
Introduction to 

Digital Systems
Digital systems are the foundation of modern technology, 
enabling the processing, storage, and transmission of 
information in the form of discrete signals. This course will 
provide a comprehensive understanding of the principles and 
applications of digital systems, laying the groundwork for a 
career in computer engineering or electronics.



Binary Number System

Fundamentals

The binary number system uses 
only two digits, 0 and 1, to 
represent all numerical values. 
This system is the foundation of 
digital electronics and 
computer programming.

Advantages

Binary numbers are well-suited 
for digital systems because they 
can be easily represented and 
manipulated using electronic 
circuits and components.

Applications

Binary numbers are used 
extensively in computer 
memory, data storage, and 
digital signal processing, 
enabling the efficient storage 
and processing of information.



Decimal to Binary Conversion

1

Step 1

Divide the decimal number by 2 and record the 

remainder.

2

Step 2

Divide the result from Step 1 by 2 and record the 

remainder.

3

Step 3

Repeat Step 2 until the result is 0. The binary 

number is the sequence of remainders in reverse 

order.



Binary to Decimal 

Conversion

1 Multiply Each Digit

Multiply each binary digit by the corresponding power 
of 2, starting from the rightmost digit.

2 Sum the Results

Add up all the results to get the decimal equivalent.

3 Example

The binary number 1010 is equal to (1 x 2^3) + (0 x 2^2) 
+ (1 x 2^1) + (0 x 2^0) = 8 + 0 + 2 + 0 = 10.



Octal Number System

Octal Basics

The octal number system uses the digits 0 to 7, making it a more compact 
representation than the binary system.

Conversion to Binary

Each octal digit represents 3 binary digits, allowing easy conversion between 
octal and binary.

Applications

Octal numbers are commonly used in computer systems and electronics as a 
shorthand for binary data.

Example

The octal number 257 is equivalent to the binary number 010101111.



Hexadecimal Number System

Hexadecimal Basics

The hexadecimal number 
system uses 16 digits, 0 to 9 and 
A to F, to represent numerical 
values.

Conversion to Binary

Each hexadecimal digit 
represents 4 binary digits, 
allowing for compact 
representation of binary data.

Applications

Hexadecimal numbers are 
widely used in computer 
programming, electronics, and 
digital system design due to 
their compactness and ease of 
conversion.



Conversions between Number 
Number Bases

Binary

The fundamental number system used in digital electronics.

Octal

A more compact representation of binary data, using 8 

digits (0-7).

Hexadecimal

A further compact representation using 16 digits (0-9, A-F).

preencoded.png

https://gamma.app


Practice Problems and Theory Review

Written Exercises

Reinforcing concepts through hands-on problem-solving.

Numerical Conversions

Converting between binary, decimal, octal, and hexadecimal.

Conceptual Questions

Deepening understanding of digital system principles.

Programming Challenges

Applying knowledge to real-world digital system problems.



Complements, Signed Binary Numbers, Binary Code

Complement Represents the opposite of a number, used for 
subtraction and negation.

Signed Binary Allows for the representation of positive and 
negative numbers using the most significant bit as 
the sign.

Binary Codes Encoding schemes that represent information using 
binary digits, such as ASCII and Gray code.



Binary Storage and Logic

1 Binary Storage

Storing and manipulating binary data in registers and 
memory.

2 Boolean Logic

Implementing digital logic operations using AND, OR, 
and NOT gates.

3 Circuit Design

Designing and analyzing combinational and sequential 
digital circuits.



Exploring the 

Fundamentals of 

Boolean Algebra
Boolean algebra is a mathematical system that deals with the 
manipulation of logical statements, often represented using 
binary digits (0 and 1). It forms the foundation for digital 
electronics and computer programming, enabling efficient 
data processing and decision-making.



Axiomatic Definition of Boolean 

Boolean Algebra

1 Basic Axioms

Boolean algebra is defined by a set of fundamental axioms that 

govern the logical operations of AND, OR, and NOT.

2 Closure Property

The result of any Boolean operation on two or more Boolean 

variables is also a Boolean variable.

3 Commutativity and Associativity

The order of operands in Boolean operations does not affect 

the final result.
preencoded.png

https://gamma.app


Theorems and Properties

Fundamental Theorems

Boolean algebra follows a set of 
well-established theorems, such 
as the Commutative, 
Associative, and Distributive 
laws.

Algebraic Properties

Boolean variables exhibit 
properties like idempotency, 
complementation, and the 
existence of identity and 
universal elements.

Duality Principle

Every theorem or property in 
Boolean algebra has a dual 
counterpart, obtained by 
interchanging AND and OR 
operations.



Boolean Functions

1

Definition

A Boolean function is a mapping from a set of 

Boolean variables to a single Boolean variable, 

often represented using a truth table.

2

Canonical Forms

Boolean functions can be expressed in various 

canonical forms, such as the sum of products 

(SOP) and product of sums (POS).

3

Functional Completeness

A set of Boolean operations is functionally 

complete if any Boolean function can be expressed 

using only those operations.



Operations on Boolean Functions

Logical Operations

Boolean functions can be combined using the 
logical operations of AND, OR, and NOT to create 
more complex expressions.

Complement and Inverse

The complement of a Boolean function is the 
function that produces the opposite output, while 
the inverse function reverses the input-output 
mapping.

Composition and Expansion

Boolean functions can be composed or expanded 
to create new functions with more variables or 
simplified expressions.

Transformation Rules

There are various transformation rules, like De 
Morgan's laws, that can be applied to manipulate 
Boolean expressions.

preencoded.png

https://gamma.app


Representation of Boolean Functions

1 Truth Tables

Boolean functions can be represented using truth tables, which 

enumerate all possible input-output combinations.

2 Algebraic Expressions

Boolean functions can also be represented using algebraic expressions, 

involving the logical operations of AND, OR, and NOT.

3 Karnaugh Maps

Karnaugh maps provide a graphical way to represent and simplify 

Boolean functions, especially for functions with a small number of 

variables.



Minimization of Boolean Functions

Simplification

Minimizing Boolean functions can lead to more efficient digital 

circuit designs and reduced computational complexity.

Quine-McCluskey Method

The Quine-McCluskey method is a systematic algorithm for 
finding the minimal sum-of-products form of a Boolean 

function.

Karnaugh Maps

Karnaugh maps can also be used to visually identify and 

eliminate redundant terms in a Boolean function.



Applications of Boolean Algebra

Digital Electronics

Boolean algebra is the foundation for the design and implementation of digital circuits and logic 

gates.

Computer Programming

Boolean logic is extensively used in programming languages, algorithms, and data structures to 

make decisions and manipulate data.

Database Management

Boolean operations are essential for querying and filtering data in database systems, especially 

in SQL statements.

Artificial Intelligence



Conclusion

Boolean algebra is a powerful mathematical framework that 
underpins the fundamental operations of digital systems and 
computer science. Its principles and properties enable the 
efficient manipulation and representation of logical 
information, making it an essential tool for a wide range of 
applications.



Advanced Topics

Canonical Forms The standard representations of 

Boolean functions, such as sum of 

products (SOP) and product of sums 

(POS).
Standard Logic Operations Beyond AND, OR, and NOT, other 

logical operations like NAND, NOR, and 

XOR can be defined and used.

Switching Theory The study of Boolean functions and 

their applications in the design of digital 

switching circuits.

Formal Logic Systems The formal mathematical treatment of 

logical statements and their deductive 

reasoning, including propositional and 

predicate logic.



The Map Method: Constructing 
Karnaugh Maps

1 Step 1

Identify the input variables and their corresponding binary 

representations.

2 Step 2

Arrange the binary representations in a grid, creating a 

Karnaugh map.

3 Step 3

Plot the function values (1s and 0s) on the Karnaugh map.



Four-Variable Karnaugh Maps: 

Simplification and Optimization

1 Identify Maximal Groupings

Look for groups of 1s that can be combined to form larger 
rectangles or squares.

2 Optimize the Boolean Expression

Use the Karnaugh map to simplify the Boolean expression and 
minimize the number of terms.

3 Handling Don't-Care Conditions

Treat don't-care conditions as 1s to further optimize the Boolean 
expression.



Five-Variable Karnaugh Maps: Handling Larger 

Functions

Additional Considerations

Five-variable Karnaugh maps 
require more complex grouping 
strategies to identify optimal 
simplifications.

Techniques

Use techniques like overlapping 
groups and diagonal adjacency 
to handle larger functions 
effectively.

Optimization

The goal is to minimize the 
number of product terms in the 
simplified Boolean expression.



Product of Sums Simplification: Techniques 

Techniques and Examples

Identify Maximal Sums

Find the largest sum of literals that can be used to represent the function.

Combine Sums

Combine the maximal sums using the product operation to obtain the simplified expression.

Leverage Don't-Cares

Treat don't-care conditions as 1s to further optimize the product of sums expression.

Verify Simplification

Ensure the simplified expression still accurately represents the original function.



Don't-Care Conditions: 
Leveraging Unused Inputs

1 Identify Don't-Cares

Determine the input combinations that are not used or 

have no defined output.

2 Optimize Expressions

Treat don't-care conditions as 1s to simplify the Boolean 

expression further.

3 Practical Applications

Don't-care conditions are often used in digital circuit 

design to reduce hardware complexity.



NAND and NOR Implementation: Alternate 

Realizations

NAND Gates

NAND gates can be used to implement any Boolean function by combining multiple NAND gates.

NOR Gates

NOR gates can also be used to implement any Boolean function, providing an alternate realization.

Inverters

Inverters can be used in combination with NAND or NOR gates to create more complex functions.



Exclusive-OR Function: 
Representation and Applications
Applications

Inputs Output

0 0 0

0 1 1

1 0 1

1 1 0

The exclusive-OR (XOR) function is a fundamental logic operation with 
various applications, such as in error detection and correction, data 
encryption, and adder circuits.



Introduction to 

Combinational 

Circuits
Combinational circuits are digital logic circuits where the 

output depends solely on the current input. They combine 
Boolean logic gates in a complex network to perform various 
computational tasks, from simple arithmetic to complex 
decision-making.



Boolean Algebra and Logic Gates

Boolean Algebra

Boolean algebra is the 
mathematical foundation of 
combinational circuits, using 
the operators AND, OR, and 
NOT to describe logical 
relationships.

Logic Gates

Logic gates are the building 
blocks of combinational 
circuits, implementing the 
Boolean algebra operations 
using physical electronic 
components.

Interconnections

Connecting multiple logic gates 
in specific arrangements allows 
for the creation of complex 
combinational logic circuits.



Truth Tables and Karnaugh Maps

1 Truth Tables

Truth tables systematically list all possible input combinations and the 
corresponding output values for a combinational circuit.

2 Karnaugh Maps

Karnaugh maps provide a visual tool for simplifying Boolean 
expressions and minimizing the number of logic gates required.

3 Optimized Design

Analyzing truth tables and Karnaugh maps helps designers create 
more efficient and cost-effective combinational circuits.



Minimization Techniques

Boolean Simplification

Applying Boolean algebra 
rules and identities to 
minimize the number of logic 

gates required.

Karnaugh Map Reduction

Grouping adjacent 1's in a 
Karnaugh map to identify and 
eliminate redundant terms.

Quine-McCluskey Method

A systematic algorithm for 
minimizing Boolean 
expressions, particularly 

useful for complex functions.



Analysis Procedure Step-by-
Step

Step

1 Identify Inputs and Outputs

Clearly define the circuit's input and output variables to 

understand the overall functionality.

2 Construct Truth Table

Enumerate all possible input combinations and 

determine the corresponding output values.

3 Simplify Boolean Expressions

Apply minimization techniques to optimize the Boolean 

functions implemented by the circuit.



Combinational Circuit Design Examples

Adder Circuits

Combining full and half adders to perform binary addition operations.

Decoder Circuits

Converting binary inputs into unique output signals for various applications.

Multiplexer Circuits

Selecting one of multiple input signals and routing it to a single output.



Importance of Combinational 
Combinational Circuits

Versatility

Combinational circuits can be designed to perform a wide 

range of digital logic functions.

Efficiency

Minimization techniques allow for the creation of 

compact and cost-effective circuits.

Foundations

Combinational logic is the building block for more 

complex sequential and digital systems.



Conclusion and Key Takeaways

Understand Boolean Algebra Mastering the fundamental logical 

operations is crucial for 

combinational circuit design.

Utilize Optimization Techniques Applying minimization methods like 

Karnaugh maps ensures efficient 

circuit implementation.

Analyze Circuit Behavior Constructing truth tables and 

studying circuit functionality is key to 

successful design.

Explore Combinational Applications Combinational circuits have a wide 

range of uses in digital systems and 

electronics.



Sequential Circuits: 
Understanding the 
Flow of Information
Information
Sequential circuits are a fundamental component of digital systems, 

allowing information to be stored and processed over time. Unlike 

combinational circuits, sequential circuits have memory elements, 

enabling them to remember past inputs and produce outputs based 

on both current and previous inputs.



Latches: The Foundation of 

Memory

SR Latch

The SR latch is a 

fundamental memory 

element that stores a single 

bit of information. It 

consists of two cross-

coupled NOR gates, where 

the 'S' input sets the latch to 

a '1' state and the 'R' input 

resets it to a '0' state.

D Latch

The D latch is a variation of 

the SR latch that uses a 

single data input (D). The 

latch stores the value of D 

when the enable signal is 

high and maintains its 

stored value when the 

enable signal is low.



Flip-Flops: The Building Blocks of Sequential Logic

1 SR Flip-Flop

The SR flip-flop is a clocked 

version of the SR latch, which 

means it changes its state only 

when a clock pulse is applied. 

It is triggered on the rising 

edge of the clock signal.

2 D Flip-Flop

The D flip-flop is a clocked 

version of the D latch, 

providing a more reliable way 

to store data. It stores the 

value of D at the rising edge of 

the clock signal.

3 JK Flip-Flop

The JK flip-flop is a versatile 

flip-flop that combines the 

features of the SR and T flip-

flops. It allows toggling, 

setting, and resetting based on 

the inputs J and K.



Clocked Sequential Circuits: The Heart 
of Timing

1 Clock Signals

Clock signals are fundamental to clocked sequential circuits. They act as 

a timing reference for the circuit, controlling when state transitions 

occur.

2 State Transition

The state of a clocked sequential circuit changes only on the edge of the 

clock signal. This ensures that all state changes happen synchronously, 

preventing timing issues.

3 Timing Diagrams

Timing diagrams are visual representations of the signals within a 

sequential circuit, showing how signals evolve over time.



Timing Diagrams and Waveforms: Understanding 

Signal Behavior

Pulse Width

The duration of a pulse in a timing 

diagram, which can be important 

for understanding the behavior of a 

circuit.

Edge Detection

Flip-flops are often triggered on 

specific edges (rising or falling) of 

the clock signal, which is crucial for 

synchronization.

Signal Relationships

Timing diagrams help visualize the 

relationships between various 

signals in a circuit, making it easier 

to analyze and debug the circuit's 

functionality.



Synchronous and Asynchronous Inputs: The Difference 

Difference in Timing

Synchronous Asynchronous

Triggered by the clock signal Not triggered by the clock signal

Changes occur only on the clock edge Changes can occur at any time



Finite State Machines: The Logic of Sequential Behavior

States

A finite state machine (FSM) has a finite number of distinct states that it can be in, representing different memory 

configurations.

Transitions

The FSM transitions between states based on the current state and input signals. These transitions are triggered by the clock

signal.

Outputs

Each state in an FSM can produce a specific output based on its current state and the received input signals.



Practical Applications and Design 

Considerations

Memory Systems

Sequential circuits are essential for 

implementing memory systems in computers 

and other digital devices. They are used to 

store data, such as RAM and ROM.

Timers and Counters

Sequential circuits form the basis of timers 

and counters used for controlling the timing 

of events and counting occurrences of signals 

in digital systems.

Digital Control Systems

They are used in control systems where the 

output must be based on past inputs and 

current conditions. This ensures proper 

response and control based on system 

history.

Design Considerations

Key factors include timing analysis, clock 

signal design, state assignment, and 

minimizing power consumption. These 

considerations are crucial for ensuring 

reliable circuit operation.



State Reduction and 
and Assignment
State reduction and assignment are fundamental concepts in digital 

design. By simplifying the state space and assigning appropriate 

binary codes, we can achieve efficient and optimized 

implementations of digital circuits.



Design Procedure

1State Diagram

The first step is to create a state diagram that 

represents the behavior of the system.

2 State Table

Next, a state table is created, which lists all 

possible states and the corresponding outputs.
3State Reduction

The goal of state reduction is to simplify the state 

table by eliminating redundant states.
4 State Assignment

State assignment involves assigning binary codes 

to each state in the reduced state table.
5Logic Circuit Design

Finally, the logic circuit for the system is designed 

using the assigned binary codes.



Registers

1 Storage Elements

Registers are 

fundamental building 

blocks in digital systems, 

acting as memory 

elements that hold binary 

data.

2 Types of Registers

Common types include D-

flip flops, JK-flip flops, and 

T-flip flops, each with 

unique characteristics 

and applications.

3 Clocked Operation

Registers are typically 

clocked devices, meaning 

their state changes occur 

at specific times dictated 

by a clock signal.

4 Data Transfer

Registers allow for the 

transfer of data between 

different parts of a digital 

system, facilitating 

communication and 

processing.



Shift Registers

Data Movement

Shift registers are specialized 

registers that enable the sequential 

movement of data from one 

storage element to the next.

Serial-to-Parallel Conversion

Shift registers can convert data 

from a serial format (one bit at a 

time) to a parallel format (multiple 

bits simultaneously).

Applications

They are used in applications like 

digital communications, data 

transmission, and signal 

processing.



Ripple Counters

Cascaded Flip-Flops

Ripple counters are built using a chain of cascaded flip-flops, where the 

output of one flip-flop triggers the next.

Asynchronous Operation

The output of each flip-flop is delayed, leading to a rippling effect as the 

counter progresses through its states.

Clock Skew

This delay can lead to issues like clock skew, which can affect the accuracy 

of the counting process.

Simple Design

Ripple counters are relatively simple to design and implement, making 

them suitable for basic counting applications.



Synchronous Counters

Feature Ripple Counter Synchronous Counter

Clocking Asynchronous Synchronous

Timing Delay between stages All flip-flops clocked simultaneously

Speed Slower Faster

Accuracy Less accurate More accurate

Complexity Simpler More complex



Other Counters

Up/Down Counters

These counters can count both 

upwards and downwards, 

providing flexibility for a wide 

range of applications.

Decade Counters

Decade counters count in base-10, 

making them useful for 

applications that require decimal 

counting.

Programmable Counters

Programmable counters allow for 

the modification of their counting 

sequence, providing greater 

control and flexibility.

Ring Counters

Ring counters are a type of counter 

that circulates a single bit through 

a chain of flip-flops, used for 

pattern generation and data 

shifting.



Conclusion

State reduction, state assignment, and various types of counters are 

fundamental components of digital design. Understanding these 

concepts allows for the efficient and reliable implementation of digital 

circuits that perform a wide range of functions.



Computer Memory
Understanding how computer memory works is crucial for anyone 

looking to build or troubleshoot a computer system. This 

presentation will cover the fundamental concepts of computer 

memory, including different types, functionalities, and their 

applications.



Random-Access Memory

Dynamic RAM (DRAM)

Dynamic RAM is the most 

common type of RAM used 

in computers today. DRAM 

uses capacitors to store 

data, which must be 

refreshed periodically.

Static RAM (SRAM)

SRAM is a faster and more 

expensive type of RAM that 

uses latches to store data. 

SRAM does not require 

refreshing, making it ideal 

for applications where 

speed is critical.



Memory Decoding

Address Generation

The CPU generates a physical address that corresponds 

to the location of the data to be accessed.

Address Translation

The address is then translated into a logical address 

that is used by the memory controller.

Memory Access

The memory controller uses the logical address to 

access the correct memory location and retrieve or 

store the data.



Error Detection and Correction

1 Parity Bits

Parity bits are used to 

detect single-bit errors in 

memory. Parity is 

calculated for each data 

byte and stored in an 

extra bit.

2 Hamming Codes

Hamming codes are more 

complex error-detecting 

and correcting codes that 

can detect and correct 

multiple-bit errors.

3 Checksums

Checksums are used to 

verify the integrity of data 

by calculating a checksum 

value based on the data.

4 ECC Memory

Error Correction Code 

(ECC) memory is 

commonly used in 

servers and other critical 

applications where data 

integrity is essential.



Read-only Memory

Mask ROM

Mask ROM is a type of ROM where 

the data is permanently stored 

during the manufacturing process. 

It is not reprogrammable.

PROM (Programmable ROM)

PROM is a type of ROM that can be 

programmed once by the user. This 

process is irreversible.

EPROM (Erasable 

Programmable ROM)

EPROM is a type of ROM that can 

be erased by exposing it to 

ultraviolet light. It can then be 

reprogrammed.



Programmable Logic Array

AND Gate OR Gate

Implemented using rows Implemented using columns

Programmable by fusing or 

connecting rows

Programmable by fusing or 

connecting columns



Programmable Array Logic

1 AND Plane

The AND plane is used to implement product terms, 

which are the outputs of the AND gates.

2 OR Plane

The OR plane is used to implement sum terms, which 

are the outputs of the OR gates.

3 Output Plane

The output plane combines the outputs of the OR 

gates to produce the final output of the PAL.



Sequential Programmable Devices

Flip-Flops

Flip-flops are basic memory elements that 

store one bit of data. They are used in 

sequential circuits to implement memory 

and timing functions.

Counters

Counters are sequential circuits that count 

events. They are used in applications such 

as timers, frequency dividers, and digital 

clocks.

Shift Registers

Shift registers are sequential circuits that 

shift data bits from one position to 

another. They are used in applications 

such as serial-to-parallel conversion, data 

storage, and delay lines.

State Machines

State machines are sequential circuits that 

have a finite number of states. They are 

used in applications such as control 

systems, communication protocols, and 

game logic.



Sequential Circuits
Sequential circuits are a fundamental component of digital systems, 

enabling complex behaviors and memory functions. Understanding 

their design principles is crucial for building sophisticated electronics.



Analysis Procedure

1Step 1: Identify the inputs and outputs

Determine the signals that control the circuit and the 

signals it produces.

2 Step 2: Derive the state table

Construct a table that maps input combinations to 

output values for each state.
3Step 3: Draw the state diagram

Visualize the circuit's behavior using a diagram that 

shows state transitions and output values.



Circuits with Latches

1 SR Latch

The SR latch is a basic 

memory element that 

stores a single bit of data. 

It has two inputs, Set (S) 

and Reset (R), and one 

output, Q.

2 D Latch

A D latch is a variation of 

the SR latch that uses a 

single data input (D) to 

control the output state.

3 JK Latch

The JK latch is a more versatile type of latch that includes both 

Set and Reset capabilities, allowing for toggling functionality.



Design Procedure

1Step 1: Define the problem

Clearly state the functionality of the desired circuit, 

including its inputs, outputs, and expected behavior.

2 Step 2: Construct the state table

Represent the circuit's behavior as a table that maps 

input combinations to output values and state 

transitions.3Step 3: Minimize the state table

Reduce the number of states in the table while 

preserving the circuit's functionality.
4 Step 4: Assign states to flip-flops

Determine the specific binary code for each state to be 

stored in the flip-flops.
5Step 5: Derive the logic equations

Use Boolean algebra to express the output and next 

state functions in terms of the inputs and current state.
6 Step 6: Implement the circuit

Realize the circuit using logic gates, flip-flops, and other 

necessary components.



Reduction of State and Flow Tables

State Minimization

Reducing the number of states in a state table while 

preserving functionality simplifies the circuit design and 

reduces cost.

Flow Table Reduction

A flow table describes the transitions and outputs of a 

sequential circuit. Reducing its size optimizes the design 

process.



Race-Free State Assignment

Race Condition

A race condition occurs 

when multiple state 

transitions can happen 

simultaneously, leading to 

unpredictable outcomes.

Race-Free Assignment

Ensuring that only one flip-

flop changes state at a time 

eliminates race conditions 

and ensures reliable circuit 

behavior.



Hazards

Static Hazard A transient error in the 

output during a state 

transition, leading to a 

momentary incorrect output 

value.
Dynamic Hazard Multiple transitions in the 

output signal during a state 

change, causing a spike or 

dip in the output.



Design Example

State Table

Define the circuit's behavior with a state table that maps input combinations to output values and state transitions.

State Assignment

Assign binary codes to each state to represent them in the flip-flops.

Logic Equations

Derive the Boolean equations for the outputs and next state functions.

Circuit Implementation

Realize the circuit using logic gates, flip-flops, and other necessary components.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

