
Operating System (23CS403)

II B.Tech II Semester (NR23)

Prepared By
Mrs. N. Radhamma

UNIT-1

Operating system

An OS act as an interface between user and system

hardware.

Computer consists of the hardware, Operating System,

system programs, application programs.

The hardware consists of memory, CPU, ALU, I/O device,

storage device and peripheral device.

System program consists of compilers, loaders, editors, OS

etc.

Operating System Structure

Batch Operating System

This type of operating system does not interact

with the computer directly.

There is an operator which takes similar jobs

having the same requirement and groups them

into batches.

It is the responsibility of the operator to sort jobs

with similar needs.

Batch Operating System

Multi-Programming Operating System

Multiprogramming Operating Systems can be
simply illustrated as more than one program is
present in the main memory and any one of
them can be kept in execution.

This is basically used for better execution of
resources.

Multi-Programming Operating System

Time-Sharing Operating Systems

Each task is given some time to execute so
that all the tasks work smoothly.

Each user gets the time of the CPU as they use
a single system.

These systems are also known as Multitasking
Systems. The task can be from a single user or
different users also.

The time that each task gets to execute is
called quantum. After this time interval is over
OS switches over to the next task.

Time-Sharing Operating Systems

Personal Computer

 A personal computer (PC) is a microcomputer designed
for use by one person at a time.

 Prior to the PC, computers were designed for -- and
only affordable for -- companies that attached
terminals for multiple users to a single large
mainframe computer whose resources were shared
among all users. By the

word processing
 spreadsheets
 email
 instant messaging
 accounting

Distributed Operating System

These types of operating systems are a recent
advancement in the world of computer
technology and are being widely accepted all
over the world and, that too, at a great pace.

Various autonomous interconnected
computers communicate with each other
using a shared communication network.

Independent systems possess their own
memory unit and CPU.

Distributed Operating System

Real-Time Operating System

• These types of OSs serve real-time systems.
The time interval required to process and
respond to inputs is very small. This time
interval is called response time.

• Real-time systems are used when there are
time requirements that are very strict like
missile systems, air traffic control systems,
robots, etc.

• There are 2 types real time os.

Real-Time Operating System

Hard Real-Time Systems

 Hard Real-Time OSs are meant for
applications where time constraints are very
strict and even the shortest possible delay is
not acceptable.

Soft Real-Time Systems

 These OSs are for applications where time-
constraint is less strict.

Real-Time Operating System

Operating System Services

 User Interface - User interface is essential and
all operating systems provide it.

 Users either interface with the operating
system through command-line interface (CUI)
or graphical user interface (GUI). Command
interpreter executes next user-specified
command.

A GUI offers the user a mouse-based window
and menu system as an interface.

Program execution - The system must be able to
load a program into memory and to run that
program, end execution, either normally or
abnormally (indicating error)

I/O operations - A running program may require
I/O, which may involve a file or an I/O device.

File-system manipulation - The file system is of
particular interest. Obviously, programs need to
read and write files and directories, create and
delete them, search them, list file Information,
permission management.

Communications – Processes may exchange
information, on the same computer or between
computers over a network. Communications may be
via shared memory or through message passing
(packets moved by the OS)

Error detection – OS needs to be constantly aware
of possible errors may occur in the CPU and memory
hardware, in I/O devices, in user program. For each
type of error, OS should take the appropriate action
to ensure correct and consistent computing.
Debugging facilities can greatly enhance the user’s
and programmer’s abilities to efficiently use the
system.

System Calls

Types of System Calls

 There are commonly five types of system calls. These are
as follows:

 Process Control
 File Management
 Device Management
 Information Maintenance
 Communication Process Control
 Process control is the system call that is used to direct

the processes. Some process control examples include
creating, load, abort, end, execute, process, terminate
the process, etc.

• File Management
• File management is a system call that is used to

handle the files. Some file management examples
include creating files, delete files, open, close,
read, write, etc.

• Device Management
• Device management is a system call that is used

to deal with devices. Some examples of device
management include read, device, write, get
device attributes, release device, etc.

•

•

 Information Maintenance

 Information maintenance is a system call that is used to
maintain information.

 There are some examples of information maintenance,
including getting system data, set time or date, get time or
date, set system data, etc.

 Communication

 Communication is a system call that is used for
communication.

 There are some examples of communication, including
create, delete communication connections, send, receive
messages, etc.

System Components
ProcessManagement

 FileManagement

NetworkManagement

MainMemoryManagement

 SecondaryStorageManagement

 I/ODeviceManagement

 SecurityManagement

 CommandInterpreterSystem

PROCESS

 A process can be thought of as a program in
execution.

A process is the unit of work in most systems.

A process will need certain resources—such as
CPU time, memory, files, and I/O devices to
accomplish its task.

Process States

As a process executes, it changes state. The
state of a process is defined in part by the
current activity of that process.

A process may be in one of the following
states:

New: The process is being created.

Running: Instructions are being executed.

Waiting: The process is waiting for some event to
occur (such as an I/O completion or reception of a
signal).

Ready: The process is waiting to be assigned to a
processor.

Terminated: The process has finished execution.

Process state diagram

Process Control Block

Each process is represented in the operating
system by a Process Control Block (PCB) or Task
Control Block.

 It contains many pieces of information associated
with a specific process, including these:

Process state: The state may be new, ready,
running, and waiting, halted, and so on.

Program counter. The counter indicates the
address of the next instruction to be executed for
this process.

CPU registers. The registers vary in number and
type, depending on the computer architecture.
They include accumulators, index registers, stack
pointers, and general- purpose registers, plus any
condition-code information. Along with the
program counter, this state information must be
saved when an interrupt occurs, to allow the
process to be continued correctly afterward.

CPU-scheduling information. This information
includes a process priority, pointers to scheduling
queues, and any other scheduling parameters.

Memory-management information. This
information may include such items as the value of
the base and limit registers and the page tables, or
the segment tables, depending on the memory
system used by the operating system.

Accounting information. This information includes
the amount of CPU and real time used, time limits,
account numbers, job or process numbers, and so
on.

 I/O status information. This information includes
the list of I/O devices allocated to the process, a list
of open files, and so on.

Process Scheduling

The objective of multiprogramming is to have
some process running at all times, to
maximize CPU utilization.

The objective of time sharing is to switch the
CPU among processes so frequently that users
can interact with each program while it is
running.

Operation On Process

 The processes in most systems can execute
concurrently, and they may be created and deleted
dynamically. Thus, these systems must provide a
mechanism for process creation and termination.

 Process Creation: During the course of execution, a
process may create several new processes.

 The creating process is called a parent process, and the
new processes are called the children of that process.
Each of these new processes may in turn create other
processes, forming a tree of processes.

• fork():

Most operating systems (including UNIX, Linux,
and Windows) identify processes according to a
unique process identifier (or pid), which is
typically an integer number.

A new process is created by the fork () system call.
The new process consists of a copy of the address
space of the original process.

• exec()

After a fork () system call, one of the two
processes typically uses the exec () system call to
replace the process’s memory space with a new
program.

The exec () system call loads a binary file into
memory and starts its execution. In this manner,
the two processes are able to communicate and
then go their separate ways.

• wait()

The parent can then create more children; or, if it
has nothing else to do while the child runs, it can
issue a wait () system call to move itself off the
ready queue until the termination of the child.

 Because the call to exec () overlays the process’s
address space with a new program, the call to
exec () does not return control unless an error
occurs.

Process Creation

Process Termination

A process terminates when it
executing its final statement and

finishes
asks the

operating system to delete it by using the exit
() system call.

At that point, the process may return a status
value (typically an integer) to its parent
process (via the wait () system call).

All the resources of the process—including
physical and virtual memory, open files and
I/O buffers—are de allocated by the operating
system.

Termination can occur in other circumstances
as well. A process can cause the termination
of another process via an appropriate system
call (for example, Terminate Process () in
Windows).

Co-Operating Process
– Shared Memory
– Message passing

The following figure shows a basic structure of
communication between processes via the
shared memory method and via the message
passing method.

Shared Memory
Communication between processes using shared

memory requires processes to share some
variable, and it completely depends on how the
programmer will implement it.

Messaging Passing Method

In this method, processes communicate with
each other without using any kind of shared
memory.

If two processes want to communicate with
each other, they proceed as follows

Thread

A thread is a Light weight process .Thread is a
flow of control execution of the program.

A traditional (or heavyweight) process has a
single thread of control. If a process has multiple
threads of control, it can perform more than one
task at a time.

Single Thread

A process is a program that performs a single
thread of execution.

For example, when a process is running a
word-processor program, a single thread of
instructions is being executed.

Multithreading Models

Support for threads may be provided either at
the user level, for user threads, or by the
kernel, for kernel threads.

 User threads are supported above the kernel
and are managed without kernel support,
whereas kernel threads are supported and
managed directly by the operating system.

Thread relationship
Many-to-One Model

The many-to-one model maps many user-level
threads to one kernel thread.

One-to-One Model

The one-to-one model maps each user thread to a
kernel thread.

Many-to-Many Model

It multiplexes many user-level threads to a smaller
or equal number of kernel threads.

UNIT-2

CPU scheduling

CPU scheduling is the process of deciding
which process will own the CPU to use while
another process is suspended.

The main function of the CPU scheduling is to
ensure that whenever the CPU remains idle,
the OS has at least selected one of the
processes available in the ready-to-use line.

THE SCHEDULING CRITERIA

• CPU utilization:

• The main purpose of any CPU algorithm is to keep the
CPU as busy as possible. Theoretically, CPU usage can
range from 0 to 100 but in a real-time system, it varies
from 40 to 90 percent depending on the system load.

• Throughput:

• The average CPU performance is the number of
processes performed and completed during each unit.
This is called throughput. The output may vary
depending on the length or duration of the processes.

•

• Turn round Time:
• For a particular process, the important conditions are

how long it takes to perform that process. The time
elapsed from the time of process delivery to the time
of completion is known as the conversion time.
Conversion time is the amount of time spent waiting
for memory access, waiting in line, using CPU, and
waiting for I / O.

• Waiting Time:
• The Scheduling algorithm does not affect the time

required to complete the process once it has started
performing. It only affects the waiting time of the
process i.e. the time spent in the waiting process in the
ready queue.

Turn round Time:

For a particular process, the important
conditions are how long it takes to perform
that process.

The time elapsed from the time of process
delivery to the time of completion is known as
the conversion time.

 Conversion time is the amount of time spent
waiting for memory access, waiting in line,
using CPU, and waiting for I / O.

Waiting Time:

The Scheduling algorithm does not affect the
time required to complete the process once it has
started performing.

 It only affects the waiting time of the process i.e.
the time spent in the waiting process in the ready
queue.

Response Time:
 In a collaborative system, turn around time is not

the best option.

The process may produce something early and
continue to computing the new results while
the previous results are released to the user.

 Therefore another method is the time taken
in the submission of the application process
until the first response is issued. This measure
is called response time.

Types of CPU Scheduling Algorithms

 There are mainly two types of scheduling methods:

Preemptive Scheduling:

 Preemptive scheduling is used when a process
switches from running state to ready state or from the
waiting state to the ready state.

Non-Preemptive Scheduling:

 Non-Preemptive scheduling is used when a process
terminates , or when a process switches from running
state to waiting state.

https://www.geeksforgeeks.org/preemptive-and-non-preemptive-scheduling/
https://www.geeksforgeeks.org/preemptive-and-non-preemptive-scheduling/

First Come First Serve Scheduling:

FCFS considered to be the simplest of all
operating system scheduling algorithms.

First come first serve scheduling algorithm
states that the process that requests the CPU
first is allocated the CPU first and is
implemented by using FIFO queue.

https://www.geeksforgeeks.org/queue-data-structure/

Shortest Job First (SJF) Scheduling:

Shortest job first (SJF) is a scheduling process
that selects the waiting process with the
smallest execution time to execute next.

This scheduling method may or may not be
preemptive. Significantly reduces the average
waiting time for other processes waiting to be
executed. The full form of SJF is Shortest Job
First.

Longest Job First(LJF) Scheduling:

This is just opposite of shortest job first (SJF),
as the name suggests this algorithm is based
upon the fact that the process with the largest
burst time is processed first.

 Longest Job First is non-preemptive in nature.

Priority Scheduling:

Preemptive Priority CPU Scheduling Algorithm is
a pre-emptive method of CPU scheduling
algorithm that works based on the priority of a
process.

 In this algorithm, the editor sets the functions to
be as important, meaning that the most
important process must be done first.

 In the case of any conflict, that is, where there
are more than one processor with equal value,
then the most important CPU planning algorithm
works on the basis of the FCFS Characteristics

Round Robin Scheduling:

Round Robin is a CPU scheduling algorithm
where each process is cyclically assigned a
fixed time slot.

 It is the preemptive version of First come First
Serve CPU Scheduling algorithm. Round Robin
CPU Algorithm generally focuses on Time
Sharing technique.

Deadlock

A deadlock is a situation where a set of
processes are blocked because each process is
holding a resource and waiting for another
resource acquired by some other process.

Consider an example when two trains are
coming toward each other on the same track
and there is only one track, none of the trains
can move once they are in front of each other.

System model

A system consists of a finite number of
resources to be distributed among anumber
of competing processes.

The resources are partitioned into several
types, each consisting of some number of
identical instances

REQUEST: The process requests the resource.
If the request cannot be granted
immediately(if the resource is being used by
another process),then the requesting process
must wait until it can acquire the resource.

USE: The process can operate on the resource.

If the resource is a printer, the process can
print on the printer.

RELEASE: The process releases the resource.

NECESSARY CONDITIONS FOR DEADLOCK

Mutual Exclusion

Two or more resources are non-shareable (Only
one process can use at a time)

Hold andWait

A process is holding at least one resource and
waiting for resources.

No Pre-emption

A resource cannot be taken from a process
unless the process releases the resource.

Circular Wait

 A set of processes waiting for each other in
circular form.

METHODS FOR HANDLING DEADLOCK

PREVENTION

The idea is to not let the system into a deadlock
state. This system will make sure that above
mentioned four conditions will not arise.

These techniques are very costly so we use this in
cases where our priority is making a system
deadlock-free.

One can zoom into each category individually,
Prevention is done by negating one of the four
necessary conditions for deadlock.

Hold and Wait

Allocate all required resources to the process
before the start of its execution, this way hold
and wait condition is eliminated but it will lead to
low device utilization.

 for example, if a process requires a printer at a
later time and we have allocated a printer before
the start of its execution printer will remain
blocked till it has completed its execution.

 The process will make a new request for
resources after releasing the current set of
resources. This solution may lead to starvation.

AVOIDANCE

Avoidance is kind of futuristic. By using the
strategy of “Avoidance”, we have to make an
assumption.

 We need to ensure that all information about
resources that the process will need is known
to us before the execution of the process.

Resource Allocation Graph

The resource allocation graph (RAG) is used to
visualize the system‟s current state as a graph.

 The Graph includes all processes, the resources
that are assigned to them, as well as the
resources that each Process requests.

 Sometimes, if there are fewer processes, we can
quickly spot a deadlock in the system by looking
at the graph rather than the tables we use in
Banker‟s algorithm.

Resource Allocation Graph

Banker’s Algorithm

Bankers‟s Algorithm is a resource allocation
and deadlock avoidance algorithm which test
all the request made by processes for
resources.

It checks for the safe state, and after granting
a request system remains in the safe state it
allows the request, and if there is no safe state
it doesn‟t allow the request made by the
process.

When working with a banker's algorithm, it
requests to know about three things:

How much each process can request for each
resource in the system. It is denoted by the
[MAX] request.

How much each process is currently holding
each resource in a system. It is denoted by the
[ALLOCATED] resource.

 It represents the number of each resource currently
available in the system. It is denoted by the
[AVAILABLE] resource.

 Following are the important data structures terms
applied in the banker's algorithm as follows:

 Suppose n is the number of processes, and m is the
number of each type of resource used in a computer
system.

Available: It is an array of length 'm' that
defines each type of resource available in the
system. When Available[j] = K, means that 'K'
instances of Resources type R[j] are available
in the system.

Max: It is a [n x m] matrix that indicates each
process P[i] can store the maximum number
of resources R[j] (each type) in a system.

 Allocation: It is a matrix of m x n orders that indicates
the type of resources currently allocated to each
process in the system. When Allocation [i, j] = K, it
means that process P[i] is currently allocated K
instances of Resources type R[j] in the system.

 Need: It is an M x N matrix sequence representing the
number of remaining resources for each process.

When the Need[i] [j] = k, then process P[i] may require
K more instances of resources type Rj to complete the
assigned work.

 Need[i][j] = Max[i][j] - Allocation[i][j].

Finish: It is the vector of the order m. It
includes a Boolean
indicating whether the

value (true/false)
process has been

allocated to the requested resources, and all
resources have been released after finishing
its task.

Deadlock detection and recovery

If Deadlock prevention or avoidance is not
applied to the software then we can handle
this by deadlock detection and recovery,
which consist of two phases.

In the first phase, we examine the state of the
process and check whether there is a deadlock
or not in the system.

If found deadlock in the first phase then we
apply the algorithm for recovery of the
deadlock.

Deadlock ignorance

If a deadlock is very rare, then let it happen
and reboot the system. This is the approach
that both Windows and UNIX take. We use the
ostrich algorithm for deadlock ignorance.

In Deadlock, ignorance performance is better
than the above two methods but not the
correctness of data.

Safety Algorithm

It is a safety algorithm used to check whether
or not a system is in a safe state or follows the
safe sequence in a banker's algorithm:

Step1: There are two vectors Wok and Finish

of length m and n in a safety algorithm.

Initialize: Work = Available

Finish[i] = false; for I = 0, 1, 2, 3, 4… n - 1.

Step2:
Check the availability status for each type of
resources [i], such as: Need[i] <= Work
Finish[i] == false
If the i does not exist, go to step 4.

Step3: Work = Work +Allocation(i)

Step4: Finish[i] = true
Go to step2 to check the status of resource
availability for the next process. If Finish[i] ==
true; it means that the system is safe for all
processes.

Deadlock detection

 A deadlock detection algorithm is a technique used by
an operating system to identify deadlocks in the
system.

 This algorithm checks the status of processes and
resources to determine whether any deadlock has
occurred and takes appropriate actions to recover from
the deadlock.

 The algorithm employs several times varying data
structures:

 Available – A vector of length m indicates the number
of available resources of each type.

Allocation – An n*m matrix defines the
number of resources of each type currently
allocated to a process. The column represents
resource and rows represent a process.

Request – An n*m matrix indicates the
current request of each process. If request[i][j]
equals k then process Pi is requesting k more
instances of resource type Rj.

RECOVERY FROM DEADLOCK

The OS will use various recovery techniques to
restore the system if it encounters any
deadlocks.

When a Deadlock Detection Algorithm
determines that a deadlock has occurred in
the system, the system must recover from that
deadlock.

Process Termination

To eliminate the deadlock, we can simply kill one
or more processes. For this, we use two methods:

Abort all the Deadlocked Processes:

Aborting all the processes will certainly break the
deadlock but at a great expense.

The deadlocked processes may have been
computed for a long time, and the result of those
partial computations must be discarded and
there is a probability of recalculating them later.

Abort one process at a time until the deadlock is
eliminated:

Abort one deadlocked process at a time, until
the deadlock cycle is eliminated from the
system.

Due to this
considerable

method, there
overhead,

may be
afterbecause,

process, we have to run aaborting each
deadlock detection algorithm to check
whether any processes are still deadlocked.

Resource Preemption

To eliminate deadlocks
preemption, we preempt

using
some

resource
resources

from processes and give those resources to
other processes.

This method will raise three issues

Selecting a victim:

We must determine which resources and
which processes are to be preempted and also
in order to minimize the cost.

Rollback:

We must determine what should be done with
the process from which resources are
preempted. One simple idea is total rollback.

 That means aborting the process and
restarting it.

Starvation:

In a system, it may happen that the same
process is always picked as a victim.

As a result, that process will never complete
its designated task. This situation is called
Starvation and must be avoided.

One solution is that a process must be picked
as a victim only a finite number of times.

UNIT-3

Synchronization

Process Synchronization is the coordination of
execution of multiple processes in a multi-
process system to ensure that they access
shared resources in a controlled and
predictable manner.

It aims to resolve the problem of race
conditions and other synchronization issues in
a concurrent system.

Types of Synchronization

Cooperative Process: A process that can affect
or be affected by other processes executing in
the system

Independent Process: The execution of one
process does not affect the execution of other
processes.

CRITICAL SECTION PROBLEM

A critical section is a code segment that can be
accessed by only one process at a time.

The critical section contains shared variables that
need to be synchronized to maintain the
consistency of data variables.

So the critical section problem means designing a
way for cooperative processes to access shared
resources without creating data inconsistencies.

In the entry section, the process requests for
entry in the Critical Section.

Any solution to the critical section problem
must satisfy three requirements:

Mutual Exclusion: If a process is executing in
its critical section, then no other process is
allowed to execute in the critical section.

• Progress: If no process is executing in the
critical section and other processes are
waiting outside the critical section.

• Then only those processes that are not
executing in their remainder section can
participate in deciding which will enter in the
critical section next, and the selection can‟t
be postponed indefinitely.

Bounded Waiting:

A bound must exist on the number of times
that other processes are allowed to enter their
critical sections after a process has made a
request to enter its critical section and before
that request is granted.

PETERSON’S SOLUTION

 Peterson‟s Solution is a classical software-based solution to
the critical section problem.

 In Peterson‟s solution, we have two shared variables:
 boolean flag[i]: Initialized to FALSE, initially no one is

interested in entering the critical section
 int turn: The process whose turn is to enter the critical

section.

// code for producer i
do
{

flag[i] = true; turn = j;
while (flag[j] == true && turn == j);

 critical section
flag[i] = false;
reminder section

}while(TRUE);

// code for consumer j
do
{
flag[j] = true; turn = i;
while (flag[i] == true && turn == i);

critical section
flag[i] = false;
reminder section
}while(TRUE);

SEMAPHORES

Semaphore is a Hardware Solution. This
Hardware solution is written or given to critical
section problem. The Semaphore is just a normal
integer.

The Semaphore cannot be negative. The least
value for a Semaphore is zero (0). The Maximum
value of a Semaphore can be anything.

The Semaphores usually have two operations.
The two operations have the capability to decide
the values of the semaphores.

The two Semaphore Operations are:

1.Wait ()

The Wait operation works on the basis of
Semaphore or Mutex Value.

If the Semaphore value is greater than zero,
then the Process can enter the Critical Section
Area.

Definition of wait()

wait(Semaphore S)

{

while (S<=0) ; //no operation S--;

}

2. Signal ()

 The most important part is that this Signal Operation or
V Function is executed only when the process comes
out of the critical section.

 The value of semaphore cannot be incremented
before the exit of process from the critical section.
Definition of signal()

signal(S)

{

S++;

}

Two types of semaphores

Binary Semaphores:

They can only be either 0 or 1. They are also
known as mutex locks, as the locks can provide
mutual exclusion. All the processes can share the
same mutex semaphore that is initialized to 1.

Then, a process has to wait until the lock
becomes 0. Then, the process can make the
mutex semaphore 1 and start its critical section.
When it completes its critical section, it can reset
the value of the mutex semaphore to 0 and some
other process can enter its critical section.

Counting Semaphores

They can have any value and are not restricted
over a certain domain. They can be used to
control access to a resource that has a limitation
on the number of simultaneous accesses.

The semaphore can be initialized to the number
of instances of the resource. Whenever a process
wants to use that resource, it checks if the
number of remaining instances is more than zero,
i.e., the process has an instance available.

Then, the process can enter its critical section
thereby decreasing the value of the counting
semaphore by 1.

After the process is over with the use of the
instance of the resource, it can leave the
critical section thereby adding 1 to the
number of available instances of the resource.

CLASSICAL PROBLEMS OF SYNCHRONIZATION

• The following problems of synchronization are
considered as classical problems:

1.Bounded-buffer (or Producer-Consumer) Problem,

2.Dining-Philosophers Problem,

3.Readers and Writers Problem,

• Bounded-buffer (or Producer-Consumer) Problem

•

• Bounded Buffer problem is also called producer
consumer problem and it is one of the classic
problems of synchronization. This problem is
generalized in terms of the producer consumer
problems.

https://www.geeksforgeeks.org/producer-consumer-solution-using-semaphores-java/

Solution to this problem is, creating two
counting semaphores “full” and “empty” to
keep track of the current number of full and
empty buffers respectively.

 Producers produce a product and consumers
consume the product, but both use of one of
the containers each time.

The Producer Operation
The Producer Operation

do
{

wait(empty); // wait until empty > 0 and
then decrement 'empty' wait(mutex); // acquire
lock
/* perform the insert operation in a slot */
signal(mutex); // release lock
signal(full); // increment 'full'

} while(TRUE);

The Consumer Operation

do
{
wait(full); // wait until full > 0 and then decrement
'full' wait(mutex); // acquire the lock

/* perform the remove operation in a slot */

signal(mutex); // release the lock signal(empty); //
increment 'empty'

} while(TRUE);

Dining-Philosophers problem

The Dining Philosopher Problem states that K
philosophers seated around a circular table
with one chopstick between each pair of
philosophers.

 There is one chopstick between each
philosopher. A philosopher may eat if he can
pickup the two chopsticks adjacent to him.

One chopstick may be picked up by any one of
its adjacent followers but not both.

This problem involves the allocation of limited
resources to a group of processes in a
deadlock-free and starvation-free manner.

The Reader Process

Reader requests the entry to critical section.

If allowed:

it increments the count of number of readers
inside the critical section. If this reader is
the first reader entering, it locks the wrt
semaphore to restrict the entry of writers if
any reader is inside.

• do
• {
• wait(mutex); // Reader wants to enter the critical section readcnt++;

// The number of readers has now increased by 1
•
• if (readcnt==1) // there is atleast one reader in the critical section

wait(wrt); // no writer can enter if there is even one reader
•
• signal(mutex); // other readers can enter where otherer is inside
•
• ….. perform READING
•
• wait(mutex); // a reader wants to leave readcnt--;
•
• if (readcnt == 0) // no reader is left in the critical section,

signal(wrt); // writers can enter

• signal(mutex); // reader leaves
•
• } while(true);
•

Writer Process

• Writer process

Writer requests the entry to critical section.

If allowed i.e. wait() gives a true value, it enters
and performs the write. If not allowed, it keeps on
waiting.

It exits the critical section.

do

• {

• wait(wrt);
section

// writer requests for critical

• …perform WRITING

• signal(wrt); // leaves the critical section

• } while(true);

MONITOR

It is a synchronization technique that enables
threads to mutual exclusion and the wait() for
a given condition to become true.

It is an abstract data type. It has a shared
variable and a collection of procedures
executing on the shared variable

A process may not directly access the shared
data variables, and procedures are required to
allow several processes to access the shared
data variables simultaneously.

At any particular time, only one process may
be active in a monitor. Other processes that
require access to the shared variables must
queue and are only granted access after the
previous process releases the shared
variables.

Monitor

• Syntax:
• monitor
• {
• //shared variable declarations data variables;
• Procedure P1() { ... }
• Procedure P2() { ... }
• .
• .
• .
• Procedure Pn() { ... } Initialization Code() { ... }
• }
•

Inter Process Communication

"Inter-process communication is used for
exchanging useful information between
numerous threads in one or more processes
(or programs).“

To understand inter process communication,
you can consider the following given diagram
that illustrates the importance of inter-process
communication

Role of Synchronization in Inter Process
Communication

Synchronization methods

• These are the following methods that used to provide the
synchronization:

• Mutual Exclusion
• Semaphore
• Barrier
• Spinlock
•

 Mutual Exclusion:-
 It is generally required that only one process thread can

enter the critical section at a time. This also helps in
synchronization and creates a stable state to avoid the race
condition.

Semaphore:-
 Semaphore is a type of variable that usually controls

the access to the shared resources by several
processes.

 Semaphore is further divided into two types which are
as follows:

 Binary Semaphore
 Counting Semaphore

Barrier:-
 A barrier typically not allows an individual process to

proceed unless all the processes does not reach it. It is
used by many parallel languages, and collective
routines impose barriers.

Spinlock:-

Spinlock is a type of lock as its name implies.
The processes are trying to acquire the
spinlock waits or stays in a loop while checking
that the lock is available or not.

It is known as busy waiting because even
though the process active, the process does
not perform any functional operation (or
task).

Pipe

The pipe is a type of data channel that is
unidirectional in nature. It means that the data in
this type of data channel can be moved in only a
single direction at a time.

 Still, one can use two-channel of this type, so
that he can able to send and receive data in two
processes. Typically, it uses the standard methods
for input and output.

These pipes are used in all types of POSIX systems
and in different versions of window operating
systems as well.

Shared Memory

It can be referred to as a type of memory that
can be used or accessed by multiple processes
simultaneously.

It is primarily used so that the processes can
communicate with each other. Therefore the
shared memory is used by almost all POSIX
and Windows operating systems as well.

Message Queue

In general, several different messages are
allowed to read and write the data to the
message queue.

In the message queue, the messages are
stored or stay in the queue unless their
recipients retrieve them. In short, we can also
say that the message queue is very helpful in
inter-process communication and used by all
operating systems.

To understand the concept of Message queue
and Shared memory in more detail.

Message Passing

 It is a type of mechanism that allows processes to
synchronize and communicate with each other.

 However, by using the message passing, the processes
can communicate with each other without restoring
the hared variables.

 Usually, the inter-process communication mechanism
provides two operations that are as follows:

send (message)

received (message)

Direct Communication

In this type
usually, a link

of communication process,
is created or established

between two communicating processes.

 However, in every pair of communicating
processes, only one link can exist.

Indirect Communication

Indirect communication can only exist or be
established when processes share a common
mailbox, and each pair of these processes
shares multiple communication links

. These shared links can be unidirectional or
bi-directional.

FIFO

 It is a type of general communication between two
unrelated processes. It can also be considered as full-
duplex, which means that one process can
communicate with another process and vice versa.

 Some other different approaches
Socket

 It acts as a type of endpoint for receiving or sending
the data in a network. It is correct for data sent
between processes on the same computer or data sent
between different computers on the same network.
Hence, it used by several types of operating systems.

File

A file is a type of data record or a document stored
on the disk and can be acquired on demand by the
file server. Another most important thing is that
several processes can access that file as required or
needed.

Signal

As its name implies, they are a type of signal used in
inter process communication in a minimal way.
Typically, they are the massages of systems that are
sent by one process to another.

Therefore, they are not used for sending data but for
remote commands between multiple processes.

UNIT-4

Memory management

Memory Management

Memory is central to the operation of a
modern computer system. Memory consists of
a large array of bytes, each with its own
address.

A typical
example,
memory.

instruction-execution cycle, for
first fetches an instruction from

Logical Versus Physical Address Space

An address generated by the CPU is commonly
referred to as a logical address or virtual address.

An address seen by the memory unit—that is, the
one loaded into the memory- address register of
the memory—is commonly referred to as a
physical address.

The set of all logical addresses generated by a
program is a logical address space.

The set of all physical addresses corresponding to these
logical addresses is a physical address space.

Memory-Management Unit (MMU)

The run-time mapping from virtual to physical
addresses is done by a hardware device called the
memory-management unit (MMU).

The base register is now called a relocation register.
The value in the relocation register is added to every
address generated by a user process at the time the
address is sent to memory.

Swapping
A process must be in memory to be executed.

A process, however, can be swapped
temporarily out of memory to a backing store
and then brought back into memory for
continued execution.

Swapping makes it possible for the total

the real physical memory of
physical
exceed
system, thus increasing the degree

address space of all processes to
the

of
multiprogramming in a system.

Standard Swapping

Standard swapping involves moving processes
between main memory and a backing store.
The backing store is commonly a fast disk.

It must be large enough to accommodate
copies of all memory images for all users, and
it must provide direct access to these memory
images.

Swapping on Mobile Systems

Mobile systems typically do not support swapping in
any form.

Reasons

Mobile devices generally use flash memory rather than
hard disks. The resulting space constraints avoid
swapping.

 The limited number of writes that flash memory can
tolerate before it becomes unreliable.

The poor throughput between main memory and
flash memory in these devices.

Mechanisms instead of Swapping

Apple’s iOS asks applications to voluntarily
relinquish allocated memory. Any applications
that fail to free up sufficient memory may be
terminated by the operating system.

Android does not support swapping and adopts a
strategy similar to that used by iOS. It may
terminate a process if insufficient free memory is
available.

Contiguous Memory Allocation

We usually want several user processes to reside
in memory at the same time. We therefore need
to consider how to allocate available memory to
the processes that are in the input queue waiting
to be brought into memory.

 In contiguous memory allocation, each process is
contained in a single section of memory that is
contiguous to the section containing the next
process.

Memory Protection

We can prevent a process from accessing
memory it does not own by combining two
ideas. If we have a system with a relocation
register, together with a limit register, we
accomplish our goal.

Memory allocation methods for
memory allocation

Fixed-Sized Partitions

One of the simplest methods for allocating
memory is to divide memory into several fixed-
sized partitions.

Each partition may contain exactly one process.

In this multiple partition method, when a
partition is free, a process is selected from the
input queue and is loaded into the free partition.

Variable Sized -Partition

In the variable-partition scheme, the operating system
keeps a table indicating which parts of memory are
available and which are occupied.

Initially, all memory is available for user processes and is
considered one large block of available memory, a hole.

When a process arrives and needs memory, the system
searches the set for a hole that is large enough for this
process.

Dynamic Storage Allocation Problem
(Memory Allocation Techniques)

This concerns how to satisfy a request of size n
from a list of free holes.

There are many solutions to this problem.

 The first-fit, best-fit, and worst-fit strategies
are the ones most commonly used to select a
free hole from the set of available holes.

First fit
 Allocate the first hole that is big enough.Searching can start

either at the beginning of the set of holes or at the location
where the previous first-fit search ended.

 We can stop searching as soon as we find a free hole that is
large enough.

Best fit

 Allocate the smallest hole that is big enough. We must
search the entire list, unless the list is ordered by size.

 This strategy produces the smallest leftover hole.

Worst fit

Allocate the largest hole. Again, we must
search the entire list, unless it is sorted by
size. This strategy produces the largest
leftover hole.

 which may be more useful than the smaller
leftover hole from a best-fit approach.

Fragmentation

Memory fragmentation can be internal as well as
external.
Internal Fragmentation

The overhead to keep track of this hole will be
substantially larger than the hole itself.

The general approach to avoiding this problem is to
break the physical memory into fixed-sized blocks and
allocate memory in units based on block size.

 With this approach, the memory allocated to a process may
be slightly larger than the requested memory.

External Fragmentation

 Both the first-fit and best-fit strategies for memory allocation
suffer from external fragmentation.

 As processes are loaded and removed from memory, the free
memory space is broken into little pieces.

Segmentation

Dealing with memory in terms of its physical
properties is inconvenient to both the operating
system and the programmer.

What if the hardware could provide a memory
mechanism that mapped the programmer’s view
to the actual physical memory?

The system would have more freedom to manage
memory, while the programmer would have a
more natural programming environment.
Segmentation provides such a mechanism.

Basic Method

 Segmentation is a memory-management scheme that
supports the programmer view of memory.

 A logical address space is a collection of variable sized
segments. Each segment has a name and a length.

 The addresses specify both the segment name and the
offset within the segment.

 The programmer therefore specifies each address by
two quantities: a segment name and an offset.

Segmentation Hardware

Although the programmer can now refer to
objects in the program by a two- dimensional
address, the actual physical memory is still, of
course, a one dimensional sequence of bytes.

 Thus, we must define an implementation to
map two-dimensional user- defined addresses
into one-dimensional physical addresses. This
mapping is affected by a segment table.

Each entry in the segment table has a
segment base and a segment limit.

Segment base: The segment base contains the
starting physical address where the segment
resides in memory.

Segment limit: The segment limit specifies the
length of the segment.

Paging
Paging is another memory-management

scheme that offers physical address space of a
process to be non-contiguous.

Paging also avoids external fragmentation and
the need
segmentation

for compaction, whereas
does not. Because of its

advantages, paging in its various forms is used
in most operating systems, from mainframes
to smart phones.

Basic Method of Paging

Frames: Paging involves breaking physical memory
into fixed-sized blocks called

frames

Pages: Breaking logical memory into blocks of the
same size called pages.

When a process is to be executed, its pages
are loaded into any available memory frames
from their source (a file system or the backing
store).

Hardware Support for Paging

 Every address generated by the CPU is divided into two
parts: a page number (p) and a page offset (d).

Page Table

 The page number is used as an index into a page table.

 The page table contains the base address of each page
in physical memory.

 This base address is combined with the page offset to
define the physical memory address that is sent to the
memory unit.

Frame Table

Frame Table: Since the operating system is
managing physical memory, it must be aware
of the allocation details of physical memory.

which frames are allocated, which frames are
available, how many total frames there are,
and so on? This information is generally kept
in a data structure called a frame table.

Defining of Page Size

The page size (like the frame size) is defined by
the hardware. The size of a page is a power of
2, varying between 512 bytes and 1 GB per
page.

 Depending on the computer architecture. The
selection of a power of 2 as a page size makes
the translation of a logical address into a page
number and page offset particularly easy.

 If the size of the logical address space is 2m, and a
page size is 2n bytes, then the high- order m− n
bits of a logical address designate the page
number, and the n low-order bits designate the
page offset.

 Thus, the logical address is as follows:

page number-P

page offset-d

where p is an index into the page table and d is
the displacement within the page.

Hardware Support

Methods for storing page table: Each operating system
has its own methods for storing page tables.

 Some allocate a page table for each process. A pointer
to the page table is stored with the other register
values (like the instruction counter) in the process
control block.

When the dispatcher is told to start a process, it must
reload the user registers and define the correct
hardware page-table values from the stored user page
table.

Other operating systems provide one or at
most a few page tables, which decreases the
overhead involved when processes are
context-switched.

• Page-Table Base Register (PTBR)

Most contemporary computers, allow the
page table to be very large (for example, 1
million entries). For these machines, the use
of fast registers to implement the page table is
not feasible

 Rather, the page table is kept in main memory, and a
page-table base register (PTBR) points to the page
table. Changing page tables requires changing only this
one register, substantially reducing context-switch
time.

Translation Look-Aside Buffer (TLB).

 The standard solution to this problem is to use a
special, small, fast lookup hardware cache called a
translation look-aside buffer (TLB).

 The TLB is associative, high-speed memory. Each entry
in the TLB consists of two parts: a key (or tag) and a
value.

Protection
 Memory protection in a paged environment is accomplished

by protection bits associated with each frame. Normally,
these bits are kept in the page table.

Read–Write or Read-Only Bit

 One bit can define a page to be read–write or read-only. Every
reference to memory goes through the page table to find the
correct frame number.

 At the same time that the physical address is being computed,
the protection bits can be checked to verify that no writes are
being made to a read-only page.

Shared Pages

An advantage of paging is the possibility of
sharing common code. This consideration is
particularly important in a time-sharing
environment.

Consider a system that supports 40 users,
each of whom executes a text editor. If the
text editor consists of 150 KB of code and 50
KB of data space, we need 8,000 KB to support
the 40 users.

Segmentation with Paging

• Pure segmentation is not very popular and not
being used in many of the operating systems.

• However, Segmentation can be combined
with Paging to get the best features out of
both the techniques.

• In Segmented Paging, the main memory is
divided into variable size segments which are
further divided into fixed size pages.

• Pages are smaller than segments. Each
Segment has a page table which means every
program has multiple page tables.

Translation of logical address to
physical address

• The CPU generates a logical address which is
divided into two parts: Segment Number and
Segment Offset.

• The Segment Offset must be less than the
segment limit. Offset is further divided into Page
number and Page Offset.

• To map the exact page number in the page table,
the page number is added into the page table
base.

Demand Paging
Loading the entire program into memory

results in loading the executable code for all
options, regardless of whether or not an
option is ultimately selected by the user.

An alternative strategy is to load pages only as
they are needed. This technique is known as
demand paging and is commonly used in
virtual memory systems.

Lazy Swapper
• A demand-paging system is similar to a paging

system with swapping where processes reside
in secondary memory (usually a disk).

• When we want to execute a process, we swap
it into memory. Rather than swapping the
entire process into memory, though, we use a
lazy swapper.

• A lazy swapper never swaps a page into
memory unless that page will be needed.

Page Fault

• Access to a page marked invalid causes a page
fault.

• The paging hardware, in translating the
address through the page table, will notice
that the invalid bit is set, causing a trap to the
operating system.

• This trap is the result of the operating system’s
failure to bring the desired page into memory.

Demand Paging

• In the extreme case, we can start executing a process
with no pages in memory.

• When the operating system sets the instruction pointer
to the first instruction of the process, which is on a
non-memory-resident page, the process immediately
faults for the page.

• After this page is brought into memory, the process
continues to execute, faulting as necessary until
every page that it needs is in memory.

At that point, it can execute with no more faults.
This scheme is pure demand paging: never bring
a page into memory until it is required.

Hardware to Support Demand Paging

Page table. This table has the ability to mark an
entry invalid through a valid–invalid bit or a
special value of protection bits.

Secondary memory. This memory holds those
pages that are not present in main memory.

The secondary memory is usually a high-speed
disk. It is known as the swap device, and the
section of disk used for this purpose is known
as swap space.

A crucial requirement for demand paging is
the ability to restart any instruction after a
page fault.

Page Replacement

Page replacement takes the following
approach
Find the location of the desired page on the disk.

Find a free frame:

If there is a free frame, use it.

If there is no free frame, use a page-replacement
algorithm to select a victim frame.

Write the victim frame to the disk; change the
page and frame tables accordingly.

Read the desired page into the newly freed frame;
change the page and frame tables.

Continue the user process from where the page
fault occurred.

Modify Bit (or Dirty Bit).

If no frames are free, two page transfers (one
out and one in) are required.

• This situation effectively doubles the page-
fault service time and increases the effective
access time accordingly. We can reduce this
overhead by using a modify bit (or dirty bit).

Page Replacement Algorithms

The simplest page-replacement algorithm is a
first-in, first-out (FIFO) algorithm.

A FIFO replacement algorithm associates with
each page the time when that page was
brought into memory. When a page must be
replaced, the oldest page is chosen.

We can create a FIFO queue to hold all pages
in memory. We replace the page at the head
of the queue. When a page is brought into
memory, we insert it at the tail of the queue.

• The FIFO page-replacement algorithm is easy
to understand and program.

• However, its performance is not always good.
a bad replacement choice increases the page-
fault rate and slows process execution.

• If we place an active page, some other page
should be replaced to bring it back.

Optimal Page Replacement
It says that, Replace the page that will not be

used for the longest period of time.

It has the lowest page-fault rate of all
algorithms and will never suffer from Belady’s
anomaly.

Unfortunately, the optimal page-replacement
algorithm is difficult to implement, because it
requires future knowledge of the reference
string.

LRU Page Replacement

 LRU replacement associates with each page the time of
that page’s last use.

When a page must be replaced, LRU chooses the page
that has not been used for the longest period of time.

We can think of this strategy as the optimal page-
replacement algorithm looking backward in time,
rather than forward.

 Like optimal replacement, LRU replacement does not
suffer from Belady’s anomaly. Both belong to a class of
page-replacement algorithms, called stack algorithms.

UNIT-5

File System

a named collection of related
that is recorded on secondary

A file is
information
storage.

(or)A file is the smallest allotment of logical
secondary storage.

(or)A file is a sequence of bits, bytes, lines, or
records, the meaning of which is defined by
the file’s creator and user. Many different
types of information may be stored in a file.

Access methods
Files store information. When it is used, this

information must be accessed and read into
computer memory. The information in the file
can be accessed in the following ways,

Sequential Access

The simplest access method is sequential
access. Information in the file is processed in
order, one record after the other. It is based
on a tape model of a file and works as well on
sequential-access devices.

Direct Access (or Relative Access)

Another method is direct access (or relative
access).

Here, a file is made up of fixed- length logical
records that allow programs to read and write
records rapidly in no particular order.

The direct-access method is based on a disk
model of a file, since disks allow random access to
any file block.

 For direct access, the file is viewed as a numbered
sequence of blocks or records.

 Thus, we may read block 14, then read block 53, and
then write block 7. There are no restrictions on the order
of reading or writing for a direct-access file.

Indexed Access
It involves the construction of an index for the file.

The index, like an index in the back of a book, contains
pointers to the various blocks.

To find a record in the file, we first search the index
and then use the pointer to access the file directly and
to find the desired record.

Directory Structure

• The most common schemes for defining the
logical structure of a directory are

•
Single-Level Directory
– The simplest directory structure is the single-level

directory. All files are contained in the same
directory, which is easy to support and
understand.

–

Limitations

All files are in the same directory, they must
have unique names. If two users call their data
file test.txt, then the unique-name rule is
violated.

Even a single user on a single-level directory
may find it difficult to remember the names of
all the files as the number of files increases.
Keeping track of so many files is a problem.

Two-Level Directory

The standard solution to eliminate confusion of
file names among different users is to create a
separate directory for each user.

So the two level directory structure contains 2
directories

• Master File Directory (MFD) at the top level.

• User File Directory (UFD) at the second level
and

• Actual files are at the third level.

Each user has his own user file directory (UFD).
When a user job starts or a user logs in, the
system’s master file directory (MFD) is searched.

The MFD is indexed by user name or account
number, and each entry points to the UFD for that
user

When a user refers to a particular file, only his
own UFD is searched.

To create a file for a user, the operating system
searches only that user’s UFD to ascertain
whether another file of that name exists.

 To delete a file, the operating system confines its
search to the local UFD; thus, it cannot accidentally
delete another user’s file that has the same name.

Tree-Structured Directories

A tree is the most common directory structure.
The tree has a root directory, and every file in the
system has a unique path name.

A directory (or subdirectory) contains a set of files
or subdirectories.

A directory is simply another file, but it is treated
in a special way. All directories have the same
internal format.

 One bit in each directory entry defines the entry
as a file (0) or as a subdirectory (1). Special system
calls are used to create and delete directories.

Current Directory
Each process has a current directory. The current

directory should contain most of the files that are
of current interest to the process.

When reference is made to a file, the current
directory is searched.

If a file is needed that is not in the current

specify a
directory, then the user

path name or
usually must either
change the current

directory (using change directory () system call) to
be the directory holding that file.

Acyclic-Graph Directories

 A tree structure prohibits the sharing of files or directories.

 An acyclic graph i.e., a graph with no cycles which allows
directories to share subdirectories and files.

 The same file or subdirectory may be in two different
directories.

 An acyclic-graph directory structure is more flexible than a
simple tree structure, but it is also more complex.

Protection
When information is stored in a computer

system, we want to keep it safe from physical
damage (the issue of reliability) and improper
access (the issue of protection).

Reliability is generally provided by duplicate
copies of files. Many computers have systems
programs that automatically (or through
computer-operator intervention) copy disk
files to tape at regular intervals (once per day
or week or month) to maintain a copy should
a file system be accidentally destroyed.

Types of Access

Protection mechanisms provide controlled access
by limiting the types of file access that can be
made.

Access is permitted or denied depending on
several factors, one of which is the type of access
requested. Several different types of operations
may be controlled:

Read. Read from the file.
Write. Write or rewrite the file.
Execute. Load the file into memory and execute it.

Append. Write new information at the end of the
file.

Delete. Delete the file and free its space for
possible reuse.

List. List the name and attributes of the file.

Other operations, such as renaming, copying,
and editing the file, may also be controlled.

Access Control

The most common approach to the protection
problem is to make access dependent on the
identity of the user.

 Different users may need different types of
access to a file or directory.

The most general scheme to implement
identity dependent access is to associate with
each file and directory an access-control list
(ACL) specifying user names and the types of
access allowed for each user.

Other Protection Approaches

• Another approach to the protection problem
is to associate a password with each file. Just
as access to the computer system is often
controlled by a password, access to each file
can be controlled in the same way.

• If the passwords are chosen randomly and
changed often, this scheme may be effective
in limiting access to a file. The use of
passwords has a few disadvantages, however.

File System Structure

Disks provide most of the secondary storage
on which file systems are maintained. Two
characteristics make them convenient for this
purpose are,

A disk can be rewritten.

A disk can access directly any block of
information it contains.

File systems provide efficient and convenient
access to the disk by allowing data to be
stored, located, and retrieved easily.

Logical File System
The logical file system manages metadata

information. Metadata includes all of the file-
system structure except the actual data.

The logical file system manages the directory
structure to provide the file-organization
module with this information

Application Programs-It contains user code
that is making a request.

File-Organization Module

 The file-organization module knows about files and their
logical blocks and physical blocks.

 By knowing the type of file allocation used and the
location of the file, the file organization module can
translate logical block addresses to physical block
addresses for the basic file system to transfer.

Basic File System

 The basic file system needs only to issue generic
commands to the appropriate device driver to read and
write physical blocks on the disk. Each physical block is
identified by its numeric disk address.

I/O control

 The I/O control level consists of device drivers and
interrupts handlers to transfer information between
the main memory and the disk system.

 It acts like a translator, inputting high-level commands
such as “retrieve block 123.” And outputting low-level,
hardware

 specific instructions that are used by the hardware
controller

 Devices-These are the actual hardware devices like
disk.

Allocation methods
Many files can be stored on the same disk. The

main problem is how to allocate space to these
files so that disk space is utilized effectively and
files can be accessed quickly.

The following are the three major methods of
allocating disk space that are in wide use:

Contiguous Allocation

Contiguous allocation requires that each file occupy a
set of contiguous blocks on the disk. Disk addresses
define a linear ordering on the disk.

 Contiguous allocation of a file is defined by the disk
address and length (in block units) of the first block.

 If the file is n blocks long and starts at location b,
then it occupies blocks b, b + 1, b + 2, b + n − 1. The
directory entry for each file indicates the address of
the starting block and the length of the area
allocated for this file.

Linked Allocation
Linked allocation solves all problems of

contiguous allocation. With linked allocation,
each file is a linked list of disk blocks.

 The disk blocks may be scattered anywhere on
the disk. The directory contains a pointer to the
first and last blocks of the file.

 For example, a file of five blocks might start at
block 9 and continue at block 16, then block 1,
then block 10, and finally block 25.

To create a new file, we simply create a new
entry in the directory. With linked allocation,
each directory entry has a pointer to the first
disk block of the file. This pointer is initialized
to null (the end-of-list pointer value) to signify
an empty file. The size field is also set to 0.

Indexed Allocation

Linked allocation solves the external-
fragmentation and size-declaration problems of
contiguous allocation.

 However, in the absence of a FAT, linked
allocation cannot support efficient direct access,
since the pointers to the blocks are scattered with
the blocks themselves all over the disk and must
be retrieved in order.

 Indexed allocation solves
bringing all the pointers

this problem by
together into one

location: the index block.

Each file has its own index block, which is an
array of disk-block addresses. The ith entry in
the index block points to the ith block of the
file. The directory contains the address of the
index block.

Free-space Management
To keep track of free disk space, the system

maintains a free-space list.

The free- space list records all free disk blocks—
those not allocated to some file or directory.

The following are implementations of free space
list.
Bit Vector
Free-space list is frequently implemented as a bit map

or bit vector. Each block is represented by 1 bit. If the
block is free, the bit is 1; if the block is allocated, the
bit is 0.

For example, consider a disk where blocks 2,
3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and
27 are free and the rest of the blocks are
allocated. The free-space bit map would be
001111001111110001100000011100000...

Linked List

Another approach to free-space management
is to link together all the free disk blocks,
keeping a pointer to the first free block in a
special location on the disk and caching it in
memory.

This first block contains a pointer to the next
free disk block, and so on.

Grouping

A modification of the free-list approach stores the
addresses of n free blocks in the first free block.

 The first n−1 of these blocks are actually free.
The last, block contains the addresses of another
n free block, and so on.

The addresses of a large number of free blocks
can now be found quickly.

Counting
Several contiguous blocks may be allocated or

freed simultaneously, particularly when space
is allocated with the contiguous-allocation
algorithm or through clustering.

Thus, rather than keeping a list of n free disk
addresses, we can keep the address of the first
free block and the number (n) of free
contiguous blocks that follow the first block.

Each entry in the free-space list then consists
of a disk address and a count.

Space Maps

Oracle’s ZFS file system was designed to
encompass huge numbers of files, directories,
and even file systems.

In its management of free space, ZFS creates
metaslabs to divide the space on the device
into chunks of manageable size.

Each metaslab has an associated space map.

The space map is a log of all block activity
(allocating and freeing), in time order, in counting
format.

 When ZFS decides to allocate or free space from
a metaslab, it loads the associated space map
into memory in a balanced-tree structure (for
very efficient operation), indexed by offset, and
replays the login to that structure.

File Operations
create ()

 This is used to create a file. Two steps are necessary to
create a file. First, space in the file system must be
found for the file. Second, an entry for the new file
must be made in the directory.

open ()

Many systems require that an open () system call be
made before a file is first used. When a file has been
opened its entry is added in the open file table. It also
contains open count associated with each file to
indicate how many processes have the file open.

read ()

 To read from a file, we use a system call that specifies
the name of the file and read pointer to the location in
the file where the next read is to take place. Once the
read has taken place, the read pointer is updated.

write ()

 To write a file, we make a system call specifying both
the name of the file and the information to be written
to the file. Given the name of the file, the system
searches the directory to find the file’s location.

 The system must keep a write pointer to the location
in the file where the next write is to take place. The
write pointer must be updated whenever a write
occurs.

close ()

This closes a file. Each close () decrements the
open count and when the count reaches zero,
the file is no longer in use so it can be closed.

delete ()

To delete a file, we search the directory for the
named file. Having found the associated
directory entry, we release all file space, so
that it can be reused by other files, and erase
the directory entry.

truncate ()

 The user may want to erase the contents of a file but
keep its attributes. Rather than forcing the user to
delete the file and then recreate it, this function allows
all attributes to remain unchanged—except for file
length—but lets the file be reset to length zero and its
file space released.

seek ()

 It is also called as Reposition. The directory is searched
for the appropriate entry, and the current-file-position
pointer is repositioned to a given value. Repositioning
within a file need not involve any actual I/O.

unlink ()

Deletes a name from the file system. If that
name was the last link to a file and no
processes have the file open the file is deleted
and the space it was using is made available
for reuse.

