
Object Oriented Programming Through JAVA (23CS305)

II B. Tech I Semester (NR23)

Prepared by

K.Anusha/Dr.N.Kavitha/P.Revathy/Gopal

CSE/NRCM

CSE/NRCM

UNIT-1

OBJECT-ORIENTED

THINKING,JAVA BASICS

CSE/NRCM

History of Java

Java team members (also known as Green Team), initiated a

revolutionary task to develop a language for digital devices such as set-

top boxes, televisions etc. It was best suited for internet programming.

Later, Java technology as incorporated by Netscape.James Gosling,

Mike Sheridan, and Patrick Naughton initiated the Java language project

in June 1991. The small team of sun engineers called Green Team.

Firstly, it was called "Greentalk" by James Gosling and file extension as

.gt.After

that, it was called OAK and was developed as a part of the Green

project.

OAK is a symbol of strength and chosen as a national tree of many

countries like U.S.A., France, Germany, Romania etc. In 1995, Oak was

renamed as "Java" because it was already a trademark by Oak

Technologies. Java is an island of Indonesia where first coffee was

produced (called java coffee).

A Way of Viewing

WorldA way of viewing the world is an idea to illustrate the object-oriented programming

concept with an example of a real-world situation.

Let us consider a situation, I am at my office and I wish to get food to my family members

who are at my home from a hotel. Because of the distance from my office to home, there

is no possibility of getting food from a hotel myself. So, how do we solve the issue?

To solve the problem, let me call zomato (an agent in food delevery community), tell

them the variety and quantity of food and the hotel name from which I wish to delever

the food to my family members. Look at the following image.

CSE/NRCM

JAVA BUZZWORDS OR FEATURES OF

JAVA

• Simple

• Secured

• Platform

independent

• Robust

• Portable

• Architecture neutral

• Dynamic

• Interpreted

• High Performance

• Multithreaded

• Distributed

CSE/NRCM

CSE/NRCM

APPLICATIONS OF OBJECT ORIENTED

PROGRAMMING

Main application areas of OOP are:

• User interface design such as windows, menu.

• Real Time Systems

• Simulation and Modeling

• Object oriented databases

• AI and Expert System

• Neural Networks and parallel programming

• Decision support and office automation systems

etc.

JDK, JRE and

JVMJava Development Kit (JDK):

JDK is an acronym for Java Development Kit. It physically

exists. It

contains JRE + development tools.

Java Runtime Environment (JRE):

JRE is an acronym for Java Runtime Environment. It is

used to provide runtime environment. It is the

implementation of JVM. It physically exists. It contains set of

libraries + other files that JVM uses at runtime.

Implementations of JVMs are also actively released by

other companies besides Sun Micro Systems.

CSE/NRCM

CSE/NRCM

JDK, JRE and

JVMJava Virtual Machine (JVM):

JVM (Java Virtual Machine) acts as a run-time engine to run Java

applications. JVM is the one that actually calls the main method

present in a java code. JVM is a part of JRE (Java Runtime

Environment).

Java applications are called WORA (Write Once Run Anywhere).

This means a programmer can develop Java code on one system

and can expect it to run on any other Java enabled system without

any adjustment. This is all possible because of JVM.

NOTE: JVM, JRE and JDK are platform dependent because

configuration of each OS differs. But, Java is platform

independent

Execution Process of Java

ProgramThe following three steps are used to

create and execute a java program.

• Create a source code (.java file).

• Compile the source code using javac

command.

• Run or execute .class file uisng java

command.

CSE/NRCM

JAVA DATA TYPES

CSE/NRCM

CSE/NRCM

JAVA

VARIABLESA variable is a named memory location used to

store a data value. A variable can be defined as a

container that holds a data value.

In java, we use the following syntax to create

variables.

Syntax

data_type

variable_name; (or)

data_type variable_name_1,

variable_name_2,...; (or)

data_type variable_name =

value; (or)

data_type variable_name_1 = value,

variable_name_2 = value,...;

CSE/NRCM

JAVA ARRAYS

Creating an array

In the java programming language, an array must be created using

new operator and with a specific size. The size must be an integer

value but not a byte, short, or long. We use the following syntax to

create an array.

Syntax

data_type array_name[] = new

data_type[size]; (or)

data_type[] array_name = new data_type[size];

In java, an array can also be initialized at the time of its declaration.

When an array is initialized at the time of its declaration, it need not

specify the size of the array and use of the new operator. Here, the size

is automatically decided based on the number of values that are

initialized.

Example: int list[] = {10, 20, 30, 40, 50};

CSE/NRCM

Multidimensional

ArrayIn java, we can create an array with multiple dimensions. We can create

2-

dimensional, 3-dimensional, or any dimensional array.

In Java, multidimensional arrays are arrays of arrays. To create a

multidimensional array variable, specify each additional index using

another set of square brackets. We use the following syntax to create

two-dimensional array.

Syntax

data_type array_name[][] = new

data_type[rows][columns]; (or)

data_type[][] array_name = new data_type[rows][columns];

When we create a two-dimensional array, it created with a separate index

for rows and columns. The individual element is accessed using the

respective row index followed by the column index. A multidimensional

array can be initialized while it has created using the following syntax.

CSE/NRCM

JAVA OPERATORS

An operator is a symbol used to perform arithmetic

and logical operations. Java provides a rich set of

operators. In java, operators are classified into the

following four types.

• Arithmetic Operators

• Relational (or) Comparison Operators

• Logical Operators

• Assignment Operators

• Bitwise Operators

• Conditional Operators

CSE/NRCM

Arithmetic Operators

Operator Meaning Example

+ Addition 10 + 5 = 15

- Subtraction 10 - 5 = 5

* Multiplication 10 * 5 = 50

/ Division 10 / 5 = 2

% Modulus - Remainder of the Division 5 % 2 = 1

++ Increment a++

-- Decrement a--

CSE/NRCM

Relational Operators (<, >, <=, >=, ==,

!=)
Operator Meaning Example

< Returns TRUE if the first value is smaller than second value

otherwise returns FALSE

10 < 5 is FALSE

> Returns TRUE if the first value is larger than second value

otherwise returns FALSE

10 > 5 is TRUE

<= Returns TRUE if the first value is smaller than or equal to second

value otherwise returns FALSE

10 <= 5 is FALSE

>= Returns TRUE if the first value is larger than or equal to second

value otherwise returns FALSE

10 >= 5 is TRUE

== Returns TRUE if both values are equal otherwise returns FALSE 10 == 5 is FALSE

!= Returns TRUE if both values are not equal otherwise returns

FALSE

10 != 5 is TRUE

CSE/NRCM

Logical Operators

Operator Meaning Example

& Logical AND - Returns TRUE if all conditions are TRUE

otherwise returns FALSE

false & true => false

| Logical OR - Returns FALSE if all conditions are FALSE

otherwise returns TRUE

false | true => true

^ Logical XOR - Returns FALSE if all conditions are same

otherwise returns TRUE

true ^ true => false

! Logical NOT - Returns TRUE if condition is FLASE and returns

FALSE if it is TRUE

!false => true

&& short-circuit AND - Similar to Logical AND (&), but once a

decision is finalized it does not evaluate remianing.

false & true => false

|| short-circuit OR - Similar to Logical OR (|), but once a decision

is finalized it does not evaluate remianing.

false | true => true

CSE/NRCM

Assignment Operators

Operator Meaning Example

= Assign the right-handside value to left-hand side variable A = 15

+= Add both left and right-hand side values and store the result into left-

hand side variable

A += 10

-= Subtract right-hand side value from left-hand side variable value and

store the result into left-hand side variable

A -= B

*= Multiply right-hand side value with left-hand side variable value and

store the result into left-hand side variable

A *= B

/= Divide left-hand side variable value with right-hand side variable value

and store the result into the left-hand side variable

A /= B

%= Divide left-hand side variable value with right-hand side variable value

and store the remainder into the left-hand side variable

A %= B

&= Logical AND assignment -

|= Logical OR assignment -

^= Logical XOR assignment -

CSE/NRCM

Bitwise Operators

Operator Meaning Example

& the result of Bitwise AND is 1 if all the bits are

1 otherwise it is 0

A & B

⇒ 16 (10000)

| the result of Bitwise OR is 0 if all the bits are 0

otherwise it is 1

A | B

⇒ 29 (11101)

^ the result of Bitwise XOR is 0 if all the bits are

same otherwise it is 1

A ^ B

⇒ 13 (01101)

~ the result of Bitwise once complement is

negation of the bit (Flipping)

~A

⇒ 6 (00110)

<< the Bitwise left shift operator shifts all the bits to

the left by the specified number of positions

A << 2

⇒ 100 (1100100)

>> the Bitwise right shift operator shifts all the bits

to the right by the specified number of positions

A >> 2

⇒ 6 (00110)

CSE/NRCM

Conditional Operators

The conditional operator is also called a

ternary operator because it requires three operands.

This operator is used for decision making. In this operator,

first, we verify a condition, then we perform one operation

out of the two operations based on the condition result.

If the condition is TRUE the first option is performed, if

the condition is FALSE the second option is performed.

Syntax

Condition ? TRUE Part : FALSE Part;

CSE/NRCM

JAVA EXPRESSIONS

• In the java programming language, an

expression is a collection of operators

and operands that represents a specific

value.

Expression Types

In the java programming language,

expressions are divided into THREE types.

They are as follows.

• Infix Expression

• Postfix Expression

• Prefix Expression

JAVA CONTROL

STATEMENTS

CSE/NRCM

JAVA CONTROL

STATEMENTSif statement if-else

statement

JAVA CONTROL

STATEMENTS
Switch

statement

JAVA CONTROL

STATEMENTS
while

statement

do-while

statement

CSE/NRCM

JAVA CONTROL

STATEMENTS
for

statement

for-each

statement

CSE/NRCM

JAVA CONTROL

STATEMENTS
break

statement

continue

statement

CSE/NRCM

JAVA CLASSES
• Java is an object-oriented programming language, so everything in

java

program must be based on the object concept.

• In a java programming language, the class concept defines the

skeleton

of an object.

• The java class is a template of an object. The class defines the

blueprint

of an object. Every class in java forms a new data type.

• Once a class got created, we can generate as many objects as we

want.

Every class defines the properties and behaviors of an object.

• All the objects of a class have the same properties and behaviors

that

were defined in the class.

Every class of java programming language has the following

characteristics.

CSE/NRCM

JAVA CLASSES
Creating a Class

In java, we use the keyword class to create a class. A class in java

contains properties as variables and behaviors as methods. Following is

the syntax of class in the java.

Syntax

class <ClassName>{

data members declaration;

methods defination;

}

The ClassName must begin with an alphabet, and the Upper-case letter

is

preferred.

The ClassName must follow all naming rules.

CSE/NRCM

JAVA CLASSES
Creating an Object

In java, an object is an instance of a class. When an object of a class

is created, the class is said to be instantiated. All the objects that are

created using a single class have the same properties and methods.

But the value of properties is different for every object. Following is

the syntax of class in the java.

Syntax

<ClassName> <objectName> = new <ClassName>();

The objectName must begin with an alphabet, and a Lower-case

letter is preferred.

The objectName must follow all naming rules.

CSE/NRCM

JAVA METHODS
A method is a block of statements under a name that gets executes

only when it is called. Every method is used to perform a specific

task. The major advantage of methods is code re-usability (define

the code once, and use it many times).

In a java programming language, a method defined as a behavior of

an

object. That means, every method in java must belong to a

class. Every method in java must be declared inside a

class.

Every method declaration has the following

characteristics. returnType - Specifies the data type

of a return value. name - Specifies a unique name to

identify it.

parameters - The data values it may accept or recieve.

{ } - Defienes the block belongs to the method.

CSE/NRCM

JAVA METHODS
Creating a method

A method is created inside the class and it may be created with any access

specifier.

However, specifying access specifier is optional.

Following is the syntax for creating methods in java.

Syntax

class <ClassName>{

<accessSpecifier> <returnType> <methodName>(parameters){

...

block of statements;

...

}

}

🔔 The methodName must begin with an alphabet, and the Lower-case letter is

preferred.

🔔 The methodName must follow all naming rules.

🔔 If you don't want to pass parameters, we ignore it.

🔔 If a method defined with return type other than void, it must contain the

return statement, otherwise, it may be ignored.

JAVA METHODS
Calling a method

In java, a method call precedes with the object name of the class to which it

belongs and a dot operator. It may call directly if the method defined with the static

modifier. Every method call must be made, as to the method name with

parentheses (), and it must terminate with a semicolon.

Syntax

<objectName>.<methodName>(actualArguments);

🔔 The method call must pass the values to parameters if it has.

🔔 If the method has a return type, we must provide the receiver.

🔔 The objectName must begin with an alphabet, and a Lower-case letter is

preferred.

🔔 The objectName must follow all naming rules.

Variable arguments of a method

In java, a method can be defined with a variable number of arguments. That means

creating a method that receives any number of arguments of the same data type.

Syntax

<returnType> <methodName>(dataType...parameterName);

When a method has both the normal parameter and variable-argument, then the

variable

argument must be specified at the end inCSthEe/NpRarCaMmeters list.

CSE/NRCM

Constructor
A constructor is a special method of a class that has the same name as the class

name. The constructor gets executes automatically on object creation. It does not

require the explicit method call. A constructor may have parameters and access

specifiers too. In java, if you do not provide any constructor the compiler

automatically creates a default constructor. A constructor cannot have return

value.

Let's look at the following example java code.

Example

public class ConstructorExample {

ConstructorExample() {

System.out.println("Object created!");

}

public static void main(String[] args) {

ConstructorExample obj1 = new ConstructorExample();

ConstructorExample obj2 = new ConstructorExample();

}

}

CSE/NRCM

JAVA STRING HANDLING
A string is a sequence of characters surrounded by double quotations. In a java

programming language, a string is the object of a built-in class String.

In the background, the string values are organized as an array of a character data

type. The string created using a character array cannot be extended. It does not

allow to append more characters after its definition, but it can be modified.

Let's look at the following example java code.

Example

char[] name = {'J', 'a', 'v', 'a', ' ', 'T', 'u', 't', 'o', 'r', 'i', 'a', 'l', 's'};

//ArrayIndexOutOfBoundsExcepti

on

//name[14] = '@';

name[5] = '-';

System.out.println(nam

e);The String class defined in the package java.lang

package.

CSE/NRCM

Creating String object in java
Creating String object in java

In java, we can use the following two ways to create a string object.

Using string literal

Using String constructor

Let's look at the following example java code.

Example

String title = "Java Tutorials"; // Using literals

String siteName = new String("www.btechsmartclass.com"); // Using

constructor

🔔 The String class constructor accepts both string and character array as an

argument.

http://www.btechsmartclass.com/

CSE/NRCM

String handling methods
Method Description Return Value

charAt(int) Finds the character at given index char

length() Finds the length of given string int

compareTo(String) Compares two strings int

compareToIgnoreCase(String) Compares two strings, ignoring case int

concat(String) Concatenates the object string with argument string. String

contains(String) Checks whether a string contains sub-string boolean

contentEquals(String) Checks whether two strings are same boolean

equals(String) Checks whether two strings are same boolean

equalsIgnoreCase(String) Checks whether two strings are same, ignoring case boolean

startsWith(String) Checks whether a string starts with the specified

string

boolean

endsWith(String) Checks whether a string ends with the specified

string

boolean

getBytes() Converts string value to bytes byte[]

hashCode() Finds the hash code of a string int

indexOf(String) Finds the first index of argument string in object

string

int

lastIndexOf(String) Finds the last index of argument string in object

string

int

CSE/NRCM

String handling methods
Method Description Return Value

isEmpty() Checks whether a string is empty or not boolean

replace(String, String) Replaces the first string with second string String

replaceAll(String, String) Replaces the first string with second string at all

occurrences.

String

substring(int, int) Extracts a sub-string from specified start and end

index values

String

toLowerCase() Converts a string to lower case letters String

toUpperCase() Converts a string to upper case letters String

trim() Removes whitespace from both ends String

toString(int) Converts the value to a String object String

split(String) splits the string matching argument string String[]

intern() returns string from the pool String

join(String, String, ...) Joins all strings, first string as delimiter. String

CSE/NRCM

UNIT – II

INHERITANCE,

PACKAGES,

INTERFACES

JAVA INHERITANCE
The inheritance can be defined as

follows. acquiring

th

e

The inheritance is the

process of properties of one

class to another class. Inheritance

Basics

In inheritance, we use the terms like parent class,

child class, base class, derived class, superclass,

and subclass. The Parent class is the class which

provides features to another class. The parent

class is also known as Base class or

Superclass.

The Child class is the class which receives

features from another class. The child class

is also known as the Derived Class or

Subclass.

In the inheritance, the child class acquires the

features from its parent class. But the parent class

never acquires the features from its child class.CSE/NRCM

TYPES OF INHERITANCES
There are five types of inheritances, and they

are as

follows.

• Simple Inheritance (or) Single Inheritance

• Multiple Inheritance

• Multi-Level Inheritance

• Hierarchical Inheritance

• Hybrid Inheritance

CSE/NRCM

CSE/NRCM

Creating Child Class in java
In java, we use the keyword extends to create a child class. The following syntax used

to

create a child class in java.

Syntax

class <ChildClassName> extends <ParentClassName>{

...

//Implementation of child class

...

}

In a java programming language, a class extends only one class. Extending

multiple classes is not allowed in java.

JAVA ACCESS MODIFIERS
In Java, the access specifiers (also known as access modifiers) used to restrict

the scope or accessibility of a class, constructor, variable, method or data

member of class and interface. There are four access specifiers, and their list is

below.

default (or) no modifier

public

protecte

d

Private

The public members can be accessed everywhere.

🔔 The private members can be accessed only inside the same class.

🔔 The protected members are accessible to every child class (same package

or other

packages).

🔔 The default members are accessible within the same package but not

outside the

package.
CSE/NRCM

JAVA CONSTRUCTORS IN

INHERITANCEIt is very important to understand how the constructors get executed in the

inheritance

concept.

In the inheritance, the constructors never get inherited to any child class.

In java, the default constructor of a parent class called automatically by the

constructor of its child class. That means when we create an object of the child

class, the parent class constructor executed, followed by the child class

constructor executed.

CSE/NRCM

JAVA CONSTRUCTORS IN

INHERITANCEHowever, if the parent class contains default and parameterized constructor, then only

the default constructor called automatically by the child class constructor.

Let's look at the following example java code.

The parameterized constructor of parent class must be called explicitly using

the super keyword.

CSE/NRCM

JAVA SUPER KEYWORD
In java, super is a keyword used to refers to the parent class object. The super

keyword came into existence to solve the naming conflicts in the inheritance.

When both parent class and child class have members with the same name, then

the super keyword is used to refer to the parent class version.

In java, the super keyword is used for the following purposes.

• To refer parent class data members

• To refer parent class methods

• To call parent class constructor

🔔 The super keyword is used inside the child class only.

super to refer parent class data members

When both parent class and child class have data members with the same

name, then the super keyword is used to refer to the parent class data member

from child class. super to refer parent class method

When both parent class and child class have method with the same name, then

the

super keyword is used to refer to the parent class method from child class.

super to call parent class constructor

When an object of child class is created, it automatically calls the parent class

default- constructor before it's own. But, the parameterized constructor of parent

class must be called explicitly using the super keywordCinSsEid/NeRthCeMchild class

JAVA FINAL KEYWORD
In java, the final is a keyword and it is used with the following things.

• With variable (to create constant)

• With method (to avoid method overriding)

• With class (to avoid inheritance)

final with variables

When a variable defined with the final keyword, it becomes a constant, and it

does not allow us to modify the value. The variable defined with the final

keyword allows only a one-time assignment, once a value assigned to it, never

allows us to change it again.

final with methods

When a method defined with the final keyword, it does not allow it to override.

The final method extends to the child class, but the child class can not override or

re-define it. It must be used as it has implemented in the parent class.

final with class

When a class defined with final keyword, it can not be extended by any other

class.

CSE/NRCM

JAVA PYLYMORPHISM
The polymorphism is the process of defining same method with different

implementation. That

means creating multiple methods with different behaviors.

In java, polymorphism implemented using method overloading and method overriding.

Ad hoc polymorphism

The ad hoc polymorphism is a technique used to define the same method with

different implementations and different arguments. In a java programming

language, ad hoc polymorphism carried out with a method overloading concept.

In ad hoc polymorphism the method binding happens at the time of compilation. Ad

hoc polymorphism is also known as compile-time polymorphism. Every function call

binded with the respective overloaded method based on the arguments. The ad hoc

polymorphism implemented within the class only.

Pure polymorphism

The pure polymorphism is a technique used to define the same method with the same

arguments but different implementations. In a java programming language, pure

polymorphism carried out with a method overriding concept. In pure polymorphism, the

method binding happens at run time. Pure polymorphism is also known as run-time

polymorphism. Every function call binding with the respective overridden method based

on the object reference.

When a child class has a definition for a member function of the parent class, the parent

class

concept

only.

CSE/NRCM

JAVA METHOD OVERRIDING
The method overriding is the process of re-defining a method in a child class that is

already defined in the parent class. When both parent and child classes have the

same method, then that method is said to be the overriding method.

The method overriding enables the child class to change the implementation of the

method

which aquired from parent class according to its requirement.

In the case of the method overriding, the method binding happens at run time. The

method binding which happens at run time is known as late binding. So, the method

overriding follows late binding.

The method overriding is also known as dynamic method dispatch or run time

polymorphism or pure polymorphism.

CSE/NRCM

CSE/NRCM

JAVA METHOD OVERRIDING
Rules for method overriding

• While overriding a method, we must follow the below list of rules.

• Static methods can not be overridden.

• Final methods can not be overridden.

• Private methods can not be overridden.

• Constructor can not be overridden.

• An abstract method must be overridden.

• Use super keyword to invoke overridden method from child class.

• The return type of the overriding method must be same as the parent has it.

• The access specifier of the overriding method can be changed, but the visibility must

increase but not decrease. For example, a protected method in the parent class can

be made public, but not private, in the child class.

• If the overridden method does not throw an exception in the parent class, then the

child class overriding method can only throw the unchecked exception, throwing a

checked exception is not allowed.

• If the parent class overridden method does throw an exception, then the child class

overriding method can only throw the same, or subclass exception, or it may not

throw any exception.

JAVA ABSTRACT

CLASSAn abstract class is a class that created using abstract keyword. In other words, a class

prefixed

with abstract keyword is known as an abstract class.

In java, an abstract class may contain abstract methods (methods without

implementation) and

also non-abstract methods (methods with implementation).

We use the following syntax to create an abstract class.

Syntax

abstract class <ClassName>{

...

}

An abstract class cannot be

instantiated but can be

referenced. That means we can

not create an object of an

abstract class, but base

reference can be created.

CSE/NRCM

CSE/NRCM

JAVA ABSTRACT

CLASSRules for method overriding

• An abstract class must follow the below list of rules.

• An abstract class must be created with abstract keyword.

• An abstract class can be created without any abstract method.

• An abstract class may contain abstract methods and non-abstract methods.

• An abstract class may contain final methods that can not be overridden.

• An abstract class may contain static methods, but the abstract method can not be

static.

• An abstract class may have a constructor that gets executed when the child class

object

created.

• An abstract method must be overridden by the child class, otherwise, it must be

defined as an abstract class.

• An abstract class can not be instantiated but can be referenced.

CSE/NRCM

Java Object Class
In java, the Object class is the super most class of any class hierarchy. The Object

class in the

java programming language is present inside the java.lang package.

Every class in the java programming language is a subclass of Object class by

default.

The Object class is useful when you want to refer to any object whose type you don't

know.

Because it is the superclass of all other classes in java, it can refer to any type of

object.

Methods of Object class

The following table depicts all built-in methods of Object class in java.

Method Description Return Value

getClass() Returns Class class object object

equals(Object

obj)

compares the argument object to calling object. boolean

concat(String) Creates copy of invoking object object

toString() eturns the string representation of invoking object. String

notify() wakes up a thread, waiting on invoking object's monitor. void

notifyAll() wakes up all the threads, waiting on invoking object's monitor. void

wait() causes the current thread to wait, until another thread notifies. void

wait(long,int) causes the current thread to wait for the specified milliseconds and nanoseconds,

until another thread notifies.

void

finalize() It is invoked by the garbage collector before an object is being garbage collected. void

CSE/NRCM

JAVA FORMS OF INHERITANCE
The inheritance concept used for the number of purposes in the java programming

language. One of the main purposes is substitutability. The substitutability means that

when a child class acquires properties from its parent class, the object of the parent

class may be substituted with the child class object. For example, if B is a child class of

A, anywhere we expect an instance of A we can use an instance of B.

The substitutability can achieve using inheritance, whether using extends or implements

keywords.

The following are the different forms of inheritance in java.

 Specialization

 Specification

 Construction

 Extension

 Limitation

 Combination

JAVA FORMS OF INHERITANCE
Specialization

It is the most ideal form of inheritance. The subclass is a special case of the parent

class. It

holds the principle of substitutability.

Specification

This is another commonly used form of inheritance. In this form of inheritance, the

parent class just specifies which methods should be available to the child class but

doesn't implement them. The java provides concepts like abstract and interfaces to

support this form of inheritance. It holds the principle of substitutability.

Construction

This is another form of inheritance where the child class may change the behavior

defined by the parent class (overriding). It does not hold the principle of

substitutability.

Extension

This is another form of inheritance where the child class may add its new properties. It

holds

the principle of substitutability.

Limitation

This is another form of inheritance where the subclass restricts the inherited behavior. It

does

not hold the principle of substitutability.

JAVA FORMS OF INHERITANCE
Specialization

It is the most ideal form of inheritance. The subclass is a special case of the parent

class. It

holds the principle of substitutability.

Specification

This is another commonly used form of inheritance. In this form of inheritance, the

parent class just specifies which methods should be available to the child class but

doesn't implement them. The java provides concepts like abstract and interfaces to

support this form of inheritance. It holds the principle of substitutability.

Construction

This is another form of inheritance where the child class may change the behavior

defined by the parent class (overriding). It does not hold the principle of

substitutability.

Extension

This is another form of inheritance where the child class may add its new properties. It

holds

the principle of substitutability.

Limitation

This is another form of inheritance where the subclass restricts the inherited behavior. It

does

not hold the principle of substitutability.

CSE/NRCM

Benefits and Costs of Inheritance in

javaBenefits of Inheritance

 Inheritance helps in code reuse. The child class may use the code defined in the

parent

class without re-writing it.

 Inheritance can save time and effort as the main code need not be written again.

 Inheritance provides a clear model structure which is easy to understand.

 An inheritance leads to less development and maintenance costs.

 With inheritance, we will be able to override the methods of the base class so that

the meaningful implementation of the base class method can be designed in the

derived class. An inheritance leads to less development and maintenance costs.

 In inheritance base class can decide to keep some data private so that it cannot be

altered by the derived class.

Costs of Inheritance

 Inheritance decreases the execution speed due to the increased time and effort it

takes,

the program to jump through all the levels of overloaded classes.

 Inheritance makes the two classes (base and inherited class) get tightly coupled.

This

means one cannot be used independently of each other.

 The changes made in the parent class will affect the behavior of child class too.

 The overuse of inheritance makes the program more complex.

CSE/NRCM

DEFINING PACKAGES
In java, a package is a container of classes, interfaces, and sub-packages. We may

think of it as a

folder in a file directory.

We use the packages to avoid naming conflicts and to organize project-related classes,

interfaces, and sub-packages into a bundle.

In java, the packages have divided into two

types. Built-in Packages

User-defined Packages

Built-in Packages

The built-in packages are the packages from java API. The Java API is a library of pre-

defined classes, interfaces, and sub-packages. The built-in packages were included in

the JDK. There are many built-in packages in java, few of them are as java, lang, io, util,

awt, javax, swing, net, sql, etc. We need to import the built-in packages to use them in

our program. To import a package, we use the import statement.

User-defined Packages

The user-defined packages are the packages created by the user. User is free to

create their own packages.

CSE/NRCM

Definig/Creating a Package in java
We use the package keyword to create or define a package in java programming language.

Syntax

package packageName;

The package statement must be the first statement in the

program. The package name must be a single word.

The package name must use Camel case notation.

Let's consider the following code to create a user-defined package myPackage.

Example

package myPackage;

public class DefiningPackage {

public static void main(String[] args) {

System.out.println("This class belongs to myPackage.");

}

}

Now, save the above code in a file DefiningPackage.java, and compile it using the following

command.

javac -d . DefiningPackage.java

The above command creates a directory with the package name myPackage, and

the DefiningPackage.class is saved into it. Run the program use the following command.

java myPackage.DefiningPackage

When we use IDE like Eclipse, Netbeans, etc. the package structure is created automatically.

ACCESS PROTECTION IN JAVA

PACKAGESIn java, the access modifiers define the accessibility of the class and its members. For example,

private members are accessible within the same class members only. Java has four access

modifiers, and they are default, private, protected, and public.

In java, the package is a container of classes, sub-classes, interfaces, and sub-packages. The

class acts as a container of data and methods. So, the access modifier decides the accessibility

of class members across the different packages.

In java, the accessibility of the members of a class or interface depends on its access specifiers.

The

following table provides information about the visibility of both data members and

methods. The public members can be accessed everywhere.

The private members can be accessed only inside the same class.

The protected members are accessible to every child class (same package or other packages).

The default members are accessible within the same package but not outside the package.

CSE/NRCM

IMPORTING PACKAGES IN JAVA
In java, the import keyword used to import built-in and user-defined packages. When a package

has

imported, we can refer to all the classes of that package using their name directly.

The import statement must be after the package statement, and before any other

statement. Using an import statement, we may import a specific class or all the

classes from a package.

Using one import statement, we may import only one package or a class.

Using an import statement, we cannot import a class directly, but it must be a part of a

package. A program may contain any number of import statements.

Importing specific class

Using an importing statement, we can import a specific class. The following syntax is employed to

import a

specific class.

Syntax : import packageName.ClassName;

Let's look at an import statement to import a built-in package and Scanner class.

Example

package myPackage;

import

java.util.Scanner;

public class ImportingExample {

public static void main(String[] args) {

Scanner read = new

Scanner(System.in); int i =

IMPORTING PACKAGES IN JAVA
Importing all the classes

Using an importing statement, we can import all the classes of a package. To import all the classes

of the

package, we use * symbol. The following syntax is employed to import all the classes of a

package.

Syntax

import packageName.*;

Let's look at an import statement to import a built-in package.

Example

package myPackage;

import java.util.*;

public class ImportingExample {

public static void main(String[] args) {

Scanner read = new Scanner(System.in);

int i = read.nextInt();

System.out.println("You have entered a number "

+ i); Random rand = new Random();

int num = rand.nextInt(100);

System.out.println("Randomly generated number " + num); }}

In the above code, the class ImportingExample belongs to myPackage package, and it also

importing all

the classes like Scanner, Random, Stack, Vector,ArrayList, HashSet, etc. from the java.util

CSE/NRCM

DEFINING AN INTERFACE IN JAVA
In java, an interface is similar to a class, but it contains abstract methods and static final

variables only.

The interface in Java is another mechanism to achieve abstraction.

We may think of an interface as a completely abstract class. None of the methods in the

interface has an implementation, and all the variables in the interface are constants.

All the methods of an interface, implemented by the class that implements it.

The interface in java enables java to support multiple-inheritance. An interface may extend

only one interface, but a class may implement any number of interfaces.

 An interface is a container of abstract methods and static final variables.

 An interface, implemented by a class. (class implements interface).

 An interface may extend another interface. (Interface extends Interface).

 An interface never implements another interface, or class.

 A class may implement any number of interfaces.

 We can not instantiate an interface.

 Specifying the keyword abstract for interface methods is optional, it automatically added.

 All the members of an interface are public by default.

CSE/NRCM

IMPLEMENTING AN INTERFACE IN

JAVAIn java, an interface is implemented by a class. The class that implements an

interface must provide code for all the methods defined in the interface; otherwise, it

must be defined as an abstract class.

The class uses a keyword implements to implement an interface. A class can

implement any

number of interfaces. When a class wants to implement more than one interface, we

use

the implements keyword is followed by a comma-separated list of the interfaces

implemented

by the class.

The following is the syntax for defineing a class that implements an interface.

Syntax

class className implements InterfaceName{

...

boby-of-the-class

...

}

CSE/NRCM

Implementing multiple Interfaces
Implementing multiple Interfaces

When a class wants to implement more than one interface, we use the implements

keyword is followed by a comma-separated list of the interfaces implemented by the

class.

The following is the syntax for defineing a class that implements multiple interfaces.

Syntax

class className implements InterfaceName1, InterfaceName2, ...{

...

boby-of-the-class

...

}

NESTED INTERFACES IN JAVA
In java, an interface may be defined inside another interface, and also inside a

class. The interface that defined inside another interface or a class is konwn as

nested interface. The nested interface is also refered as inner interface.

The nested interface declared within an interface is public by default.

The nested interface declared within a class can be with any access modifier.

Every nested interface is static by default.

The nested interface cannot be accessed directly. We can only access the nested

interface by using outer interface or outer class name followed by dot(.), followed by

the nested interface name.

Nested interface inside another interface

The nested interface that defined inside another interface must be accessed

as OuterInterface.InnerInterface.

Let's look at an example code to illustrate nested interfaces inside another interface.

Example

interface OuterInterface{

void outerMethod();

interface InnerInterface{

void

innerMethod();

}}
CSE/NRCM

VARIABLES IN JAVA INTERFACES
In java, an interface is a completely abstract class. An interface is a container of abstract

methods and static final variables. The interface contains the static final variables. The variables

defined in an interface cannot be modified by the class that implements the interface, but it may

use as it defined in the interface.

The variable in an interface is public, static, and final by default.

If any variable in an interface is defined without public, static, and final keywords then, the

compiler automatically adds the same.

No access modifier is allowed except the public for interface variables.

Every variable of an interface must be initialized in the interface itself.

The class that implements an interface can not modify the interface variable, but it may use as it

defined

in the interface.

Example

interface SampleInterface{

int UPPER_LIMIT = 100;

//int LOWER_LIMIT; // Error - must be initialised

}

public class InterfaceVariablesExample implements SampleInterface{

public static void main(String[] args) {

System.out.println("UPPER LIMIT = " +

UPPER_LIMIT);

// UPPER_LIMIT = 150; // Can not be modified
}

}
CSE/NRCM

CSE/NRCM

EXTENDING AN INTERFACE IN

JAVAIn java, an interface can extend another interface. When an interface wants to extend another

interface, it uses the keyword extends. The interface that extends another interface has its own

members and all the members defined in its parent interface too. The class which implements a

child interface needs to provide code for the methods defined in both child and parent interfaces,

otherwise, it needs to be defined as abstract class.

• An interface can extend another interface.

• An interface cannot extend multiple interfaces.

• An interface can implement neither an interface nor a class.

• The class that implements child interface needs to provide code for all the methods defined in

both

child and parent interfaces.

STREAM IN JAVA
In java, the IO operations are performed using the concept of streams. Generally, a stream

means a continuous flow of data. In java, a stream is a logical container of data that allows us

to read from and write to it. A stream can be linked to a data source, or data destination, like a

console, file or network connection by java IO system. The stream-based IO operations are

faster than normal IO operations.

The Stream is defined in the java.io package.

To understand the functionality of java streams, look at the following picture.

In Java, every program creates 3 streams

automatically, and these streams are attached to

the console.

System.out: standard output stream for console

output operations.

System.in: standard input stream for console

input

operations.

System.err: standard error stream for console

error

output operations.

The Java streams support many different

kinds of data, including simple bytes, primitive

data types, localized characters, and objects.
CSE/NRCM

TYPES OF STREAMS
Java provides two types of streams, and they are as

follows.

Byte Stream

Character Stream

CSE/NRCM

BYTE STREAM IN JAVA
In java, the byte stream is an 8 bits carrier. The byte stream in java allows us to transmit 8 bits of

data.

In Java 1.0 version all IO operations were byte oriented, there was no other stream (character

stream). The java byte stream is defined by two abstract classes, InputStream and

OutputStream. The InputStream class used for byte stream based input operations, and the

OutputStream class used for byte stream based output operations.

The InputStream and OutputStream classes have several concreate classes to perform various IO

operations based on the byte stream.

The following picture shows the classes used for byte stream operations

CSE/NRCM

BYTE STREAM IN JAVA
InputStream class

The InputStream class has defined as an abstract class, and it has the following methods

which have

implemented by its concrete classes.

OutputStream class

The OutputStream class has defined as an abstract class, and it has the following methods

which have implemented by its concrete classes.

S.No. Method with Description

1 int available()

It returns the number of bytes that can be read from the input stream.

2 int read()

It reads the next byte from the input stream.

3 int read(byte[] b)

It reads a chunk of bytes from the input stream and store them in its byte array, b.

4 void close()

It closes the input stream and also frees any resources connected with this input stream.

S.No. Method with Description

1 void write(int n)

It writes byte(contained in an int) to the output stream.

2 void write(byte[] b)

It writes a whole byte array(b) to the output stream.

3 void flush()

It flushes the output steam by forcing out buffered bytes to be written out.

4 void close()

It closes the output stream and also frees any reCsoSurEce/sNcoRnnCecMted with this output stream.

CHARACTER STREAM IN JAVA
In java, when the IO stream manages 16-bit Unicode characters, it is called a character

stream. The unicode set is basically a type of character set where each character corresponds

to a specific numeric value within the given character set, and every programming language

has a character set.

In java, the character stream is a 16 bits carrier. The character stream in java allows us to

transmit 16 bits of data.

The character stream was introduced in Java 1.1 version. The charater stream

The java character stream is defined by two abstract classes, Reader and Writer. The Reader

class used for character stream based input operations, and the Writer class used for charater

stream based output operations.

The Reader and Writer classes have several concreate classes to perform various IO operations

based on

the character stream.

CSE/NRCM

CSE/NRCM

CHARACTER STREAM IN JAVA
Reader class

The Reader class has defined as an abstract class, and it has the following methods

which have

implemented by its concrete classes.
S.No. Method with Description

1 int read()

It reads the next character from the input stream.

2 int read(char[] cbuffer)

It reads a chunk of charaters from the input stream and store them in its byte array, cbuffer.

3 int read(char[] cbuf, int off, int len)

It reads charaters into a portion of an array.

4 int read(CharBuffer target)

It reads charaters into into the specified character buffer.

5 String readLine()

It reads a line of text. A line is considered to be terminated by any oneof a line feed ('\n'), a

carriage return ('\r'), or a carriage returnfollowed immediately by a linefeed.

6 boolean ready()

It tells whether the stream is ready to be read.

7 void close()

It closes the input stream and also frees any resources connected with this input stream.

CHARACTER STREAM IN JAVA
Writer class

The Writer class has defined as an abstract class, and it has the following methods

which have

implemented by its concrete classes.
S.No. Method with Description

1 void flush()

It flushes the output steam by forcing out buffered bytes to be written out.

2 void write(char[] cbuf)

It writes a whole array(cbuf) to the output stream.

3 void write(char[] cbuf, int off, int len)

It writes a portion of an array of characters.

4 void write(int c)

It writes single character.

5 void write(String str)

It writes a string.

6 void write(String str, int off, int len)

It writes a portion of a string.

7 Writer append(charc)

It appends the specified character to the writer.

8 Writer append(CharSequencecsq)

It appends the specified character sequence to the writer

9 Writer append(CharSequencecsq, int start, int end)

It appends a subsequence of the specified character sequence to the writer.

10 void close() CSE/NRCM
It closes the output stream and also frees any resources connected with this output stream.

CONSOLE I/O OPERATIONS IN

JAVAReading console input in java

In java, there are three ways to read console input. Using the 3 following ways, we can read

input data

from the console.

• Using BufferedReader class

• Using Scanner class

• Using Console class

Let's explore the each method to read data with example.

1. Reading console input using BufferedReader class in java

Reading input data using the BufferedReaderclass is the traditional technique. This way of

the reading method is used by wrapping the System.in (standard input stream) in an

InputStreamReader which is wrapped in a BufferedReader, we can read input from the

console.

The BufferedReader class has defined in the java.io package.

CSE/NRCM

CONSOLE I/O OPERATIONS IN

JAVA2. Reading console input using Scanner class in java

Reading input data using the Scanner class is the most commonly used method. This way of the

reading method is used by wrapping the System.in (standard input stream) which is wrapped in a

Scanner, we can read input from the console.

The Scanner class has defined in the java.util package.

Consider the following example code to understand how to read console input using Scanner

class.

CSE/NRCM

CSE/NRCM

CONSOLE I/O OPERATIONS IN

JAVA3. Reading console input using Console class in java

Reading input data using the Console class is the most commonly used method. This class was

introduced

in Java 1.6 version.

The Console class has defined in the java.io package.

Consider the following example code to understand how to read console input using Console

class.

Example

import java.io.*;

public class ReadingDemo {

public static void main(String[] args) {

String name;

Console con = System.console();

if(con != null) {

name = con.readLine("Please enter your name : ");

System.out.println("Hello, " + name + "!!");

}

else {

System.out.println("Console not available.");

}

}

}

CSE/NRCM

CONSOLE I/O OPERATIONS IN

JAVA3. Reading console input using Console class in java

Reading input data using the Console class is the most commonly used method. This class was

introduced

in Java 1.6 version.

The Console class has defined in the java.io package.

Consider the following example code to understand how to read console input using Console

class.

Example

import java.io.*;

public class ReadingDemo {

public static void main(String[] args) {

String name;

Console con = System.console();

if(con != null) {

name = con.readLine("Please enter your name : ");

System.out.println("Hello, " + name + "!!");

}

else {

System.out.println("Console not available.");

}

}

}

CONSOLE I/O OPERATIONS IN

JAVAWriting console output in java

In java, there are two methods to write console output. Using the 2 following methods, we can

write

output data to the console.

• Using print() and println() methods

• Using write() method

1. Writing console output using print() and println() methods

The PrintStream is a bult-in class that provides two methods print() and println() to write console

output.

The print() and println() methods are the most widely used methods for console

output. Both print() and println() methods are used with System.out stream.

The print() method writes console output in the same line. This method can be used with console

output

only.

The println() method writes console output in a separete line (new line). This method can be

used with

console ans also with other output sources.

Let's look at the following code to illustrate print() and println() methods.

Example

CSE/NRCM

CONSOLE I/O OPERATIONS IN

JAVAWriting console output using write() method

Alternatively, the PrintStream class provides a method write() to write console output.

The write() method take integer as argument, and writes its ASCII equalent character on to the

console, it also acept escape sequences.

Let's look at the following code to illustrate write() method.

Example

CSE/NRCM

CSE/NRCM

FILE CLASS IN JAVA
The File is a built-in class in Java. In java, the File class has been defined in the java.io package.

The File class represents a reference to a file or directory. The File class has various methods to

perform operations like creating a file or directory, reading from a file, updating file content, and

deleting a file or directory.

The File class in java has the following constructors.
S.No. Constructor with Description

1 File(String pathname)

It creates a new File instance by converting the givenpathname string into an abstract pathname. If the

given string isthe empty string, then the result is the empty abstract pathname.

2 File(String parent, String child)

It Creates a new File instance from a parent abstractpathname and a child pathname string. If parent is

null then the new File instance is created as if by invoking thesingle-argument File constructor on the

given child pathnamestring.

3 File(File parent, String child)

It creates a new File instance from a parent abstractpathname and a child pathname string. If parent is

null then the new File instance is created as if by invoking thesingle-argument File constructor on the

given child pathname string.

4 File(URI uri)

It creates a new File instance by converting the given file: URI into an abstract pathname.

CSE/NRCM

FILE CLASS IN JAVA
The File class in java has the following

methods.
S.No. Methods with Description

1 String getName()

It returns the name of the file or directory that referenced by the current File object.

2 String getParent()

It returns the pathname of the pathname's parent, or null if the pathname does not name a parent directory.

3 String getPath()

It returns the path of curent File.

4 File getParentFile()

It returns the path of the current file's parent; or null if it does not exist.

5 String getAbsolutePath()

It returns the current file or directory path from the root.

6 boolean isAbsolute()

It returns true if the current file is absolute, false otherwise.

7 boolean isDirectory()

It returns true, if the current file is a directory; otherwise returns false.

8 boolean isFile()

It returns true, if the current file is a file; otherwise returns false.

9 boolean exists()

It returns true if the current file or directory exist; otherwise returns false.

10 boolean canRead()

It returns true if and only if the file specified exists and can be read by the application; false otherwise.

11 boolean canWrite()

It returns true if and only if the file specified exists and the application is allowed to write to the file; false otherwise.

12 long length()

It returns the length of the current file.

13 long lastModified()

It returns the time that specifies the file was last modified.

14 boolean createNewFile()

It returns true if the named file does not exist and was successfully created; false if the named file alreadyexists.

15 boolean delete()

It deletes the file or directory. And returns true if and only if the file or directory is successfully deleted; false otherwise.

CSE/NRCM

FILE READING & WRITING IN JAVA
In java, there multiple ways to read data from a file and to write data to a file. The most commonly

used

ways are as follows.

Using Byte Stream (FileInputStream and

FileOutputStream) Using Character Stream

(FileReader and FileWriter)

Let's look each of these ways.

File Handling using Byte Stream

In java, we can use a byte stream to handle files. The byte stream has the following built-in

classes to perform various operations on a file.

FileInputStream - It is a built-in class in java that allows reading data from a file. This class has

implemented based on the byte stream. The FileInputStream class provides a method read() to

read data from a file byte by byte.

FileOutputStream - It is a built-in class in java that allows writing data to a file. This class has

implemented based on the byte stream. The FileOutputStream class provides a method write() to

write data to a file byte by byte.

CSE/NRCM

FILE READING & WRITING IN JAVA
File Handling using Character Stream

In java, we can use a character stream to handle files. The character stream has the following

built-in

classes to perform various operations on a file.

FileReader - It is a built-in class in java that allows reading data from a file. This class has

implemented based on the character stream. The FileReader class provides a method read()

to read data from a file character by character.

FileWriter - It is a built-in class in java that allows writing data to a file. This class has

implemented based on the character stream. The FileWriter class provides a method write() to

write data to a file character by character.

Let's look at the following example program that reads data from a file and writes the same to

another file

using FIleReader and FileWriter classes.

CSE/NRCM

RANDOMACCESSFILE IN JAVA
In java, the java.io package has a built-in class RandomAccessFile that enables a file to be

accessed randomly. The RandomAccessFile class has several methods used to move the

cursor position in a file. A random access file behaves like a large array of bytes stored in a file.

RandomAccessFile Constructors

The RandomAccessFile class in java has the following constructors.

Access Modes

Using the RandomAccessFile, a file may created in th following modes.

r - Creates the file with read mode; Calling write methods will result in an IOException.

rw - Creates the file with read and write mode.

rwd - Creates the file with read and write mode - synchronously. All updates to file content is

written to

the disk synchronously.

rws - Creates the file with read and write mode - synchronously. All updates to file content or

meta data is

written to the disk synchronously

S.No. Constructor with Description

1 RandomAccessFile(File fileName, String mode)

It creates a random access file stream to read from, and optionally to write to, the file specified by the

File argument.

2 RandomAccessFile(StringfileName, String mode)

It creates a random access file stream to read from, and optionally to write to, a file with the specified

fileName.

RandomAccessFile

methodsS.No. Methods with Description

1 int read()

It reads byte of data from a file. The byte is returnedas an integer in the range0-255.

2 int read(byte[] b)

It reads byte of data from file upto b.length, -1 if end of file is reached.

3 int read(byte[] b, int offset, int len)

It reads bytes initialisingfrom offset positionupto b.length from thebuffer.

4 boolean readBoolean()

It reads a boolean value from from the file.

5 byte readByte()

It reads signedeight-bitvalue from file.

6 char readChar()

It reads a character value from file.

7 double readDouble()

It reads a double value from file.

8 float readFloat()

It readsa float value from file.

9 long readLong()

It reads a long value from file.

10 int readInt()

It reads a integer value from file.

11 void readFully(byte[] b)

It reads bytes initialisingfrom offset position upto b.length from thebuffer.

12 void readFully(byte[]b, int offset, int len)

It readsbytes initialisingfrom offset positionupto b.length from the buffer.

13 String readUTF()

t reads in a stringfrom the file.

14 void seek(long pos)

It sets the file-pointer(cursor)measured from the beginningof the file, at which the next read or write occurs.

15 long length()

It returnsthelength of the file.

16 void write(int b)

It writes the specified byte to the file from thecurrentcursor position.

17 void writeFloat(float v)

It converts the float argument to an int usingthe floatToIntBitsmethod in class Float, and then writes that int value to the file as a four-byte quantity, highbyte first.

18 void writeDouble(double v)
It converts the double argument to a long using the doubleToLongBitsmethod in class Double, and then writes that long value to the file as an eight-byte quantity, high

byte first. CSE/NRCM

CONSOLE CLASS IN JAVA
In java, the java.io package has a built-in class Console used to read from and write to the

console, if one

exists. This class was added to the Java SE 6. The Console class implements teh

Flushable interface. In java, most the input functionalities of Console class available

through System.in, and the output functionalities available through System.out.

Console class Constructors

The Console class does not have any constructor. We can obtain the Console class

object by calling System.console().

Console class methods

The Console class in java has the following methodsS.No. Methodswith Description

1 void flush()

It causes buffered output to be written physically to the console.

2 String readLine()

It reads a string value from the keyboard, the input is terminated on pressing enter key.

3 String readLine(String promptingString, Object...args)

It displays the given promptingString, and reads a string fron the keyboard; input is terminated on pressng Enter key.

4 char[] readPassword()

It reads a string value from the keyboard, the string is not displayed; the input is terminated on pressing enter key.

5 char[] readPassword(String promptingString, Object...args)

It displays the given promptingString, and reads a string value from the keyboard, the string is not displayed; the input is terminated on

pressing enter key.

6 Console printf(String str, Object....args)

It writes the given string to the console.

7 Console format(String str, Object....args)

It writes the given string to the console.

8 Reader reader()

It returns a reference to a Reader connected to the console.

9 PrintWriter writer()

It returns a reference to a Writer connected to the consColeS. E/NRCM

CSE/NRCM

SERIALIZATION AND DESERIALIZATION

IN JAVAIn java, the Serialization is the process of converting an object into a byte stream so that it can

be stored on to a file, or memory, or a database for future access. The deserialization is reverse

of serialization. The deserialization is the process of reconstructing the object from the serialized

state.

Using serialization and deserialization, we can transfer the Object Code from one Java Virtual

machine to another.

Serialization in Java

In a java programming language, the Serialization is achieved with the help of interface

Serializable. The

class whose object needs to be serialized must implement the Serializable interface.

We use the ObjectOutputStream class to write a serialized object to write to a destination. The

ObjectOutputStream class provides a method writeObject() to serializing an object.

We use the following steps to serialize an object.

Step 1 - Define the class whose object needs to be serialized; it must implement Serializable

interface.

Step 2 - Create a file reference with file path using FileOutputStream class.

Step 3 - Create reference to ObjectOutputStream object with file reference.

Step 4 - Use writeObject(object) method by passing the object that wants to be serialized.

Step 5 - Close the FileOutputStream and ObjectOutputStream.

CSE/NRCM

SERIALIZATION AND DESERIALIZATION

IN JAVADeserialization in Java

In a java programming language, the Deserialization is achieved with the help of class

ObjectInputStream.

This class provides a method readObject() to deserializing an

object. We use the following steps to serialize an object.

Step 1 - Create a file reference with file path in which serialized object is available using

FileInputStream class.

Step 2 - Create reference to ObjectInputStream object with file reference.

Step 3 - Use readObject() method to access serialized object, and typecaste it to destination type.

Step 4 - Close the FileInputStream and ObjectInputStream.

CSE/NRCM

ENUM IN JAVA
In java, an Enumeration is a list of named constants. The enum concept was introduced in

Java SE 5 version. The enum in Java programming the concept of enumeration is greatly

expanded with lot more new features compared to the other languages like C, and C++.

In java, the enumeration concept was defined based on the class concept. When we create an

enum in java, it converts into a class type. This concept enables the java enum to have

constructors, methods, and instance variables.

All the constants of an enum are public, static, and final. As they are static, we can access

directly using

enum name.

The main objective of enum is to define our own data types in Java, and they are said to be

enumeration

data types.

Creating enum in Java

To create enum in Java, we use the keyword enum. The syntax for creating enum is similar to

that of class. In java, an enum can be defined outside a class, inside a class, but not inside a

method.

 Every enum is converted to a class that extends the built-in class Enum.

 Every constant of an enum is defined as an object.

 As an enum represents a class, it can have methods, constructors. It also gets a few extra

methods

from the Enum class, and one of them is the values() method.

CSE/NRCM

AUTOBOXING AND UNBOXING IN

JAVAIn java, all the primitive data types have defined using the class concept, these classes known as

wrapper

classes. In java, every primitive type has its corresponding wrapper class.

All the wrapper classes in Java were defined in the java.lang package.

The following table shows the primitive type and its corresponding wrapper class.

The Java 1.5 version introduced a concept that converts primitive type to corresponding wrapper

type and

reverses of it.

S.No. Primitive Type Wrapper class

1 byte Byte

2 short Short

3 int Interger

4 long Long

5 float Float

6 double Double

7 char Character

8 boolean Boolean

CSE/NRCM

AUTOBOXING AND UNBOXING IN

JAVAAutoboxing in Java

In java, the process of converting a primitive type value into its corresponding wrapper class

object is

called autoboxing or simply boxing. For example, converting an int value to an Integer class

object. The compiler automatically performs the autoboxing when a primitive type value has

assigned to an object of the corresponding wrapper class.
🔔 We can also perform autoboxing manually using the method valueOf(), which is provided by

every

wrapper class.

Auto un-boxing in Java

In java, the process of converting an object of a wrapper class type to a primitive type value is

called auto

un-boxing or simply unboxing. For example, converting an Integer object to an int value.

The compiler automatically performs the auto un-boxing when a wrapper class object has

assigned to
aprimitive type.

🔔 We can also perform auto un-boxing manually using the method intValue(), which is

provided by

Integer wrapper class. Similarly every wrapper class has a method for auto un-boxing.

CSE/NRCM

GENERICS IN JAVA
The java generics is a language feature that allows creating methods and class which can

handle any type of data values. The generic programming is a way to write generalized

programs, java supports it by java generics.

The java generics is similar to the templates in the C++ programming

language. Most of the collection framework classes are generic classes.

The java generics allows only non-primitive type, it does not support primitive types like int, float,

char,

etc.

The java generics feature was introduced in Java 1.5 version. In java, generics used angular

brackets “< >”. In java, the generics feature implemented using the following.

Generic Method

Generic Classe

Generic methods in Java

The java generics allows creating generic methods which can work with a different type of data

values. Using a generic method, we can create a single method that can be called with

arguments of different types. Based on the types of the arguments passed to the generic

method, the compiler handles each method call appropriately.

Generic Class in Java

In java, a class can be defined as a generic class that allows creating a class that can work with

different

types.

A generic class declaration looks like a non-generic class declaration, except that the class name

is

followed by a type parameter section

CSE/NRCM

UNIT – III

EXCEPTION

HANDLING &

MULTITHREADIN

G

EXCEPTION HANDLING IN JAVA
An exception in java programming is an abnormal situation that is araised during the program

execution.

In simple words, an exception is a problem that arises at the time of program execution.

When an exception occurs, it disrupts the program execution flow. When an exception occurs,

the program execution gets terminated, and the system generates an error.We use the

exception handling mechanism to avoid abnormal termination of program execution.

Java programming language has a very powerful and efficient exception handling mechanism with

a large

number of built-in classes to handle most of the exceptions automatically.

Java programming language has the following class hierarchy to support the exception

handling mechanism.

CSE/NRCM

CSE/NRCM

EXCEPTION HANDLING IN JAVA
Reasons for Exception Occurrence

Several reasons lead to the occurrence of an exception. A few of them are as follows.

When we try to open a file that does not exist may lead to an

exception. When the user enters invalid input data, it may lead to an

exception.

When a network connection has lost during the program execution may lead to an

exception. When we try to access the memory beyond the allocated range may lead to an

exception.

The physical device problems may also lead to an exception.

Types of Exception

In java, exceptions have categorized into two types, and they are as follows.

Checked Exception - An exception that is checked by the compiler at the time of compilation is

called a

checked exception.

Unchecked Exception - An exception that can not be caught by the compiler but occurrs at the

time of

program execution is called an unchecked exception.

How exceptions handled in Java?

In java, the exception handling mechanism uses five keywords namely try, catch, finally, throw,

and throws.

We will learn all these concepts in this series of tutorials.

CSE/NRCM

EXCEPTION TYPES IN JAVA
In java, exceptions are mainly categorized into two types, and they are as follows.

Checked Exceptions

Unchecked Exceptions

Checked Exceptions

The checked exception is an exception that is checked by the compiler during the compilation

process to confirm whether the exception is handled by the programmer or not. If it is not

handled, the compiler displays a compilation error using built-in classes.

The checked exceptions are generally caused by faults outside of the code itself like missing

resources,

networking errors, and problems with threads come to mind.

The following are a few built-in classes used to handle checked exceptions in java.

 IOException

FileNotFoundException

ClassNotFoundException

SQLException

DataAccessException

 InstantiationException

UnknownHostException

In the exception class hierarchy, the checked exception classes are the direct children of the

Exception

class.

The checked exception is also known as a compile-time exception

Unchecked Exceptions
The unchecked exception is an exception that occurs at the time of program execution. The

unchecked

exceptions are not caught by the compiler at the time of compilation.

The unchecked exceptions are generally caused due to bugs such as logic errors,

improper use of resources, etc.

The following are a few built-in classes used to handle unchecked exceptions in java.

 ArithmeticException

 NullPointerException

 NumberFormatException

 ArrayIndexOutOfBoundsException

 StringIndexOutOfBoundsException

In the exception class hierarchy, the unchecked exception classes are the children of

RuntimeException

class, which is a child class of Exception class.

The unchecked exception is also known as a runtime exception.

Let's look at the following example program for the unchecked exceptions.

CSE/NRCM

Exception class

hierarchyIn java, the built-in classes used to handle exceptions have the following class

hierarchy.

CSE/NRCM

EXCEPTION MODELS IN JAVA
In java, there are two exception models. Java programming language has two models of exception

handling. The exception models that java suports are as follows.

Termination

Model

Resumptive

Model

Let's look into details of each exception model.

Termination Model

In the termination model, when a method encounters an exception, further processing in that

method is terminated and control is transferred to the nearest catch block that can handle the

type of exception encountered.

In other words we can say that in termination model the error is so critical there is no way to get

back to

where the exception occurred.

Resumptive Model

The alternative of termination model is resumptive model. In resumptive model, the exception

handler is expected to do something to stable the situation, and then the faulting method is

retried. In resumptive model we hope to continue the execution after the exception is handled.

In resumptive model we may use a method call that want resumption like behavior. We may also

place the

try block in a while loop that keeps re-entering the try block util the result is satisfactory.

UNCAUGHT EXCEPTIONS IN JAVA
In java, assume that, if we do not handle the exceptions in a program. In this case, when an

exception occurs in a particular function, then Java prints a exception message with the help of

uncaught exception handler.

The uncaught exceptions are the exceptions that are not caught by the compiler but automatically

caught and handled by the Java built-in exception handler.

Java programming language has a very strong exception handling mechanism. It allow us to

handle the

exception use the keywords like try, catch, finally, throw, and throws.

When an uncaught exception occurs, the JVM calls a special private method

known dispatchUncaughtException(), on the Thread class in which the exception occurs and

terminates

the thread.

The Division by zero exception is one of the example for uncaught exceptions. Look at the

following code.

CSE/NRCM

CSE/NRCM

try AND catch IN JAVA
In java, the try and catch, both are the keywords used for exception handling.

The keyword try is used to define a block of code that will be tests the occurence of an

exception. The keyword catch is used to define a block of code that handles the exception

occured in the respective try block.

The uncaught exceptions are the exceptions that are not caught by the compiler but automatically

caught and handled by the Java built-in exception handler.

Both try and catch are used as a pair. Every try block must have one or more catch blocks. We

can not use

try without atleast one catch, and catch alone can be used (catch without try is not

allowed). The following is the syntax of try and catch blocks.

Syntax

try{

...

code to be tested

...

}

catch(ExceptionType object){

...

code for handling the exception

...

}

try AND catch IN JAVA
Multiple catch clauses

In java programming language, a try block may has one or more number of catch blocks. That

means a

single try statement can have multiple catch clauses.

When a try block has more than one catch block, each catch block must contain a different

exception type to be handled.

The multiple catch clauses are defined when the try block contains the code that may lead to

different

type of exceptions.

The try block generates only one exception at a time, and at a time only one catch block is

executed. When there are multiple catch blocks, the order of catch blocks must be from the most

specific exception handler to most general.

The catch block with Exception class handler must be defined at the last.

CSE/NRCM

try AND catch IN JAVA
Nested try statements

The java allows to write a try statement inside another try statement. A try block within another try

block

is known as nested try block.

When there are nested try blocks, each try block must have one or more seperate catch blocks.

In case of nested try blocks, if an exception occured in the inner try block and it's catch blocks

are unable

to handle it then it transfers the control to the outer try's catch block to handle it.

CSE/NRCM

CSE/NRCM

throw, throws, AND finally KEYWORDS

IN JAVAIn java, the keywords throw, throws, and finally are used in the exception handling concept. Let's

look at

each of these keywords.

throw keyword in Java

The throw keyword is used to throw an exception instance explicitly from a try block to

corresponding catch block. That means it is used to transfer the control from try block to

corresponding catch block.

The throw keyword must be used inside the try blcok. When JVM encounters the throw keyword,

it stops

the execution of try block and jump to the corresponding catch block.

Using throw keyword only object of Throwable class or its sub classes can be thrown.

Using throw keyword only one exception can be thrown.

The throw keyword must followed by an throwable instance.

The following is the general syntax for using throw keyword in a try block.

Syntax

throw instance;

Here the instace must be throwable instance and it can be created dynamically using new

operator.

throw, throws, AND finally KEYWORDS

IN JAVAthrows keyword in Java

The throws keyword specifies the exceptions that a method can throw to the default handler and

does not handle itself. That means when we need a method to throw an exception automatically,

we use throws keyword followed by method declaration

When a method throws an exception, we must put the calling statement of method in try-catch

block.

finally keyword in Java

The finally keyword used to define a block that must be executed irrespective of exception

occurence. The basic purpose of finally keyword is to cleanup resources allocated by try block,

such as closing file, closing database connection, etc.

Only one finally block is allowed for each try block.

Use of finally block is optional.

CSE/NRCM

BUILT-IN EXCEPTIONS IN JAVA
The Java programming language has several built-in exception class that support exception

handling. Every

exception class is suitable to explain certain error situations at run

time. All the built-in exception classes in Java were defined a

package java.lang. Few built-in exceptions in Java are shown in the

following image.

CSE/NRCM

CSE/NRCM

List of checked exceptions in Java

S. No. Exception Class with Description

1 ClassNotFoundException

It is thrown when the Java Virtual Machine (JVM) tries to load a particular class and the specified class

cannot be found in the classpath.

2 CloneNotSupportedException

Used to indicate that the clone method in class Object has been called to clone an object, but that the

object's class does not implement the Cloneable interface.

3 IllegalAccessException

It is thrown when one attempts to access a method or member that visibility qualifiers do not allow.

4 InstantiationException

It is thrown when an application tries to create an instance of a class using the newInstance method in

class Class , but the specified class object cannot be instantiated because it is an interface or is an

abstract class.

5 InterruptedException

It is thrown when a thread that is sleeping, waiting, or is occupied is interrupted.

6 NoSuchFieldException

It indicates that the class doesn't have a field of a specified name.

7 NoSuchMethodException

It is thrown when some JAR file has a different version at runtime that it had at compile time, a

NoSuchMethodException occurs during reflection when we try to access a method that does not exist.

List of unchecked exceptions in Java
S. No. Exception Class with Description

1 ArithmeticException

It handles the arithmetic exceptions like dividion by zero

2 ArrayIndexOutOfBoundsException

It handles the situations like an arrayhas been accessed with an illegal index. The index is either negative or greater than or equal to the size of the

array.

3 ArrayStoreException

It handles the situations like when an attempt has been made to store the wrong type of object into an arrayof objects

4 AssertionError

It is used to indicate that an assertion has failed

5 ClassCastException

It handles the situation when we try to improperly cast a class from one type to another.

6 IllegalArgumentException

This exception is thrown in order to indicate that a method has been passed an illegal or inappropriateargument.

7 IllegalMonitorStateException

This indicates that the calling thread has attempted to wait on an object's monitor, or has attempted to notify other threads that wait on an object's

monitor, without owning the specified monitor.

8 IllegalStateException

It signals that a method has been invoked at an illegal or inappropriatetime.

9 IllegalThreadStateException

It is thrown by the Java runtime environment, when the programmer is trying to modify the stateof the thread when it is illegal.

10 IndexOutOfBoundsException

It is thrown when attempting to access an invalid index within a collection, such as an array, vector , string , and so forth.

11 NegativeArraySizeException

It is thrown if an applet tries to create an arraywith negative size.

12 NullPointerException

it is thrown when program attempts to use an object reference that has the null value.

13 NumberFormatException

It is thrown when we try to convert a string into a numeric value such as float or integer, but the format of the input string is not appropriateor illegal.

14 SecurityException

It is thrown by the Java CardVirtualMachine to indicate a security violation.

15 StringIndexOutOfBounds

It is thrown by the methods of the String class, in order to indicate that an index is either negative, or greater than the size of the string itself.

16
UnsupportedOperationException

sted operation is not supCporStedE. /NRCM
It is thrown to indicate that the reque

CREATING OWN EXCEPTIONS IN

JAVAThe Java programming language allows us to create our own exception classes which are

basically

subclasses built-in class Exception.

To create our own exception class simply creates a class as a subclass of built-in

Exception class. We may create constructor in the user-defined exception class and pass

a string to Exception class constructor using super(). We can use getMessage() method

to access the string.

CSE/NRCM

CSE/NRCM

MULTITHREADING IN JAVA
The java programming language allows us to create a program that contains one or more parts

that can run simultaneously at the same time. This type of program is known as a multithreading

program. Each part of this program is called a thread. Every thread defines a separate path of

execution in java. A thread is explained in different ways, and a few of them are as specified

below.

A thread is a light wieght process.

A thread may also be defined as follows.

A thread is a subpart of a process that can run individually.

In java, multiple threads can run at a time, which enables the java to write multitasking

programs. The multithreading is a specialized form of multitasking. All modern operating

systems support multitasking. There are two types of multitasking, and they are as follows.

Process-based multitasking

Thread-based multitasking

It is important to know the difference between process-based and thread-based multitasking.

Let's

distinguish both.

CSE/NRCM

Process-based multitasking Vs Thread-based

multitasking

Process-based multitasking Thread-based multitasking

It allows the computer to run two or more

programs concurrently

It allows the computer to run two or

more threads concurrently

In this process is the smallest unit. In this thread is the smallest unit.

Process is a larger unit. Thread is a part of process.

Process is heavy weight. Thread is light weight.

Process requires seperate address space for

each.

Threads share same address space.

Process never gain access over idle time of

CPU.

Thread gain access over idle time of

CPU.

Inter process communication is expensive. Inter thread communication is not

expensive.

JAVA THREAD MODEL
In java, a thread goes through different states throughout its execution. These stages are called

thread life cycle states or phases. A thread may in any of the states like new, ready or runnable,

running, blocked or wait, and dead or terminated state. The life cycle of a thread in java is shown

in the following figure.

CSE/NRCM

CREATING THREADS IN JAVA
In java, a thread is a lightweight process. Every java program executes by a thread called the

main thread. When a java program gets executed, the main thread created automatically. All

other threads called from the main thread.

The java programming language provides two methods to create threads, and they are listed

below.

 Using Thread class (by extending Thread class)

 Uisng Runnable interface (by implementing Runnable interface)

Extending Thread class

The java contains a built-in class Thread inside the java.lang package. The Thread class contains

all the

methods that are related to the threads.

To create a thread using Thread class, follow the step given below.

Step-1: Create a class as a child of Thread class. That means, create a class that extends

Thread class. Step-2: Override the run() method with the code that is to be executed by the

thread. The run() method must be public while overriding.

Step-3: Create the object of the newly created class in the main() method.

Step-4: Call the start() method on the object created in the above step.

CSE/NRCM

CREATING THREADS IN JAVA
Implementing Runnable interface

The java contains a built-in interface Runnable inside the java.lang package. The Runnable

interface

implemented by the Thread class that contains all the methods that are related to the

threads. To create a thread using Runnable interface, follow the step given below.

Step-1: Create a class that implements Runnable interface.

Step-2: Override the run() method with the code that is to be executed by the thread. The run()

method

must be public while overriding.

Step-3: Create the object of the newly created class in the main() method.

Step-4: Create the Thread class object by passing above created object as parameter to the

Thread class

constructor.

Step-5: Call the start() method on the Thread class object created in the above step.

CSE/NRCM

More about Thread class
The Thread class in java is a subclass of Object class and it implements Runnable interface.

The Thread

class is available inside the java.lang package. The Thread class has the following syntax.

class Thread extends Object implements Runnable{

...

}

The Thread class has the following consructors.

 Thread()

 Thread(String threadName)

 Thread(Runnable objectName)

 Thread(Runnable objectName, String threadName)

CSE/NRCM

Thread class methods.
Method Description Return

Value

run() Defines actual task of the thread. void

start() It moves thre thread from Ready state to Running state by calling

run() method.

void

setName(String) Assigns a name to the thread. void

getName() Returns the name of the thread. String

setPriority(int) Assigns priority to the thread. void

getPriority() Returns the priority of the thread. int

getId() Returns the ID of the thread. long

activeCount() Returns total number of thread under active. int

currentThread() Returns the reference of the thread that currently in running

state.
void

sleep(long) moves the thread to blocked state till the specified number of

milliseconds.
void

isAlive() Tests if the thread is alive. boolean

yield() Tells to the scheduler that the current thread is willing to yield its

current use of a processor.

void

join() Waits for the thread to end. void

CSE/NRCM

JAVA THREAD PRIORITY
In a java programming language, every thread has a property called priority. Most of the

scheduling algorithms use the thread priority to schedule the execution sequence. In java, the

thread priority range from 1 to 10. Priority 1 is considered as the lowest priority, and priority 10 is

considered as the highest priority. The thread with more priority allocates the processor first.

The java programming language Thread class provides two methods setPriority(int), and

getPriority() to handle thread priorities.

The Thread class also contains three constants that are used to set the thread priority, and they

are listed

below.

MAX_PRIORITY - It has the value 10 and indicates highest

priority. NORM_PRIORITY - It has the value 5 and indicates

normal priority. MIN_PRIORITY - It has the value 1 and

indicates lowest priority.

🔔 The default priority of any thread is 5 (i.e. NORM_PRIORITY).

setPriority() method

The setPriority() method of Thread class used to set the priority of a thread. It takes an integer

range from 1 to 10 as an argument and returns nothing (void).

The regular use of the setPriority() method is as follows.

CSE/NRCM

JAVA THREAD

SYNCHRONISATIONThe java programming language supports multithreading. The problem of shared resources

occurs when two or more threads get execute at the same time. In such a situation, we need

some way to ensure that the shared resource will be accessed by only one thread at a time, and

this is performed by using the concept called synchronization.

🔔 The synchronization is the process of allowing only one thread to access a shared resource at

a time.

In java, the synchronization is achieved using the following concepts.

Mutual Exclusion

 Inter thread communication

Mutual Exclusion

Using the mutual exclusion process, we keep threads from interfering with one another

while they accessing the shared resource. In java, mutual exclusion is achieved using the

following concepts. Synchronized method

Synchronized block

Synchronized method

When a method created using a synchronized keyword, it allows only one object to access it at a

time. When an object calls a synchronized method, it put a lock on that method so that other

objects or thread that are trying to call the same method must wait, until the lock is released.

Once the lock is released on the shared resource, one of the threads among the waiting threads

will be allocated to the shared resource.

Synchronized block
The synchronized block is used when we want to synchronize only a specific sequence of lines in

a method. For example, let's consider a method with 20 lines of code where we want to

synchronize only a sequence of 5 lines code, we use the synchronized block.

The folllowing syntax is used to define a synchronized block.

Syntax

synchronized(object){

...

block code

...

}

CSE/NRCM

CSE/NRCM

JAVA INTER THREAD

COMMUNICATIONInter thread communication is the concept where two or more threads communicate to solve the

problem of polling. In java, polling is the situation to check some condition repeatedly, to take

appropriate action, once the condition is true. That means, in inter-thread communication, a thread

waits until a condition becomes true such that other threads can execute its task. The inter-thread

communication allows the synchronized threads to communicate with each other.

Java provides the following methods to achieve inter thread communication.

wait()

notify()

notifyAll()

The following table gives detailed description about the above methods.

🔔 Calling notify() or notifyAll() does not actually give up a lock on a

resource.

Method Description

void wait() It makes the current thread to pause its execution until other thread in the same

monitor calls notify()

void notify() It wakes up the thread that called wait() on the same object.

void notifyAll() It wakes up all the threads that called wait() on the same object.

CSE/NRCM

UNIT – IV

EVENT

HANDLING

CSE/NRCM

EVENT HANDLING

Changing the state of an object is known as an event. For example, click on button, dragging

mouse etc. The

java.awt.event package provides many event classes and Listener interfaces for event handling.

Java Event classes and Listener interfacesEvent Classes Listener Interfaces

ActionEvent ActionListener

MouseEvent MouseListener and MouseMotionListener

MouseWheelEven
t

MouseWheelListener

KeyEvent KeyListener

ItemEvent ItemListener

TextEvent TextListener

AdjustmentEvent AdjustmentListener

WindowEvent WindowListener

ComponentEvent ComponentListener

ContainerEvent ContainerListener

FocusEvent FocusListener

CSE/NRCM

EVENT HANDLING

To perform Event Handling, we need to register the source with the listener. For registering the

component

with the Listener, many classes provide the registration methods. For example:

Button

public void addActionListener(ActionListener a){}

MenuItem

public void addActionListener(ActionListener a){}

TextField

public void addActionListener(ActionListener

a){} public void addTextListener(TextListener

a){}

TextArea

public void addTextListener(TextListener a){}

Checkbox

public void addItemListener(ItemListener a){}

Choice

public void addItemListener(ItemListener a){}

List

public void addActionListener(ActionListener a){}

public void addItemListener(ItemListener a){}

Delegation Event Model in Java

The Delegation Event model is defined to handle events in GUI programming languages. The GUI

stands for

Graphical User Interface, where a user graphically/visually interacts with the system.

The GUI programming is inherently event-driven; whenever a user initiates an activity such as a

mouse activity, clicks, scrolling, etc., each is known as an event that is mapped to a code to

respond to functionality to the user. This is known as event handling.

Event Processing in Java

Java support event processing since Java 1.0. It provides support for AWT (Abstract Window

Toolkit), which is an API used to develop the Desktop application. In Java 1.0, the AWT was based

on inheritance. To catch and process GUI events for a program, it should hold subclass GUI

components and override action() or handleEvent() methods. The below image demonstrates the

event processing.

CSE/NRCM

CSE/NRCM

Delegation Event Model in Java

The key advantage of the Delegation Event Model is that the application logic is completely

separated from

the interface logic.

In this model, the listener must be connected with a source to receive the event notifications. Thus,

the events will only be received by the listeners who wish to receive them. So, this approach is more

convenient than the inheritance-based event model (in Java 1.0).

In the older model, an event was propagated up the containment until a component was

handled. This needed components to receive events that were not processed, and it took lots of

time. The Delegation Event model overcame this issue.

Basically, an Event Model is based on the following three components:

Events

Events Sources

Events Listeners

CSE/NRCM

Delegation Event Model in Java

Events

The Events are the objects that define state change in a source. An event can be generated as a

reaction of a user while interacting with GUI elements. Some of the event generation activities are

moving the mouse pointer, clicking on a button, pressing the keyboard key, selecting an item from

the list, and so on. We can also consider many other user operations as events.

The Events may also occur that may be not related to user interaction, such as a timer expires,

counter

exceeded, system failures, or a task is completed, etc. We can define events for any of the applied

actions.

Event Sources

A source is an object that causes and generates an event. It generates an event when the internal

state of

the object is changed. The sources are allowed to generate several different types of events.

A source must register a listener to receive notifications for a specific event. Each event contains its

registration method. Below is an example:

public void addTypeListener (TypeListener e1)

CSE/NRCM

Delegation Event Model in Java

Event Listeners

An event listener is an object that is invoked when an event triggers. The listeners require two

things; first, it must be registered with a source; however, it can be registered with several resources

to receive notification about the events. Second, it must implement the methods to receive and

process the received notifications. The methods that deal with the events are defined in a set of

interfaces. These interfaces can be found in the java.awt.event package.

For example, the MouseMotionListener interface provides two methods when the mouse is

dragged and moved. Any object can receive and process these events if it implements the

MouseMotionListener interface.

Types of Events

The events are categories into the following two categories:

The Foreground Events:

The foreground events are those events that require direct interaction of the user. These types of

events are generated as a result of user interaction with the GUI component. For example, clicking

on a button, mouse movement, pressing a keyboard key, selecting an option from the list, etc.

The Background Events :

The Background events are those events that result from the interaction of the end-user. For

example, an

Operating system interrupts system failure (Hardware or Software).

To handle these events, we need an event handling mechanism that provides control over the

events and

responses.

CSE/NRCM

HANDLING MOUSE EVENTS

Java MouseListener Interface

The Java MouseListener is notified whenever you change the state of mouse. It is notified

against

MouseEvent. The MouseListener interface is found in java.awt.event package. It has five

methods.

Methods of MouseListener interface

The signature of 5 methods found in MouseListener interface are given below:

public abstract void mouseClicked(MouseEvent

e); public abstract void

mouseEntered(MouseEvent e); public abstract

void mouseExited(MouseEvent e); public

abstract void mousePressed(MouseEvent e);

public abstract void

mouseReleased(MouseEvent e);

CSE/NRCM

HANDLING OF KEYBOARD EVENTS

Java KeyListener Interface

The Java KeyListener is notified whenever you change the state of key. It is notified against

KeyEvent. The

KeyListener interface is found in java.awt.event package, and it has three methods.

Interface declaration

Following is the declaration for java.awt.event.KeyListener interface:

public interface KeyListener extends EventListener

Methods of KeyListener interface

The signature of 3 methods found in KeyListener interface are given below:

Methods inherited

This interface inherits methods from the following

interface:

java.awt.EventListener

Sr. no. Method name Description

1. public abstract void keyPressed (KeyEvent e); It is invoked when a key has been pressed.

2. public abstract void keyReleased (KeyEvent
e);

It is invoked when a key has been
released.

3. public abstract void keyTyped (KeyEvent e); It is invoked when a key has been typed.

CSE/NRCM

Jbutton

Jbutton

The JButton class is used to create a labeled button that has platform independent

implementation. The

application result in some action when the button is pushed. It inherits AbstractButton class.

JButton class declaration

public class JButton extends AbstractButton implements Accessible

Commonly used Constructors:

Commonly used Methods of

AbstractButton class:

Constructor Description

JButton() It creates a buttonwith no text and icon.

JButton(String s) It creates a button with the specified text.

JButton(Iconi) It creates a buttonwith the specified icon object.

Methods Description

void setText(String s) It is used to set specified text on button

String getText() It is used to return the text of the button.

void setEnabled(boolean b) It is used to enable or disable the button.

void setIcon(Iconb) It is used to set the specified Icon on the button.

Icon getIcon() It is used to get the Icon of the button.

void setMnemonic(int a) It is used to set the mnemonic on the button.

void addActionListener(ActionListener a) It is used to add the action listener to this object.

https://www.javatpoint.com/java-actionlistener

CSE/NRCM

JCheckBox

The JCheckBox class is used to create a checkbox. It is used to turn an option on (true) or off

(false). Clicking

on a CheckBox changes its state from "on" to "off" or from "off" to "on ".It inherits JToggleButton

class.

JCheckBox class declaration

Let's see the declaration for javax.swing.JCheckBox class.

public class JCheckBox extends JToggleButton implements Accessible

Commonly used Constructors:

Commonly used

Methods:

Constructor Description

JJCheckBox() Creates an initially unselected check box button with no

text, no icon.

JChechBox(String s) Creates an initially unselected check box with text.

JCheckBox(String text,

boolean selected)

Creates a check box with text and specifies whether or not

it is initially selected.

JCheckBox(Action a) Creates a check box where properties are taken from the

Action supplied.

Methods Description

AccessibleContext

getAccessibleContext()

It is used to get the AccessibleContext associated with

this JCheckBox.

protectedString paramString() It returns a string representation of this JCheckBox.

https://www.javatpoint.com/java-string

CSE/NRCM

JRadioButton

The JRadioButton class is used to create a radio button. It is used to choose one option from

multiple

options. It is widely used in exam systems or quiz.

It should be added in ButtonGroup to select one radio button only.

JRadioButton class declaration

Let's see the declaration for javax.swing.JRadioButton class.

public class JRadioButton extends JToggleButton implements Accessible

Commonly used Constructors:

Commonly used

Methods:

Constructor Description

JRadioButton() Creates an unselected radio buttonwith no text.

JRadioButton(String s) Creates an unselected radio buttonwith specified text.

JRadioButton(String s, boolean

selected)

Creates a radio buttonwith the specified text and

selected status.

Methods Description

void setText(String s) It is used to set specified text on button.

String getText() It is used to return the text of the button.

void setEnabled(boolean b) It is used to enable or disable the button.

void setIcon(Icon b) It is used to set the specified Icon on the button.

Icon getIcon() It is used to get the Icon of the button.

void setMnemonic(int a) It is used to set the mnemonic on the button.

void addActionListener(ActionListener a) It is used to add the action listener to this object.

JOptionPane (Dialogs)

The JOptionPane class is used to provide standard dialog boxes such as message dialog box,

confirm dialog box and input dialog box. These dialog boxes are used to display information or get

input from the user. The JOptionPane class inherits JComponent class.

JOptionPane class declaration

public class JOptionPane extends JComponent implements Accessible

Common Constructors of JOptionPane class

Common Methods of JOptionPane

class

Constructor Description

JOptionPane() It is used to create a JOptionPane with a test message.

JOptionPane(Object

message)

It is used to create an instance of JOptionPane to display a

message.

JOptionPane(Object

message, int messageType

It is used to create an instance of JOptionPane to display a

message with specified message type and default options.

Methods Description

JDialog createDialog(String title) It is used to create and return a new parentless JDialog with the

specified title.

static void showMessageDialog(Component parentComponent, Object message) It is used to create an information-message dialog titled "Message".

static void showMessageDialog(Component parentComponent, Object message,

String title, int messageType)

It is used to create a message dialog with given title and messageType.

static int showConfirmDialog(Component parentComponent, Object message) It is used to create a dialog with the options Yes, No and Cancel; with

the title, Select an Option.

static String showInputDialog(Component parentComponent, Object message) It is used to show a question-message dialog requesting input from the

user parented to parentComponent.
void setInputValue(Object newValue) CSE/NRCItMis used to set the input value that was selected or input by the user.

JAVA LIST INTERFACE
The List interface is a child interface of the

Collection interface. The List interface is

available inside the java.util package. It

defines the methods that are commonly

used by classes like ArrayList, LinkedList,

Vector, and Stack.

🔔 The List interface

extends Collection interface.

🔔 The List interface allows duplicate

elements.
🔔 The List interface preserves the order of

insertion.

🔔 The List allows to access the elements

based
on the index value that starts with zero.

CSE/NRCM

JAVA QUEUE INTERFACE
The Queue interface is a child interface of

the Collection interface. The Queue

interface is available inside the java.util

package. It defines the methods that are

commonly used by classes like

PriorityQueue and ArrayDeque.

The Queue is used to organize a sequence

of
elements prior to the actual operation.

🔔 The Queue interface

extends Collection interface.

🔔 The Queue interface allows duplicate
elements.

🔔 The Queue interface preserves the
order of insertion.

The Queue interface defines the following

methods.

CSE/NRCM

JAVA DEQUE INTERFACE
The Deque interface is a child interface of

the Queue interface. The Deque interface is

available inside the java.util package. It

defines the methods that are used by class

ArrayDeque.

🔔 The Deque interface

extends Queue interface.

🔔 The Deque interface allows
duplicate elements.
🔔 The Deque interface preserves the order
of
insertion.

The Deque interface defines the following

methods.

CSE/NRCM

JAVA SORTEDSET INTERFACE
Set Interface

The Set interface is a child interface of

Collection interface. It does not defines any

additional methods of it, it has all the

methods that are inherited from Collection

interface. The Set interface does not allow

duplicates. Set is a generic interface.

SortedSet Interface

The SortedSet interface is a child interface

of the Set interface. The SortedSet interface

is available inside the java.util package. It

defines the methods that are used by

classes HashSet, LinkedHashSet, and

TreeSet.

🔔 The SortedSet interface extends Set

interface.

🔔 The SortedSet interface does not
allow duplicate elements.
🔔 The SortedSet interface organise the
elements based on the ascending order.

The SortedSet interface defines the following

methods.

CSE/NRCM

JAVA NAVIGABLESET INTERFACE
The NavigableSet interface is a child

interface of the SortedSet interface. The

NavigableSet interface is available inside the

java.util package. It defines the methods

that are used by class TreeSet.

🔔 The NavigableSet interface

extends SortedSet interface.

🔔 The SortedSet interface does not allow

duplicate elements.

🔔 The SortedSet interface organise the

elements based on the ascending order.
The NavigableSet interface defines several

utility methods that are used in the TreeSet

class and they are as follows.

CSE/NRCM

JAVA ARRAYLIST CLASS
The ArrayList class is a part of java collection framework. It is available inside the java.util

package. The

ArrayList class extends AbstractList class and implements List interface.

The elements of ArrayList are organized as an array internally. The default size of an ArrayList

is 10.

The ArrayList class is used to create a dynamic array that can grow or shrunk as needed.

🔔 The ArrayList is a child class of AbstractList

🔔 The ArrayList implements interfaces like List, Serializable, Cloneable, and

RandomAccess.

🔔 The ArrayList allows to store duplicate data values.

🔔 The ArrayList allows to access elements randomly using index-based accessing.

🔔 The ArrayList maintains the order of insertion.

ArrayList class declaration

The ArrayList class has the following declaration.

Example

public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess,

Cloneable,

Serializable

ArrayList class constructors

The ArrayList class has the following constructors.

ArrayList() - Creates an empty ArrayList.

CSE/NRCM

JAVA ARRAYLIST CLASS
Operations on ArrayList

The ArrayList class allow us to perform several operations like adding, accesing, deleting,

updating,

looping, etc. Let's look at each operation with examples.

Adding Items

The ArrayList class has the following methods to add items.

boolean add(E element) - Appends given element to the ArrayList.

boolean addAll(Collection c) - Appends given collection of elements to the ArrayList.

void add(int index, E element) - Inserts the given element at specified index.

boolean addAll(int index, Collection c) - Inserts the given collection of elements at

specified index.

Accessing Items

The ArrayList class has the following methods to access items.

E get(int index) - Returns element at specified index from the ArrayList.

ArrayList subList(int startIndex, int lastIndex) - Returns an ArrayList that contails elements

from

specified startIndex to lastIndex-1 from the invoking ArrayList.

int indexOf(E element) - Returns the index value of given element first occurence in the

ArrayList.

int lastIndexOf(E element) - Returns the index value of given element last occurence in the

ArrayList.

CSE/NRCM

JAVA ARRAYLIST CLASS
Updating Items

The ArrayList class has the following methods to update or change items.

E set(int index, E newElement) - Replace the element at specified index with

newElement in the invoking ArrayList.

ArrayList replaceAll(UnaryOperator e) - Replaces each element of invoking ArrayList with

the result of applying the operator to that element.

Removing Items

The ArrayList class has the following methods to remove items.

E remove(int index) - Removes the element at specified index in the invoking ArrayList.

boolean remove(Object element) - Removes the first occurence of the given element from the

invoking

ArrayList.

boolean removeAll(Collection c) - Removes the given collection of elements from the

invoking ArrayList.

void retainAll(Collection c) - Removes all the elements except the given collection of elements

from the

invoking ArrayList.

boolean removeIf(Predicate filter) - Removes all the elements from the ArrayList that satisfies

the given

predicate.

void clear() - Removes all the elements from the ArrayList.

CSE/NRCM

JAVA LINKEDLIST CLASS
The LinkedList class is a part of java collection framework. It is available inside the

java.util package. The LinkedList class extends AbstractSequentialList class and

implements List and Deque interface. The elements of LinkedList are organized as the

elements of linked list data structure.

The LinkedList class is used to create a dynamic list of elements that can grow or shrunk as

needed.

🔔 The LinkedList is a child class of AbstractSequentialList

🔔 The LinkedList implements interfaces like List, Deque, Cloneable, and Serializable.

🔔 The LinkedList allows to store duplicate data values.

🔔 The LinkedList maintains the order of insertion.

LinkedList class declaration

The LinkedList class has the following declaration.

Example

public class LinkedList<E> extends AbstractSequentialList<E> implements List<E>, Deque<E>,

Cloneable, Serializable

LinkedList class constructors

The LinkedList class has the following constructors.

LinkedList() - Creates an empty List.

LinkedList(Collection c) - Creates a List with given collection of elements.

CSE/NRCM

Operations on LinkedList
The LinkedList class allow us to perform several operations like adding, accesing, deleting,

updating,

looping, etc. Let's look at each operation with examples.

Adding Items

The LinkedList class has the following methods to add items.

boolean add(E element) - Appends given element to the List.

boolean addAll(Collection c) - Appends given collection of elements to the List.

void add(int position, E element) - Inserts the given element at specified position.

boolean addAll(int position, Collection c) - Inserts the given collection of elements at

specified

position.

void addFirst(E element) - Inserts the given element at beggining of

the list. void addLast(E element) - Inserts the given element at end

of the list. boolean offer(E element) - Inserts the given element at

end of the list.

boolean offerFirst(E element) - Inserts the given element at beggining of the list.

boolean offerLast(E element) - Inserts the given element at end of the list.

void push(E element) - Inserts the given element at beggining of the list.

CSE/NRCM

Operations on LinkedList
Accessing Items

The LinkedList class has the following methods to access items.

E get(int position) - Returns element at specified position from the LinkedList.

E element() - Returns the first element from the invoking

LinkedList. E getFirst() - Returns the first element from the

invoking LinkedList. E getLast() - Returns the last element

from the invoking LinkedList.

E peek() - Returns the first element from the invoking LinkedList.

E peekFirst() - Returns the first element from the invoking LinkedList, and returns null if list is

empty. E peekLast() - Returns the last element from the invoking LinkedList, and returns null

if list is empty. int indexOf(E element) - Returns the index value of given element first

occurence in the LinkedList. int lastIndexOf(E element) - Returns the index value of given

element last occurence in the LinkedList. E pop() - Returns the first element from the

invoking LinkedList.

Updating Items

The LinkedList class has the following methods to update or change items.

E set(int index, E newElement) - Replace the element at specified index with

newElement in the invoking LinkedList.

CSE/NRCM

Operations on LinkedList
Removing Items

The LinkedList class has the following methods to remove items.

E remove() - Removes the first element from the invoking LinkedList.

E remove(int index) - Removes the element at specified index in the invoking

LinkedList. boolean remove(Object element) - Removes the first occurrence of the

given element from the invoking LinkedList.

E removeFirst() - Removes the first element from the invoking LinkedList.

E removeLast() - Removes the last element from the invoking LinkedList.

boolean removeFirstOccurrence(Object element) - Removes from the first occurrence of

the given

element from the invoking LinkedList.

boolean removeLastOccurrence(Object element) - Removes from the last occurrence of

the given

element from the invoking LinkedList.

E poll() - Removes the first element from the LinkedList, and returns null if the list is

empty.

E pollFirst() - Removes the first element from the LinkedList, and returns null if the list

is empty. E pollLast() - Removes the last element from the LinkedList, and returns null

if the list is empty. E pop() - Removes the first element from the LinkedList.

void clear() - Removes all the elements from the LinkedList.

CSE/NRCM

JAVA PRIORITYQUEUE CLASS
The PriorityQueue class is a part of java collection framework. It is

available inside the java.util package. The PriorityQueue class extends

AbstractQueue class and implements Serializable interface.

The elements of PriorityQueue are organized as the elements of queue data structure, but it

does not follow FIFO principle. The PriorityQueue elements are organized based on the

priority heap.

The PriorityQueue class is used to create a dynamic queue of elements that can grow or

shrunk as

needed.

🔔 The PriorityQueue is a child class of AbstractQueue

🔔 The PriorityQueue implements interface Serializable.

🔔 The PriorityQueue allows to store duplicate data values, but not null values.

🔔 The PriorityQueue maintains the order of insertion.

🔔 The PriorityQueue used priority heap to organize its elements.

PriorityQueue class declaration

The PriorityQueue class has the following declaration.

Example

public class PriorityQueue<E> extends AbstractQueue<E> implements Serializable

CSE/NRCM

JAVA PRIORITYQUEUE CLASS
PriorityQueue class constructors

The PriorityQueue class has the following constructors.

PriorityQueue() - Creates an empty PriorityQueue with the default initial capacity (11) that

orders its elements according to their natural ordering.

PriorityQueue(Collection c) - Creates a PriorityQueue with given collection of elements.

PriorityQueue(int initialCapacity) - Creates an empty PriorityQueue with the specified initial

capacity. PriorityQueue(int initialCapacity, Comparator comparator) - Creates an empty

PriorityQueue with the specified initial capacity that orders its elements according to the

specified comparator.

PriorityQueue(PriorityQueue pq) - Creates a PriorityQueue with the elements in the specified

priority

queue.

PriorityQueue(SortedSet ss) - Creates a PriorityQueue with the elements in the specified

SortedSet.

Operations on PriorityQueue

The PriorityQueue class allow us to perform several operations like adding, accesing, deleting,

updating,

looping, etc. Let's look at each operation with examples.

Adding Items

The PriorityQueue class has the following methods to add items.

boolean add(E element) - Appends given element to the PriorityQueue.

boolean addAll(Collection c) - Appends given collection of elements to the PriorityQueue.

boolean offer(E element) - Appends given element to the PriorityQueue.

CSE/NRCM

JAVA PRIORITYQUEUE CLASS
Accessing Items

The PriorityQueue class has the following methods to access items.

E element() - Returns the first element from the invoking PriorityQueue.

E peek() - Returns the first element from the invoking PriorityQueue, returns null if this queue is

empty.

Updating Items

The PriorityQueue class has no methods to update or change items.

Removing Items

The PriorityQueue class has the following methods to remove items.

E remove() - Removes the first element from the invoking PriorityQueue.

boolean remove(Object element) - Removes the first occurrence of the given element from the

invoking PriorityQueue.

boolean removeAll(Collection c) - Removes all the elements of specified collection from

the invoking PriorityQueue.

boolean removeIf(Predicate p) - Removes all of the elements of this collection that satisfy the

given

predicate.

boolean retainAll(Collection c) - Removes all the elements except those are in the specified

collection

from the invoking PriorityQueue.

E poll() - Removes the first element from the PriorityQueue, and returns null if the list is empty.

void clear() - Removes all the elements from the PriorityQueue.

CSE/NRCM

JAVA ARRAYDEQUE CLASS
The ArrayDeque class is a part of java collection framework. It is available inside the java.util

package.

The ArrayDeque class extends AbstractCollection class and implements Deque, Cloneable,

and Serializable interfaces.

The elements of ArrayDeque are organized as the elements of double ended queue data

structure. The ArrayDeque is a special kind of array that grows and allows users to add or

remove an element from both the sides of the queue.

The ArrayDeque class is used to create a dynamic double ended queue of elements that can

grow or

shrunk as needed.

🔔 The ArrayDeque is a child class of AbstractCollection

🔔 The ArrayDeque implements interfaces like Deque, Cloneable, and Serializable.

🔔 The ArrayDeque allows to store duplicate data values, but not null values.

🔔 The ArrayDeque maintains the order of insertion.

🔔 The ArrayDeque allows to add and remove elements at both the ends.

🔔 The ArrayDeque is faster than LinkedList and Stack.

ArrayDeque class declaration

The ArrayDeque class has the following declaration.

Example

public class ArrayDeque<E> extends AbstractCollection<E> implements Deque<E>,

Cloneable,

Serializable

CSE/NRCM

JAVA ARRAYDEQUE CLASS
ArrayDeque class constructors

The PriorityQueue class has the following constructors.

ArrayDeque() - Creates an empty ArrayDeque with the default initial capacity (16).

ArrayDeque(Collection c) - Creates a ArrayDeque with given collection of elements.

ArrayDeque(int initialCapacity) - Creates an empty ArrayDeque with the specified initial

capacity.

Operations on ArrayDeque

The ArrayDeque class allow us to perform several operations like adding, accesing, deleting,

updating, looping, etc. Let's look at each operation with examples.

Adding Items

The ArrayDeque class has the following methods to add items.

boolean add(E element) - Appends given element to the ArrayDeque.

boolean addAll(Collection c) - Appends given collection of elements to the ArrayDeque.

void addFirst(E element) - Adds given element at front of the

ArrayDeque. void addLast(E element) - Adds given element at end

of the ArrayDeque. boolean offer(E element) - Adds given element

at end of the ArrayDeque.

boolean offerFirst(E element) - Adds given element at front of the

ArrayDeque. boolean offerLast(E element) - Adds given element at end

of the ArrayDeque. void push(E element) - Adds given element at front

of the ArrayDeque.

CSE/NRCM

JAVA ARRAYDEQUE CLASS
Accessing Items

The ArrayDeque class has the following methods to access items.

E element() - Returns the first element from the invoking

ArrayDeque. E getFirst() - Returns the first element from the

invoking ArrayDeque. E getLast() - Returns the last element

from the invoking ArrayDeque.

E peek() - Returns the first element from the invoking ArrayDeque, returns null if this queue is

empty. E peekFirst() - Returns the first element from the invoking ArrayDeque, returns null if

this queue is empty.

E peekLast() - Returns the last element from the invoking ArrayDeque, returns null if this

queue is

empty.

JAVA ARRAYDEQUE CLASS
Updating Items

The ArrayDeque class has no methods to update or change items.

Removing Items

The ArrayDeque class has the following methods to remove items.

E remove() - Removes the first element from the invoking ArrayDeque.

E removeFirst() - Removes the first element from the invoking ArrayDeque.

E removeLast() - Removes the last element from the invoking ArrayDeque.

boolean remove(Object o) - Removes the specified element from the invoking ArrayDeque.

boolean removeFirstOccurrence(Object o) - Removes the first occurrence of the specified

element in

this ArrayDeque.

boolean removeLastOccurrence(Object o) - Removes the last occurrence of the specified

element in

this ArrayDeque.

boolean removeIf(Predicate p) - Removes all of the elements of ArrayDeque collection that

satisfy the

given predicate.

boolean retainAll(Collection c) - Removes all of the elements of ArrayDeque collection

except specified collection of elements.

E poll() - Removes the first element from the ArrayDeque, and returns null if the list is empty.

E pollFirst() - Removes the first element from the ArrayDeque, and returns null if the list

is empty. E pollLast() - Removes the last element from the ArrayDeque, and returns null

if the list is empty. E pop() - Removes the first element from the ArrayDeque.

CSE/NRCM

JAVA HASHSET CLASS
The HashSet class is a part of java collection framework. It is available inside the java.util

package. The

HashSet class extends AbstractSet class and implements Set interface.

The elements of HashSet are organized using a mechanism called hashing. The HashSet is

used to create hash table for storing set of elements.

The HashSet class is used to create a collection that uses a hash table for storing set of

elements.

🔔 The HashSet is a child class of AbstractSet

🔔 The HashSet implements interfaces like Set, Cloneable, and Serializable.

🔔 The HashSet does not allows to store duplicate data values, but null values are allowed.

🔔 The HashSet does not maintains the order of insertion.

🔔 The HashSet initial capacity is 16 elements.

🔔 The HashSet is best suitable for search operations.

HashSet class declaration

The HashSet class has the following declaration.

Example

public class HashSet<E> extends AbstractSet<E> implements Set<E>, Cloneable, Serializable

CSE/NRCM

JAVA HASHSET CLASS
HashSet class constructors

The HashSet class has the following constructors.

HashSet() - Creates an empty HashSet with the default initial capacity (16).

HashSet(Collection c) - Creates a HashSet with given collection of elements.

HashSet(int initialCapacity) - Creates an empty HashSet with the specified initial

capacity. HashSet(int initialCapacity, float loadFactor) - Creates an empty HashSet

with the specified initial capacity and loadFactor.

Operations on HashSet

The HashSet class allow us to perform several operations like adding, accesing, deleting,

updating,

looping, etc. Let's look at each operation with examples.

Adding Items

The HashSet class has the following methods to add items.

boolean add(E element) - Inserts given element to the HashSet.

boolean addAll(Collection c) - Inserts given collection of elements to the HashSet.

CSE/NRCM

MAP INTERFACE CLASSES IN JAVA

The java collection framework has an interface Map that is available inside the java.util

package. The

Map interface is not a subtype of Collection interface.

The Map interface has the following three classes.

Commonly used methods defined by Map

interface

Class Description

HashMap It implements the Map interface, but it doesn't maintain any order.

LinkedHashMap It implements the Map interface, it also extends HashMap class. It maintains the insertion order.

TreeMap It implements the Map and SortedMap interfaces. It maintains the ascending order.

Method Description

Object put(Object k, Object v) It performs an entry into the Map.

Object putAll(Map m) It inserts all the entries of m into invoking Map.

Object get(Object k) It returns the value associated with given key.

boolean containsKey(Object k) It returns true if map contain k as key. Otherwise false.

Set keySet() It returns a set that contains all the keys from the invoking Map.

Set valueSet() It returns a set that contains all the values from the invoking Map.

Set entrySet() It returns a set that contains all the entries from the invoking Map.

CSE/NRCM

HashMap Class

The HashMap class is a child class of AbstractMap, and it implements the Map interface. The

HashMap

is used to store the data in the form of key, value pair using hash table concept.

Key Properties of HashMap

HashMap is a child class of AbstractMap class.

HashMap implements the interfeaces Map, Cloneable, and

Serializable. HashMap stores data as a pair of key and value.

HashMap uses Hash table concept to store the data.

HashMap does not allow duplicate keys, but values may be

repeated. HashMap allows only one null key and multiple null

values.

HashMap does not follow any oreder.

HashMap has the default capacity 16 entries.

CSE/NRCM

UNIT – V

APPLETS

CSE/NRCM

The Basic GUI Application

import javax.swing.JOptionPane;

public class HelloWorldGUI1

{

public static void main(String[] args) {

JOptionPane.showMessageDialog(null, "Hello

World!");

}

}

When this program is run, a window appears on the screen that contains the message “Hello

World!”. The window also contains an “OK” button for the user to click after reading the

message. When the user clicks this button, the window closes and the program ends. By the

way, this program can be placed in a file named HelloWorldGUI1.java, compiled, and run just

like any other Java program.

LIMITATIONS OF AWT

Summary on limitations of AWT

AWT supports limited number of GUI

components AWT component are Heavy

weight components

AWT components are developed by using platform specific

code AWT components behave differently in different

Operating Systems.

AWT components are converted by the native code of the Operating

System.

CSE/NRCM

CSE/NRCM

MVC ARCHITECTURE

In real time applications, in the case of server side programming one must follow the

architecture to develop a distributed application.To develop any distributed application, it is

always recommended to follow either 3-tier architecture or 2-tier architecture or n-tier

architecture.

3-tier architecture is also known as MVC architecture.

M stands for Model (database programming),

V stands for View (client side programming,

HTML/AWT/APPLET/Swing/JSP) C stands for Controller (server side

programming, Servlets).

Model :

This is the data layer which consists of the business logic of the

system. It consists of all the data of the application

It also represents the state of the application.

It consists of classes which have the connection to the database.

The controller connects with model and fetches the data and sends to the view layer.

The model connects with the database as well and stores the data into a database which is

connected

to it.

CSE/NRCM

MVC ARCHITECTURE

Model :

This is the data layer which consists of the business logic of the system.

It consists of all the data of the application

It also represents the state of the application.

It consists of classes which have the connection to the database.

The controller connects with model and fetches the data and sends to the view layer.

The model connects with the database as well and stores the data into a database which is

connected to it.

View :

This is a presentation layer.

It consists of HTML, JSP, etc. into it.

It normally presents the UI of the application.

It is used to display the data which is fetched from the controller which in turn fetching data from

model

layer classes.

This view layer shows the data on UI of the application.

Controller:

It acts as an interface between View and Model.

It intercepts all the requests which are coming from the view layer.

It receives the requests from the view layer and processes the requests and does the necessary

validation for

the request.

This requests is further sent to model layer for data processing, and once the request is processed, it

sends

COMPONENTS

Component is an object having a graphical representation that can be displayed on the screen and

that can

interact with the user. For examples buttons, checkboxes, list and scrollbars of a graphical user

interface.

A Component is an abstract super class for GUI controls and it represents an object with

graphical representation.

CSE/NRCM

CSE/NRCM

COMPONENTS

Every AWT controls inherits properties from Component

class
Component Description

Label The easiest control to use is a label. A label is an object of type Label, and it contains a string,which it

displays. Labels are passive controls that do not support any interaction with theuser. Label defines the

following constructors

Button This class creates a labeled button.

Check Box A check box is a graphical component that can be in either an on (true) or off (false) state.

Check Box Group The CheckboxGroup class is used to group the set of checkbox.

List The List component presents the user with a scrolling list of text items.

Text Field A TextField object is a text component that allows for the editing of a single line of text.

Text Area A TextArea object is a text component that allows for the editing of a multiple lines of text.

Choice A Choice control is used to show pop up menu of choices. Selected choice is shown on the top of the

menu.

Canvas A Canvas control represents a rectangular area where application can draw something or can receive inputs

created by user.

Image An Image control is superclass for all image classes representing graphical images.

Scroll Bar A Scrollbar control represents a scroll bar component in order to enable user to select from range of values.

Dialog A Dialog control represents a top-level window with a title and a border used to take some form of input

from the user.

File Dialog A FileDialog control represents a dialog window from which the user can select a file.

CSE/NRCM

COMPONENTS

Commonly used Methods of Component

class:
Method Description

public void add(Component c) inserts a component on this component.

public void setSize(intwidth,int height) sets the size (width and height) of the component.

public void setLayout(LayoutManager m) defines the layout manager for the component.

public void setVisible(boolean status) changes the visibility of the component, by default

false.

void remove(Component obj) Here, obj is a reference to the control you want to

remove.

void removeAll(). You can remove all controls by

CONTAINERS

Abstract Windowing Toolkit (AWT): Abstract Windowing Toolkit (AWT) is used for GUI

programming in java.

AWT Container Hierarchy:

CSE/NRCM

CSE/NRCM

CONTAINERS

Container:

The Container is a component in AWT that can contain another components like buttons, textfields,

labels

etc. The classes that extends Container class are known as container.

Window:

The window is the container that have no borders and menubars. You must use frame, dialog or

another

window for creating a window.

Panel:

The Panel is the container that doesn't contain title bar and MenuBars. It can have other

components like

button, textfield etc.

Frame:

The Frame is the container that contain title bar and can have MenuBars. It can have other

components like

button, textfield etc.

Frame

There are two ways to create a frame:

By extending Frame class (inheritance)

By creating the object of Frame class (association)

Example program to create a frame by extending Frame class

(inheritance) import java.awt.*;

class First extends Frame

{

First()

{

Button b=new Button("click me");

b.setBounds(30,100,80,30);/*setting button position public void setBounds(int xaxis, int yaxis, int

width, int

height); have been used in the above example that sets the position of the

button.*/ add(b);//adding button into frame

setSize(300,300);//frame size 300 width and 300 height setLayout(null);//no layout now bydefault

BorderLayout setVisible(true);//now frame willbe visible, bydefault not visible

}

public static void main(String args[])

{

First f=new First();

}} CSE/NRCM

CSE/NRCM

Frame

2.Example program to create a frame by creating the object of

Frame class

import java.awt.*; class First2{

First2(){ Frame f=new Frame();

Button b=new Button("click me"); b.setBounds(30,50,80,30);

f.add(b); f.setSize(300,300); f.setLayout(null); f.setVisible(true);

}

public static void main(String args[]){ First2 f=new First2();

}

}

CSE/NRCM

LAYOUT MANAGERS

The LayoutManagers are used to arrange components in a particular manner. The Java

LayoutManagers facilitates us to control the positioning and size of the components in GUI

forms. LayoutManager is an interface that is implemented by all the classes of layout

managers. There are the following classes that represent the layout managers:

 java.awt.BorderLayout

 java.awt.FlowLayout

 java.awt.GridLayout

 java.awt.CardLayout

 java.awt.GridBagLayout

BorderLayout

The BorderLayout is used to arrange the components in five regions: north, south, east, west,

and center. Each region (area) may contain one component only. It is the default layout of a

frame or window. The BorderLayout provides five constants for each region:

public static final int

NORTH public static final

int SOUTH public static

final int EAST public static

final int WEST public

static final int CENTER

Constructors of BorderLayout class:

BorderLayout():

creates a border layout but with no gaps between the components.

BorderLayout(int hgap, int vgap):

creates a border layout with the given horizontal and vertical gaps between the components.

CSE/NRCM

FlowLayout

The Java FlowLayout class is used to arrange the components in a line, one after another (in a

flow). It is the

default layout of the applet or panel.

Fields of FlowLayout

class public static final int

LEFT public static final int

RIGHT public static final int

CENTER public static final

int LEADING public static

final int TRAILING

Constructors of FlowLayout class

FlowLayout(): creates a flow layout with centered alignment and a default 5 unit horizontal and

vertical gap. FlowLayout(int align): creates a flow layout with the given alignment and a default 5

unit horizontal and vertical gap.

FlowLayout(int align, int hgap, int vgap): creates a flow layout with the given alignment and the

given

horizontal and vertical gap.

CSE/NRCM

GridLayout

The Java GridLayout class is used to arrange the components in a rectangular grid. One

component is

displayed in each rectangle.

Constructors of GridLayout class

GridLayout(): creates a grid layout with one column per component in a row.

GridLayout(int rows, int columns): creates a grid layout with the given rows and columns but no

gaps

between the components.

GridLayout(int rows, int columns, int hgap, int vgap): creates a grid layout with the given rows

and columns along with given horizontal and vertical gaps.

CSE/NRCM

CSE/NRCM

CardLayout

The Java CardLayout class manages the components in such a manner that only one component

is visible at

a time. It treats each component as a card that is why it is known as CardLayout.

Constructors of CardLayout Class

CardLayout(): creates a card layout with zero horizontal and vertical gap.

CardLayout(int hgap, int vgap): creates a card layout with the given horizontal and vertical gap.

Commonly Used Methods of CardLayout Class

public void next(Container parent): is used to flip to the next card of the given container.

public void previous(Container parent): is used to flip to the previous card of the given

container.

public void first(Container parent): is used to flip to the first card of the given container.

public void last(Container parent): is used to flip to the last card of the given container.

public void show(Container parent, String name): is used to flip to the specified card with the

given name.

CSE/NRCM

GridBagLayout

The Java GridBagLayout class is used to align components vertically, horizontally or along their

baseline. The components may not be of the same size. Each GridBagLayout object maintains a

dynamic, rectangular grid of cells. Each component occupies one or more cells known as its

display area. Each component associates an instance of GridBagConstraints. With the help of the

constraints object, we arrange the component's display area on the grid. The GridBagLayout

manages each component's minimum and

preferred sizes in order to determine the component's size. GridBagLayout components are also

arranged in

the rectangular grid but can have many different sizes and can occupy multiple rows or columns.

Constructor

GridBagLayout(): The parameterless constructor is used to create a grid bag layout manager.Modifier and Type Field Description

double[] columnWeights It is used to hold the overrides to the column weights.

int[] columnWidths It is used to hold the overrides to the column minimum width.

protected

Hashtable<Component,GridBagConstr

aints>

comptable It is used to maintains the association between a component and its

gridbag constraints.

protected GridBagConstraints defaultConstraints It is used to hold a gridbag constraints instance containing the

default values.
protected GridBagLayoutInfo layoutInfo It is used to hold the layout information for the gridbag.

protectedstatic int MAXGRIDSIZE No longer in use just for backward compatibility

protectedstatic int MINSIZE It is smallest grid that can be laid out by the grid bag layout.

protectedstatic int PREFERREDSIZE It is preferred grid size that can be laid out by the grid bag layout.

int[] rowHeights It is used to hold the overrides to the row minimum heights.

double[] rowWeights It is used to hold the overrides to the row weights.

CSE/NRCM

Thank

you

