
OPERATINGSYSTEM(23CS403)

CSE, NRCM Page1

UNIT–1

Operating System Introduction-Structure-Simple batch, Multiprogramming, Time-
shared, Personal Computer, Parallel, Distributed System, Real time System,

System Components, OS services, System calls.

Process-Process concepts and scheduling, Operations on process, Cooperating process, Threads

Introduction of Operating System

 An OS act as an interface between user and system hardware.

 Computer consists of the hardware, Operating System, system programs,

application programs.

 The hardware consists of memory, CPU, ALU, I/O device,

storage device and peripheral device.

 System program consists of compilers, loaders, editors, OS etc.

 Application program consists of database programs, business programs.

 Every computer must have an OS to run other programs.

 The OS controls & coordinates the use of the hard ware among the

various system programs and application programs for various tasks.

 Its imply provides an environment with in which other programs can do useful work.

OPERATINGSYSTEM

Definition

 In the 1960’s one might have defined OS as “The software that controls

the hardware”.

 Operating System performs all the basic tasks like managing files,processes,

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page2

And memory. Thus operating system acts as the manager of all the resources, i.e.

Resource manager.

 Operating system becomes an interface between the user and the machine.

It is one of the most required software that is present in the device.

 Operating System is a type of software that works as an interface

between the system program and the hardware.

Concept of OS

 The OS is a set of special programs that run on a computer system that allow it

to work properly.

 It performs basic task as recognizing input from the keyboard, keeping track of

files and directories on the disk, sending output to the display screen and

controlling a peripheral device.

 The OS must support the following tasks. They are,

 Provides the facilities to create, modification of program and data file

using an editor.

 Access to the compiler for translating the user program from high level

language to machine language.

 Provide a loader program to move the compiled program code to the

computer memory for execution.

Types of Operating Systems

There are several types of Operating Systems which are mentioned below.

 Batch Operating System

 Multi-Programming System

 Time-Sharing Operating System

 Personal Computers

 Parallel Operating System

 Distributed Operating System

 Real-Time Operating System

1. Batch Operating System

This type of operating system

does not interact with the computer

directly. There is an operator which takes

similar job shaving the same requirement

and groups them into batches. It is the

responsibility of the operator to sort jobs

with similar needs.

Advantages

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page3

 Processors of the batch systems know how long the job would be when itis

in the queue.

 Multiple users can share the batch systems.

 The idle time for the batch system is very less.

 It is easy to manage large work repeatedly in batch systems.

Disadvantages

 The computer operators should be well known with batch systems.

 Batch systems are hard to debug.

 It is sometimes costly.

 The other jobs will have to wait for an unknown time if any job fails.

 It is very difficult to guess or know the time required for any job to complete.

Examples

Payroll Systems, Bank Statements, etc.

2. Multi-Programming Operating System

Multi programming Operating Systems can

be simply illustrated as more than one

program is present in the main memory and

any one of them can be kept in execution.

This is basically used for better

Execution of resources.

Advantages of Multi-Programming Operating System

 Multi Programming increases the Through put of the System.

 It helps in reducing there sponse time.

Disadvantages of Multi-Programming Operating System

 There is not any facility for user interaction of system resources with the system.

3. Time-Sharing Operating Systems

Each task is given some time to

execute so that all the tasks work smoothly.

Each user gets the time of the CPU as they use

a single system. These systems are also known

as Multitasking Systems. The task can be from

a single user or different users also. The time

that each task gets to execute is called

quantum. After this time interval is over OS

switches over to the next task.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page4

Advantages

 Each task gets an equal opportunity.

 Fewer chances of duplication of software.

 CPU idle time can be reduced.

 Resource Sharing: Time-sharing systems allow multiple users to share

hardware resources such as the CPU, memory, and peripherals, reducing the

cost of hardware and increasing efficiency.

 Improved Productivity: Time-sharing allows users to work concurrently,

thereby reducing the waiting time for their turn to use the computer. This

increased productivity translates to more work getting done in less time.

 Improved User Experience: Time-sharing provides an interactive environment

that allows users to communicate with the computer in real time, providing a

better user experience than batch processing.

Disadvantages

 Reliability problem.

 One must have to take care of the security and integrity of user programs and data.

 Data communication problem.

 High Overhead: Time-sharing systems have a higher overhead than other

operating systems due to the need for scheduling, context switching, and other

overheads that come with supporting multiple users.

 Complexity: Time-sharing systems are complex and require advanced software

to manage multiple users simultaneously. This complexity increases the chance

of bugs and errors.

 Security Risks: With multiple users sharing resources, the risk of security

breaches increases. Time-sharing systems require careful management of user

access, authentication, and authorization to ensure the security of data and

software.

 - sharing operating system that allows multiple users to access a Windows

server remotely. Users can run their own applications and access shared

resources, such as printers and network storage, in real-time.

4. Personal Computer

A personal computer (PC) is a microcomputer designed for use by one person at a

time.

Prior to the PC, computers were designed for -- and only affordable for – companies

that attached terminals for multiple users to a single large mainframe computer whose

resources were shared among all users. By the1980s, technological advances made it

feasible to build a small computer that an individual could own and use as a word

processor and for other computing functions.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page5

Whether they are home computers or business ones, PCs can be used to store,

retrieve and process data of all kinds. A PC runs firmware that supports an operating

system (OS), which supports a spectrum of other software. This software lets

consumers and business users perform a range of general-purpose tasks, such as the

following:

 word processing

 spreadsheets

 email

 instant messaging

 accounting

 database management

 internet access

 listening to music

 network-attached storage

 graphic design

 music composition

 video gaming

 software development

 network reconnaissance

 multimedia a servers

 wireless network access hot spots

 video conferencing

Types

Personal computers fall into various categories, such as the following:

 Desktop computers usually have a tower, monitor, keyboard and mouse.

 Tablets are mobile devices with a touch screen display.

 Smart phones are phones with computing capabilities.

 Wearables are devices users wear, such as smartwatches and

various types of smart clothing.

 Laptop computers are portable personal computers that usually come with

an attached keyboard and trackpad.

 Note book computers are light weight laptops.

 Handheld computers include advanced calculators and various gaming devices.

5. Parallel Operating System

Parallel Systems are designed to speed up the execution of programs by dividing

the programs into multiple fragments and processing these fragments at the same time.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page6

Advantages

 High Performance: Parallel systems can execute computationally intensive
tasks more quickly compared to single processor systems.

 Cost Effective: Parallel systems can be more cost-effective compared to

distributed systems, as they do not require additional hardware for
communication.

Disadvantages

 Limited Scalability: Parallel systems have limited scalability as the
number of processors or cores in a single computer is finite.

 Complexity: Parallel systems are more complex to program and debug
compared to single processor systems.

 Synchronization Overhead: Synchronization between processors in a
parallel system can add overhead and impact performance.

6. Distributed Operating System

These types of operating

systems are a recent

advancement in the world of

computer technology and are

being widely accepted all over

the world and, that too, at agreat

pace.

Various autonomous interconnected computers communicate with each other

using a shared communication network. Independent systems possess their own

memory unit and CPU. These are referred to as loosely coupled systems or distributed

systems. These systems’ processors differ in size and function.

The major benefit of working with these types of the operating system is that it

is always possible that one user can access the files or software which are not actually

present on his system but some other system connected within this network i.e., remote

access is enabled within the devices connected in that network.

Types of Distributed Systems

The nodes in the distributed systems can be arranged in the form of client/server

systems or peer to peer systems. Details about these are as follows −

Client/Server Systems

In client server systems, the client requests a resource and the server provides

that resource. A server may serve multiple clients at the same time while a client is in

contact with only one server. Both the client and server usually communicate via a

computer network and so they are a part of distributed systems.

Peer to Peer Systems

The peer to peer systems contains nodes that are equal participants in data

sharing. All the tasks are equally divided between all the nodes. The nodes interact

with each other as required as share resources. This is done with the help of a network.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page7

Advantages

 Failure of one will not affect the other network communication, as all

systems are independent of each other.

 Electronic mail increases the data exchangespeed.

 Sinceresourcesarebeingshared,computationishighlyfastanddurable.

 Loadonhostcomputerreduces.

 Thesesystemsareeasilyscalableasmany systemscanbeeasily addedtothe network.

 Delay indataprocessingreduces.

Disadvantages

 Failureofthemainnetworkwillstoptheentirecommunication.

 Toestablishdistributedsystemsthelanguageisusednotwell-definedyet.

 These types of systems are not readily available astheyarevery

expensive.Notonly thattheunderlyingsoftwareishighly complexandnot

understood well yet.

Example:LOCUS

7. Real-TimeOperatingSystem

These types of OSs serve real-time systems. The time

interval required to process and respond to inputs is very

small. This time interval is called response time.

Real-time systems are used when there are time

requirements that are very strict like missile systems, air

traffic control systems, robots, etc.

Types:

1. HardReal-TimeSystems

Hard Real-Time OSs are meant for applications where time constraints are very

strict and even the shortest possible delay is not acceptable.These systemsarebuilt

for saving life like automatic parachutes or airbags whicharerequired to be readily

available in case of an accident. Virtual memory is rarely found in these systems.

2. SoftReal-TimeSystems

TheseOSsareforapplicationswheretime-constraintislessstrict.

Advantages

 MaximumConsumption: Maximumutilizationofdevicesandsystems,thus more

output from all the resources.

 TaskShifting:Thetimeassignedforshiftingtasksinthesesystemsis very less. For

example, in older systems, it takes about 10 microsecondsin shifting from one

task to another, and in the latest systems, it takes 3 microseconds.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page8

 Focus on Application: Focus on running applications and less importance on

applications that are in the queue.

 Real-time operating system in the embedded system: Since the size of

programs is small, RTOS can also be used in embedded systems like intransport

and others.

 ErrorFree:Thesetypesofsystemsareerror-free.

 Memory Allocation: Memory allocation is best managed in these typesof

systems.

Disadvantages

 Limited Tasks: Very few tasks run at the same time and

theirconcentration is very less on a few applications to avoid errors.

 Useheavysystemresources:Sometimesthesystemresourcesarenotsogood and

they are expensive as well.

 ComplexAlgorithms: Thealgorithmsareverycomplexanddifficultforthe designer

to write on.

 Devicedriverandinterruptsignals:Itneedsspecificdevicedriversand interrupts

signal to respond earliest to interrupts.

 ThreadPriority:Itisnotgoodtosetthreadpriorityasthesesystemsare very less

prone to switching tasks.

Examples

Scientificexperiments,medicalimaging systems, industrial

control systems, weapon

systems,robots,airtrafficcontrolsystems,etc.

OperatingSystemServices

 User Interface - User interface is essential and all operating systems provide it.

Users either interface with the operating system through command-lineinterface

(CUI) or graphical userinterface(GUI). Command interpreter executes next user-

specifiedcommand.AGUI offers the user a mouse-based window and menu

system as an interface.

 Program execution - The system must be able to load a program into memory

and to run that program, end execution, either normally or abnormally

(indicating error)

 I/O operations -A running program may require I/O, which may involve afile

or an I/O device.

 File-system manipulation - The file system is of particular interest. Obviously,

programs need to read and write files and directories, create anddelete them,

search them, list file Information, permission management.

 Communications–Processesmayexchangeinformation,onthesame

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page9

computer or between computers over a network. Communications may be via

shared memory or through message passing (packets moved by the OS)

 Error detection – OS needs to be constantly aware of possible errors mayoccur

in the CPU and memory hardware, in I/O devices, in user program. For each

type of error, OS should take the appropriate action to ensure correct and

consistent computing. Debugging facilities can greatly enhance the user’s and

programmer’s abilities to efficiently use the system.

AnothersetofOSfunctionsexistsforensuringtheefficientoperationofthe system

itself via resource sharing

 Resource allocation - When multiple users or multiple jobs running

concurrently, resources must be allocated to each of them. Many types of

resources such as CPU cycles, main memory, and file storage may have special

allocation code, others such as I/O devices may havegeneral request andrelease

code.

 Accounting - To keep track of which users use how much and what kinds of

computer resources

 Protection and security - The owners of information stored in a multiuser or

networked computer system may want to control use of that information,

concurrent processes should not interfere with each other. Protection involves

ensuring that all access to system resources is controlled. Securityof the system

from outsiders requires user authentication, extends to defending external I/O

devices from invalid access attempts. If a system is to be protected and secure,

precautions must be instituted throughout it. A chain is only as strong as its

weakest link.

SystemCalls

 Asystemcallis awayforauserprogramtointerfacewiththeoperating system. The
program requests several services, and the OS responds by invoking aseries of
system calls to satisfy the request.

 Asystemcallcanbewritteninassemblylanguageorahigh-levellanguagelike

C,C++orPascal.

 Systemcallsarepredefinedfunctionsthattheoperatingsystemmaydirectly invoke if
a high-level language is used.

 A system call is a method for a computer program to request a service fromthe
kernel of the operating system on which it is running.

 Asystemcallis amethodof interactingwiththeoperatingsystemviaprograms.

 Asystemcallisarequestfromcomputersoftwaretoanoperatingsystem's kernel.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page10

 A simple system call may take few nanoseconds to provide the result, like

retrieving the system date and time. A more complicated system call, such as

connecting to a network device, may take a few seconds. Most operating

systems launch a distinct kernel thread for each system call to avoidbottlenecks.

Modern operating systems are multi-threaded, which means they can handle

various system calls at the same time.

 The Application Program Interface (API) connects theoperating system's

functions to user programs. It acts as a link between the operating system and a

process, allowing user-level programs to request operating system services. The

kernel system can only be accessedusing system calls. System calls arerequired

for any programs that use resources.

 Whencomputersoftwareneedstoaccesstheoperatingsystem'skernel,it makes a

system call. The system call uses an API to expose the operating system's

services touserprograms. It is theonlymethod to access the kernel system. All

programs or processes that require resources for execution must use system

calls, as they serve as an interface between the operating system and user

programs.

ExampleofSystemCalls

Systemcallsequencetocopythecontentsofone filetoanotherfile

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page11

StandardCLibraryExample

Cprograminvokingprintf()librarycall,whichcall write()systemcall

Therearevarioussituationswherewemustrequiresystemcallsintheoperating system.

Following of the situations are as follows:

1. Itismustrequirewhenafilesystem wantstocreateordeleteafile.

2. Networkconnectionsrequirethesystemcallstosendingandreceivingdata packets.

3. Ifyouwanttoreadorwriteafile,youneedtosystemcalls.

4. Ifyouwanttoaccesshardwaredevices,includingaprinter,scanner,youneed a system

call.

5. Systemcallsareusedtocreateandmanagenew processes.

TypesofSystemCalls

Therearecommonlyfive typesof systemcalls.Theseare asfollows:

1. ProcessControl

2. FileManagement

3. DeviceManagement

4. InformationMaintenance

5. Communicatio

nProcess Control

Process control is the system call that is used to direct the processes. Some

process control examples include creating, load, abort, end, execute, process,terminate

the process, etc.

FileManagement

Filemanagementisasystemcallthatisusedtohandlethefiles.Somefile management

examples include creating files, delete files, open, close, read, write, etc.

DeviceManagement

Devicemanagementisasystemcallthatisusedtodealwithdevices.Some

examplesofdevicemanagementincluderead,device,write,getdeviceattributes,

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page12

releasedevice,etc.

InformationMaintenance

Information maintenance is a system call that is used to maintain information.

Therearesomeexamplesofinformationmaintenance,includinggettingsystemdata,set time

or date, get time or date, set system data, etc.

Communication

Communicationisasystemcallthatisusedforcommunication.Thereare some

examples of communication, including create, delete communication connections,send,

receive messages, etc.

ExamplesofWindowsandUnixsystemcalls

Process Windows Unix

ProcessControl CreateProcess() ExitProcess()

WaitForSingleObject()
Fork()

Exit()

Wait()

FileManipulation CreateFile()ReadFile()
WriteFile()

CloseHandle()

Open()

Read()

Write()

Close()

DeviceManagement SetConsoleMode()
ReadConsole()WriteConsole()

Ioctl()

Read()

Write()

InformationMaintenance GetCurrentProcessID()

SetTimer()

Sleep()

Getpid()

Alarm()

Sleep()

Communication CreatePipe()

CreateFileMapping()

MapViewOfFile()

Pipe()

Shmget()

Mmap()

Protection SetFileSecurity()
InitializeSecurityDescriptor()

SetSecurityDescriptorgroup()

Chmod()
Umask()

Chown()

open()

Theopen()systemcallallowsyoutoaccessafileonafilesystem.It

allocatesresources to the fileand provides ahandlethat the process mayreferto. Many

processescanopenafileatonceorbyasingleprocessonly.It'sallbasedonthefile

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page13

systemand structure.

read()

It is used to obtain data from a file on the file system. It accepts threearguments in

general:

 Afiledescriptor.

 Abuffertostoreread data.

 Thenumberofbytes to readfromthefile.

Thefiledescriptorofthefiletobereadcouldbeusedtoidentifyitandopenit using open()

before reading.

wait()

Insomesystems,aprocessmayhavetowaitforanotherprocessto

completeitsexecutionbeforeproceeding.Whenaparentprocessmakesachild process,

theparent process execution is suspended until the child process is

finished.Thewait()systemcallisusedtosuspendtheparentprocess.Oncethe childprocesshas

completed its execution, control is returned to the parent process.

write()

Itisusedtowritedatafromauserbuffertoadevicelikeafile.Thissystemcall is one wayfor a

program to generate data. It takes three arguments in general:

 Afiledescriptor.

 Apointertothebufferin whichdataissaved.

 Thenumber ofbytesto bewrittenfromthebuffer.

fork()

Processesgenerateclonesofthemselvesusingthe fork()systemcall.Itis

one of the most common ways to create processes in operating systems. When a parent

process spawns a child process, execution of the parent process is interrupted until the

child process completes. Once the child processhas completedits execution, control is

returned to the parent process.

close()

Itisusedtoendfile systemaccess.Whenthissystemcallisinvoked, itsignifies
thattheprogramnolongerrequiresthefile,andthebuffersareflushed,thefileinformation is

altered, and the file resources are de-allocated as a result.

exec()

Whenanexecutablefilereplacesanearlierexecutablefileinanalready

executing process,thissystemfunctionisinvoked.Asanewprocessisnotbuilt,the

oldprocessidentificationstays,butthenewprocessreplacesdata,stack,data,head,etc.

exit()

Theexit()isasystemcallthatisusedtoendprogramexecution.Thiscall
indicatesthatthethreadexecutioniscomplete,whichisespeciallyusefulinmulti-

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page14

threaded environments. The operating system reclaims resources spent by the

processfollowing the use of the exit() system function.

SystemcomponentsinOS:-

An operating system is a large and complex system that can only be created by

partitioning intosmall parts. These pieces should be a well-defined part of the

system, carefully defining inputs,outputs,andfunctions.

Although Windows, Mac, UNIX, Linux, and other OS do not have the same

structure, mostoperating systems share similar OS system components, such as

file,memory, process, I/Odevicemanagement.

Thecomponentsofanoperatingsystemplayakeyroletomakeavarietyofcomputer

systempartsworktogether.There

arethefollowingcomponentsofanoperatingsystem,suchas:

1. ProcessManagement

2. FileManagement

3. NetworkManagement

4. MainMemoryManagement

5. SecondaryStorageManagement

6. I/ODeviceManagement

7. SecurityManagement

8. CommandInterpreterSystem

Operatingsystem componentshelp you get thecorrect computingbydetectingCPU and

memoryhardware errors.

1. ProcessManagement

The process management component is a procedure for managing many processes

running simultaneously on the operating system. Every running softwareapplication

program has one or more processes associated with them.

For example, when you use a search engine like Chrome, there is a process running

for thatbrowserprogram.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page15

Functionsofprocessmanagement

Herearethefollowingfunctionsofprocessmanagementintheoperatingsystem,suchas:

Processcreationanddeletion.

Suspensionandresumption.

Synchronizationprocess

Communicationprocess

2. FileManagement

A file is a set of related information defined by its creator. It commonly represents

programs(bothsourceandobjectforms)anddata. Datafiles canbealphabetic, numeric,

oralphanumeric.

Functionoffilemanagement

Process management keeps processes running efficiently. It also uses memory

allocated to themandshuttingthemdownwhenneeded.

The execution of a process must be sequential so, at least one instruction should be

executed onbehalfoftheprocess.

Theoperatingsystemhasthefollowingimportantactivitiesinconnectionwithfilemanagement:

o Fileanddirectorycreationanddeletion.

o Formanipulatingfilesanddirectories.

o Mappingfilesontosecondarystorage.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page16

o Backupfilesonstablestoragemedia.

3. NetworkManagement

Networkmanagementis the process of

administeringandmanagingcomputernetworks. Itincludesperformancemanagement,

provisioning of networks, fault analysis, and maintaining thequalityofservice.

A distributed system is a collection of computers or processors thatnever share

theirmemoryand clock. In this type of system, all the processors have their local

memory, and the processorscommunicate with each other using

differentcommunication cables, such as fibre optics ortelephonelines.

Thecomputersinthenetworkareconnectedthroughacommunicationnetwork, which

canconfigureinmanydifferentways.Thenetworkcanfullyorpartiallyconnectinnetwork

management,whichhelpsusersdesignroutingandconnectionstrategiesthatovercomeco

nnectionandsecurityissues.

FunctionsofNetworkmanagement

Networkmanagementprovidesthefollowingfunctions,suchas:

o Distributed systems help you to various computing resources in size and
function. Theymayinvolveminicomputers,microprocessors,andmanygeneral-
purposecomputersystems.

o A distributed system also offers the user access to the various resources the
networkshares.

o It helps to access shared resources that helpcomputation to speed up oroffers
dataavailabilityandreliability.

4. MainMemorymanagement

Mainmemoryisalargearrayofstorageorbytes,whichhasanaddress.Thememorymanage

mentprocessisconductedbyusingasequenceofreadsorwritesofspecificmemoryaddresses.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page17

It should be mapped to absolute addresses and loaded inside the memoryto execute

a program.The selectionofamemorymanagementmethoddependsonseveralfactors.

However, it is mainly based on the hardware design of the system. Each algorithm

requirescorresponding hardware support. Main memory offers fast storage that can

be accessed directlyby the CPU. It is costly and hence has a lower storage capacity.

However, for a program to beexecuted,itmustbeinthemainmemory.

FunctionsofMemorymanagement

AnOperatingSystemperformsthefollowingfunctionsforMemoryManagementintheop

eratingsystem:

o Ithelpsyoutokeeptrackofprimarymemory.

o Determinewhatpartofitareinusebywhom,whatpartisnotinuse.

o Inamultiprogrammingsystem,theOSdecideswhichprocesswillgetmemoryand
howmuch.

o Allocatesthememorywhenaprocessrequests.

o Italsode-
allocatesthememorywhenaprocessnolongerrequiresorhasbeenterminated.

5. Secondary-StorageManagement

The most important task of a computer system is to execute programs. These

programs help youto access the data from the main memory during execution. This

memory of the computer is verysmall to store all data and programs permanently.

The computer system offers secondary storagetobackupthe mainmemory.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page18

FunctionsofSecondarystoragemanagement

Herearesomemajorfunctionsofsecondarystoragemanagementintheoperatingsystem:

Storageallocation

Freespacemanagement

Diskscheduling

6. I/ODeviceManagement

One of the important use of an operating system that helps to hide the variations of

specifichardware devicesfromtheuser.

FunctionsofI/Omanagement

TheI/Omanagementsystemoffersthefollowingfunctions,suchas:

Itoffersabuffercachingsystem

Itprovidesgeneraldevicedrivercode

Itprovidesdriversforparticularhardwaredevices.

I/Ohelpsyoutoknowtheindividualitiesofaspecificdevice.

7. SecurityManagement

Todaymoderncomputersuseharddrives/SSDastheprimarystorageofbothprogramsand

data.However,thesecondarystoragemanagementalsoworkswith storage

devices, such as USB

flashdrivesandCD/DVDdrives.Programslikeassemblersandcompilersarestoredon

thediskuntilitisloadedintomemory,andthenusethediskisusedasasourceanddestinationf

orprocessing.

The various processes in an operating system need to be secured from other

activities. Therefore,various mechanisms can ensure those processes that want to

operate files, memory CPU,

andotherhardwareresourcesshouldhaveproperauthorizationfromtheoperatingsystem.

Securityreferstoamechanismforcontrollingtheaccessofprograms,processes,or

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page19

users to

theresourcesdefinedbycomputercontrolstobeimposed,togetherwithsomemeansofenfo

rcement.

For example, memory addressing hardware helps to confirm that a process can be

executedwithin its own address space. The time ensures that no process has control

of the CPU withoutrenouncing it. Lastly, no process is allowed to do its own I/O to

protect, which helps you to keepthe integrityofthevarious peripheraldevices.

Security can improve reliability by detecting latent errors at the interfaces between

componentsubsystems.Early detection of interface errors can prevent thefoulness of

ahealthysubsystembya malfunctioningsubsystem.Anunprotectedresource cannot

misuse by an unauthorized orincompetentuser.

9. CommandInterpreterSystem

One of the most important components of an operating system is its command

interpreter.Thecommandinterpreteristheprimaryinterfacebetweentheuserandtherest

ofthesystem.

Many commands are given to the operating system by control statements. A

program that readsand interprets control statements is automatically executed when

a new job is started in a batchsystemorauserlogsintoatime-

sharedsystem.Thisprogramisvariouslycalled.

o Thecontrolcardinterpreter,

o Thecommand-lineinterpreter,

o Theshell(inUNIX),andsoon.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page20

Its function is quite simple, get the next command statement, and execute it. The

commandstatements deal with process management, I/O handling, secondarystorage

management, mainmemorymanagement,file

systemaccess,protection,andnetworking.

PROCESS: A process can be thought of as a program in execution. A process is the unit of workin

most systems.

A process will need certain resources—such as CPU time, memory, files, and I/O devices

to accomplish its task. These resources are allocated to the process either when it is created or

while it is executing.

StructureofaProcessinMemory

 Aprocessismorethantheprogramcode,whichissometimesknownasthetext section.

 Italsoincludesthecurrentactivity,asrepresentedbythevalueof theprogramcounter

andthecontentsoftheprocessor’sregisters.

 A process generally also includes the process stack, which contains temporary data

(suchasfunction parameters, return addresses, and local variables).

 Adatasection,whichcontainsglobalvariables.

 Aprocessmayalsoincludeaheap,whichismemorythatisdynamicallyallocated during process run

time.

WhenaProgrambecomes Process?

A program is a passive entity, such as a file containing a list of instructions stored on disk

(Often called as executable file). In contrast, a process is an active entity,with a program counter

specifying the nextinstruction to execute and a set of associated resources. Aprogrambecomes a

process when an executable file is loaded into memory.

Two common techniques for loading executable files are double-clicking an icon

representing the executable file and entering the name of the executable file on the command line

(as in prog.exe or a.out).

Iftwoprocessesareassociatedwiththesameprogram,aretheysameordifferent?(Or) Explain if you

run same program twice, what section would be shared in memory?

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page21

Although two processes may be associated with the same program, they are nevertheless

considered two separate execution sequences. For instance, several users may berunning different

copies of the mail program, or the same usermay invoke many copies of the web browser program.

Each of these is a separate process; and although the text sections are equivalent, the data, heap,

and stack sections vary. It is also common to have a process that spawns many processes as it runs.

1. ProcessState

As a process executes, it changes state. The state ofa process is defined in part bythecurrent

activity of that process.

Aprocessmaybeinone ofthefollowing states:

 New:Theprocess isbeingcreated.

 Running:Instructionsarebeingexecuted.

 Waiting:Theprocessiswaitingforsomeeventtooccur(suchasanI/Ocompletionor reception of

a signal).

 Ready:Theprocessiswaitingtobeassigned toaprocessor.

 Terminated:Theprocesshasfinishedexecution.

2. ProcessControlBlock

Each process is represented in the operatingsystem bya Process Control Block (PCB) or

Task Control Block. It contains many pieces of information associated with a specific process,

including these:

 Processstate:Thestatemaybe new,ready,running, andwaiting, halted,andsoon.

 Programcounter. The counterindicatestheaddress ofthenext instruction tobeexecutedfor this

process.

 CPU registers. The registers vary in number and type, depending on the computer

architecture. They include accumulators, index registers, stack pointers, and general- purpose

registers, plus any condition-code information. Along with the program counter, this state

information must be saved when an interrupt occurs, to allow the process to be continued

correctly afterward.

 CPU-scheduling information. This information includes a process priority, pointers to

scheduling queues, and any other scheduling parameters.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page22

 Memory-management information. This information may include such items as the valueof

the base and limit registers and the page tables, or the segment tables, dependingon the

memory system used by the operating system.

 Accounting information. This information includes the amount of CPU and real time used,

time limits, account numbers, job or process numbers, and so on.

 I/O status information. This information includes the list of I/O devices allocated to the

process, a list of open files, and so on.

ProcessScheduling

Theobjectiveofmultiprogrammingistohavesomeprocessrunningatalltimes,to maximize CPU utilization.

TheobjectiveoftimesharingistoswitchtheCPUamongprocessessofrequentlythat users can

interact with each program while it is running.

To meet these objectives, the process scheduler selects an available process (possiblyfrom

aset of several available processes) for program execution on the CPU.

1. SchedulingQueues

Thefollowingarethedifferentqueuesavailable,

a. Job Queue

 Asprocessesenterthesystem,theyareputintoajobqueue,whichconsistsofall processes in the

system.

b. Ready Queue

 The processes that are residingin main memoryand are readyand waitingto execute are

kept on a list called the ready queue.

 This queue is generally stored as a linked list. A ready-queue header containspointers to

the first and final PCBs in the list. Each PCB includes a pointer field that points to the

next PCB in the ready queue.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page23

c. DeviceQueue

 ThelistofprocesseswaitingforaparticularI/Odeviceiscalled adevicequeue.

 Eachdevicehasitsowndevice queue.

Queuing-diagramrepresentationofprocessscheduling

Acommonrepresentationofprocessschedulingisaqueuingdiagram.Eachrectangular

boxrepresentsaqueue. Twotypesofqueuesare present: theready queueanda

set of device queues. The circles represent the resources that serve the queues, and the arrows

indicate the flow of processes in the system.

A new process is initially put in the ready queue. It waits there until it is selected for

execution, or dispatched. Once the process is allocated the CPU and is executing, one of several

events could occur:

 TheprocesscouldissueanI/OrequestandthenbeplacedinanI/O queue.

 Theprocesscould createanewchildprocessandwaitforthechild’stermination.

 The process could be removed forcibly from the CPU, as a result of an interrupt, andbeput

back in the ready queue.

In the first two cases, the process eventually switches from the waiting state to the ready

state and is then put back in the ready queue. A process continues this cycle until it terminates, at

which time it is removed from all queues and has its PCB and resources deallocated.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page24

2. Schedulers

Definition: A process migrates among the various scheduling queues throughout its lifetime. The

operating system must select, for scheduling purposes, processes from these queues in some

fashion. The selection process is carried out bythe appropriate scheduler.

TypesofSchedulers

a. Long-TermSchedulerorJobScheduler

 Often, in a batch system, more processes are submitted than can be executedimmediately.

These processes are spooled toa mass-storage device (typically a disk), where they are

kept for later execution.

 The long-term scheduler, or job scheduler, selects processes from this pool and loads

them into memory for execution.

 The long-term scheduler executes much less frequently; minutes may separate the

creation of one new process and the next.

 The long-term scheduler controls the degree of multiprogramming (the number of

processes in memory).

 Ifthedegreeofmultiprogrammingisstable,thentheaveragerateofprocesscreationmust be

equal to the average departure rate of processes leaving the system. Thus, the long- term

scheduler may need to be invoked only when a process leaves the system.

 Because of the longer interval between executions, the long-term scheduler can afford to

take more time to decide which process should be selected for execution.It is important

that the long-term scheduler select a good process mix of I/O-bound and CPU-bound

processes.

 Onsomesystems,thelong-termschedulermaybeabsentorminimal.

b. Short-TermScheduler,OrCPUScheduler

 Theshort-termscheduler,or CPU scheduler,selectsfromamongthe processes that are

readyto execute and allocates the CPU to one of them.

 Theshort-termschedulermustselectanewprocessfortheCPUfrequently.

 AprocessmayexecuteforonlyafewmillisecondsbeforewaitingforanI/Orequest. Often, the

short-term scheduler executes at least once every 100 milliseconds.

 Becauseoftheshorttimebetweenexecutions,the short-termschedulermustbefast.

c. Medium-TermScheduler

 Some operating systems, such as time-sharing systems, may introduce an additional,

intermediate level of scheduling.

 The key idea behind a medium-term scheduler is that sometimes it can be advantageousto

remove a process from memory (and from active contention for the CPU) and thus reduce

the degree of multiprogramming.

 Later, the process can be reintroduced into memory, and its execution can be continued

where it left off. This scheme is called swapping.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page25

 The process is swapped out, and is later swapped in, by the medium-term scheduler.

Swapping may be necessary to improve the process mix or because a change in memory

requirements has overcommitted available memory, requiringmemory to be freed up.

3. Context Switch

Definition: Switching the CPU to another process requires performing a state save of the current

process and a state restore of a different process. This task is known as a context switch.

Whenacontextswitchoccurs,thekernelsavesthecontextoftheoldprocessinitsPCB and loads the

saved context of the new process scheduled to run.

Overhead: Context-switch time is pure overhead, because the system does no useful workwhile

switching.

Switching Speed: Switching speed varies from machine to machine, depending on the memory

speed, the number of registers that must be copied, and the existence of special instructions (such

as a single instruction to load or store all registers). A typical speed is a fewmilliseconds.

Hardware Support: Context-switch times are highly dependent on hardware support. A context

switchhere simply requires changing the pointer to the current register set. Of course,if there are

moreactiveprocessesthanthereareregistersets,thesystemresortstocopying registerdatatoand from

memory, as before. Also, the more complex the operating system, the greater the amount of work

that must be done during a context switch

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page26

4. CPU–I/OBurstCycle

The success of CPU scheduling depends on an observed property ofprocesses: process

execution consists of a cycle of CPU execution and I/O wait. Processes alternate between these

two states. Process execution begins with a CPU burst. That is followed byanI/O burst, which is

followed byanother CPU burst, then another I/O burst, and so on. Eventually, the finalCPU burst

ends with a system request to terminate execution.

DefinitionofNonPreemptiveScheduling

Under nonpreemptive scheduling, once the CPU has been allocated to a process, the

process keeps the CPU until it releases the CPU either by terminating or by switching to the

waiting state. This scheduling method was used by Microsoft Windows 3.x.

DefinitionofPreemptiveScheduling

Under this, a running process may be replaced by higher priority process at any time. Used

from Windows 95 to till now. Incurs the cost associated with access to shared data. It also affects

the design of OS.

Dispatcher

Another component involved in the CPU-scheduling function is the dispatcher. The

dispatcher is the module that gives control of the CPU to the process selected by the short- term

scheduler. This function involves the following:

 Switchingcontext

 Switchingtousermode

 Jumpingtotheproperlocationintheuser programtorestartthatprogram

Thedispatchershouldbeasfastaspossible,sinceitisinvokedduringevery process

switch.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page27

DispatchLatency:Thetimeittakesforthedispatchertostop oneprocessandstartanotherrunning is known as

the dispatch latency.

Operationsonprocesses(OR)Systemcallinterfaceforprocessmanagement-fork,exit,wait,

waitpid,exec

The processes in most systems can execute concurrently, and they may be created and

deleted dynamically. Thus, these systems must provide a mechanism for process creation and

termination.

a. ProcessCreation

During the course of execution, a process may create several new processes. The creating

process is called a parent process, and the new processes are called the children of that process.

Each of these new processes may in turn create other processes, forming a tree of processes.

SystemCalls

 fork()

 Most operating systems (including UNIX, Linux, and Windows) identify processes

according to a unique process identifier (or pid), which is typically an integer number.

 Anewprocess is created bythefork ()system call. Thenewprocess consists ofa copyof the

address space of the original process.

 This mechanism allows the parent process to communicate easily with its child process.

Both processes (the parent and the child) continue execution at the instruction after the

fork (), with one difference: thereturn code for thefork () is zero for the new (child)

process, whereas the (nonzero) process identifier of the childis returned to the parent.

 exec()

 After a fork () system call, one of the two processes typically uses the exec () systemcallto

replace the process’s memoryspace with a new program.

 The exec () system call loads a binary file into memory and starts its execution. In this

manner, the two processes are able to communicate and then go their separate ways.

 wait()

 The parent can then create more children; or, if ithas nothing else to do while the child

runs, it can issue a wait () system call to move itself off the ready queue until the

termination of the child. Because the call to exec () overlays the process’s address space

with a new program, the call to exec () does not return control unless an error occurs.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page28

b. ProcessTermination

A process terminates when it finishes executing its final statement and asks the operating

system to delete it by using the exit () system call. At that point, the process may return a status

value (typically an integer) to its parent process (via the wait() system call). All the resources of

the process—including physical and virtual memory, open files and I/O buffers—are deallocated

by the operating system.

Termination can occur in other circumstances as well. A process can cause thetermination

of another process via an appropriate system call (for example, TerminateProcess() in Windows).

Usually, such a system call can be invoked only by the parent of the process that is to be

terminated. Otherwise, users could arbitrarily kill each other’s jobs.

COOPERATINGPROCESSES

 TheconcurrentprocessexecutingintheOSmaybeeitherindependent process or

cooperating process.

 Independentprocesscannotaffectorbeaffectedbytheexecutionofanother process.

 Cooperatingprocesscanaffectorbeaffectedbytheexecutionofanotherprocess.

Advantagesofprocesscooperation

1. Informationsharing:severalusersmaybeinterestinthesamepieceof information.

2. Computationspeed-up:Ifwewantaparticulartasktorunfaster,wemust break it

into subtasks and run in parallel.

3. Modularity:Constructing thesystem inmodularfashion,dividing thesystem

functions into separate process.

4. Convenience:Userwillhavemanytaskstoworkinparallel(Editing,compiling,

printing).

Processescancommunicatewitheachotherthroughboth:

 SharedMemory

 Messagepassing

The following figure shows a basic structure of communicationbetweenprocesses

via the shared memory method and via the message passing method.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page29

(i) SharedMemory

Communication between processes using shared memory requires

processestosharesomevariable, and itcompletelydependson howtheprogrammerwill

implement it.

One way of communication using shared memory can be imagined like this:

Suppose process1 and process2 are executing simultaneously, and theyshare some

resources or use some information from another process. Process1 generates

informationaboutcertain computationsorresourcesbeingused and keepsitasarecord in

shared memory. When process2 needs to use the shared information, it will check in

the record stored in shared memory and take note of the information generated by

process1 and act accordingly.

Processes can use shared memory for extracting information as a record from

another process as well as for delivering any specific information to other processes.

Ex:Producer-Consumerproblem

A producer process produces information that is consumed by a consumer

process. For example, a print program produces characters that are consumed by the

printer driver.

A producer can produce one item while the consumer is consuming another

item. The Producer and Consumer must be synchronized. The consumer does not tryto

consume an item, the consumer must wait until an item is produced.

Unbounded-Buffer

 nopractical limit onthesizeof thebuffer.

 Producercan produceanynumberofitems.

 Consumermayhave towait

Bounded-Buffer

 assumesthatthereisa fixedbuffersize.

Bounded-Buffer–Shared-Memory Solution:

Shared data

#define BUFFER_SIZE 10

Typedef struct

{

.. .

}item;

itembuffer[BUFFER_SIZE];

int in = 0;

intout=0;

Bounded-Buffer–Producer Process:

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page30

itemnextProduced;

while (1)

{

while(((in+1)% BUFFER_SIZE)==out); /*donothing

*/buffer[in]= nextProduced;

in=(in+1)%BUFFER_SIZE;

}

Bounded-Buffer–ConsumerProcess:

itemnextConsumed;

while (1)

{

while(in==out); /*donothing

*/next Consumed = buffer[out];

out=(out+1)%BUFFER_SIZE;

}

(ii) MessagingPassingMethod

In this method, processes communicate with eachother without usinganykind of

sharedmemory. Iftwoprocesseswanttocommunicatewitheachother, theyproceed as

follows

:

 Establish a communication link (if a link alreadyexists,noneedto establish it

again.)

 Startexchangingmessagesusingbasicprimitives.

 Themessagesizecanbeoffixedsizeorofvariablesize.Ifitisoffixed size,itiseasy

foranOSdesignerbutcomplicatedforaprogrammerandifit is of variable size then it

is easy for a programmer but complicated for the OS designer.

 Cooperating process to communicate with each other via an inter process

communication (IPC).

 IPC provides a Mechanism to allow processes to communicate and tosynchronize

their actions.

 IfPandQwanttocommunicate,acommunicationlinkexistsbetweenthemand

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page31

exchangemessages viasend/receive.OSprovidesthis facility.

 IPCfacilityprovidestwooperations:

Send (message)–messagesizefixedorvariable.

Receive(message)

 Implementationofcommunicationlink byfollowing.

o physical(e.g.,sharedmemory,hardwarebus)

o logical(e.g.,logicalproperties)

Methodsforlogicalimplementationof a link

i. Directcommunication.

ii. Indirectcommunication.

DirectCommunication

 Eachprocessesmust nameeachotherexplicitly:

o Send(P,message) –sendamessagetoprocessP.

o Receive(Q,message)–receiveamessagefromprocessQ.

 Linksareestablishedautomatically.

 Alinkis associatedwith exactlyonepairofcommunicatingprocesses.

 Betweeneach pair thereexistsexactlyonelink.

 Thelink maybeunidirectional, but is usuallybi-directional.

 Thisexhibitsboth symmetryand asymmetryin addressing

Symmetry:

Boththesenderandthereceiverprocessesmustnametheotherto communicate.

Asymmetry:

Onlysendernamestherecipient,therecipientisnotrequiredtonamethesender. The

send and receive primitives are as follows.

o Send(P,message)–sendamessagetoprocess P.

o Receive(id,message)–receiveamessagefromanyprocess.

Disadvantageofdirectcommunication

Changinga name oftheprocesscreatesproblems.

IndirectCommunication

 Themessagesaresentandreceivedfrommailboxes(alsoreferredtoas ports).

 Amailbox isanobject

 Processcanplace messages.

 Processcanremovemessages.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page32

 Twoprocesses cancommunicate onlyiftheyhaveasharedmailbox.

 Primitivesaredefinedas:

send(A,message)–sendamessagetomailboxA

receive(A,message)–receiveamessagefrommailbox A.

 Amailboxmaybeowned either byaprocess orbythe OS.

 If the mailbox is owned by a process, then we distinguish b/w the owner (who

can only receive msg through this mailbox) and the user (who can only send

msg to the mailbox).

 Amailboxmaybe owned bytheOSis independentand provide amechanism,

o createa mailbox

o receivemessagesthroughmailbox

o destroyamailbox.

Mailboxsharingproblem

TheprocessesP1,P2,andP3allsharemailboxA.ProcessesP1,sends;P2

andP3receivethemessagefromA.Who gets amessage?

Solutions

 Allowalinktobeassociatedwith at most two processes.

 Allowonlyoneprocessat atimetoexecuteareceive operation.

 Allow the system to select arbitrarily the receiver. The system may identifythe

receiver to the sender.

DefiningThread

AthreadisaLightweightprocess.Threadisaflowofcontrolexecutionofthe program.
Threadisa basicunit of CPU utilization; it comprisesa thread ID, a program counter, a register set,and astack. It

shares with other threads belonging to the same process its code section, data section, and other operating-

system resources, such as open files and signals.

A traditional (or heavyweight) process has a single thread of control. If a process has

multiple threads of control, it can perform more than one task at a time.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page33

SingleThread

 Aprocessisaprogramthatperformsasinglethreadofexecution.

 For example, when a process is running a word-processor program, a single thread of

instructions is being executed.

 Thissinglethreadofcontrolallowstheprocesstoperformonlyonetaskat atime.The usercannot

simultaneously type in characters and run the spell checker within the same process, for

example.Multi Thread

 Most modern operating systems have extended the process concept to allow a process tohave

multiple threads of execution and thus to perform more than one task at a time.

 This feature is especially beneficial on multicore systems, where multiple threads can

runinparallel.

 Onasystemthatsupportsthreads,thePCBisexpandedtoincludeinformationforeach thread. Other

changes throughout the system are also needed to support threads.

MultithreadingModels

Support for threads may be provided either at the user level, for user threads, or by the

kernel, for kernel threads. User threads are supported above the kernel and are managed without

kernel support, whereas kernel threads are supported and managed directly by the operating

system. Virtually all contemporary operating systems—including Windows, Linux, Mac OS X,

and Solaris support kernel threads.

Ultimately, a relationship must exist between user threads and kernel threads. The

following are the three common ways of establishing such a relationship: the many-to-one model,

the one-to-one model, and the many-to many models.

1. Many-to-OneModel

 Themany-to-onemodelmapsmanyuser-levelthreadstoonekernelthread.

2. One-to-OneModel

 Theone-to-onemodelmapseachuserthread toakernelthread.

3. Many-to-ManyModel

 Itmultiplexesmanyuser-level threads toasmalleror equal numberof kernelthreads.

 OPERATINGSYSTEM(23CS403)

CSE, NRCM Page34

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page35

UNIT-2

CPU scheduling- Scheduling criteria, Scheduling Algorithms, Multiple Processor Scheduling, System
call interface for process management-fork, exit, wait, waitpid, exec.

Deadlocks- system Model, Deadlock Characterization, Methods for handling deadlocks, Deadlock Prevention,

Deadlock Avoidance, deadlock Detection, and recovery from deadlock

CPUscheduling

CPUschedulingistheprocessofdecidingwhichprocesswillownthe CPU to use

while another process is suspended. The main function of the CPU

schedulingistoensurethatwhenevertheCPUremainsidle,theOShasatleast selected one of

the processes available in the ready-to-use line.

In Multiprogramming, if the long-term scheduler selects multiple I / O binding

processesthenmostofthetime,theCPUremainsanidle.Thefunctionofan effective program

is to improve resource utilization.

If most operating systems change their status from performance to waiting then

there may always be a chance of failure in the system. So in ordertominimize this

excess, the OS needs to schedule tasks in order to make full use of the CPU and avoid

the possibility of deadlock.

ObjectivesofProcessSchedulingAlgorithm

 UtilizationofCPUatmaximumlevel.KeepCPUasbusyaspossible.

 AllocationofCPUshouldbefair.

 ThroughputshouldbeMaximum.i.e.Numberofprocessesthatcomplete their

execution per time unit should be maximized.

 Minimumturnaroundtime,i.e.timetakenbyaprocesstofinishexecution should be

the least.

 Thereshouldbea minimumwaitingtime andtheprocessshouldnotstarve in the

ready queue.

 Minimum responsetime. Itmeansthatthetimewhenaprocessproducesthe first

response should be as less as possible.

Terminologies

 ArrivalTime:Timeatwhichtheprocessarrivesinthereadyqueue.

 CompletionTime:Timeatwhichprocesscompletesitsexecution.

 BurstTime:TimerequiredbyaprocessforCPUexecution.

 TurnAroundTime:TimeDifferencebetweencompletiontimeandarrival time.

TurnAroundTime=CompletionTime–ArrivalTime

 WaitingTime(W.T):TimeDifferencebetweenturnaroundtimeandburst

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page36

time.

WaitingTime=TurnAroundTime–BurstTime

THESCHEDULINGCRITERIA

CPUutilization:

Themain purposeofanyCPUalgorithm isto keep theCPUas busyas possible.

Theoretically, CPU usage can range from 0 to 100 but in a real-time system, it

varies from 40 to 90 percent depending on the system load.

Throughput:

The average CPU performance is the number of processes performed and

completed during each unit. This is called throughput. The output may vary

depending on the length or duration of the processes.

TurnroundTime:

For a particular process, the important conditions are how long it takes to

performthatprocess.Thetimeelapsedfromthetimeofprocessdelivery tothe

timeofcompletionisknownastheconversiontime.Conversiontimeisthe amount of time

spent waiting for memory access, waiting in line, using CPU, and waiting for I / O.

WaitingTime:

The Scheduling algorithm does not affect the time required to completethe

process once it has started performing. It only affects the waiting time oftheprocess

i.e. the time spent in the waiting process in the ready queue.

ResponseTime:

In a collaborative system, turn around time is not the best option. The process

may produce something early and continue to computing the new results while the

previous results are released to the user. Therefore another method is the time taken

in the submission of the application process until the first response is issued. This

measure is called response time.

TypesofCPUSchedulingAlgorithms

Therearemainly twotypesofschedulingmethods:

PreemptiveScheduling:

Preemptiveschedulingisusedwhenaprocessswitchesfromrunningstateto ready

state or from the waiting state to the ready state.

Non-PreemptiveScheduling:

Non-Preemptiveschedulingisusedwhenaprocessterminates,orwhena process

switches from running state to waiting state.

https://www.geeksforgeeks.org/preemptive-and-non-preemptive-scheduling/
https://www.geeksforgeeks.org/preemptive-and-non-preemptive-scheduling/

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page37

1. FirstComeFirstServeScheduling:

FCFS considered to be the simplest of all operating system scheduling

algorithms. First come first serve scheduling algorithmstatesthattheprocessthat

requeststheCPUfirstisallocatedtheCPUfirstandisimplementedbyusingFIFO queue.

Characteristics:

 FCFS supports non-preemptive and preemptive CPU

schedulingalgorithms.

 TasksarealwaysexecutedonaFirst-come,First-serveconcept.

 FCFSiseasytoimplementanduse.

 Thisalgorithmisnotmuchefficientinperformance,andthewaittimeisquite high.

Advantages:

 Easy toimplement

 Firstcome,firstservemethod

Disadvantages:

 FCFSsuffersfromConvoyeffect.

 Theaveragewaitingtimeismuchhigherthantheotheralgorithms.

 FCFSisvery simpleandeasy toimplementandhencenotmuchefficient.

2. ShortestJobFirst (SJF)Scheduling:

Shortest job first (SJF) is a scheduling process that selects the waiting process

with the smallest execution time to execute next. This scheduling method mayormay

notbepreemptive.Significantlyreducestheaveragewaitingtime forother processes waiting

to be executed. The full form of SJF is Shortest Job First.

https://www.geeksforgeeks.org/queue-data-structure/

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page38

Characteristics:

 Shortest Job first has the advantage of having a minimum average waitingtime

among all operating system scheduling algorithms.

 Itisassociatedwitheachtaskasaunitoftimetocomplete.

 Itmaycausestarvationifshorterprocesseskeepcoming.Thisproblemcan be solved

using the concept of ageing.

Advantages:

 AsSJFreducestheaveragewaitingtimethus,itisbetterthanthefirst come first serve

scheduling algorithm.

 SJFisgenerallyusedforlongtermscheduling

Disadvantages:

 OneofthedemeritSJFhasisstarvation.

 Manytimesitbecomescomplicatedtopredictthelengthoftheupcoming CPU request

3. LongestJobFirst(LJF)Scheduling:

This is just opposite of shortest job first (SJF), as the name suggests this

algorithmisbaseduponthefactthattheprocess withthelargestbursttime is processed first.

Longest Job First is non-preemptive in nature.

Characteristics:

 Among all the processes waiting in a waiting queue, CPU is alwaysassigned to

the process having largest burst time.

 Iftwoprocesseshavethesamebursttimethenthetieisbrokenusing FCFSi.e. the

process that arrived first is processed first.

https://www.geeksforgeeks.org/program-for-fcfs-cpu-scheduling-set-1/

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page39

 LJFCPUSchedulingcanbeofbothpreemptiveandnon-preemptivetypes.

Advantages:

 Noothertaskcanscheduleuntilthelongestjoborprocessexecutes completely.

 Allthejobsorprocessesfinishatthesametimeapproximately.

Disadvantages:

 Generally, the LJF algorithm gives a very high average

waitingtime and average turn-around time for a given set of processes.

 Thismayleadtoconvoyeffect.

4. PriorityScheduling:

Preemptive Priority CPU Scheduling Algorithm is apre-emptivemethod of

CPU scheduling algorithm that works based on the priority of aprocess. In this

algorithm, the editor sets the functions to be as important,meaning that the most

importantprocessmustbedonefirst.Inthecaseofanyconflict, thatis,where there are more

than one processor with equal value, thenthe most important CPU planning algorithm

works on the basis of the FCFS Characteristics:

 Schedulestasksbasedonpriority.

 Whenthehigherpriorityworkarriveswhileataskwith lesspriorityis executed, the

higher priority work takes the place of the less priority one and

 Thelatterissuspendeduntiltheexecutioniscomplete.

 Loweristhenumberassigned,higheristheprioritylevelofaprocess.

Advantages:

 TheaveragewaitingtimeislessthanFCFS

 Lesscomplex

Disadvantages:

 One of the most common demerits of the Preemptive priority CPU scheduling

algorithm is the Starvation Problem. This is the problem in which a process has

to wait for a longer amount of time to get scheduled into the CPU. This

condition is called the starvation problem.

5. RoundRobinScheduling:

Round Robin is a CPU scheduling algorithm where each process is cyclically

assignedafixedtimeslot.ItisthepreemptiveversionofFirstcomeFirstServe CPU Scheduling

algorithm. Round Robin CPU Algorithm generally focuses on Time Sharing technique.

Characteristics:

 It’ssimple,easytouse,andstarvation-freeasallprocessesgetthebalanced CPU

allocation.

 OneofthemostwidelyusedmethodsinCPUschedulingasacore.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page40

 ItisconsideredpreemptiveastheprocessesaregiventotheCPUfora very limited

time.

Advantages:

 RoundrobinseemstobefairaseveryprocessgetsanequalshareofCPU.

 Thenewly createdprocessisaddedtotheendofthereadyqueue.

6. ShortestRemainingTimeFirstScheduling(SRTF):

SRTF is the preemptive version of the Shortest job first which we have

discussed earlier where the processor is allocated tothejobclosesttocompletion. In SRTF

the process with thesmallest amountoftime remaining until completion is selected to

execute.

Characteristics:

 SRTF algorithm makes the processing of the jobs fasterthanSJF algorithm,

given it’s overhead charges are not counted.

 The context switch is done a lot more times in SRTF than in SJF and consumes

the CPU’s valuable time for processing. This adds up to its processing time and

diminishes its advantage of fast processing.

Advantages:

 InSRTFtheshortprocessesarehandledvery fast.

 Thesystemalsorequiresverylittleoverheadsinceitonlymakesadecision when a

process completes or a new process is added.

Disadvantages:

 Liketheshortestjobfirst,italsohasthepotentialforprocessstarvation.

 Long processes maybe held off indefinitelyif short processes are

continually added.

7. LongestRemainingTimeFirst:

Thelongestremainingtimefirst isapreemptiveversionofthelongestjob

firstschedulingalgorithm.Thisschedulingalgorithmisusedbytheoperatingsystem to

program incoming processes for use inasystematicway.This algorithm schedules those

processes first which have the longest processing time remaining for completion.

Characteristics:

 Amongalltheprocesseswaitinginawaitingqueue,theCPUisalways assigned to the

process having the largest burst time.

 Iftwoprocesseshavethesamebursttimethenthetieisbrokenusing FCFS i.e. the

process that arrived first is processed first.

 LJFCPUSchedulingcanbeofbothpreemptiveandnon-preemptivetypes.

Advantages:

 Nootherprocesscanexecuteuntilthelongesttaskexecutescompletely.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page41

 Allthejobsorprocessesfinishatthesametimeapproximately.

Disadvantages:

 Thisalgorithmgivesaveryhighaveragewaitingtimeandaverageturn- around time

for a given set of processes.

 Thismayleadtoaconvoyeffect.

8. HighestResponseRatioNext:

Highest Response Ratio Next is a non-preemptive CPU Scheduling algorithm

and it is considered as one of the most optimal scheduling algorithms. The name itself

statesthatweneedtofindtheresponseratioofallavailableprocessesandselectthe one with the

highest Response Ratio. A process once selected will run till completion.

Characteristics:

 Thecriteriafor HRRN isResponse Ratioand the mode is

NonPreemptive.

 HRRNisconsideredasthemodificationofShortestJobFirst toreducethe problem of

starvation.

 In comparison with SJF, during the HRRN scheduling algorithm, the CPUis

allotted to the nextprocess which has the highestresponseratio and not tothe

process having less burst time.

ResponseRatio=(W+S)/S

Here,W-Waitingtimeoftheprocess

S-Bursttimeoftheprocess.

Advantages:

 HRRNSchedulingalgorithmgenerallygives better performance thanthe

shortest job first Scheduling.

 Thereisareductioninwaitingtimeforlongerjobsandalsoitencourages shorter jobs.

Disadvantages:

 The implementation of HRRN scheduling is not possible as it is notpossible to

know the burst time of every job in advance.

 Inthisscheduling,theremayoccuranoverloadontheCPU.

9. MultipleQueueScheduling:

Processes in the ready queue can be divided into different classes where each

classhasitsownschedulingneeds.Forexample,acommondivisionis a foreground

(interactive) process and a background(batch) process.These two classes have

different scheduling needs. For this kind of situation Multilevel Queue Scheduling is

used.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page42

Thedescriptionoftheprocessesintheabovediagramisasfollows:

 System Processes: The CPU itself has its process to run, generally termedas

System Process.

 Interactive Processes: An Interactive Process is a type of process inwhich

there should be the same type of interaction.

 Batch Processes: Batch processing is generally a technique in the Operating

system that collectsthe programs and data together in the form of a batch before

the processing starts.

Advantages:

 Themainmeritofthemultilevelqueueisthatithasalowscheduling overhead.

Disadvantages:

 Starvationproblem

 Itisinflexibleinnature

10. MultilevelFeedbackQueueScheduling:

Multilevel Feedback Queue Scheduling (MLFQ) CPUSchedulingis like

Multilevel Queue Scheduling but in this process can move between the queues. And

thus, much more efficient than multilevel queue scheduling.

Characteristics:

 In a multilevel queue-scheduling algorithm, processes are permanently assigned

to a queue on entry to the system, and processes are not allowedto move

between queues.

 As the processes are permanently assigned to the queue, this setup has the

advantage of low scheduling overhead,

 Butontheotherhanddisadvantageofbeinginflexible.

Advantages:

 Itismoreflexible

 OPERATINGSYSTEM(23CS403)

CSE, NRCM Page43

 Itallowsdifferentprocessestomovebetweendifferentqueues

Disadvantages:

 ItalsoproducesCPUoverheads

 Itisthemostcomplexalgorithm.

ComparisonbetweenvariousCPUSchedulingalgorithms

HereisabriefcomparisonbetweendifferentCPUschedulingalgorithms:

Algorith

m

Allocationis

Complexity

Average

waiting time

(AWT)

Pre

emp

tion

Star

vatio

n

Performa

nce

FCFS

According to the

arrival time of the

processes,the CPUis

allocated.

Simple and

easy to

implement

Large.

No

No

Slow

SJF

Basedonthelowest

CPUbursttime (BT).

More

complex

thanFCFS

Smaller than
FCFS

No

Yes

Good

SRTF

Same as SJF the

allocationoftheCPU

is based on thelowest

CPUbursttime(BT).

But it is preemptive.

More

complex

thanFCFS

Dependingon

arrival

time, process

size

Yes

Yes

Good

RR

According to the

order of the process

arrives with fixed

time quantum (TQ)

The

complexity

dependson

TQ

Large than

SJF and

Priority

scheduling.

Yes

No

Fair

Priority

Pre-

emptive

According to the

priority. The bigger

priority task

executes first

Less

complex

Smaller than

FCFS

Yes

Yes

Well

 OPERATINGSYSTEM(23CS403)

CSE, NRCM Page44

Priority

non-

preemp

tive

According to the

priority with

monitoring the new

incoming higher

priorityjobs

Lesscomplext

han Priority

preemptive

Smaller than
FCFS

No

Yes

Most

beneficial

withbatch

systems

Algorith

m

Allocationis

Complexity

Average

waiting time

(AWT)

Pre

emp

tion

Star

vatio

n

Performa

nce

MLQ

According to the

process that residesin

the bigger queue

priority

More

complex

thanthe

priority

Smaller than

FCFS

No

Yes

Good

MLFQ

According to the

process of a bigger

priorityqueue.

Itisthemost
Complex

Smaller than

all scheduling

No

No

Good

Example1(FCFS)

1.Process ID ProcessName
 _ _ _

BurstTime(ms)
 _ _ _

P1 A 6

P2 B 2

P3 C 1

P4 D 9

P5 E 8

GanttChart

ProcessID Arrival

Time(ms)

Burst

Time

(ms)

Completion

Time (ms)

Turn Around

Time (ms)

Waiting

Time

(ns)

P1 0 6 6 6 0

P2 2 2 8 8 6

 OPERATINGSYSTEM(23CS403)

CSE, NRCM Page45

P3 3 1 9 9 8

P4 4 9 18 18 9

P5 5 8 26 26 18

AverageTurnAroundTime=(6+8 +9+18 +26)/5=67 /5=13.4ms

AverageWaitingTime =(0 +6 +8+9 +18)/ 5 =41 / 5=8.2ms

Example2(FCFS)

ProcessID ProcessName
_ _

Burst Time
 _ _ _ _ _

P1 A 79

P2 B 2

P3 C 3

P4 D 1

P5 E 25

P6 F 3

ProcessId BurstTime

(BT)

CompletionTime

(CT)

Turn

Around

Time(TAT)

Waiting

Time(WT)

P1 79 79 79 0

P2 2 81 81 79

P3 3 84 84 81

P4 1 85 85 84

P5 25 110 110 85

P6 3 113 113 110

AvgWaitingTime=(0 +79+81 +84 +85+110)/6 =73.17ms

AvgTurnAroundTime= (79 +81+84+85+110+113)/ 6=92 ms

 OPERATINGSYSTEM(23CS403)

CSE, NRCM Page46

NonPre-Emptive ShortestJobFirstCPUScheduling

GanttChart:

AverageWaitingTime=(1+12 +17 +0+5+4)/6=39/ 6=6.5 ms

AverageTurnAround Time=(4+18+2+24+7+10)/6=65/6=10.83ms Pre Emptive

Shortest Job First CPU Scheduling

Example3(SJF)

ProcessID

Arrival Time

BurstTime

 _ _ _ _ _

P0 1 3

P1 2 6

P2 1 2

P3 3 7

P4 2 4

P5 5 5

ProcessID Arrival

Time

Burst

Time

Completion

Time

TurnAround

Time

TAT=CT–AT

Waiting

Time

WT=CT–BT

P0 1 3 5 4 1

P1 2 6 20 18 12

P2 0 2 2 2 0

P3 3 7 27 24 17

P4 2 4 9 7 4

P5 5 5 14 10 5

Ganttchart:

 OPERATINGSYSTEM(23CS403)

CSE, NRCM Page47

AverageTurn AroundTime =(4 +15+2 +21+9+2)/ 6=53/ 6= 8.83 ms

AverageWaitingTime =(1+9+0 +14+5+0)/6 =29/ 6= 4.83 ms

Example4(PRIORITY)

(5has theleastpriorityand 0has thehighest priority)

Solution:

Gantt

Chart:

Proce

ss ID

Arrival

Time

Burst

Time

Comple

tion

Time

TurnAroundTime

TAT=CT-AT

WaitingTime

WT=CT–BT

P0 1 3 5 4 1

P1 2 6 17 15 9

P2 0 2 2 2 0

P3 3 7 24 21 14

P4 2 4 11 9 5

P5 6 2 8 2 0

S.No

 _

ProcessID

 _ _

ArrivalTime

 _

BurstTime

 _ _ _ _ _

Priority

 _ _

1 P1 0 5 5

2 P2 1 6 4

3 P3 2 2 0

4 P4 3 1 2

5 P5 4 7 1

6 P6 4 6 3

 OPERATINGSYSTEM(23CS403)

CSE, NRCM Page48

Process

Id

Arrival

Time

Burst

Time

Priority Completion

Time

TurnAround

Time

TAT=CT-AT

Waiting

Time

WT=TAT-

BT

P1 0 5 5 5 5 0

P2 1 6 4 27 26 20

P3 2 2 0 7 5 3

P4 3 1 2 15 12 11

P5 4 7 1 14 10 3

P6 4 6 3 21 17 11

AvgWaiting Time =(0+20+3 +11+3 +11)/ 6 =48 / 6= 8 ms

AvgTurnAroundTime=(5 +26+5 +11+ 10 +17)/ 6=74 / 6=12.33ms

Example5(RoundRobin)

TimeQuantum=1 ms

ProcessID Arrival Time Burst Time

P0 1 3

P1 0 5

P2 3 2

P3 4 3

P4 2 1

Solution:

Ganttchart:

 OPERATINGSYSTEM(23CS403)

CSE, NRCM Page49

ProcessID Arrival

Time

Burst

Time

Completion

Time

Turn

AroundTime

Waiting

Time

P0 1 3 5 4 1

P1 0 5 14 14 9

P2 3 2 7 4 2

P3 4 3 10 6 3

P4 2 1 3 1 0

AvgTurnAroundTime=(4+14+4+6+1)/5=5.8 ms

AvgWaitingTime =(1+9+2+3+0)/5=3 ms

DEADLOCK

Aprocessinoperatingsystemusesresourcesinthefollowingway.

(i) Requestsaresource

(ii) Usetheresource

(iii) Releasestheresource

A deadlock is a situation where a set of processes are blocked because each processis

holding a resource and waiting for another resource acquired by some other process.

Consider an example when two trains are coming toward each other on the same

track and there is only one track, none of the trains can move once they arein front of

each other.

A similar situation occurs in operating systems

when there are two or more processes that holdsome

resources and wait for resources heldby other(s). For

example, in the below diagram, Process1 is holding

Resource1 and waiting for Rsource2 which is acquired

by Process2, and Process2 is waiting for Resource1.

ExamplesofDeadlock

1. Thesystemhas2tapedrives.P1andP2eachholdonetapedriveandeachneeds

 OPERATINGSYSTEM(23CS403)

CSE, NRCM Page50

anotherone.

2. SemaphoresAandB,initializedto1,P0,andP1arein deadlock

as follows:

P0executeswait(A)andpreempts.P1 executes

wait(B).

NowP0andP1enterindeadlock.

3. Assumethespaceisavailableforallocationof200Kbyt sequence

of events occurs.

Systemmodel:

A system consists of a finite number of resources to be distributed

amonganumberofcompetingprocesses. The resources are partitioned into several types, each

consisting of some

number

ofidenticalinstances.Memoryspace,CPUcycles,files,I/Odevicesareexamplesofresourcetypes.Ifa

systemhas2CPUs,thenthe resourcetypeCPU has 2instances.

Aprocessmustrequestaresourcebeforeusingitandmustreleasetheresourceafterusing

it.Aprocessmayrequestasmanyresourcesasitrequirestocarryoutitstask.Thenumber

ofresourcesasitrequirestocarryoutitstask.Thenumberofresourcesrequestedmaynot

exceedthetotalnumberofresourcesavailableinthesystem.Aprocesscannotrequest3 printers if

thesystemhas onlytwo.

Aprocessmayutilizearesourceinthefollowingsequence:
(I) REQUEST: The process requests the resource. If the request cannot be granted

immediately(iftheresourceisbeingusedbyanotherprocess),thentherequestingprocessmustwaituntil

itcan

acquiretheresource.
(II) USE: The processcanoperateonthe resource.ifthe resourceisa printer,the

processcanprintontheprinter.

(III) RELEASE:Theprocessreleasestheresource.
For each use of a kernel managed by a process the operating system checks that the process

hasrequested and has been allocated the resource. A system table records whether eachresource

isfree (or) allocated. For each resource that is allocated, the table also records the process to

whichitisallocated.Ifaprocessrequestsaresourcethatiscurrentlyallocatedtoanother process,

itcanbe addedtoa queueofprocesses waitingforthis resource.

P0 P1

wait(A); wait(B)

wait(B);es

ndthefo

wait(A)

llowing

P0 P1

Request

80KB;

Request

70KB;

Request

60KB;

Request

80KB;

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page51

Toillustrateadeadlockedstate,considerasystemwith3CDRWdrives.Eachof3

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page52

processesholdsoneoftheseCDRWdrives.Ifeachprocessnowrequestsanotherdrive,the3processesw

ill be in a deadlocked state. Each is waiting for the event “CDRW is released” which can

becaused only by one of the other waiting processes. This example illustrates a deadlock

involvingthe sameresourcetype.

Deadlocks may also involve different resource types. Consider a system with one printer and

oneDVD drive. The process Pi is holding the DVD and process Pj is holding the printer. If

PirequeststheprinterandPjrequests the DVDdrive,a deadlockoccurs.

NECESSARYCONDITIONSFORDEADLOCK

 MutualExclusion

Twoormoreresourcesarenon-shareable(Onlyoneprocesscanuse at a time)

 HoldandWait

Aprocessisholdingatleastoneresourceandwaitingforresources.

 NoPre-emption

A resource cannot be taken from a process unless the processreleases the

resource.

 CircularWait

Asetofprocesseswaitingforeachotherincircularform.

ResourceAllocationGraph

The resource allocation graph is the pictorial representation of the state of a

system. As its name suggests, the resource allocation graph is the complete information

about all the processes which are holding some resources or waiting for some resources.

Italsocontainstheinformationaboutalltheinstancesofalltheresources whether they

are available or being used by the processes.

In Resource allocation graph, the process is represented by a Circle while the

Resource is represented by a rectangle.

Vertices are mainly of two types, Resource and Process. Each of them will be

represented by a different shape. Circle represents process while rectanglerepresents

resource. A resource can have more than one instance. Each instance will be represented

by a dot inside the rectangle.

EdgesinRAGarealsooftwotypes, one

represents Assignment Edge and other

represents the wait of a process for a resource

ie.Request Edge.

A resource is shown as assigned to a

process if the tail of the arrow is attached to an

instanceto theresource andtheheadis attached to

a process.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page53

A process is shown as waiting for a resource if the tail of an arrow is attached to

the process while the head is pointing towards the resource.

Example

Consider 3 processes P1, P2 and P3 and two

types of resources R1 and R2. The resources are having

1 instance each.

According to the graph, R1 is being used by P1,

P2 is holding R2 and waiting for R1, P3 iswaiting forR1

as well as R2.

The graph is deadlock free since no cycle is

being formed in the graph.

Using Resource Allocation Graph, it can be easily detected whether systemis in a

Deadlock state or not. The rules are

Rule-01:InaResourceAllocationGraphwherealltheresourcesaresingleinstance,

 If acycleis beingformed,thensystemis inadeadlockstate.

 If nocycleisbeingformed,thensystemisnotinadeadlock state.

Rule-02:InaResourceAllocationGraphwherealltheresourcesareNOTsingle instance,

 Ifacycleisbeingformed, thensystemmaybe inadeadlockstate.

 Banker’s Algorithmis applied to confirm whether system is in a deadlockstateor

not.

 Ifnocycleisbeingformed,thensystemisnotinadeadlock state.

 Presenceofacycleisanecessarybutnotasufficientconditionforthe occurrence of

deadlock.

METHODSFORHANDLINGDEADLOCK

Therearethreewaystohandledeadlock

1) Deadlockpreventionoravoidance

PREVENTION

Theideaistonotletthesystemintoadeadlockstate.Thissystemwillmake surethat

abovementioned fourconditions will notarise. Thesetechniques areverycostly so we use

this in cases where our priority is making a system deadlock-free.

One can zoom into each category individually, Prevention is done by negatingone

of the four necessary conditions for deadlock.

https://www.gatevidyalay.com/bankers-algorithm-deadlock-avoidance/

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page54

Eliminatemutualexclusion

It is not possible to dis-satisfy the mutual exclusion because some resources, such as

the tape drive and printer, are inherently non-shareable.

SolveholdandWait

Allocate all required resources to the process before the start of its execution, thisway

hold and wait condition is eliminated but it will lead to low device utilization. for

example, if a process requires a printer at a later time and we have allocated a printer

before the start of its execution printer will remain blocked tillit has completed its

execution. The process will make a new request for resources after releasing the current

set of resources. This solution may lead to starvation.

Allowpre-emption

Preempt resources from the process when resources are required by otherhigh-

priorityprocesses.

CircularwaitSolution

Each resource will be assigned a numerical number. A process can request the

resources to increase/decrease. order of numbering. For Example, if the P1 process is

allocated R5 resources, now next time ifP1 asks for R4, R3 lesser than R5 such a request

will not be granted, only a request for resources more than R5 will be granted.

AVOIDANCE

Avoidance is kind of futuristic. By using the strategy of “Avoidance”, we have to

make an assumption. We need to ensure that all information about resources that the

process will need is known to us before the execution of the process.

ResourceAllocationGraph

The resource allocation graph (RAG) is used to visualize the system‟s current

state as a graph. The Graph includes all processes, the resources that are assignedtothem,

as well as the resources that each Process requests. Sometimes,if there are fewer

processes, we can quickly spot a deadlock in the system by looking at the graph rather

than the tables we use in Banker‟s algorithm.

Banker’sAlgorithm

Bankers‟s Algorithm is a resource allocation and deadlock avoidance algorithm

whichtestalltherequestmadebyprocessesforresources,itchecksfor the safestate, and after

granting a request system remains in the safe state it allows the request, and if there is no

safestateit doesn‟t allow the request madeby the process.

Inprevention andavoidance,we get thecorrectness ofdatabutperformance

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page55

decreases.

2) Deadlockdetectionandrecovery

IfDeadlockpreventionoravoidanceisnotappliedtothesoftwarethenwecan handle this

by deadlock detection and recovery,which consist of two phases.

Inthefirstphase,weexaminethestateoftheprocessandcheckwhether there is a

deadlock or not in the system.

If found deadlock in the first phase then we apply the algorithmfor recovery of

the deadlock.

3) Deadlockignorance:

If a deadlock is very rare, then let it happen and reboot the system. This is the

approachthatbothWindowsandUNIXtake.Weusetheostrichalgorithm for deadlock

ignorance.

In Deadlock, ignorance performance is better than the abovetwo methods but not

the correctness of data.

SAFESTATE

A safe state can be defined as a state in which there is no deadlock. It is

achievable if:

 If a process needs an unavailable resource, it may wait until the same has been

released by a process to which it has already been allocated. if such a sequence

does not exist, it is an unsafe state.

 Alltherequestedresourcesareallocatedtotheprocess.

BANKER'SALGORITHM

Itisabankeralgorithmusedto avoiddeadlock and allocate resourcessafely to each

process in the computer system. The 'S-State'examines all possible testsor activities

before decidingwhether the allocation should be allowed to each process. It also helps the

operating system to successfully sharethe resources between all the processes.

The banker's algorithm is named because it checks whether a person shouldbe

sanctioned a loan amount or not to help the bank system safely simulate allocation

resources.

Suppose the number of account holders in a particular bank is 'n', and the total

moneyin abank is 'T'. If an account holder applies foraloan; first, thebank subtracts the

loan amount from full cash and then estimates the cash difference is greaterthanTto

approvetheloanamount.Thesestepsaretakenbecauseifanotherpersonapplies for a loan or

withdraws some amount from the bank, it helps the bank manage andoperate all things

without any restriction in the functionalityof the banking system.

Similarly, it works in an operating system. When a new process is created in a

computersystem,theprocessmustprovidealltypesofinformationtothe

https://www.javatpoint.com/operating-system

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page56

operating system like upcoming processes, requests for their resources, counting them,

and delays.

Based on these criteria, the operating system decides which process sequence

should be executed or waited so that no deadlock occurs in a system. Therefore, it is also

knownasdeadlock avoidancealgorithmordeadlockdetection in theoperating system.

Whenworkingwithabanker'salgorithm,itrequeststoknowaboutthree things:

1. Howmucheachprocesscanrequestforeachresourceinthesystem.Itis denoted by the

[MAX] request.

2. Howmucheachprocessiscurrentlyholdingeachresourceinasystem.Itis denoted by

the [ALLOCATED] resource.

3. Itrepresentsthenumberofeachresourcecurrently availableinthesystem.It is denoted

by the [AVAILABLE] resource.

Following are the important data structures terms applied in the banker's algorithm as

follows:

Suppose n is the number of processes, and m is the number of each type of resource

used in a computer system.

1. Available: It is an array of length 'm' that defines each type of resource available

in the system. When Available[j] = K, means that 'K' instances of Resources type

R[j] are available in the system.

2. Max: It is a [n x m] matrix that indicates each process P[i] can store themaximum

number of resources R[j] (each type) in a system.

3. Allocation: It is a matrix of m x n orders that indicates the typeof resources

currently allocated to each process in the system. When Allocation [i, j] = K, it

means that process P[i] is currently allocated K instances of Resources type R[j]in

the system.

4. Need: It is an M x N matrix sequence representing thenumberof remaining

resources for each process. When the Need[i] [j] = k,then process P[i] may require

K more instances of resources type Rj to complete the assigned work.

Need[i][j]=Max[i][j]-Allocation[i][j].

5. Finish: It is the vector of the order m. It includes a Boolean value (true/false)

indicating whether the process has been allocated to the requested resources, and

all resources have been released after finishing its task.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page57

TheBanker'sAlgorithmisthecombinationofthesafetyalgorithmandtheresource request

algorithm to control the processes and avoid deadlock.

Safety Algorithm

Itisasafetyalgorithmusedtocheckwhetherornotasystemisinasafestate or follows the

safe sequence in a banker's algorithm:

Step1:

There are two vectorsWokandFinishof length m and n in a safetyalgorithm. Initialize:

Work = Available

Finish[i]=false;forI=0,1,2, 3, 4… n -1.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page58

Step2:

Checktheavailabilitystatusforeachtypeofresources[i],suchas: Need[i] <= Work

Finish[i]==false

Iftheidoesnotexist,gotostep4. Step3:

Step4:

Work = Work +Allocation(i) //togetnewresourceallocation

Finish[i] = true

Gotostep2tocheckthestatusofresourceavailabilityforthenextprocess.If Finish[i] == true;

it means that the system is safe for all processes.

ResourceRequestAlgorithm

LetcreatearesourcerequestarrayR[i]foreachprocessP[i].

Step1:

Whenthenumberofrequestedresources ofeachtypeislessthan

the Need resources, go to step2 and if the condition fails, which means that the

processP[i] exceeds its maximum claim for the resource. As the expressionsuggests:

IfRequest(i)<=Need,thengotostep2,Elseraiseanerror message.

Step2:

Andwhenthenumberofrequestedresourcesofeachtypeislessthanthe

availableresourceforeachprocess,gotostep(3).Astheexpressionsuggests:If Request(i) <=

Available, then go to step3.

ElseProcess P[i] mustwaitfortheresource.

Step3:
Whentherequestedresourceisallocatedtotheprocessbychangingstate: Available =

Available – Request

Allocation(i)=Allocation(i)+Request(i) Needi =

Needi- Requesti

When the resource allocation state is safe, its resources are allocated to theprocess

P(i). And if the new state is unsafe, the Process P (i) has to wait for each type of Request

R(i) and restore the old resource-allocation state.

CSE, NRCM Page59

 OPERATINGSYSTEM(23CS403)

Example:

Consider a system that contains five processes P1, P2, P3, P4, P5 and the three

resource types A, B and C. Following are the resources types: A has 10, B has 5 and the

resource type C has 7 instances.

Process

A Allocation

B C

A Max

B

C

A Available

B

C

P1 0 1 0 7 5 3 3 3 2

P2 2 0 0 3 2 2

P3 3 0 2 9 0 2

P4 2 1 1 2 2 2

P5 0 0 2 4 3 3

Answerthefollowingquestionsusingthebanker'salgorithm:

1. Whatisthe referenceoftheneed matrix?

2. Determineifthesystemissafeor not.

3. Whatwillhappeniftheresourcerequest(1,0,2)forprocessP1canthe system accept this

request immediately?

4. Whatwill happeniftheresourcerequest(3,3,0)forprocessP5?

5. Whatwill happeniftheresourcerequest(0,2,0)forprocessP1?

Ans.1:

Contextoftheneedmatrix isasNeed [i]=Max[i]-Allocation [i]

NeedforP1: (7,5,3)-(0,1,0)=7, 4,3

NeedforP2: (3,2, 2)-(2,0,0)=1, 2,2

NeedforP3: (9,0, 2)-(3,0,2)=6, 0,0

NeedforP4: (2,2, 2)-(2,1,1)=0, 1,1

NeedforP5: (4,3, 3)-(0,0,2)=4, 3,1

Process

A

Need

B

C

P1 7 4 3

P2 1 2 2

P3 6 0 0

P4 0 1 1

P5 4 3 1

CSE, NRCM Page60

OPERATINGSYSTEM(23CS403)

Ans.2:ApplytheBanker'sAlgorithm:

AvailableResourcesofA,BandCare3, 3,and 2.

Nowwecheckifeachtypeofresourcerequestisavailableforeachprocess.

Step1:

Step2:

Step3:

Step4:

Step5:

ForProcessP1:

Need<=Available

7, 4, 3 <= 3, 3, 2 condition is false.

So,we examine another process, P2.

ForProcessP2:

Need<=Available

1,2, 2<=3,3, 2conditiontrue

New available = available + Allocation(3,

3, 2) + (2, 0, 0) => 5, 3, 2

Similarly,weexamineanotherprocessP3.

ForProcessP3:

P3Need<= Available

6, 0, 0 < = 5, 3, 2 condition is false.

Similarly,we examine another process, P4.

ForProcessP4:

P4Need<= Available

0,1, 1<=5,3, 2conditionis true

NewAvailableresource=Available+Allocation5,3, 2 +

2, 1, 1 => 7, 4, 3

Similarly,weexamineanotherprocessP5.

ForProcessP5:

P5Need<= Available

4,3, 1<=7,4, 3conditionis true

New available resource= Available+Allocation7, 4, 3

+ 0, 0, 2 => 7, 4, 5

Now,weagainexamineeachtypeofresourcerequestforprocesses P1 and P3.

CSE, NRCM Page61

 OPERATINGSYSTEM(23CS403)

Step6:

Step7:

ForProcessP1:

P1Need<= Available

7,4, 3<=7,4, 5conditionis true

NewAvailableResource=Available+Allocation7,4, 5 +

0, 1, 0 => 7, 5, 5

So,weexamineanotherprocessP2.

ForProcessP3:

P3Need<= Available

6,0, 0<=7,5, 5conditionistrue

NewAvailableResource=Available+Allocation7,5, 5 +

3, 0, 2 => 10, 5, 7

Hence,weexecutethebanker'salgorithmtofindthesafestateandthesafe sequence like

P2, P4, P5, P1 and P3.

Ans.3:

ForgrantingtheRequest (1,0,2),firstwehavetocheck that

Request <= Available, that is (1, 0, 2)<= (3, 3,2), Since

the condition is true, the process P2mayget

therequestimmediately.

AllocationforP2is(3,0,2)andnewAvailableis (2, 3, 0)

Contextoftheneedmatrixisasfollows: Need [i]

= Max [i] - Allocation [i]

NeedforP1: (7,5,3)-(0,1,0)=7, 4,3

NeedforP2:(3,2, 2)-(3, 0,2)=0, 2,0

NeedforP3: (9,0, 2)-(3,0,2)=6, 0,0

NeedforP4: (2,2, 2)-(2,1,1)=0, 1,1

NeedforP5: (4,3, 3)-(0,0,2)=4, 3,1

ApplytheBanker's Algorithm:

AvailableResourcesofA,BandCare 2, 3,and0.

Nowwecheckifeachtypeofresourcerequestisavailableforeachprocess.

Process

A

Need

B

C

P1 7 4 3

P2 0 2 0

P3 6 0 0

P4 0 1 1

P5 4 3 1

CSE, NRCM Page62

Step1:

Step2:

Step3:

Step4:

Step5:

Step6:

OPERATINGSYSTEM(23CS403)

ForProcessP1:

Need<=Available

7, 4, 3 <= 2, 3, 0 condition is false.

So,we examine another process, P2.

ForProcessP2:

Need<=Available

1,2, 2<=2, 3, 0conditiontrue

New available = available + Allocation(2,

3, 0) + (3, 0, 2) => 5, 3, 2

Similarly,weexamineanotherprocessP3.

ForProcessP3:

P3Need<= Available

6, 0, 0 < = 5, 3, 2 condition is false.

Similarly,we examine another process, P4.

ForProcessP4:

P4Need<= Available

0,1, 1<=5,3, 2conditionis true

NewAvailableresource=Available+Allocation5,3, 2 +

2, 1, 1 => 7, 4, 3

Similarly,weexamineanotherprocessP5.

ForProcessP5:

P5Need<= Available

4,3, 1<=7,4, 3conditionis true

Newavailableresource=Available+Allocation7, 4, 3 +

0, 0, 2 => 7, 4, 5

Now,weagainexamineforprocessesP1andP3.

ForProcessP1:

P1Need<= Available

7,4, 3<=7,4, 5conditionis true

NewAvailableResource=Available+Allocation7,4, 5 +

0, 1, 0 => 7, 5, 5

So,weexamineanotherprocessP2.

CSE, NRCM Page63

 OPERATINGSYSTEM(23CS403)

Step7:

P3.

Ans.4:

ForProcessP3:

P3Need<= Available

6,0, 0<=7,5, 5conditionistrue

NewAvailableResource=Available+Allocation7,5, 5 +

3, 0, 2 => 10, 5, 7

Hence,P2grantedimmediatelyandthesafesequencelikeP2,P4,P5,P1and

Forgrantingthe Request (3,3, 0) byP5, firstwehavetocheck that

Request<= Available, thatis(3,3, 0)<=(2, 3,0),

Sincetheconditionisfalse.Sotherequestfor(3,3,0)byprocessP5

cannotbe granted.

Ans.5:

Forgrantingthe Request (0,2, 0) byP1, firstwehavetocheck that

Request<= Available, thatis(0,2, 0)<=(2, 3,0),

Sincetheconditionistrue.Sotherequestfor(0,2,0)byprocessP1maybe

granted.

AllocationforP1is(0,3,0)

Contextoftheneedmatrixisasfollows: Need [i]

= Max [i] - Allocation [i]

NeedforP1: (7,5,3)-(0,3, 0)=7, 2, 3

ApplytheBanker's Algorithm:

AvailableResourcesofA,BandCare2,1,

and0.

ForProcess P1:7, 2,3<=2,1,0condition isfalse.

ForProcess P2:0, 2,0<=2,1,0condition isfalse.

ForProcess P3:6, 0,0<=2,1,0condition isfalse.

ForProcessP4:0,1,1<=2,1,0condition is false.

ForProcessP5:4,3,1 <=2,1, 0condition is false.

Hence,thestateisunsafe,P1cannotbegrantedimmediately.

Process

A

C

Need

B

P1 7 2 3

P2 0 2 0

P3 6 0 0

P4 0 1 1

P5 4 3 1

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page64

DEADLOCKDETECTION

Ifasystemdoesnotemployeitheradeadlockpreventionordeadlockavoidance algorithm

then a deadlock situation may occur. In this case-

 Applyanalgorithmtoexaminethesystem‟sstatetodeterminewhetherdeadlock has

occurred.

 Applyanalgorithm torecoverfromthe deadlock.

Adeadlockdetection algorithm is atechniqueused byan operatingsystem to identify

deadlocks in the system. This algorithm checks the status of processes andresources to

determine whether any deadlock has occurred and takes appropriate actions to recover

from the deadlock.

Thealgorithmemploysseveraltimesvaryingdata structures:

Available–Avectoroflengthmindicatesthenumberofavailableresourcesof each type.

Allocation – An n*m matrix defines the number of resources of each type

currentlyallocated to a process. The column represents resource and rows represent a

process. Request–Ann*mmatrixindicatesthecurrentrequestofeachprocess.If

request[i][j] equals k then process Piis requesting k more instances of resource type

Rj.

The Bankers algorithm includes a Safety Algorithm / Deadlock Detection

Algorithm. The algorithm for finding out whether a system is in a safe state canbe

described as follows:

Stepsof Algorithm:

1. Let Work and Finish be vectors of length m and n respectively.

Initialize Work= Available. For i=0, 1, …., n-1,

if Requesti= 0, then Finish[i] = true;

otherwise, Finish[i]= false.

2. Findanindexisuchthatboth

a) Finish[i]==false

b) Requesti<=Work

Ifnosuchiexistsgotostep4.

3. Work=Work+AllocationiFin

ish[i]= true

GotoStep 2.

4. If Finish[i]==false forsomei,0<=i<n,thenthesystemisinadeadlockedstate. Moreover,

if Finish[i]==false the process Piis deadlocked.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page65

Forexample,

1. Inthis, Work =[0,0, 0]&

Finish=[false,false,false,false,false]

2. i=0isselectedasbothFinish[0]=falseand[0,0,0]<=[0,0,0].3.

Work=[0, 0, 0]+[0,1,0]=>[0, 1, 0]&

Finish=[true,false,false,false,false].

4. i=2isselectedasbothFinish[2]=falseand[0,0,0]<=[0,1,0].5.

Work=[0, 1, 0]+[3,0,3]=>[3, 1, 3]&

Finish=[true,false,true,false,false].

6. i=1isselectedasbothFinish[1]=falseand[2,0,2]<=[3,1,3].7.

Work=[3, 1, 3]+[2,0,0]=>[5, 1, 3]&

Finish=[true,true,true,false,false].

8. i=3isselectedasbothFinish[3]=falseand[1,0,0]<=[5,1,3].9.

Work=[5, 1, 3]+[2,1,1]=>[7, 2, 4]&

Finish=[true,true,true,true,false].

10. i=4isselectedasbothFinish[4]=falseand[0,0,2]<=[7,2,4].11.

Work=[7, 2, 4]+[0,0,2]=>[7, 2, 6]&

Finish=[true,true,true,true,true].

12. SinceFinishisavectorofalltrueitmeansthereisnodeadlockinthis example.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page66

There areseveralalgorithmsfor detectingdeadlocksinanoperating system,including:

1. Wait-ForGraph:

A graphical representation of the system‟s processes and resources. A directed edgeis

created from a process to a resource if the process is waiting for that resource. A cycle in

the graph indicates a deadlock.

2. Banker’sAlgorithm:

A resource allocation algorithm that ensures that the system is always in a safe state,

where deadlocks cannot occur.

3. ResourceAllocation Graph:

A graphical representation of processes and resources, where a directed edge from a

processto a resourcemeansthatthe processis currentlyholdingthat resource. Deadlocks can

be detected by looking for cycles in the graph.

4. DetectionbySystemModeling:

A mathematical model of the system is created, and deadlocks can be detected by

finding a state in the model where no process can continue to make progress.

5. Timestamping:

Each process is assigned a timestamp, and the system checks to see if any process

is waiting for a resource that is held by a process with a lower timestamp.

These algorithms are used in different operating systems and systems with

different resource allocation and synchronization requirements. The choice ofalgorithm

depends on the specific requirements of the system and the trade-offs between

performance, complexity and accuracy.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page67

RECOVERYFROMDEADLOCK

The OS will use various recoverytechniques to restore the system if it encounters

any deadlocks. When a Deadlock Detection Algorithm determines that a deadlock has

occurred in the system, the system must recover fromthat deadlock.

ApproachestoBreaking aDeadlock

(a) ProcessTermination

To eliminate the deadlock, we can simplykill one or more processes. For this, weuse

two methods:

1. AbortalltheDeadlocked Processes:

Abortingalltheprocesseswillcertainlybreakthe deadlockbut atagreat expense. The

deadlocked processes may have been computed for a long time, and the result of

those partial computations must be discarded and there is a probability ofrecalculating

them later.

2. Abortoneprocess atatimeuntil thedeadlock is eliminated:

Abort one deadlocked process at a time, until the deadlock cycle is eliminated

from the system. Due to this method, there may be considerable overhead, because,

after aborting each process, we have to run a deadlock detection algorithm to check

whether any processes are still deadlocked.

(b) ResourcePreemption

To eliminate deadlocks using resource preemption, we preempt some resourcesfrom

processes and give those resources to other processes. This method will raise three issues

–

1. Selectingavictim:

Wemust determinewhichresourcesand whichprocesses areto bepreemptedand also

in order to minimize the cost.

2. Rollback:

We must determine what should be done with the process from which resources

are preempted. One simple idea is total rollback. Thatmeans aborting the processand

restarting it.

3. Starvation:

In a system, it may happen that the same process is always picked as avictim. As a

result, that process will never complete its designated task. This situation is called

Starvation and must be avoided. One solution is that aprocess must be picked as a

victim only a finite number of times.

 OPERATINGSYSTEM(23CS403)

CSE, NRCM Page68

UNIT–3

ProcessManagementandSynchronization-

Thecriticalsectionproblems,Synchronizationhardware,Semaphore, and Classical problems of

Synchronization, Critical region, Monitor.

Inter process communication Mechanism- IPC between process on a single computer system, IPC

between process on different system,Using Pipes, FIFOs, Message Queue, Shared memory

SYNCHRONIZATION

Process Synchronization is the coordination of execution of multiple processes in

a multi-process system to ensure that they access shared resources inacontrolled and

predictable manner. It aims to resolve the problem of race conditions and other

synchronization issues in a concurrent system.

Themainobjectiveofprocesssynchronizationistoensurethatmultiple processes

access shared resources without interfering with each other and to prevent the possibility

of inconsistent data due to concurrent access. To achieve this, various synchronization

techniques such as semaphores, monitors and critical sections are used.

On the basis of synchronization, processes are categorized as one of the followingtwo

types:

 Independent Process: The execution of one process does not affect the

execution of other processes.

 Cooperative Process: A process that can affect or be affected by other

processes executing in the system.

ProcesssynchronizationproblemarisesinthecaseofCooperativeprocesses also

because resources are shared in Cooperative processes.

RaceCondition

A race condition is a condition when there are many processes and every process

shares the data with each other and accessing the data concurrently and theoutput of

execution depends on a particular sequence in which they share the data and access.

(OR)

When more than one process is executing the same code or accessing the same

memoryor anyshared variable in that condition there is a possibilitythat theoutput or the

value of the shared variable is wrong so for that all the processes doing the race to saythat

my output is correct. This condition is known as race condition.

Several processes access and process the manipulations over the same data

concurrently, then the outcome depends on the particular order in which the accesstakes

place.

 OPERATINGSYSTEM(23CS403)

CSE, NRCM Page69

Example:

Let‟s say there are two processes P1 and P2 which share common variable

(shared=10), both processes are present in ready – queue and waiting for its turn tobe

execute.

Suppose, Process P1 first come under

execution,initializedasX=10andincrementitby

1 (ie.X=11), after then when CPU read line

sleep(1), it switches from current process P1 to

processP2 present in ready-queue. The processP1

goes in waiting state for 1 second.

Now CPU execute the Process P2,

initialized Y=10 and decrement Yby 1(ie.Y=9),

after then when CPU read sleep(1), the current

process P2 goes in waiting state andCPU remains

idle for sometime as there is no process in ready-

queue.

After completion of 1 second of process P1 when it comes in ready-queue, CPU

takes the process P1 under execution and execute the remaining line of code and

shared=11.

After completion of 1 second of Process P2, when process P2 comes in ready-

queue, CPU start executing the further remaining line of Process P2 and shared=9.

Note:

Weareassumingthefinalvalueofcommonvariable(shared)after

execution of Process P1 and Process P2 is 10 (as Process P1 increment variable by1 and

ProcessP2decrementvariableby1andfinallyitbecomesshared=10). But wearegetting

undesired value due to lack of proper synchronization.

Actualmeaningofrace-condition

 If the order of execution of process (first P1 -> then P2) then we will get thevalue

of common variable (shared) = 9.

 If the order of execution of process (first P2 -> then P1) then we will get thefinal

value of common variable (shared) =11.

Basically, Here the (value1 = 9) and (value2=11) are racing , If we execute these two

process in our computer system then sometime we will get 9 and sometime we will

get 10 as final value of common variable(shared). This phenomenon is called Race-

Condition.

Process1 Process2

intX=shared intY=shared

X++ Y--

sleep(1) sleep(1)

shared= X shared= Y

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page70

CRITICALSECTIONPROBLEM

A critical section is acode segment that can be accessed byonlyone process at a

time. The critical section contains shared variables that need to be synchronised to

maintain the consistency of data variables. So the critical section problem means

designing a way for cooperative processes to access sharedresources without creating

data inconsistencies.

Intheentrysection, theprocessrequestsforentryintheCritical Section.

Anysolutiontothecriticalsection problemmustsatisfythreerequirements:

 Mutual Exclusion: If a process is executing in its critical section, then no other

process is allowed to execute in the critical section.

 Progress: If no process is executing in the critical section and other processes are

waiting outside the critical section, then only those processes that are not

executingintheirremaindersectioncanparticipateindecidingwhichwillenterin the

critical section next, and the selection can‟t be postponed indefinitely.

 Bounded Waiting: A bound must exist on the number of times that other

processes are allowed to enter their critical sections after aprocess hasmade a

request to enter its critical section and before that request is granted.

PETERSON’SSOLUTION

Peterson‟sSolutionisaclassicalsoftware-basedsolutiontothecriticalsectionproblem. In

Peterson‟s solution, we have two shared variables:

 boolean flag[i]: Initialized to FALSE, initially no one is interested inentering the

critical section

 intturn: Theprocesswhoseturnistoenterthecritical section.

//codeforproduceri

do

{

flag[i]=true;turn

=j;

while(flag[j]==true&&turn==j);

criticalsection

flag[i]=false;

remindersection

}while(TRUE);

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page71

//codeforconsumerj

do

{

flag[j]=true;turn

=i;

while(flag[i]==true&&turn==i);

criticalsection

flag[i]=false;

remindersection

}while(TRUE);

In the solution, i represents the Producer and j represents the Consumer. Initially,

the flags are false. When a process wants to execute it‟s critical section,it sets its flag to

true and turn into the index of the other process. This means that the process wants to

execute but it will allowthe other process to run first. The process performs busy waiting

until the other process has finishedit‟sown critical section. Afterthis, the current process

enters its critical section and addsor removes a random number from the shared

buffer.Aftercompletingthe critical section, it sets it‟s own flag to false, indicating it does

not wish to execute anymore.

Peterson’sSolutionpreservesallthreeconditions:

 MutualExclusionisassuredasonlyoneprocesscanaccessthecriticalsection at any

time.

 Progressisalsoassured,asaprocessoutsidethecriticalsectiondoesnotblock other

processes from entering the critical section.

 BoundedWaitingispreservedaseveryprocessgets afairchance.

DisadvantagesofPeterson’sSolution

 Itinvolves busywaiting.

 Itislimitedto2processes.

 Peterson‟ssolutioncannotbeusedinmodernCPUarchitectures.

SynchronizationHardware

• ProblemsofCriticalSectionarealsosolvablebyhardware.

• Uniprocessor systems disables interrupts while a Process Pi isusing the CS but it is

a great disadvantage in multiprocessorsystems

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page72

• Some systems provide a lock functionality where a Processacquires a lock while

enteringthe CS and releases thelockafterleavingit. Thus another process tryingto enter
CS cannotenteras the entry is locked. It can only do so if it is free
byacquiringthelockitself

• AnotheradvancedapproachistheAtomicInstructions(Non-Interruptibleinstructions).

MUTEXLOCKS

• Asthesynchronizationhardwaresolutionisnot easytoimplement from everyone, a

strict software approachcalledMutex Locks was introduced. In this approach,

intheentry section of code, a LOCK is acquired over

thecriticalresourcesmodifiedand used insidecriticalsection,andintheexitsection

thatLOCKisreleased. As the resource is locked while a process executes

itscritical sectionhenceno otherprocess canaccess

SEMAPHORES

Semaphore is a Hardware Solution. This Hardware solution is written or given to

critical section problem. The Semaphore is just a normal integer. The Semaphore cannot

be negative. The least value for a Semaphore is zero (0). The Maximum value of a

Semaphore can be anything. The Semaphores usually have two operations. The two

operations have the capability to decide the values of the semaphores.

ThetwoSemaphoreOperationsare:

1. Wait()

2. Signal()

WaitSemaphoreOperation

The Wait operation works on the basis of Semaphore or Mutex Value.If the

Semaphore value is greater than zero, then the Process can enter the Critical SectionArea.

IftheSemaphorevalueisequaltozerothentheProcesshasto wait.

IftheprocessexitstheCriticalSection,thenhavetoreducethevalueof Semaphore.

Definitionofwait()

wait(SemaphoreS)

{

while (S<=0) ; //nooperation

S--;

}

SignalSemaphoreOperation

ThemostimportantpartisthatthisSignalOperationorVFunctionisexecuted

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page73

only when the process comes out of the critical section. The value of semaphore

cannotbe incremented before the exit of process from the critical section.

Definitionofsignal()

signal(S)

{

S++;

}

Therearetwotypesofsemaphores:

 BinarySemaphores:

Theycan onlybeeither0 or1. Theyare also knownas mutex locks, as the

locks can provide mutual exclusion. All the processes can share the same mutex

semaphore that is initialized to 1. Then, a process has to wait until the lock

becomes 0. Then, the process can make the mutex semaphore 1 and start its

critical section. When it completes its critical section, it can reset the value of the

mutex semaphore to 0 and some other process can enter its critical section.

 Counting Semaphores:

They can have any value and are not restricted over acertain domain. They

can be used to control access to a resource that has a limitation on the number of

simultaneous accesses. The semaphore can be initialized to the number of

instances of the resource. Whenever a process wants to use that resource, it checks

if the number of remaining instances is more than zero, i.e., the processhas an

instance available. Then, the processcan enter its critical section thereby

decreasing the value of the counting semaphore by 1. After the process is over

with the use of the instance of theresource, it can leave the critical section thereby

adding 1 to the number of available instances of the resource.

CLASSICALPROBLEMSOFSYNCHRONIZATION

Thefollowingproblemsofsynchronizationareconsideredasclassicalproblems:

1. Bounded-buffer(orProducer-Consumer)Problem,

2. Dining-PhilosophersProblem,

3. ReadersandWritersProblem,

Bounded-buffer(orProducer-Consumer)Problem

Bounded Bufferproblem is also called producerconsumerproblem and itis one

of the classic problems of synchronization. This problem is generalized in termsofthe

https://www.geeksforgeeks.org/producer-consumer-solution-using-semaphores-java/

 OPERATINGSYSTEM(23CS403)

CSE, NRCM Page74

Producer-Consumer problem. Solution to this problem is, creatingtwocounting

semaphores “full” and “empty” to keep track of the current number of full and empty

buffers respectively. Producers produce a productand consumers consume the product,

but both use of one of the containers each time.

Aproducertriestoinsertdatainto anemptyslotofthebuffer.Aconsumer triesto

removedatafromafilled slotin thebuffer.Thereneedstobeawayto maketheproducer and

consumer work in an independent manner.

One solution of this problem is to use semaphores. The semaphores which will be

used here are:

 m,abinarysemaphorewhichisusedtoacquireandreleasethelock.

 empty,acountingsemaphorewhoseinitialvalueisthenumberofslots in the

buffer, since, initially all slots are empty.

 full,acountingsemaphorewhoseinitialvalueis0.

At anyinstant, the current value of empty represents the number of empty slotsin

the buffer and full represents the number of occupied slots in the buffer.

TheProducerOperation

do

{

wait(empty);

//waituntilempty>0andthendecrement'empty'wait(mute

x); // acquire lock

/*performtheinsertoperationinaslot*/

signal(mutex); // release lock

signal(full); //increment'full'

}while(TRUE);

Looking at the above code for a producer, we can see that a producer

firstwaitsuntil there is atleast one empty slot.

Thenitdecrementstheemptysemaphorebecause,therewillnowbeoneless empty slot,

since the producer is going to insert data in one of those slots.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page75

 Then,itacquireslockonthebuffer,sothattheconsumercannotaccessthebuffer

untilproducercompletesitsoperation.

Afterperformingtheinsertoperation,thelockisreleasedandthevalueof

fullis incrementedbecausetheproducer has just filled aslot in the buffer.

TheConsumerOperation

do

{

wait(full);

//waituntilfull>0andthendecrement'full'wait(mut

ex); // acquire the lock

/*performtheremoveoperationinaslot*/

signal(mutex); //releasethelock
signal(empty); // increment 'empty'

}while(TRUE);

Theconsumerwaitsuntilthereisatleast onefullslotinthebuffer.

Thenitdecrementsthe full semaphorebecausethenumberofoccupiedslotswill be

decreased by one, after the consumer completes its operation.

Afterthat,theconsumeracquireslockonthebuffer.

Followingthat,theconsumercompletestheremovaloperationsothatthedata from one

of the full slots is removed.

Then,theconsumer releasesthelock.

Finally,the empty semaphoreisincrementedby1,becausetheconsumerhas just removed

data from an occupied slot, thus making it empty.

Dining-PhilosophersProblem

The Dining Philosopher Problem states that K philosophers seated around a

circular table with one chopstick between each pair of philosophers. There is one

chopstick between each philosopher. A philosopher may eat if he can pickup the two

chopsticksadjacenttohim.Onechopstickmaybepickedup byanyoneofitsadjacent

followers but not both. This problem involves the allocation of limited resources to a

group of processes in a deadlock-free and starvation-free manner.

https://www.geeksforgeeks.org/operating-system-dining-philosopher-problem-using-semaphores/

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page76

The design of the problem was to illustrate the challenges ofavoiding deadlock, a

deadlock state of a system is a state in which no progress of system is possible. Considera

proposal where each philosopher is instructed to behave as follows:

 The philosopher is instructed to think till the left fork is available,whenit

isavailable, hold it.

 Thephilosopherisinstructedtothinktilltherightforkisavailable,when it is

available, hold it.

 Thephilosopheris instructedtoeatwhenboth forksare available.

 then,puttherightforkdownfirst

 then,puttheleftforkdownnext

 repeatfromthebeginning.

Thestructureof Philosopher i is asfollows.do

{

Wait(take_chopstick[i]);

Wait(take_chopstick[(i+1)%5]);

…

EAT

…

Signal(put_chopstick[i]);

Signal(put_chopstick[(i+1)%5]);

…

THINK

}while(TRUE);

Intheabovecode,firstwaitoperationisperformedontake_chopstick[i]and

take_chopstick[(i+1)%5].Thisshowsphilosopherihavepickedupthechopsticks

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page77

fromitsleftandright. Theeatingfunctionisperformedafter that.

On completion of eating by philosopher i the, signal operation is performed on

take_chopstick[i] and take_chopstick[(i+1) % 5]. This shows that the philosopher ihave

eaten and put down both the left and right chopsticks. Finally,the philosopher starts

thinking again.

Let value of i = 0(initial value), Suppose Philosopher P0wants to eat, it will enter in

Philosopher() function, and execute Wait(take_chopstick[i]); by doing this itholds C0

chopstick and reduces semaphore C0 to 0, after that it execute Wait(

take_chopstick[(i+1) % 5]); by doing this it holds C1 chopstick (since i =0, therefore(0

+ 1) % 5 = 1) and reduces semaphore C1 to 0.

Similarly, suppose now Philosopher P1 wants to eat, it will enter in Philosopher()

function, and execute Wait(take_chopstick[i]); by doing this it will try to hold C1

chopstick but will not be able to do that, since the value of semaphore C1 has already

been set to 0 by philosopher P0, therefore it will enter into an infinite loop because of

which philosopher P1 will not be able to pick chopstick C1 whereas if Philosopher P2

wants to eat, it will enter in Philosopher() function, and execute Wait(

take_chopstickC[i]); by doing this it holds C2 chopstick and reduces semaphore C2 to

0, after that, it executes Wait(take_chopstickC[(i+1) % 5]); by doing this it holds C3

chopstick(since i =2, therefore (2 + 1) % 5 = 3) and reduces semaphore C3 to 0.

Hence the above code is providing a solution to the dining philosopher problem, A

philosopher can only eat if both immediate left and right chopsticks ofthe

philosopherareavailableelsephilosopherneedstowait.Alsoatonegotwo

independentphilosophers can eat simultaneously (i.e., philosopher P0 and P2, P1 and P3

& P2 and P4 can eat simultaneously as all are the independent processes and they are

following the above constraint of dining philosopher problem)

Thedrawbackoftheabovesolutionofthediningphilosopher problem

Notwoneighbouringphilosopherscaneatatthesamepointin time.

This solution can lead to a deadlock condition. This situation happens if all the

philosophers pick their left chopstick at the same time, which leads to the

condition of deadlock and none of the philosophers can eat.

Toavoiddeadlock,someofthesolutionsareasfollows:

Maximum number of philosophers on the table should not be more than four, in

this case, chopstick C4 will be available for philosopher P3, so P3

willstarteatingandafterthefinishofhiseatingprocedure,hewillputdown his both the

chopstick C3 and C4, i.e. semaphore C3 and C4 will nowbe incremented to 1.

NowphilosopherP2 whichwas holding chopstick C2 willalsohave chopstickC3

available, hence similarly, he will put down hischopstick after eating and enable

other philosophers to eat.

Aphilosopheratanevenpositionshouldpick the rightchopstickandthentheleft

 OPERATINGSYSTEM(23CS403)

CSE, NRCM Page78

chopstickwhile aphilosopherat an odd position should picktheleftchopstick and

then the right chopstick.

Only incaseifboththechopsticks(leftandright)areavailableatthesame time, only

then a philosopher should be allowed to pick their chopsticks

All the four starting philosophers (P0, P1, P2, and P3) should pick the left

chopstick and then the right chopstick, whereas the last philosopher P4 should

pick the right chopstick and then the left chopstick. This will force P4 to hold his

right chopstickfirst since theright chopstickofP4 is C0, which is alreadyheld by

philosopher P0 and its value is set to 0, i.e C0 is already 0, because of which P4

will get trapped into an infinite loop and chopstick C4 remains vacant. Hence

philosopher P3 has both left C3 and right C4 chopstick available, therefore it will

start eating and will put down its both chopsticks once finishes and let others eat

which removes theproblem of deadlock.

ReadersandWritersProblem

Suppose that a database is to be shared among several concurrent processes. Some of

these processes may want only to read the database, whereas others may want to update

(that is, to read and write) the database. We distinguish between these two types of

processesbyreferringto theformer as readers and to thelatter as writers.Preciselyin OS we

call this situation as the readers-writers problem. Problem parameters:

Onesetofdataissharedamonganumber ofprocesses.

Once a writer is ready, it performs its write. Onlyone writer maywrite at atime.

If a process is writing, no other process can read it.

If atleastonereaderis reading,nootherprocesscan write.

Readersmaynotwriteand onlyread.

Therearefourtypesofcasesthatcouldhappenhere.

Case Process1 Process2 Allowed/NotAllowed

Case1 Writing Writing NotAllowed

Case2 Writing Reading NotAllowed

Case3 Reading Writing NotAllowed

Case4 Reading Reading Allowed

Threevariablesareused:mutex,wrt,readcnt

https://www.geeksforgeeks.org/readers-writers-problem-set-1-introduction-and-readers-preference-solution/

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page79

1. Semaphoremutexisusedtoensuremutualexclusionwhenreadcntisupdated

i.e.whenanyreaderentersorexitfromthecriticalsection.

2. Semaphorewrtisusedbybothreadersandwriters.

3. readcnttellsthenumberofprocessesperformingreadinthecriticalsection, initially 0

amd it is integer variable.

Functionsforsemaphore

wait():decrementsthesemaphorevalue.

signal():incrementsthesemaphorevalue.

Readerprocess

Reader requests the entryto critical section.

If allowed:

 it increments the count of number of readers inside the critical section.If

thisreaderisthefirstreaderentering,itlocks the wrtsemaphore to restrict the

entry of writers if any reader is inside.

 It then, signals mutex as any other reader is allowed to enter while others

are already reading.

 After performing reading, it exits the critical section. When exiting,it

checks if no more reader is inside, it signals the semaphore “wrt”as now,

writer can enter the critical section.

Ifnotallowed,itkeepsonwaiting.

do

{

wait(mutex); // Reader wants to enter the critical section

readcnt++; // The number of readers has now increased by 1

if (readcnt==1) //thereisatleastonereaderinthecriticalsection wait(wrt);

// no writer can enter if there is even one reader

signal(mutex); //otherreaderscanenterwhereothererisinside

….. performREADING

wait(mutex); //areaderwantstoleave

readcnt--;

if (readcnt == 0) //noreaderisleftinthecriticalsection,

signal(wrt); // writers can enter

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page80

signal(mutex); //readerleaves

}while(true);

Writerprocess

1. Writerrequeststheentrytocriticalsection.

2. Ifallowedi.e.wait()givesatruevalue,itentersandperformsthe write. If not

allowed, it keeps on waiting.

3. Itexitsthecriticalsection.

do

{

wait(wrt); //writerrequestsforcriticalsection

…performWRITING

signal(wrt); //leavesthecriticalsection

}while(true);

Thus, the semaphore „wrt„ is queued on both readers and writers in a

mannersuchthatpreferenceisgiventoreadersifwritersarealsothere.Thus,no readeriswaiting

simply because a writer has requested to enterthecritical section.

MONITOR

It is a synchronization technique that enables threads to mutual exclusion and the

wait() for a given condition to become true. It is an abstract data type. It hasashared

variableandacollectionofproceduresexecutingonthesharedvariable. A process may not

directly access the shared data variables, and procedures are required to allow several

processes to access the shared data variables simultaneously.

At any particular time, only one process may be active in a monitor. Other

processes that require access to the shared variables must queue and are only granted

access after the previous process releases the shared variables.

Syntax:

monitor

{

//sharedvariabledeclarations

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page81

data variables;

ProcedureP1(){...}

ProcedureP2(){...}

.

.

.

Procedure Pn() { ... }

Initialization Code() { ... }

}

Advantages

Mutualexclusionisautomaticin monitors.

Monitorsarelessdifficulttoimplementthansemaphores.

Monitors may overcome the timing errors that occur when semaphores areused.

Monitorsareacollectionofproceduresandconditionvariablesthatarecombined in a

special type of module.

Disadvantages

Monitorsmustbeimplementedintotheprogramminglanguage. The

compiler should generate code for them.

It gives the compiler the additional burden of knowing what operating system

features is available for controlling access to crucial sections in concurrent

processes.

 OPERATINGSYSTEM(23CS403)

CSE, NRCM Page82

ComparisonbetweentheSemaphoreand Monitor

Features Semaphore Monitor

Definition A semaphore is an integer variablethat

allows many processes in a parallel

system to manage access toa common

resource like amultitasking OS.

Itisasynchronizationprocess that

enables threads to have mutual

exclusion and the wait() for a

given condition to becometrue.

Syntax // Wait Operation

wait(Semaphore S)

{

while(S<=0);

S--;

}

// Signal Operation

signal(SemaphoreS)

{

S++;

}

Monitor

 {

 //sharedvariabledeclarations

ProcedureP1(){...}

 ProcedureP2(){...}

 .

 .

 .

 ProcedurePn(){...}

 InitializationCode(){...}

 }

Basic Integervariable Abstractdata type

Access When a process uses sharedresources,

it calls the wait() method on S, and

when it releases them, it uses the

signal() method on S.

When a process uses shared

resources in the monitor, it has to

access them via procedures.

Action The semaphore's value shows the

number of shared resources available

in the system.

The Monitor type includesshared

variables as well as a set of

procedures that operate on them.

Condition

Variable

Nocondition variables. Ithascondition variables.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page83

Whatis InterProcessCommunication

In general, Inter Process Communication is a type of mechanism usually provided by the operating

system (or OS). The main aim or goal of this mechanism is to provide communications in between

several processes. In short, the intercommunication allows a process letting another process know that

some event has occurred.

Let us now look at the general definition of inter-process communication, which will explain the same

thing that we have discussed above.

Definition

"Inter-process communication is used for exchanging useful information between numerous threads in

one or more processes (or programs)."

Tounderstandinterprocesscommunication,youcanconsiderthefollowinggivendiagramthat illustrates the

importance of inter-process communication:

RoleofSynchronizationinInterProcess Communication

It is one of the essential parts of inter process communication. Typically, this is provided by inter

process communicationcontrolmechanisms,butsometimesitcan alsobecontrolledbycommunication

processes.

Thesearethe followingmethods that usedto providethe synchronization:

1. MutualExclusion

2. Semaphore

3. Barrier

4. Spinlock

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page84

MutualExclusion:-

Itisgenerallyrequiredthatonlyoneprocessthreadcanenterthecriticalsectionatatime.Thisalso helps in
synchronization and creates a stable state to avoid the race condition.

Semaphore:-

Semaphoreisatypeofvariablethatusuallycontrolstheaccesstothesharedresourcesbyseveral processes. Semaphore

is further divided into two types which are as follows:

1. BinarySemaphore

2. CountingSemaphore

Barrier:-

Abarriertypicallynot allowsan individual process to proceed unless all theprocesses does not reach it. It
is used by many parallel languages, and collective routines impose barriers.

Spinlock:-

Spinlock is a type of lock as its name implies. The processes are trying to acquire the spinlock waits or

staysin aloop whilecheckingthatthelockisavailableornot. It isknownasbusywaitingbecauseeven though

the process active, the process does not perform any functional operation (or task).

IPCbetweenprocessesonasinglecomputersystem:-

IPC refers to the mechanisms and techniques that operating systems use to facilitate communication

between different processes. In a multitasking environment, numerous processes are running

concurrently, and IPC serves as the bridge that allows them to exchange information and coordinate

their actions.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page85

IPCbetweenprocessesondifferent system:-

Approachesto Interprocess Communication

Wewillnowdiscuss somedifferentapproaches tointer-processcommunication whichareasfollows:

Thesearea fewdifferentapproachesforInter-ProcessCommunication:

1. Pipes

2. Shared Memory

3. Message Queue

4. Direct Communication

5. Indirectcommunication

6. MessagePassing

7. FIFO

Tounderstandthem inmoredetail,we will discusseach ofthem individually.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page86

Pipe:-

The pipe is a type of data channel that is unidirectional in nature. It means that the data in this type of

data channel can be moved in only a single direction at a time. Still, one can use two-channel of this

type, so that he can able to send and receive data in two processes. Typically, it uses the standard

methods for input and output. These pipes are used in all types of POSIX systems and in different

versions of window operating systems as well.

Shared Memory:-

It can be referred to as a type of memory that can be used or accessed by multiple processes

simultaneously. It is primarily used so that the processes can communicate with each other. Therefore

the shared memory is used by almost all POSIX and Windows operating systems as well.

Message Queue:-

In general, several different messages are allowed to read and write the data to the message queue. In

the message queue, the messages are stored or stay in the queue unless their recipients retrieve them. In

short, we can also say that the message queue is very helpful in inter-process communication and used

by all operating systems.

To understand the concept of Message queue and Shared memory in more detail, let's take a look at its

diagram given below:

MessagePassing:-

It is a type of mechanism that allows processes to synchronize and communicate with each other.

However, by using the message passing, the processes can communicate with each other without

restoring the hared variables.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page87

A file is a type of data record or a document stored on the disk and can be acquired on demand by the

Usually,theinter-processcommunicationmechanismprovidestwooperationsthatareasfollows:

o send(message)

o received(message)

Direct Communication:-

Inthistypeofcommunicationprocess,usually,alinkiscreatedorestablishedbetweentwo communicating processes.
However, in everypair of communicating processes, onlyone link can exist.

IndirectCommunication

Indirect communication can only exist or be established when processes share a common mailbox, and

each pair of these processes shares multiple communication links. These shared links can be

unidirectional or bi-directional.

FIFO:-

Itisatypeofgeneralcommunicationbetweentwounrelatedprocesses.Itcanalsobeconsideredas full-duplex,

which means that one process can communicate with another process and vice versa.

Someotherdifferentapproaches

o Socket:-

It acts as a type of endpoint for receiving or sending the data in a network. It is correct for data sent

between processes on the same computer or data sent between different computers on the samenetwork.
Hence, it used by several types of operating systems.

o File:-

file server. Another most important thing is that several processes can access that file as required or

needed.

o Signal:-

As its name implies, they are a type of signal used in inter process communication in a minimal way.

Typically, they are the massages of systems that are sent by one process to another. Therefore, they are

not used for sending data but for remote commands between multiple processes.

Usually,theyarenot usedto sendthe databutto remotecommands inbetween several processes.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page88

Computational

Privilegeseparation

Convenience

Helpsoperatingsystemto communicatewitheach otherandsynchronizetheiractionsas well.

Whyweneed interprocesscommunication?

There are numerous reasons to use inter-process communication for sharing the data. Here are some of
the most important reasons that are given below:

o Ithelpstospeedupmodularity

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page89

UNIT-4

Memory Management and virtual memory-Logical versus physical address space, Swapping,

Contiguousallocations,Paging,segmentation,segmentationwithpaging,Demandpaging,Page

replacement, Page Replacement algorithms.

Memory Management:-Memory is central to the operation of a modern computer system.

Memory consists ofa large array of bytes, each with its own address.

A typical instruction-execution cycle, for example, first fetches an instruction from

memory. The instruction is then decoded and may cause operands to be fetchedfrom memory.

After the instruction has been executed on the operands, results may be stored back in

memory.

1. BasicHardware

Main memory and the registers built into the processor itself are the only general-

purpose storage that the CPU can access directly. Therefore, any instructions in execution,and

any data being used by the instructions, must be in one of these direct-access storage devices.

If the data are not in memory, theymust be moved there before the CPU can operate onthem.

Protectinguserprocessesfromoneanother:

We first need to make sure that each process has a separate memory space. Separate

per-process memory space protects the processes from each other and is fundamental to

having multiple processes loaded in memory for concurrent execution. To separate memory

spaces, we need the ability to determine the range of legal addresses that the process may

access and to ensure that the process can access only these legal addresses. We can provide

this protection byusing two registers, usually a base and a limit

The base register holds the smallest legal physical memory address; thelimit

registerspecifies thesizeoftherange.Forexample,ifthebaseregisterholds 300040 and the limit

register is 120900, and then the program can legally access all addresses from 300040

through 420939 (inclusive).

Any attempt by a program executing in user mode toaccessoperating-system

memoryor other users’ memoryresults in a trap to the operating system.

Thebaseandlimitregisterscanbeloadedonlybytheoperatingsystem,whichusesa

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page90

specialprivilegedinstruction.Sinceprivilegedinstructionscanbeexecutedonlyinkernel

mode,andsinceonlytheoperatingsystemexecutesinkernelmode,onlytheoperating system can load

the base and limit registers.

2. AddressBinding

Usually, a program resides on a disk as a binary executable file. To be executed, the

program must be brought into memory and placed within a process. Depending on the

memory management in use, the process may be moved between disk and memory during its

execution. The processes on the disk that are waiting to be brought into memoryforexecution

form the input queue.

Classically, the binding of instructions and data to memory addresses can be done at

any step along the way:

 Compile time. If you know at compile time where the process will reside in memory,

then absolute code can be generated. For example, if you know that a user process will

reside starting at location R, then the generated compiler code will start at that location

and extend up from there. If, at some later time, the starting location changes, then it will

be necessary to recompile this code. The MS-DOS .COM-format programs are bound at

compile time.

 Load time. If it is not known at compile time where the process will reside in memory,

then the compiler must generate relocatable code. In this case, final binding is delayed

until load time. If the starting addresses changes, we need only reload the user code to

incorporate this changed value.

 Execution time. If the process can be moved during its execution from one memory

segment to another, then binding must be delayed until run time. Most general-purpose

operating systems use this method.

3. LogicalVersusPhysicalAddressSpace

 An address generated by the CPUis commonly referred to as alogical address or

virtual address.

 Anaddressseenbythememoryunit—thatis,theoneloadedintothememory- address

register of the memory—is commonlyreferred to as a physical address.

 Thesetofalllogicaladdressesgenerated byaprogramisalogicaladdress space.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page91

 Thesetofallphysicaladdressescorrespondingtotheselogicaladdressesisa

physicaladdress space.

Memory-ManagementUnit (MMU)

 The run-time mapping from virtual to physical addresses is done by a hardware

device called the memory-management unit (MMU).

 The base register is now called a relocation register. The value in the relocation

register is added to every address generated bya user process at the time the address

is sent to memory.

 For example,if the baseis at14000, then an attemptbythe user to addresslocation 0 is

dynamically relocated to location14000; an access to location346 is mapped to

location 14346.

WhatisSwapping?

A process must be in memory to be executed. A process, however, can be swapped

temporarily out of memory to a backing store and then brought back into memory for

continued execution. Swapping makes it possible for the total physical address space of all

processes to exceed the real physical memory of the system, thus increasing the degree of

multiprogramming in a system.

1. StandardSwapping

Standard swapping involves moving processes between main memory and a backing

store. The backing store is commonly a fast disk. It must be large enough to accommodate

copies of all memory images for all users, and it must provide direct access to these memory

images.

Ready Queue: The system maintains a ready queue consisting of all processes whose

memory images are on the backing storeor in memoryand are readyto run.

Dispatcher: Whenever the CPU scheduler decides to execute a process, it callsthe dispatcher.

The dispatcher checks to see whether the next process in the queue is in memory. If it is not,

and if thereis no free memoryregion, the dispatcher swaps out a process currently in memory

and swaps in the desired process. It then reloads registers and transfers control to the selected

process.

Factors

 Thecontext-switchtimeinsuchaswappingsystemis fairlyhigh.

 Thetotaltransfer timeis directlyproportionaltotheamount ofmemoryswapped.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page92

 Ifwewanttoswapaprocess,wemustbesurethatitiscompletelyidle.

Standardswappinginmodernoperatingsystems

 Standard swapping is not used in modern operating systems. It requires too much

swapping time and provides too little execution time to be a reasonable memory-

management solution.

 Modified versions of swapping, however, are found on many systems, including UNIX,

Linux, and Windows.

 In one common variation, swapping is normally disabled but will start if the amount of

free memoryfalls below a threshold amount. Swapping is halted when the amount of free

memory increases.

 Another variation involves swapping portions of processes—rather than entire

processes—to decrease swap time.

2. SwappingonMobile Systems

Mobilesystemstypicallydo notsupportswappinginanyform.

Reasons

 Mobile devices generally use flash memory rather than hard disks. The resulting

spaceconstraints avoid swapping.

 Thelimitednumberofwritesthatflashmemorycantoleratebeforeitbecomesunreliable

 Thepoorthroughputbetweenmainmemoryandflashmemoryin thesedevices.

MechanismsinsteadofSwapping

 Apple’s iOS asks applications to voluntarily relinquish allocated memory. Any

applications that fail to free up sufficient memory may be terminated by the operating

system.

 Android does not support swapping and adopts a strategy similar to that used by iOS. It

may terminate a process if insufficient free memory is available. However, before

terminating a process, Android writes its application state to flash memoryso that it can

be quickly restarted.

ContiguousMemoryAllocation

We usually want several user processes to reside in memory at the same time. We

therefore need to consider how to allocate available memory to the processes that are in the

input queue waiting to be brought into memory. In contiguous memory allocation, each

process is contained in a singlesection ofmemorythat is contiguous to thesection containing

the next process.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page93

1. MemoryProtection

We can prevent a process from accessing memory it does not own by combining two

ideas. If we have a system with a relocation register, together with a limit register, we

accomplish our goal.

Process

 The relocation register contains the value of the smallest physical address; the limit

register contains the range of logical addresses (for example, relocation = 100040 and

limit = 74600).

 Eachlogicaladdressmustfallwithintherangespecifiedbythelimitregister.

 The MMU maps the logical address dynamically by adding the value in the relocation

register. This mapped address is sent to memory.

 When the CPU scheduler selects a process for execution, the dispatcher loads the

relocation and limit registers with the correct values as part of the context switch.

 Because every address generated by a CPU is checked against these registers, we can

protect both the operating system and the other users programs and data from being

modified by this running process.

2. Memoryallocationmethodsformemoryallocation

a. Fixed-Sized Partitions

 Oneofthesimplestmethodsforallocatingmemoryistodividememoryinto several

fixed-sized partitions.

 Eachpartitionmaycontainexactlyone process.

 In this multiple partition method, when a partition is free, a process is selected

from the input queue and is loaded into the free partition.

 Whentheprocessterminates,thepartitionbecomesavailableforanother process.

 Thismethodwasoriginally usedbytheIBMOS/360operatingsystem(called MFT) but

is no longer in use.

b. VariableSized -Partition

 In the variable-partition scheme, the operating system keeps a table

indicatingwhich parts of memory are available and which are occupied.

 Initially, all memory isavailablefor user processes andis considered one large

block of available memory, a hole.

 When a process arrives and needs memory, the system searches the set for a hole

that is large enough for this process.

CSE, NRCM Page94

 If the hole is too large, it is split into two parts. One part is allocated to the

arriving process; the other is returned to the set of holes.

 When a process terminates, it releases its block of memory, which is then placed

back in the set of holes.

 If the new hole is adjacent to other holes, these adjacent holes aremerged to form

one larger hole.

 At this point, the system may need to check whether there are processes waiting

for memory and whether this newly freed and recombined memory could satisfy

the demands of any of these waiting processes.

DynamicStorageAllocationProblem(MemoryAllocation Techniques)

This concerns how to satisfy a request of size n from a list of free holes. There are

many solutions to this problem. The first-fit, best-fit, and worst-fit strategies are the ones

most commonlyused to select a free hole from the set of available holes.

 First fit. Allocate the first hole that is big enough. Searching can start either at the

beginning of the set of holes or at the location where the previous first-fit search ended.

We can stop searching as soon as we find a free hole that is large enough.

 Best fit. Allocate the smallest hole that is big enough. We must search the entire list,

unless the list is ordered bysize. This strategyproduces the smallest leftover hole.

 Worst fit. Allocate the largest hole. Again, we must search the entire list, unless it is

sorted by size. This strategy produces the largest leftover hole, which may bemore useful

than the smaller leftover hole from a best-fit approach.

Comparison:

 FirstfitandBestfitarebetterthanWorstfitintermsofdecreasingtimeandstorage utilization.

 Neither first fit nor Best fit is clearlybetter than the other in terms ofstorage utilization,

but First fit is generally faster.

3. Fragmentation

Memoryfragmentationcanbeinternalaswellasexternal.

a. InternalFragmentation

 The overhead to keep track of this hole will be substantially larger than the hole

itself. The general approach to avoiding this problem is to break the physical

memoryinto fixed-sized blocksandallocate memoryinunitsbasedonblock size.

 With this approach, the memoryallocated to a process maybe slightlylarger than

the requested memory.

 The difference between these two numbers is internal fragmentation—unused

memory that is internal to a partition.

b. ExternalFragmentation

 Both the first-fit and best-fit strategies for memory allocation sufferfrom

externalfragmentation.Asprocessesareloaded andremovedfrommemory,the free

memory space is broken into little pieces.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page95

 External fragmentation exists when there is enough total memory space to satisfy

a request but the available spaces are not contiguous: storage is fragmented into a

large number of small holes.

50-percent rule: Depending on the total amount of memory storage and the average process

size, external fragmentation may be a minor or a major problem. Statistical analysis of firstfit,

for instance, reveals that, even with some optimization, given N allocated blocks, another

0.5 N blocks will be lost to fragmentation. That is, one-third of memory may be unusable!

This property is known as the 50-percent rule.

SolutiontoExternalFragmentation

a. Compaction

 Thegoal is to shufflethememorycontents so as to placeall freememorytogetherin one

large block.

 Compaction is not always possible, however. If relocation is static and is done at

assemblyor load time, compaction cannot be done. It is possible onlyif relocation is

dynamic and is done at execution time.

 The simplest compaction algorithm is to move all processes toward one end of

memory; all holes move in the other direction, producing one large hole of available

memory. This scheme can be expensive.

b. Noncontiguouslogicaladdressspace

 This permits the logical address space of the processes to be noncontiguous, thus

allowing a process to be allocated physical memory wherever such memory is

available.

 Twocomplementarytechniquesachievethissolution:segmentationandpaging.

Segmentation

Dealing with memory in terms of its physical properties is inconvenient to both the

operating system and the programmer. What if the hardware could provide a memory

mechanism that mapped the programmer’s view to the actual physical memory? The system

would have more freedom to manage memory, while the programmer would have a more

natural programming environment. Segmentation provides such a mechanism.

1. BasicMethod

Segmentation is a memory-management scheme that supports the programmer view

of memory. A logical address space is a collection of variable sized segments. Each segment

has a name and a length. The addresses specify both the segment name and the offset within

the segment. The programmer therefore specifies each address by two quantities: a segment

name and an offset.

segments are numbered and are referred to by a segment number, rather than by a segment

name. Thus, a logical address consists of a two tuple:

<segment-number,offset>.

ExampleofSegments

When a program is compiled, the compiler automatically constructs segments reflecting the

input program.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page96

ACcompilermightcreateseparatesegmentsforthefollowing:

1. Thecode

2. Globalvariables

3. Theheap,fromwhichmemoryis allocated

4. Thestacks used byeachthread

5. ThestandardC library\

2. SegmentationHardware

Although the programmer can now refer to objects in the program by a two-

dimensional address, the actual physical memory is still, of course, a one dimensional

sequence of bytes. Thus, we must define an implementation to map two-dimensional user-

defined addresses into one-dimensional physical addresses. This mapping is affected by a

segment table. Each entry in the segment table has a segment base and a segment limit.

 Segment base: The segment base contains the starting physical address where the

segment resides in memory.

 Segmentlimit:Thesegmentlimitspecifiesthelengthofthesegment.

A logical address consists of two parts: a segment number, s, and an offset into that

segment, d. The segment number are used as an index to the segment table. The offsetd of the

logical address must be between 0 and the segment limit. If it is not, we trap to the operating

system (logical addressing attempt beyond end of segment). When an offsetis legal, itis added

to the segment base to produce the address in physical memory of the desired byte. The

segment table is thus essentially an arrayof base–limit register pairs.

Example:

We have five segments numbered from 0 through 4. The segments are stored in

physical memory. The segment table has a separate entry for each segment, giving the

beginning address of the segment in physical memory (or base) and the lengthof that segment

(or limit).

Consider, segment 2 is 400 bytes long and begins at location 4300. Thus, a reference

to byte 53 of segment 2 is mapped onto location 4300 + 53 = 4353. A reference to segment 3,

byte 852, is mapped to 3200 (the base of segment 3) + 852 = 4052. A reference to byte 1222

of segment 0 would result in a trap to the operating system, as this segmentis only 1,000 bytes

long.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page97

Paging

Pagingisanothermemory-managementschemethatoffersphysicaladdressspaceof

a process to be non-contiguous. Paging also avoids external fragmentation and the need for

compaction, whereas segmentation does not. Because of its advantages, paging in its various

forms is used in most operating systems, from mainframes to smart phones.

1. BasicMethod

 Frames:Paginginvolvesbreakingphysicalmemoryintofixed-sizedblockscalled

frames.

 Pages:Breakinglogicalmemoryintoblocksofthesamesizecalledpages.

When a process is to be executed, its pages are loaded into any available memory

frames from their source (a file system or the backing store).

HardwareSupport forPaging

EveryaddressgeneratedbytheCPUisdividedintotwoparts:apagenumber(p)

and apageoffset(d).

 Page Table: The page number is used as an index into a page table. The page table

contains the base address of each page in physical memory. This base address is

combined with the page offset to define the physical memory address that is sent to the

memoryunit.

 Frame Table: Since the operating system is managing physical memory, it must be

aware of the allocation details of physical memory—which frames are allocated, which

frames are available, how many total frames there are, and so on? This information is

generally kept in a data structure called a frame table. The frame table has one entry for

each physical page frame, indicating whether the latter is free or allocated and, if it is

allocated, to which page of which process or processes.

OPERATINGSYSTEM(23CS403)

DefiningofPageSize

The page size (like the frame size) is defined by the hardware. The size of a page is a

power of 2, varying between 512 bytes and 1 GB per page, depending on the computer

architecture. The selection of a power of 2 as a page size makes the translation of a logical

address into a page number and page offset particularly easy.

If the size of the logical address space is 2m, and a page size is 2nbytes, then the high-

order m− n bits of a logical address designate the page number, and the n low-order bits

designate the page offset. Thus, the logical address is as follows:
page
number

page
offset

p d

m-n n

wherepisanindexintothepagetableanddisthedisplacementwithinthepage.

Example

Here, in the logical address, n= 2 and m = 4. Using a page size of 4 bytes and a

physical memoryof32 bytes (8pages).Logical address 0 is page0, offset 0. Indexinginto the

page table, wefind that page 0 is in frame 5. Thus, logical address 0 maps to physical address

20 [=(5 × 4) +0]. Logicaladdress 3 (page 0,offset 3) maps to physicaladdress 23 [= (5 ×4)

+ 3]. Logical address 4 is page 1, offset 0; according to the page table, page 1 is mapped to

frame 6. Thus, logical address 4 maps to physical address 24 [= (6× 4) + 0]. Logical address

13mapstophysicaladdress9.

CSE, NRCM Page97

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page98

2. HardwareSupport

Methods for storing page table: Each operating system has its own methodsfor storing page

tables.

a) Some allocate a page table for each process. A pointer to the page table is stored with the

other register values (like the instruction counter) in the process control block. When the

dispatcher is told to start a process, it must reload the user registers and define the correct

hardware page-table values from the stored user page table.

b) Other operating systems provide one or at most a few page tables, which decreases the

overhead involved when processes are context-switched.

HardwareImplementationofthePageTable

Registers

 In the simplest case, the page table is implemented as a set of dedicated registers. These

registers should be built with very high-speed logic to make the paging-address

translation efficient.

 Every access to memory must go through the paging map, so efficiency is a major

consideration.

 The CPU dispatcher reloads these registers, just as it reloads the other registers.

Instructions to load or modify the page-table registers are, of course, privileged, so that

only the operating system can change the memory map. The use of registers for the page

table is satisfactory if the page table is reasonably small.

 TheDECPDP-11 isanexample.

Page-TableBaseRegister(PTBR)

Most contemporary computers, allow the page table to be very large (for example, 1

million entries). For these machines, the use of fast registers to implement the page table is

not feasible. Rather, the page table is kept in main memory, and a page-table base register

(PTBR) points to the page table. Changing page tables requires changing only this one

register, substantially reducing context-switch time.

Problem

Theproblem with this approach is the time required to access a user memorylocation.

If we want to access location i, we must first index into the page table, using the value in the

PTBR offset by the page number fori. This task requires a memory access. It provides us with

the frame number, which is combined with the page offset to produce the actual address.

Wecan then access the desired placein memory. With this scheme, two memoryaccesses are

needed to access a byte (one for the page-table entry, one for the byte). Thus, memory access

is slowed by a factor of 2.

Solution:TranslationLook-AsideBuffer(TLB).

The standard solution to this problem is to use a special, small, fast lookup hardware

cache called a translation look-aside buffer (TLB). The TLB is associative, high-speed

memory. Each entryin the TLB consists of two parts: a key(or tag) and a value.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page99

Workingoftranslationlook-asidebuffer(TLB):

 The TLB is used with page tables in the following way. The TLB contains only a few of

the page-table entries.

 When a logical address is generated by the CPU, its page numberis presented to the TLB.

If the page number is found, its frame number is immediately available and is used to

access memory.

 If the page number is not in the TLB (known as a TLB miss), a memory reference to the

page table must be made.

 DependingontheCPU,thismaybedoneautomaticallyin hardwareor via aninterruptto the

operating system.

 When theframenumber is obtained, wecan useit to access memory. In addition, weadd

the page number and frame number to the TLB, so that theywill be found quicklyon the

next reference. If the TLBis alreadyfull of entries, an existingentrymust be selected for

replacement.

Address-SpaceIdentifiers(ASIDs)

 Some TLBs store address-space identifiers (ASIDs) in each TLB entry. An ASID

uniquely identifies each process and is used to provide address-space protection for that

process.

 When the TLB attempts to resolve virtual page numbers, it ensures that the ASID for the

currently running process matches the ASID associated with the virtual page. If the

ASIDs do not match the attempt is treated as a TLB miss.

Hit ratio: The percentage of times that the page number of interest is found in the TLB is

called the hit ratio

3. Protection

Memoryprotectioninapagedenvironmentisaccomplishedbyprotectionbits associated with

each frame. Normally, these bits are kept in the page table.

Read–WriteorRead-OnlyBit

 Onebitcandefineapagetoberead–writeorread-only.Every referencetomemory goes

through the page table to find the correct frame number.

 At the same time thatthe physicaladdress is being computed,the protection bits can be

checked to verifythat no writes are being made to a read-only page.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page100

 An attempt to write to a read-only page causes a hardware trap to the operating system

(or memory-protection violation).

 Wecaneasilyexpandthisapproachtoprovideafinerlevelofprotection.

 We can create hardware to provide read-only,read–write, or execute-only protection; or,

by providing separate protection bits for each kind of access, we can allow any

combination of these accesses. Illegal attempts will be trapped to the operating system.

Valid–InvalidBit

 Oneadditionalbitisgenerallyattachedtoeachentryinthepagetable:avalid–invalid

bit.

 Whenthis bit isset to valid,theassociatedpage isintheprocess’s logicaladdressspace and

is thus a legal (or valid) page.

 Whenthebitissettoinvalid,thepageisnotintheprocess’slogicaladdressspace. Illegal

addresses are trapped byuse of the valid–invalid bit.

 Theoperatingsystemsetsthisbitforeachpagetoallowor disallowaccesstothepage.

Example

 Suppose, for example, that in a system with a 14-bitaddress space (0 to 16383), we have

a program that should use only addresses 0 to 10468.

 Given a page size of 2 KB, Addresses in pages 0, 1, 2, 3, 4, and 5 are mapped normally

through the page table.

 Any attempt to generate an address in pages 6 or 7, however, will find that the valid–

invalid bit is set to invalid, and the computer will trap to the operating system (invalid

page reference).

HardwareforProtection:Page-TableLengthRegister(PTLR)

Some systems provide hardware, in the form of a page-table lengthregister(PTLR),

to indicate the size of the page table. This value is checked against every logical address to

verify that the address is in the valid range for the process. Failure of this test causes an error

trap to the operating system.

4. SharedPages

Anadvantageofpagingisthepossibilityofsharingcommoncode. This

consideration is particularly important in a time-sharing environment.

Example:

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page101

Consider a system that supports 40 users, each of whom executes a text editor. If the

text editorconsistsof150 KBofcodeand 50 KB of dataspace, weneed 8,000 KBto support the

40 users. If the code is reentrant code or pure code (Reentrant code is non-self- modifying

code: it never changes during execution. Thus, two or more processes can execute the same

code at the same time. However, it can be shared.

Each process has its own copy of registers and data storage to hold the data for the

process’s execution. The data for two different processes will, of course, be different. Only

onecopyoftheeditorneedbekeptinphysical memory.Each user’s page tablemapsontothe same

physical copy of the editor, but data pages are mapped onto different frames. Thus, to support

40 users, we need onlyone copyof the editor (150 KB), plus 40 copies of the 50 KB of data

space per user. The total space required is now 2,150 KB instead of 8,000 KB—a significant

savings.

Other heavily used programs can also be shared—compilers, window systems, run-

time libraries, database systems, and so on.

SegmentationwithPaging

Pure segmentation is not very popular and not being used in many of the operating

systems. However, Segmentation can be combined with Paging to get the best features out of

both the techniques.

In Segmented Paging, the main memory is divided into variable size segments which

are further divided into fixed size pages. Pages aresmaller than segments. Each Segment hasa

page table which means every program has multiple page tables.

The logical address is represented as Segment Number (base address), Page number

and page offset.

SegmentNumber→ItpointstotheappropriateSegmentNumber. Page

Number → It Points to the exact page within the segment

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page102

PageOffset→Usedasanoffset withinthepage frame

Each Page table contains the various information about every page of the segment.

The Segment Table contains the information about every segment. Each segment table entry

points to a page table entry and every page table entry is mapped to one of the page within a

segment.

Translationoflogicaladdresstophysicaladdress

The CPU generates a logical address which is divided into two parts:Segment Number

and Segment Offset. The Segment Offset must be less than the segment limit. Offset is

further divided into Page number and Page Offset. To map the exact page number in the page

table, the page number is added into the page table base.

The actual frame number with the page offset is mapped to the main memory toget the

desired word in the page of the certain segment of the process.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page103

2. Thecomplexitylevelwillbemuchhigherascomparetopaging.

3. PageTablesneedtobecontiguouslystoredinthememory.

DemandPaging

Definition

AdvantagesofSegmented Paging

1. Itreducesmemoryusage.

2. Pagetablesizeis limitedbythesegmentsize.

3. gmenttablehasonlyoneentrycorrespondingtooneactualsegment.

4. ExternalFragmentationisnotthere.

5. Itsimplifies memoryallocation.

DisadvantagesofSegmented Paging

1. InternalFragmentationwillbethere.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page104

Loading the entire program into memory results in loading the executable code for all

options, regardless of whether or not an option is ultimately selected by the user. An

alternative strategy is to load pages only as they are needed. This technique is known as

demand paging and is commonly used in virtual memory systems.

With demand-paged virtual memory, pages are loaded only when they are demanded

during program execution. Pages that are never accessed are thus never loaded into physical

memory.

LazySwapper

A demand-paging system is similar to a paging system with swappingwhere processes

reside in secondary memory (usually a disk). When we want to execute a process, we swap it

into memory. Rather than swapping the entire process into memory, though, we usealazy

swapper.Alazyswapperneverswaps apage intomemoryunlessthatpage willbe needed. In the

context of a demand-paging system, use of the term “swapper” is technically incorrect. We

thus use “pager,” rather than “swapper,” in connection with demand paging.

Transferofapagedmemoryto contiguousdisk space.

1. Basic Concepts

When a process is to be swapped in, the pager guesses which pages will beused before

the process is swapped out again. Instead of swapping in a whole process, the pager brings

onlythose pages into memory. Thus, it avoids readinginto memorypages that will not be used

anyway, decreasing the swap time and the amount of physical memory needed.

Valid–InvalidBit

 We need some form of hardware support to distinguish between the pages that are in

memoryand the pages that areon the disk. when this bit is set to “valid,” the associated

page is both legal and in memory.

 If thebitissetto “invalid,”thepageeitherisnotvalid(thatis,notinthelogicaladdress space of

the process) or is valid but is currently on the disk. The page-table entry for a page that

is brought into memory is set as usual, but the page-table entry for a page thatis not

currently in memory is either simply marked invalid or contains the address ofthe page on disk.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page105

PageFault

Access to a page marked invalid causes a page fault. The paging hardware, in

translating the address through the page table, will notice that the invalid bit is set, causing a

trap to the operating system. This trap is the result of the operating system’s failure to bring

the desired page into memory.

Theprocedureforhandlingthispagefaultisstraightforward

1. We check an internal table (usually kept with the process control block) for this process

to determine whether the reference was a valid or an invalid memoryaccess.

2. Ifthe reference was invalid, we terminatethe process. Ifit was valid but wehave not yet

brought in that page, we now page it in.

3. Wefindafreeframe(bytakingonefromthefree-framelist, for example).

4. Wescheduleadisk operationtoreadthe desiredpageintothenewlyallocated frame.

5. When the disk read is complete, we modify the internal table kept with the process

andthe page table to indicate that the page is now in memory.

6. We restart the instruction that was interrupted by the trap. The process can now accessthe

page as though it had always been in memory.

PureDemand Paging

In theextremecase, we can start executingaprocess with no pages in memory. When

the operating system sets the instruction pointer to the firstinstruction of the process, whichis

on a non-memory-residentpage, the process immediately faults for the page. After this

pageisbroughtintomemory,theprocesscontinuestoexecute,faultingasnecessaryuntil

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page106

every page that it needs is in memory. At that point, it can execute with no more faults. This

scheme is pure demand paging: never bring a page into memoryuntil it is required.

HardwaretoSupportDemandPaging

 Page table. This table has the ability to mark an entry invalidthrough a valid–invalid bit

or a special value of protection bits.

 Secondary memory. This memory holds those pages that are not present in main

memory. The secondary memory is usually a high-speed disk. It is known as the swap

device, and the section of disk used for this purpose is known as swap space.

A crucial requirement for demand pagingis the abilityto restart anyinstruction after a

page fault. Because we save the state (registers, condition code, andinstruction counter) of the

interrupted process when the page fault occurs, we must be able to restart the process in

exactly the same place and state, except that the desired page is now in memory and is

accessible. In most cases, this requirement is easy to meet.

A page fault may occur at any memory reference. If the page fault occurs on the

instruction fetch, we can restart by fetching the instruction again. If a page fault occurs while

wearefetchingan operand, wemust fetchand decodetheinstruction again and thenfetchthe

operand.

2. PerformanceofDemandPaging

Demand paging can significantly affect the performance of a computer system let’s

compute the effective access time for a demand-paged memory. For most computer systems,

the memory-access time, denoted ma, ranges from 10 to200 nanoseconds. As long as we have

no page faults, the effective access time is equal to the memory access time.If,however, a

page fault occurs, we must first read the relevant page from disk and then access the desired

word.

Let p be the probability of a page fault (0 ≤ p ≤ 1). We would expect p to be close to

zero—that is, we would expect to have only a few page faults.

Theeffectiveaccesstimeisthen

EffectiveAccess Time= (1−p)×ma+ p ×pagefaulttime

To compute the effective access time, we must know how much time is needed to

service a page fault.

Example:

With an averagepage-faultservice time of 8milliseconds anda memory access time of

200 nanoseconds, the effective access time in nanoseconds is

Effective AccessTime=(1−p)×(200) +p(8milliseconds)

=(1 −p)×200+p×8,000,000

=200 +7,999,800×p.

Wesee,then,thattheeffectiveaccesstimeisdirectlyproportionaltothepage-fault

rate.

Anadditionalaspectofdemandpagingisthehandlingandoveralluseof swapspace.

Disk I/O to swap space is generallyfaster than that to the file system. It is a faster file system

because swap space is allocated in much larger blocks, and file lookups andindirect allocation

methods are not used. However, swap space must still be used for pages not associated with a

file (known as anonymous memory).

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page107

Mobile operating systems typically do not support swapping. Instead, these systems

demand-page from the file system and reclaim read-only pages (such as code) from

applications if memory becomes constrained. Such data can be demand-paged from the file

system if it is later needed. Under iOS, anonymous memory pages are never reclaimed from

an application unless the application is terminated or explicitlyreleases the memory.

PageReplacement

In Demand Paging,pages are only broughtintomemory only when needed. This has two

benefits,

1. SavesI/Onecessarytoloadunusedpages.

2. Increasesthedegreeof multiprogramming.

Butincreasingdegreeofmultiprogrammingmayarisenewproblemcalled“Over allocating of

memory”.

Over-AllocatingMemory

For example, there are 10 processes and each has 10 pages out of which only 5may be

used. If there are 50 frames then we can allocate only 5 processes if all the 10 pages are

loaded. But by using demand paging (we load only used or demanded pages) we can

accommodate 10 processes as only 5 pages are in demand. Problem arises when suddenly a

process needs all 10 pages but no frames are free.

Over-allocation of memory manifests itself as follows. While a user process is

executing, a page fault occurs. The operating system determines where the desired page is

residing on the disk but then finds that there are no free frames on the free-frame list; all

memory is in use. The operating system has several options at this point.It could terminate the

user process. This option is not the best choice. The operating system could instead swap out

a process, freeing all its frames and reducing the level of multiprogramming. This option is a

good one but requires page replacement.

OPERATINGSYSTEM(23CS403)

CCSSEE,,NNRRCCMM Page108

1. BasicPageReplacement

Pagereplacementtakesthefollowingapproach,

1. Findthelocationofthedesiredpageonthedisk.

2. Findafree frame:

a. Ifthereisafreeframe,useit.

b. Ifthereisnofreeframe,useapage-replacementalgorithmtoselectavictim frame.

c. Writethevictimframetothedisk;changethepageandframetablesaccordingly.

3. Readthedesiredpageintothenewlyfreedframe;changethepageandframetables.

4. Continuetheuser processfromwherethepagefault occurred.

ModifyBit (orDirtyBit).

 If no frames are free, two page transfers (one out and one in)are required.This situation

effectively doubles the page-fault service time and increases the effective access time

accordingly. We can reduce this overhead by using a modify bit (or dirty bit).

 When this scheme is used, each page or frame has a modifybit associated with it in the

hardware. The modify bit for a page is set by the hardware whenever any byte in the

page is written into, indicating that the page has been modified.

 When we select a page for replacement, we examine it’s modifybit. If the bit is set, we

know that the page has been modified since itwas read in from the disk. In this case,we

must write the page to the disk. If the modify bit is not set, however, the page has not

been modified since it was read into memory. In this case, we need not write the

memory page to the disk: it is already there.

MajorProblemstoImplementDemand Paging

Wemustsolvetwomajorproblemstoimplementdemandpaging:wemustdevelopa

frame-allocationalgorithmandapage-replacementalgorithm.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page109

That is, if we have multiple processes in memory, we must decide how many frames

toallocatetoeachprocess;andwhenpagereplacementisrequired,wemust selecttheframes that are

to be replaced.

ReferenceString

There are many different page-replacement algorithms. We evaluate an algorithm by

running it on a particular string of memory references and computing the number of page

faults. The string of memory references is called a reference string.

Wecangeneratereferencestrings

 Artificially(byusingarandom-numbergenerator,for example).

 We can trace a given system and record the address of each memory reference. But this

produces large amount of data.

Toreducethis,weusetwo facts

a. First, for a given page size (and the page size is generally fixed bythe hardware or

system),we need to consider only the page number, rather than the entire address.

b. Second,ifwehaveareferencetoapagep,thenanyreferencestopagepthat

immediately followwillnevercauseapagefault.

Example

Ifwetraceaparticularprocess,wemightrecordthefollowingaddresssequence: 0100, 0432,

0101, 0612, 0102, 0103, 0104, 0101, 0611, 0102, 0103,

0104, 0101,0610, 0102,0103, 0104, 0101, 0609, 0102, 0105

At 100 bytes per page, this sequence is reduced to the following reference string:

1, 4, 1, 6, 1, 6, 1, 6, 1, 6, 1

PageReplacementAlgorithms

FIFOPageReplacement

 Thesimplestpage-replacementalgorithmisafirst-in,first-out(FIFO)algorithm.

 A FIFO replacement algorithm associates with each page the time when that page was

brought into memory. When a page must be replaced, the oldest page is chosen.

 We can create a FIFO queue to hold all pages in memory. We replace the page atthe head

of the queue. When a page is brought into memory, we insert it at the tail of the queue.

 TheFIFOpage-replacementalgorithmiseasytounderstandand program.

 However, its performance is not always good. a bad replacement choice increases the

page-fault rate and slows process execution. If we place an active page, some other page

should be replaced to bring it back.

Example:

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page110

Belady’s anomaly:Forsomepage-replacementalgorithms,thepage-faultratemayincrease

asthenumberofallocatedframes increases.

Considerthefollowingreferencestring: 1,2, 3,4, 1, 2, 5, 1, 2, 3, 4, 5

Numberoffaultsforfourframes(ten)isgreaterthanthenumberoffaultsforthreeframes (nine)

OptimalPageReplacement

 Itsaysthat,Replacethepagethatwillnotbeusedforthelongestperiodoftime.

 Ithasthelowestpage-faultrateofallalgorithmsandwillneversufferfromBelady’s anomaly.

 Unfortunately,theoptimalpage-replacement algorithmisdifficulttoimplement,because it

requires future knowledge of the reference string.

 Asaresult,theoptimalalgorithmisusedmainlyforcomparisonstudies.

Example:

LRUPageReplacement

 LRUreplacementassociateswitheachpagethetimeofthatpage’slastuse.

 Whenapagemustbereplaced,LRUchoosesthepagethathasnotbeenusedforthe longest period

of time.

 Wecanthinkofthisstrategyastheoptimalpage-replacementalgorithmlooking backward in

time, rather than forward.

 Likeoptimalreplacement,LRUreplacementdoesnotsufferfromBelady’sanomaly. Both

belong to a class of page-replacement algorithms, called stack algorithms.

Example:

 The major problem is how to implement LRU replacement. An LRU page-replacement

algorithm may require substantial hardware assistance. The problem is to determine an

order for the frames defined by the time of last use.

 Twoimplementationsare feasible:

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page111

 Counters. In the simplest case, we associate with each page-table entry a time-of-

use field and add to the CPU a logical clock or counter. The clock is incremented for

every memory reference.Whenever a reference to a page is made,the contents of the

clock register are copied to the time-of-use field in the page-table entry for that page.

In this way, we always have the “time” of the last reference to each page. We replace

the page with the smallest time value. This scheme requires a search of the page

table to find the LRU page and a write to memory (to the time-of-use field in the

page table) for each memory access.

 Stack. Another approach to implementing LRU replacement is to keep a stack of

page numbers. Whenever a page is referenced, it is removed from the stack and put

on the top. In this way, the most recently used page is always at the top of the stack

and the least recently used page is always at the bottom. Because entries must be

removed from the middle of the stack, it is best to implement this approach by using

a doubly linked list with a head pointer and a tail pointer.

LRU-ApproximationPageReplacement

 Few computer systems provide sufficient hardware support for true LRU page

replacement. In fact, some systems provide no hardware support, and other page-

replacement algorithms (such as a FIFO algorithm) must be used. Many systems provide

some help, however, in the form of a reference bit.

 The reference bit for a page is set by the hardware whenever that page is referenced

(either a read or a write to any byte in the page). Reference bits are associated with each

entry in the page table.

 Initially, all bits are cleared (to 0) by the operating system.As a user process executes, the

bit associated with each page referenced is set (to 1) by the hardware. After some time,

we can determine which pages have been used and which have not been used by

examining the reference bits, although we do not know the order of use.Thisinformation

is the basis for many page-replacement algorithms that approximate LRU replacement.

Additional-Reference-BitsAlgorithm

 Wecangainadditional orderinginformationby recording thereferencebits atregular

intervals.

 Wecankeep an8-bitbyteforeachpageinatablein memory.

 At regularintervals (say, every 100 milliseconds), a timer interrupt transfers control tothe

operating system.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page112

 Theoperatingsystemshiftsthereferencebitforeachpageintothehigh-orderbitofits8- bit byte,

shifting the other bits right by1 bit and discarding the low-order bit. These 8-bit shift

registers contain the historyof page use for the last eight time periods.

 If the shift register contains 00000000, for example, then the page has not been used for

eight time periods.

 A page that is used at least once in each period has a shift register value of 11111111. A

page with a history register value of 11000100 has been usedmore recently than onewith

a value of 01110111.

 If we interpret these 8-bit bytes as unsigned integers, the page with the lowest number is

the LRU page, and it can be replaced. Notice that the numbers are not guaranteed to be

unique, however. We can either replace (swap out) all pages with the smallest value or

use the FIFO method to choose among them.

Second-ChanceAlgorithmORclock algorithm

 The basic algorithm of second-chance replacement is a FIFO replacement algorithm.

When a page has been selected, we inspect its reference bit.

 If the value is 0, we proceed to replace this page; but if the reference bit is set to 1, we

give the page a second chance and move on to select the next FIFO page.

 When apage gets asecond chance, its referencebit is cleared, and its arrival timeis reset to

the current time. Thus, a page that is given a second chance will not be replaced until all

other pages have been replaced (or given second chances).

 In addition, if a page is used often enough to keep its reference bit set, it will never be

replaced.

 One way to implement the second-chance algorithm is as a circular queue.A pointer(that

is, a hand on the clock) indicates which page is to be replaced next.

 When a frame is needed, the pointer advances until it finds a page with a 0 reference bit.

As it advances, it clears the reference bits. Once a victim page is found, the page is

replaced, and the new page is inserted in the circular queue in that position.

EnhancedSecond-ChanceAlgorithm

 We can enhance the second-chance algorithm by considering the reference bit and the

modify bit as an ordered pair. With these two bits, we have the following four possible

classes:

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page113

 (0,0)neitherrecentlyused normodified—best pageto replace.

 (0, 1)not recentlyused but modified—not quite as good, because the page will need

to be written out before replacement.

 (1,0)recentlyused butclean—probablywillbeused againsoon.

 (1, 1) recently used and modified—probably will be used again soon, and the

pagewill be need to be written out to disk before it can be replaced.

Counting-BasedPageReplacement

There are many other algorithms that can be used for page replacement. For example,

we can keep a counter of the number of references that have been made to each page and

develop the following two schemes,

LeastFrequentlyUsed(LFU)

 The least frequently used (LFU) page-replacementalgorithm requires that the page with

the smallest count be replaced. The reason for this selection is that an actively used page

should have a large reference count.

 A problem arises, however, when a page is used heavily during the initial phase of a

process but then is never used again.

 Since it was used heavily, it has a large count and remains in memoryeven though it isno

longer needed.

 One solution is to shift the counts right by 1 bit at regular intervals, forming an

exponentially decaying average usage count.

MostFrequentlyUsed(MFU)

 The most frequently used (MFU) page-replacement algorithm is based on the argument

thatthe pagewiththe smallest count wasprobablyjust brought inand has yet to beused.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page109

UNIT-5

File system interface and operation- Access methods, directory structure, Protection,

File system structure, Allocation methods, Free space management, Usage of Open, Create,

Read, Write, Close, Iseek, Stat, ioctl System calls

File:-

Afileisanamedcollectionofrelatedinformationthatisrecordedonsecondary storage.

(or)Afileisthesmallestallotmentoflogicalsecondarystorage.

(or)A file is a sequence of bits, bytes, lines, or records, the meaning of which is

defined bythe file’s creator and user. Many different types of information may be stored in a

file.

FileAttributes

FileAttributesgivestheOperatingSysteminformationaboutthefileandhowitisintended to use.

Afile’sattributesvaryfromoneoperatingsystemto another but typicallyconsistofthese:

 Name.Thesymbolicfilenameistheonlyinformationkeptinhumanreadableform.

 Identifier. This unique tag, usuallya number, identifies the file within the file system; it

is the non-human-readable name for the file.

 Type.Thisinformationisneededforsystemsthatsupportdifferenttypesoffiles.

 Location. This information is a pointer to a device and to the location of the file on that

device.

 Size. The current size of the file (in bytes, words, or blocks) and possibly the maximum

allowed size are included in this attribute.

 Protection. Access-control information determines who can do reading, writing,

executing, and so on.

 Time, date, and user identification. This information may be kept for creation, last

modification, and last use. These data can be useful for protection, security, and usage

monitoring.

Some newer file systems also supportextended file attributes, including

characterencoding of the file and security features such as a file checksum.

FileTypes

When we design a file system we always consider whether the operating system

should recognizeand supportfiletypes. Ifan operatingsystem recognizes thetypeofafile, it can

then operate on the file in reasonable ways. A common technique for implementing file types

is to include the type as part of the file name. The name is split into two parts—a name and an

extension, usuallyseparated bya period. Examples include resume.docx, server.c, and

ReaderThread.cpp.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page110

FileStructure

Filetypesalso canbeused to indicatethe internalstructureofthe file. Someoperating

systems extend this idea by supporting their own file structures. But it has the following

disadvantages

1. If operating system support multiple file structures: the resulting size of the operating

system is large.

2. Some applications may require information structured in a way that is not supported by

the OS some operating systems impose (and support) a minimal number offile structures.

This approach has been adopted in UNIX, Windows, and others.

InternalFileStructure

Block Structure

Disksystemstypicallyhaveawell-definedblocksizedeterminedbythesizeofa

sector.AlldiskI/Oisperformedinunitsofoneblock(physicalrecord),andallblocksarethe same size.

RecordStructure

Files contain a sequence of fixed length records. Physical records may or may not get

exact match with the logical record. Logical records even vary in length.

Accessmethods

Files store information. When it is used, this information must be accessed and read

into computer memory. The information in the file can be accessed in the following ways,

1. SequentialAccess

 The simplest access method is sequential access. Information in the file is processed

in order, one record after the other. It is based on a tape model of a file and works as

well on sequential-access devices.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page111

 Example:EditorsandCompilersusuallyaccessfiles inthis fashion.

 Operations

 A read operation—read next ()—reads the next portion of the file and

automaticallyadvances a filepointer, which tracksthe I/O location.Similarly, the

writeoperation—write next ()—appends to the end ofthe file and advances to the

end of the newly written material (the new end of file). On some systems, a

program maybe able to skip forward or backward n records for some integer n—

perhaps only for n = 1.

2. DirectAccess(orRelativeAccess)

 Another method is direct access (or relative access). Here, a file is made up of fixed-

length logical records that allow programs to read and write records rapidly in no

particular order. The direct-access method is based on a disk model of a file, since

disks allow random access to any file block.

 For direct access, the file is viewed as a numbered sequence of blocks or records.

Thus, we may read block 14, then read block 53, and then write block 7. There are no

restrictions on the order of reading or writing for a direct-access file.

 Examples:

 Direct-access files are of great use for immediate access to large amounts of

information. Databases are often of this type. When a query concerning a

particular subject arrives, we compute which block contains the answer and then

read that block directly to provide the desired information.

 On an airline-reservation system, we might store all the information about a

particular flight (for example, flight 713) in the block identified by the flight

number. Thus, the number of available seats for flight 713 is stored in block 713

of the reservation file. To store information about a larger set, such as people, we

might compute a hash function on the people’s names or search a small in-

memory index to determine a block to read and search.

 Operations

 For the direct-access method, the file operations must be modified to include the

block number as a parameter. Thus, we have read (n), where n is the block

number, rather than read next (), and write (n) rather than write next ().

 An alternative approach is to retain read next () and write next (), as with

sequential access, and to add an operation position file (n) where n is the block

number. Then, to affect a read (n), we would position file (n) and then read next().

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page112

3. IndexedAccess

 It involves the construction of an index for the file. The index, like an index in the

back of a book, contains pointers to the various blocks. To find a record in the file, we

first search the index and then use the pointer to access the file directlyand to find the

desired record.

 Example:

A retail-price file might list the universal product codes (UPCs) for items, with the

associated prices. Each record consists of a 10-digit UPC and a 6-digit price, for a 16-

byte record. If our disk has 1,024 bytes per block, we can store 64 records per block.A

file of 120,000 records would occupy about 2,000 blocks (2 million bytes). By

keeping the file sorted by UPC, we can define an index consisting of the first UPC in

each block. This index wouldhave 2,000 entries of 10 digits each, or 20,000 bytes, and

thus could be kept in memory. To find the price of a particular item, we can make a

binary search of the index. From this search, we learn exactly which block contains

the desired record and access that block. This structure allows us to search a large file

doing little I/O.

With large files, the index file itself may become too large to be kept in memory. One

solutionistocreate anindex forthe index file.Theprimaryindex file containspointersto

secondary index files, which point to the actual data items. For example, IBM’s indexed

sequential-access method (ISAM)usesasmallmasterindexthat pointsto disk blocksofa

secondary index.

DirectoryOverview

Afilesystem canbecreatedoneachofthese parts ofthedisk. Anyentitycontaininga file

system is generally known as a volume. Each volume thatcontains a file system must also

contain information about the files in the system. This information is kept in entries in a

device directory or volume table of contents. The device directory (or directory) records

information—such as name, location, size, and type—for all files on that volume.

The directory can be viewed as a symbol table that translates file names into their

directoryentries. The following are the operations that are to be performed on a directory:

 Searchfora file.

 Createafile

 Deleteafile.

 Listadirectory.

 Renameafile

 Traversethefilesystem

thefollowing,

Directory Structure

Themostcommonschemesfordefiningthelogicalstructureofadirectoryare

1. Single-LevelDirectory

 The simplest directory structure is the single-level directory. All files are contained

in the same directory, which is easyto support and understand.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page121

 Limitations

 All files are in the same directory, theymust have unique names. If two users call

their data file test.txt, then the unique-name rule is violated.

 Even a single user on a single-level directory may find it difficult toremember the

names of all the files as the number of files increases. Keeping track of so many

files is a problem.

2. Two-LevelDirectory

 The standard solution to eliminate confusion of file names among different users isto

create a separate directory for each user.

 Sothe two leveldirectorystructurecontains2 directories

 MasterFile Directory(MFD) atthetoplevel.

 UserFileDirectory(UFD)atthesecondleveland

 Actualfilesareatthethirdlevel.

 Each user has his own user file directory (UFD). When a user job starts or a user

logs in, the system’s master file directory (MFD) is searched. The MFD is indexed

byuser name or account number, and each entrypoints to the UFD for that user

 Whenauserreferstoaparticularfile,onlyhisownUFDis searched.

 To create a file for a user, the operating system searches only that user’s UFD to

ascertain whether another file of that name exists.

 To delete a file, the operating system confines its search to the local UFD; thus, it

cannot accidentally delete another user’s file that has the same name.

 Although the two-level directory structure solves the name-collision problem, it still

has disadvantages.

 This structure effectively isolates one user from another. Isolation is an advantage

when the users are completely independent butis a disadvantage when the users want

to cooperate on some task and to access one another’s files. Some systems simply do

not allow local user files to be accessed byother users.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page121

 If access is permitted one user must have the abilityto name a file in another user’s

directory. To name a file uniquely, the user must give both user name and file name

as Path Name.

 If user A wishes to access her own test file named test.txt, she can simply refer to

test.txt. Toaccess thefile namedtest.txt ofuserB (with directory-entrynameuserb),

however,shemighthavetoreferto/userb/test.txt(windowsos)and/u/pbg/test(Unix,

Linux).

 A special situation occurs with the system files. If a user wants them, they are

searched in USD if found ok if not found we should copy the system files into each

UFD but copying all the system files would waste an enormous amount of space.

 The standard solution is to use special user directory. Whenever a file name is given

to be loaded, the operatingsystem first searches the local UFD. If the file is found, it

is used. If it is not found, the system automatically searches the specialuserdirectory

that contains the system files.

 The sequenceofdirectories searchedwhenafileis namediscalledthesearchpath.

3. Tree-StructuredDirectories

 A tree is the most common directory structure. The tree has a root directory, and

every file in the system has a unique path name.

 A directory (or subdirectory) contains a set of files or subdirectories. A directory is

simply another file, but it is treated in a special way. All directories have the same

internal format. One bit in each directory entry defines the entry as a file (0) or as a

subdirectory(1). Special system calls are used to create and delete directories.

 CurrentDirectory

 Each process has a current directory. The current directoryshould contain most

of the files that are of current interest to the process.

 When reference is made to a file, the current directory is searched. If a file is

needed that is not in the current directory, then the user usually must either

specify a path name or change the current directory (using change directory ()

system call) to be the directory holding that file.

 PathNames

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page121

 ItdescribesthepaththeOSmust taketogettosomepoint.

 Pathnamescanbeoftwo types: absoluteand relative.

 An absolute path name begins at the root and follows a path down to the

specified file, giving the directory names on the path.

 Arelativepathnamedefinesapathfromthecurrentdirectory.

 If the current directory is root/spell/mail, then the relative path name prt/first

refers to the same file as does the absolute path name root/spell/mail/prt/first.

 Deletionofadirectory

 If a directory is empty, its entry in the directory that contains it can simply be

deleted.

 However, suppose the directory to be deleted is not empty but contains several

files or subdirectories.

 One of two approaches can be taken. Some systems will not delete a directory

unless it is empty. Thus, to delete a directory, the user must first delete all the

files in that directory. If any subdirectories exist, this procedure must be applied

recursivelyto them, so that theycan be deleted also. This approach can result in a

substantial amount of work.

 An alternative approach, such as that taken by the UNIX rm command, is to

provide an option: when a request is made to delete a directory, all that

directory’s files and subdirectories are also to be deleted.

4. Acyclic-GraphDirectories

 A tree structure prohibits the sharing of files or directories. An acyclic graph i.e., a

graph with no cycles which allows directories to share subdirectories and files.

 The same file or subdirectory may be in two different directories. An acyclic-graph

directory structure is more flexible than a simple tree structure, but it is also more

complex.

 Implementation

a. Link: A common way is to create a new directory entry called a link. A link is

effectively a pointer to another file or subdirectory. A link may be implemented

as an absolute or a relative path name. When a reference to a file is made, we

searchthedirectory.Ifthe directory entry ismarkedasa link,then thename of

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page121

therealfile is included inthe link information. We resolve the link byusingthat

path name to locate the real file.

b. Duplication:Sharedfilesduplicateallinformationabouttheminbothsharing

directories. Thus, both entries are identical and equal. A major problem with

duplicate directoryentries is maintaining consistencywhen a file is modified.

 Problems

 A file may now have multiple absolute path names creating problem in

traversing.

 Deletion: When can the space allocated to a shared file be deallocated and

reused?

o One possibility is to remove the file whenever anyone deletes it, but this
action may leave dangling pointers to the now-nonexistent file.

o Another possibility occurs when symbolic links are used. The deletion of a

link need not affect the original file; only the link is removed. If the file

entry itself is deleted, the space for the file is deallocated, leaving the links

dangling.Wecansearch fortheselinksandremovethemas well,butunless a list

of the associated links is kept with each file, this search can be expensive.

Alternatively, we can leave the links until an attempt is made to use them.

At that time, we can determine that the file of the name given by the link

does not exist and can fail to resolve the link name; the access is treated just

as with any other illegal file name.

o Another approach to deletion is to preserve the file until all references to it

are deleted. To implement this approach, we musthave some mechanism

fordetermining that the last reference to the file has been deleted. We could

keep a list of all references to a file (directory entries or symbolic links).

When a link or a copy of the directory entry is established, a new entry is

added to the file-reference list. When a link or directoryentryis deleted, we

remove its entry on the list. The file is deleted when its file-reference list is

empty.

Protection

When information is stored in a computer system, we want to keep it safe from

physical damage (the issue of reliability) and improper access (the issue of protection).

Reliability is generally provided by duplicate copies of files. Many computers have

systems programs that automatically (or through computer-operator intervention) copy disk

files to tape at regular intervals (once per day or week or month) to maintain a copy should a

file system be accidentally destroyed.

File systems can be damaged by hardware problems (such as errors in reading or

writing), power surges or failures, head crashes, dirt, temperature extremes, and vandalism,

accidentaldeletion , Bugs in the file-system software etc.,

Protection can be provided in many ways. For a single-user laptop system, we might

provide protection by locking the computer in a desk drawer or file cabinet. In a larger

multiuser system, however, other mechanisms are needed.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page121

1. TypesofAccess

Protection mechanisms provide controlled access by limiting the types of file access

that can bemade. Access is permitted ordenieddependingon several factors, oneof which is

the type of access requested. Several different types of operations may be controlled:

 Read.Readfromthefile.

 Write.Writeorrewritethefile.

 Execute. Loadthefileintomemoryandexecuteit.

 Append.Writenewinformationattheend ofthefile.

 Delete.Deletethefileand freeitsspaceforpossiblereuse.

 List.List thenameandattributesofthefile.

Otheroperations,suchasrenaming,copying,andeditingthefile,mayalsobecontrolled.

2. AccessControl

Themost commonapproachtotheprotectionproblemistomakeaccessdependenton the

identity of the user. Different users may need different types of access to a file or directory.

The most general scheme to implement identity dependent access is to associate with each

file and directory an access-control list (ACL)specifying user names and thetypes of access

allowed for each user.

Whenauserrequestsaccesstoaparticularfile,theoperatingsystemchecksthe access list

associated with that file. Ifthat user is listed forthe requested access, the access is allowed.

Otherwise, aprotection violationoccurs,andtheuser job isdenied accesstothefile.

This approach has the advantage of enabling complex access methodologies.The main

problem with access lists is their length. If we want to allow everyone to read a file, we must

list all users with read access. This technique has two undesirable consequences:

 Constructing such a list may be a tedious and unrewarding task, especially if we do not

know in advance the list of users in the system.

 The directory entry, previously of fixed size, now must be of variable size, resulting in

more complicated space management.

These problems can be resolved by use of a condensed version of the access list. To

condense thelength oftheaccess-control list, manysystems recognizethreeclassifications of

users in connection with each file:

 Owner.Theuserwhocreatedthefileistheowner.

 Group.Asetofuserswhoaresharingthefileandneedsimilaraccessisagroup,or work group.

 Universe.Allother usersinthesystemconstitutetheuniverse.

The most common recent approach is to combine access-control lists with the more

general (and easier to implement) owner, group, and universe access control scheme.

For this scheme to work properly, permissions and access lists must be controlled

tightly. This control can be accomplished in several ways. For example, in the UNIX system,

groups can be created and modified onlybythe manager of the facility(or byanysuperuser).

Thus, control is achieved through human interaction.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page121

With the more limited protection classification, only three fields are needed to define

protection. Often, each field is a collection of bits, and each bit either allows or prevents the

access associated with it. For example, the UNIX systemdefines three fields of3 bits each—

rwx, where r controls read access, w controls write access, and x controls execution. A

separate field is kept for the file owner, for the file’s group, and for all other users. In this

scheme, 9 bits per file are needed to record protection information.

Example:

19-rw-r--r--+1jimstaff130May2522:13 file1

3. OtherProtectionApproaches

Another approach to the protection problem is to associate a password with each file.

Just as access to the computer system is often controlled by a password, access to each file

can be controlled in the same way. If the passwords are chosen randomly and changed often,

this scheme may be effective in limiting access to a file. The use of passwords has a few

disadvantages, however.

First, the number of passwords that a user needs to remember may become large,

making the scheme impractical.

Second, if only one password is used for all the files, then once it is discovered, all

files are accessible; protection is on an all-or-none basis. Some systems allow a user to

associate a password with a subdirectory, rather than with an individual file, to address this

problem.

FileSystemStructure

Disksprovidemostofthesecondarystorageonwhichfilesystemsaremaintained.Two characteristics

make them convenient for this purpose are,

1. Adisk canberewritten.

2. Adisk canaccessdirectlyanyblock ofinformation itcontains.

File systems provide efficient and convenient access to the disk by allowing data tobe

stored, located, and retrieved easily.

DesignProblemsinaFile System

1. Howthefilesystemshouldlooktotheuseri.e.file,andthedirectorystructurefor organizing files.

2. Creating algorithms and data structures to map the logical file system onto the physical

secondary-storage devices.

Layereddesign ofaFilesystems

Eachlevelin thedesignusesthefeaturesoflowerlevelstocreatenewfeaturesforuse by higher

levels.

Application Programs

Itcontainsuser codethatismakingarequest.

LogicalFile System

The logical file system manages metadata information. Metadata includes all of

thefile-systemstructureexcepttheactualdata.Thelogicalfilesystemmanagesthedirectory

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page121

structuretoprovidethefile-organizationmodulewiththisinformation.

File-OrganizationModule

Thefile-organization moduleknowsaboutfiles andtheir

logical blocks and physical blocks. By knowing the type of file

allocation used and the location of the file, the file organization

module can translate logical block addresses to physical block

addresses for the basic file system to transfer.

BasicFileSystem

The basic file system needs only to issue generic commands

to the appropriate device driver to read and write physical blocks on

thedisk. Eachphysicalblock is identified byitsnumericdiskaddress.

I/O control

TheI/Ocontrol levelconsistsofdevicedrivers andinterrupts

handlers to transfer information between the main memory and the

disk system. It acts like a translator, inputting high-level commands

such as “retrieve block 123.”And outputting low-level, hardware

-specific instructionsthatareusedbythehardware controller

Devices

Thesearetheactualhardwaredeviceslikedisk.

Allocationmethods

Manyfiles can be stored on the same disk. Themain problem is how to allocate space

to these files so that disk space is utilized effectively and files can be accessed quickly. The

following are the three major methods of allocating disk space that are in wide use:

1. ContiguousAllocation

 Contiguous allocation requires that each file occupy a set of contiguous blocks on

the disk. Disk addresses define a linear ordering on the disk.

 Contiguous allocation of a file is defined by the disk address and length (in block

units) of the first block. If the file is n blocks long and starts at location b, then it

occupies blocks b, b + 1, b + 2, b + n − 1. The directory entry for each file indicates

the address of the starting block and the length of the area allocated for this file.

 Accessingafile:

Accessing a file that has been allocated contiguously is easy. It supports both

sequential and random access. For sequential access, the file system remembers the

disk address of the last block referenced and, when necessary, reads the next block.

For direct access to block i of a file that starts at block b, we can immediatelyaccess

block b + i.

OPERATINGSYSTEM (23CS403)

CSE, NRCM Page122

 Drawbacks

 Finding space for a new file. The system chosen to manage free space determine

show this task is accomplished. First fit and best fit are the most common

strategies used to select a free hole fromthe set of available holes.

 ExternalFragmentation

As files are allocated and deleted, the free disk space is broken into little

pieces. External fragmentation exists whenever free space is broken into chunks.It

becomes a problem when the largest contiguous chunk is insufficient for a

request; storage is fragmented into a number of holes, none of which is large

enough to store the data.

 Solutiontoexternalfragmentation

Copy an entire file system onto another disk. The original disk is then

freed completely, creatingonelargecontiguous freespace. Wethencopythefiles

back onto the original disk by allocating contiguous space from this one large

hole. This scheme effectively compacts all free space into one contiguous space,

solving the fragmentation problem.

 Determining how much space is needed for a file. When the file is created, the

total amount of space it will need must be found and allocated. If we allocate too

little space to a file, we may find that the file cannot be extended.

Two possibilities then exist. First, the user program can be terminated,

with an appropriate error message. The user must then allocate more space and

run the program again. These repeated runs may be costly. To prevent them, the

user will normally overestimate the amount of space needed, resulting in

considerable wasted space. The other possibility is to find a larger hole, copy the

contentsofthefiletothenewspace, and releasethe previous space.Thisseriesof

actions can be repeated as long as space exists, although it can betime consuming.

The user need never be informed explicitly about what is happening, however; the

system continues despite the problem, although more and more slowly. Even if

the total amount of space needed for a file is known in advance, preallocation may

be inefficient. A file that will grow slowlyover a long period.

 ModifiedContiguous-Allocation

 To minimize these drawbacks, some operating systems use a modified

contiguous-allocationscheme.Here,acontiguouschunkofspaceisallocated

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page127

initially.Then,ifthatamountprovesnottobelargeenough,anotherchunkof contiguous

space, known as an extent, is added.

2. LinkedAllocation

 Linked allocation solves all problems of contiguous allocation. With linked

allocation, each file is a linked list of disk blocks; the disk blocks may be scattered

anywhere on the disk. The directory contains a pointer to the first and last blocks of

the file. For example, a file of five blocks might startat block 9 and continue at block

16, then block 1, then block 10, and finally block 25.

 To create a new file, we simply create a new entry in the directory. With linked

allocation, each directory entry has a pointer to the first disk block of the file. This

pointer is initialized to null (the end-of-list pointer value) to signify an empty file.

The size field is also set to 0.

 Awritetothefilecauses thefree-spacemanagementsystemto findafree block,and this

new block is written to and is linked to the end of the file.

 Toread afile,wesimplyreadblocks byfollowingthepointers fromblocktoblock.

 Advantages

 There is no external fragmentation with linked allocation, and any free block on

the free-space list can be used to satisfy a request.

 Thesizeofafileneednotbedeclaredwhenthefileiscreated.Afilecan continue

togrowaslongasfreeblocksareavailable.Consequently,itisnevernecessaryto

compact disk space.

 Disadvantages

 The major problem is that it can be used effectively only for sequential-access

files. To find the ith block of a file, we must start at the beginning of that file and

followthepointersuntilweget to the ith block.Each access to apointerrequires a disk

read, and some require a disk seek. Consequently,it is inefficient to supporta

direct-access capability for linked-allocation files.

 Anotherdisadvantage is thespace required for the pointers. If apointerrequires 4

bytes out of a 512-byte block, then 0.78 percent of the disk is being used for

pointers,ratherthan forinformation. Each filerequires slightlymorespace thanit

would otherwise.

 The usual solution to this problem is to collect blocks into multiples, called

clusters, and to allocate clusters rather than blocks. For instance, the file system

maydefine a cluster as four blocks and operate on the disk only in cluster units.

 Another problem of linked allocation is reliability the files are linked together by

pointersscatteredallover thedisk,andconsiderwhatwouldhappenifapointer

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page127

werelostordamaged.

 One partial solution is to use doubly linked lists, and another is to store the file

name and relative block number in each block. However, these schemes require

even more overhead for each file.

VariationonLinkedAllocation

 An important variation on linked allocation is the use of a file-allocation table (FAT).

This simple but efficient method of disk-space allocation was used by the MS-DOS

operating system.

 A section of disk at the beginning of each volume is set aside to contain the table. The

table has one entry for each disk block and is indexed byblock number.

 TheFAT is used in much the same wayas a linked list. Thedirectoryentrycontains the

block number of the first block of the file. The table entry indexed by thatblocknumber

contains the block number of the next block in the file. This chain continues until it

reaches the last block, which has a special end-of-file value as the table entry.

 An unused block is indicated by a table value of 0. Allocating a new block to a file is a

simple matter of finding the first 0-valued table entry and replacing the previous end-

of-file value with the address of the new block. The 0 is then replaced with the end-of-

file value.

3. IndexedAllocation

 Linked allocation solvesthe external-fragmentation and size-declaration problems of

contiguous allocation. However, in the absence of a FAT, linked allocation cannot

support efficient direct access, since the pointers to the blocks are scattered with the

blocks themselves all over the disk and must be retrieved in order.

 Indexedallocation solvesthisproblembybringingallthe pointerstogetherintoone

location: the index block.

 Each file has its own index block, which is an array of disk-block addresses. The

ithentry in the index block points to the ithblock of the file. The directory contains the

address of the index block.

 Tofindand readtheithblock, weusethepointerintheithindex-blockentry.

 When the file is created, all pointers in the index block are set to null. When the

ithblock is first written, a block is obtained from the free-space manager, andits

address is put in the ithindex-block entry.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page128

 Indexed allocation supports direct access, without suffering from external

fragmentation, because any free block on the disk can satisfy a request for more

space.

 Disadvantages

 Indexedallocationdoessufferfromwasted space.

 The pointer overhead of the index block is generally greater than the pointer

overhead of linked allocation.

 MechanismsforimplementingIndexBlock

 Linked scheme. An index block is normally one disk block. Thus, it can be read

and written directlybyitself. To allow forlarge files, wecan link together several

index blocks.For example, an index block might contain a small header giving the

name of the file and a set of the first 100 disk-block addresses. The next address

(thelast wordin theindex block)isnull(forasmallfile) oris apointerto another index

block (for a large file).

 Multilevel index. A variant of linked representation uses a first-level index block

to point to a set of second-level index blocks, which in turn point to the file

blocks. To access a block, the operating system uses the first-level index to find a

second-level index block and then uses that block to find the desired data block.

This approach could be continued to a third or fourth level, depending on the

desired maximum file size. With 4,096-byte blocks, we could store 1,024 four-

byte pointers in an index block.Two levels of indexes allow 1,048,576 data blocks

and a file size of up to 4 GB.

 Combined scheme. Another alternative, used in UNIX-based file systems, is to

keep the first, say, 15 pointers of the index block in the file’s inode. The first 12of

these pointers point to direct blocks; that is, they contain addresses of blocks that

contain data of the file. Thus, the data for small files (of no more than 12 blocks)

do notneed a separate index block. If the block size is 4 KB, then up to48 KB of

data can be accessed directly. The next three pointers point to indirect blocks.

The first points to a single indirect block, which is an index block containing not

data but the addresses of blocks that do contain data. The second

pointstoadoubleindirectblock,whichcontainstheaddressofablockthat

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page129

containstheaddressesofblocksthatcontainpointerstotheactualdatablocks. The last

pointer contains the address of a triple indirect block.

Free-spaceManagement

To keep track of free disk space, the system maintains a free-space list. The free-

space list records all free disk blocks—those not allocated to some file or directory. The

following are implementations of free space list.

1. BitVector

 Free-space list is frequently implemented as a bit map or bit vector. Each block is

represented by1 bit. If the block is free, the bitis 1; if the block is allocated, the bitis

0.

 For example, consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25,

26, and 27 are free and the rest of the blocks are allocated. The free-space bit map

would be

001111001111110001100000011100000...

 Advantage

Themain advantageof this approach is its relativesimplicityand its efficiency in

finding the first free block or n consecutive free blocks on the disk. Indeed, many

computers supply bit-manipulation instructions that can be used effectively for that

purpose. One technique for finding the first free block on a system that uses a bit-

vector to allocate disk space is to sequentially check each word in the bit map to see

whether that value is not 0, since a0-valued word contains only 0 bits and represents

a set of allocated blocks. The first non-0 word is scanned for the first 1 bit, which is

the location of the first free block.

Thecalculationoftheblocknumberis

(numberofbitsper word)×(numberof0-valuewords)+offset offirst1 bit.

 Disadvantage

Bit vectors are inefficient unless the entire vector is kept in main memory (and is

written to disk occasionally for recovery needs). Keeping it in main memory is

possible for smaller disks but not necessarily for larger ones.

2. Linked List

 Another approach to free-space management is to link together all the free disk

blocks, keeping a pointer to the firstfree blockin a special location on the disk and

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page130

caching it in memory. This first block contains a pointer to the next free disk block,

and so on.

 For example, blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and 27 were free

and the rest of the blocks were allocated.In this situation, we would keep a pointerto

block 2 as the first free block. Block 2 would contain a pointer to block 3, which

would point to block 4, which would point to block 5, which would point tom block

8, and so on.

 Disadvantages

This scheme is not efficient; to traverse the list, we must read each block, which

requires substantial I/O time

3. Grouping

 A modification of the free-list approach stores the addresses of n free blocks in the

first free block. The first n−1 of these blocks are actually free. The last, block

contains the addresses of another n free block, and so on. The addresses of a large

number of free blocks can now be found quickly.

4. Counting

 Several contiguous blocks may be allocated or freed simultaneously, particularly

when space is allocated with the contiguous-allocation algorithm or through

clustering.

 Thus, rather than keeping a list of n free disk addresses, we can keep the address of

the first free block and the number (n) of free contiguous blocks that follow the first

block. Each entryin the free-space list then consists of a disk address and a count.

5. SpaceMaps

 Oracle’s ZFS file system was designed to encompass huge numbers of files,

directories, and even file systems.

 In its management of free space, ZFS creates metaslabs to divide the space on the

device into chunks of manageable size. Each metaslab has an associated space map.

 The space map is a log of all block activity(allocating and freeing), in time order, in

counting format. When ZFS decides to allocate or free space from a metaslab, it

loads the associated space map into memory in a balanced-tree structure (for very

efficient operation), indexed byoffset, and replays the login to that structure.

OPERATINGSYSTEM(23CS403)

CSE, NRCM Page131

 Thein-memoryspacemap is thenan accuraterepresentation oftheallocated and free

space in the metaslab.

Systemcallsforfileoperations-open(),read(),write(),close(),seek(),unlink()

(FileOperations)

create()

This is used to create a file. Two steps arenecessaryto create a file. First, space in the

file system must be found for the file. Second, an entry for the new file must be made in the

directory.

open ()

Many systems require that an open () system call be made before a file is first used.

When a file has been opened its entry is added in the open file table. It also contains open

count associated with each file to indicate how manyprocesses have the file open.

read()

To read from a file, we use a system call that specifies the name of the file and read

pointertothelocationin thefile wherethenextreadisto takeplace. Oncethe read has taken place,

the read pointer is updated.

write()

To write a file, we make a system call specifying both the name of the file and the

information to be written to the file. Given the name of the file, the system searches the

directory to find the file’s location.

The system must keep a write pointer to the location in the file where the next writeis

to take place. The write pointer must be updated whenever a write occurs.

close()

This closes a file. Each close () decrements the open countand when the count reaches

zero, the file is no longer in use so it can be closed.

delete()

To delete a file, we search the directory for the named file. Having found the

associated directoryentry, we release all file space, so that it can be reused byother files, and

erase the directory entry.

truncate()

The user may want to erase the contents of a file but keep its attributes. Rather than

forcing the user to delete the file and then recreate it, this function allows all attributes to

remain unchanged—except for file length—but lets the file be reset to length zero and its file

space released.

seek()

It is also called as Reposition. The directory is searched for the appropriate entry, and

the current-file-position pointer is repositioned to a given value. Repositioning within a file

need not involve any actual I/O.

unlink()

Deletes a name from the file system. If that name was the last link to a file and no

processeshavethefileopenthefileisdeletedandthespaceitwasusingismadeavailablefor reuse.

