School of Computer Science

1. Unit wise Question Bank

UNIT-I

S. No		Questions	BT	CO
	I	Part-A		
1	What :	(Short Answer Questions) are the types of System calls?	Ll	COI
2	What a system	are the advantage and disadvantage of multi processor	Ll	COI
3		are the advantages of layered structure over monolithic	LI	COI
4		is Process?		
5	What	are threads and its types?		
6	What	is the O.S features required for multiprogramming	Ll	COI
7	What	are advantages of distributed System?	LI	COI
8	What a	are the advantages of layered structure over monolithic are?	L1	COI
		Part–B (Long Answer Questions)		
9	a)	Define operating system and list the basic services provided by operating system.	L1	CO1
	b)	Differentiate among the following types of OS by defining their essential properties Timesharing system Parallel system Distributed system Real time system	L1	CO1
10	a)	Explain the essential properties of Batch System Timesharing Real time Parallel Distributed	L2	CO1
	b)	Explain different types of OS Components.	L4	CO1
11	a)	Explain batch system and Multi programmed System in detail.	L2	CO1
y c	b)	Explain the terms: (i)Real time System (ii)Distributed Systems	L2	CO1
12	a)	Explain the terms: Parallel System Batch System	L2	CO1

School of Computer Science

	b)	Explain O.S as extended machine in detail	L2	CO1
13	a)	Explain OS System Calls.	L2	CO1
	b)	 Explain essential features of following structure of O.S Monolithic System Layered Systems 	L2	CO1
		Micro KernelsClient Server ModelVirtual MachinesExo kernels		
14	a)	Define process and Explain process states in details with diagram	L2	CO1
	b)	Explain process states and process control block in details	L2	CO1
15	a)	Explain and differentiate between user level and kernel level thread.	L2	CO1
	b)	Explain Threads in detail? List the main difference and similarities between threads and process	L2	CO1

School of Computer Science

<u>UNIT-II</u>

S.	No	Questions	BT	CO
		Part– A (Short Answer Questions)		1
	1	Define Time Slice?	L1	CO2
			Li	002
	2	Define Scheduling Queue?	L1	CO2
	3	Define preemptive scheduling?	L1	CO2
	4	Define Deadlock and system models.	L1	CO2
	5	Define CPU scheduler	L1	CO2
	6	What is process scheduling?	L1	CO2
	7	Define scheduling?	L1	CO2
	8	What is multi processor scheduling?	L1	CO2
	9	Define real time scheduling system?	L1	CO2
-	10	Explain the following term related to IPC: a) Race condition b) critical region	L2	CO2
		Part– B (Long Answer Questions)		
11	a)	Explain deadlock avoidance with suitable example using banker's algorithm	L1	CO2
	b)	What are the conditions for deadlock? Explain deadlock detection and recovery in detail.	L2	CO2
12	a)	Explain Dead lock Prevention and deadlock avoidance.	L2	CO2
	b	Explain bankers algorithm for multiple resources to avoid deadlock	L2	CO2
13	a)	Explain deadlock avoidance with suitable example using banker's algorithm	L1	CO2
	b)	Explain FCFS, SJF, Priority and RR algorithms with examples	L2	CO2
14		Write a short note on- Fork, Exit, Wait, Waitpid, Exec of System call interface for process management system.		
15	a)	Explain the following process scheduling algorithm • Priority scheduling	L2	CO2
Ų)	\cap	Shortest job first scheduling	8.5	
	b)	Explain the effect of increasing the time quantum to an arbitrary large Number and decreasing the time quantum to an arbitrary small number for round robin	L1	CO2

School of Computer Science

		scheduling algorithm with	suitable exa	mple?		
16	a)	Consider following process		th of CPU burst time in Burst time	L5	CO2
		P1		5		
		P2		10		
		P3		2		
		<u>P4</u>		1		
	b)	scheduling algorithm	sses for SJF n=1) ting time for gorithm rage waiting	and round each process for each time for each scheduling	g L5	CO2
	U)	Consider following proburst time in millisection		en length of CPU		CO2
		Process	Burst	Priorit		
		P1	y time 10	3		
		P2	1	1		
		Р3	2	3		
		P4	1	4		
		P5	5			
		All processes arrived inord	ern1_n2_n3	n4_n5allat time zero		

School of Computer Science

UNIT-III

S. No Questions		Questions	ВТ	CO
		Part–A	1 1	
		(Short Answer Questions)		
1	1 Explain the terms related to IPC –a) Race condition b) critical section c)Mutual exclusion d)Semaphores		L2	CO3
2	2	Explain the following term related to IPC: a) Race condition b) critical region	L2	CO3
3		What is monitor? Explain solution for producer-consumer problem using monitor. Explain monitors in detail.	L1	CO3
4		What is semaphore? Discuss product-consumer problem with semaphore.	L1	CO3
5	í	Explain the terms related to IPC -a) Race condition b) critical section c)Mutual exclusion d)Semaphores	L2	CO3
6	,	Discuss in detail following solution for achieving mutual exclusion a) Disabling interrupts b) Strict alteration	L1	CO3
		Part-B		
		(Long Answer Questions)		
7		Explain Semaphore in details.		CO3
		Explain about Monitors.		CO3
8		Explain about Synchronization Hardware.	L1	CO3
	b)	Explain about Classical Problems of synchronization	L2	CO3
9	a)	Explain about Pipes and FIFO Pipes.	L2	CO3
	b)	Explain about Message Queue and Shared Memory.	L4	CO3
10	11	Explain about Critical Section problems	33	38.

School of Computer Science

<u>UNIT-IV</u>

S. No	Questions	BT	CO
	Part-A	<u>l</u>	
	(Short Answer Questions)	T 2	004
1	Explain the difference between logical and physical addresses?.	L2	CO4
2	What is paging? Discuss basic paging technique in details.	L1	CO4
3	Write short note on: a. Segmentation b. Page table c. Compaction d. Working set model e. fragmentation	L1	CO4
4	Explain difference between internal external fragmentations in detail.	L2	CO4
5	Explain following allocation algorithm. a. First fit b. Best fit c. Worst fit d. Next fit	L2	CO4
6	A 1MB block of memory is allocated using the buddy system. i. Show the results of the following sequence in a figure: Request 70; Request 35; Request	L2	CO4
7	What are the memory management requirements?	L1	CO4
8	Write short note on: Relocation problem for multiprogramming with fixed partitions.	L1	CO4
9	Describe the term page fault frequency. What is thrashing? How is it controlled by OS?	L2	CO4
10	Explain hierarchical page table and inverted page table.	L2	CO4
	Part–B	70	
	(Long Answer Questions)		
11 a)		L2	CO4
b)	Write short on: a. multiprogramming with fixed & variable partition.		1
12 a)	Consider the following page reference string. 1,2,3,4,5,3,4,1,6,7,8,7,8,9,7,8,9,5,4,5,4,2How many page faults would occur for the following replacement algorithm, assuming four and six frames respectively? a. page replacement. b.	L4	CO4
b)	FIFO page replacement. Write short note on: a) Not-recently used page replacement algorithm. b) Optimal page replacement algorithm. c) Swapping. d) Relocation and protection	L1	CO4
1	What is demand paging? Explain it with address translation	L1	CO4

School of Computer Science

		School of computer science		
		How a page table is implemented?		
	b)	On a simple paging system with 2^24 bytes of physical	L4	CO4
		memory, 256 pages of logical address, and a, page size of		
		2^10 bytes, how many bits are in logical address?		
14	a)	Free memory holes of sizes 15K, 10K, 5K, 25K, 30K, 40K	L4	CO4
		are available. The processes of size 12K, 2K, 25K, 20K is to		
		be allocated. How processes are placed in first fit, best fit,		
		worst fit. Calculate internal as well as external		
		fragmentation.		
		sequences where	L4	CO4
		page frame is three. 0,1,2,1,4,2,3,7,2,1,3,5,1,2,5.		
15	a)	What is virtual memory? How it is implemented.	L1	CO4
	b)	Write short on: a. multiprogramming with fixed & variable	L1	CO4
		partition.		
		b. Relocation problem for multiprogramming with fixed		
		partition. c. Use of multiprogramming in memory		
		management. d. TLB. e. Paging. f. Design issues of paging		
		system. g. Relocation and protection. h. policy		
		driven scheduling.		

School of Computer Science

<u>UNIT-V</u>

S	. No	Questions	BT	CO
		Part-A(Short Answer Questions)		
	1	What are the objectives and minimal set of requirement for the file management system?	L1	CO5
	2	Compare file organization methods	L4	CO5
	3	What criteria are important in choosing a file organization?	L1	CO5
	4	Explain briefly file system architecture & file management function.	L2	CO5
	5	What is the difference between file and database?	L1	CO5
	6	What are methods of free management of Disk?	L1	CO5
	7	What is the difference between field and record?	L1	CO5
	8	What is file management system?	L1	CO5
	9	Explain file system implementation using linked list with index and i-node in detail?	L2	CO5
-	10	What are points to be consider in file system design? Explain linked list allocation & index allocation in detail.	L1	CO5
11	a)	Explain different types Access methods?	L2	CO5
	b)	Explain different types of Directory Structure.	L1	CO5
12	a)	Explain different types of Allocation methods.	L1	CO5
	b)	Explain file system structure in details.	L1	CO5
13	a)	Explain about free space management.	L1	CO5
	b)	Differentiate between windows and Unix file system.	L4	CO5
14	a)	Explain the following file allocation methods a) Contiguous allocation b) i- node	L2	CO5
	b)	Explain file system reliability & performance in detail.	L2	CO5
15	a)	Explain about protection in details.	L1	CO5
	b)	Briefly explain: 1. Open 2. Create 3. Read 4. Write 5.Close 6. Iseek 7. Stat 8.Ioctl System calls	L2	CO5