusinessenvironment.

 Itcheckstheentirefunctionalityofthesystemwithdifferenttestscriptsandalsoitcoversthe technical and

business requirements of clients.

https://www.geeksforgeeks.org/performance-testing-software-testing
https://www.geeksforgeeks.org/software-testing-load-testing
https://www.geeksforgeeks.org/stress-testing-software-testing
https://www.geeksforgeeks.org/software-testing-scalability-testing

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page116

 Afterthistesting,theproductwillalmostcoverallthepossiblebugsorerrorsandhencethe development team

will confidently go ahead with acceptance testing

 Verifiestheoverall functionalityofthesystem.

 Detectsandidentifiessystem-levelproblemsearly inthedevelopmentcycle.

 Helpstovalidatetherequirements andensurethesystemmeetstheuserneeds.

 Improvessystemreliability andquality.

 Facilitatescollaborationandcommunicationbetweendevelopment andtesting teams.

 Enhancestheoverall performanceofthesystem.

 Increasesuserconfidenceandreducesrisks.

 Facilitatesearlydetection andresolutionofbugsanddefects.

 Supportstheidentification ofsystem-leveldependenciesandinter-module interactions.

 Improvesthesystem’smaintainability andscalability.

DisadvantagesofSystem Testing

 Thistestingistimeconsumingprocessthananothertestingtechniquessinceitcheckstheentire product or

software.

 Thecost forthetesting will behigh sinceit covers the testing ofentire software.

 Itneedsgooddebuggingtool otherwisethehiddenerrorswill notbefound.

 Canbetime-consumingandexpensive.

 Requiresadequateresourcesandinfrastructure.

 Canbecomplexandchallenging, especially forlargeandcomplex systems.

 Dependentonthequalityofrequirements anddesign documents.

 Limitedvisibilityintotheinternalworkingsofthesystem.

 Canbeimpactedbyexternalfactorslikehardware andnetworkconfigurations.

 Requiresproperplanning,coordination,andexecution.

 Canbeimpacted bychangesmadeduringdevelopment.

 Requiresspecializedskillsandexpertise.

 Mayrequiremultipletestcyclestoachievedesiredresults.

WhatisDebugginginSoftware Engineering?



DebugginginSoftware Engineering is the process of identifying and resolvingerrorsorbugsin a software

system. It’s a critical aspect of software development, ensuringquality,performance, anduser

satisfaction.Despite beingtime-consuming, effectivedebuggingisessentialfor reliable and competitive

software products.

Hereare wediscussing thepointsrelatedto Debugging in detail:

Whatis Debugging?

In the context of software engineering, debugging is the process of fixing a bug in the software. When

there’s a problem with software, programmers analyze the code to figure out why things aren’t working

correctly. They use different debugging tools to carefully go through the code, step by step, find theissue,

and make the necessary corrections.

ProcessofDebugging

Debugging is a crucial skill in programming. Here’s asimple, step-by-step explanation to help you

understand and execute the debugging process effectively:

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page117

Step1:Reproducethe Bug

 Tostart,youneedtorecreatetheconditions thatcausedthebug.Thismeansmakingtheerror happen again

so you can see it firsthand.

 Seeingthebuginactionhelpsyouunderstandtheproblembetterandgatherimportantdetailsfor fixing it.

Step 2:LocatetheBug

 Next,find where the bug is in your code. This involves looking closely at your code and checking

any error messages or logs.

 Developersoften usedebugging tools to helpwiththis step.

Step 3:Identify theRootCause

 Now,figureoutwhythebughappened.Examinethelogicandflowofyourcodeandseehow different parts

interact under the conditions that caused the bug.

 Thishelpsyouunderstandwhatwent wrong.

Step 4:FixtheBug

 Once you know the cause,fix the code. This involves making changes and then testing the programto

ensure the bug is gone.

 Sometimes, you might need to try several times, as initial fixes might not work or could create

newissues.

 Usingaversion controlsystemhelps trackchangesand undoany that don’tsolve theproblem.

Step 5:TesttheFix

Afterfixingthebug,runteststoensureeverything workscorrectly.These tests include:

 UnitTests:Check thespecific partofthecodethatwas changed.

 IntegrationTests:Verify theentiremodulewherethebugwas found.

 SystemTests:Testthewholesystemtoensureoverallfunctionality.

 RegressionTests:Makesurethefixdidn’tcauseanynewproblems elsewhereintheapplication.

Step6:Documentthe Process

 Finally,record what you did. Write down what caused the bug, how you fixed it, and any other

important details.

 Thisdocumentationishelpful ifsimilarissues occurinthefuture.

Whyisdebuggingimportant?

Fixing mistakes in computer programming, known as bugs or errors, is necessary because programming

deals with abstract ideas and concepts. Computers understand machine language, but we use

programming languages to make it easier for people to talk to computers. Software has many layers of

abstraction, meaning different parts must work together for an application to function properly. When

errors happen, finding and fixing them can be tricky. That’s where debugging tools and strategies comein

handy. They help solve problems faster, making developers more efficient. This not only improves the

quality of the software but also makes the experience better for the people using it. In simple terms,

debugging is important because it makes surethe software works well and people have agood time using

it.

DebuggingApproaches/Strategies

1. Brute Force:Study the system for a longer duration to understand the system. It helps the debugger

to construct different representations of systems to be debugged depending on the need. A study ofthe

system is also done actively to find recent changes made to the software.

2. Backtracking:Backwardanalysisoftheproblem whichinvolvestracingtheprogrambackwardfrom the

location of the failure message to identify the region of faulty code. A detailed study of the region is

conducted to find the cause of defects.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page118

3. Forward analysisof the program involves tracing the program forwards using breakpoints or print

statements at different points in the program and studying the results. The region where the wrong

outputs are obtained is the region that needs to be focused on to find the defect.

4. UsingAdebuggingexperiencewiththesoftwaredebugthesoftwarewith similarproblems innature. The

success of this approach depends on the expertise of the debugger.

5. Cause elimination:it introduces the concept of binary partitioning. Data related to the error

occurrence are organized to isolate potential causes.

6. Static analysis:Analyzing the code without executing it to identify potential bugs or errors. This

approach involves analyzing code syntax, data flow, and control flow.

7. Dynamic analysis:Executing the code and analyzing its behavior at runtime to identify errors or

bugs. This approach involves techniques like runtime debugging and profiling.

8. Collaborative debugging: Involves multiple developers working together to debug a system. This

approach is helpful in situations where multiple modules or components are involved, and the root

cause of the error is not clear.

9. Logging and Tracing:Using logging and tracing tools to identify the sequence of events leading up

to the error. This approach involves collecting and analyzing logs and traces generated by the system

during its execution.

10. Automated Debugging:The use of automated tools and techniques to assist in the debugging

process. These tools can include static and dynamic analysis tools, as well as tools that use machine

learning and artificial intelligence to identify errors and suggest fixes.

Examplesoferrorduring debugging

Somecommon example oferrorduringdebugging are:

 Syntaxerror

 Logicalerror

 Runtime error

 Stack overflow

 IndexOutofBound Errors

 Infinite loops

 ConcurrencyIssues

 I/O errors

 EnvironmentDependencies

 IntegrationErrors

 Reference error

 Typeerror

DebuggingTools

Debugging toolsare essential for software development, helping developers locate and fix coding errors

efficiently. With the rapid growth of software applications, the demand for advanced debugging tools has

increased significantly. Companies are investing heavily in these tools, and researchers are developing

innovative solutions to enhance debugging capabilities, including AI-driven debuggers and autonomous

debugging for specialized applications.

Debugging tools vary in their functionalities, but they generally provide command-line interfaces to help

developers identify and resolve issues. Many also offer remote debugging features and tutorials, making

them accessible to beginners. Here are some of the most commonly used debugging tools:

1. IntegratedDevelopmentEnvironments(IDEs)

 SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page119

IDEslike Visual Studio,Eclipse, and Py Charm offer features for software development, including built-

in debugging tools. These tools allow developers to:

 Executecodeline-by-line(stepdebugging)

 Stopprogramexecutionatspecificpoints(breakpoints)

 Examinethestateofvariables and memory

IDEssupportmanyprogramming languagesandscripting languages,oftenthroughopen-source plugins.

2. Standalone Debuggers

Standalonedebuggers likeGDB(GNUDebugger)provideadvanceddebugging features:

 Conditionalbreakpoints andwatchpoints

 Reversedebugging (runningaprogrambackwards)

Thesetoolsarepowerfulbut haveasteeperlearningcurvecompared toIDEdebuggers.

3. LoggingUtilities

Logging utilitieslog a program’s state at various points in the code, which can then be analyzed to find

problems. Logging is particularly useful for debugging issues that only occur in productionenvironments.

4. StaticCode Analyzers

Static code analysis toolsexamine code without executing it to find potential errors and deviations from

coding standards. They focus on the semantics of the source code, helping developers catch common

mistakes and maintain consistent coding styles.

5. DynamicAnalysisTools

Dynamic analysis toolsmonitor software as it runs to detect issues like resource leaks or concurrency

problems. These tools help catch bugs that static analysis might miss, such as memory leaks or buffer

overflows.

6. PerformanceProfilers

Performanceprofilers help developersidentifyperformancebottlenecksintheircode.Theymeasure:

 CPUusage

 Memory usage

 I/O operations

DifferenceBetween DebuggingandTesting

Debugging isdifferent fromtesting.Testingfocusesonfindingbugs,errors,etcwhereas debuggingstarts after a

bug has been identified in the software. Testing is used to ensure that the program is correct and it was

supposed to do with a certain minimum success rate. Testing can be manual or automated. There are

several different types of testing unit testing, integration testing, alpha, and beta testing, etc.

Aspects Testing Debugging

Definition

Testingistheprocesstofindbugs and

errors.

Debuggingis the process of correcting the bugs

found during testing.

Purpose

The purpose of testing is to identify

defects or errors in the software

system

Thepurposeofdebuggingistofixthose defects or

errors.

Focus Itistheprocesstoidentifythe Itistheprocesstogiveabsolutiontocode

https://www.geeksforgeeks.org/software-testing-basics
https://www.geeksforgeeks.org/software-testing-basics/
https://www.geeksforgeeks.org/software-engineering-debugging/

 SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page120

Aspects Testing Debugging

failureofimplementedcode. failure.

Timing

Testingisdonebefore debugging
DebuggingDifferencesbetweenTestingand

Debugging is done after testing

Approach

Testing involves executing the

software system with test cases

Debugginginvolvesanalyzingthesymptomsof a

problem and identifying the root cause of the

problem

Tools and

Technique

Testingcaninvolveusingautomated or

manual testing tools

Debugging typically involves using tools and

techniques such as logging, tracing, and code

inspection.

AdvantagesofDebugging

Severaladvantagesofdebugginginsoftware engineering:

1. Improved system quality:By identifying and resolving bugs, a software system can be made more

reliable and efficient, resulting in improved overall quality.

2. Reducedsystem downtime:Byidentifyingandresolving bugs,asoftware system canbemademore stable

and less likely to experience downtime, which can result in improved availability for users.

3. Increased user satisfaction: By identifying and resolving bugs, asoftware system can bemademore

user-friendly and better able to meet the needs of users, which can result in increased satisfaction.

4. Reduced development costs: Identifying and resolving bugs early in the development process, can

save time and resources that would otherwise be spent on fixing bugs later in the developmentprocess

or after the system has been deployed.

5. Increased security: By identifying and resolving bugs that could be exploited by attackers, asoftware

system can be made more secure, reducing the risk of security breaches.

6. Facilitates change:With debugging, it becomes easy to make changes to the software as it becomes

easy to identify and fix bugs that would have been caused by the changes.

7. Better understanding of the system:Debugging can help developers gain a better understanding of

how a software system works, and how different components of the system interact with one another.

8. Facilitates testing:By identifying and resolving bugs, it makes it easier to test the software and

ensure that it meets the requirements and specifications.

In summary, debugging is an important aspect of software engineering as it helps to improve system

quality, reduce system downtime, increase user satisfaction, reduce development costs, increase security,

facilitate change, a better understanding of the system, and facilitate testing.

DisadvantagesofDebugging

While debugging is an important aspect of software engineering, there are also some disadvantages to

consider:

1. Time-consuming:Debugging can be a time-consuming process, especially if the bug is difficult to

find orreproduce. This can cause delays in thedevelopment process and add to the overall cost ofthe

project.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page121

2. Requires specialized skills: Debugging can be a complex task that requires specialized skills and

knowledge. This can be a challenge for developers who are not familiar with the tools and techniques

used in debugging.

3. Can be difficult to reproduce: Some bugs may be difficult to reproduce, which can make it

challenging to identify and resolve them.

4. Can be difficult to diagnose: Some bugs may be caused by interactions between different

components of a software system, which can make it challenging to identify the root cause of the

problem.

5. Can be difficult to fix:Some bugs may be caused by fundamental design flaws or architectureissues,

which can be difficult or impossible to fix without significant changes to the software system.

6. Limited insight: In some cases, debugging tools can only provide limited insight into the problem

and may not provide enough information to identify the root cause of the problem.

7. Can be expensive:Debugging can be an expensive process, especially if it requires additional

resources such as specialized debugging tools or additional development time.

MetricsforProcessandproducts: Software

Measurement



Software Measurement:A measurement is a manifestation of the size, quantity, amount, or dimension of

a particular attribute of a product or process. Software measurement is a titrate impute of a characteristic

of a software product or the software process.

It is an authority within software engineering. The software measurement process is defined andgoverned

by ISO Standard.

SoftwareMeasurement Principles

Thesoftwaremeasurement process canbecharacterized byfiveactivities-

1. Formulation:The derivation of software measures and metrics appropriate for the representation of

the software that is being considered.

2. Collection:Themechanismused toaccumulatedatarequired toderivethe formulated metrics.

3. Analysis:Thecomputation ofmetricsandtheapplication ofmathematicaltools.

4. Interpretation:Theevaluation ofmetricsresults ininsight intothequalityoftherepresentation.

5. Feedback:Recommendationderivedfromtheinterpretationofproductmetricstransmittedtothe software

team.

NeedforSoftware Measurement

Softwareismeasuredto:

 Createthequality ofthecurrentproductorprocess.

 Anticipatefuturequalitiesoftheproductorprocess.

 Enhancethequalityofaproductorprocess.

 Regulatethestateoftheprojectconcerning budgetand schedule.

 Enabledata-drivendecision-makinginprojectplanning andcontrol.

 Identifybottlenecksandareas forimprovementto driveprocessimprovementactivities.

 Ensurethat industrystandards andregulationsare followed.

 Givesoftwareproductsandprocessesaquantitativebasisfor evaluation.

 Enabletheongoingimprovementofsoftwaredevelopmentpractices.

ClassificationofSoftware Measurement

Thereare2 typesofsoftwaremeasurement:

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page122

1. DirectMeasurement:Indirectmeasurement,theproduct,process,orthingismeasureddirectly using a

standard scale.

2. Indirect Measurement:In indirect measurement, the quantity or quality to be measured is measured

using related parameters i.e. by use of reference.

Software Metrics

A metric is a measurement of the level at which any impute belongs to a system product or process.

Software metrics are a quantifiable or countable assessment of the attributes of a software product. There

are 4 functions related to software metrics:

1. Planning

2. Organizing

3. Controlling

4. Improving

CharacteristicsofsoftwareMetrics

1. Quantitative:Metricsmustpossessaquantitativenature.Itmeansmetricscanbeexpressedin numerical

values.

2. Understandable:Metriccomputationshouldbeeasilyunderstood,andthemethodofcomputing metrics

should be clearly defined.

3. Applicability:Metricsshould beapplicablein theinitial phases ofthedevelopmentofthesoftware.

4. Repeatable:Whenmeasured repeatedly,themetricvaluesshould bethesameand consistent.

5. Economical:Thecomputation ofmetricsshould beeconomical.

6. LanguageIndependent:Metricsshouldnotdependonanyprogramminglanguage.

TypesofSoftware Metrics:

1. productMetrics

2. ProcessMetrics

3. ProjectMetrics

1. Product Metrics:Product metrics are used to evaluate the state of the product, tracing risks and

undercover prospective problem areas. The ability of the team to control quality is evaluated.

Examples include lines of code, cyclomatic complexity, code coverage, defect density, and code

maintainability index.

2. Process Metrics:Process metrics pay particular attention to enhancing the long-term process of the

team or organization. These metrics are used to optimize the development process and maintenance

activities of software. Examples include effort variance, schedule variance, defect injection rate, and

lead time.

3. ProjectMetrics:Theprojectmetricsdescribesthecharacteristicandexecutionofa project.Examples

include effort estimation accuracy, schedule deviation, cost variance, and productivity. Usually

measures-

 Numberofsoftware developer

 Staffingpatternsoverthelifecycleofsoftware

 Costand schedule

 Productivity

AdvantagesofSoftware Metrics

1. Reductionincostorbudget.

2. Ithelps toidentifytheparticular area for improvising.

3. Ithelpstoincreasetheproductquality.

4. Managingtheworkloadsandteams.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page123

5. Reductioninoveralltimetoproducetheproduct,.

6. Ithelpsto determinethecomplexityofthecodeandto testthecodewith resources.

7. Ithelpsinproviding effectiveplanning,controlling and managingoftheentireproduct.

DisadvantagesofSoftwareMetrics

1. Itis expensiveand difficultto implement themetricsin somecases.

2. Performanceoftheentireteamoranindividualfromtheteamcan’tbedetermined.Onlythe performance of

the product is determined.

3. Sometimesthequalityoftheproductis not metwith theexpectation.

4. Itleadsto measuretheunwanted datawhichis wastageoftime.

5. Measuringtheincorrectdataleadstomakewrongdecisionmaking.

MetricsforSoftware Quality:



InSoftware Engineering, Software Measurement is done based on some Software Metricswhere these

software metrics are referred to as the measure of various characteristics of a Software.

In Software engineeringSoftware Quality Assurance (SAQ)assures the quality of the software. A set of

activities in SAQ is continuously applied throughout the software process. Software Qualityis measured

based on some software quality metrics.

There is a number of metrics available based on which software quality is measured. But among them,

there are a few most useful metrics which are essential in software quality measurement. They are –

1. CodeQuality

2. Reliability

3. Performance

4. Usability

5. Correctness

6. Maintainability

7. Integrity

8. Security

Nowlet’sunderstandeachquality metricindetail–

1. Code Quality –Code quality metrics measure the quality of code used for software project

development. Maintaining the softwarecode quality by writing Bug-free and semantically correct code is

very important for good softwareproject development. In code quality, both Quantitative metrics like the

number of lines, complexity, functions, rate of bugs generation, etc, and Qualitative metrics like

readability, code clarity, efficiency, and maintainability, etc are measured.

2. Reliability –Reliability metrics express the reliability of software in different conditions. The

softwareisabletoprovideexactserviceat therighttimeornot checked. Reliabilitycanbechecked using Mean

Time Between Failure (MTBF) and Mean Time To Repair (MTTR).

3. Performance –Performance metrics are used to measure the performance of the software. Each

software has been developed for some specific purposes. Performance metrics measure the performance

of the software by determining whether the software is fulfilling the user requirements or not, by

analyzing how much time and resource it is utilizing for providing the service.

4. Usability –Usability metrics check whether the program is user-friendly or not. Each software is used

by the end-user. So it is important to measure that the end-user is happy or not by using this software.

https://www.geeksforgeeks.org/software-engineering-introduction-to-software-engineering/
https://www.geeksforgeeks.org/software-measurement-and-metrics/
https://www.geeksforgeeks.org/software-concepts/
https://www.geeksforgeeks.org/software-engineering-software-quality-assurance/
https://www.geeksforgeeks.org/software-engineering-software-quality/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page124

5. Correctness –Correctness is one of the important software quality metrics as this checks whether the

system or software is working correctly without any error by satisfying the user. Correctness gives the

degree of service each function provides as per developed.

6. Maintainability –Each software product requires maintenance and up-gradation. Maintenance is an

expensive and time-consuming process. So if the software product provides easy maintainability then we

can say software quality is up to mark. Maintainability metrics include the time required to adapt to new

features/functionality, Mean Time to Change (MTTC), performance in changing environments, etc.

7. Integrity –Software integrity is important in terms of how much it is easy to integrate with other

required software which increases software functionality and what is the control on integration from

unauthorized software’s which increases the chances of cyber attacks.

8. Security –Security metrics measure how secure the softwareis. In the age of cyber terrorism, security

is the most essential part of every software. Security assures that there are no unauthorized changes, no

fear of cyber attacks, etc when the software product is in use by the end-user.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page125

UNIT-V

ReactiveandProactiveRiskStrategies:



Root Cause Analysis (RCA)is one of the best methods to identify main cause or root cause of problems

or events in very systematic way or process. RCA is based on the idea that for effective management, we

need to find out way to prevent arising or occurring problems.

Each one needs to understand that if they want to solve or eliminate any problem, it is essential to go to

the root cause of the problem and then eliminate problems so that they can reduce or control the

reoccurrence of the problem. For organizations that want to improve and grow continuously, it is very

essential to identify the root cause although it is tough to do so, it is essential. RCA can also be used to

modify or change core processes and issues in such way that prevents future problems.

Reactive and Proactive RCA :

The main question that arises is whether RCA is reactive or proactive? Some people think that RCA is

only required to solve problems or failures that have already occurred. But, it’s not true. One shouldknow

that RCA can be both i.e. reactive and proactive as given below –

1. Reactive RCA :

The main question that arises in reactive RCA is “What went wrong?”. Before investigating oridentifying

the root cause of failure or defect, failure needs to be in place or should be occurred already. One can

only identify the root cause and perform the analysis only when problem or failure had occurred that

causes malfunctioning in the system. Reactive RCA is a root cause analysis that is performed after the

occurrence of failure or defect.

https://www.geeksforgeeks.org/basic-principle-of-root-cause-analysis/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page126

It is simply done to control, implemented to reduce the impact and severity of defect that has occurred. It

isalsoknownasreactiveriskmanagement.Itreactsquicklyassoonasproblemoccursbysimplytreating

symptoms. RCA is generally reactive but it has the potential to be proactive. RCA is reactive at initialand

it can only be proactive if one addresses and identifies small things too that can cause problem aswell as

exposes hidden causes of the problem.

Advantages:

 Helpsonetoprioritizetasksaccording toitsseverityandthenresolve it.

 Increasesteamworkandtheirknowledge.

Disadvantages:

 Sometimes,resolvingequipmentafterfailurecanbemorecostlythanpreventingfailurefroman occurrence.

 Failedequipment cancausegreaterdamagetosystemandinterruptsproductionactivities.

2. Proactive RCA :

The main question that arises in proactive RCA is “What could go wrong?”. RCA can also be used

proactively to mitigate failure or risk. The main importance of RCA can be seen when it is applied to

events that have not occurred yet. Proactive RCA is a root cause analysis that is performed before any

occurrence of failure or defect. It is simply done to control, implemented to prevent defect from its

occurrence. As both reactive and proactive RCAs are is important, one should move from reactive to

proactive RCA.

It is better to prevent issues from its occurrence rather than correcting it after its occurrence. In simple

words, Prevention is better than correction. Here, prevention action is considered as proactive and

correctiveactionisconsideredasreactive. Itisalsoknownasproactiveriskmanagement. Itidentifiesthe root

cause of problem to eliminate it from reoccurring. With help of proactive RCA, we can identify the main

root cause that leads to the occurrence of problem or failure, or defect. After knowing this, we can take

various measures and implement actions to prevent these causes from the occurrence.

Advantages:

 Futurechancesoffailure occurrencecanbeminimized.

 Reduceoverallcostrequiredtoresolve failurebysimplypreventingfailurefromanoccurrence.

 Increasesoverallproductivitybyminimizingchancesofinterruptionduetofailure.

Disadvantages:

 Sometimes,preventingequipmentfromfailurecanbemorecostlythanresolvingfailureafter occurrence.

 Manyresourcesandtoolsrequiredtopreventfailure fromanoccurrence thatcanaffecttheoverall cost.

 Requireshighlyskilledtechnicianstoperformmaintenance tasks.

SoftwareRisks:



Softwareriskanalysisinsoftwaredevelopmentisasystematicprocessthatinvolvesidentifyingand

evaluatinganyproblemthatmighthappenduringthecreation,implementation,andmaintainingof

https://www.geeksforgeeks.org/software-development/?ref=lbp

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page127

software systems. It can guarantee that projects are finished on schedule, within budget, and with the

appropriate quality. It is a crucial component of software development.

WhatisSoftwareRisk Analysis inSoftware Development?

Software risk analysis inSoftware Developmentinvolves identifying which application risks should be

tested first. Risk is the possible loss or harm that an organization might face. Risk can include issues like

project management, technical challenges, resource constraints, changes in requirements, and more

Finding every possible risk and estimating are the two goals of risk analysis. Think about the potential

consequences of testing your software and how it could impact your software when creating a test plan.

Risk detection during the production phase might be costly. Therefore, risk analysis in testing is the best

way to figure out what goes wrong before going into production.

Whyperformsoftwareriskanalysis?

Using different technologies, software developers add new features in Software Development. Software

system vulnerabilities grow in combination with technology. Software goods are therefore more

vulnerable to malfunctioning or performing poorly.

Many factors, including timetable delays, inaccurate cost projections, a lack of resources, and security

hazards, contribute to the risks associated with software in Software Development.

Certainrisks areunavoidable, someofthem areasfollows:

 Theamountoftimeyouset out to test.

 Flawleakscanhappenincomplicatedorlarge-scale applications.

 Theclienthas animmediate requirementto finishthe job.

 Thespecificationsare inadequate.

Therefore, it’s critical to identify, priorities, and reduce risk or take proactive preventative action during

the software development process, as opposed to monitoring risk possibilities.

PossibleScenarios ofRiskOccurrence

Here areSomePossibleScenarioofSoftwareRisk

UnknownUnknowns

These risks are unknown to the organization and are generally technology related risk due to this these

risks are not anticipated. Organizations might face unexpected challenges, delays, or failures due to these

unexpected risks. Lack of experience with a particular tool or technology can lead to difficulties in

implementation.

Example

Suppose an organization is using cloud service from third-party vendors, due to some issues third

partyvendor unable to provide its service. In this situation organization have to face an unexpected delay.

KnownKnowns

These are risks that are well-understood and documented by the team. Since these risks are identified

early, teams can plan for mitigation strategies. The impact of known knowns is usually more manageable

compared to unknown risks.

Example

Theshortageofdevelopers is aknownrisk that can causedelays in softwaredevelopment.

KnownUnknowns

In this case, the organization is aware of potential risks, but the certainty of their occurrence is uncertain.

Organization should get ready to deal with these risks if they happen. Ways to deal with them might

include making communication better, making sure everyone understands what’s needed, or creating

guidelines for how to manage possible misunderstandings.

Example

https://www.geeksforgeeks.org/what-is-software-development/?ref=lbp

 SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page128

Theteammaybeawareoftheriskofmiscommunicationwiththeclient,butwhetheritwillactually happen is

unknown.

TypesofSoftwareRisk

Givenbelowtableshowsthetypeofriskand their impactwith example:

Type ofRisk Description Impact Examples

Technicalrisks

Risks arising from

technical challenges or

limitations in the

software development

process.

Technical risks canlead

to delays, cost

overruns, and even

software failure if not

properly managed.

 Incomplete or

inaccurate

requirements

 Unforeseen

technical

complexities

 Integration issues

with third-party

systems

 Inadequate testing

and quality

assurance

Securityrisks

Risks related to

vulnerabilities in the

software that could

allow unauthorized

accessordatabreaches.

Security risks can lead

to financial losses,

reputational damage,

and legal liabilities.

 Insecure coding

practices

 Lack of proper

access controls

 Vulnerabilities in

third-party libraries

 Insufficient data

security measures

Scalabilityrisks

Risks associated with

thesoftware’sabilityto

handle increasing

workloads or user

demands.

Scalability risks can

lead to performance

bottlenecks, outages,

and lost revenue.

 Inadequate

infrastructure

capacity

 Inefficient

algorithmsordata

structures

 Lackofscalability

testing

 Poorly designed

architecture

Performancerisks

Risks related to the

software’s ability to

meet performance

expectationsinterms

Performanceriskscan

lead to user

dissatisfaction, lost

productivity, and

 Inefficient

algorithmsordata

structures

 Excessivememory

 SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page129

Type ofRisk Description Impact Examples

of speed,

responsiveness, and

resource utilization.

competitive

disadvantage.

orCPUusage

 Poor database

performance

 Network latency

issues

Budgetary risks

Risks associated with

exceeding the project’s

budget or financial

constraints.

Budgetary risks can

lead to financial strain,

project delays, andeven

cancellation.

 Unrealistic cost

estimates

 Scope creep or

changes in

requirements

 Unforeseen

expenses,suchas

third-partylicenses

or hardware

upgrades

 Inefficientresource

utilization

Contractual & legal

risks

Risks arising fromlegal

or contractual

obligations that are not

properly understood or

managed.

Contractual and legal

risks can lead to

disputes, delays, and

even legal action.

 Unclear or

ambiguous contract

terms

 Failure to comply

with intellectual

property laws

 Data privacy

violations

 Lack of proper

documentation and

record-keeping

Operationalrisks

Risks associated with

the ongoing operation

and maintenance of the

software system.

Operational risks can

lead to downtime,

outages, and data loss.

 Inadequate

monitoring and

alerting systems

 Lack of proper

disaster recovery

plans

 Insufficient training

for operational staff

 Poor change

management

 SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page130

Type ofRisk Description Impact Examples

practices

Schedule risks

Risks related to delays

in the software

developmentprocessor

missed deadlines.

Schedule risks can lead

to increased costs,

pressure on resources,

and missed market

opportunities.

 Unrealistictimelines

 or

milestones

 Underestimationof

task complexity

 Resource

dependencies or

conflicts

 Unforeseen events

or delays

Howtoperformsoftwarerisk analysisinSoftware Development

In order to conduct risk analysis in software development, first you have to evaluate the source code in

detail to understand its component. This evaluation is done to address components of code and map their

interactions. With the help of the map, transaction can be detected and assessed. The map is subjected to

structural and architectural guidelines in order to recognize and understand the primary software defects.

Following are the steps to perform software risk analysis.

Risks Identifiation:



Identifyingriskis one of most important or essential and initial steps in risk management process. By

chance, iffailure occursin identifying any specific orparticularrisk, thenall othersteps that areinvolved in

risk management will not be implemented for that particular risk. For identifying risk, project team

should review scope of program, estimate cost, schedule, technical maturity, parameters of key

performance, etc. To manage risk, project team or organization are needed to know about what risks it

faces, and then to evaluate them. Generally, identification of risk is an iterative process. It basically

includes generating or creating comprehensive list of threats and opportunities that are based on events

that can enhance, prevent, degrade, accelerate, or might delay successful achievement of objectives. In

simple words, if you don’t find or identify risk, you won’t be able to manage it.

The organizer of project needs to expect some of the risk in the project as early as possible so that the

performance of risk may be reduced. This could be only possible by making effective risk management

planning.

A project may contain large variety of risk. To know the specific amount of risk, there may be chance of

affecting a project.So, this is necessary to make categories into different class of risk.

Therearemany differenttypesofriskswhichaffects thesoftwareproject:

1. Technology risks

2. Tools risks

3. Estimation risks

https://www.geeksforgeeks.org/software-engineering-risk-management/

 SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page131

4. People risks

5. Requirement risks
6.Organizationalrisks

Methods for Identifying Risks :Earlier, there were no easy methods available that will surely identify

all risks. But nowadays, there are some additional approaches available for identifying risks. Some of

approaches for risk identification are given below:

1. Checklist Analysis –Checklist Analysis is type of technique generally used to identify or find risks

and manage it. The checklist is basically developed by listing items, steps, or even tasks and is then

further analyzed against criteria to just identify and determine if procedure is completed correctly or not.

It is list of risk that is just found to occur regularly in development of software project. Below is the listof

software development risk by Barry Boehm- modified version.

Risk RiskReductionTechnique

PersonnelShortfalls

Varioustechniquesincludetrainingandcareerdevelopment,job-matching,

teambuilding, etc.

Unrealistictimeandcost

estimates

Various techniques include incremental development, standardization

of methods, recording, and analysis of the past project, etc.

Development of wrong

software functions

Varioustechniquesincludeformal specificationmethods,usersurveys, etc.

Development of the wrong

user interface

Varioustechniquesincludeuserinvolvement,prototyping,etc.

2. Brainstorming –This technique provides and gives free and open approach that usually encourages

each and everyone on project team to participate. It also results in greater sense of ownership of project

risk, and team generally committed to managing risk for given time period of project. It is creative and

unique technique to gather risks spontaneously by team members. The team members identify and

determine risks in ‘no wrong answer’ environment. This technique also provides opportunity for team

members to always develop on each other’s ideas. This technique is also used to determine best possible

solution to problems and issue that arises and emerge.

3. Casual Mapping –Causal mapping is method that builds or develops on reflection and review of

failure factors in cause and effect of the diagrams. It is very useful for facilitating learning with an

organization or system simply as method of project-post evaluation. It is also key tool for riskassessment.

4. SWOTAnalysis –Strengths-Weaknesses-Opportunities-Threat (SWOT)isverytechnique andhelpful for

identifying risks within greater organization context. It is generally used as planning tool foranalyzing

business, its resources, and also its environment simply by looking at internal strengths and weaknesses

and opportunities and threats in external environment. It is technique often used in formulation of

strategy. The appropriate time and effort should be spent on thinking seriously about weaknesses and

threats of organization for SWOT analysis to more effective and successful in risk identification.

5. Flowchart Method –This method allows for dynamic process to be diagrammatically represented in

paper. This method is generally used to represent activities of process graphically and sequentially to

simply identify the risk.

Risk Projection:

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page132



InProject Management,Project risk analysis is a component of effective project management, assessing,

and mitigating potential threats that may impact the successful completion of a project. In order to

ascertain the possibility and possible impact of risks, as well as to develop management or elimination

methods, it is necessary to carefully evaluate many aspects in an iterative process.

WhatisProjectRisk Analysis?

Project risk analysis entails creating risk response strategies specific to every danger that is detected.

These plans specify the precise steps that must be done to transfer, minimize, accept, or avoid the risk.

Organizations can avoid the negative effects of unplanned occurrences and sustain project momentum by

proactively planning for probable contingencies.

The methodical process of locating, evaluating, and controlling the hazards that could compromise a

project’s successful completion is known as project risk analysis. It entails assessing risks and possible

dangers to project goals, including budget, time, scope, and quality, and creating plans to successfully

manage or address these hazards. Project risk analysis’s main objective is to proactively detect andhandle

possible problems before they become serious ones to increase the possibility that the project will

succeed.

HowtoAnalyzeProjectRisks?

When evaluating project risks, you should take three factors into account: risk exposure, risk impact, and

risk probability. Risk analysis, both qualitative and quantitative, can be used to estimate these three

factors.

1. RiskProbability

 Qualitative Analysis:This method determines the possibility of a risk materializing by utilizing

experience and subjective judgment. One can use methods like probability matrices, risk ratingscales,

and expert opinion.

 Quantitative Analysis:To evaluate the probability of risks, quantitative methods use numerical data

and statistical models, in contrast to qualitative analysis. This could use methods like decision trees,

historical data analysis, and Monte Carlo simulations.

2. RiskImpact

 FinancialImpact:Considerthepossiblefinancialrepercussionsofarisk,includingdirectandindirect

expenses as well as possible revenue loss.

 Impact on Schedule:Evaluate the potential effects of a risk on the project schedule, such as missed

deadlines for completing tasks or reaching milestones.

 Impact on Resources: Take into account the effects on supplies, machinery, labor, and other project

resources.

 ImpactonQuality:Assessthepotentialeffectsofariskonprojectresultsordeliverablequality requirements.

3. RiskExposure

 Assessing Acceptability:Use the risk exposure calculation to ascertain whether the company is

prepared to take on the possible losses that come with a risk. This computation aids in risk

prioritization according to likelihood and total impact.

 RiskMitigation:Strategiesforreducingrisklikelihoodorimpactshouldbecreatedinordertolessen the

predicted risk exposure if it is deemed unacceptable.

 Risk Transfer or Avoidance: If an organization’s risk exposure is judged to be too large or to be

outside of its risk tolerance threshold, it may decide to transfer or completely avoid hazards.

ProjectRisk AnalysisTools&Techniques

https://www.geeksforgeeks.org/software-engineering-software-project-management-spm/
https://www.geeksforgeeks.org/short-note-on-risk-assessment-and-risk-mitigation/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page133

Managers can make better decisions by using a variety of risk analysis techniques and resources. Project

management documents and charts are examples of instruments used in risk analysis that are used insome

of these. Now let’s explore these risk analysis techniques and see how they might benefit you.

1. TeamBrainstormingSessions

Participating in brainstorming sessions with teammembers guarantees that different viewpoints are taken

into account when calculating the probability and effect of risks. A more accurate risk assessment can be

achieved by utilizing the team’s collective expertise and experience to identify potential threats in amore

thorough manner. Involvement in the team also promotes ownership and dedication to

theriskmanagementprocedure, which raises the possibility that risk mitigation techniques will be

effective.

2. DelphiTechnique

The Delphi method uses a panel of experts’ knowledge to predict risks and their possible effects.Through

expert discussion and debate, the method helps identify biases and blind spots, resulting inbetter informed

risk assessments. This method’s consensus-building offers a strong basis for making decisions, especially

in risk scenarios that are unclear or complex.

3. SWOT Analysis

A project’s internal strengths and weaknesses as well as exterior possibilities and dangers can be seen

holistically with the use of a SWOT analysis. Project managers can use SWOT analysis as a method for

risk analysis to find any weaknesses and outside variables that could endanger the success of theirproject.

Through the consideration of both external and internal aspects, SWOT analysis aids in the proactive

development of plans to reduce risks and take advantage of opportunities.

4. RiskAnalysisMatrix

The risk analysis matrix offers an organized framework for assessing a danger’s likelihood and

seriousness. Project managerscanefficiently prioritizerisksandallocateresources basedontheirlevel of

importance. The matrix is a useful tool for directing risk management efforts and making sure that major

hazards are addressed promptly, even though it only provides a qualitative assessment of risks.

5. RiskRegister

For recording and monitoring project risks over the course of the project lifetime, the risk register acts as

a central repository. The risk register offers a thorough perspective of the project’s risk environment by

gathering crucial information about risks, including their nature, possible impact, and mitigation

techniques. The risk register assists with proactive risk management by identifying and addressing

possible issues before they become more serious. It does this by utilizing inputs from multiple sources,

such as the project team and historical data.

TypesofProjectRisk Analysis

1. QualitativeRiskAnalysis

Qualitative risk analysis involves experts from the project team estimating the impact and likelihood of

different risks based on their experience and past project data. To rate risks according to their impact

(severity of consequences) and probability (chance of occurrence), they employ a scale. When a danger

has a likelihood of 0.5, for instance, there is a 50% chance that it will materialize. On a five-point rating

system, one represents the least severe impact and five the most severe. Following risk identification and

analysis, a team member is designated as the risk owner, who is in charge of organizing and carrying outa

response. By concentrating on high-impact risks and designating owners to handle them successfully,

qualitative analysis helps projects become less uncertain.

2. QuantitativeRiskAnalysis

Quantitative risk analysis is a more statistical approach that examines how identified risks might affect

the overall project.

https://www.geeksforgeeks.org/risk-management-software-engineering/
https://www.geeksforgeeks.org/risk-management-software-engineering/
https://www.geeksforgeeks.org/swot-analysis-for-product-mangers/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page134

project managers more confidence when making decisions. It assists, for example, in establishing

reasonable goals for project scope, budgets, and schedules. The Monte Carlo simulation, which employs

computational techniques to predict the possibility of various risks occurring, is one often used tool in

quantitative analysis. During the planning and execution of a project, project managers can use this data

to make well-informed decisions.

CaseStudiesofProject Risk Analysis

CaseStudy 1:BuildingaHigh-RiseResidential Structure

1. RecognizingDangers

 Identified hazardsincludeunfavorable weather,problems withthesupply chain, a laborshortage, and

problems with regulatory compliance.

 Organized risk brainstorming sessions with project managers, engineers, contractors, and regulatory

agencies.

2. EvaluatingHazards

 Evaluatedeachdetectedrisk’slikelihoodanditsconsequencesusingaqualitativemethod.

 Basedontheirseriousnessandprobabilityofhappening,riskswereranked,withthegreatest influence on

project finances and schedules coming first.

3. Planning forMitigation

 Developed mitigating measures, including recruiting backup workers, setting up alternate suppliersfor

essential commodities, and adjusting schedules to account for weather-related delays.

 Safetytraininginitiativesandcomplianceauditswereputinplacetoreduceregulatoryrisksand guarantee

worker safety.

4. EmergencyPreparedness

 Developedbackupmeasures forhigh-impact risks,suchasschedulingbuffersandbudgetreserves for

unforeseen expenses.

 Established criteria and triggers for triggering backup plans, and evaluated their efficacy on a regular

basis.

5. Observationand Management

 Used important risk indicators, such as weather forecasts, supplier performance data, and regulatory

compliance reports, to monitor project risks during the building phase.

 Ariskmanagementplan wasputintoplacetomonitorriskreductioninitiatives, keepriskregisters up to date,

and inform project stakeholders of developments pertaining to risks.

CaseStudy2:FinancialInstitution SoftwareDevelopment

1. RecognizingDangers

 Hazardsthathavebeenidentifiedincludechangesinscope,technicalcomplexity,resource limitations, and

security flaws.

 Conducted requirements analysis meetings and stakeholder interviews to find any hazards related to

software development and integration.

2. EvaluatingHazards

 Evaluatedthepossibilityandsignificanceofeachriskthatwasdiscoveredusingacombinationof qualitative

and quantitative techniques.

 Riskswererankedaccordingtohowtheymightaffectdatasecurity,projectdeliverables,and regulatory

compliance.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page135

project managers more confidence when making decisions. It assists, for example, in establishing

reasonable goals for project scope, budgets, and schedules. The Monte Carlo simulation, which employs

computational techniques to predict the possibility of various risks occurring, is one often used tool in

quantitative analysis. During the planning and execution of a project, project managers can use this data

to make well-informed decisions.

CaseStudiesofProject Risk Analysis

CaseStudy 1:BuildingaHigh-RiseResidential Structure

6. RecognizingDangers

 Identified hazardsincludeunfavorable weather,problems withthesupply chain, a laborshortage, and

problems with regulatory compliance.

 Organized risk brainstorming sessions with project managers, engineers, contractors, and regulatory

agencies.

7. EvaluatingHazards

 Evaluatedeachdetectedrisk’slikelihoodanditsconsequencesusingaqualitativemethod.

 Basedontheirseriousnessandprobabilityofhappening,riskswereranked,withthegreatest influence on

project finances and schedules coming first.

8. Planning forMitigation

 Developed mitigating measures, including recruiting backup workers, setting up alternate suppliersfor

essential commodities, and adjusting schedules to account for weather-related delays.

 Safetytraininginitiativesandcomplianceauditswereputinplacetoreduceregulatoryrisksand guarantee

worker safety.

9. EmergencyPreparedness

 Developedbackupmeasures forhigh-impact risks,suchasschedulingbuffersandbudgetreserves for

unforeseen expenses.

 Established criteria and triggers for triggering backup plans, and evaluated their efficacy on a regular

basis.

10. Observationand Management

 Used important risk indicators, such as weather forecasts, supplier performance data, and regulatory

compliance reports, to monitor project risks during the building phase.

 Ariskmanagementplan wasputintoplacetomonitorriskreductioninitiatives, keepriskregisters up to date,

and inform project stakeholders of developments pertaining to risks.

CaseStudy2:FinancialInstitution SoftwareDevelopment

3. RecognizingDangers

 Hazardsthathavebeenidentifiedincludechangesinscope,technicalcomplexity,resource limitations, and

security flaws.

 Conducted requirements analysis meetings and stakeholder interviews to find any hazards related to

software development and integration.

4. EvaluatingHazards

 Evaluatedthepossibilityandsignificanceofeachriskthatwasdiscoveredusingacombinationof qualitative

and quantitative techniques.

 Riskswererankedaccordingtohowtheymightaffectdatasecurity,projectdeliverables,and regulatory

compliance.

5. Planning for Mitigation

 Created techniques for mitigation, including cross-training team members to lessen resource

restrictions, introducing change control procedures to manage scope changes, and addressing

technical complexity through modular development.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page136

 Carried out frequent penetration tests and security assessments to find and fix any possible

weaknesses in the software program.

6. EmergencyPreparedness

 Plans for backup development resources in case of personnel turnover and emergency response

procedures in case of security breaches have been developed as contingency measures for critical

risks.

 Createdchannels ofcommunication andescalationprotocols toinitiatebackupplanswhennecessary.

7. Observationand Management

 Useddataincludingcodereviewreports,stakeholdercomments,andsecurityauditresultstotrack project

risks.

 Conductedfrequentriskassessmentsandstatusreportstomonitorriskreductioninitiatives, reevaluate risk

priorities, and modify mitigation plans as needed.

ChallengesofProjectRisk Analysis

1. Uncertainty:Projects can entail a large number of unknowns, which makes it difficult to precisely

identify and forecast possible hazards.

2. Subjectivity in Risk Assessment:Risk assessment calls for subjective assessments that differ

depending on the project’s stakeholders. Subjectivity in risk assessment and prioritization mightresult

in prejudices and conflicts.

3. Lack of Historical Data:Occasionally, particularly for novel or inventive initiatives, there could not

be enough historical data or benchmarks available to guide risk analysis.

4. Interrelated Risks:Risks in a project are frequently interrelated, which means that addressing one

risk could unintentionally cause or worsen others. Sustaining these interdependencies calls for

meticulous planning and collaboration.

5. Ignoring Certain Risks:Project teams have a tendency to ignore certain hazards, particularly those

that are less evident or concealed from view. This may lead to insufficient methods for mitigating

risks or unforeseen problems when the project is being carried out.

6. Dynamic Project Environments:Project environments are dynamic, meaning that risks alter over

time as a result of adjustments made to rules, market conditions, technology, or stakeholder

expectations. Staying on top of these changes means constantly observing and adjusting.

BenefitsofProjectRisk Analysis

 ProactiveRiskManagement:Earlyriskidentificationallowsprojectteamstotakeproactivestepsto

reduceoreliminaterisks. Thisisknownasproactiveriskmanagement.Bybeingproactive,riskshave less of

an impact on the goals of the project.

 Informed Decision Making through Risk Analysis: Throughout the course of a project, risk

analysis offers insightful information that facilitates well-informed decision making. Stakeholders in

the project can evaluate the possible outcomes of various options and allocate resourcesappropriately.

 Maximizing Resource Usage and Efficiency: Time, money, and manpower may all be used more

wisely when project risks are recognized. Project teams can increase project efficiency and maximize

resource usage by concentrating resources on high-priority hazards.

 Proactive Risk Management:Enhanced Stakeholder trust: Showing that you have a solid grasp of

projectrisksandareemploying proactiveriskmanagement techniqueshelpsto buildstakeholdertrust in

theproject’s capacity to meet its goals. This in turn cultivates confidence and backing from clients,

sponsors, and other stakeholders involved in the project.

 Implementing Cost Control Strategies:Project risk analysis makes it possible to implement better

cost control strategies by seeing possible cost overruns early in the project lifecycle.

 SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page137

 Schedule Risk Management:To reduce financial risk, this entails creating a contingency budget,

negotiating contracts with suppliers, and putting cost-cutting measures in place.

BestPracticesforEffectiveRisk AnalysisinProjects

1. Planning forRiskManagement

Create a plan for risk management. Uncertainty surrounds every project. Establishing a well-defined risk

management plan at the outset establishes the framework for managing hazards. Risk appetite, roles and

responsibilities, data sources and technologies, and the frequency and timing of risk management actions

should all be outlined in the strategy.

2. QualitativeandQuantitativeApproaches

Both qualitative and quantitative approaches are used in qualitative and quantitative risk analysis.

Quantitative risk analysis, such as Monte Carlo simulations, adds depth to the risk assessment by

providing numerical estimates of possible outcomes, while qualitative risk analysis helps prioritize risks

based on probability and impact.

3. FrequentRe-evaluationofRisk

Makeiterative assessments of the risks. Projects change as they go, bringing with them newand evolving

hazards. Plan frequent risk assessment meetings to identify and handle these situations, so the team isn’t

taken by surprise.

RiskRefinement:



RiskManagementisanimportantpartofprojectplanningactivities.Itinvolvesidentifyingand estimating the

probability of risks with their order of impact on the project.

Risk Management Steps:

Somestepsneed tobefollowed to reduce risk. Thesesteps areas follows:

1. Risk Identification:

Risk identification involves brainstorming activities. It also involves the preparation of a risk list.

Brainstorming is a group discussion technique where all the stakeholders meet together. This technique

produces new ideas and promotes creative thinking.

Preparation of a risk list involves the identification of risks that are occurring continuously in previous

software projects.

2. Risk Analysis and Prioritization:

Itis aprocess thatconsistsofthefollowing steps:

 Identifyingtheproblemscausingriskinprojects

 Identifyingtheprobabilityofoccurrenceofthe problem

 Identifyingtheimpactof theproblem

 Assigningvaluesto step 2 and step3in therangeof1 to 10

 Calculatetherisk exposurefactor whichis theproductofvaluesofStep2 and Step3

 Prepareatableconsistingofallthevaluesandorderriskbasedonriskexposurefactor For

example,

TABLE (Required)

RiskNo

Problem

Probabilityof

occurrence of

problem

Impact of

problem

Risk

exposure

Priority

https://www.geeksforgeeks.org/software-engineering-risk-management/

 SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page138

RiskNo

Problem

Probabilityof

occurrence of

problem

Impact of

problem

Risk

exposure

Priority

R1

Issue of

incorrect

password

2

2

4

10

R2

Testingreveals

alotof defects

1

9

9

7

R3
Thedesignis not

robust

2

7

14

5

3. Risk Avoidance and Mitigation:

The purpose of this technique is to eliminate the occurrence of risks. so the method to avoid risks is to

reduce the scope of projects by removing non-essential requirements.

4. Risk Monitoring:

In this technique, the risk is monitored continuously by reevaluating the risks, the impact of risk, and the

probability of occurrence of the risk.

This ensures that:

 Riskhasbeenreduced

 Newrisksarediscovered

 Theimpact and magnitude ofrisk aremeasured.

RiskMitigation,Monitoring,andManagement(RMMM):



RMMM:

A risk management technique is usually seen in the software Project plan. This can be divided into Risk

Mitigation, Monitoring, and Management Plan (RMMM). In this plan, all works are done as part of risk

analysis. As part of the overall project plan project manager generally uses this RMMM plan.

In some software teams, risk is documented with the help of a Risk Information Sheet (RIS). This RIS is

controlled by using a database system for easier management of information i.e creation, priority

ordering, searching, and other analysis. After documentation of RMMM and start of a project, risk

mitigation and monitoring steps will start.

Risk Mitigation :

Itisanactivityusedtoavoidproblems(RiskAvoidance). Steps for mitigating the risks as follows.

1. Findingouttherisk.

2. Removingcausesthatarethereasonforriskcreation.

https://www.geeksforgeeks.org/short-note-on-risk-assessment-and-risk-mitigation/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page139

3. Controllingthecorresponding documentsfrom timeto time.

4. Conductingtimelyreviewstospeedupthe work.

Risk Monitoring:

It is an activity used for project tracking.

It has the following primary objectives as follows.

1. Tocheckifpredicted risksoccurornot.

2. Toensureproper application ofriskaversion stepsdefinedfor risk.

3. Tocollectdataforfuture risk analysis.

4. Toallocate whatproblems arecaused bywhichrisksthroughout theproject.

Risk Management and planning:

It assumes that themitigation activity failed and therisk is areality. This taskis doneby Project manager

when risk becomes reality and causes severe problems. If the project manager effectively uses project

mitigation to remove risks successfully then it is easier to manage the risks. This shows that the response

that will be taken for each risk by a manager. The main objective of the risk management plan is the risk

register. This risk register describes and focuses on the predicted threats to a software project.

Example:

Letusunderstand RMMMwiththe helpof anexampleof highstaff turnover.

Risk Mitigation:

To mitigate this risk, project management must develop a strategy for reducing turnover. The possible

steps to be taken are:

 Meet the current staff to determine causes for turnover (e.g., poor working conditions, low pay,

competitive job market).

 Mitigatethosecauses thatareunderourcontrolbeforetheproject starts.

 Oncetheprojectcommences,assumeturnoverwilloccurand developtechniquestoensurecontinuity when

people leave.

 Organizeprojectteamsso thatinformationabouteach developmentactivityiswidely dispersed.

 Define documentation standards and establish mechanisms to ensure that documents aredeveloped in

a timely manner.

 Assignabackupstaffmemberforevery critical technologist.

Risk Monitoring:

As the project proceeds, risk monitoring activities commence. The project manager monitors factors that

may provide an indication of whether the risk is becoming more or less likely. In the case of high staff

turnover, the following factors can be monitored:

 Generalattitudeofteammembersbasedonprojectpressures.

 Interpersonalrelationshipsamongteam members.

 Potentialproblemswithcompensationandbenefits.

 Theavailabilityofjobswithin thecompanyandoutsideit.

Risk Management:

Risk management and contingency planning assumes that mitigation efforts have failed and that the risk

has become a reality. Continuing the example, the project is well underway, and a number of people

announce that they will be leaving. If the mitigation strategy has been followed, backup is available,

information is documented, and knowledge has been dispersed across the team. In addition, the project

managermay temporarily refocus resources (and readjust the project schedule)to those functions that are

fully staffed, enabling newcomers who must be added to the team to “get up to the speed“.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page140

DrawbacksofRMMM:

 Itincursadditionalprojectcosts.

 Ittakesadditionaltime.

 Forlargerprojects, implementinganRMMM mayitselfturn outtobe anothertedious project.

 RMMMdoesnotguaranteearisk-freeproject,infact,risksmayalsocomeupaftertheprojectis delivered.

RiskAssessment

The purpose of the risk assessment is to identify and priorities the risks at the earliest stage and avoid

losing time and money.

Under risk assessment, you will go through:

 Risk identification:It is crucial to detect the type of risk as early as possible and address them. The

risk types are classified into

o Peoplerisks: related tothepeopleinthe software development team

o Toolsrisks: relatedto usingtools andothersoftware

o Estimationrisks: relatedtoestimatesoftheresourcesrequiredtobuildthesoftware
o Technology risks: are related to the usage of hardware or software technologies requiredto

build the software

o Organizational risks: are related to the organizational environment where the software
isbeing created.

 Risk analysis:Experienced developers analyze the identified risk based on their experience gained

from previous software . In the next phase, the Software Development team estimates the probability

of the risk occurring and its seriousness

 Riskprioritization:Theriskprioritycan beidentifiedusing theformulabelow

Where,

p stands for priority

rstands fortheprobability oftherisk becoming trueorfalse

s stands fortheseverity ofthe risk.

Afteridentifyingtherisks,theoneswiththeprobabilityofbecomingtrueandhigherlossmustbe prioritized and

controlled.

Riskcontrol

Risk control is performed to manage the risks and obtain desired results. Once identified, the risks can be

classified into the most and least harmful.

Underriskcontrol,youwill go through:

 Riskmanagementplanning: Youcanleveragethreemainstrategies toplanrisk management.

o Reduce the risk: This method involves planning to reduce the loss caused by the risk. For
instance, planning to hire new employees to replace employees serving notice.

p = r * s

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page141

o Transfer the risk: This method involves buying insurance or hiring a third-party
organization to solve a challenging problem that might pose harmful risks

o Avoid the risk: This method involves implementing various strategies, such as
incentivizing underpaid, hardworking engineers who might quit the organization

 Risk monitoring:It includes tracking and evaluating different levels of risk in the software

development team. After completing the risk monitoring process, the findings can be utilized todevise

new strategies to update ineffective methods

 Risk resolution:It involves eliminating the overall risk or finding solutions. This method includes

techniques such as design to cost approach, simulating the prototype, benchmarking, etc.

KeyBenefitsofSoftwareRiskAnalysis

There are multiple benefits to using software risk analysis techniques within your software in software

development, ultimately leading you to complete your projects while successfully navigating obstacles

along the way. Some of the most positive outcomes you can expect when using this framework include:

There are many benefits to using software a

 Better decision-making:When you have the right information in front of you, it is much easier to

make good decisions. Data-driven decision-making is one of the best ways to ensure the successful

completion of a project, which can have knock-on benefits such as cost savings and faster turnaround

times.

 Early warning:If you are aware of an issue before it affects your software and operations, then you

will be able to prevent expensive and time-draining fixes from being necessary.

 Reduced software costs and time: Addressing potential risks ahead of time can help reducesoftware

costs and time by avoiding costly rework or delays due to unexpected issues.

 Improved software quality:Risk analysis can help identify potential quality issues and ensure that

software quality is maintained throughout the development process.

 Increased stakeholder confidence:Conducting risk analysis can increase stakeholder confidence in

the software development process by demonstrating that potential risks are managed proactively.

 Compliance with regulations: Risk analysis can help ensure compliance with industry regulations

and standards.

BestToolsforSoftware RiskAnalysis

Someofthemostcommonly used toolsforsoftwarerisk analysisare as follows:

 FailureModeandEffectsAnalysis (FMEA)

o FMEA is an organized method for locating, evaluating, and ranking possible flaws in a

process or system. It is a qualitative method that evaluates the possibility and seriousness

of prospective failures using the opinion of experts. When risks are found and addressed

early in the software development lifecycle, FMEA is a useful technique.

 FaultTreeAnalysis (FTA)

o FTAisalogicalmethodforassessingsystemfailurereasons. Itbeginswithanundesirable

occurrence at the highest level and proceeds downward to find the lower-level events that

may have contributed to the event. FTA is a helpful tool for comprehending the intricate

connections that exist between various system hazards.

 Risk Matrix

o Prioritizing risks according to likelihood and impact may be done easily with a riskmatrix.

A likelihood and impact rating is given to each risk, and the two ratings are then
compounded to provide a risk score. Prioritisation of more research and mitigation isgiven

to risks with high risk ratings.

 DecisionTree

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page142

o A decision tree is a diagram that represents a series of decisions and their possible

outcomes. Decision trees are helpful in weighing the advantages and disadvantages of
various options.

 MonteCarloSimulation

o Monte Carlo is a quantitative technique for calculating the probability of different

outcomes. Itincludes runningcomputersimulationmultipletimes,usingrandomvaluesas input

each time. The results of these simulation can be used to calculate the chances of different

outcomes.

QUALITY MANAGEMENT

1) QUALITYCONCEPTS:

Qualitymanagementencompasses

(1) aqualitymanagementapproach,

(2) effectivesoftwareengineeringtechnology(methodsandtools),

(3) formaltechnicalreviewsthatareappliedthroughoutthesoftwareprocess,
(4) amultitieredtestingstrategy,
(5) controlofsoftwaredocumentationandthechangesmadetoit,

(6) aproceduretoensurecompliancewithsoftwaredevelopmentstandards(whenapplicable),and

(7) measurementandreportingmechanisms.
Variationcontrolistheheartofqualitycontrol.

Quality

 TheAmericanHeritageDictionarydefinesqualityas“acharacteristicorattributeof something.”

 Qualityofdesignreferstothecharacteristicsthatdesignersspecifyforanitem.
Qualityofconformanceisthedegreetowhichthedesignspecificationsarefollowedduringmanufacturing.

In software development, quality of design encompasses requirements, specifications, and the

design ofthe system. Quality of conformance is an issue focused primarily on implementation. If

the implementation follows the design and the resulting system meets its requirements and
performance goals, conformance quality is high.

RobertGlassarguesthatamore“intuitive”relationshipisinorder:

Usersatisfaction=compliantproduct+goodquality+deliverywithinbudgetandschedule

QualityControl

Quality control involves the series of inspections, reviews, and tests used throughout the

softwareprocess to ensure each work product meets the requirements placed upon it.

A key concept of quality control is that all work products have defined, measurable

specifications to which we may compare the output of each process. The feedback loop is

essential to minimize the defects produced.

SoftwareQualityAssurance –SoftwareEngineering







SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page143



Software Quality Assurance (SQA)is simply a way to assure quality in the software. Itis

the set of activities that ensure processes, procedures as well as standards are suitablefor

the project and implemented correctly.

Software Quality Assurance is a process that works parallel to Software Development. It

focuses on improving the process of development of software so that problems can be

prevented before they become major issues. Software Quality Assurance is a kind of

Umbrella activity that is applied throughout the software process.

For those looking to deepen their expertise in SQA and elevate their professional skills,

consider exploring a specialized training program –Manual to Automation Testing:

AQA Engineer’s Guide. This programoffers practical, hands-on experience and advanced

knowledge that complements the concepts covered in this guide.

Generally,thequalityofthesoftwareisverifiedbythird-partyorganizations like international

standard organizations.

What is quality?
Quality in a product or service can be defined by several measurable characteristics. Each

of these characteristics plays a crucial role in determining the overall quality.

SoftwareQualityAssurance(SQA)encompasses
SQA process Specific quality assurance and quality control tasks (including technical

reviews and a multitiered testing strategy) Effective software engineering practice

(methodsandtools)Controlofallsoftwareworkproductsandthechangesmadetothema

procedure to ensure compliance withsoftware developmentstandards (when applicable)

measurement and reporting mechanisms

Elementsof SoftwareQualityAssurance(SQA)
1. Standards:The IEEE, ISO, and other standards organizations have produced a broad

array of software engineering standards and related documents. The job of SQA is to

ensure that standards that have been adopted are followed and that all work products

conform to them.

2. Reviews and audits:Technical reviews are a quality control activity performed by

software engineers for software engineers. Their intent is to uncover errors. Audits are

a type of review performed by SQA personnel (people employed in an organization)

with the intent of ensuring that quality guidelines are being followed for software

engineering work.

3. Testing:Software testingis a quality control function that has one primary goal—to

find errors. The job of SQA is to ensure that testing is properly planned and efficiently

conducted for primary goal of software.

4. Error/defect collection and analysis: SQA collects and analyzes error and defectdata

to better understand how errors are introduced and what software engineering activities

are best suited to eliminating them.

https://gfgcdn.com/tu/QW5/
https://gfgcdn.com/tu/QW5/
https://gfgcdn.com/tu/QW5/
https://www.geeksforgeeks.org/iso-standards-in-software-engineering
https://www.geeksforgeeks.org/iso-standards-in-software-engineering
https://www.geeksforgeeks.org/software-development/?ref
https://www.geeksforgeeks.org/software-testing-basics

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page144

5. Change management:SQA ensures that adequate change management practices have

been instituted.

6. Education:Every software organization wants to improve its software engineering

practices. A key contributor to improvement is education of software engineers, their

managers, and other stakeholders. The SQA organization takes the lead in software

process improvement which is key proponent and sponsor of educational programs.

7. Security management:SQA ensures that appropriate process and technology areused

to achieve software security.

8. Safety:SQA may be responsible for assessingthe impactof software failure and

forinitiating those steps required to reduce risk.

9. Riskmanagement:TheSQAorganization ensures that risk managementactivities are

properly conducted and that risk-related contingency plans have been established.

Software QualityAssurance(SQA) focuses
TheSoftwareQualityAssurance(SQA)focusesonthefollowing

Software’s portability:Software’sportabilityrefers to its ability to be easily

transferred or adapted to different environments or platforms without needing

significant modifications. This ensures that the software can run efficiently across

various systems, enhancing its accessibility and flexibility.

 software’s usability: Usabilityof software refers to how easy and intuitive it is for

users to interact with and navigate through the application. A high level of usability

ensures that users can effectively accomplish their tasks with minimal confusion or

frustration, leading to a positive user experience.

 software’s reusability: Reusabilityin software development involves designing

components or modules that can be reused in multiple parts of the software or in

different projects. This promotes efficiency and reduces development time by

eliminating the need to reinvent the wheel for similar functionalities, enhancing

productivity and maintainability.

 software’s correctness: Correctnessof software refers to its ability to produce the

desired results under specific conditions or inputs. Correct software behaves as

expected without errors or unexpected behaviors, meeting the requirements and

specifications defined for its functionality.

 software’s maintainability: Maintainabilityofsoftwarereferstohoweasilyitcanbe

modified, updated, or extended over time. Well-maintained software is structured and

documented in a way that allows developers to make changes efficiently without

introducing errors or compromising its stability.

 software’s error control: Error controlin software involves implementing

mechanismstodetect,handle,andrecoverfromerrorsorunexpectedsituations

https://www.geeksforgeeks.org/software-risk-analysis

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page145

gracefully.Effectiveerrorcontrolensuresthatthesoftwareremainsrobustandreliable, minimizing

disruptions to users and providing a smoother experience overall.

SoftwareQualityAssurance(SQA) Include
1. Aqualitymanagementapproach.

2. Formaltechnicalreviews.

3. Multitestingstrategy.

4. Effectivesoftwareengineeringtechnology.

5. Measurementandreportingmechanism.

MajorSoftwareQualityAssurance(SQA)Activities
1. SQA Management Plan:Make a plan for how you will carry out the SQA throughout

the project. Think about which set of software engineering activities are the best for

project. check level of SQA team skills.

2. Set The Check Points:SQA team should set checkpoints. Evaluate the performanceof

the project on the basis of collected data on different check points.

3. Measure Change Impact:The changes for making the correction of an error

sometimes re introduces more errors keep the measure of impact of change on project.

Reset the new change to check the compatibility of this fix with whole project.

4. Multi testing Strategy:Do not depend on a single testing approach. When you have a

lot of testing approaches available use them.

5. Manage Good Relations:In the working environment managing good relations with

other teams involved in the project development is mandatory. Bad relation of SQA

team with programmers team will impact directly and badly on project. Don’t play

politics.

6. Maintaining records and reports:Comprehensively document and share all QA

records, including test cases, defects, changes, and cycles, for stakeholder awareness

and future reference.

7. Reviews software engineering activities:The SQA group identifies and documents

the processes. The group also verifies the correctness of software product.

8. Formalize deviation handling:Track and document software deviationsmeticulously.

Follow established procedures for handling variances.

BenefitsofSoftwareQuality Assurance (SQA)
1. SQAproduceshighqualitysoftware.

2. Highqualityapplicationsavestimeand cost.

3. SQAisbeneficialforbetterreliability.

4. SQAisbeneficialintheconditionofnomaintenanceforalongtime.

5. Highqualitycommercialsoftwareincreasemarketshareofcompany.

6. Improvingtheprocessofcreatingsoftware.

7. Improvesthequalityofthesoftware.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page146

8. It cuts maintenance costs. Get the release right the first time, and your company can

forget about it and move on to the next big thing. Release a product with chronicissues,

and your business bogs down in a costly, time-consuming, never-ending cycle of

repairs.

DisadvantageofSoftware QualityAssurance(SQA)
Thereareanumberofdisadvantagesofquality assurance.

 Cost:Some of them include adding more resources, which cause the more budget its

not, Addition of more resources For betterment of the product.

 Time Consuming:Testing and Deployment of the project taking more time which

cause delay in the project.

 Overhead: SQA processes can introduce administrative overhead, requiring

documentation, reporting, and tracking of quality metrics. This additional

administrative burden can sometimes outweigh the benefits, especially for smaller

projects.

 Resource Intensive: SQA requires skilled personnel with expertise in testing

methodologies, tools, and quality assurance practices. Acquiring and retaining such

talent can be challenging and expensive.

 Resistance to Change: Some team members may resist the implementation of SQA

processes, viewing them as bureaucratic or unnecessary. This resistance can hinder the

adoption and effectiveness of quality assurance practices within an organization.

 Not Foolproof: Despite thorough testing and quality assurance efforts, software can

still contain defects or vulnerabilities. SQA cannot guarantee the elimination of allbugs

or issues in software products.

 Complexity: SQA processes can be complex, especially in large-scale projects with

multiple stakeholders, dependencies, and integration points. Managing the complexity

of quality assurance activities requires careful planning and coordination.

SoftwareReviews–SoftwareEngineering

Software Review is a systematic inspection of software by one or more individuals who

work together to findandresolveerrors and defects in the softwareduring the early stages of

the Software Development Life Cycle (SDLC). A software review is anessential part of

the Software Development Life Cycle (SDLC) that helps software

engineersinvalidatingthequality,functionality,andothervitalfeaturesand components of the

software. It is a whole process that includes testing the softwareproduct and it makes sure

that it meets the requirements stated by the client.

Usually performed manually, software review is used to verify various documents like

requirements, system designs, codes, test plans, and test cases.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page147

ObjectivesofSoftwareReview
Theobjectiveofthesoftwarereviewis:

1. Toimprovetheproductivityofthedevelopmentteam.

2. Tomakethetestingprocesstimeandcost-effective.

3. Tomakethefinalsoftwarewithfewerdefects.

4. Toeliminatetheinadequacies.

ProcessofSoftwareReview

SoftwareReviewprocess

1. Entry Evaluation: By confirming documentation, fulfilling entry requirements and

assessing stakeholder and team preparation, you can determine the software’s

availability.

2. Management Preparation: To get ready for the review process, assign roles, gather

resources and provide brief management.

3. Review Planning: Establish the review’s goals and scope, invite relevant parties and

set a time for the meeting.

4. Preparation:Distributeappropriateresources,givereviewerstimetogetfamiliar and

promote issue identification to help them prepare.

5. Examination and Exit Evaluation: Reviewers should collaborate to examine the

results, record concerns, and encourage candid communication in meetings. Itassess

theresults,makeremedialplansbasedonflawsthathavebeenreported andassess the

process’s overall efficacy.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page148

TypesofSoftwareReviews
Therearemainly3typesofsoftwarereviews:

1. SoftwarePeerReview

Peer review is the process of assessing the technical content and quality of the productand

it is usually conducted by the author of the work product along with some other

developers.

Peer review is performed in order to examine or resolve the defects in the software,whose

quality is also checked by other members of the team.

PeerReviewhasfollowingtypes:

1. CodeReview:Computersourcecodeisexaminedinasystematicway.

2. Pair Programming: It is a code review where two developers develop code togetherat

the same platform.

3. Walkthrough: Members of the development team is guided by author and other

interestedpartiesandtheparticipantsaskquestionsandmakecommentsabout defects.

4. Technical Review: A team of highly qualified individuals examines the software

product for its client’s use and identifies technical defects from specifications and

standards.

5. Inspection:Ininspectionthereviewersfollowawell-definedprocesstofinddefects.

2. SoftwareManagementReview

Software Management Review evaluates the work status. In this section decisions

regarding downstream activities are taken.

3. SoftwareAuditReview

SoftwareAuditReviewisatypeofexternalreviewinwhichoneormorecritics,who are not a part

of the development team, organize an independent inspection of thesoftware product and

its processes to assess their compliance with stated specificationsand standards. This is

done by managerial level people.

AdvantagesofSoftwareReview
1. Defectscanbeidentifiedearlierstageofdevelopment(especiallyinformalreview).

2. Earlierinspectionalsoreducesthemaintenancecostofsoftware.

3. Itcanbeusedtotraintechnicalauthors.

4. Itcanbeusedtoremoveprocessinadequaciesthatencouragedefects.

FormalTechnicalReviews:

FormalReview generallytakesplaceinpiecemealapproachthatconsistsofsix different steps

that are essential. Formal review generally obeys formal process. It is also one of the most

important and essential techniques required in static testing.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page149

Sixstepsareextremelyessentialasthey allowteam of developerssimplytoensureand check

software quality, efficiency, and effectiveness. These steps are given below :

PhasesofFormalReviews

1. Planning : For specific review, review process generally begins with ‘request for

review’ simply by author to moderator or inspection leader. Individual participants,

according to their understanding of document and role, simply identify and determine

defects, questions, and comments. Moderator also performs entry checks and even

considers exit criteria.

2. Kick-Off : Getting everybody on the same page regarding document under review is

the main goal and aim of this meeting. Even entry result and exit criteria are also

discussed in this meeting. It is basically an optional step. It also provides better

understanding of team about relationship among document under review and other

documents. During kick-off, Distribution of document under review, sourcedocuments,

and all other related documentation can also be done.

3. Preparation : In preparation phase, participants simply work individually

ondocumentunderreviewwiththehelpofrelateddocuments,procedures,rules,and

https://www.geeksforgeeks.org/software-engineering-software-quality/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page150

provided checklists. Spelling mistakes are also recorded on document under reviewbut

not mentioned during meeting. These reviewers generally identify and determine and

also check for any defect, issue or error and offer their comments, that later combined

and recorded with the assistance of logging form, while reviewingdocument.

4. Review Meeting : This phase generally involves three different phases i.e. logging,

discussion, and decision. Different tasks are simply related to document under reviewis

performed.

5. Rework : Author basically improves document that is under review based on the

defects that are detected and improvements being suggested in review meeting.

Document needs to be reworkedif total numberof defects thatare foundare more than an

unexpected level. Changes that are done to document must be easy todetermine during

follow-up, therefore author needs to indicate changes are made.

6. Follow-Up : Generally, after rework, moderator must ensure that all satisfactory

actions need to be taken on all logged defects, improvement suggestions, and change

requests. Moderator simply makes sure that whether author has taken care of alldefects

or not. In order to control, handle, and optimize review process, moderator

collectsnumberofmeasurementsateverystepofprocess.Examplesof measurements

include total number of defects that are found, total number of defects that are found

per page, overall review effort, etc.

7. Individual Assessment: The stage prior to the official group meeting during which

each reviewer conducts an independent examination of the artefacts.

8. Meeting for Group Review: The cooperative stage in which the review panel

discusses over results, resolves conflicts and makes choices regarding the examined

artifacts.

9. Finalization and Record-Keeping: Completing the formal review procedure,

recording the results and being ready for any necessary follow-up measures.

10. MetricsandOngoingImprovement: Findingopportunitiesforongoing improvement

and evaluating the success of the formal review process through the tracking and

analysis of review metrics.

ImportanceofDifferentPhasesofFormalReview
1. Early Defect Detection: By catching errors early in the development process, formal

reviews lower the effort and expense involved in fixing them.

2. KnowledgeSharing: Teammemberscollaborateandshareknowledgeduring various

stages, which promotes a culture of ongoing learning and development.

3. Process Improvement: Through the formal review process, reoccurring issues are

found, which helps development processes become more refined and improved over

time.

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page151

 SoftwareEngineering(23CS405)

4. Quality Assurance: By verifying that the programme complies with established

standards and criteria, formal reviews make an important contribution to quality

assurance.

5. STATISTICALSOFTWAREQUALITYASSURANCE

For software,statisticalqualityassuranceimpliesthefollowingsteps:
1. Informationaboutsoftwaredefectsiscollectedandcategorized.

2. An attempt is made to trace each defect to its underlying cause (e.g., non-

conformance to specifications, design error, violation of standards, poor

communication withthecustomer).
3. Using the Pareto principle (80 percent of the defects can be traced to 20 percent of all

possible causes), isolate the 20 percent (the "vital few").
4. Oncethevital fewcauseshavebeenidentified,move tocorrecttheproblemsthathave caused the

For software, statistical quality assurance implies the following steps:

.
The application of the statistical SQA and the pareto principle can be summarized in a

single sentence: spend your timefocusing onthings that really matter, but first be surethat you

understand what really matters.

SixSigmaforsoftwareEngineering:

SixSigmaisthemostwidelyusedstrategyforstatisticalqualityassuranceinindustrytoday.
The term “six sigma” is derived from six standard deviations—3.4 instances (defects) per

million occurrences—implyinganextremely highqualitystandard.TheSixSigma methodology
defines three core steps:

1. Definecustomerrequirementsanddeliverablesandprojectgoalsviawell- defined

methods of customer communication

2. Measure the existing process and its output to determine current quality performance
(collect defect metrics)

3. Analyzedefectmetricsanddeterminethevitalfewcauses.

Ifanexistingsoftwareprocess is inplace, butimprovement is required, Six Sigma suggests two
additional steps.

4. Improvetheprocessbyeliminatingtherootcausesofdefects.

5. Control the process to ensure that future work does not reintroduce the causes of
defects These core and additional steps are sometimes referred to as the DMAIC

(define, measure, analyze, improve, and control) method.

If any organization is developing a software process (rather than improving and
existing process), the core steps are augmented as follows:

6. Designtheprocessto

1. avoidtherootcausesofdefectsand

2. tomeetcustomerrequirements

7. Verify that the process model will, in fact, avoid defects and meet customer

requirements.This variationissometimes calledtheDMADV(define,measure,

analyze, design and verify) method.

ReliabilityTesting–SoftwareTesting

LastUpdated:06Aug,2024




SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page152



Reliability Testingis a testing technique that relates to testing the ability of software to

functionandgivenenvironmentalconditionsthathelpinuncoveringissuesinthesoftware design

and functionality.

ThisarticlefocusesondiscussingReliabilitytestingindetail.

Whatis ReliabilityTesting?
ReliabilitytestingisaTypeofsoftwaretestingthatevaluatestheabilityofasystemto perform its

intended function consistently and without failure over an extended period.

1. Reliability testing aims to identify and address issues that can cause the system to fail

or become unavailable.

2. Itisdefinedasatypeofsoftwaretestingthatdetermineswhetherthesoftwarecan perform a

failure-free operation for a specific period in a specific environment.

3. Itensuresthattheproductisfault-freeandisreliableforitsintendedpurpose.

4. It is an important aspect of software testing as it helps to ensure that the system will be

able to meet the needs of its users over the long term.

5. Itcanalsohelptoidentifyissuesthatmaynotbeimmediatelyapparentduring functional

testing, such as memory leaks or other performance issues.

Reliabilitytesting Categories
Thestudyofreliabilitytestingcanbedividedintothreecategories:-

1. Modeling

Modeling in reliability testing involves creating mathematical orstatistical representations

of how a product or system might fail over time. It’s like making an educated guess about

the product’s lifespan based on its design and components. This helps predict when and

how failures might occur without actually waiting for the product to fail in real life.

Example: Engineers might createa model to estimate how longa new smartphone battery

will last before it degrades significantly.

2. Measurement

Measurement focuses on collecting real-world data about a product’s performance and

failures. This involves testing products under various conditions and recording when and

how they fail. It’s about gathering concrete evidence of reliability rather than just

predictions.

Example:A car manufacturer might test drive hundreds of cars for thousands of miles,

recording any issues that arise during these tests.

3. Improvement

Improvement uses the insights gained from modeling and measurement to enhance the

reliability of a product or system. This involves identifying weak points, redesigning

components, or changing manufacturing processes to make the product more reliable.

https://www.geeksforgeeks.org/types-software-testing/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page153

Example:After finding that a particular part in a washing machine fails frequently,

engineers might redesign that part or choose a more durable material to improve its

lifespan.

DifferentWaystoPerformReliabilityTesting
HerearetheDifferentWaystoPerformReliabilityTestingarefollows:

1. Stress testing:Stress testinginvolves subjecting the system to high levels of load or

usage to identify performance bottlenecks or issues that can cause the system to fail

2. Endurance testing:Endurance testinginvolves running the system continuously foran

extended period to identify issues that may occur over time

3. Recovery testing:Recovery testingis testing the system’s ability to recover from

failures or crashes.

4. Environmental Testing:Conducting tests on the product or system in various

environmentalsettings,suchastemperatureshifts,humiditylevels,vibration exposureor

shock exposure, helps in evaluating its dependability in real-world circumstances.

5. Performance Testing:InPerformance TestingIt is possible to make sure that the

system continuously satisfies the necessary specifications and performance criteria by

assessing its performance at both peak and normal load levels.

6. Regression Testing:InRegression TestingAfter every update or modification, the

system should be tested again using the same set of test cases to help find any potential

problems caused by code changes.

7. Fault Tree Analysis:Understanding the elements that lead to system failures can be

achieved by identifying probable failure modes and examining the connectionsbetween

them.

It is important to note that reliability testing may require specialized tools and test

environments, and that it’s often a costly and time-consuming process.

ObjectiveofReliabilityTesting
1. Tofindtheperpetualstructureofrepeatingfailures.

2. Tofindthenumberoffailuresoccurringisthespecificperiodoftime.

3. Todiscoverthemaincauseoffailure.

4. Toconductperformancetestingofvariousmodulesofsoftwareproductafterfixing defects.

5. It builds confidence in the market, stakeholders and users by providing a

dependableproduct that meets quality criteria and operates as expected.

6. Understanding the dependability characteristics and potential mechanisms of failure of

the system helps companies plan and schedule maintenance actions more efficiently.

https://www.geeksforgeeks.org/stress-testing-software-testing/
https://www.geeksforgeeks.org/software-testing-endurance-testing/
https://www.geeksforgeeks.org/recovery-testing-in-software-testing/
https://www.geeksforgeeks.org/performance-testing-software-testing/
https://www.geeksforgeeks.org/software-engineering-regression-testing/

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page154

7. It evaluates whether a system or product can be used continuously without

experiencing a major loss in dependability, performance or safety.

8. It confirms thatin the absence of unexpected shutdown or degradation, the system

orproduct maintains constant performance levels under typical operating settings.

Typesof ReliabilityTesting
HerearetheTypesofReliabilityTestingarefollows:

1. FeatureTesting

Followingthreestepsareinvolvedinthistesting:

 Eachfunctioninthesoftwareshouldbeexecutedatleastonce.

 Interactionbetweentwoormorefunctionsshouldbereduced.

 Eachfunctionshouldbeproperlyexecuted.

2. RegressionTesting

Regression testing is basically performed whenever any new functionality is added, old

functionalities are removed or the bugs are fixed in an application to make sure with

introduction of new functionality or with the fixing of previous bugs, no new bugs are

introduced in the application.

3. LoadTesting

Load testing is carried out to determine whether the application is supporting the required

load without getting breakdown. It is performed to check the performance of the software

under maximum work load.

4. Stress Testing

This type of testing involves subjecting the system to high levels of usage or load in order

to identify performance bottlenecks or issues that can cause the system to fail.

5. EnduranceTesting

This type of testing involves running the system continuously for an extended period of

time in order to identify issues that may occur over time, such as memory leaks or other

performance issues.

Recovery testing: This type of testing involves testing the system’s ability to recover from

failures or crashes, and to return to normal operation.

6. VolumeTesting

Volume Testing is a type of testing involves testing the system’s ability to handle large

amounts of data. This type of testing is similar to endurance testing, but it focuses on the

stability of the system under a normal, expected load over a long period of time.

7. SpikeTesting

This type of testing involves subjecting the system to sudden, unexpected increases inload

or usage in order to identify performance bottlenecks or issues that can cause the system to

fail.

Measurement of ReliabilityTesting

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page155

MeanTimeBetweenFailures(MTBF):Measurementofreliabilitytestingisdonein terms of

mean time between failures (MTBF).

Mean Time To Failure (MTTF):The time between two consecutive failures is called as

mean time to failure (MTTF).

MeanTimeToRepair(MTTR):Thetimetakentofixthefailuresisknownasmean time to

repair (MTTR).

MTBF=MTTF+ MTTR

ISO9000CertificationinSoftware Engineering

LastUpdated: 23Nov,2020



TheInternationalorganizationforStandardizationisaworldwidefederationofnational standard

bodies. The International standards organization (ISO) is a standard which serves as a

for contract between independent parties. It specifies guidelines for development of

quality system.

Quality system of an organization means the various activities related to its products or

services. Standard of ISO addresses to both aspects i.e. operational and organizational

aspectswhichincludesresponsibilities,reportingetc.AnISO9000standardcontainsset of

guidelines of production process without considering product itself.

ISO 9000Certification

WhyISOCertificationrequiredbySoftwareIndustry?

ThereareseveralreasonswhysoftwareindustrymustgetanISOcertification.Someof reasons

are as follows :

 Thiscertificationhasbecomeastandardsforinternationalbidding.

 Ithelpsindesigninghigh-qualityrepeatablesoftwareproducts.

 Itemphasisneedforproperdocumentation.

 Itfacilitatesdevelopmentofoptimalprocessesandtotallyqualitymeasurements.

SoftwareEngineering(23CS405)

DeptofCSE,NRCM D.Sunitha,Asst.Prof Page156

FeaturesofISO9001Requirements:

 Documentcontrol–

Alldocumentsconcernedwiththedevelopmentofasoftwareproductshouldbe properly

managed and controlled.

 Planning–

Properplansshouldbepreparedand monitored.

 Review–

Foreffectivenessandcorrectnessallimportantdocumentsacrossallphasesshouldbe

independently checked and reviewed .

 Testing–

Theproductshouldbetestedagainstspecification.

 OrganizationalAspects–

Variousorganizationalaspectsshouldbeaddressede.g.,managementreportingofthe quality

team.

AdvantagesofISO9000Certification:

SomeoftheadvantagesoftheISO9000certificationprocessarefollowing:

 Business ISO-9000 certification forces a corporation to specialize in “how they are

doingbusiness”.Eachprocedureandworkinstructionmustbedocumentedandthus

becomes a springboard for continuous improvement.

 Employeesmoraleisincreasedasthey’reaskedtorequirecontroloftheirprocesses and

document their work processes

 Betterproductsandservicesresultfromcontinuousimprovementprocess.

 Increasedemployeeparticipation,involvement,awarenessandsystematicemployee

training are reduced problems.

ShortcomingsofISO9000Certification:

SomeoftheshortcomingoftheISO9000certificationprocessarefollowing:

 ISO9000doesnotgiveanyguidelinefordefininganappropriateprocessanddoesnot give

guarantee for high quality process.

 ISO9000certificationprocesshavenointernationalaccreditationagencyexists.

	UNIT-1
	What is Software Engineering?
	KeyPrinciplesofSoftware Engineering
	CharacteristicsofSoftwareEngineering:
	Evolving role(or)Dual RoleofSoftware:
	1. Asa Product
	2. Asa Vehiclefor Delivering a Product
	ObjectivesofSoftwareEngineering
	SoftwareEngineering(23CS405)
	ProgramvsSoftwareProduct
	DisadvantagesofSoftwareEngineering
	ChangingNatureofSoftware:
	SoftwareMyths
	(i) Management Myths:
	Myth2:
	Myth3:
	(ii) CustomerMyths:
	Myth1:
	Myth2: (1)
	(iii) Practitioner’sMyths:
	Myths2:
	Myth3: (1)
	Myth4:
	A Generic view of process:
	Layeredtechnologyisdividedintofour parts:
	Processactivitiesarelistedbelow:-
	SoftwareProcessFramework–Software Engineering
	WhatisaSoftwareProcess Framework?
	What Is a Software Development Framework?
	Key Points
	AdvantagesofSoftware DevelopmentFramework
	DisadvantagesofSoftwareDevelopmentFramework
	HowtoChooseaSuitableDevelopment Framework
	1. ConsidertheFramework’s Language
	2. Open-Sourcevs.PaidFrameworks
	3. CommunityandSupport
	4. ReviewCaseStudies and Example Applications
	5. TesttheFrameworkYourself
	SoftwareProcessFramework Activities
	Capability MaturityModel Integration(CMMI)
	What is Capability Maturity Model Integration (CMMI)?
	ObjectivesofCMMI
	CMMIRepresentation–StagedandContinuous
	 StagedRepresentation:
	 ContinuousRepresentation:
	CMMIModel –MaturityLevels
	1. Maturitylevel1: Initial
	2. Maturitylevel2: Managed
	3. Maturitylevel3: Defined
	4. Maturitylevel4: Quantitatively managed
	5. Maturitylevel5: Optimizing
	CMMIModel –CapabilityLevels
	1. Capabilitylevel 0 : Incomplete
	2. Capabilitylevel 1: Performed
	3. Capabilitylevel 2 : Managed
	4. Capabilitylevel 3: Defined
	5. Capabilitylevel4: Quantitatively Managed
	6. Capabilitylevel 5 : Optimizing
	ProcessModels:
	What is the SDLC Water fall Model ?
	Featuresof theSDLCWaterfallModel
	ImportanceofSDLCWaterfall Model
	PhasesofSDLCWaterfall Model– Design
	1. FeasibilityStudy:
	3. Design:
	4. CodingandUnitTesting:
	5. IntegrationandSystem testing:
	6. Maintenance: Maintenance is the most important phase of a software lifecycle.The effort spent on maintenance is 60% of the total effort spent to develop a full software. There are three types of maintenance.
	AdvantagesoftheSDLCWaterfall Model
	DisadvantagesoftheSDLCWaterfallModel
	SpiralModelinSoftware Engineering
	Whatis the Spiral Model?
	What Are the Phases of the Spiral Model?
	EachphaseoftheSpiralModelisdividedintofourquadrantsasshownintheabovefigure.The functions of these four quadrants are discussed below:
	Risk Handling in Spiral Model
	WhySpiralModeliscalledMeta Model?
	AdvantagesoftheSpiral Model
	Disadvantages oftheSpiralModel
	Agile Methodology in Software Engineering
	FunctionalRequirements
	Example:
	Non-FunctionalRequirements
	Example: (1)
	Extended Requirements
	Example: (2)
	Difference between Functional Requirements and Non-Functional Requirements:
	WhatisRequirementsEngineering?
	2. RequirementsElicitation
	3. RequirementsSpecification
	Severaltypesof requirementsarecommonlyspecifiedin thisstep,including
	4. RequirementsVerificationandValidation
	5. RequirementsManagement
	6. RequirementsManagement
	ToolsInvolvedinRequirement Engineering
	AdvantagesofRequirementsEngineering Process
	DisadvantagesofRequirementsEngineering Process
	InterfaceSpecificationinSoftwareEngineering
	InterfaceSpecificationinSoftwareEngineering:
	1. User,Task,Environmental Analysis,and Modeling
	2. InterfaceDesign
	3. InterfaceConstructionandImplementation
	4. InterfaceValidation
	UserInterfaceDesignGoldenRules
	ReducetheUser’sMemoryLoad
	MaketheInterfaceConsistent
	KeyPrinciples forDesigningUserInterfaces
	SoftwareRequirementDocument:
	Introduction
	General description
	FunctionalRequirements (1)
	InterfaceRequirements
	PerformanceRequirements
	DesignConstraints
	Non-Functional Attributes
	PreliminaryScheduleand Budget
	Appendices
	UsesofSRS document
	Requirement Engineering Process:
	RequirementsElicitation:
	RequirementsVerificationandValidation:
	4. RequirementsManagement:
	UNIT-III
	SoftwareDesignProcess andquality–Software Engineering
	Elementsofa System
	InterfaceDesign
	ArchitecturalDesign
	Detailed Design
	DesignConcepts:
	ObjectivesofSoftware Design
	SoftwareDesignConcepts
	PointstobeConsideredWhileDesigning Software
	DifferentlevelsofSoftware Design
	ElementsofaSystem
	InterfaceDesign (1)
	ArchitecturalDesign (1)
	DetailedDesign
	CreatinganArchitecturalDesign:
	1] Datacentered architectures:
	AdvantagesofDatacenteredarchitecture:
	2] Dataflow architectures:
	Advantagesof Data Flow architecture:
	Disadvantageof Data Flow architecture:
	3] CallandReturnarchitectures
	4] ObjectOriented architecture
	CharacteristicsofObjectOrientedarchitecture:
	AdvantageofObjectOrientedarchitecture:
	5] Layeredarchitecture
	UnifiedModelingLanguage(UML) Diagrams
	1. Whatis UML?
	2. Why do we need UML?
	3. Different Types of UML Diagrams
	CompositeStructureDiagram
	Component Diagram
	Communication Diagram
	TimingDiagram
	6. Object-OrientedConceptsUsedinUML Diagrams
	AdditionsinUML2.0
	7. ToolsforcreatingUMLDiagrams
	7. StepstocreateUML Diagrams
	 Step1:IdentifythePurpose:
	 Step2:IdentifyElementsand Relationships:
	 Step3:SelecttheAppropriateUMLDiagramType:
	 Step4:CreateaRoughSketch:
	 Step5:ChooseaUMLModelingTool:
	 Step6:CreatetheDiagram:
	 Step7:DefineElementProperties:
	 Step8:AddAnnotationsandComments:
	 Step9:ValidateandReview:
	 Step10:RefineandIterate:
	 Step11:Generate Documentation:
	ClassDiagram|UnifiedModelingLanguage(UML)
	Whatareclass Diagrams?
	Whatis aclass?
	UML ClassNotation
	1. Class Name:
	2. Attributes:
	3. Methods:
	4. Visibility Notation:
	ParameterDirectionality
	 In (Input):
	 Out(Output):
	 InOut(InputandOutput):
	Relationshipsbetween classes
	1. Association
	2. Directed Association
	3. Aggregation
	4. Composition
	5. Generalization(Inheritance)
	6. Realization(Interface Implementation)
	7. DependencyRelationship
	8. Usage(Dependency)Relationship
	PurposeofClass Diagrams
	BenefitsofClassDiagrams
	 UnderstandingRelationships:
	 Communication:
	 Blueprintfor Implementation:
	 Code Generation:
	 IdentifyingAbstractionsandEncapsulation:
	Howto drawClass Diagrams
	1. Identify Classes:
	2. ListAttributesandMethods:
	3. Identify Relationships:
	4. CreateClassBoxes:
	5. AddAttributesandMethods:
	6. Draw Relationships:
	7. LabelRelationships:
	8. ReviewandRefine:
	9. UseTools forDigital Drawing:
	Usecases of Class Diagrams
	 Communicationand Collaboration:
	 Code Generation: (1)
	 TestingandTest Planning:
	 ReverseEngineering:
	SequenceDiagrams|UnifiedModelingLanguage (UML)
	Interactiondiagram
	Actors
	For example:
	Lifelines
	 Differencebetweenalifelineandanactor
	Messages
	Synchronousmessages
	AsynchronousMessages
	Createmessage
	For example: (1)
	DeleteMessage
	For example: (2)
	SelfMessage
	Another example:
	Reply Message
	For example: (3)
	Found Message
	For example: (4)
	Lost Message
	For example: (5)
	Guards
	For example: (6)
	2. HowtocreateSequence Diagrams?
	1. IdentifytheScenario:
	2. List the Participants:
	3. DefineLifelines:
	4. ArrangeLifelines:
	5. AddActivation Bars:
	6. Draw Messages:
	7. IncludeReturnMessages:
	8. IndicateTimingandOrder:
	9. IncludeConditionsandLoops:
	10. ConsiderParallelExecution:
	11. ReviewandRefine:
	12. AddAnnotations andComments:
	13. DocumentAssumptionsandConstraints:
	14. Tools:
	3. UsecasesofSequence Diagrams
	 SoftwareDesign andArchitecture:
	 Communicationand Collaboration: (1)
	 RequirementsClarification:
	 Debuggingand Troubleshooting:
	4. ChallengesofusingSequenceDiagrams
	 Abstraction Level:
	 DynamicNature:
	 Ambiguityin Messages:
	 Concurrencyand Parallelism:
	 Real-TimeConstraints:
	WhatareCollaborationDiagrams?
	ImportanceofCollaborationDiagrams
	 VisualizingInteractions:
	 UnderstandingSystemBehavior:
	 FacilitatingCommunication:
	 SupportingDesignandAnalysis:
	 DocumentationPurposes:
	ComponentsandtheirNotationsinCollaborationDiagrams
	1. Objects/Participants
	2. MultipleObjects
	3. Actors
	4. Messages
	5. SelfMessage
	6. Links
	7. ReturnMessages
	HowtodrawCollaborationDiagrams?
	UsecasesofCollaborationDiagrams
	Real-WorldExampleofCollaborationDiagram
	1. Applicant
	2. Recruiter
	3. Database
	WhentouseCollaborationDiagram
	BenefitsofCollaborationDiagrams
	ChallengesofCollaborationDiagrams
	UseCaseDiagrams|UnifiedModelingLanguage (UML)
	1. Whatis a UseCaseDiagraminUML?
	2. UseCaseDiagramNotations
	Actors (1)
	Use Cases
	SystemBoundary
	3. UseCaseDiagramRelationships
	Association Relationship
	Example:OnlineBanking System
	IncludeRelationship
	Example:Social MediaPosting
	ExtendRelationship
	Example:FlightBookingSystem
	Generalization Relationship
	Example:VehicleRentalSystem
	4. HowtodrawaUseCasediagraminUML? Step 1: Identify Actors
	Step2:IdentifyUse Cases
	Step 3:ConnectActorsand Use Cases
	Step 4:Add System Boundary
	Step5:Define Relationships
	Step6:Reviewand Refine
	Step7:Validate
	Let’sunderstand howtodraw aUseCasediagramwith thehelpofanOnlineShopping System:
	2. Use Cases:
	3. Relations:
	Belowis theusecasediagramofanOnlineShoppingSystem:
	Lucid chart
	draw.io
	MicrosoftVisio
	SmartDraw
	PlantUML
	6. WhatareCommonMistakesand PitfallswhilemakingUseCaseDiagram?
	Over complication:
	6.3.AmbiguousRelationships:
	InconsistentNaming Conventions:
	MisuseofGeneralization:
	OverlookingSystem Boundaries:
	Lack ofIteration:
	7. Whatcan beUseCaseDiagramBestPractices?
	Keepit Simple:
	Consistency:
	OrganizeandAlign:
	UseProper Notation:
	Reviewand Iterate:
	8. WhatarethePurposeand Benefits ofUseCaseDiagrams?
	 VisualizationofSystemFunctionality:
	 Communication: (1)
	 RequirementAnalysis:
	 FocusonUser Goals:
	 SystemDesign:
	 TestingandValidation:
	ComponentBasedDiagram–UnifiedModelingLanguage (UML)
	WhatisaComponent-Based Diagram?
	ComponentsofComponent-Based Diagram
	1. Component:

	SoftwareEngineering(23CS405) (1)
	2. Interfaces:
	3. Relationships:
	4. Ports:
	5. Artifacts:
	6. Nodes:
	StepstoCreateaComponent-Based Diagrams
	 Step1:IdentifytheSystemScopeandRequirements:
	 Step2:IdentifyandDefine Components:
	 Step3:IdentifyProvidedandRequiredInterfaces:
	 Step4:IdentifyRelationshipsandDependencies:
	 Step5:Identify Artifacts:
	 Step6:Identify Nodes:
	 Step7:Drawthe Diagram:
	 Step8:ReviewandRefinetheDiagram:
	BestpracticesforcreatingComponentBased Diagrams
	1. Understand the System:
	2. KeepitSimple:
	3. UseConsistent Naming Conventions:
	4. GroupRelatedComponents:
	5. DefineClear Interfaces:
	6. UseStereotypesandAnnotations:
	7. MaintainConsistencywithOtherDiagrams:
	ToolsandSoftwareavailableforComponent-BasedDiagrams
	ApplicationsofComponent-BasedDiagrams
	 SystemDesign andArchitecture:
	 RequirementsAnalysis:
	 SystemDocumentation:
	 SoftwareDevelopment:
	 CodeGenerationandImplementation:
	 SystemMaintenanceandEvolution:
	BenefitsofUsingComponent-BasedDiagrams
	 VisualizationofSystemArchitecture:
	 ModularityandReusability:
	 ImprovedCommunication:
	 EaseofMaintenanceandEvolution:
	 EnforcementofDesignPrinciples:
	 Facilitationof TestingandDebugging:
	TestingStrategies:
	AdvantagesorDisadvantages:
	Disadvantagesofsoftware testing:
	AdvantagesorDisadvantages: (1)
	TestStrategiesforConventional Software:
	Whatis Conventional Testing?
	StagesofConventional Testing
	1. Planning
	2. RequirementAnalysis
	3. Design
	4. Execution
	5. Reporting
	6. Retesting
	7. Release
	Types ofConventional Testing
	2. IntegrationTesting
	3. PerformanceTesting
	4. AcceptanceTesting
	5. RegressionTesting
	BenefitsofConventionalTesting
	Limitations ofConventionalTesting
	WhiteboxTesting –Software Engineering
	Whatis WhiteBox Testing?
	WhatDoesWhiteBoxTesting Focus On?
	Types OfWhiteBox Testing
	UnitTesting
	Integration Testing
	RegressionTesting
	WhiteBox Testing Techniques
	1. StatementCoverage
	2. BranchCoverage
	3. ConditionCoverage
	4. Multiple ConditionCoverage
	5. Basis Path Testing
	6. LoopTesting
	Black Box vsWhiteBox vsGrayBox Testing
	Process ofWhiteBox Testing
	WhiteTesting isperformedin 2Steps
	ToolsrequiredforWhitebox testing:
	FeaturesofWhitebox Testing
	AdvantagesofWhiteBox Testing
	Disadvantages ofWhiteBox Testing
	BlackBoxTesting –Software Engineering
	Whatis Black Box Testing?
	Types OfBlack Box Testing
	Functional Testing
	RegressionTesting (1)
	NonfunctionalTesting
	AdvantagesofBlack Box Testing
	Disadvantages ofBlackBox Testing
	Black BoxandWhiteBox Testing
	GreyBoxTesting
	Thetechniqueinvolvestwosteps:
	Tools UsedforBlackBox Testing:
	3. MicrosoftCodedUI
	Whatcan beidentified byBlackBox Testing
	Featuresofblackboxtesting
	DifferencesbetweenVerificationandValidationtesting:
	Whatis Verification?
	Whatis Validation?
	DifferencesbetweenVerificationandValidation
	AdvantagesofDifferentiating Verificationand Validation
	SystemTesting–Software Engineering
	WhatisDebugginginSoftware Engineering?
	Whatis Debugging?
	ProcessofDebugging
	Step1:Reproducethe Bug
	Step 2:LocatetheBug
	Step 3:Identify theRootCause
	Step 4:FixtheBug
	Step 5:TesttheFix
	Step6:Documentthe Process
	Whyisdebuggingimportant?
	DebuggingApproaches/Strategies
	Examplesoferrorduring debugging
	DebuggingTools
	1. IntegratedDevelopmentEnvironments(IDEs)
	2. Standalone Debuggers
	3. LoggingUtilities
	4. StaticCode Analyzers
	5. DynamicAnalysisTools
	6. PerformanceProfilers
	AdvantagesofDebugging
	DisadvantagesofDebugging
	MetricsforProcessandproducts: Software Measurement
	SoftwareMeasurement Principles
	NeedforSoftware Measurement
	ClassificationofSoftware Measurement
	Software Metrics
	AdvantagesofSoftware Metrics
	DisadvantagesofSoftwareMetrics
	MetricsforSoftware Quality:
	Nowlet’sunderstandeachquality metricindetail–
	UNIT-V
	Advantages:
	Disadvantages:
	Advantages: (1)
	Disadvantages: (1)
	SoftwareRisks:
	WhatisSoftwareRisk Analysis inSoftware Development?
	Whyperformsoftwareriskanalysis?
	PossibleScenarios ofRiskOccurrence
	UnknownUnknowns
	Example
	KnownKnowns
	Example (1)
	KnownUnknowns
	Example (2)
	TypesofSoftwareRisk
	Howtoperformsoftwarerisk analysisinSoftware Development
	Risks Identifiation:
	Risk Projection:
	1. RiskProbability
	2. RiskImpact
	3. RiskExposure
	1. TeamBrainstormingSessions
	2. DelphiTechnique
	4. RiskAnalysisMatrix
	5. RiskRegister
	1. QualitativeRiskAnalysis
	2. QuantitativeRiskAnalysis
	CaseStudy 1:BuildingaHigh-RiseResidential Structure
	2. EvaluatingHazards
	3. Planning forMitigation
	4. EmergencyPreparedness
	5. Observationand Management
	CaseStudy2:FinancialInstitution SoftwareDevelopment
	2. EvaluatingHazards (1)
	CaseStudy 1:BuildingaHigh-RiseResidential Structure (1)
	7. EvaluatingHazards
	8. Planning forMitigation
	9. EmergencyPreparedness
	10. Observationand Management
	CaseStudy2:FinancialInstitution SoftwareDevelopment (1)
	4. EvaluatingHazards
	5. Planning for Mitigation
	6. EmergencyPreparedness
	7. Observationand Management
	1. Planning forRiskManagement
	2. QualitativeandQuantitativeApproaches
	3. FrequentRe-evaluationofRisk
	RiskRefinement:
	Risk Management Steps:
	2. Risk Analysis and Prioritization:
	TABLE (Required)
	RiskMitigation,Monitoring,andManagement(RMMM):
	Risk Monitoring:
	Example:
	Risk Mitigation:
	Risk Monitoring: (1)
	Risk Management:
	DrawbacksofRMMM:
	RiskAssessment
	Riskcontrol
	KeyBenefitsofSoftwareRiskAnalysis
	BestToolsforSoftware RiskAnalysis
	 FailureModeandEffectsAnalysis (FMEA)
	 FaultTreeAnalysis (FTA)
	 Risk Matrix
	 DecisionTree
	 MonteCarloSimulation

	SoftwareQualityAssurance –SoftwareEngineering
	What is quality?
	SoftwareQualityAssurance(SQA)encompasses
	Elementsof SoftwareQualityAssurance(SQA)
	Software QualityAssurance(SQA) focuses
	TheSoftwareQualityAssurance(SQA)focusesonthefollowing

	SoftwareQualityAssurance(SQA) Include
	MajorSoftwareQualityAssurance(SQA)Activities
	BenefitsofSoftwareQuality Assurance (SQA)
	DisadvantageofSoftware QualityAssurance(SQA)

	SoftwareReviews–SoftwareEngineering
	ObjectivesofSoftwareReview
	ProcessofSoftwareReview
	TypesofSoftwareReviews
	1. SoftwarePeerReview
	2. SoftwareManagementReview
	3. SoftwareAuditReview

	AdvantagesofSoftwareReview

	FormalTechnicalReviews:
	ImportanceofDifferentPhasesofFormalReview
	SoftwareEngineering(23CS405)

	ReliabilityTesting–SoftwareTesting
	Whatis ReliabilityTesting?
	Reliabilitytesting Categories
	1. Modeling
	2. Measurement
	3. Improvement

	DifferentWaystoPerformReliabilityTesting
	ObjectiveofReliabilityTesting
	Typesof ReliabilityTesting
	1. FeatureTesting
	2. RegressionTesting
	3. LoadTesting
	4. Stress Testing
	5. EnduranceTesting
	6. VolumeTesting
	7. SpikeTesting

	Measurement of ReliabilityTesting

	ISO9000CertificationinSoftware Engineering
	WhyISOCertificationrequiredbySoftwareIndustry?
	FeaturesofISO9001Requirements:
	 Planning–
	 Review–
	 Testing–
	 OrganizationalAspects–
	AdvantagesofISO9000Certification:
	ShortcomingsofISO9000Certification:

