
23CS404: Database Management Systems

Dept. of CSE Page 1 of 128 Dr. G Ramu, Professor

UNIT – I

Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data

Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS Introduction

to Database Design: Database Design and ER Diagrams, Entities, Attributes, and Entity Sets,

Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design

With the ER Model

1. INTRODUCTION

Data: Data is a piece of information. Data can exist in a variety of forms:

• As numbers or text on pieces of paper

• As bits and bytes stored in computer memory

• As facts stored in a person's mind.

Data is raw information and it does not give correct meaning. The processed data becomes

information and it gives correct meaning.

Database: Database is a collection of inter-related data which is used to retrieve, insert,

delete and manipulate the data efficiently.

Database Management System (DBMS): The software which is used to manage

database is called Database Management System (DBMS).

Examples of popular DBMS:

• MySql

• Oracle

• Microsoft Access

• IBM DB2

2. A HISTORICAL PERSPECTIVE

From the earliest days of computers, storing and manipulating data have been a major

application focus. The first general-purpose DBMS called the Integrated Data Store (IDS) was

designed by Charles Bachman in the early 1960s. It formed the basis for the network data model.

In the late 1960s, IBM developed the Information Management System (IMS). This formed

23CS404: Database Management Systems

Dept. of CSE Page 2 of 128 Dr. G Ramu, Professor

the basis for an alternative data representation framework called the hierarchical data model.

23CS404: Database Management Systems

Dept. of CSE Page 3 of 128 Dr. G Ramu, Professor

In 1970, Edgar Codd, proposed a new data representation framework called the relational

data model. In a relational data model, the data is stored in the form of table containing rows and

columns. This became very famous database model. The SQL (Structured Query Language) is the

standard query language used to access relational databases.

Several vendors (e.g., IBM's DB2, Oracle 8, etc) developed data warehouses. A Data

warehouse collects data from several databases and this data is used for carrying out specialized

analysis.

In mid 90s, DBMSs have entered the Internet Age. All the database vendors are added features

to their DBMS aimed at making it more suitable for deployment over the Internet. Database

management continues to gain more popularity and more data is brought online to access through

computer networking.

Today the field is being driven by exciting visions such streaming data (youtube, vimeo, etc)

as interactive video (flash, wirewax etc), multimedia databases (facebook, instagram, gaana etc),

digital libraries (DELNET, Shodh ganga, etc). Thus the study of database systems could prove to

be richly rewarding in more.

3. DATABASE APPLICATIONS

We use Database Management Systems in almost all application sectors. They are:

1. Telecom: A database is required to keep track of the information regarding calls history,

network usage, customer details, generating monthly bills, maintaining balances on prepaid

calling cards etc. Without the database systems it is hard to maintain that huge amount of

data that keeps updating every millisecond. Ex: Airtel, IDEA, Jio, etc

2. Banking System: A database stores bank customer’s information, maintain day to day

credit and debit transactions, generate bank statements etc. Ex: SBI, HDFC, etc

3. Online shopping: The online shopping websites store the product information, your

addresses and preferences, credit details and provide you the relevant list of products based

on your query. Ex: Amazon, Flipkart etc.

4. Airlines: Passenger details, reservation information along with flight schedule is stored in

database. Eg: Air India, Indigo, etc

23CS404: Database Management Systems

Dept. of CSE Page 4 of 128 Dr. G Ramu, Professor

5. Education sector: Database systems are used in schools, colleges and universities to store

and retrieve the data regarding student details, staff details, course details, exam details,

attendance details, fees details etc. Ex: JNTUH, IITB, etc

6. Sales: To store customer information, stock details and invoice details a database is needed.

Ex: Reliance Fresh, D-Mart etc.

7. Human resources: For information about employees, salaries, payroll taxes, and benefits

and for generation of paychecks a database is required.

8. Credit card transactions: For purchases on credit cards and generation of monthly

statements.

9. Stock market: For storing information about holdings, sales, and purchases of stocks; also

for storing real-time market data to enable online trading.

4. DIFFERENCE BETWEEN FILE SYSTEM AND DBMS

File System DBMS

Definition
A file system is a software that

manages the data files in a computer

DBMS is a software used to create and

manage databases.

Operations

Operations such as storing, retrieving

and searching are done manually in a

file system. Therefore, it is difficult

to manage data.

Operations such as storing, retrieving and

searching data is easier in DBMS

because it allows using SQL query

language.

Data

Consistency

Data Inconsistency is more in file

system.
Data Inconsistency is less in DBMS.

Data

Redundancy

Data Redundancy is more in file

system.
Data Redundancy is less in a DBMS.

Backup and

Recovery
Process

Backup and recovery process is not
efficient in files system.

DBMS has a sophisticated backup and
recovery techniques.

Concurrent

access

Concurrent access to the data in the

file system has many problems

DBMS takes care of Concurrent access

using some form of locking.

23CS404: Database Management Systems

Dept. of CSE Page 5 of 128 Dr. G Ramu, Professor

Physical

address

User can locates the physical

address of the files to access data in

File System.

In DBMS, user is unaware of physical

address where data is stored.

Security File system provides less security to

the data as compared to DBMS.

DBMS provides more security to the

data.

Example
FAT, NTFS and Ext are some

examples of file systems.
MySQL, MS-Access, Oracle, and DB2

are some examples of DBMS.

5. DBMS DATABASE MODELS
A Database model defines the logical design and structure of a database. It explains how data

will be stored, accessed and updated in a DBMS. The different DBMS data models are:

• Network Model

• Hierarchical Model

• Entity-relationship Model

• Relational Model

• Object oriented data model

Network Data Model
Network model has the entities which are organized in a graphical representation and some entities

in the graph can be accessed through several paths. The data in this model is represented as

collection of records and the relationship among data are represented by links.

Figure: Network Model

https://whatisdbms.com/wp-content/uploads/2016/06/Network-Model-in-DBMS.jpg

23CS404: Database Management Systems

Dept. of CSE Page 6 of 128 Dr. G Ramu, Professor

Hierarchical Model
Hierarchical database model organizes data into a tree-like-structure, with a single root, to which

all the other data is linked. In this model, a child node will only have a single parent node.

Figure: Hierarchical Data Model

Entity-Relationship Model

Entity-Relationship (ER) Model is based on the notion of real-world entities and relationships

among them. ER Model is best used for the conceptual design of a database. While formulating

real-world scenario into the database model, it depend on two important things. They are:

• Entity and their attributes

• Relationships among entities

CID CName

 Course

Relational Model

The most popular data model in DBMS is the Relational Model. The relational model contains a

set of tables (relations). Each table has a specified number of columns but can have any number

of rows.

AdmissionNo Name Age Class

1001 Ram 15 9

1002 Ajay 14 9

1003 Jhon 14 9

1004 Akbar 15 10

SID SName

Enroll Student

23CS404: Database Management Systems

Dept. of CSE Page 7 of 128 Dr. G Ramu, Professor

Object oriented Data Model

Object oriented data model defines a database as a collection of objects with associated attributes

and methods. This model can incorporates multimedia, such as images, audio, video. The object-

oriented database model is the best known post-relational database model, since it incorporates

tables, but isn’t limited to tables. Such models are also known as hybrid database models.

6. LEVELS OF ABSTRACTION IN A DBMS

Database systems are made-up of complex data structures. To ease the user interaction with

database, the developers hide internal irrelevant details from users. This process of hiding

irrelevant details from user is called data abstraction. We have three levels of abstraction.

Level

10. Physical level: This is the lowest level of data abstraction. It describes how data is actually

stored in database. It deals with physical memory storage details of records. These details are

often hidden from the programmers.

11. Logical level: This is the middle level of 3-level data abstraction architecture. It describes what

data is stored in database. This level gives details about each attribute data type and size, the

relationship among attributes and defined constraints (Primary key, foreign key etc) on the table.

The programmers generally work at this level because they are aware of such things about

database systems.

View

Logical Level

Physical Level

23CS404: Database Management Systems

Dept. of CSE Page 8 of 128 Dr. G Ramu, Professor

12. View level: This is the highest level of data abstraction. This level describes the user interaction

with database system. At this level, user enters the query to get the answer. Many users may

require different sets of fields from a table. Therefore there exist many view levels.

7. DATA INDEPENDENCE
Data Independence is defined as a property of DBMS that helps you to change the Database

schema at one level without requiring changing the schema at the next higher level. Data

independence helps you to keep data separated from all programs that make use of it.

In DBMS there are two types of data independence

1. Physical data independence

2. Logical data independence.

Physical Data Independence: Physical data independence is the ability to change the

internal schema without having to change the conceptual schema. That is, if we do any changes in

the storage side of the database system server, then the Conceptual structure of the database will

not be affected. For example, in case we want to change or upgrade the storage system itself

− suppose we want to replace hard-disks with SSD − it should not have any impact on the logical

data or schemas.

Logical Data Independence: Logical data independence is the ability to change the

conceptual schema without having to change the external schema. That is, if we do any changes

in the logical view of the data, then the user view/ external view of the data should not be affected.

8. STRUCTURE OF A DBMS

The DBMS accepts SQL commands generated from a variety of user interfaces such as web

forms, applications, SQL interface and etc. When a user issues a query, the parsed query is

presented to a query optimizer, which uses information about how the data is stored to produce an

efficient execution plan for evaluating the query. An execution plan is a blueprint for evaluating a

query. It executes these plans against the database, and returns the answers to the user.

23CS404: Database Management Systems

Dept. of CSE Page 9 of 128 Dr. G Ramu, Professor

Figure: DBMS Structure

• DBMS consists of a Query Evaluation engine which accepts commands from the front end

applications like web forms, SQL interfaces and evaluates the query to retrieve the requested

data.

• Query Evaluation engine consists of the following components

o Parser: It parses the received SQL commands.

o Operator evaluator: It evaluates the operators used in the query.

o Plan executor: It designs a plan to obtain the result.

o Optimizer: It optimizes the query to improve the process of retrieving the resultant

data.

• File and access methods: It is responsible for the abstraction of file structures stored and for

creating indexes on the files for faster access.

• Buffer Manager: The purpose of buffer manager is to move pages in and out from a disk to

main memory.

• Disk Space Manager: It manages space on the disk by providing empty space for new

requests, deleting space allocated for existing files which are deleted by the user.

• Transaction Manager and lock manager: It is responsible for maintaining concurrency of

the data, when accessed by multiple users.

Query

Evaluation

Engine

23CS404: Database Management Systems

Dept. of CSE Page 10 of 128 Dr. G Ramu, Professor

• Recovery manager: It is responsible for maintaining log files and supports crash recovery.

When a system crashes recovery manager is responsible for bringing the system to a safe state.

9. DATABASE DESIGN
The database design process can be divided into six steps.

i. Requirements Analysis: The very first step in designing a database application is to gather

information from different stake holders such as management, employees and end users. The

development team conducts discussions with different user groups, study the current operating

environment, analyze any available documentation on existing applications and gather all of

the types of information that to be recorded in the database. The gathered information is

documented properly.

ii. Conceptual Database Design: The information gathered in the requirements analysis step is

used to develop Entity Relationship (ER) model. The ER model facilitates discussion among

all the people involved in the design process, even those who have no technical background.

iii. Logical Database Design: The task in this stage is to convert the ER model into relational

schemas. Each entity and each relationship is converted into a relation or a table.

iv. Schema Refinement: The fourth step in database design is to analyze the collection of

relations in our relational database schema to identify potential problems, and to refine it. This

process is called normalization.

v. Physical Database Design: In this step, the database design is refined to ensure that it meets

desired performance criteria and satisfies the expected workload. This step may simply involve

building indexes on some tables and clustering some tables, or it may involve a substantial

redesign of parts of the database schema obtained from the earlier design steps.

vi. Application and Security Design: For each role (manager / accountant / clerk), some part of

the database is accessible and other part of the database is not accessible. The software

developer should enforce these accessing rules while developing the applications (using

application languages like java) to access data using DBMS.

Realistically, all above six design steps are repeated until the design is satisfactory to complete

database design.

23CS404: Database Management Systems

Dept. of CSE Page 11 of 128 Dr. G Ramu, Professor

10. ER DIAGRAMS
An entity-relationship (ER) diagram is a graphical representation of entities and their relationships

to each other, typically used to the organization of data within databases. An entity- relationship

(ER) diagram is also called as an entity relationship model.

Component of ER Diagram

Symbol Name Description

Entity /

Strong entity

An entity may be any object, class, person

or place.

Weak entity

Weak entities depend on some other entity

type. They don't have primary keys, and

have no meaning in the diagram without

their parent entity.

Relationship

Relationships are associations between or

among entities.

23CS404: Database Management Systems

Dept. of CSE Page 12 of 128 Dr. G Ramu, Professor

Symbol Name Description

Weak

relationship

Weak Relationships are connections

between a weak entity and its owner.

Attribute

Attributes are characteristics of an entity.

The attribute is used to describe the

property of an entity.

Key Attribute

A key attribute is the unique characteristic

of the entity. It represents a primary key.

Multivalued

attribute

Multivalued attributes are those that are

can take on more than one value.

Derived

attribute

Derived attributes are attributes whose

value can be calculated from other

attribute values.

Composite

attribute

An attribute that composed of many other

attributes is known as a composite

attribute.

Types of relationship are as follows:

The cardinality of a relationship is the number of instances of entity B that can be associated

with entity A. Based on the cardinality; the relationships are classified into four types. They are:

a. One-to-One Relationship: When only one instance of an entity is associated with the

relationship, then it is known as one to one relationship.

Example: A female can marry to one male, and a male can marry to one female.

b. One-to-many relationship: When only one instance of the entity on the left, and more than

one instance of an entity on the right associates with the relationship then this is known as a one-

to-many relationship.

23CS404: Database Management Systems

Dept. of CSE Page 13 of 128 Dr. G Ramu, Professor

Example: Scientist can invent many inventions, but the invention is done by the only specific

scientist.

c. Many-to-one relationship: When more than one instance of the entity on the left, and only one

instance of an entity on the right associates with the relationship then it is known as a many- to-

one relationship.

Example: Student enrolls for only one course, but a course can have many students.

d. Many-to-many relationship: When more than one instance of the entity on the left, and more

than one instance of an entity on the right associates with the relationship then it is known as a

many-to-many relationship.

Example: Employee can assign by many projects and project can have many employees.

Entity Set and Relationship Set

SID SName

 Student

Entity Set: An Entity set is a set of entities of the same type that share the same properties.

The above diagram contains two entities; Instructor and Student. In the below figure, Instructor

entity contains six different instructor values (rows) called as Instructor entity set and Student

entity contain seven different student values (rows) called as Student entity set.

IID IName

Advice Instructor

23CS404: Database Management Systems

Dept. of CSE Page 14 of 128 Dr. G Ramu, Professor

Figure: Entity set Instructor and Student

Relationship Set: A relationship set is a set of relationships of the same type. In the below figure

one instructor can advice many students but every student is advised by only one instructor. This

relationship is called as many-to-one relationship.

Figure: Relationship set advisor

11. ADDITIONAL FEATURES OF THE ER MODEL

N-ary relationship

In an n-ary relationship, the n shows the number of entities in the relationship. It can be

anything but the most popular relationships are unary, binary and ternary relationship.

In this example, there is a ternary relationship between Doctor, Patient and Medicine.

Unary Relationship: When there is a relationship between two entities of the same type, it is

known as a unary or recursive relationship. This means that the relationship is between different

instances of the same entity type.

For example, an employee can supervise multiple employees. The role of one employee is HOD

and the role and other employees is faculty. That is, one HOD supervises many faculties.

Binary Relationship: When there is a relationship between two different entities, it is known as

a binary relationship.

Each employee only has a single ID card. Hence this is a one to one binary relationship where 1

employee has 1 ID card.

Ternary Relationship: When there is a relationship between three different entities, it is known

as a ternary relationship. An example of a ternary relationship can be shown as follows:

For example, Student and Teacher entities can be generalized and Person entity is created.

Weak Entity

A Weak entity is the one that depends on its owner entity for its existence. A weak entity is

denoted by the double rectangle. Weak entity does not have the primary key. The primary key

of a weak entity is a composite key formed from the primary key of the strong entity and partial

key of the weak entity.

 DName Address

There can be an employee without a dependent in the Company but there will be no record of the

Dependent in the company systems without any association with an Employee.

Generalization

Generalization is a bottom-up approach in which two or more lower-level entities combines to

form a new higher-level entity. In generalization, the generalized entity of higher level can also

combine with entities of the lower-level to make further higher-level entity.

It is like a superclass and subclass system, but the only difference is that it uses the bottom-up

approach. In this process, the common attributes of two or more lower level entities are given to

higher level entity

 EID EName

Depends Employee Dependent

Specialization

Specialization is opposite to Generalization. It is a top-down approach in which one higher level

entity can be broken down into two or more lower level entity.

Aggregation

Aggregation is a process when relation between two entities is treated as a single entity.

In the diagram above, the relationship between Center and Course together, is acting as an Entity,

which is in relationship with another entity Visitor. Now in real world, if a Visitor or a Student

visits a Coaching Center, he/she will never enquire about the center only or just about the course,

rather he/she will ask enquire about both.

12. CONCEPTUAL DESIGN WITH THE ER MODEL

The document prepared in the requirement analysis phase is used to generate ER Model by

following below six steps:

• Find the entities: Look for general nouns in requirement specification document which are

of business interest to business users.

• Identify relevant attributes: Identify all attributes related to each entity.

• Find the key attributes for every entity: Identify the attribute or set of attributes which can

identify each entity instance uniquely.

• Find the relationships: Identify the natural relationship and their cardinalities between all

possible combinations of the entities.

• Complete E-R diagram: Draw E-R diagram along with all attributes and entities.

• Review your results with your business users: Show the completed ER diagram to your

business user and make necessary changes.

PROBLEM: UNIVERSITY CASE STUDY

A University has many departments. Each department has a name and location. Each

department has multiple instructors; one among them is the head of the department. Every

instructor has a name, mobile number and room number. An instructor belongs to only one

department. Each department offers multiple courses, each of which is taught by a single instructor.

Each course has unique course number, name, duration and pre-requisite course. A student may

enroll for many courses offered by different departments. Every student has a ID, name and date

of birth.

SOLUTION

Step 1: Identify the Entities

1. DEPARTMENT

2. COURSE

3. INSTRUCTOR

4. STUDENT

Step 2: Identify all relevant attributes

1. For the "Department" entity, the relevant attribute are "Department Name" is "Location".

2. For the "Course" entity, the relevant attributes are "Course Number" are "Course Name",

"Duration" and "Pre Requisite".

3. For the "Instructor" entity, the relevant attributes are "Instructor Name" are "Room

Number" and "Telephone Number".

4. For the "Student" entity, the relevant attributes are "Student Number" are "Student

Name" and "Date of Birth".

Step 3: Identify the key attributes

1. DName (Department Name) which identifies the department uniquely will be the key

attribute for "DEPARTMENT" entity.

2. STUDENT# (Student Number) which identifies the student entity uniquely Will be the

key attribute for "STUDENT" entity.

3. IName (Instructor Name) is the key attribute for "INSTRUCTOR" entity.

4. COURSE# (Course Number) is the key attribute for COURSE entity.

STEP 4: Find relationships.

We can derive the following relationships:

1. The department offers multiple courses and each course belongs to only one department.

So the cardinality between department and course is one to many.

2. One course is enrolled by multiple students and also one student enrolls for multiple

courses. So the relationship is many to many.

3. One department has multiple instructors and also one instructor belongs to one and only

one department. So the relationship is one to many.

4. Each department has one "Head of Department" and one Instructor is Department" for

only one department, hence the relationship is one to one.

5. One course is taught by only one instructor but one instructor teaches many courses,

hence the relationship between course and instructor is many to one.

The relationship between instructor and student need NOT be defined in the diagram. The

reasons are as follows:

1. There is no business significance of this relationship.

2. We can always derive this relationship indirectly through course and instructor, and

course and students.

M Enrolled
by

N
Student Course

1 Headed
by

N
Instructor Department

1
Offers N

Course Department

1 Has N
Instructor Department

N Taught
by

1
Instructor Course

Room#

Student

Date of Birth Student Name Student#

DeptName Location

Instructor

1

Student

M

Telephone# Enrolled
by

1

Instructor Name

Duration

Course Name

1 Taught
by

 N

N
Course#

1 N

Has Headed
by

PreRequisite

Offers

1

Step 5: Complete E-R diagram

After considering all the above mentioned guidelines one can generate the E-R Model for the

university database as shown in Figure.

Instructor

N

13. DESIGN CHOICES IN CONCEPTUAL DESIGN

a. Should a concept be modeled as an entity or an attribute?

b. Should a concept be modeled as an entity or a relationship?

c. Identifying relationships: Binary or ternary? Aggregation?

Entity vs. Attribute

• Should address be an attribute of Employees or an entity (related to Employees)?

• Depends upon how we want to use address information, and the semantics of the data:

• If we have several addresses per employee, address must be an entity

• If the structure of address is important (plotNo, street, city, state, country and

pinCode values are compulsory for each address) then, address must be modeled

as an entity.

• Otherwise address can be modeled as an attribute.

Binary vs. Ternary Relationship

• A relationship can also have attributes.

• If an employee work in a department for a period time, then it can be modeled as given

below.

• This is a binary relationship diagram

• If an employee work in a department for two or more periods, then it should be

remodeled as given below.

• Then it becomes as a ternary relationship diagram

When to use aggregation?

When an entity maintains a common relationship with two or more entities, not

individually then aggregation need to be used.

MULTIPLE CHOICE QUESTIONS

1. An entity set that does not have sufficient attributes to form a primary key is a

a) Strong entity set b) Variant set c) Weak entity set d) Variable set

2. In the relational model, cardinality is termed as:

a) no. of tuples b) no. of attributes c) no. of tables d) no. of constraints

3. In a relational model, relations are termed as

a) Tuples. b) Attributes c) Tables. d) Rows.

4. In an E-R diagram attributes are represented by

a) rectangle b) square c) ellipse d) triangle.

5. An abstraction concept for building composite object from their component object is called:

a).Specialization b).Normalization c).Generalization d).Aggregation

6.

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

UNIT – II

Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity

constraints, querying relational data, logical data base design, introduction to views,

destroying/altering tables and views. Relational Algebra, Tuple relational Calculus, Domain

relational calculus.

1. RELATIONAL MODEL

Relational data model is the most popular data model used widely around the world for data

storage. In this model data is stored in the form of tables.

Relational Model Concepts

Table is also called Relation. Let the below table name be SUDENT_DATA

Attribute / Column / Field

Degree = No of columns = 4

Tuple / Row / Record

Cardinality = No of rows = 3

Table: In relational model the data is saved in the form of tables. A table has two properties

rows and columns. Rows represent records and columns represent attributes.

Attribute: Each column in a Table is an attribute. Attributes are the properties that define a

relation. e.g., HTNO, NAME, AGE, CITY in the above relation.

Tuple: Every single row of a table is called record or tuple.

Relation Schema: It represents the name of the relation (Table) with its attributes. Eg.,

STUDENT_DATA(htno, name, age, city)

Degree: The total number of attributes in the relation is called the degree of the relation.

Cardinality: Total number of rows present in the Table.

htno Name age city

501 Amar 19 Hyderabad

502 Akbar 18 Warngal

503 Antony 19 Karimnagar

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

2. INTEGRITY CONSTRAINT

• Integrity constraints are a set of rules that the database should not violate.

• Integrity constraints ensure that authorized changes (update deletion, insertion) made to

the database should not affect data consistency.

• Integrity constraints may apply to attribute or to relationships between tables.

TYPES OF INTEGRITY CONSTRAINTS

The integrity constraints supported by DBMS are:

1. Domain Integrity Constraint

2. Entity Integrity Constraint

3. Referential Integrity Constraint

4. Key Constraints

➢ Domain Constraint: These are attribute level constraints. An attribute can only take values

which lie inside the domain range. Example: If a constrain AGE > 0 is applied on STUDENT

relation, inserting negative value of AGE will result in failure. If the domain of AGE is defined

as integer, inserting an alphabet in age column is not accepted.

Example:

Not allowed. Because AGE is an integer attribute

➢ Entity integrity constraints: The entity integrity constraint states that primary key value

can't be null. This is because the primary key value is used to identify individual rows in

relation. A table can contain a null value other than the primary key field.

ID NAME SEMESTER AGE

1001 TOM I 18

1002 JHONSON IV 20

1003 KATE VI 21

1004 JHON II 19

1005 MORGAN II A

Referential

Integrity constraint

Entity Integrity

constraint

Key

constraint

Domain

constraint

Integrity constraint

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

Example: Let ID be the primary key in the below table.

ID NAME SEMESTER AGE

1001 TOM I 18

1002 JHONSON IV 20

 KATE VI 21

Not allowed. Because primary key can’t be NULL value.

➢ Referential Integrity Constraints: It is also called as foreign key constraint. A

referential integrity constraint is specified between two tables. In this type of constraints,

if a foreign key in Table 2 refers to the Primary Key of Table 1, then every value of the

Foreign Key in Table 2 must be null or be available in Table 1.

Example: Department Table (Table 1)
Primary Key

Primary Key

Employee Table (Table 2)

Relationship

Foreign Key

Not allowed as Dept_No 01. Because 01

value is not present as a primary key in

Table1. Dept_No is a foreign key defined

in Table2.

➢ Key Constraints: A Key Constraint is a statement that a certain minimal subset of the

fields of a relation is a unique identifier for a tuple. There are 4 types of key constraints.

They are

i. Candidate key: The candidate keys in a table are defined as the set of keys that is

minimal and can uniquely identify any data row in the table.

ii. Primary key: It can uniquely identify any data row of the table. The primary key is

one of the selected candidate key.

iii. Super key: Super Key is the superset of primary key. The super key contains a set of

attributes, including the primary key, which can uniquely identify any data row in the

table.

Dept_No Dept_Name

05 CSE

02 EEE

04 ECE

EID NAME AGE Dept_No

1001 TOM 45 04

1002 JHONSON 38 01

1003 KATE 54 05

1004 MORGAN 29 02

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

iv. Foreign key: It is a key used to link two tables together. A FOREIGN KEY is a field

(or collection of fields) in one table that refers to the PRIMARY KEY in another table.

Composite Key: If any single attribute of a table is not capable of being the key i.e it

cannot identify a row uniquely, then we combine two or more attributes to form a key.

This is known as a composite key.

Secondary Key: Only one of the candidate keys is selected as the primary key. The

rest of them are known as secondary keys.

3. ENFORCING INTEGRITY CONSTRAINTS

Database Constraints are declarative integrity rules of defining table structures. They include the

following 7 constraint types:

1. Data type constraint: This defines the type of data, data length, and a few other attributes

which are specifically associated with the type of data in a column.

2. Default constraint: This defines what value the column should use when no value has

been supplied explicitly when inserting a record in the table.

3. Nullability constraint: This defines that if a column is NOT NULL or allow NULL values

to be stored in it.

4. Primary key constraint: This is the unique identifier of the table. Each row must have a

distinct value. The primary key can be either a sequentially incremented integer number or

a natural selection of data that represents what is happening in the real world (e.g. Social

Security Number). NULL values are not allowed in primary key values.

5. Unique constraint: This defines that the values in a column must be unique and no

duplicates should be stored. Sometimes the data in a column must be unique even though

the column does not act as Primary Key of the table. Only one of the values can be NULL.

6. Foreign key constraint: This defines how referential integrity is enforced between two

tables.

7. Check constraint: This defines a validation rule for the data values in a column so it is a

user-defined data integrity constraint. This rule is defined by the user when designing the

column in a table.

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

EName salary since

EmpID Works_In Employee

Employee

4. LOGICAL DATABASE DESIGN

1. Each entity in the ER model will become a table and all attributes of that entity will become

columns of the table. Key attribute of the entity will become primary key in the table.

Example:

Employee Department

CREATE TABLE Employee

(

EmpID NUMBER(3),

EName VARCHAR(20),

Salary NUMBER(5),

PRIMARY KEY(EmpID)

);

CREATE TABLE Department

(

DeptID NUMBER(3),

DName VARCHAR(15),

Location VARCHAR(15),

PRIMARY KEY(DeptID)

);

2. Each relationship in the ER model will become a table. Key attributes of participating entities

in the relationship will become columns of the table. If the relationship has any attributes, then

they also will become columns of the table.

Example: From the above ER diagram, the Works_In relationship converted as

Department

Works_In

EmpID DeptID since

CREATE TABLE Works_In

(

EmpID NUMBER(3),

DeptID NUMBER(3),
Since DATE,

PRIMARY KEY(EmpID, DeptID),
FOREIGN KEY (EmpID) REFERENCES Employee(EmpID),

FOREIGN KEY (DeptID) REFERENCES Department(DeptID),

);

EmpID EName salary

DeptID DName Location

Department

DeptID DName

Location

EmpID EName Salary

DeptID DName Location

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

Course

3. Any multi-valued attribute is converted into new table. The primary key of the entity will be

added as column in the new table.

Student Address

CREATE TABLE Student

(
HTNO CHAR(10),

name VARCHAR(20),

age NUMBER(2),

PRIMARY KEY(HTNO)

);

CREATE TABLE Address

(
HTNO CHAR(10),

houseNo NUMBER(3),

street VARCHAR(20),

city VARCHAR(15),

state VARCHAR(15),

PRIMARY KEY(HTNO),
FOREIGN KEY (HTNO) REFERENCES Student(HTNO),

);

4. Each weak entity is converted into a table with all its attributes as columns and primary key

of the strong entity acts as a foreign key in this table.

Section

CREATE TABLE Course

(

CourseID NUMBER(2),

CName VARCHAR(20),

NOofCredits NUMBER(2),

PRIMARY KEY(CourseID)

);

CREATE TABLE Section

(

SectionNo CHAR(2),

CourseID NUMBER(2),

location VARCHAR(15),

PRIMARY KEY(CourseID, SectionNo),

FOREIGN KEY(CourseID) REFERENCES Course(CourseId)

);

name age HouseNo street

city

HTNO
address

state Student

HTNO name age

HTNO houseNo street city state

CourseID CName NOofCredits

CourseID SectionNo location

CName NOofCredits SectionNo location

CourseID has
Section Course

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

5. INTRODUCTION TO VIEWS

A view is virtual tables whose rows are not explicitly stored in the database but are

computed as needed from a view definition. They are used to restrict access to the database or to

hide data complexity. A view contains rows and columns, just like a real table. Creating a view

does not take any storage space as only the view query is stored in the data dictionary and the

actual data is not stored. The tables referred in the views are known as Base tables. Views do not

contain data of their own. They take data from the base tables.

The reasons for using views are

• Security is increased - sensitive information can be excluded from a view.

• Views can represent a subset of the data contained in a table.

• Views can join and simplify multiple tables into a single virtual table.

• Views take very little space to store; the database contains only the definition of a view,

not a copy of all the data it presents.

• Different views can be created on the same base table for different categories of users.

Creating Views syntax:

Examples: Consider the below given employees table. employees(eid, name, salary, experience)

employees

eid ename salary Experience

101 Jhon 20000 2

105 Sam 18000 2

108 Ram 30000 4

If we want to hide the salary column from accessing a group of users, then we can create view on

employees table as follows.

CREATE VIEW emp AS

SELECT eid, ename, experience FROM employees;

emp

eid Name Experience

101 Jhon 2

105 Sam 2

108 Ram 4

CREATE VIEW view_name AS

SELECT column_list

FROM table_name [WHERE condition] ;

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

The view emp is a virtual table. The data in the emp table is not saved in the database but collected

from employees table whenever emp table is referred in SQL query. We can perform all operations

(INSERT, DELETE, UPDATE) on a view just like on a table but under some restrictions.

When can insertion, delete or update performed on view?

• The view is defined from one and only one table.

• The view must include the PRIMARY KEY of the base table.

• The base table columns which are not part of view should not have NOT NULL constraint.

• The view should not have any field made out of aggregate functions.

• The view must not have any DISTINCT clause in its definition.

• The view must not have any GROUP BY or HAVING clause in its definition.

• The view must not have any SUBQUERIES in its definitions.

i. Inserting Rows into a View: A new row can be inserted into a view in a similar way as you

insert them in a table. When an insert operation performed on view, first a new row is inserted

into the base table and the same is reflected in the view.

ii. Deleting Rows into a View: A row(s) can be deleted from a view in a similar way as you

delete them from a table. When an delete operation performed on view, first row(s) is/are

deleted from the base table and the same is reflected in the view.

iii. Updating Rows into a View: A row(s) can be updated in a view in a similar way as you update

them in a table. When an update operation performed on view, first data is updated in the base

table and the same is reflected in the view.

iv. Dropping/Destroying View: Whenever you do not need the view anymore, we can destroy

the view by using DROP command. The syntax is very simple and is given below −

Example: DROP VIEW emp;

6. RELATIONAL ALGEBRA

Relational Algebra is procedural query language, which takes Relation as input and

generates relation as output. Relational algebra mainly provides theoretical foundation for

relational databases and SQL.

DROP VIEW view_name;

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

Operator Symbol Operator Name Explanation

 Projection Select column names

 Selection Select row values

Renaming Rename a table name or expression results

 Union Perform union operation

 Intersection Perform intersection operation

- Set deference Perform set difference operation

 Cartesian product Every row of first table is joined with every

row of second table

 Join Join two tables based on some condition

i. Select Operation (σ): It selects tuples that satisfy the given predicate from a relation.

Notation : σp(r)

where σ stands for selecting tuples (rows) and r stands for relation (table) name. p is

prepositional logic formula which may use connectors like and, or, and not. These terms may

use relational operators like = , ≠ , ≥ , < , > , ≤ .

Example 1: σsubject = "database"(Books)

Output : Selects rows whose subject is 'database' from books table.

Example 2: σ subject = "database" and price = "450"(Books)

Output : Selects rows from books where subject is 'database' and 'price' is 450.

Example 3: σ subject = "database" and price = "450" or year > "2010"(Books)

Output : Selects rows from books where subject is 'database' and 'price' is 450 or those

books published after 2010.

ii. Project Operation (∏): It projects column(s) that satisfy a given predicate.

Notation: ∏A1, A2, … An (r)

where A1, A2 , An are column (attribute) names of relation r. Duplicate rows are

automatically eliminated in the output.

Example: ∏subject, author (Books)

Display values from columns subject and author from the relation Books.

iii. Union Operation (∪): It performs union operation between two given relations. It

combines rows from two given relations.

Notation: r U s

http://www.databasteknik.se/webbkursen/relalg-lecture/huge-pi.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-sigma.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-rho.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-union.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-intersection.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-cross.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

Where r and s are either database relations or relation result set (temporary relation). r U s

returns a relation instance containing all tuples that occur in either relation instance r or relation

instance s (or both). For a union operation to be valid, the following conditions must hold:

• r and s must have the same number of attributes.
• Attribute domains must be compatible in r and s.

Example: ∏ author(Books) ∪ ∏ author(Articles)

Output: Projects the names of the authors who have either written a book or an article or

both.

iv. Intersection Operation (∩): It performs intersection operation between two given

relations . It collect only rows which are common in the two given relations.

Notation: R ∩ S

R ∩ S returns a relation instance containing all tuples that occur in both R and S. The relations

R and S must be union-compatible, and the schema of the result is defined to be identical to

the schema of R.

∏ author(Books) ∩ ∏ author(Articles)

Output: Projects the names of the authors who have written both book and an article.

v. Set Difference (−): It finds tuples which are present in one relation but not in the second

relation.

Notation: r − s

Finds all the tuples that are present in r but not in s.

Example: ∏ author (Books) − ∏ author (Articles)

Output − Provides the name of authors who have written books but not articles.

vi. Cartesian Product (Χ): It returns a relation instance whose schema contains all the fields

of table-1 (in the same order as they appear in table-1) followed by all the fields of table-2. It

combines every row in first table with every row in the second table.

Notation: r Χ s

Where r and s are relations and their output will be defined as : r Χ s = { q t | q ∈ r and t ∈ s}

vii. Natural join ():The most general version of the join operation accepts a join condition

c and

a pair of relation instances as arguments and returns a relation instance. The join condition is

identical to a selection condition in form. The operation is defined as follows:

http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

R c S = σc(R X S)

Thus is defined to be a cross-product followed by a selection. Note that the condition c

can refer to attributes of both Rand S.

Note: If the condition c in R c S contain equal operator, then it is called equi-join

viii. Natural Join(): In this case, we can simply omit the join condition; the default is that

the join condition is a collection of equalities on all common fields. We call this special case

as natural join, and it has the nice property that the result is guaranteed not to have two fields
with the same name.

ix. Rename Operation (ρ): The results of relational algebra are also relations but without

any name. The rename operation allows us to rename the output relation. 'rename' operation is

denoted with small Greek letter rho ρ.

Notation: ρ(temp, E)

Where the result of expression E is saved with name of temp.

x. Division (/): Consider two relation instances A and B in which A has (exactly) two fields x

and y and B has just one field y, with the same domain as in A. We define the division operation

A / B as the set of all x values (in the form of unary tuples) such that for every y value in (a

tuple of) B, there is a tuple (x,y) in A.

Example:

B1

A B2

P1

B3

A / B1

A / B2

A / B3

Sample Queries: We present a number of sample queries using the following schema:

Sailors (sid: integer, sname: string, rating: integer, age:

real) Boats (bid: integer, bname: string, color: string)

Reserves (sid: integer, bid: integer, day: date)

SNO PNO

S1 P1

S1 P2

S1 P3

S1 P4

S2 P1

S2 P2

S3 P2

S4 P2

S4 P4

SNO

S1

S2

S3

S4

SNO

S1

S4

PNO

P2

P4

 PNO

P2

PNO

P2

P4

 SNO

S1

http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

The key fields are underlined, and the domain of each field is listed after the field name.

Thus sid is the key for Sailors, bid is the key for Boats, and all three fields together form the

key for Reserves. Fields in an instance of one of these relations will be referred to by name, or

positionally, using the order in which they are listed above.

(Q1) Find the names of sailors who have reserved boat 103.

This query can be written as follows:

πsname((σbid=103Reserves) Sailors)

We first compute the set of tuples in Reserves with bid = 103 and then take the natural join

of this set with Sailors. This expression can be evaluated on instances of Reserves and

Sailors. Evaluated on the instances R2 and S3, it yields a relation

(Q2) Find the names of sailors who have reserved a red boat.

πsname((σcolor=′red′ Boats) Reserves Sailors

This query involves a series of two joins. First we choose (tuples describing) red boats. Then, we

join this set with Reserves (natural join, with equality specified on the bid column) to identify

reservations of red boats. Next, we join the resulting intermediate relation with Sailors (natural

join, with equality specified on the sid column) to retrieve the names of sailors who have rnade

reservations for red boats. Finally, we project the sailors' names.

(Q3) Find the colors of boats reserved by Lubber.

πcolor((σsname = ‘Lubber ’ Sailors) Reserves Boats)

(Q4) Find the names of sailors who have reserved at least one boat.

πsname(Sailors Reserves)

The join of Sailors and Reserves creates an intermediate relation in which tuples consist of a Sailors

tuple 'attached to' a Reserves tuple. A Sailors tuple appears in (some tuple of) this intermediate

relation only if at least one Reserves tuple has the same sid value, that is, the sailor has made some

reservation.

(Q5) Find the names of sailors who have reserved a red or a green boat.

ρ(Tempboats, (σcolor=′red′ Boats) U (σcolor=′green′ Boats))

πsname(Tempboats Reserves Sailors)

http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

We identify the set of all the rows that are either red or green from boats table. We rename this

result as Tempboats. Then we join Tempboats with Reserves to identify sid’s of sailors. Finally,

we join with Sailors to find the names of Sailors with those sids.

(Q6) Find the names of sailors who have reserved a red and a green boat

ρ(T empboats2, (σcolor=′red′ Boats) ∩ (σcolor=′green′ Boats))

πsname(Tempboats2 Reserves Sailors)

However, this solution is incorrect-it instead tries to compute sailors who have reserved a boat

that is both red and green. A boat can be only one color; this query will always return an empty

answer set. The right answer is

ρ(T empred, πsid((σcolor=′red′ Boats) Reserves))

ρ(T empgreen, πsid((σcolor=′green′ Boats) Reserves))

πsname((Tempred ∩ Tempgreen) Sailors)

The two temporary relations compute the sids of sailors, and their intersection identifies sailors

who have reserved both red and green boats.

(Q7) Find the names of sailors who have reserved at least two boats.

ρ(Reservations, πsid,sname,bid(Sailors Reserves))

ρ(Reservationpairs(1 → sid1, 2 → sname1, 3 → bid1, 4 →

sid2, 5 → sname2,6 → bid2),Reservations × Reservations)

πsname1σ(sid1=sid2) ∩ (bid1=bid2)Reservationpairs

First, we compute tuples of the form (sid, sname, bid), where sailor sid has made a reservation for

boat bid; this set of tuples is the temporary relation Reservations. Next we find all pairs of

Reservations tuples where the same sailor has made both reservations and the boats involved are

distinct. Here is the central idea: To show that a sailor has reserved two boats, we must find two

Reservations tuples involving the same sailor but distinct boats. Finally, we project the names of

such sailors.

(Q8) Find the sids of sailors with age over 20 who have not reserved a red boat.

πsid(σage>20Sailors) −πsid((σcolor=′red′ Boats) Reserves Sailors)

This query illustrates the use of the set-difference operator. Again, we use the fact that sid is

http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

the key for Sailors. We first identify sailors aged over 20 instances and then discard those who

have reserved a red boat to obtain the answer.

(Q9) Find the names of sailors who have reserved all boats.

The use of the word all (or every) is a good indication that the division operation might be
applicable:

ρ(Tempsids, (πsid,bidReserves)/(πbidBoats))

πsname(Tempsids Sailors)

(Q10) Find the names of sailors who have reserved all boats called Interlake.

ρ(Tempsids, (πsid,bid Reserves)/(πbid(σbname=′Interlake′ Boats)))

πsname(Tempsids Sailors)

7. RELATIONAL CALCULUS

Relational calculus is an alternative to relational algebra. In contrast to the algebra, which is

procedural, the calculus is nonprocedural, or declarative, in that it allows us to describe the set

of answers without being explicit about how they should be computed.

7.1 Tuple Relational Calculus

Tuple Relational Calculus is a non-procedural query language unlike relational algebra. Tuple

Calculus provides only the description of the query but it does not provide the methods to solve it.

Thus, it explains what to do but not how to do.

where t = resulting tuples, P(t) = known as Predicate and these are the conditions that are used to

fetch t. Thus, it generates set of all tuples t, such that Predicate P(t) is true for t.

P(t) may have various conditions logically combined with OR (∨), AND (∧), NOT(¬).

It also uses quantifiers:

∃ t ∈ r (Q(t)) = ”there exists” a tuple in t in relation r such that predicate Q(t) is true.

∀ t ∈ r (Q(t)) = Q(t) is true “for all” tuples in relation r.

In Tuple Relational Calculus, a query is expressed as {t| P(t)}

http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

(Q12) Find the names and ages of sailors with a rating above 7 .

{ P | ∃S ∈ Sailors(S.rating > 7 ∧ P.name = S.sname ∧ P.age = S.age)}

This query illustrates a useful convention: P is considered to be a tuple variable with exactly

two fields, which are called name and age,.

(Q13) Find the sailor name, boat id, and reservation date for each reservation

{P | ∃R ∈Reserves S ∈ Sailors

(R.sid = S.sid ∧ P.bid = R.bid ∧ P.day = R.day ∧ P.sname = S.sname)}

(Q1) Find the names of sailors who have reserved boat 103. (similar question Q1 from

relational algebra)

{P | ∃S ∈ Sailors ∃R ∈ Reserves(R.sid = S.sid ∧ R.bid = 103 ∧ P.sname ∧ S.sname)}

This query can be read as follows: “Retrieve all sailor tuples for which there exists a tuple in

Reserves, having the same value in the sid field, and with bid = 103.”

(Q2) Find the names of sailors who have reserved a red boat. (similar question Q2 from

relational algebra)

{P | ∃S ∈ Sailors R ∈ Reserves(R.sid = S.sid ∧ P.sname = S.sname

∧ ∃B ∈ Boats(B.bid = R.bid ∧ B.color =′red′))}

This query can be read as follows: “Retrieve all sailor tuples S for which there exist tuples R in

Reserves and B in Boats such that S.sid = R.sid, R.bid = B.bid, and B.color =′red′.”

(Q7) Find the names of sailors who have reserved at least two boats. (similar question Q7

from relational algebra)

{P | ∃ S ∈ Sailors ∃R1 ∈ Reserves ∃R2 ∈ Reserves (S.sid = R1.sid

 R1.sid = R2.sid ∧ R1.bid ≠ R2.bid ∧ P.sname = S.sname)}

(Q9) Find the names of sailors who have reserved all boats. (similar question Q9 from

relational algebra)

{P | ∃ S ∈ Sailors ∀ B ∈ Boats

(∃ R ∈ Reserves(S.sid = R.sid ∧ R.bid = B.bid ∧ P.sname = S.sname))}

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

(Q14) Find sailors who have reserved all red boats.

{S | S ∃ Sailors ∈ ∀ B ∈ Boats

(B.color =′red′ => (∃ R∈ Reserves(S.sid = R.sid ∧ R.bid = B.bid)))}

7.2 Domain Relational Calculus

A domain variable is a variable that ranges over the values in the domain of some attribute

(e.g., the variable can be assigned an integer if it appears in an attribute whose domain is the set

of integers).

A DRC query has the form { 〈 x1, x2, . . . , xn 〉 | p(〈x1,x2,.. ., xn〉)}

where each xi is either a domain variable or a constant and p(〈x1,x2,.. ., xn〉) denotes

a DRC formula whose only free variables are the variables among the xi, 1 ≤ i ≤ n. The result

of this query is the set of all tuples 〈x1, x2,.. .,xn〉 for which the formula evaluates to true.

A DRC formula is defined in a manner very similar to the definition of a TRC formula.

The main difference is that the variables are now domain variables. Let op denote an operator in

the set {<, >, =, ≤, ≥ , ≠} and let X and Y be domain variables. An atomic formula in DRC is one

of the following:

• (x1, x2, . . . , xn) ∈ Rel, where Rel is a relation with n attributes; each xi, 1 ≤ i ≤ n is

either a variable or a constant

• X op Y

• X op constant, or constant op X

A formula is recursively defined to be one of the following, where P and q are

themselves formulas and p(X) denotes a formula in which the variable X appears:

• any atomic formula

• ┐p, P /\ q, P V q, or p => q

• ∃X(p(X)), where X is a domain variable

• ∀ X(p(X)), where X is a domain variable

(Q1) Find the names of sailors who have reserved boat 103.

{ (N) | ∃ I, T, A (〈I, N, T, A〉∈ Sailors

∧ ∃ Ir, Br, D(〈Ir, Br, D〉∈ Reserves ∧ Ir = I ∧ Br = 103))}

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

(Q2) Find the names of sailors who have reserved a red boat.

{〈N 〉 | ∃ I, T, A(〈I, N, T, A〉∈ Sailors

∧ ∃〈I, Br, D〉∈ Reserves ∧ ∃〈Br, BN,′red′〉∈ Boats)}

(Q7) Find the names of sailors who have reserved at least two boats.

{〈N 〉 | ∃ I, T, A(〈I, N, T, A〉∈ Sailors ∧

∃ Br1, Br2, D1, D2 (〈I, Br1, D1〉∈ Reserves

∧〈I, Br2, D2〉∈ Reserves ∧ Br1 ≠ Br2)

(Q9) Find the names of sailors who have reserved all boats.

{〈N 〉 | ∃ I, T, A(〈I, N, T, A〉∈ Sailors ∧

∀ B, BN, C(¬(〈B, BN, C〉∈ Boats) V

(∃〈Ir, Br, D〉∈ Reserves(I = Ir ∧ Br = B))))}

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

UNIT – III

SQL: QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION, INTERSECT,

and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL,

triggers and active databases. Schema Refinement: Problems caused by redundancy, decompositions,

problems related to decomposition, reasoning about functional dependencies, FIRST, SECOND, THIRD

normal forms, BCNF, lossless join decomposition, multi-valued dependencies, FOURTH normal form,

FIFTH normal form.

1. SQL COMMANDS

Structured Query Language (SQL) is the database language used to create a database and

to perform operations on the existing database. SQL commands are instructions used to

communicate with the database to perform specific tasks and queries with data. These SQL

commands are categorized into five categories as:

i. DDL: Data Definition Language

ii. DML: Data Manipulation Language

iii. DQL: Data Query Language

iv. DCL : Data Control Language

v. TCL : Transaction Control Language.

i. DDL(Data Definition Language) : DDL or Data Definition Language consists of the SQL

commands that can be used to define the database schema. It simply deals with descriptions of

the database schema and is used to create and modify the structure of database objects in the

database. The DQL commands are:

CREATE INSERT
SELECT

GRANT COMMIT

ALTER DELETE REVOKE ROLLBACK

DROP
UPDATE SAVEPOINT

TRUNCATE

TCL

Transaction

Control Language

DCL

Data Control

Language

DQL

Data Query

Language

DML

Data Manipulation

Language

DDL

Data Definition

Language

SQL commands

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

• CREATE: It is used to create the database or its objects (like table, index, function,

views, store procedure and triggers).

• DROP: It is used to delete objects from the database.

• ALTER: It is used to alter the structure of the database.

• TRUNCATE: It is used to remove all records from a table, including all spaces

allocated for the records are removed.

ii. DQL (Data Query Language): DML statements are used for performing queries on the

data within schema objects. The purpose of DQL Command is to get data from some schema

relation based on the query passed to it. The DQL commands are:

• SELECT – is used to retrieve data from the database.

iii. DML (Data Manipulation Language): The SQL commands that deals with the

manipulation of data present in the database belong to DML or Data Manipulation Language

and this includes most of the SQL statements. The DML commands are:

• INSERT – is used to insert data into a table.

• UPDATE – is used to update existing data within a table.

• DELETE – is used to delete records from a database table.

iv. DCL (Data Control Language): DCL includes commands which mainly deal with the

rights, permissions and other controls of the database system. The DCL commands are:

• GRANT-gives user’s access privileges to database.

• REVOKE-withdraw user’s access privileges given by using the GRANT command.

v. TCL (transaction Control Language): TCL commands deals with the transaction

within the database. The TCL commands are:

• COMMIT– commits a Transaction.

• ROLLBACK– rollbacks a transaction in case of any error occurs.

• SAVEPOINT–sets a save point within a transaction.

2. DDL COMMANDS

DDL or Data Definition Language consists of the SQL commands that can be used to define

the database schema. It simply deals with descriptions of the database schema and is used to

create and modify the structure of database objects in the database. The DQL commands are:

https://www.geeksforgeeks.org/sql-select-clause/

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

i. CREATE: It is used to create the database or its objects like table, index, function, views,

store procedure and triggers.

a) The ‘CREATE DATABASE’ Statement: This statement is used to create a database.

Example: CREATE DATABASE Employee;

It creates Employee database.

b) The ‘CREATE TABLE’ Statement: This statement is used to create a table.

Syntax:

Note: The content in the square brackets indicates it is optional. If not required, you can skip it.

Column constraints

o PRIMARY KEY // Use only, If one column name as primary key.

o NOT NULL // It does not accept NULL value in that column.

o DEFAULT value // It store default value in that column, if no value is inserted

o UNIQUE // It allows to store only unique values in the column

Table constraints

o PRIMARY KEY(column_name1, column_name2, …)

Use it, If one column name or multiple column names acts as primary key.

o UNIQUE(column_name1, column_name2, …)

Use it, if one column name or multiple column names should contain unique values.

If multiple column names are used, then for each row, it consider values from all the columns

mentioned to decide the uniqueness, but not column wise.

o FOREIGN KEY (column_name1) REFERENCES other_table_name (column_name2)

It is used to link data from one table to other table.

o CHECK(condition)

It does not allow inserting value(s), if the condition is not satisfied. The condition may also

contain multiple column names.

CREATE TABLE TableName (

Column1 datatype(size)[column_constraint],

Column2 datatype(size)[column_constraint],

....

ColumnN datatype(size)[column_constraint],

[table_constraint]

[,table_constraint]

);

Syntax: CREATE DATABASE Database_Name;

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

Example 1: Creating table without any constraints

CREATE TABLE Employee_Info

(

EmployeeID int,

EmployeeName varchar(20),

PhoneNumber numeric(10),

City varchar(20),

Country varchar(20)

);

Example 2: Using PRIMARY KEY and NOT NULL as column constraints

CREATE TABLE Departments

(

DeptID int PRIMARY KEY,

DeptName varchar(20)NOT NULL,

Hod varchar(20),

Location varchar(20)

);

Example 3: Using PRIMARY KEY, NOT NULL, UNIQUE and DEFAULT as column constraints and FOREIGN

KEY as table constraint.

CREATE TABLE Students_Info

(

HallTicketNo int PRIMARY KEY,

Name varchar(20)NOT NULL,

Mobile numeric(10)NOT NULL UNIQUE,

DepartmentID int,

City varchar(20)DEFAULT ‘Hyderabad’,

FOREIGN KEY(DepartmentID) REFERENCES Departments (DeptID)

);

Example 4: Using NOT NULL, UNIQUE as column constraints and PRIMARY KEY and CHECK as table

constraints.

CREATE TABLE Voter_list

(

VoterID numeric(10),

AdhaarNo numeric(12)NOT NULL UNIQUE,

Name varchar(20)NOT NULL,

Age int,

Mobile numeric(10) UNIQUE,

City varchar(20),

PRIMARY KEY(VoterID),

CHECK(AGE>18)

);

c) The ‘CREATE TABLE AS’ Statement: You can also create a table from another

existing table. The newly created table also contains data of existing table.

Syntax:

Example: CREATE TABLE ExampleTable AS (SELECT EmployeeName, PhoneNumber

FROM Employee_Info);

CREATE TABLE NewTableName AS(SELECT Column1, column2, ..., ColumnN

FROM ExistingTableName

WHERE [condition]);

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

ii. DROP: This statement is used to drop an existing table or a database.

a) The ‘DROP DATABASE’ Statement: This statement is used to drop an existing

database. When you use this statement, complete information present in the database will

be lost.
Syntax:

Example: DROP DATABASE Employee;

b) The ‘DROP TABLE’ Statement: This statement is used to drop an existing table. When

you use this statement, complete information present in the table will be lost.

Syntax:

Example: DROP TABLE Employee;

iii. TRUNCATE: This command is used to delete the information present in the table but does

not delete the table. So, once you use this command, your information will be lost, but not the

table.

Syntax:

Example: TRUNCATE TABLE Employee_Info;

iv. ALTER: This command is used to add, delete or modify column(s) in an existing table. It

can also be used to rename the existing table and also to rename the existing column name.

a) The ‘ALTER TABLE’ with ADD column: You can use this command to add a new

column to the existing table.

Example: Adding Blood Group column to the Employee_Info table

ALTER TABLE Employee_Info

ADD BloodGroup varchar(10);

b) The ‘ALTER TABLE’ with DROP column: You can use this command to remove a

column from the existing table.

Example: Removing Blood Group column from the Employee_Info table

ALTER TABLE Employee_Info

DROP BloodGroup;

Syntax: ALTER TABLE TableName

ADD ColumnName Datatype;

Syntax: ALTER TABLE TableName

DROP ColumnName;

TRUNCATE TABLE TableName; .

DROP TABLE TableName; .

DROP DATABASE DatabaseName; .

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

c) The ‘ALTER TABLE’ with MODIFY COLUMN: This statement is used to change

the data type or size of data type of an existing column in a table.

Example 1: Changing the size of column ‘EmployeeName’ in table ‘Employee_info’ from

20 to 30.

ALTER TABLE Employee_Info

MODIFY EmployeeName varchar(30);

Example 2: Changing the data type of column ‘EmployeeID’ in the table ‘Employee_info’

from int to char(10).

ALTER TABLE Employee_Info

MODIFY EmployeeID char(10);

d) The ‘ALTER TABLE’ with CHANGE column name: This statement is used to change

the column name of an existing column in a table.

Example 1: Changing the column name ‘EmployeeName’ to ‘EmpName’ in table

‘Employee_info’.

ALTER TABLE Employee_Info

CHANGE COLUMN EmployeeName EmpName;

e) The ‘ALTER TABLE’ with RENAME table name: This statement is used to change

the table name in the database.

Example: Changing the table name from ‘Employee_Info’ to ‘Employee_Data’.

ALTER TABLE Employee_Info

RENAME TO Employee_Data;

3. DML COMMANDS: The SQL commands that deals with the manipulation of data

present in the database belong to DML or Data Manipulation Language and this includes most

of the SQL statements. The DML commands are:

i. INSERT: This statement is used to insert new record (row) into the table.

Syntax: ALTER TABLE TableName

MODIFY COLUMN ColumnName Datatype;

Syntax: ALTER TABLE TableName

CHANGE COLUMN OldColumnName NewColumnName;

Syntax: ALTER TABLE OldTableName

RENAME TO NewTableName;

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

Example1 :

INSERT INTO Employee_Info(EmployeeID, EmployeeName, PhoneNumber, City,Country)

VALUES ('06', 'Sanjana', '9921321141', 'Chennai', 'India');

Example2 : When inserting all column values as per their order in the table, you can omit

column names.

INSERT INTO Employee_Info

VALUES ('07', 'Sayantini','9934567654', 'Pune', 'India');

ii. DELETE: This statement is used to delete the existing records in a table.

Example:
DELETE FROM Employee_Info

WHERE EmployeeName='Preeti';

Note: If where condition is not used in DELETE command, then all the rows data will be deleted. If used

only rows which satisfies the condition are deleted.

iii. UPDATE: This statement is used to modify the record values already present in the table.

Example:

UPDATE Employee_Info

SET EmployeeName = 'Jhon', City= 'Ahmedabad'

WHERE EmployeeID = 1;

Note: If where condition is not used in UPDATE command, then in all the rows Employee Name

changes to 'Jhon' and City name changes to 'Ahmedabad'. If used only rows

which satisfies the condition are updated.

4. DQL COMMAND: The purpose of DQL Command is to get data from one or more

tables based on the query passed to it.

i. SELECT: This statement is used to select data from a database and the data returned is

stored in a result table, called the result-set.

Syntax: INSERT INTO TableName[(Column1, Column2,..., ColumnN)]

VALUES (value1, value2,..., valueN);

Syntax: DELETE FROM TableName
WHERE Condition;

Syntax: UPDATE TableName

SET Column1 = Value1, Column2 = Value2, ...

[WHERE Condition];

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

Example 1: SELECT * FROM table_name;

Example 2:
SELECT EmployeeID, EmployeeName

FROM Employee_Info;

The ‘SELECT with DISTINCT’ Statement: This statement is used to display only

different unique values. It mean it will not display duplicate values.

Example : SELECT DISTINCT PhoneNumber FROM Employee_Info;

The ‘ORDER BY’ Statement: The ‘ORDER BY’ statement is used to sort the required

results in ascending or descending order. The results are sorted in ascending order by

default. Yet, if you wish to get the required results in descending order, you have to use the

DESC keyword.

Example

/* Select all employees from the 'Employee_Info' table sorted by

City */

SELECT * FROM Employee_Info

ORDER BY City;

/*Select all employees from the 'Employee_Info' table sorted by

City in Descending order */

SELECT * FROM Employee_Info

ORDER BY City DESC;

/* Select all employees from the 'Employee_Info' table sorted by

City and EmployeeName. First it sort the rows as per city, then

sort by employee name */

SELECT * FROM Employee_Info

ORDER BY City, EmployeeName;

/* Select all employees from the 'Employee_Info' table sorted by

City in Descending order and EmployeeName in Ascending order: */

SELECT * FROM Employee_Info

ORDER BY City ASC, EmployeeName DESC;

Syntax: SELECT [DISTINCT] * / Column1,Column2,...ColumN

FROM TableName

[WHERE search_condition]

[GROUP BY column_names

[HAVING search_condition_for_GROUP_BY]

[ORDER BY column_name ASC/DESC] ;

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

AGGREGATE FUNCTIONS:

The SQL allows summarizing data through a set of functions called aggregate

functions. The commonly used aggregate functions are: MIN(), MAX(), COUNT(),

SUM(), AVG().

MIN() Function: The MIN function returns the smallest value of the selected column in a

table.

Syntax: SELECT MIN(ColumnName)

FROM TableName

WHERE Condition;

Example: SELECT MIN(EmployeeID)

FROM Employee_Info;

MAX() Function: The MAX function returns the largest value of the selected column in

a table.

Syntax: SELECT MAX(ColumnName)

FROM TableName

WHERE Condition;

Example:
SELECT MAX(Salary) AS LargestFees

FROM Employee_Salary;

COUNT() Function: The COUNT function returns the number of rows which match the

specified criteria.

Syntax: SELECT COUNT(ColumnName)

FROM TableName

WHERE Condition;

Example:
SELECT COUNT(EmployeeID)

FROM Employee_Info;

SUM() Function: The SUM function returns the total sum of a numeric column that you

choose.

Syntax: SELECT SUM(ColumnName)

FROM TableName

WHERE Condition;

Example:

SELECT SUM(Salary)

FROM Employee_Salary;

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

AVG() Function: The AVG function returns the average value of a numeric column that

you choose.

Syntax: SELECT AVG(ColumnName)

FROM TableName

WHERE Condition;

Example:

SELECT AVG(Salary)

FROM Employee_Salary;

The ‘GROUP BY’ Statement: This ‘GROUP BY’ statement is used with the aggregate

functions to group the result-set by one or more columns.

Example:

-- To list the number of employees from each city.

SELECT COUNT(EmployeeID), City

FROM Employee_Info

GROUP BY City;

The ‘HAVING’ Clause: The ‘HAVING’ clause must be used SQL along with GROUP BY

clause only. It is similar to the WHERE clause.

Example

/* To list the number of employees in each city. The employees

should be sorted high to low and only those cities must be included who have

more than 5 employees:*/

SELECT COUNT(EmployeeID), City

FROM Employee_Info

GROUP BY City

HAVING COUNT(EmployeeID) > 2;

Operators in SQL:

The different set of operators available in SQL are as follows:

• Arithmetic operators

• Bitwise operators

• Comparison operator

• Compound operator

• Logical operator

Let us look into each one of them, one by one.

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

Arithmetic Operators:

Operator Description

% Modulus [A % B]

/ Division [A / B]

* Multiplication [A * B]

– Subtraction [A – B]

+ Addition [A + B]

Bitwise Operators:

Operator Description

^ Bitwise Exclusive OR (XOR) [A ^ B]

| Bitwise OR [A | B]

& Bitwise AND [A & B]

Comparison Operators:

Operator Description

< > Not Equal to [A < > B]

<= Less than or equal to [A <= B]

>= Greater than or equal to [A >= B]

< Less than [A < B]

> Greater than [A > B]

= Equal to [A = B]

Compound Operators:

Operator Description

|*= Bitwise OR equals [A |*= B]

^-= Bitwise Exclusive equals [A ^-= B]

&= Bitwise AND equals [A &= B]

%= Modulo equals [A %= B]

/= Divide equals [A /= B]

= Multiply equals [A= B]

-= Subtract equals [A-= B]

+= Add equals [A+= B]

Logical Operators: The Logical operators present in SQL are as follows: AND, OR, NOT,
BETWEEN, LIKE, IN, EXISTS, ALL, ANY.

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

AND Operator: This operator is used to filter records that rely on more than one condition. This

operator displays the records, which satisfy all the conditions separated by AND, and give the

output TRUE.

Syntax:

SELECT Column1, Column2, ..., ColumnN

FROM TableName

WHERE Condition1 AND Condition2 AND Condition3 ...;

Example:

SELECT * FROM Employee_Info

WHERE City='Mumbai' AND City='Hyderabad';</pre>

OR Operator: This operator displays all those records which satisfy any of the conditions separated

by OR and give the output TRUE.

Syntax: SELECT Column1, Column2, ..., ColumnN

FROM TableName

WHERE Condition1 OR Condition2 OR Condition3 ...;

Example:

SELECT * FROM Employee_Info

WHERE City='Mumbai' OR City='Hyderabad';

NOT Operator: The NOT operator is used, when you want to display the records which do not

satisfy a condition.

Syntax: SELECT Column1, Column2, ..., ColumnN

FROM TableName

WHERE NOT Condition;

Example:

SELECT * FROM Employee_Info

WHERE NOT City='Mumbai';

NOTE: You can also combine the above three operators and write a query as follows:
SELECT * FROM Employee_Info

WHERE NOT Country='India' AND (City='Bangalore' OR City='Hyderabad');

BETWEEN Operator: The BETWEEN operator is used, when you want to select values within a

given range. Since this is an inclusive operator, both the starting and ending values are considered.

Syntax: SELECT ColumnName(s)

FROM TableName

WHERE ColumnName BETWEEN Value1 AND Value2;

Example:

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

SELECT * FROM Employee_Salary

WHERE Salary BETWEEN 40000 AND 50000;

LIKE Operator

The LIKE operator is used in a WHERE clause to search for a specified pattern in a column of a

table. There are mainly two wildcards that are used in conjunction with the LIKE operator:

• % : It is used to matches 0 or more character.

• _ : It is used to matches exactly one character.

Syntax

SELECT ColumnName(s)

FROM TableName

WHERE ColumnName LIKE pattern;

Refer to the following table for the various patterns that you can mention with the LIKE

operator.

Like Operator Condition Description

WHERE CustomerName LIKE ‘v% Finds any values that start with “v”

WHERE CustomerName LIKE ‘%v’ Finds any values that end with “v”

WHERE CustomerName LIKE ‘%and%’ Finds any values that have “and” in any position

WHERE CustomerName LIKE ‘_q%’
Finds any values that have “q” in the second

position.

WHERE CustomerName LIKE ‘u_%_%’
Finds any values that start with “u” and are at

least 3 characters in length

WHERE ContactName LIKE ‘m%a’
Finds any values that start with “m” and end

with “a”

Example:

SELECT * FROM Employee_Info

WHERE EmployeeName LIKE 'S%';

IN Operator: This operator is used for multiple OR conditions. This allows you to specify

multiple values in a WHERE clause.

Syntax: SELECT ColumnName(s)

FROM TableName

WHERE ColumnName IN (Value1,Value2...);

Example:

SELECT * FROM Employee_Info

WHERE City IN ('Mumbai', 'Bangalore', 'Hyderabad');

NOTE: You can also use IN while writing Nested Queries.

EXISTS Operator: The EXISTS operator is used to test if a record exists or not.

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

Syntax: SELECT ColumnName(s)

FROM TableName

WHERE EXISTS

(SELECT ColumnName FROM TableName WHERE condition);

Example:
SELECT City

FROM Employee_Info

WHERE EXISTS (SELECT City

FROM Employee_Info

WHERE EmployeeId = 05 AND City = 'Kolkata');

ALL Operator: The ALL operator is used with a WHERE or HAVING clause and returns TRUE

if all of the subquery values meet the condition.

Syntax: SELECT ColumnName(s)

FROM TableName

WHERE ColumnName operator ALL

(SELECT ColumnName FROM TableName WHERE condition);

Example:
SELECT EmployeeName

FROM Employee_Info

WHERE EmployeeID = ALL (SELECT EmployeeID

FROM Employee_Info

WHERE City = 'Hyderabad');

ANY Operator: Similar to the ALL operator, the ANY operator is also used with a WHERE or

HAVING clause and returns true if any of the subquery values meet the condition.

Syntax: SELECT ColumnName(s)

FROM TableName

WHERE ColumnName operator ANY

(SELECT ColumnName FROM TableName WHERE condition);

Example:
SELECT EmployeeName

FROM Employee_Info

WHERE EmployeeID = ANY (SELECT EmployeeID

FROM Employee_Info

WHERE City = 'Hyderabad' OR City = 'Kolkata');

Aliases Statement: Aliases are used to give a column / table a temporary name and only
exists for duration of the query.

Syntax: /* Alias Column Syntax. Instead of displaying the column name

used in the table, it display alias name. */

SELECT ColumnName AS AliasName

FROM TableName;

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

Example:

SELECT EmployeeID AS ID, EmployeeName AS EmpName

FROM Employee_Info;

5. NESTED QUERIES

Nested queries are those queries which have an outer query and inner subquery. So,

basically, the subquery is a query which is nested within another query.

First the inner query gets executed and the result will be used to execute the outer query.

6. SET OPERATIONS: UNION, INTERSECT, EXCEPT

There are mainly three set operations: UNION, INTERSECT, EXCEPT. You can refer to the

image below to understand the set operations in SQL.

i. UNION: This operator is used to combine the result-set of two or more SELECT

statements.

ii. INTERSECT: This clause used to combine two SELECT statements and return the
intersection of the data-sets of both the SELECT statements.

OUTER QUERY SUBQUERY or INNER QUERY

SELECT EmployeeName, PhoneNumber

FROM Employee_Info

WHERE City IN (SELECT City

FROM Office

WHERE County = ‘INDIA’) ;

Syntax: SELECT ColumnName(s) FROM Table1 WHERE condition

UNION

SELECT ColumnName(s) FROM Table2 WHERE condition;

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

iii. EXCEPT: This operator returns those tuples that are returned by the first SELECT

operation, and are not returned by the second SELECT operation.

Note: UNION, INTERSECT or EXCEPT operations are possible if and only if first SELECT query

and second SELECT query produces same no of columns in same order, same column

names and data type. Otherwise it gives an error.

7. JOINS

JOINS are used to combine rows from two or more tables, based on a related column between

those tables. The following are the types of joins:

• INNER JOIN: This join returns those records which have matching values in both the

tables.

• FULL JOIN: This join returns all those records which either have a match in the left or

the right table.

• LEFT JOIN: This join returns records from the left table, and also those records which

satisfy the condition from the right table.

• RIGHT JOIN: This join returns records from the right table, and also those records

which satisfy the condition from the left table.

Refer to the image below.

Syntax: SELECT ColumnName(s) FROM Table1 WHERE condition

INTERSECT

SELECT ColumnName(s) FROM Table2 WHERE condition;

Syntax: SELECT ColumnName(s) FROM Table1 WHERE condition

EXCEPT

SELECT ColumnName(s) FROM Table2 WHERE condition;

https://www.edureka.co/blog/sql-commands#INNER%20JOIN
https://www.edureka.co/blog/sql-commands#FULL%20JOIN
https://www.edureka.co/blog/sql-commands#LEFT%20JOIN
https://www.edureka.co/blog/sql-commands#RIGHT%20JOIN

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

Let’s consider the below Technologies and the Employee_Info table, to understand the syntax
of joins.

Employee_Info

EmployeeID EmployeeName PhoneNumber City Country

01 Shravya 9898765612 Mumbai India

02 Vijay 9432156783 Delhi India

03 Preeti 9764234519 Bangalore India

04 Vijay 9966442211 Hyderabad India

05 Manasa 9543176246 Kolkata India

Technologies

TechID EmpID TechName ProjectStartDate

1 01 DevOps 04-01-2019

2 03 Blockchain 06-07-2019

3 04 Python 01-03-2019

4 06 Java 10-10-2019

INNER JOIN or EQUI JOIN: This is a simple JOIN in which the result is based on matched

data as per the equality condition specified in the SQL query. This join is used mostly. NATURAL

JOIN is a type INNER JOIN. We can also use it. It also gives same result.

Syntax

SELECT ColumnName(s)

FROM Table1

INNER JOIN Table2 ON Table1.ColumnName = Table2.ColumnName;

Example

SELECT T.TechID, E.EmployeeID, E.EmployeeName

FROM Technologies T

INNER JOIN Employee_Info E ON T.EmpID = E.EmpID;

TechID EmployeeID EmployeeName

1 01 Shravya

2 03 Preeti

3 04 Vijay

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

FULL OUTER JOIN: The full outer join returns a result-set table with the matched data of

two table then remaining rows of both left table and right table with missing values are filled with

NULL values.

Syntax
SELECT ColumnName(s)

FROM Table1

FULL OUTER JOIN Table2 ON Table1.ColumnName = Table2.ColumnName;

Example

SELECT E.EmployeeID, E.EmployeeName, T.TechID

FROM Employee_Info E

FULL OUTER JOIN Technologies T ON E.EmployeeID=T.EmployeeID;

EmployeeID EmployeeName TechID

01 Shravya 1

02 Vijay NULL

03 Preeti 2

04 Vijay 3

05 Manasa NULL

06 NULL 4

LEFT JOIN: The left outer join returns a result-set table with the matched data from the two

tables and then the remaining rows of the left table with null for the right table's columns.

Syntax:
SELECT ColumnName(s)

FROM Table1

LEFT JOIN Table2 ON Table1.ColumnName = Table2.ColumnName;

Example:
SELECT E.EmployeeId, E.EmployeeName, T.TechID

FROM Employee_Info E

LEFT JOIN Technologies T ON E.EmployeeID = T.EmpIDID ;

EmployeeID
EmployeeName TechID

01 Shravya 1

02 Vijay NULL

03 Preeti 2

04 Vijay 3

05
Manasa NULL

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

RIGHT JOIN: The right outer join returns a result-set table with the matched data from the two

tables being joined, then the remaining rows of the right table and null for the remaining left table's

columns.

Syntax:
SELECT ColumnName(s)

FROM Table1

RIGHT JOIN Table2 ON Table1.ColumnName = Table2.ColumnName;

Example:
SELECT E.EmployeeId, E.EmployeeName, T.TechID

FROM Employee_Info E

RIGHT JOIN Technologies T ON E.EmployeeID = T.EmpIDID ;

EmployeeID
EmployeeName TechID

01 Shravya 1

03 Preeti 2

04 Vijay 3

NULL NULL 4

8. TRIGGERS

A trigger is a stored procedure in database which automatically invokes whenever a special event

in the database occurs. For example, a trigger can be invoked when a row is inserted into a specified

table or when certain table columns are being updated. So, a trigger can be invoked either

BEFORE or AFTER the data is changed by INSERT, UPDATE or DELETE statement. Refer

to the image below.

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

Syntax:

CREATE TRIGGER [TriggerName]

[BEFORE | AFTER]

{INSERT | UPDATE | DELETE}

on [TableName]

[FOR EACH ROW]

[TriggerBody]

Explanation of syntax:

• create trigger [trigger_name]: Creates or replaces an existing trigger with the

trigger_name.

• [before | after]: This specifies when the trigger will be executed.

• {insert | update | delete}: This specifies the DML operation.

• on [table_name]: This specifies the name of the table associated with the trigger.

• [for each row]: This specifies a row-level trigger, i.e., the trigger will be executed for

each row being affected.

• [trigger_body]: This provides the operation to be performed as trigger is fired .

BEFORE and AFTER of Trigger:

BEFORE triggers run the trigger action before the triggering statement is run.

AFTER triggers run the trigger action after the triggering statement is run.

EXAMPLE:

CREATE TRIGGER nb BEFORE INSERT ON accounts FOR EACH ROW /* Event */

Begin

IF :NEW.bal < 0 THEN /*Condition*/

DBMS_OUTPUT.PUT_LINE('BALANCE IS NAGATIVE..'); /*Action*/

END IF;

End;

A trigger called ‘nb’ is created to alert the user when inserting account details with negative

balance value in to accounts table. Before inserting, the trigger is activated if the condition is true.

When a trigger activated, the action part of the trigger is get executed.

9. NORMALIZATION

• Normalization is the process of minimizing the redundancy from a relation or set of
relations.

• It is used to eliminate the Insertion, Update and Deletion Anomalies.

• Normalization divides the larger table into the smaller table and links them using

relationship.

• Normalization is done with the help of different normal form.

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

The inventor of the relational model Edgar Codd proposed the theory of normalization with

the introduction of the First Normal Form, and he continued to extend theory with Second and

Third Normal Form. Later he joined Raymond F. Boyce to develop the theory of Boyce-Codd

Normal Form. In software industry, they are using only up to third normal form and sometimes

Boyce-Codd Normal Form.

The Problem of redundancy

Redundancy means having multiple copies of same data in the database. This problem arises

when a database is not normalized. Redundancy leads the following problems.

 Wastage of Memory: Disk space is wasted due to storing same copy multiple times.

 Storage cost increases: When multiple copies of same data is stored, need more disk space

and storage cost increases.

 Update anomaly: When Address of student is stored at several places; a change in the

address must be made in all the places. Changing the address at some places and leaving

other places leads to inconsistency problem.

 Insertion Anomaly: The nature of a database may be such that it is not possible to add a

required piece of data unless another piece of unavailable data is also added. For example,

a library database cannot store the details of a new student until that student has taken

atleast one book from the library.

 Deletion Anomaly: When some data is deleted, it also deletes other data automatically.

For example, deleting a book details from a library database, it also delete the student

details who have taken the book previously.

10. 1NF (FIRST NORMAL FORM)

A relation (table) is said to be in first normal form if and only if:

• Each table cell contains only atomic values (single value).

• Each record needs to be uniquely identified by the primary key.

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

1NF Example:

HTNO FIRST NAME LAST NAME MOBILE

501 Jhansi Rani
9999988888
7777799999

502 Ajay Kumar
8888888881
7897897897

503 Priya Verma 9898989898

The above table is not in 1NF because 501 and 502 is having two values in mobile column. If we

add a new column as alternative mobile number to the above table, then for 503 alternative mobile

number is NULL. Moreover, if a student has ‘n’ mobile numbers, then adding ‘n’ extra column is

meaningless. It is better to add extra rows. If we add extra row for each 501 and 502 then the table

looks like

HTNO FIRST NAME LAST NAME MOBILE

501 Jhansi Rani 9999988888

501 Jhansi Rani 7777799999

502 Ajay Kumar 8888888881

502 Ajay Kumar 7897897897

503 Priya Verma 9898989898

But the above table violates primary key constraint. Therefore instead of adding either columns or

rows, the best solution is to split the table into two tables as shown below. If we do as shown

below, if a student having ‘n’ number of mobile numbers also can be added.

11. 2NF (SECOND NORMAL FORM)

A relation is said to be in 2-NF if and only if

• It should be in 1-NF (First Normal Form)

• There should not be any partial functional dependencies

2NF Example:

HTNO FIRST

NAME

LAST

NAME

501 Jhansi Rani

502 Ajay Kumar

503 Priya Verma

HTNO MOBILE

501 9999988888

501 7777799999

502 8888888881

502 7897897897

503 9898989898

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

HTNO Name DOB DeptNo DeptName Location
501 Jhansi 30-10-1998 05 CSE A-Block

502 Ajay 24-12-1999 05 CSE A-Block

410 Priya 12-03-2000 04 ECE B-Block

120 Rahul 30-10-1998 01 CIVIL C-Block

415 Smitha 18-06-1999 04 ECE B-Block

The above table is not in 2NF because there exist partial function dependencies. HTNO is a

key attribute in the above table. If every non-key attribute fully dependent on key attribute,

then we say it is fully functional dependent. Consider the below diagram. {Name, DOB,

DeptNo, DeptName, Location} depends on HTNO. But {DeptName, Location} also depends

on DeptNo.

It is clear that DeptName and Location not only depends upon HTNO but also on DeptNo. So,

there exists partial function dependency. This partial functional dependency can be removed

by splitting the above table into two tables as follows.

12. 3NF (THIRD NORMAL FORM)

A relation (table) is in third normal form if and only if it satisfies the following conditions:

• It is in second normal form

• There is no transitive functional dependency

HTNO Name DOB DeptNo

501 Jhansi 30-10-1998 05

502 Ajay 24-12-1999 05

410 Priya 12-03-2000 04

120 Rahul 30-10-1998 01

415 Smitha 18-06-1999 04

DeptNo DeptName Location

05 CSE A-Block

04 ECE B-Block

01 CIVIL C-Block

Name

DOB

DeptNo

HTNO
DeptName

Location

DeptName

DeptNo

Location

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

Transitive functional dependency means, we have the following relationships in the table: A is

functionally dependent on B (A→B), and B is functionally dependent on C (B→C). In this

case, C is transitively dependent on A via B (A→B and B→C mean A→B→C implies A→C).

3NF Example:

Consider the following book details table example:

BOOK_DETAILS

BookID GenreID GenreType Price

1 1 Gardening 250.00

2 2 Sports 149.00

3 1 Gardening 100.00

4 3 Travel 160.00

5 2 Sports 320.00

The above table is not in 3NF because there exist transitive dependency. In the table able,

BookID determines GenreID { BookID → GenreID }

GenreID determines GenreType. { GenreID → GenreType }

 BookID determines GenreType via GenreID. { BookID → GenreType }

It implies that transitive functional dependency is existing and the structure does not satisfy

third normal form. To bring this table in to third normal form, we split the table into two as

follows:

BOOK_DETAILS

GENRE_DETAILS

GenreID GenreType

1 Gardening

2 Sports

3 Travel

13. BOYCE CODD NORMAL FORM (BCNF)

A relation (table) is said to be in the BCNF if and only if it satisfy the following conditions:

• It should be in the Third Normal Form.

• For any functional dependency A → B, A should be a super key.

BookID GenreID Price

1 1 250.00

2 2 149.00

3 1 100.00

4 3 160.00

5 2 320.00

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

In simple words, it means, that for a dependency A → B, A cannot be a non-prime attribute,

if B is a prime attribute.

Example: Below we have a Patient table of a hospital. A patient can go to hospital many

times to take treatment. On a single day many patients can take treatment.

PatientID Name EmailID AdmittedDate Drug Quntity
101 Ram ram@gmail.com 30/10/1998 A-10 10

102 Jhon jho@gmail.com 30/10/1998 X-90 10

101 Ram ram@gmail.com 10/06/2001 X-90 20

103 Sowmya sam@gmail.com 05/03/2002 Y-30 15

102 Jhon jho@gmail.com 05/03/2002 A-10 15

In the above table, {PateintID, AdmittedDate} acts as Primary key. But if we know the

EmailID value, we can find PatientID value.

That is EmailID → PatientID.

In the above dependency, EmailId is non-prime attribute and PatientID is a prime attribute.

Therefore the above table is not in BCNF. In order to bring the table into BCNF, we split it

into two tables as shown below.

In other words we can also define BCNF as there should not be any overlapping between candidate

keys. If you consider the original table (before splitting), we can get two candidate keys {PateintID,

AdmittedDate} and {EmailID, AdmittedDate}.

As there exist overlapping in the candidate keys, the table is not in BCNF. To bring it into BCNF,

we split into two tables as shown above.

PatientID Name AdmittedDate Drug Quntity

101 Ram 30/10/1998 A-10 10

102 Jhon 30/10/1998 X-90 10

101 Ram 10/06/2001 X-90 20

103 Sowmya 05/03/2002 Y-30 15

102 Jhon 05/03/2002 A-10 15

PatientID EmailID

101 ram@gmail.com

102 jho@gmail.com

103 sam@gmail.com

mailto:ram@gmail.com
mailto:jho@gmail.com
mailto:ram@gmail.com
mailto:sam@gmail.com
mailto:jho@gmail.com
mailto:ram@gmail.com
mailto:jho@gmail.com
mailto:sam@gmail.com

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

Hobby

14. 4-NF (FOURTH NORMAL FORM)

A relation is said to be in 4-NF if and only if it satisfies the following conditions

• It should be in the Third Normal Form.

• The table should not have any Multi-valued Dependency.

What is Multi-valued Dependency?

A table is said to have multi-valued dependency, if the following three conditions are true.

i. A table should have at-least 3 columns for it to have a multi-valued dependency.

ii. For any dependency A → B, if there exists multiple value of B for a single value of A,

then the table may have multi-valued dependency. It is represented as A →→ B.

iii. In a relation R(A,B,C), if there is a multi-valued dependency between A and B, then B

and C should be independent of each other.

If all these three conditions are true for any relation (table), then it contains multi-valued

dependency. The multi-valued dependency can be explained with an example. Let the Relation R

containing three columns A, B, C and four rows s, t, u, v.

 A B C

s a1 b1 c1

t a1 b1 c2

u a1 b2 c1

v a1 b2 c2

If s(A) = t(A) = u(A) = v(A)

s(B) = t(B) and s(B) = v(B)

s(C) = u(C) and t(C) = v(C) , then there exist multi-valued dependency.

Example: Consider the below college enrolment table with columns HTNO, Subject and

Hobby.

501

Java

C#

Cricket

Dancing

502

Hobby

Python

Android

Chess

Singing

Subject Subject

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

As shown in the above figure, if 501 opted for subjects like Java and C# and hobbies

of 501 are Cricket and Dancing. Similarly, If 502 opted for subjects like Python and Android

and hobbies of 501 are Chess and Singing, then it can be written into a table with three

columns as follows:

HTNO Subject Hobby

501 Java Cricket

501 Java Dancing

501 C# Cricket

501 C# Dancing

502 Python Chess

502 Python Singing

502 Android Chess

502 Android Singing

As there exist multi valued dependency, the above table is decomposed into two tables such
that

Now these tables (relations) satisfy the fourth normal form.

15. 5NF

A relation is said to be in 5-NF if and only if it satisfies the following conditions

• It should be in the Fourth Normal Form.

• The table should not have any join Dependency and joining should be lossless.

5NF is also known as Project-join normal form (PJ/NF).

A table is decomposed into multiple small tables to eliminate redundancy, and when

we re-join the decomposed tables, there should not be any loss in the original data or shold

not create any new data. In simple words, joining two or more decomposed table should

not lose records nor create new records.

HTNO Subject

501 Java

501 C#

502 Python

502 Android

HTNO Hobby

501 Cricket

501 Dancing

502 Chess

502 Singing

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

Example: Consider a table which contains a record of Subject, Professor and Semester in

three columns. The primary key is the combination of all three columns. No column itself is not

a candidate key or a super key.

In the table, DBMS is taught by Ravindar and Uma Rani in semester 4, DS by Sindhusha and

Venu in sem 3. In this case, the combination of all these fields required to identify valid data.

So to make the table into 5NF, we can decompose it into three relations,

Subject Professor Semester

C Srilatha 2

DBMS Ravindar 4

DS Sindhusha 3

DBMS Uma Rani 4

CN Srikanth 5

DS Venu 3

WT Srinivas 5

The above table is decomposed into three tables as follows to bring it into 5-NF.

16. LOSS LESS JOIN DECOMPOSITION

Decomposition of a relation R into R1 and R2 is lossless-join decomposition if at least one of

the following functional dependencies are in F+ (Closure of functional dependencies)

R1 ∩ R2 → R1

OR

R1 ∩ R2 → R2

• Consider a relation R which is decomposed into sub relations R1 and R2 .

• This decomposition is called lossless join decomposition when we join R1 and R2 and

if we get the same relation R that was decomposed.

• For lossless join decomposition, we always have: R 1 ⋈ R 2

Subject Professor

C Srilatha

DBMS Ravindar

DS Sindhusha

DBMS Uma Rani

CN Srikanth

DS Venu

WT Srinivas

Semester Professor

2 Srilatha

3 Ravindar

5 Sindhusha

3 Uma Rani

5 Srikanth

2 Venu

5 Srinivas

Semester Subject

2 C

4 DBMS

3 DS

5 CN

5 WT

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

Example 1: Consider the following relation R(A , B , C). Let this relation is decomposed

into two sub relations R1(A , B) and R2(B , C)

 R R1 R2
A B C

decompose →

A B

and

B C

1 2 1 1 2 2 1

2 5 3 2 5 5 3

3 3 3 3 3 3 3

Now, let us check whether this decomposition is lossless or not. For lossless decomposition, we

must have: R1 ⋈ R2 = R . Now, if we perform the natural join (⋈) of the sub relations R1

and R2 , we get

This relation is same as the original relation R.

Thus, we conclude that the above decomposition is lossless join decomposition. This is because

the resultant relation after joining the sub relations is same as the decomposed relation. No

extraneous tuples (rows) appear after joining of the sub-relations.

Example 2: Consider the following relation R(A , B , C). Let this relation is decomposed

into two sub relations R1(A , C) and R2(B , C)

R R1 R2
A B C

decompose →

A C

and

B C

1 2 1 1 1 2 1

2 5 3 2 3 5 3

3 3 3 3 3 3 3

Now, let us check whether this decomposition is lossless or not. For lossless decomposition, we

must have: R1 ⋈ R2 = R . Now, if we perform the natural join (⋈) of the sub relations R1

and R2 , we get

This relation is not same as the original relation R.

Thus, we conclude that the above decomposition is not lossless join decomposition. This is

because the resultant relation after joining the sub relations is not same as the decomposed

relation. Extraneous tuples (rows) appear after joining of the sub-relations.

A B C

1 2 1

2 5 3

3 3 3

A B C

1 2 1

2 5 3

2 3 3

3 5 3

3 3 3

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

PROBLEMS

Consider a relation R is decomposed into two sub relations R1 and R2.

• If all the following conditions satisfy, then the decomposition is lossless.

• If any of these conditions fail, then the decomposition is lossy.

Condition-01: Union of both the sub relations must contain all the attributes that are present

in the original relation R.

Condition-02: Intersection of both the sub relations must not be null. In other words, there

must be some common attribute which is present in both the sub relations.

Condition-03: Intersection of both the sub relations must be a super key of either R1 or R2 or

both.

**

Problem-01: Consider a relation schema R (A , B , C , D) with the functional dependencies

A → B and C → D. Determine whether the decomposition of R into R1 (A , B) and R2 (C ,

D) is lossless or lossy.

Solution: To determine whether the decomposition is lossless or lossy, we will check all the

conditions one by one. If any of the conditions fail, then the decomposition is lossy otherwise

lossless.

Condition-01: According to condition-01, union of both the sub relations must contain all the

attributes of relation R. So, we have:

R1 (A , B) ∪ R2 (C , D) = R (A , B , C , D)

Clearly, union of the sub relations contains all the attributes of relation R. Thus, condition-01

satisfies.

Condition-02: According to condition-02, intersection of both the sub relations must not be

null. So, we have-

R1 (A , B) ∩ R2 (C , D) = Φ

Clearly, intersection of the sub relations is null. So, condition-02 fails. Thus, we conclude that

the decomposition is lossy.

**

Problem-02: Consider a relation schema R (A , B , C , D) with the following functional

dependencies

A → B B → C C → D D → B

R1 ∩ R2 ≠ ∅

R1 ∪ R2 = R

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

Determine whether the decomposition of R into R1 (A , B) , R2 (B , C) and R3 (B , D) is

lossless or lossy.

Solution:

Consider the original relation R was decomposed into the given sub relations as shown:

Decomposition of R(A, B, C, D) into R'(A, B, C) and R3(B, D)-

To determine whether the decomposition is lossless or lossy,

• We will check all the conditions one by one.

• If any of the conditions fail, then the decomposition is lossy otherwise lossless.

Condition-01: According to condition-01, union of both the sub relations must contain all the

attributes of relation R. So, we have

R‘ (A , B , C) ∪ R3 (B , D) = R (A , B , C , D)

Clearly, union of the sub relations contains all the attributes of relation R. Thus, condition-01

satisfies.

Condition-02: According to condition-02, intersection of both the sub relations must not be

null. So, we have

R‘ (A , B , C) ∩ R3 (B , D) = B

Clearly, intersection of the sub relations is not null. Thus, condition-02 satisfies.

Condition-03: According to condition-03, intersection of both the sub relations must be the

super key of one of the two sub relations or both. So, we have-

R‘ (A , B , C) ∩ R3 (B , D) = B

Strategy to Solve: When a given relation is decomposed into more than two sub relations,

then

• Consider any one possible ways in which the relation might have been decomposed

into those sub relations.

• First, divide the given relation into two sub relations.

• Then, divide the sub relations according to the sub relations given in the question.

As a thumb rule, remember-

Any relation can be decomposed only into two sub relations at a time.

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

Now, the closure of attribute B is: B+ = { B , C , D }

So,

• Attribute ‘B’ can not determine attribute ‘A’ of sub relation R’.

• Thus, it is not a super key of the sub relation R’.

• Attribute ‘B’ can determine all the attributes of sub relation R3.

• Thus, it is a super key of the sub relation R3.

Clearly, intersection of the sub relations is a super key of one of the sub relations.

So, condition-03 satisfies. Thus, we conclude that the decomposition is lossless.

Decomposition of R'(A, B, C) into R1(A, B) and R2(B, C)-

To determine whether the decomposition is lossless or lossy,

• We will check all the conditions one by one.

• If any of the conditions fail, then the decomposition is lossy otherwise lossless.

Condition-01: According to condition-01, union of both the sub relations must contain all the

attributes of relation R’. So, we have

R1 (A , B) ∪ R2 (B , C) = R’ (A , B , C)

Clearly, union of the sub relations contain all the attributes of relation R’. Thus, condition-01

satisfies.

Condition-02: According to condition-02, intersection of both the sub relations must not be

null.

So, we have

R1 (A , B) ∩ R2 (B , C) = B

Clearly, intersection of the sub relations is not null. Thus, condition-02 satisfies.

Condition-03: According to condition-03, intersection of both the sub relations must be the

super key of one of the two sub relations or both. So, we have

R1 (A , B) ∩ R2 (B , C) = B

Now, the closure of attribute B is: B+ = { B , C , D }

So,

• Attribute ‘B’ can not determine attribute ‘A’ of sub relation R1.

• Thus, it is not a super key of the sub relation R1.

• Attribute ‘B’ can determine all the attributes of sub relation R2.

• Thus, it is a super key of the sub relation R2.

Clearly, intersection of the sub relations is a super key of one of the sub relations. So,

condition-03 satisfies. Thus, we conclude that the decomposition is lossless.

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

17. CLOSURE OF AN ATTRIBUTE SET:

The set of all those attributes which can be functionally determined from an attribute

set is called as a closure of that attribute set. Closure of attribute set {X} is denoted as {X}+.

Steps to Find Closure of an Attribute Set: Following steps are followed to find the

closure of an attribute set:

Step-01: Add the attributes contained in the attribute set for which closure is being

calculated to the result set.

Step-02: Recursively add the attributes to the result set which can be functionally determined

from the attributes already contained in the result set.

Question 1: Consider a relation R (A , B , C , D , E , F , G) with the functional

dependencies

A → BC, BC → DE, D → F, CF → G

Find the closure of {A}, {D} and {B,C} attributes and attribute sets

Solution:

Closure of attribute A:

A+ = { A }

= { A , B , C } (Using A → BC)

= { A , B , C , D , E } (Using BC → DE)

= { A , B , C , D , E , F } (Using D → F)

= { A , B , C , D , E , F , G } (Using CF → G)

Thus,

A+ = { A , B , C , D , E , F , G }

Closure of attribute D:

D+ = { D }

= { D , F } (Using D → F)

We cannot determine any other attribute using attributes D and F contained in the result set.

Thus,

D+ = { D , F }

Closure of attribute set {B, C}

{ B , C }+= { B , C }

= { B , C , D , E } (Using BC → DE)

= { B , C , D , E , F } (Using D → F)

= { B , C , D , E , F , G } (Using CF → G)

Thus,

{ B , C }+ = { B , C , D , E , F , G }

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

Question2: Consider the given functional dependencies

AB → CD AF → D DE → F C → G F → E G → A

Find the closure of {A, B}, {A, F}, {B, G} and {C, F}

Solution:

Closure of {A, B}:

{ AB }+ = { A , B }

= { A , B , C , D } (Using AB → CD)

= { A , B , C , D , G } (Using C → G)

Thus, { AB }+ = { A , B , C , D , G }

Closure of {C, F}:

{ CF }+ = { C , F }

= { C , F , G } (Using C → G)

= { C , E , F , G } (Using F → E)

= { A , C , E , E , F } (Using G → A)

= { A , C , D , E , F , G } (Using AF → D)

Thus, { CF }+ ={ A , C , D , E , F , G }

Closure of {B, G}:

{ BG }+ = { B , G }

= { A , B , G } (Using G → A)

= { A , B , C , D , G } (Using AB → CD)

Thus, { BG }+ = { A , B , C , D , G }

Closure of {B, G}:

{ AF }+ = { A , F }

= { A , D , F } (Using AF → D)

= { A , D , E , F } (Using F → E)

Thus, { AF }+ = { A , D , E , F }

18. FINDING THE KEYS USING CLOSURE

Super Key:

If the closure result of an attribute set contains all the attributes of the relation,

then that attribute set is called as a super key of that relation.

• Thus, we can say, “The closure of a super key is the entire relation schema.”

Example: In the above example (Question 1),

• The closure of attribute A is the entire relation schema.

• Thus, attribute A is a super key for that relation.

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

Candidate Key:

• If there exists no subset of an attribute set whose closure contains all the attributes of

the relation, then that attribute set is called as a candidate key of that relation.

Example: In the above example (Question 1),

• No subset of attribute A contains all the attributes of the relation.

• Thus, attribute A is also a candidate key for that relation.

Finding Candidate Keys From a Relation:

We can determine the candidate keys of a given relation using the following steps-

Step-01: Determine all essential attributes of the given relation

• Essential attributes are those attributes which are not present on RHS of any functional

dependency.

• Essential attributes are always a part of every candidate key.This is because they

cannot be determined by other attributes.

Example: Let R(A, B, C, D, E, F) be a relation scheme with the following functional

dependencies: A → B, C → D and D → E.

The RHS of all the above functional dependencies contain only B, D and E. The

attributes which are not present on RHS of any functional dependency are A, C and F.

So, essential attributes are: A, C and F.

Step-02: Determining all non-essential attributes using essential attributes

• The attributes of the relation that are present in RHS are non-essential attributes. They

can be determined by using essential attributes.

• Now, following two cases are possible-

• Case-01: If all essential attributes together can determine all remaining non-essential

attributes, then

o The combination of essential attributes is the candidate key.

o It is the only possible candidate key.

• Case-02: If all essential attributes together can not determine all remaining non-

essential attributes, then-

• The set of essential attributes and some non-essential attributes will be the candidate

key(s).

• In this case, multiple candidate keys are possible.

• To find the candidate keys, we check different combinations of essential and non-

essential attributes.

.

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

PROBLEMS ON FINDING CANDIDATE KEYS

Problem-01: Let R = (A, B, C, D, E, F) be a relation scheme with the following

dependencies: C → F, E → A, EC → D and A → B. Find the candidate key. Also,

determine the total number of candidate keys and super keys.

Solution: We will find candidate keys of the given relation in the following steps-

Step-01: Determine all essential attributes of the given relation.

• Essential attributes of the relation are: C and E.

• So, attributes C and E will definitely be a part of every candidate key.

Step-02: Now, we will check if the essential attributes together can determine all remaining

non-essential attributes. To check, we find the closure of CE. So,

{ CE }+ = { C , E }

= { C , E , F } (Using C → F)

= { A , C , E , F } (Using E → A)

= { A , C , D , E , F } (Using EC → D)

= { A , B , C , D , E , F } (Using A → B)

We conclude that CE can determine all the attributes of the given relation. So, CE is the only

possible candidate key of the relation.

Total Number of Super Keys-

There are total 6 attributes in the given relation of which-

• There are 2 essential attributes- C and E.

• Remaining 4 attributes are non-essential attributes.

• Essential attributes will be definitely present in every key.

• Non-essential attributes may or may not be present in every super key.

C E A B D F

Essential attributes Non-Essential attributes

So, number of super keys possible = 2 x 2 x 2 x 2 = 16. Thus, total number of super keys

possible = 16.

Problem-02: Consider the relation scheme R(E, F, G, H, I, J, K, L, M, N) and the set

of functional dependencies: { E, F } → { G }, { F } → { I , J }, { E, H } → { K, L },

{ K } → { M } and { L } → { N }. Determine the candidate key(s).

Ravindar.M, Asso.Prof, CSE Dept, JITS-KNR

Solution: We will find candidate keys of the given relation in the following steps-

Step-01: Determine all essential attributes of the given relation.

• Essential attributes of the relation are- E, F and H.

• So, attributes E, F and H will definitely be a part of every candidate key.

Step-02:

• We will check if the essential attributes together can determine all remaining non-

essential attributes.

• To check, we find the closure of EFH.

So, we have-

{ EFH }+ = { E , F , H }

= { E , F , G , H } (Using EF → G)

= { E , F , G , H , I , J } (Using F → IJ)

= { E , F , G , H , I , J , K , L } (Using EH → KL)

= { E , F , G , H , I , J , K , L , M } (Using K → M)

= { E , F , G , H , I , J , K , L , M , N } (Using L → N)

We conclude that EFH can determine all the attributes of the given relation. So, EFH is the

only possible candidate key of the relation.

***************************** ALL THE BEST *******************************

1 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

UNIT – IV

Transaction Management: Transaction Concept, Transaction State, Implementation of Atomicity and Durability,

Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for serializability, Lock

Based Protocols, Timestamp Based Protocols, Validation- Based Protocols, Multiple Granularity, Recovery and

Atomicity, Log–Based Recovery, Recovery with Concurrent Transactions.

1. TRANSACTION

Definition: A transaction is a single logical unit consisting of one or more database access

operation.

Example: Withdrawing 1000 rupees from ATM.

• Every transaction is executed as a single unit.

• If the database operations do not update the database but only retrieve data, this type of

transaction is called a read-only transaction.

• A successful transaction can change the database from one consistent state to another

consistent state.

• DBMS transactions must satisfy ACID properties (atomic, consistent, isolated and durable).

2. ACID PROPERTIES

ACID properties are used for maintaining the integrity of database during transaction processing.

ACID stands for Atomicity, Consistency, Isolation, and Durability.

• Atomicity: This property ensure that either all of the tasks of a transaction are performed or none

of them. In simple words it is referred as “all or nothing rule”.

Each transaction is said to be atomic if when one part of the transaction fails, the entire transaction

fails. When all parts of the transaction completed successfully, then the transaction said to be

success. (“all or nothing rule”)

Example: Transferring $100 from account A to account B.

(Assume initially, account A balance = $400 and account B balance = 700$.)

The following set of operations are performed to withdraw 1000 rupees from database

i. Read current balance from Database

ii. Deduct 1000 from current balance

iii. Update current balance in Database

(Let say 5000 rupees)

(5000 – 1000 = 4000)

(4000 rupees)

one Transaction

2 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

Transferring $100 from account A to account B has two operations

a) Debiting 100$ from A’s balance ($400 -$100 = $300)

b) Crediting 100$ to B’s balance ($700+$100 = $800)

Let’s say first operation (a) passed successfully while second (b) failed, in this case A’s balance

would be 300$ while B would be having 700$ instead of 800$. This is unacceptable in a banking

system. Either the transaction should fail without executing any of the operation or it should

process both the operations. The Atomicity property ensures that.

ii. Consistency: The consistency property ensures that the database must be in consistent state

before and after the transaction. There must not be any possibility that some data is incorrectly

affected by the execution of a transaction.

For example, transfering funds from one account to another, the consistency property ensures that

the total values of funds in both the accounts is the same before and end of the transaction. i.e.,

Assume initially, A balance = $400 and B balance = 700$.

The total balance of A + B = 1100$ (Before transferring 100$ from A to B)

The total balance of A + B = 1100$ (After transferring 100$ from A to B)

iii. Isolation: For every pair of transactions, one of the transactions should not start execution

before the other transaction execution completed, if they use some common data variable. That

is, if the transaction T1 is executing and using the data item X, then transaction T2 should not

start until the transaction T1 ends, if T2 also use same data item X.

For example, Transaction T1: Transfer 100$ from account A to account B

Transaction T2: Transfer 150$ from account B to account C

Assume initially, A balance = B balance = C balance = $1000

 Transaction T1 Transaction T2

10:00 AM Read A’s balance ($1000) Read B’s balance ($1000)

10:01 AM A balance = A Balance – 100$ (1000-100 = 900$) B balance = B Balance – 150$ (1000-150 = 850$)

10:02 AM Read B’s balance ($1000) Read C’s balance ($1000)

10:03 AM B balance = B Balance + 100$ (1000+100 = 1100$) C balance = C Balance + 150$ (1000+150 = 1150$)

10:04 AM Write A’s balance (900$) Write B’s balance (850$)

10:05AM Write B’s balance (1100$) Write C’s balance (1150$)

10:06 AM COMMIT COMMIT

3 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

After completion of Transaction T1 and T2, A balance = 900$, B balance = 1100$, C balance

=1150$. But B balance should be 950$. The B balance is wrong due to execution of T1 and T2

parallel and in both the transactions, Account B is common. The last write in account B is at 10:05

AM, so that B balance is 1100$ (write in account B at 10:04 AM is overwritten).

iv. Durability: Once a transaction completes successfully, the changes it has made into the database

should be permanent even if there is a system failure. The recovery-management component of

database systems ensures the durability of transaction. For example, assume

account A balance = 1000$. If A withdraw 100$ today, then the A balance = 900$. After two

days or a month, A balance should be 900$, if no other transactions done on A.

3. STATES OF TRANSACTION

A transaction goes through many different states throughout its life cycle. These states are called

as transaction states. They are:

Active State:

• This is the first state in the life cycle of a transaction.

• Once the transaction starts executing, then it is said to be in active state.

• During this state it performs operations like READ and WRITE on some data items. All

the changes made by the transaction are now stored in the buffer in main memory. They

are not updated in database.

• From active state, a transaction can go into either a partially committed state or a failed

state.

4 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

Partially Committed State:

• When the transaction executes its last statement, then the transaction is said to be in

partially committed state.

• Still, all the changes made by the transaction are stored in the buffer in main memory, but

they are not updated in the database.

• From partially committed state, a transaction can go into one of two states, a committed

state or a failed state.

Committed State:

• After all the changes made by the transaction have been successfully updated in the

database, it enters into a committed state and the transaction is considered to be fully

committed.

• After a transaction has entered the committed state, it is not possible to roll back (undo) the

transaction. This is because the system is updated into a new consistent state and the

changes are made permanent.

• The only way to undo the changes is by carrying out another transaction called

as compensating transaction that performs the reverse operations.

Failed State:

• When a transaction is getting executed in the active state or partially committed state and

some failure occurs due to which it becomes impossible to continue the execution, it enters

into a failed state.

Aborted State:

• After the transaction has failed and entered into a failed state, all the changes made by it

have to be undone.

• To undo the changes made by the transaction, it becomes necessary to roll back the

transaction.

• After the transaction has rolled back completely, it enters into an aborted state.

Terminated State:

• This is the last state in the life cycle of a transaction.

• After entering the committed state or aborted state, the transaction finally enters into a

terminated state where its life cycle finally comes to an end.

5 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

4. TYPES OF SCHEDULES – SERIALIZABILITY

In DBMS, schedules may be classified as

i. Serial Schedules:

• All the transactions execute serially one after the other.

• When one transaction executes, no other transaction is allowed to execute.

Examples:

Schedule-1 Schedule-2

In schedule 1, after T1 completes its execution, transaction T2 executes. So, schedule-1 is a Serial

Schedule. Similarly, in schedule-2, after T2 completes its execution, transaction T1 executes. So,

schedule -2 is also an example of a Serial Schedule.

ii. Non-Serial Schedules:
• In non-serial schedules, multiple transactions execute concurrently.

• Operations of all/some of the transactions are inter-leaved or mixed with each other.

• Some non-serial schedules may lead to inconsistency of the database and may produce

wrong results.

T1 T2
Read(A)

A=A-100

Write(A)

Read(B)

B=B+100

Write(B)

COMMIT

Read(A)

 A=A+500

 Write(A)

 COMMIT

T1 T2
 Read(A)

 A=A+500

 Write(A)

Read(A)

COMMIT

A=A-100

Write(A)

Read(B)

B=B+100

Write(B)

COMMIT

6 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

Examples:

Schedule-1 Schedule-2

In schedule-1 and schedule-2, the two transactions T1 and T2 executing concurrently. The

operations of T1 and T2 are interleaved. So, these schedules are Non-Serial Schedule.

iii. Serializable Schedules:

• A non-serial schedule of ‘n’ transactions is equivalent to some serial schedule of ‘n’

transactions, then it is called as a serializable schedule.

• In other words, the results produced by the transactions in a serial schedule are equal to

the result produced by the same transactions in some non-serial schedule, then that non-

serial schedule is called as serializability.

• Serializable schedules behave exactly same as serial schedules.

• Even though, Serial Schedule and Serializable Schedule produce same result, there are

some differences they are

Serial Schedules Serializable Schedules

Concurrency is not allowed. Thus, all the

transactions necessarily execute serially one

after the other.

Concurrency is allowed. Thus, multiple

transactions can execute concurrently.

It leads to less resource utilization and CPU

throughput.

It improves both resource utilization and

CPU throughput.

Serial Schedules are less efficient as

compared to serializable schedules.

Serializable Schedules are always better

than serial schedules.

Serializability is mainly of two types. They are:

• Conflict Serializability

• View Serializability

T1 T2
Read(A)

A=A-100

Write(A)

Read(A)

Read(B)

A=A+500

B=B+100

Write(B)

COMMIT

Write(A)

 COMMIT

T1 T2

Read(A)

Read(A)

A=A-100

Write(A)

A=A+500

Read(B)

B=B+100

Write(B)

COMMIT

Write(A)

 COMMIT

7 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

Conflict Serializability: If a given non-serial schedule can be converted into a serial schedule

by swapping its non-conflicting operations, then it is called as a conflict serializable schedule.

Two operations are called as conflicting operations if all the following conditions hold true

(1) Both the operations belong to different transactions

(2) Both the operations are on the same data item

(3) At least one of the two operations is a write operation

Schedule – 1 Schedule – 2 Schedule - 3 Schedule - 4

T1 T2 T1 T2 T1 T2 T1 T2

Read(A)

Read(A)

Read(A)

Write(A)

Write(B)

Read(A)

Write(B)

Write(B)

In Schedule -1, only rule (1) & (2) are true, but rule (3) is not holding. So, the operations are not conflict.

In Schedule -2, rule (1), (2) & (3) are true. So, the operations are conflict.

In Schedule -3, only rule (1) & (3) are true, but rule (2) is not holding. So, the operations are not conflict.

In Schedule -4, rule (1), (2) & (3) are true. So, the operations are conflict.

Testing of Conflict Serializability: Precedence Graph is used to test the Conflict

Serializability of a schedule. The algorithm to draw precedence graph is

(1) Draw a node for each transaction in Schedule S.

(2) If Ta reads X value written by Tb, then draw arrow from Tb → Ta.

(3) If Tb writes X value after it has been read by Ta, then draw arrow from Ta → Tb.

(4) If Ta writes X after Tb writes X, then draw arrow from Tb → Ta.

If the precedence graph has no cycle, then Schedule S is known as conflict serializable. If a

precedence graph contains a cycle, then S is not conflict serializable.

Problem-01: Check whether the given schedule S is conflict serializable or not.

S : R1(A) , R2(A) , R1(B) , R2(B) , R3(B) , W1(A) , W2(B)

Solution:
Given that S : R1(A) , R2(A) , R1(B) , R2(B) , R3(B) , W1(A) , W2(B) .

The schedule for the above operations is

Schedule-1

T1 T2 T3
Read(A)

Read(A)

Read(B)

Read(B)

Read(B)

Write(A)

Write(B)

8 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

List all the conflicting operations and determine the dependency between the transactions

(Thumb rule to find conflict operations: For each Write(X) in Ta, make a pair with each Read(X) and Write(X) in Tb.

The order is important in each pair i.e., for example, Read after Write on X or write after read on X in the given schedule.)

• R2(A) , W1(A) (T2 → T1)

• R1(B) , W2(B) (T1 → T2)

• R3(B) , W2(B) (T3 → T2)

Draw the precedence graph:

There exists a cycle in the above graph. Therefore, the schedule S is not conflict serializable.

Problem-02: Check whether the given schedule S is conflict serializable schedule.

Schedule – S
T1 T2 T3 T4

 Read(X)

Write(X)

Write(X)

 COMMIT

COMMIT
Write(Y)

 Read(Z)

 COMMIT
Read(X)

 Read(Y)
 COMMIT

Solution: List all the conflicting operations to determine the dependency between transactions.

R2(X) , W3(X) (T2 → T3)

W3(X) , W1(X) (T3 → T1)

W3(X) , R4(X) (T3 → T4)

R2(X) , W1(X) (T2 → T1)

W1(X) , R4(X) (T1 → T4)

W2(Y) , R4(Y) (T2 → T4)

Draw the precedence graph:

There exists no cycle in the precedence graph. Therefore, the schedule S is conflict serializable.

9 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

View Serializability: Two schedules S1 and S2 are said to be view equivalent if both of

them satisfy the following three rules:

(1) Initial Read: The first read operation on each data item in both the schedule must be same.

• For each data item X, If first read on X is done by transaction Ta in schedule S1, then in

schedule2 also the first read on X must be done by transaction Ta only.

(2) Updated Read: It should be same in both the schedules.

• If Read(X) of Ta followed by Write(X) of Tb in schedule S1, then in schedule S2 also, Read(X)

of Ta must follow Write(X) of Tb ..

(3) Final write: The final write operation on each data item in both the schedule must be same.

• For each data item X, if X has been updated at last by transaction Ti in schedule S1, then in

schedule S2 also, X must be updated at last by transaction Ti.

Note: Every conflict serializable schedule is also view serializable schedule but not vice-versa

Problem 03: Check whether the given schedule S is view serializable or not

Schedule – 1

T1 T2
Read(A)

Write(A)

Read(A)

Read(B)

Write(A)

Write(B)
Read(B)

 Write(B)

Solution:

For the given schedule-1, the serial schedule can be schedule -2

Schedule-1 (S1) Schedule-2 (S2)

View Serializability Definition: If a given schedule is view equivalent to some serial

schedule, then it is called as a view serializable schedule.

T1 T2
Read(A)

Write(A)

Read(A)

Read(B)

Write(A)

Write(B)
Read(B)

 Write(B)

T1 T2
Read(A)

Write(A)

Read(B)

Write(B)

Read(A)

 Write(A)

 Read(B)

 Write(B)

10 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

Now let us check whether the three rules of view-equivalent satisfy or not.

Schedule-1 (S1) Schedule-2 (S2)

Rule 1: Initial Read

First Read(A) is by T1 in S1 and in S2 also the first Read(A) is by T1 only.

First Read(B) is by T1 in S1 and in S2 also the first Read(B) is by T1 only.

Rule 2: Updated Read

Write(A) of T1 is read by T2 in S1 and in S2 also Write(A) of T1 is read by T2

Write(A) of T1 is read by T2 in S1 and in S2 also Write(A) of T1 is read by T2

Rule 3: Final Write

The final Write(A) is by T2 in S1 and in S2 also the final Write(A) is by T2 only

The final Write(B) is by T2 in S1 and in S2 also the final Write(B) is by T2 only

Conclusion: Hence, all the three rules are satisfied in this example, which means Schedule S1

and S2 are view equivalent. Also, it is proved that schedule S2 is the serial schedule of S1. Thus

we can say that the S1 schedule is a view serializable schedule.

Note: Other way of solving it is, if we are able to prove that S1 is conflict serializable, then S1 is also view serializable. (Refer

conflict serializable problems. Every conflict serializable schedule is also view serializable but not vice-versa.)

5. IMPLEMENTATION OF ATOMICITY AND DURABILITY

The recovery-management component of a DBMS supports atomicity and durability by a variety

of schemes. The simplest scheme to implement it is Shadow copy.

Shadow copy: In shadow-copy scheme,

• A transaction that wants to update the database first creates a complete copy of the

database.

• All updates are done on the new database copy, leaving the original copy, untouched.

• If at any point the transaction has to be aborted, the system simply deletes the new copy.

The old copy of the database has not been affected.

Read(A)

Write(A)

1

2 Read(A)

Write(A)
3

Read(B)

Write(B)

1

2 Read(B)

Write(B)
3

T2 T1

Read(A)

Write(A)

Read(B)

Write(B)

1

1

2

2

Read(A)

Write(A)

Read(B)

Write(B)

3

3

T2 T1

11 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

• If the transaction complete successfully, then the database system updates the pointer db-

pointer to point to the new copy of the database; the new copy then becomes the original

copy of the database. The old copy of the database is then deleted. Figure below depicts

the scheme, showing the database state before and after the update.

Figure: Shadow copy technique for atomicity and durability

6. RECOVERABILITY

During execution, if any of the transaction in a schedule is aborted, then this may leads the

database into inconsistence state. If anything goes wrong, then the completed operations in the

schedule needs to be undone. Sometimes, these undone operations may not possible. The

recoverability of schedule depends on undone operations.

Irrecoverable Schedule: In a schedule, if a transaction Ta performs a dirty read operation

from other transaction Tb and Ta commits before Tb then such a schedule is known as

an Irrecoverable Schedule.

Example: Consider the following schedule

T1 T2

Read(A)

Write(A)

|

| Read(A) //Dirty Read

| Write(A)

| COMMIT

|

ROLLBACK

Here,

• T2 performs a dirty read operation.

If a transaction reads a data value that is updated by an uncommitted transaction, then

this type of read is called as a dirty read.

12 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

• T2 commits before T1.

• T1 fails later and roll backs.

• The value that T2 read now stands to be incorrect.

• T2 cannot recover since it has already committed.

Recoverable Schedules: In a schedule, if a transaction Ta performs a dirty read operation

from other transaction Tb and Ta commit operation delayed till Tb commit, then such a schedule

is known as an Irrecoverable Schedule.

Example: Consider the following schedule-

T1 T2
Read(A)

Write(A)

|

| Read(A) //Dirty Read
| Write(A)
|

COMMIT

COMMIT //Delayed

Here,

• T2 performs a dirty read operation.

• The commit operation of T2 is delayed till T1 commits or roll backs.

• T1 commits later.

• T2 is now allowed to commit.

• In case, T1 would have failed, T2 has a chance to recover by rolling back.

Checking Whether a Schedule is Recoverable or Irrecoverable:

Check if there exists any dirty read operation.

• If there does not exist any dirty read operation, then the schedule is surely recoverable.

• If there exists any dirty read operation, then

➢ If the commit operation of the transaction performing the dirty read occurs before

the commit or abort operation of the transaction which updated the value, then the

schedule is irrecoverable.

➢ If the commit operation of the transaction performing the dirty read is delayed till

the commit or abort operation of the transaction which updated the value, then the

schedule is recoverable.

13 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

Write(A)
Write A=20

Read A=20
Read(A)

Read(A)

T1 T2

7. IMPLEMENTATION OF ISOLATION

Isolation determines how transactions integrity is visible to other users and systems. It means

that a transaction should take place in a system in such a way that it is the only one transaction that

is accessing the resources in a database system.

Isolation level defines the degree to which a transaction must be isolated from the data

modifications made by any other transactions in the database system. The phenomena’s used to

define levels of isolation are:

a) Dirty Read

b) Non-repeatable Read

c) Phantom Read

Dirty Read: If a transaction reads a data value updated by an uncommitted transaction, then this

type of read is called as dirty read.

T1 T2

Read(A)

Write(A)

|

| Read(A) //Dirty Read

| Write(A)

| COMMIT

|

ROLLBACK

As T1 aborted, the results produced by T2 become wrong. This is because T2 read A (Dirty Read)

which is updated by T1.

Non-Repeatable Read: Non repeatable read occurs when a transaction read same data value

twice and get a different value each time. It happens when a transaction reads once before and

once after committed UPDATES from another transaction.

Table in Database

Read A=10

First, T1 reads data item A and get A=10

Next, T2 writes data item A as A = 20

Last, T1 reads data item A and get A=20

A

14 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

Other example for Non-repeatable read:

Table: STUDENT_DATA before T2 Table: STUDENT_DATA after T2

T1: SELECT SUM(C) FROM STUDENT_DATA WHERE B=5; Answer is (10+20) = 30

T2: UPDATE STUDENT_DATA SET C = 15 WHERE A=100; Answer, in First row C changes to 15

T1: SELECT SUM(C) FROM STUDENT_DATA WHERE B=5; Answer is (15+20) = 35

Phantom reads: Phantom reads occurs when a transaction read same data value twice and get

a different value each time. It happens when a transaction reads once before and once after

committed INSERTS and/or DELETES from another transaction.

Non-repeatable read Phantom read

When T1 perform second read, there is no
change in no of rows in the given table

When T1 perform second read, the no of rows
either increase or decrease.

T2 perform UPDATE operation on the
given table

T2 perform INSERT and/or DELETE
operation on the given table

Example for Phantom read:

Table: STUDENT_DATA before T2 Table: STUDENT_DATA after T2

T1: SELECT SUM(C) FROM STUDENT_DATA WHERE B=5; Answer is (10+20) = 30

T2: INSERT INTO STUDENT_DATA VALUES(103, 5, 25); Answer, in First row C changes to 15

T1: SELECT SUM(C) FROM STUDENT_DATA WHERE B=5; Answer is (10+20+25) = 55

Based on these three phenomena, SQL define four isolation levels. They are:

(1) Read uncommitted: This is the lowest level of isolation. In this level, one transaction

may read the data item modified by other transaction which is not committed. It mean dirty

read is allowed. In this level, transactions are not isolated from each other.

A B C

100 5 10

101 5 20

102 6 30

A B C

100 5 15

101 5 20

102 6 30

A B C

100 5 10

101 5 20

102 6 30

A B C

100 5 10

101 5 20

102 6 30

103 5 25

15 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

(2) Read Committed: This isolation level guarantees that any data read is committed at the

moment it is read. Thus, it does not allow dirty read. The transaction holds a read/write lock

on the data object, and thus prevents other transactions from reading, updating or deleting it.

(3) Repeatable Read: This is the most restrictive isolation level. The transaction holds read

locks on all rows it references and writes locks on all rows it inserts, updates, or deletes. Since

other transaction cannot read, update or delete these rows, consequently it avoids non-

repeatable read. So other transactions cannot read, update or delete these data items.

(4) Serializable: This is the highest isolation level. A serializable execution is guaranteed to be

a serial schedule. Serializable execution is defined to be an execution of operations in which

concurrently executing transactions appears to be serially executing.

The table given below clearly depicts the relationship between isolation levels and the read

phenomena and locks.

Isolation Level Dirty Read Non-repeatable read Phantom Read

Read Uncommitted May occur May occur May occur

Read Committed Don’t occur May occur May occur

Repeatable Read Don’t occur Don’t occur May occur

Serializable Don’t occur Don’t occur Don’t occur

From the above table, it is clear that serializable isolation level is better than others.

8. CONCURRENCY CONTROL

• Concurrency is the ability of a database to execute multiple transactions simultaneously.

• Concurrency control is a mechanism to manage the simultaneously executing multiple

transactions such that no transaction interfere with other transaction.

• Executing multiple transactions concurrently improves the system performance.

• Concurrency control increases the throughput and reduces waiting time of transactions.

• If Concurrency Control is not done, then it may leads to problems like lost updates, dirty

read, non-repeatable read, phantom read etc. (Refer section 7 for more details)

• Lost Updates: It occur when two transactions update same data item at the same time. In

this the first write is lost and only the second write is visible.

Concurrency control Protocols:

The concurrency can be controlled with the help of the following Protocols

(1) Lock-Based Protocol

(2) Timestamp-Based Protocol

(3) Validation-Based Protocol

16 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

9. LOCK-BASED PROTOCOL

• Lock assures that one transaction should not retrieve or update a record which another

transaction is updating.

• For example, traffic at junction, there are signals which indicate stop and go. When one side

signal is green (vehicles allowed passing), then other side signals are red (locked. Vehicles

not allowed passing). Similarly, in database transaction when one transaction operations are

under execution, the other transactions are locked.

• If at a junction, green signal is given to more than one side, then there may be chances of

accidents. Similarly, in database transactions, if the locking is not done properly, then it will

display the inconsistent and corrupt data.

There are two lock modes: (1). Shared Lock (2). Exclusive Lock

Shared Locks are represented by S. If a transaction Ti apply shared lock on data item A, then Ti

can only read A but not write into A. Shared lock is requested using lock-S instruction.

Exclusive Locks are represented by X. If a transaction Ti apply exclusive lock on data item A,

then Ti can read as well as write data item A. Exclusive lock is requested using lock-X

instruction.

Lock Compatibility Matrix:

• Lock Compatibility Matrix controls whether multiple transactions can acquire locks on

the same resource at the same time.

 Transaction Ti applied

Shared Exclusive

Transaction Tj

request for

Shared √ X

Exclusive X X

• If a transaction Ti applied shared lock on data item A, then Tj can also be allowed to apply

shared lock on A.

• If a transaction Ti applied shared lock on data item A, then Tj is not allowed to apply

exclusive lock on A.

• If a transaction Ti applied exclusive lock on data item A, then Tj is not allowed to apply

shared lock on A.

• If a transaction Ti applied exclusive lock on data item A, then Tj is not allowed to apply

exclusive lock on it.

• Any number of transactions can hold shared locks on a data item, but if any transaction

holds an exclusive lock on a data item, then other transactions are not allowed to hold any

lock on that data item.

17 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

• Whenever a transaction wants to read a data item, it should apply shared lock and when a

transaction wants to write it should apply exclusive lock. If the lock is not applied, then the

transaction is not allowed to perform the operation.

There are four types of lock protocols available. They are:

(1) Simplistic lock protocol

• It is the simplest locking protocol.

• It considers each read/write operation of a transaction as individual.

• It allows transactions to perform write/read operation on a data item only after obtaining

a lock on that data item.

• Transactions unlock the data item immediately after completing the write/read operation.

• When a transaction needs to perform many read and write operations, for each operation

lock is applied before performing it and release the lock immediately after completion of

the operation.

(2) Pre-claiming Lock Protocol

• In pre-claiming Lock Protocol, for each transaction a list is prepared consisting of the

data items and type of lock required on each of the data item.

• Before initiating an execution of the transaction, it requests DBMS to issue all the

required locks as per the list.

• If all the locks are granted then this protocol allows the transaction to begin. When the

transaction is completed then it releases all the lock.

• If all the locks are not granted then this protocol allows the transaction to rolls back and

waits until all the locks are granted.

(3) Two-phase locking (2PL) protocol

• Every transaction execution starts by acquiring few locks or zero locks. During execution

it acquire all other required locks one after the other.

Begin of
Transaction

End of
Transaction

N
o

 o
f

lo
ck

s

18 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

• When a transaction releases any of the acquired locks then it cannot acquire any more new

locks. But, it can only release the acquired locks one after the other during remaining

execution of that transaction.

The Two Phase Locking (2PL) has two phases. They are:

Growing phase: In the growing phase, a new lock on the data item may be acquired by the

transaction, but none can be released. (Only get new locks but no release of locks).

Shrinking phase: In the shrinking phase, existing lock held by the transaction may be released,

but no new locks can be acquired. (Only release locks but no more getting new locks).

Example:

Time T1 T2

0 LOCK-S(A)

1 LOCK-S(A)

2 Read(A)

3 Read(A)

4 LOCK-X(B)

5 --

6 Read(B)

7 B = B + 100

8 Write(B)

9 UNLOCK(A)

10 LOCK-X(C)

11 UNLOCK(B) --

12 Read(C)

13 C = C + 500

14 Write(C)

15 COMMIT

16 UNLOCK(A)

17 UNLOCK(C)

18 COMMIT

The following way shows how unlocking and locking work with 2-PL.

Transaction T1:

• Growing phase: from step 1-5 (After first lock onwards)

• Shrinking phase: from step 10-12 (After first unlock onwards)

• Lock point: at 5 (No more new locks)

Transaction T2:

• Growing phase: from step 2-11 (After first lock onwards)

• Shrinking phase: from step 17-18 (After first unlock onwards)

• Lock point: at 11 (No more new locks)

Growing Phase Shrinking Phase

Begin of
Transaction

End of
Transaction

N
o

 o
f

lo
ck

s

19 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

(4) Strict Two-phase locking (Strict-2PL) protocol

• The first phase of Strict-2PL is similar to 2PL. In the first phase, after acquiring all the

locks, the transaction continues to execute normally.

• The only difference between 2PL and strict 2PL is that Strict-2PL does not release a lock

after using it.

• Strict-2PL waits until the whole transaction to commit, and then it releases all the locks at

a time.

• Strict-2PL protocol does not have shrinking phase of lock release.

Strict-2PL does not have cascading abort as 2PL does.

10. TIMESTAMP BASED PROTOCOL

• A timestamp is issued to each transaction when it enters into the system.

• It uses either system time or logical counter as a timestamp.

• It is most commonly used concurrency protocol.

• The timestamp of transaction T is denoted as TS(T).

• The system order the transactions based on their arrival time. For example, let the arrival

times of transactions T1, T2 and T3 be 9:00AM, 9:01AM and 9:02AM respectively. Then

TS(T1) < TS(T2) < TS(T3). (9:00AM < 9:01AM < 9:02AM)

• By using timestamp, the system prepares the serializability order. i.e., T1→T2→T3

• The read timestamp of data item X is denoted by R–timestamp(X).

• R–timestamp(X): It is the time stamp of the youngest transaction that performed read

operation on X.

R-Timestamp(X) = TS(T3)

T1: Read(X)

X T2: Read(X)

T3: Read(X)

Growing Phase

Begin of

Transaction
End of

Transaction

N
o

 o
f

lo
ck

s

20 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

• The write timestamp of data item X is denoted by W–timestamp(X).

• W–timestamp(X): It is the time stamp of the youngest transaction that performed write

operation on X.

T1: Write(X)

T2: Write(X)

R-Timestamp(X) = TS(T2)

There are mainly two Timestamp Ordering Algorithms in DBMS. They are:

• Basic Timestamp Ordering

• Thomas Write rule

(1). Basic Timestamp Ordering

• Check the following condition whenever a transaction Ti issues a Read (X) operation:

o If W_ timestamp(X) >TS(Ti) then the operation is rejected.

o If W_ timestamp(X) <= TS(Ti) then the operation is executed.

(Read is not allowed by Ti, if any younger transactions than Ti write X)

• Check the following condition whenever a transaction Ti issues a Write(X) operation:

o If TS(Ti) < R_ timestamp(X) then the operation is rejected. (Write is not allowed by Ti, if

any younger transactions than Ti read X)

o If TS(Ti) < W_ timestamp(X) then the operation is rejected and Ti is rolled back

otherwise the operation is executed. (Write is not allowed by Ti, if any younger transactions than

Ti write X and also Ti should be rolled back and restarted later)

(2) Thomas's Write Rule

Thomas Write Rule is a timestamp-based concurrency control protocol which ignores

outdated writes. It follows the following steps:

(i). If R_TS(X) > TS(Ta), then abort and rollback Ta and reject the operation.

Transaction:T1
Arrival = 9:00 AM

TS(T1) = 9:00 AM

Transaction:T2
Arrival = 9:02 AM

TS(T1) = 9:02 AM

Variable A
Initial A=100

| |

| Read(A) (A=100) A = 100 (R_TS(A) = 9:02AM)

| | :

Write(A) (A=200) | (A=100) A = 200 100

Reject and Rollback T1

X

21 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

(ii). If W_TS(X) > TS(Ta), then don’t execute the Write Operation of Ta but continue Ta

processing. This is a case of Outdated or Obsolete Writes.

Transaction:T1
Arrival = 9:00 AM

TS(T1) = 9:00 AM

Transaction:T2
Arrival = 9:02 AM

TS(T1) = 9:02 AM

Variable A
Initial A=100

| |

| Write(A) (A=400) A = 400 (W_TS(A) = 9:02AM)

| | :

Write(A) (A=500) | (A=400) A = 500 (Outdated write)

 |

Reject but continue T1 |

| |

(iii). If the condition in (i) or (ii) is not satisfied, then execute Write(X) of Ta and set

W_TS(X) to TS(Ta).

Outdated writes are rejected but the transaction is continued in Thomas Write Rule but in Basic

TO protocol will reject write operation and terminate such a Transaction.

11. VALIDATION BASED PROTOCOL

In this technique, no concurrency control checking is done while the transaction is under execution.

After transaction execution is completed, then only whether concurrency violated or not is

checked. It is based on timestamp based protocol. Validation Based Protocol has three phases:

1. Read phase: In this phase, the transaction Ta read the value of various data items that are

required by Ta and stores them in temporary local variables. It can perform all the write

operations on temporary variables without an update to the actual database.

1. Validation phase: After Transaction Ta execution completed, Ta perform a validation test

to determine whether it can copy the temporary local variable values to actual database

without causing a violation of serializability.

2. Write phase: If the validation of the transaction is successful (valid), then the temporary

results are written to the database. Otherwise the temporary local variable values of Ta is

ignored and Ta is rolled back.

To perform the validation test, we need to know when the various phases of transaction Ta took

place. We shall therefore associate three different timestamps with transaction Ta.

(i). Start (Ta): the time when Ta, started its execution.

(ii). Validation (Ta): the time when Ta finished its execution and started its

validation phase.

22 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

(iii). Finish (Ta): the time when Ta finished its write phase.

The serializability order is determined by changing the timestamp of T as TS(T) = Validation(T).

Hence the serializability is determined at the validation process and cannot be decided in advance.

Therefore it ensures greater degree of concurrency while executing the transactions.

12. MULTIPLE GRANULARITY

The size of data items is often called the data item granularity. There exist multiple granularity

levels in the DBMS. They are:

• Database

• Table

• Record / row

• Cell / field value

A database contains multiple tables. Each table contains multiple records. Each record contains

multiple field values. It is shown in the above figure. For example, consider Table D and Record

R2. These two are not mutually exclusive. R2 is a part of D. So granularity means different levels

of data where as smaller levels are nested inside the higher levels. Inside database we have tables.

Inside table we have records. Inside record we have field values. This can be represented with a

tree as shown below.

Tables

. . .

. . .

Records

Data values

DB

A B C D

r1 r2 r3 r4

d1 d2 d3 d4

Table A Table B Table D

Record R2

Record R4

Table C
Table E

Cell / Field Value

Cell / Field Value

23 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

A lock can be applied at a node, if and only if there does not exist any locks on the decedents

(childs and grand childs) of that node. Otherwise lock cannot be applied. If lock is applied on table

A, it implies that the lack is also applicable to sub-tree from node A. If lock is applied on database

(at root node), it implies the lack is also applicable to all the nodes in the tree.

The larger the object size on which lock is applied, the lower the degree of concurrency permitted.

On the other hand, the smaller the object size on which lock is applied, the system has to maintain

larger number of locks. More locks cause a higher overhead and needs more disk space. So, what

is the best object size on which lock can be applied? It depends on the types of transactions

involved. If a typical transaction accesses data values from a record, it is advantageous to have the

lock to that one record. On the other hand, if a transaction typically accesses many records in the

same table, it may be better to have lock at that table.

Locking at higher levels needs lock details at lower levels. This information is provided by

additional types of locks called intention locks. The idea behind intention locks is for a transaction

to indicate, along the path from the root to the desired node, what type of lock (shared or exclusive)

it will require from one of the node’s descendants. There are three types of intention locks:

(1) Intention-shared (IS): It indicates that one or more shared locks will be requested on

some descendant node(s).

(2) Intention-exclusive (IX): It indicates that one or more exclusive locks will be requested

on some descendant node(s).

(3) Shared-intention-exclusive (SIX): It indicates that the current node is locked in shared

mode but that one or more exclusive locks will be requested on some descendant node(s).

The compatibility table of the three intention locks, the shared and exclusive locks, is shown in

Figure.

Mode IS IX S SIX X

IS Yes Yes Yes Yes No

IX Yes Yes No No No

S Yes No Yes No No

SIX Yes No No No No

X No No No No No

It uses the intention lock modes to ensure serializability. It requires that if a transaction attempts

to lock a node, then that node must follow these protocols:

24 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

• Transaction T1 should follow the lock-compatibility matrix.

• Transaction T1 firstly locks the root of the tree. It can lock it in any mode.

• If T1 currently has the parent of the node locked in either IX or IS mode, then the

transaction T1 will lock a node in S or IS mode only.

• If T1 currently has the parent of the node locked in either IX or SIX modes, then the

transaction T1 will lock a node in X, SIX, or IX mode only.

• If T1 has not previously unlocked any node only, then the Transaction T1 can lock a

node.

• If T1 currently has none of the children of the node-locked only, then Transaction T1 will

unlock a node.

Note: In multiple-granularity, the locks are acquired in top-down order, and locks must be

released in bottom-up order.

13. RECOVERY AND ATOMICITY

Database needs to be recovered, when the following failures occur.

(1) Transaction failure

(2) System crash

(3) Disk failure

• Transaction failure: During transaction execution, if it cannot proceed further, then it needs

to abort. This is known as transaction failure. A single transaction failure may influence many

transactions or processes. The reasons for transaction failure are:

➢ Logical errors: It occurs due to some code error or an internal condition error.

➢ System error: It occurs when the DBMS itself terminates an active transaction due to

deadlock or resource unavailability.

• System crash: The system may crash due to the external factors such as interruptions in power

supply, hardware or software failure. Example: Operating System errors.

• Disk failure: In early days of technology evolution, hard-disk drives or storage drives used to

fail frequently. Disk failure occurs due to the formation of bad sectors, disk head crash, un-

reachable to the disk or any other failure which destroys all or part of disk storage.

When a system crashes, it may have many transactions being executed and many files may be

opened for them. When a DBMS recovers from a crash, it must maintain the following:

• It must check the states of all the transactions that were being executed.

25 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

• Few transactions may be within the middle of some operation; the DBMS should make

sure the atomicity of the transaction during this case.

• It must check for each transaction whether its execution accepted or to be rolled back.

• No transaction is allowed to be in an inconsistent state.

The following techniques facilitate a DBMS in recovering as well as maintaining the atomicity

of a transaction:

➢ Log based recovery

➢ Check point

➢ Shadow paging

14. LOG BASED RECOVERY

The log file contains information about the start and end of each transaction and any updates done

by the transaction on database items. The log file is saved onto some stable storage so that if any

failure occurs, then it can be used to recover the database. The results of all the operation of transaction are

first saved in the log and latter updated on the database. The log information is used to recover from system

failures.

The log is a sequence of records. It contains the following entries.

• When a transaction Ti starts execution, the log stores: < Ti, Start >

• When a transaction Ti modifies an item X from old value V1 to new value V2 , the log

stores: < Ti , X, V1, V2>

• When the transaction Ti execution completed, the log stores: < Ti, commit>

• When the transaction Ti execution aborted, the log stores: < Ti, abort>

Recovery using Log records

When the system is crashed, then the DBMS checks the log to find which transactions needs to

be undo and which need to be redo. There are two major techniques for recovery from non-

catastrophic transaction failures. They are deferred updates and immediate updates.

i. Deferred database modification: In this technique, all the changes done by the

transaction are saved in the system log without modifying the actual database. Once the

transaction committed, then only the changes are updated in the database. If a transaction

fails before reaching its commit point, it has not changed the database in any way so

26 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

T2

T3

T4

UNDO is not needed. It may be necessary to REDO the effect of the operations that are

recorded in the system log, because their effect not yet written in the database.

ii. Immediate database modification: In this technique, the database is modified

immediately after every operation. However, these operations are recorded in the log file

before they are applied to the database, making recovery still possible. If a transaction fails

to reach its commit point, the effect of its operation must be undone i.e. the transaction

must be rolled back hence we require both undo and redo.

15. CHECKPOINT – (Recovery with Concurrent Transactions)

• In order to recover database from system crashes, all the transaction operations are first saved

in the log file and latter updated on the database. The log file is saved in remote location so

that it can be used to recover the database. As time passes, the entries in the log file may grow

too big. At the time of recovery, searching the entire log file is very time consuming and an

inefficient method. To ease this situation, the concept of 'checkpoint' is introduced.

• Checkpoint is a mechanism where all the previous log entries are removed from the log file

and their results are updated in the database. The checkpoint is like a bookmark.

• During the execution of the transactions, after executing few operations, a check point is

created and saved in the log file. Now the log file contains only entries after checkpoint related

to new step of transaction till next checkpoint and so on.

• The checkpoint is used to declare a point before which the DBMS was in the consistent state,

and all transactions were committed.

Recovery using Checkpoint

In the following manner, a recovery system recovers the database from this failure:

Checkpoint Failure

T1

Time

• The recovery system reads the logs backwards from the end to the last checkpoint.

• It maintains two lists, an undo-list and a redo-list.

27 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

• If the recovery system sees a log with <Ti, Start> and < Ti, Commit> or just < Ti, Commit>,

it puts the transaction Ti in the redo-list.

For example: In the log file, transaction T1 have only < Ti, commit> and the transactions

T2 and T3 have < Ti, Start> and < Ti, Commit>. Therefore T1, T2 and T3 transaction are

added to the redo list.

• If the recovery system finds a log with < Ti, Start> but no commit or abort, then it puts the

transaction Ti in undo-list.

For example: Transaction T4 will have < Ti, Start>. So T4 will be put into undo list since

this transaction is not yet complete and failed in the middle.

• All the transactions in the undo-list are then undone and their logs are removed.

• All the transactions in the redo-list and their previous logs are removed and then redone

before saving their logs.

16. ARIES ALGORITHM (Algorithm for Recovery and Isolation Exploiting Semantics)

Algorithm for Recovery and Isolation Exploiting Semantics (ARIES) is one of the log based

recovery method. It uses the Write Ahead Log (WAL) protocol.

Write-ahead logging (WAL): In computer science, write-ahead logging (WAL) is a family

of techniques for providing atomicity and durability (two of the ACID properties) in database

systems. The change done by the transactions are first recorded in the log file and written to stable

storage at remote location, before the changes are written to the database.

The recovery process of ARIES algorithm has 3 phases. They are:

(1) Analysis phase

(2) Redo Phase

(3) Undo Phase

Start of oldest in-progress

transaction
Smallest LSN associated

with dirty page

Last checkpoint

End of Log

Log Time

Analysis Phase

Redo Phase

Undo phase

28 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

(1) Analysis phase: The recovery subsystem scans the log file forward from the last checkpoint

up to the end. The purpose of the scan is to obtain information about the following:

• The starting point from where the redo pass should start.

• The list of transactions to be rolled back in the undo pass.

• The list of dirty pages.

(2) Redo: In this phase, the log file is read forward starting from smallest LSN of a dirty page to

the end and each update found in the log file is redone. The purpose of this redo pass is to

repeat the history to reconstruct the database to the state present at the time of system failure.

(3) Undo: The log is scanned backward and updates related to loser transactions are undone. The

‘loser transaction’ updates are rolled back in reverse chronological order. If any of the aborted

transaction operations are undone, then skip them, no need to undo once again.

17. DATABASE BACKUP

The process of creating duplicate copy of database is called database backup. Backup helps

to recover against failure of media, hardware or software failures or any other kind of failures that

cause a serious data crash.

Database copy is created and stored in the remote area with the help of network. This

database is periodically updated with the current database so that it will be in sync with data and

other details. This remote database can be updated manually called offline backup. It can be backed

up online where the data is updated at current and remote database simultaneously. In this case,

as soon as there is a failure of current database, system automatically switches to the remote

database and starts functioning. The user will not know that there was a failure.

Network

Primary site

Backup

29 | P a g e Prepared by Ravindar.M, Assoc.Prof, CSE. Dept, JITS-KNR

Some of the backup techniques are as follows:

• Full backup or Normal backup: Full backup is also known as Normal backup. In this, an

exact duplicate copy of the original database is created and stored every time the backup

made. The advantage of this type of backup is that restoring the lost data is very fast as

compared to other. The disadvantage of this method is that it takes more time to backup.

• Incremental Backup: Instead of backup entire database every time, backup only the files

that have been updated since the last full backup. For this at least weekly once normal

backup has to be done. While incremental database backups do run faster, the recovery

process is a bit more complicated.

• Differential backup: Differential is similar to incremental backup but the difference is

that the recovery process is simplified by not clear the archive bit. So a file that is updated

after a normal backup will be archived every time a differential backup is run until the next

normal backup runs and clears the archive bit.

UNIT – V

Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures,

Hash Based Indexing, Tree base Indexing, Comparison of File Organizations, Indexes and Performance Tuning, Intuitions for tree

Indexes, Indexed Sequential Access Methods (ISAM), B+ Trees: A Dynamic Index Structure.

1. DATA ON EXTERNAL STORAGE

Primary memory has limited storage capacity and is volatile. To overcome this limitation,

secondary memory is also termed as external storage devices are used. External storage devices

such as disks and tapes are used to store data permanently.

The Secondary storage devices can be fixed or removable. Fixed Storage device is an

internal storage device like hard disk that is fixed inside the computer. Storage devices that are

portable and can be taken outside the computer are termed as removable storage devices such as

CD, DVD, external hard disk, etc.

Magnetic/optical Disk: It supports random and sequential access. It takes less access time.

Magnetic Tapes: It supports only sequential access. It takes more access time.

In DBMS, processing a query and getting output need accessing random pages. So, disks

are preferable than magnetic tapes.

2. FILE ORGANIZATION

The database is stored as a collection of files. Each file contains a set of records. Each record

is a collection of fields. For example, a student table (or file) contains many records and each

record belongs to one student with fields (attributes) such as Name, Date of birth, class,

department, address, etc.

File organization defines how file records are mapped onto disk blocks.

The records of a file are stored in the disk blocks because a block is the unit of data transfer

between disk and memory. When the block size is larger than the record size, each block will

contain more than one record. Sometimes, some of the files may have large records that cannot fit

in one block. In this case, we can store part of a record on one block and the rest on another. A

pointer at the end of the first block points to the block containing the remainder of the record.

The different types of file organization are given below:

Heap File Organization: When a file is created using Heap File Organization mechanism, the

records are stored in the file in the order in which they are inserted. So the new records are inserted

at the end of the file. In this type of organization inserting new records is more efficient. It uses

linear search to search records.

Sequential File Organization: When a file is created using Sequential File Organization

mechanism, all the records are ordered (sorted) as per the primary key value and placed in the file.

In this type of organization inserting new records is more difficult because the records need to be

sorted after inserting every new record. It uses binary search to search records.

Hash File Organization: When a file is created using Hash File Organization mechanism, a hash

function is applied on some field of the records to calculate hash value. Based on the hash value,

the corresponding record is placed in the file.

Clustered File Organization: Clustered file organization is not considered good for large

databases. In this mechanism, related records from one or more relations are kept in a same disk

block, that is, the ordering of records is not based on primary key or search key.

3. INDEXING

If the records in the file are in sorted order, then searching will become very fast. But, in most

of the cases, records are placed in the file in the order in which they are inserted, so new records

are inserted at the end of the file. It indicates, the records are not in sorted order. In order to make

searching faster in the files with unsorted records, indexing is used.

Indexing is a data structure technique which allows you to quickly retrieve records from a database

file. An Index is a small table having only two columns. The first column contains a copy of the

primary or candidate key of a table. The second column contains a set of disk block addresses

where the record with that specific key value stored.

Heap File
Organization

Sequential File
Organization

File
Organization

Hash File
Organization

Clustered File
Organization

Indexing in DBMS can be of the following types:

i. Primary Index

• If the index is created by using the primary key of the table, then it is known as primary

indexing.

• As primary keys are unique and are stored in a sorted manner, the performance of the

searching operation is quite efficient.

• The primary index can be classified into two types: dense index and sparse index.

Dense index

• If every record in the table has one index entry in the index table, then it is called dense

index.

• In this, the number of records (rows) in the index table is same as the number of records

(rows) in the main table.

• As every record has one index entry, searching becomes faster.

TS TS Hyderabad KCR

AP AP Amaravathi Jagan

TN TN Madras Palani Swamy
MH MH Bombay Thackray

Sparse index

• If only few records in the table have index entries in the index table, then it is called

sparse index.

• In this, the number of records (rows) in the index table is less than the number of records

(rows) in the main table.

• As not all the record have index entries, searching becomes slow for records that does not

have index entries.

Clustering Indexing

Indexing

Sparse Indexing Dense Indexing

Secondary Indexing Primary Indexing

TS

 TS Hyderabad KCR

TN

 AP Amaravathi Jagan

MH

 TN Madras Palani Swamy
 MH Bombay Thackray

ii. Secondary Index

When the size of the main table grows, then size of index table also grows. If the index table size

grows then fetching the address itself becomes slower. To overcome this problem, secondary

indexing is introduced.

• In secondary indexing, to reduce the size of mapping, another level of indexing is introduced.

• It contains two levels. In the first level each record in the main table has one entry in the first-

level index table.

• The index entries in the fisrt level index table are divided into different groups. For each group,

one index entry is created and added in the second level index table.

Multi-level Index: When the main table size becomes too large, creating secondary level index

improves the search process. Even if the search process is slow; we can add one more level of

indexing and so on. This type of indexing is called multi-level index.

iii. Clustering Index

• Sometimes the index is created on non-primary key columns which may not be unique

for each record.

• In this case, to identify the record faster, we will group two or more columns to get the

unique value and create index out of them. This method is called a clustering index.

• The records which have similar characteristics are grouped, and indexes are created for

these group.

Example: Consider a college contains many students in each department. All the students belong

to the same Dept_ID are grouped together and treated as a single cluster. One index pointers point

to the one cluster as a whole. The idex pointer points to the first record in each cluster. Here

Dept_ID is a non-unique key.

Index File Records of table in memory

CSE

501 Ajay BCD

ECE

502 Ramya BCA

EEE

 … … …

…

560 Fathima BCE

 401 Vijay Reddy OC

… … …

460 Mallesh ST

201 Jhon SC

… … …

260 Sowmya BCC

… … …
… … …

In above diagram we can see that, indexes are created for each department in the index file.

In the data block, the students of each department are grouped together to form the cluster. The

address in the index file points to the beginning of each cluster.

4. HASH BASED INDEXING

Hashing is a technique to directly search the location of desired data on the disk without

using index structure. Hash function is a function which takes a piece of data (key) as input and

produces a hash value as output which maps the data to a particular location in the hash table.

The concept of hashing and hash table is shown in the below figure

There are mainly two types of hashing methods:

i. Static Hashing

ii. Dynamic Hashing

• Extended hashing

• Linear hashing

5. STATIC HASHING

In static hashing, the hash function produce only fixed number of hash values. For

example consider the hash function

f(x) = x mod 7

For any value of x, the above function produces one of the hash value from {0, 1, 2, 3, 4, 5, 6}. It

means static hashing maps search-key values to a fixed set of bucket addresses.

Example: Inserting 10, 21, 16 and 12 in hash table.

Hash Value Data Record

f(10) = 10 mod 7 = 3
0 21*

f(21) = 21 mod 7 = 0 1

f(16) = 16 mod 7 = 2 2 16*

f(12) = 12 mod 7 = 5 3 10*

4

5 12*

 6

Figure 5.1: Static hashing

Suppose, latter if we want to insert 23, it produce hash value as 2 (23 mod 7 = 2). But, in the

above hash table, the location with hash value 2 is not empty (it contains 16*). So, a collision

occurs. To resolve this collision, the following techniques are used.

o Open addressing

o Separate Chaining or Closed addressing

i. Open Addressing:

Open addressing is a collision resolving technique which stores all the keys inside the

hash table. No key is stored outside the hash table. Techniques used for open addressing are:

o Linear Probing

o Quadratic Probing

o Double Hashing

➢ Linear Probing:

In linear probing, when there is a collision, we scan forwards for the next empty slot to

fill the key’s record. If you reach last slot, then start from beginning.

Example: Consider figure 1. When we try to insert 23, its hash value is 2. But the slot with

2 is not empty. Then move to next slot (hash value 3), even it is also full, then move once

again to next slot with hash value 4. As it is empty store 23 there. This is shown in the below

diagram.

Hash Value Data Record

0 21*

1

f(23) = 23 mod 7 = 2 2 16*

3 10*

4 23*

5 12*

6

Figure 5.2: Linear Probing

➢ Quadratic Probing:

In quadratic probing, when collision occurs, it compute new hash value by taking the

original hash value and adding successive values of quadratic polynomial until an open slot

is found. If here is a collision, it use the following hash function: h(x) = (f(x) + i2) mod n

, where I = 1, 2, 3, 4,….. and f(x) is initial hash value.

Example: Consider figure 1. When we try to insert 23, its hash value is 2. But the slot with

hash value 2 is not empty. Then compute new hash value as (2 +12) mod 7 =3, even it is

also full, and then once again compute new hash value as (2 +22) mod 7 = 6. As it is empty

store 23 there. This is shown in the below diagram.

Hash

Value

Data Record

0 21*

1

f(23) = 23 mod 7 = 2 2 16*

3 10*

4

5 12*

6 23*

Figure 5.3: Quadratic Probing

➢ Double Hashing

In double hashing, there are two hash functions. The second hash function is used to

provide an offset value in case the first function causes a collision. The following function

is an example of double hashing: (firstHash(key) + i * secondHash(key)) % tableSize. Use

i = 1, 2, 3, …

A popular second hash function is : secondHash(key) = PRIME – (key % PRIME)

where PRIME is a prime smaller than the TABLE_SIZE.

Example: Consider figure 1. When we try to insert 23, its hash value is 2. But the slot

with hash value 2 is not empty. Then compute double hashing value as

secondHash (key) = PRIME – (key % PRIME) → secondHash (23) = 5 – (23 % 5) = 2

Double hashing: (firstHash(key) + i * secondHash(key)) % tableSize → (2+1*2))%7 =4

As the slot with hash value 4 is empty, store 23 there. This is shown in the below

diagram.

Hash Value Data Record

 0 21*

 1

f(23) = 23 mod 7 = 2 2 16*

 3 10*

 4 23*

 5 12*

 6

Figure 5.4: Double Probing

ii. Separate Chaining or Closed addressing:

To handle the collision, This technique creates a linked list to the slot for which collision

occurs. The new key is then inserted in the linked list. These linked lists to the slots appear like

chains. So, this technique is called as separate chaining. It is also called as closed addressing.

Example: Inserting 10, 21, 16, 12, 23, 19, 28, 30 in hash table.

Hash Value Data Record

f(10) = 10 mod 7 = 3 0 21*

f(21) = 21 mod 7 = 0 1

f(16) = 16 mod 7 = 2 2 16*

f(12) = 12 mod 7 = 5 3 10*

f(23) = 23 mod 7 = 2 4

f(19) = 19 mod 7 = 5 5 12*

f(30) = 30 mod 7 = 2 6

Figure 5.5: Separate chaining example

23* 30*

19*

6. DYNAMIC HASHING

The problem with static hashing is that it does not expand or shrink dynamically as the size

of the database grows or shrinks. Dynamic hashing provides a mechanism in which data buckets

are added and removed dynamically and on-demand. Dynamic hashing can be implemented using

two techniques. They are:

o Extended hashing

o Linear Hashing

i. Extendable hashing

In extendable hashing, a separate directory of pointers to buckets is used. The number bits

used in directory is called global depth (gd) and number entries in directory = 2gd. Number of bits

used for locating the record in the buckets is called local depth(ld) and each bucket can stores up

to 2ld entries. The hash function use last few binary bits of the key to find the bucket. If a bucket

overflows, it splits, and if local depth greater than global depth, then the table doubles in size. It is

one form of dynamic hashing.

Example: Let global depth (gd) = 2. It means the directory contains four entries. Let the local

depth (ld) of each bucket = 2. It means each bucket need two bits to perform search operation. Let

each Bucket capacity is four. Let us insert 21, 15, 28, 17, 16, 13, 19, 12, 10, 24, 25 and 11.

21 = 10101 19 = 10011

15 = 01111 12 = 01100

28 = 11100 10 = 01010

17 = 10001 24 = 11000

16 = 10000 25 = 11101

13 = 01101 11 = 01011

Bucket A

Bucket B

Bucket C

Bucket D

Figure 6.1: Extendible hashing example

Now, let us consider insertion of data entry 20* (binary 10100). Looking at directory

element 00, we are led to bucket A, which is already full. So, we have to split the bucket by

Global depth
Local depth

Directory

10*
2

11* 19* 15*
2

2

28* 16* 12* 24*

 2

21* 17* 25* 13*

2

00
01
10
11

Local depth 3

16*

3

28*

24*
Global depth

12* 20*

2

21* 17* 25* 13*

2

10*

2

15* 19* 11*

allocating a new bucket and redistributing the contents (including the new entry to be inserted)

across the old bucket and its 'split image (new bucket). To redistribute entries across the old bucket

and its split image, we consider the last three bits; the last two bits are 00, indicating a data entry

that belongs to one of these two buckets, and the third bit discriminates between these buckets.

That is if a key’s last three bits are 000, then it belongs to bucket A and if the last three bits are

100, then the key belongs to Bucket A2. As we are using three bits for A and A2, so the local

depth of these buckets becomes 3. This is illustrated in the below Figure 6.2.

Bucket A

Bucket A2

Bucket B

Bucket C

Bucket D

Figure 6.2: After inserting 20 and splitting Bucket A

After split, Bucket A and A2 have local depth greater than global depth (3 > 2), so double

the directory and use three bits as global depth. As Bucket A and A2 has local depth 3, so they

have separate pointers from the directory. But, Buckets B, C and D use only local depth 2, so they

have two pointers each. This is shown in the below diagram.

Bucket A

Bucket A2

Bucket B

Bucket C

Bucket D

Directory

Figure 6.3: After inserting 20 and doubling the directory

2

10*

Directory 2

15* 19* 11*

Local depth

Global depth

3

16* 24*

3

28* 12* 20*
2

00
01
10
11

2

21* 17* 25* 13*

3

000
001
010
011
100
101
110
111

An important point that arises is whether splitting a bucket necessitates a directory

doubling. Consider our example, as shown in Figure 6.3. If we now insert 9* (01001), it belongs

in bucket B; this bucket is already full. We can deal with this situation by splitting the bucket and

using directory elements 001 and 101to point to the bucket and its split image. This is shown in

the below diagram. As Bucket B and its split image now have local depth three and it is not greater

than global depth. Hence, a bucket split does not necessarily require a directory doubling.

However, if either bucket A or A2 grows full and an insert then forces a bucket split, we are forced

to double the directory once again.

Bucket A

Bucket A2

Bucket B

Bucket B2

Bucket C

Bucket D

Figure 6.4: After inserting 9

Key Observations:

• A Bucket will have more than one pointers pointing to it if its local depth is less than the

global depth.

• When overflow condition occurs in a bucket, all the entries in the bucket are rehashed

with a new local depth.

• If new Local Depth of the overflowing bucket is equal to the global depth, only then the

directories are doubled and the global depth is incremented by 1.

• The size of a bucket cannot be changed after the data insertion process begins.

ii. Linear Hashing

Linear hashing is a dynamic hashing technique that linearly grows or shrinks number of

buckets in a hash file without a directory as used in Extendible Hashing. It uses a family of hash

functions instead of single hash function.

Local depth

Global depth

3

17*

Directory 11* 19* 15*
2

10*
2

13* 25* 21*
3

9*

20* 12* 28*
3

24* 16*
3

3

000
001
010
011
100
101
110
111

hi+1 (key) = key mod (2i N)

This scheme utilizes a family of hash functions h0, h1, h2, ... , with the property that each

function's range is twice that of its predecessor. That is, if hi maps a data entry into one of N

buckets, hi+1 maps a data entry into one of 2N buckets. One example of such hash function family

can be obtained by: where N is the initial number of

buckets and i = 0,1,2,….

Initially it use N buckets labelled 0 through N–1 and an initial hashing function h0(key) =

key % N is used to map any key into one of the N buckets. For each overflow bucket, one of the

buckets in serial order will be splited and its content is redistributed between it and its split image.

That is, for first time overflow in any bucket, bucket 0 will be splited, for second time overflow in

any bucket; bucket 1 will be splited and so on. When number of buckets becomes 2N, then this

marks the end of splitting round 0. Hashing function h0 is no longer needed as all 2N buckets can

be addressed by hashing function h1. In new round namely splitting-round 1, bucket split once

again starts from bucket 0. A new hash function h2 will be used. This process is repeated when the

hash file grows.

Example: Let N = 4, so we use 4 buckets and hash function h0(key) = key % 4 is used to map any

key into one of the four buckets. Let us initially insert 4, 13, 19, 25, 14, 24, 15, 18, 23, 11, 16, 12

and 10.This is shown in the below figure.

Bucket# h1 h0 Primary pages Overflow pages

0 000 00 4* 24* 16* 12*

1 001 01 13* 25*

2 010 10 14* 18* 10*

3 011 11 19* 15* 23* 11*

Next, when 27 is inserted, an overflow occurs in bucket 3. So, bucket 0 (first bucket) is splited

and its content is distributed between bucket 0 and new bucket. This is shown in below figure.

Bucket# h1 h0 Primary pages Overflow pages

0 000 00 24* 16*

1 001 01 13* 25*

2 010 10 14* 18* 10*

3 011 11 19* 15* 23* 11* 27*

4 100 00 4* 12*

Next, when 30, 31 and 34 is inserted, an overflow occurs in bucket 2. So, bucket 1 is splited and

its content is distributed between bucket 1 and new bucket. This is shown in below figure.

Bucket# h1 h0 Primary pages Overflow pages

0 000 00 24* 16*

1 001 01 13*

2 010 10 14* 18* 10* 30* 34*

3 011 11 19* 15* 23* 11* 27* 31*

4 100 00 4* 12*

5 101 01 25*

When 32, 35, 40 and 48 is inserted, an overflow occurs in bucket 0. So, bucket 2 is splited and its

content is distributed between bucket 2 and new bucket. This is shown in below figure.

Bucket# h1 h0 Primary pages Overflow pages

0 000 00 24* 16* 32* 40* 48*

1 001 01 13*

2 010 10 18* 10* 34*

3 011 11 19* 15* 23* 11* 27* 31* 35*

4 100 00 4* 12*

5 101 01 25*

6 110 10 14* 30*

When 26, 20 and 42 is inserted, an overflow occurs in bucket 0. So, bucket 3 is splited and its

content is distributed between bucket 3 and new bucket. This is shown in below figure.

Bucket# h1 h0 Primary pages Overflow pages

0 000 00 24* 16* 32* 40* 48*

1 001 01 13*

2 010 10 18* 10* 34* 26* 42

3 011 11 19* 11* 27* 35*

4 100 00 4* 12* 20*

5 101 01 25*

6 110 10 14* 30*

7 111 11 15* 23* 31*

This marks the end of splitting round. Hashing function h0 is no longer needed as all 2N

buckets can be addressed by hashing function h1. In new round namely splitting-round 1, bucket

split once again starts from bucket 0. A new hash function h2 will be used. This process is repeated.

7. INTUITIONS FOR TREE INDEXES

We can use tree-like structures as index as well. For example, a binary search tree can also

be used as an index. If we want to find out a particular record from a binary search tree, we have

the added advantage of binary search procedure, that makes searching be performed even faster.

A binary tree can be considered as a 2-way Search Tree, because it has two pointers in each of its

nodes, thereby it can guide you to two distinct ways. Remember that for every node storing 2

pointers, the number of value to be stored in each node is one less than the number of pointers, i.e.

each node would contain 1 value each.

The abovementioned concept can be further expanded with the notion of the m-Way Search

Tree, where m represents the number of pointers in a particular node. If m = 3, then each node of

the search tree contains 3 pointers, and each node would then contain 2 values. We use

mainly two tree structure indexes in DBMS. They are:

• Indexed Sequential Access Methods (ISAM)

• B+ Tree

8. INDEXED SEQUENTIAL ACCESS METHODS (ISAM)

ISAM is a tree structure data that allows the DBMS to locate particular record using index

without having to search the entire data set.

• The records in a file are sorted according to the primary key and saved in the disk.

• For each primary key, an index value is generated and mapped with the record. This

index is nothing but the address of record.

• A sorted data file according to primary index is called an indexed sequential file.

• The process of accessing indexed sequential file is called ISAM.

• ISAM makes searching for a record in larger database is easy and quick. But proper

primary key has to be selected to make ISAM efficient.

59 46 42 35 31 10 20 23 27 68

31

• ISAM gives flexibility to generate index on other fields also in addition to primary key

fields.

ISAM contain three types of nodes:

• Non-leaf nodes: They store the search index key values.

• Leaf nodes: They store the index of records.

• Overflow nodes: They also store the index of records but after the leaf node is full.

On ISAM, we can perform search, insertion and deletion operations.

Search Operation: It follows binary search process. The record to be searched will be available

in the leaf nodes or in overflow nodes only. The non-leaf nodes are used to search the value.

Insertion operation: First locate a leaf node where the insertion to be take place (use binary

search). After finding leaf node, insert it in that leaf node if space is available, else create an

overflow node and insert the record index in it, and link the overflow node to the leaf node.

Deletion operation: First locate a leaf node where the deletion to be take place (use binary search).

After finding leaf node, if the value to be deleted is in leaf node or in overflow node, remove it. If

the overflow node is empty after removing the deleted value, then delete overflow node also.

Example: Insert 10, 23, 31, 20, 68, 35, 42, 61, 27, 71, 46 and 59

 23 68

 42 59

71 61

39

31 59 46 35 10 20 23 27

31

68

33

39

10 20 23 27 68

24

31

59 46 42

33

35 31

After inserting 24, 33, 36, and 39 in the above tree, it looks like

Deletion: From the above figure, after deleting 42, 71, 24 and 36

9. B+ TREE

B+ Tree is an extension of Binary Tree which allows efficient insertion, deletion and search

operations. It is used to implement indexing in DBMS. In B+ tree, data can be stored only on the

leaf nodes while internal nodes can store the search key values.

1. B+ tree of an order m can store max m-1 values at each node.

2. Each node can have a maximum of m children and at least m/2 children (except root).

3. The values in each node are in sorted order.

4. All the nodes must contain at least half full except the root node.

5. Only leaf nodes contain values and non-leaf nodes contain search keys.

 23 68

 42 59

 23 68

 42 59

71 61

36

61

68 66 64 61 59 46 42 35 31 27 23 20 18 16 15 12 11 9 8 5 2

15 8 68 23

11

18

B+ Search:

Searching for a value in the B+-Tree always starts at the root node and moves downwards

until it reaches a leaf node. The search procedure follows binary tree search procedure.

1. Read the value to be searched. Let us say this value as X.

2. Start the search process from root node

3. At each non-leaf node (including root node),

a. If all the values in the non-leaf node are greater than X, then move to its first child

b. If all the values in the non-leaf node are less than or equal to X, then move to its

last child

c. If for any two consecutive values in the non-leaf node, left value is less and right

value greater than or equal to X, then move to the child node whose pointer is in

between these two consecutive values.

4. Repeat step-3 until a leaf node reaches.

5. At leaf node compare the key with the values in that node from left to right. If the key

value is found then display found. Otherwise display it is not found.

Example: Searching for 35 in the below given B+ tree. The search path is shown in red color.

 31 64

 42 59

B+ Insertion:

1. Apply search operation on B+ tree and find a leaf node where the new value has to insert.

2. If the leaf node is not full, then insert the value in the leaf node.

3. If the leaf node is full, then

71

a. Split that leaf node including newly inserted value into two nodes such that each

contains half of the values (In case of odd, 2nd node contains extra value).

b. Insert smallest value from new right leaf node (2nd node) into the parent node.

Add pointers from these new leaf nodes to their parent node.

c. If the parent is full, split it too. Add the middle key (In case of even,1st value from

2nd part)of this parent node to its parent node.

d. Repeat until a parent is found that need not split.

4. If the root splits, create a new root which has one key and two pointers.

Example: Insert 1,5,3,7,9,2,4,6,8,10 into B+ tree of an order 4.

B+ tree of order 4 indicates there are maximum 3 values in a node.

Initially

After inserting 1

After inserting 5

 1 5

After inserting 3

 1 3 5

After inserting 7

After inserting 9

After inserting 2

5

5

5

 1 3 5

 1 3

 5 7

 1 3

 5 7 9

 1 2 3

 5 7 9

1

7

8 7 6 5 4 3 2 1

9 5 3

7

8 7 6 5 4 3 2 1

5 6 4 3 2 1

5 6 4 3 2 1

6 4 3 2 1

5

4 3 2 1 4

After inserting 4

 3 5

After inserting 6

 3 5

 5 7 9

 3 5 7

After inserting 8

 3 5 7

 7 8 9

After inserting 10

 3 5 7

 9 10

 9 10

5 6 7 9 4 3 2 1

 1 2 3

 5 7 9

 5 7 9

 7 8 9

3 5 7

10

9

B+ Deletion

• Identify the leaf node L from where deletion should take place.

• Remove the data value to be deleted from the leaf node L

• If L meets the "half full" criteria, then its done.

• If L does not meets the "half full" criteria, then

o If L's right sibling can give a data value, then move smallest value in right sibling

to L (After giving a data value, the right sibling should satisfy the half full criteria.

Otherwise it should not give)

o Else, if L's left sibling can give a data value, then move largest value in left sibling

to L (After giving a data value, the left sibling should satisfy the half full criteria.

Otherwise it does not give)

o Else, merge L and a sibling

o If any internal nodes (including root) contain key value same as deleted value, then

delete those values and replace with it successor. This deletion may propagate up

to root. (If the changes propagate up to root then tree height decreases).

Example: Consider the given below tree and delete 19,

 19

Delete 19 : Half full criteria is satisfied even after deleting 19, so just delete 19 from leaf node

 19

 5 14

24 33

2 3

5 7

14 16

19 20 22

24 27 29

33 34 38 39

 5 14

 24 33

2 3

5 7

14 16

20 22

24 27 29

33 34 38 39

Delete 20: Half full criteria is not satisfied after deleting 20, so bring 24 from its right sibling and

change key values in the internal nodes.

 19

Delete 24: Half full criteria is not satisfied after deleting 24, bringing a value from its siblings also

not possible. Therefore merge it with its right sibling and change key values in the internal nodes.

 19

Delete 5: Half full criteria is not satisfied after deleting 5, bringing a value from its siblings also

not possible. Therefore merge it with its left sibling (you can also merge with right) and change

key values in the internal nodes.

 19

Delete 7: Half full criteria is satisfied even after deleting 7, so just delete 7 from leaf node.

 17

 5 14

27 33

2 3

5 7

14 16

22 24

27 29

33 34 38 39

 5 14

33

2 3

5 7

14 16

22 27 29

33 34 38 39

 14

33

2 3 7

14 16

22 27 29

33 34 38 39

 14

33

2 3

14 16

22 27 29

33 34 38 39

Delete 2: Half full criteria is not satisfied after deleting 2, bringing a value from its siblings also

not possible. Therefore merge it with its right sibling and change key values in the internal nodes.

22 33

9. INDEXES AND PERFORMANCE TUNING

Indexing is very important to execute DBMS query more efficiently. Adding indexes to

important tables is a regular part of performance tuning. When we identify a frequently executed

query that is scanning a table or causing an expensive key lookup, then first consideration is if an

index can solve this problem. If yes add index for that table.

While indexes can improve query execution speed, the price we pay is on index

maintenance. Update and insert operations need to update the index with new data. This means

that writes will slow down slightly with each index we add to a table. We also need to monitor

index usage and identify when an existing index is no longer needed. This allows us to keep our

indexing relevant and trim enough to ensure that we don’t waste disk space and I/O on write

operations to any unnecessary indexes. To improve performance of the system, we need to do the

following:

• Identify the unused indexes and remove them.

• Identify the minimally used indexes and remove them.

• An index that is scanned more frequently, but rarely finds the required answer. Modify

the index to reach the answer.

• Identify the indexes that are very similar and combine them.

- o O 0 O o –

3 14 16

22 27 29

33 34 38 39

