
Computer Organization and Architecture

Prepared by

M. Anitha Rani
Department of CSE

1

Computer Organization Computer Architecture

Dr.Chao Tan,
Carnegie Mellon University

2

Chap. 1: Digital Logic Circuits

Computer Organization Computer Architecture

• Logic Gates, • Boolean Algebra
• Map Simplification, • Combinational Circuits
• Filp-Flops, • Sequential Circuits

Chap. 2: Digital Components

• Integrated Circuits, • Decoders, • Multiplexers
• Registers, • Shift Registers, • Binary Counters
• Memory Unit

Chap. 3: Data Representation

• Data Types, • Complements
• Fixed Point Representation
• Floating Point Representation
• Other Binary Codes, • Error Detection Codes

3

Chap. 4: Register Transfer and Microoperations

Computer Organization Computer Architecture

• Register Transfer Language, • Register Transfer
• Bus and Memory Transfers
• Arithmetic Microoperations
• Logic Microoperations, • Shift Microoperations
• Arithmetic Logic Shift Unit

Chap. 5: Basic Computer Organization and Design

• Instruction Codes, • Computer Registers
• Computer Instructions, • Timing and Control
• Instruction Cycle,
• Memory Reference Instructions
• Input-Output and Interrupt
• Complete Computer Description
• Design of Basic Computer
• Design of Accumulator Logic

4

Chap. 6: Programming the Basic Computer

Computer Organization Computer Architecture

• Machine Language, • Assembly Language
• Assembler, • Program Loops
• Programming Arithmetic and Logic Operations
• Subroutines, • Input-Output Programming

Chap. 7: Microprogrammed Control

• Control Memory, • Sequencing Microinstructions
• Microprogram Example, • Design of Control Unit
• Microinstruction Format

Chap. 8: Central Processing Unit

• General Register Organization
• Stack Organization, • Instruction Formats
• Addressing Modes
• Data Transfer and Manipulation
• Program Control
• Reduced Instruction Set Computer

5

Chap. 9: Pipeline and Vector Processing

Computer Organization Computer Architecture

• Parallel Processing, • Pipelining
• Arithmetic Pipeline, • Instruction Pipeline
• RISC Pipeline, • Vector Processing

Chap. 10: Computer Arithmetic

• Arithmetic with Signed-2's Complement Numbers
• Multiplication and Division Algorithms
• Floating-Point Arithmetic Operations
• Decimal Arithmetic Unit
• Decimal Arithmetic Operations

Chap. 11: Input-Output Organization

• Peripheral Devices, • Input-Output Interface
• Asynchronous Data Transfer, • Modes of Transfer
• Priority Interrupt, • Direct Memory Access

6

Chap. 12: Memory Organization

Computer Organization Computer Architecture

()

• Memory Hierarchy, • Main Memory
• Auxiliary Memory. • Associative Memory
• Cache Memory, • Virtual Memory

Chap. 13: Multiprocessors

• Characteristics of Multiprocessors
• Interconnection Structures
• Interprocessor Arbitration
• Interprocessor Communication/Synchronization
• Cache Coherence

SIMPLE DIGITAL SYSTEMS

Computer Organization Computer Architecture

• Combinational and sequential circuits (learned in Chapters 1 and 2)
can be used to create simple digital systems.

• These are the low-level building blocks of a digital computer.

• Simple digital systems are frequently characterized in terms of
– the registers they contain, and
– the operations that they perform.

• Typically,
– What operations are performed on the data in the registers
– What information is passed between registers

Register Transfer & -operations 7

REGISTER TRANSFER AND MICROOPERATIONS

Computer Organization Computer Architecture

• Register Transfer Language

• Register Transfer

• Bus and Memory Transfers

• Arithmetic Microoperations

• Logic Microoperations

• Shift Microoperations

• Arithmetic Logic Shift Unit

Register Transfer & -operations 8

MICROOPERATIONS (1)

Computer Organization Computer Architecture

Register Transfer Language

• The operations on the data in registers are called
microoperations.

• The functions built into registers are examples of
microoperations

– Shift
– Load
– Clear
– Increment
– …

Register Transfer & -operations 9

MICROOPERATION (2)

An elementary operation performed (during
one clock pulse), on the information stored
in one or more registers

R f(R, R)

f: shift, load, clear, increment, add, subtract, complement,
and, or, xor, …

ALU
(f)

Registers
(R)

1 clock cycle

Computer Organization Computer Architecture

Register Transfer LanguageRegister Transfer & -operations 10

Register Transfer & -operations 11 Register Transfer Language

ORGANIZATION OF A DIGITAL SYSTEM

Computer Organization Computer Architecture

• Definition of the (internal) organization of a computer

- Set of registers and their functions

- Microoperations set

Set of allowable microoperations provided
by the organization of the computer

- Control signals that initiate the sequence of
microoperations (to perform the functions)

Register Transfer & -operations 12 Register Transfer Language

REGISTER TRANSFER LEVEL

Computer Organization Computer Architecture

• Viewing a computer, or any digital system, in this way is
called the register transfer level

• This is because we’re focusing on
– The system’s registers
– The data transformations in them, and
– The data transfers between them.

Register Transfer & -operations 13 Register Transfer Language

REGISTER TRANSFER LANGUAGE

Computer Organization Computer Architecture

• Rather than specifying a digital system in words, a specific
notation is used, register transfer language

• For any function of the computer, the register transfer
language can be used to describe the (sequence of)
microoperations

• Register transfer language
– A symbolic language
– A convenient tool for describing the internal organization of digital

computers
– Can also be used to facilitate the design process of digital systems.

Register Transfer & -operations 14 Register Transfer Language

DESIGNATION OF REGISTERS

Computer Organization Computer Architecture

• Registers are designated by capital letters, sometimes
followed by numbers (e.g., A, R13, IR)

• Often the names indicate function:
– MAR - memory address register
– PC - program counter
– IR - instruction register

• Registers and their contents can be viewed and represented in
various ways

– A register can be viewed as a single entity:

– Registers may also be represented showing the bits of data they contain

MAR

Register Transfer & -operations 15 Register Transfer Language

DESIGNATION OF REGISTERS

R1
Register

Numbering of bits

Showing individual bits

Subfields

Computer Organization Computer Architecture

PC(H) PC(L)
15 8 7 0

• Common ways of drawing the block diagram of a register

7 6 5 4 3 2 1 0

R2
15 0

• Designation of a register
- a register
- portion of a register
- a bit of a register

REGISTER TRANSFER

Computer Organization Computer Architecture

Register Transfer

• Copying the contents of one register to another is a register
transfer

• A register transfer is indicated as

R2 R1

– In this case the contents of register R2 are copied (loaded) into
register R1

– A simultaneous transfer of all bits from the source R1 to the
destination register R2, during one clock pulse

– Note that this is a non-destructive; i.e. the contents of R1 are not
altered by copying (loading) them to R2

Register Transfer & -operations 16

REGISTER TRANSFER

Computer Organization Computer Architecture

Register Transfer

• A register transfer such as

R3 R5

Implies that the digital system has

– the data lines from the source register (R5) to the destination
register (R3)

– Parallel load in the destination register (R3)
– Control lines to perform the action

Register Transfer & -operations 17

CONTROL FUNCTIONS

Computer Organization Computer Architecture

Register Transfer

• Often actions need to only occur if a certain condition is true
• This is similar to an “if” statement in a programming language
• In digital systems, this is often done via a control signal, called

a control function
– If the signal is 1, the action takes place

• This is represented as:

P: R2 R1

Which means “if P = 1, then load the contents of register R1 into
register R2”, i.e., if (P = 1) then (R2 R1)

Register Transfer & -operations 18

Register Transfer & -operations 19 Register Transfer

HARDWARE IMPLEMENTATION OF CONTROLLED TRANSFERS

Implementation of controlled transfer
P: R2 R1

Block diagram

Timing diagram

ClockR2

R1

Control
Circuit

LoadP

n

t t+1

Clock

Load
Transfer occurs here

• The same clock controls the circuits that generate the control function
and the destination register

• Registers are assumed to use positive-edge-triggered flip-flops

Computer Organization Computer Architecture

SIMULTANEOUS OPERATIONS

Computer Organization Computer Architecture

Register Transfer

• If two or more operations are to occur
simultaneously, they are separated with commas

P: R3 R5, MAR IR

• Here, if the control function P = 1, load the contents
of R5 into R3, and at the same time (clock), load the
contents of register IR into register MAR

Register Transfer & -operations 20

Register Transfer & -operations 21 Register Transfer

BASIC SYMBOLS FOR REGISTER TRANSFERS

Computer Organization Computer Architecture

Symbols Description Examples
Capital letters

& numerals
Parentheses ()

Arrow
Colon :
Comma ,

Denotes a register

Denotes a part of a register

Denotes transfer of information
Denotes termination of control function
Separates two micro-operations

MAR, R2

R2(0-7), R2(L)

R2 R1
P:
A B, B A

CONNECTING REGISTRS

Computer Organization Computer Architecture

Register Transfer

• In a digital system with many registers, it is impractical to
have data and control lines to directly allow each register
to be loaded with the contents of every possible other
registers

• To completely connect n registers n(n-1) lines
• O(n2) cost

– This is not a realistic approach to use in a large digital system

• Instead, take a different approach
• Have one centralized set of circuits for data transfer – the

bus
• Have control circuits to select which register is the source,

and which is the destination

Register Transfer & -operations 22

Register Transfer & -operations 23 Bus and Memory Transfers

BUS AND BUS TRANSFER
Bus is a path(of a group of wires) over which information is
transferred, from any of several sources to any of several destinations.

From a register to bus: BUS R

1 2 3 4 1 2 3 4 1 2 3 4
Register A
1 2 3 4

Register B Register C Register D

B1 C1 D1

4 x1
MUX

B2 C2 D2

4 x1
MUX

B3 C3 D3

4 x1
MUX

B4 C4 D 4

4 x1
MUX

4-line bus

x
y

select

0 0 0 0

Register A Register B Register C Register D

Bus lines

Computer Organization Computer Architecture

Register Transfer & -operations 24 Bus and Memory Transfers

TRANSFER FROM BUS TO A DESTINATION REGISTER

Reg. R0 Reg. R1 Reg. R2 Reg. R3

Bus lines

Load

D0 D1 D2 D3
2 x 4

Decoder

zSelect
w

E (enable)

Output Y=A if C=1
High-impedence if C=0

Three-State Bus Buffers
Normal input A
Control input C

Select
Enable

0
1
2
3

S0
S1

Bus line with three-state buffers
A0
B0
C0
D0

Bus line for bit 0

Computer Organization Computer Architecture

BUS TRANSFER IN RTL

Computer Organization Computer Architecture

Bus and Memory Transfers

• Depending on whether the bus is to be mentioned
explicitly or not, register transfer can be indicated as
either

R2 R1
or

BUS R1, R2 BUS

• In the former case the bus is implicit, but in the latter, it is
explicitly indicated

Register Transfer & -operations 25

26 Bus and Memory Transfers

MEMORY (RAM)
• Memory (RAM) can be thought as a sequential circuits

containing some number of registers
• These registers hold the words of memory
• Each of the r registers is indicated by an address
• These addresses range from 0 to r-1
• Each register (word) can hold n bits of data
• Assume the RAM contains r = 2k words. It needs the

following
– n data input lines
– n data output lines
– k address lines
– A Read control line
– A Write control line

data input lines

n

n

data output lines

k
address lines

Read

Write

RAM
unit

Computer Organization Computer Architecture

Register Transfer & -operations

MEMORY TRANSFER
Bus and Memory Transfers

AR Memory
unit

Read

Computer Organization Computer Architecture

Write

Data inData out

• Collectively, the memory is viewed at the register level as
a device, M.

• Since it contains multiple locations, we must specify
which address in memory we will be using

• This is done by indexing memory references

• Memory is usually accessed in computer systems by
putting the desired address in a special register, the
Memory Address Register (MAR, or AR)

• When memory is accessed, the contents of the MAR get
sent to the memory unit’s address lines

M

Register Transfer & -operations 27

28

MEMORY READ

Computer Organization Computer Architecture

Bus and Memory Transfers

• To read a value from a location in memory and load it into
a register, the register transfer language notation looks
like this:

R1 M[MAR]

• This causes the following to occur
– The contents of the MAR get sent to the memory address lines
– A Read (= 1) gets sent to the memory unit
– The contents of the specified address are put on the memory’s

output data lines
– These get sent over the bus to be loaded into register R1

Register Transfer & -operations

29

MEMORY WRITE

Computer Organization Computer Architecture

Bus and Memory Transfers

• To write a value from a register to a location in memory
looks like this in register transfer language:

M[MAR] R1

• This causes the following to occur
– The contents of the MAR get sent to the memory address lines
– A Write (= 1) gets sent to the memory unit
– The values in register R1 get sent over the bus to the data input lines

of the memory
– The values get loaded into the specified address in the memory

Register Transfer & -operations

30 Bus and Memory Transfers

SUMMARY OF R. TRANSFER MICROOPERATIONS

A B Transfer content of reg. B into reg. A
AR DR(AD) Transfer content of AD portion of reg. DR into reg. AR
A constant Transfer a binary constant into reg. A
ABUS R1, Transfer content of R1 into bus A and, at the same time,
R2 ABUS transfer content of bus A into R2
AR Address register
DR Data register
M[R] Memory word specified by reg. R
M Equivalent to M[AR]
DR M Memory read operation: transfers content of

memory word specified by AR into DR
M DR Memory write operation: transfers content of

DR into memory word specified by AR

Register Transfer & -operations

Computer Organization Computer Architecture

31

MICROOPERATIONS

Computer Organization Computer Architecture

• Computer system microoperations are of four types:

- Register transfer microoperations
- Arithmetic microoperations
- Logic microoperations
- Shift microoperations

Arithmetic MicrooperationsRegister Transfer & -operations

Register Transfer & -operations 32 Arithmetic Microoperations

ARITHMETIC MICROOPERATIONS

Computer Organization Computer Architecture

R3 R1 + R2
R 3 R 1 - R 2
R2 R2’
R2 R2’+ 1
R3 R1 + R2’+ 1
R1 R1 + 1
R1 R1 - 1

Contents of R1 plus R2 transferred to R3
Contents of R1 minus R2 transferred to R3
Complement the contents of R2
2's complement the contents of R2 (negate)
subtraction
Increment
Decrement

• The basic arithmetic microoperations are
– Addition
– Subtraction
– Increment
– Decrement

• The additional arithmetic microoperations are
– Add with carry
– Subtract with borrow
– Transfer/Load
– etc. …

Summary of Typical Arithmetic Micro-Operations

Register Transfer & -operations 33 Arithmetic Microoperations

BINARY ADDER / SUBTRACTOR / INCREMENTER

F A

S0

 C 0F A

S1

C 1F A

S2

C 2F A

S3

C 3

C 4

Binary Adder-Subtractor

F A

B 0 A 0

S 0

C 0C 1F A

B 1 A 1

S 1

C 2F A

B 2 A 2

S 2

C 3F A

B 3 A 3

S 3

M

x y
H A

C S

A 0 1

S 0

x y
H A

C S

A 1

S 1

x y
H A

C S

A 2

S 2

x y
H A

C S

C 4

Binary Incrementer A 3

S 3C 4

Computer Organization Computer Architecture

B 3 A3 B 2 A2 B 1 A1 B 0 A0

Binary Adder

S1
S0
123

0 4x1
MUX

D0
X0 C0

FA
Y0 C1

S1
S0
123

0 4x1
MUX

D1
X1 C1

FA
Y1 C2

S1
S0
123

0 4x1
MUX

D2
X2 C2

FA
Y2 C3

S1
S0
123

0 4x1
MUX

D3
X3 C3

FA
Y3 C4

Cout

B0

A1

B1

A2

B2

A3

B3

0 1

S0
A0

S1Cin

S1 S0 Cin Y Output Microoperation
0 0 0 B D = A + B Add
0 0 1 B D = A + B + 1 Add with carry
0 1 0 B’ D = A + B’ Subtract with borrow
0 1 1 B’ D = A + B’+ 1 Subtract
1 0 0 0 D = A Transfer A
1 0 1 0 D = A + 1 Increment A
1 1 0 1 D = A - 1 Decrement A
1 1 1 1 D = A Transfer A

Arithmetic Microoperations

Computer Organization Computer Architecture

Register Transfer & -operations 34

ARITHMETIC CIRCUIT

LOGIC MICROOPERATIONS

Computer Organization Computer Architecture

Logic Microoperations

• Specify binary operations on the strings of bits in registers
– Logic microoperations are bit-wise operations, i.e., they work on the

individual bits of data
– useful for bit manipulations on binary data
– useful for making logical decisions based on the bit value

• There are, in principle, 16 different logic functions that can
be defined over two binary input variables

• However, most systems only implement four of these
– AND (), OR (), XOR (), Complement/NOT

• The others can be created from combination of these

A B F0 F1 F2 … F13 F14 F15
0 0 0 0 0 … 1 1 1
0 1 0 0 0 … 1 1 1
1 0 0 0 1 … 0 1 1
1 1 0 1 0 … 1 0 1

Register Transfer & -operations 35

Register Transfer & -operations 36 Logic Microoperations

LIST OF LOGIC MICROOPERATIONS

Computer Organization Computer Architecture

• List of Logic Microoperations
- 16 different logic operations with 2 binary vars.
- n binary vars → 2 2 nfunctions

• Truth tables for 16 functions of 2 variables and the
corresponding 16 logic micro-operations

x
y

0 0 1 1
0 1 0 1

Boolean
Function

Micro-
Operations Name

0 0 0 0 F0 = 0 F 0 Clear
0 0 0 1 F1 = xy F A B AND
0 0 1 0 F2 = xy' F A B’
0 0 1 1 F3 = x F A Transfer A
0 1 0 0 F4 = x'y F A’ B
0 1 0 1 F5 = y F B Transfer B
0 1 1 0 F6 = x y F A B Exclusive-OR
0 1 1 1 F7 = x + y F A B OR
1 0 0 0 F8 = (x + y)' F A B)’ NOR
1 0 0 1 F9 = (x y)' F (A B)’ Exclusive-NOR
1 0 1 0 F10 = y' F B’ Complement B
1 0 1 1 F11 = x + y' F A B
1 1 0 0 F12 = x' F A’ Complement A
1 1 0 1 F13 = x' + y F A’ B
1 1 1 0 F14 = (xy)' F (A B)’ NAND
1 1 1 1 F15 = 1 F all 1's Set to all 1's

Register Transfer & -operations 37 Logic Microoperations

HARDWARE IMPLEMENTATION OF LOGIC MICROOPERATIONS

S1 S0 Output -operation
0 0
0 1
1 0
1 1

F = A B
F = A B
F = A B
F = A’

AND
OR
XOR

Complement

Function table

S1
S0

Fi

Ai
Bi

0

1 4 X 1
MUX

2

3 Select

Computer Organization Computer Architecture

Register Transfer & -operations 38 Logic Microoperations

APPLICATIONS OF LOGIC MICROOPERATIONS

Computer Organization Computer Architecture

• Logic microoperations can be used to manipulate individual
bits or a portions of a word in a register

• Consider the data in a register A. In another register, B, is bit
data that will be used to modify the contents of A

A A + B
A A B
A A • B’
A A • B
A A B
A (A • B) + C
A A B

– Selective-set
– Selective-complement
– Selective-clear
– Mask (Delete)
– Clear
– Insert
– Compare
– . . .

39

SELECTIVE SET
Logic Microoperations

• In a selective set operation, the bit pattern in B is used to set
certain bits in A

1 1 0 0
1 0 1 0

At

B
At+11 1 1 0 (A A + B)

• If a bit in B is set to 1, that same position in A gets set to 1,
otherwise that bit in A keeps its previous value

Register Transfer & -operations

Computer Organization Computer Architecture

SELECTIVE COMPLEMENT
Logic Microoperations

• In a selective complement operation, the bit pattern in B is
used to complement certain bits in A

1 1 0 0
1 0 1 0

At

B

At+10 1 1 0 (A A B)

• If a bit in B is set to 1, that same position in A gets
complemented from its original value, otherwise it is
unchanged

Register Transfer & -operations 40

Computer Organization Computer Architecture

41

SELECTIVE CLEAR
Logic Microoperations

• In a selective clear operation, the bit pattern in B is used to
clear certain bits in A

1 1 0 0
1 0 1 0

At

B

At+10 1 0 0 (A A B’)

• If a bit in B is set to 1, that same position in A gets set to 0,
otherwise it is unchanged

Register Transfer & -operations

Computer Organization Computer Architecture

42

MASK OPERATION
Logic Microoperations

• In a mask operation, the bit pattern in B is used to clear
certain bits in A

1 1 0 0
1 0 1 0

At

B

At+11 0 0 0 (A A B)

• If a bit in B is set to 0, that same position in A gets set to 0,
otherwise it is unchanged

Register Transfer & -operations

Computer Organization Computer Architecture

43

CLEAR OPERATION
Logic Microoperations

• In a clear operation, if the bits in the same position in A and
B are the same, they are cleared in A, otherwise they are set
in A

1 1 0 0
1 0 1 0

At

B
0 1 1 0 At+1 (A A B)

Register Transfer & -operations

Computer Organization Computer Architecture

44

INSERT OPERATION

Computer Organization Computer Architecture

Logic Microoperations

• An insert operation is used to introduce a specific bit pattern
into A register, leaving the other bit positions unchanged

• This is done as
– A mask operation to clear the desired bit positions, followed by
– An OR operation to introduce the new bits into the desired

positions
– Example

» Suppose you wanted to introduce 1010 into the low order
four bits of A: 1101 1000 1011 0001 A (Original)

1101 1000 1011 1010 A (Desired)

» 1101 1000 1011 0001 A (Original)
1111 1111 1111 0000 Mask
1101 1000 1011 0000 A (Intermediate)
0000 0000 0000 1010 Added bits
1101 1000 1011 1010 A (Desired)

Register Transfer & -operations

SHIFT MICROOPERATIONS
Shift Microoperations

• There are three types of shifts
– Logical shift
– Circular shift
– Arithmetic shift

• What differentiates them is the information that goes into
the serial input

• A right shift operation
Serial
input

• A left shift operation Serial
input

Register Transfer & -operations 45

Computer Organization Computer Architecture

46 Shift Microoperations

• In a Register Transfer Language, the following notation is used
– shl
– shr

for a logical shift left
for a logical shift right

– Examples:
» R2 shr R2
» R3 shl R3

LOGICAL SHIFT
• In a logical shift the serial input to the shift is a 0.

• A right logical shift operation:
0

• A left logical shift operation:
0

Computer Organization Computer Architecture

Register Transfer & -operations

47 Shift Microoperations

CIRCULAR SHIFT
• In a circular shift the serial input is the bit that is shifted out of

the other end of the register.

• A right circular shift operation:

• A left circular shift operation:

• In a RTL, the following notation is used
– cil
– cir

for a circular shift left
for a circular shift right

– Examples:
» R2 cir R2
» R3 cil R3

Register Transfer & -operations

Computer Organization Computer Architecture

48 Shift Microoperations

ARITHMETIC SHIFT
• An arithmetic shift is meant for signed binary numbers

(integer)
• An arithmetic left shift multiplies a signed number by two
• An arithmetic right shift divides a signed number by two
• The main distinction of an arithmetic shift is that it must keep

the sign of the number the same as it performs the
multiplication or division

• A right arithmetic shift operation:

• A left arithmetic shift operation:
0

Computer Organization Computer Architecture

sign
bit

sign
bit

Register Transfer & -operations

49 Shift Microoperations

ARITHMETIC SHIFT
• An left arithmetic shift operation must be checked for the

overflow
0

V

Computer Organization Computer Architecture

Before the shift, if the leftmost two
bits differ, the shift will result in an
overflow

• In a RTL, the following notation is used
– ashl
– ashr

for an arithmetic shift left
for an arithmetic shift right

– Examples:
» R2 ashr R2
» R3 ashl R3

sign
bit

Register Transfer & -operations

Register Transfer & -operations 50 Shift Microoperations

HARDWARE IMPLEMENTATION OF SHIFT MICROOPERATIONS

S
0
1

H0MUX

S
0
1

H1MUX

S
0
1

H2MUX

S
0
1

H3MUX

Select 0 for shift right (down)
1 for shift left (up)Serial

input (IR)

A0

A1

A2

A3

Serial
input (IL)

Computer Organization Computer Architecture

S3 S2 S1 S0 Cin Operation Function
0
0
0
0
0
0
0
0
0
0
0
0
1
1

0
0
0
0
0
0
0
0
1
1
1
1
0
1

0
0
0
0
1
1
1
1
0
0
1
1
X
X

0
0
1
1
0
0
1
1
0
1
0
1
X
X

0
1
0
1
0
1
0
1
X
X
X
X
X
X

F = A
F = A + 1
F = A + B
F = A + B +
1 F = A + B’
F = A + B’+ 1
F = A - 1
F = A
F = A B
F = A B
F = A B
F = A’
F = shr A
F = shl A

Transfer A
Increment A
Addition
Add with carry
Subtract with borrow
Subtraction
Decrement A
TransferA
AND
OR
XOR
Complement A
Shift right A into F
Shift left A into F

Arithmetic
Circuit

Logic
Circuit

4 x 1
MUX

Select

0
1
2
3

S3
S2
S1
S0

Ci

Ci+1 Fi

Bi
Ai
Ai-1 shr
Ai+1 shl

Di

E i

Register Transfer & -operations 51 Shift Microoperations

ARITHMETIC LOGIC SHIFT UNIT

Computer Organization Computer Architecture

BASIC COMPUTER ORGANIZATION AND DESIGN

Computer Organization Computer Architecture

• Instruction Codes

• Computer Registers

• Computer Instructions

• Timing and Control

• Instruction Cycle

• Memory Reference Instructions

• Input-Output and Interrupt

• Complete Computer Description

• Design of Basic Computer

• Design of Accumulator Logic

Basic Computer Organization & Design 52

INTRODUCTION

Computer Organization Computer Architecture

• Every different processor type has its own design (different
registers, buses, microoperations, machine instructions, etc)

• Modern processor is a very complex device
• It contains

– Many registers
– Multiple arithmetic units, for both integer and floating point calculations
– The ability to pipeline several consecutive instructions to speed execution
– Etc.

• However, to understand how processors work, we will start with
a simplified processor model

• This is similar to what real processors were like ~25 years ago
• M. Morris Mano introduces a simple processor model he calls

the Basic Computer
• We will use this to introduce processor organization and the

relationship of the RTL model to the higher level computer
processor

Basic Computer Organization & Design 53

THE BASIC COMPUTER

• The Basic Computer has two components, a processor and
memory

• The memory has 4096 words in it
– 4096 = 212, so it takes 12 bits to select a word in memory

• Each word is 16 bits long

CPU RAM

Computer Organization Computer Architecture

0

4095

15 0

Basic Computer Organization & Design 54

INSTRUCTIONS

Computer Organization Computer Architecture

Instruction codes

• Program
– A sequence of (machine) instructions

• (Machine) Instruction
– A group of bits that tell the computer to perform a specific operation

(a sequence of micro-operation)

• The instructions of a program, along with any needed data
are stored in memory

• The CPU reads the next instruction from memory
• It is placed in an Instruction Register (IR)
• Control circuitry in control unit then translates the

instruction into the sequence of microoperations
necessary to implement it

Basic Computer Organization & Design 55

INSTRUCTION FORMAT
Instruction codes

• A computer instruction is often divided into two parts
– An opcode (Operation Code) that specifies the operation for that

instruction
– An address that specifies the registers and/or locations in memory to

use for that operation
• In the Basic Computer, since the memory contains 4096 (=

212) words, we needs 12 bit to specify which memory
address this instruction will use

• In the Basic Computer, bit 15 of the instruction specifies
the addressing mode (0: direct addressing, 1: indirect
addressing)

• Since the memory words, and hence the instructions, are
16 bits long, that leaves 3 bits for the instruction’s opcode

15 14 0
I Opcode Address

Instruction Format
12 11

Addressing
mode

Basic Computer Organization & Design 56

Computer Organization Computer Architecture

ADDRESSING MODES
Instruction codes

• The address field of an instruction can represent either
– Direct address: the address in memory of the data to use (the address of the

operand), or
– Indirect address: the address in memory of the address in memory of the data

to use

• Effective Address (EA)
– The address, that can be directly used without modification to access an

operand for a computation-type instruction, or as the target address for a
branch-type instruction

22 0 ADD 457

Operand457

35

300

1 ADD 300

1350

Operand1350

+
AC

+
AC

Direct addressing Indirect addressing

Basic Computer Organization & Design 57

Computer Organization Computer Architecture

PROCESSOR REGISTERS

Computer Organization Computer Architecture

Instruction codes

• A processor has many registers to hold instructions,
addresses, data, etc

• The processor has a register, the Program Counter (PC) that
holds the memory address of the next instruction to get

– Since the memory in the Basic Computer only has 4096 locations, the PC
only needs 12 bits

• In a direct or indirect addressing, the processor needs to keep
track of what locations in memory it is addressing: The
Address Register (AR) is used for this

– The AR is a 12 bit register in the Basic Computer

• When an operand is found, using either direct or indirect
addressing, it is placed in the Data Register (DR). The
processor then uses this value as data for its operation

• The Basic Computer has a single general purpose register –
the Accumulator (AC)

Basic Computer Organization & Design 58

PROCESSOR REGISTERS

Computer Organization Computer Architecture

Instruction codes

• The significance of a general purpose register is that it can be
referred to in instructions

– e.g. load AC with the contents of a specific memory location; store the
contents of AC into a specified memory location

• Often a processor will need a scratch register to store
intermediate results or other temporary data; in the Basic
Computer this is the Temporary Register (TR)

• The Basic Computer uses a very simple model of input/output
(I/O) operations

– Input devices are considered to send 8 bits of character data to the processor
– The processor can send 8 bits of character data to output devices

• The Input Register (INPR) holds an 8 bit character gotten from an
input device

• The Output Register (OUTR) holds an 8 bit character to be send
to an output device

Basic Computer Organization & Design 59

BASIC COMPUTER REGISTERS

List of BC Registers
DR 16 Data Register Holds memory operand
AR 12 Address Register Holds address for memory
AC 16 Accumulator Processor register
IR 16 Instruction Register Holds instruction code
PC 12 Program Counter Holds address of instruction
TR 16 Temporary Register Holds temporary data
INPR 8 Input Register Holds input character
OUTR 8 Output Register Holds output character

Registers

Registers in the Basic Computer

11 0
PC

15 0
IR

15 0

TR

OUTR

15 0

DR

15 0
AC

11 0

AR

INPR
7 0 7 0

Memory
4096 x 16

CPU

Computer Organization Computer Architecture

Basic Computer Organization & Design 60

COMMON BUS SYSTEM

Computer Organization Computer Architecture

Registers

• The registers in the Basic Computer are connected using a
bus

• This gives a savings in circuitry over complete
connections between registers

Basic Computer Organization & Design 61

COMMON BUS SYSTEM
Registers

S2S1 Bus
S0

Memory unit

LD INR CLR

4096 x 16
Address

Write Read

AR

LD INR CLR

PC

LD INR CLR

DR

LD INR CLR

ACALU
E

INPR
IR

LD

LD INR CLR

TR

OUTR
Clock

LD
16-bit common bus

7

1

2

3

4

5

6

Basic Computer Organization & Design 62

Computer Organization Computer Architecture

COMMON BUS SYSTEM
Registers

AR

PC

DR

L I C

L I C

L I C

AC

L I C

ALUE

IR

L

TR

L I C

OUTR LD

INPR
Memory

4096 x 16

Address

Read

Write

16-bit Common Bus
7 1 2 3 4 5 6

S0 S1 S2

Computer Organization Computer Architecture

Basic Computer Organization & Design 63

COMMON BUS SYSTEM

Computer Organization Computer Architecture

Registers

• Three control lines, S2, S1, and S0 control which register the
bus selects as its input

• Either one of the registers will have its load signal
activated, or the memory will have its read signal activated

– Will determine where the data from the bus gets loaded
• The 12-bit registers, AR and PC, have 0’s loaded onto the

bus in the high order 4 bit positions
• When the 8-bit register OUTR is loaded from the bus, the

data comes from the low order 8 bits on the bus

S2 S1 S0 Register
0 0 0 x
0 0 1 AR
0 1 0 PC
0 1 1 DR
1 0 0 AC
1 0 1 IR
1 1 0 TR
1 1 1 Memory

Basic Computer Organization & Design 64

BASIC COMPUTER INSTRUCTIONS

Computer Organization Computer Architecture

Instructions

• Basic Computer Instruction Format

I Opcode Address

Memory-Reference Instructions
15 14 12 11

(OP-code = 000 ~ 110)
0

Register-Reference Instructions
15 12 11

(OP-code = 111, I = 0)
0

Register operation0 1 1 1

Input-Output Instructions
15 12 11

(OP-code =111, I = 1)
0

I/O operation1 1 1 1

Basic Computer Organization & Design 65

BASIC COMPUTER INSTRUCTIONS

Computer Organization Computer Architecture

Symbol
Hex Code

DescriptionI = 0 I = 1
AND
ADD
LDA
STA
BUN
BSA
ISZ

0xxx 8xxx
1xxx 9xxx
2xxx Axxx
3xxx Bxxx
4xxx Cxxx
5xxx Dxxx
6xxx Exxx

AND memory word to AC
A d d m e m o r y w o r d t o A C
Load AC from memory
Store content of AC into memory
Branch unconditionally
Branch and save return address
Increment and skip if zero

CLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circulate right AC and E
CIL 7040 Circulate left AC and E
INC 7020 Increment AC
SPA 7010 Skip next instr. if AC is positive
SNA 7008 Skip next instr. if AC is negative
SZA 7004 Skip next instr. if AC is zero
SZE 7002 Skip next instr. if E is zero
HLT 7001 Halt computer

INP F800 Input character to AC
OUT F400 Output character from AC
SKI F200 Skip on input flag
SKO F100 Skip on output flag
ION F080 Interrupt on
IOF F040 Interrupt off

InstructionsBasic Computer Organization & Design 66

INSTRUCTION SET COMPLETENESS

Computer Organization Computer Architecture

A computer should have a set of instructions so that the user can
construct machine language programs to evaluate any function
that is known to be computable.

• Instruction Types
Functional Instructions

- Arithmetic, logic, and shift instructions
- ADD, CMA, INC, CIR, CIL, AND, CLA

Transfer Instructions
- Data transfers between the main memory

and the processor registers
- LDA, STA

Control Instructions
- Program sequencing and control
- BUN, BSA, ISZ

Input/Output Instructions
- Input and output

- INP, OUT

InstructionsBasic Computer Organization & Design 67

CONTROL UNIT

Computer Organization Computer Architecture

Instruction codes

• Control unit (CU) of a processor translates from machine
instructions to the control signals for the microoperations
that implement them

• Control units are implemented in one of two ways
• Hardwired Control

– CU is made up of sequential and combinational circuits to generate the
control signals

• Microprogrammed Control
– A control memory on the processor contains microprograms that

activate the necessary control signals

• We will consider a hardwired implementation of the control
unit for the Basic Computer

Basic Computer Organization & Design 68

TIMING AND CONTROL

Control unit of Basic Computer

Timing and control

Instruction register (IR)
15 14 13 12 11 - 0

3 x 8
decoder

7 6 5 4 3 2 1 0

I
D 0

15 14 2 1 0
4 x 16

decoder

4-bit
sequence

counter
(SC)

 Increment (INR)
Clear (CLR)

Clock

Other inputs

Control
signals

D 7

T15

T0

Combinational
Control
logic

Basic Computer Organization & Design 69

Computer Organization Computer Architecture

TIMING SIGNALS

T 0 T 1 T 2 T 3 T 4 T 0
C l o c k

T 0

T 1

T 2

T 3

T 4

D 3

C L R
S C

Computer Organization Computer Architecture

- Generated by 4-bit sequence counter and 416 decoder
- The SC can be incremented or cleared.

- Example: T0, T1, T2, T3, T4, T0, T1, . . .
Assume: At time T4, SC is cleared to 0 if decoder output D3 is active.

D3T4: SC
0

Timing and controlBasic Computer Organization & Design 70

INSTRUCTION CYCLE

Computer Organization Computer Architecture

• In Basic Computer, a machine instruction is executed in the
following cycle:
1. Fetch an instruction from memory
2. Decode the instruction
3. Read the effective address from memory if the instruction has an

indirect address
4. Execute the instruction

• After an instruction is executed, the cycle starts again at
step 1, for the next instruction

• Note: Every different processor has its own (different)
instruction cycle

Basic Computer Organization & Design 71

FETCH and DECODE

• Fetch and Decode T0: AR PC (S0S1S2=010, T0=1)
T1: IR M [AR], PC PC + 1 (S0S1S2=111, T1=1)
T2: D0, . . . , D7 Decode IR(12-14), AR IR(0-11), I IR(15)

S2

S1

S0

Bus

7Memory
unit

Address
Read

AR

LD

PC

INR

IR

LD Clock

1

2

5

Common bus

T1

Computer Organization Computer Architecture

T0

Instruction CycleBasic Computer Organization & Design 72

Basic Computer Organization & Design 73 Instrction Cycle

DETERMINE THE TYPE OF INSTRUCTION

= 0 (direct)

D'7IT3:
D'7I'T3:
D7I'T3:
D7IT3:

AR M[AR]
Nothing
Execute a register-reference instr.
Execute an input-output instr.

Start
SC

AR PC
T0

IR M[AR], PC PC + 1
T1

Decode Opcode in IR(12-14),
AR IR(0-11), I IR(15)

T2

D7
= 0 (Memory-reference)(Register or I/O) = 1

II

Execute
register-reference

instruction
SC 0

Execute
input-output
instruction
SC 0

AR M[AR] Nothing

= 0 (register)(I/O) = 1 (indirect) = 1

T3 T3 T3 T3

Execute
memory-reference

instruction
SC 0

T4

Computer Organization Computer Architecture

Basic Computer Organization & Design 74 Instruction Cycle

REGISTER REFERENCE INSTRUCTIONS

Computer Organization Computer Architecture

Register Reference Instructions are identified when
- D7 = 1, I = 0
- Register Ref. Instr. is specified in b0 ~ b11 of IR
- Execution starts with timing signal T3

r = D7 IT3 => Register Reference Instruction
Bi = IR(i) , i=0,1,2,...,11

r:
rB11:
rB10:
rB9:
rB8:
rB7:
rB6:
rB5:
rB4:
rB3:
rB2:
rB1:
rB0:

SC 0
CLA AC 0

E 0CLE
AC AC’CMA
E E’CME
AC shr AC, AC(15) E, E AC(0)CIR
AC shl AC, AC(0) E, E AC(15)CIL
AC AC + 1INC
if (AC(15) = 0) then (PC PC+1)SPA
if (AC(15) = 1) then (PC PC+1)SNA

if (AC = 0) then (PC PC+1)SZA
if (E = 0) then (PC PC+1)SZE

S 0 (S is a start-stop flip-flop)HLT

Basic Computer Organization & Design 75 MR Instructions

MEMORY REFERENCE INSTRUCTIONS

Computer Organization Computer Architecture

Read operand
AND with AC

D0T4: DR M[AR]
D0T5: AC AC DR, SC 0

ADD to AC
D1T4: DR M[AR]
D1T5: AC AC + DR, E Cout, SC 0

Read operand
Add to AC and store carry in E

- The effective address of the instruction is in AR and was placed there during
timing signal T2 when I = 0, or during timing signal T3 when I = 1

- Memory cycle is assumed to be short enough to complete in a CPU cycle
- The execution of MR instruction starts with T4

AND to AC

Symbol Operation
Decoder Symbolic Description

AND
ADD
LDA
STA
BUN
BSA
ISZ

D0
D1
D2
D3
D4
D5
D6

AC AC M[AR]
AC AC + M[AR], E Cout
AC M[AR]
M[AR] AC
PC AR
M[AR] PC, PC AR + 1
M[AR] M[AR] + 1, if M[AR] + 1 = 0 then PC PC+1

MEMORY REFERENCE INSTRUCTIONS

Memory, PC after execution

20

PC = 21

AR = 135

136

0 BSA 135

Next instruction

Subroutine

1 BUN 135

20

21

135

PC = 136

0 BSA 135

Next instruction

21

Subroutine

1 BUN 135

Memory

Computer Organization Computer Architecture

Memory

LDA: Load to AC
D2T4: DR M[AR]
D2T5: AC DR, SC 0

STA: Store AC
D3T4: M[AR] AC, SC 0

BUN: Branch Unconditionally
D4T4: PC AR, SC 0

BSA: Branch and Save Return Address
M[AR] PC, PC AR + 1

Memory, PC, AR at time T4

Basic Computer Organization & Design 76

Basic Computer Organization & Design 77 MR Instructions

MEMORY REFERENCE INSTRUCTIONS

Computer Organization Computer Architecture

BSA:
D5T4: M[AR] PC, AR AR + 1
D5T5: PC AR, SC 0

ISZ: Increment and Skip-if-Zero
D6T4: DR M[AR]
D6T5: DR DR + 1
D6T4: M[AR] DR, if (DR = 0) then (PC PC + 1), SC 0

Basic Computer Organization & Design 78 MR Instructions

FLOWCHART FOR MEMORY REFERENCE INSTRUCTIONS
Memory-reference instruction

DR M[AR] DR M[AR] DR M[AR] M[AR] AC
SC 0

AND ADD LDA STA

AC AC + DR
E Cout
SC 0

AC DR
SC 0

D 0T 4 D 1T 4 D 2T 4 D 3T 4

D 0T 5 D 1T 5 D 2T 5

PC AR
SC 0

M[AR] PC
AR AR + 1

DR M[AR]

BUN BSA ISZ

D 4T 4 D 5T 4 D 6T 4

DR DR + 1

D 5T 5 D 6T 5

PC AR
SC 0

M[AR] DR
If (DR = 0)
then (PC PC + 1)
SC 0

D 6T 6

AC AC DR
SC 0

Computer Organization Computer Architecture

INPUT-OUTPUT AND INTERRUPT

• Input-Output Configuration

INPR Input register - 8 bits
OUTR Output register - 8 bits
FGI Input flag - 1 bit
FGO Output flag - 1 bit
IEN Interrupt enable - 1 bit

- The terminal sends and receives serial information
- The serial info. from the keyboard is shifted into INPR
- The serial info. for the printer is stored in the OUTR
- INPR and OUTR communicate with the terminal

serially and with the AC in parallel.
- The flags are needed to synchronize the timing

difference between I/O device and the computer

A Terminal with a keyboard and a Printer

I/O and Interrupt

Input-output
terminal communicati

Serial
on

interface

Computer
registers and
flip-flops

Printer

Keyboard

Receiver
interface

Transmitter
interface

FGOOUTR

AC

INPR FGI

Serial Communications Path
Parallel Communications Path

Computer Organization Computer Architecture

Basic Computer Organization & Design 79

Basic Computer Organization & Design 80 I/O and Interrupt

PROGRAM CONTROLLED DATA TRANSFER

loop: If FGO = 1 goto loop
consume OUTR, FGO 1

-- CPU -- -- I/O Device --

loop: If FGI = 1 goto loop
INPR new data, FGI 1

/* Input */ /* Initially FGI = 0 */
loop: If FGI = 0 goto loop

AC INPR, FGI 0

/* Output */ /* Initially FGO = 1 */
loop: If FGO = 0 goto loop

FGI 0

AC INPR

END

Start Output

END

OUTR AC

FGO 0

AC Data
yes FGI=0

no
yes FGO=0

no

OUTR AC, FGO 0
FGI=0

Start Input
FGO=1

yes

Computer Organization Computer Architecture

yes

More
Character

no
More

Character
no

Computer Organization Computer Architecture

81

INPUT-OUTPUT INSTRUCTIONS

D7IT3 = p
IR(i) = Bi, i = 6, …, 11

p: SC 0
pB11: AC(0-7) INPR, FGI 0
pB10: OUTR AC(0-7), FGO 0
pB9: if(FGI = 1) then (PC PC + 1)
pB8: if(FGO = 1) then (PC PC + 1)
pB7: IEN 1
pB6: IEN 0

Clear SC
INP Input char. to AC
OUT Output char. from AC
SKI Skip on input flag
SKO Skip on output flag
ION Interrupt enable on
IOF Interrupt enable off

Basic Computer Organization & Design

Basic Computer Organization & Design 82 I/O and Interrupt

PROGRAM-CONTROLLED INPUT/OUTPUT

Computer Organization Computer Architecture

• Program-controlled I/O
- Continuous CPU involvement

I/O takes valuable CPU time
- CPU slowed down to I/O speed
- Simple
- Least hardware

Input

LOOP, SKI DEV
BUN LOOP
INP DEV

Output
LOOP, LDA DATA
LOP, SKO DEV

BUN LOP
OUT DEV

INTERRUPT INITIATED INPUT/OUTPUT

Computer Organization Computer Architecture

- Open communication only when some data has to be passed --> interrupt.

- The I/O interface, instead of the CPU, monitors the I/O device.

- When the interface founds that the I/O device is ready for data transfer,
it generates an interrupt request to the CPU

- Upon detecting an interrupt, the CPU stops momentarily the task
it is doing, branches to the service routine to process the data
transfer, and then returns to the task it was performing.

* IEN (Interrupt-enable flip-flop)

- can be set and cleared by instructions
- when cleared, the computer cannot be interrupted

Basic Computer Organization & Design 83

Basic Computer Organization & Design 84 I/O and Interrupt

FLOWCHART FOR INTERRUPT CYCLE
R = Interrupt f/f

- The interrupt cycle is a HW implementation of a branch
and save return address operation.

- At the beginning of the next instruction cycle, the
instruction that is read from memory is in address 1.

- At memory address 1, the programmer must store a branch instruction
that sends the control to an interrupt service routine

- The instruction that returns the control to the original
program is "indirect BUN 0"

R =1

Store return address
in location 0
M[0] PC

Branch to location 1
PC 1

IEN 0
R 0

Interrupt cycleInstruction cycle =0

Fetch and decode
instructions

Execute
instructions

R 1

IEN
=1

 =1

=1 FGO

=0

FGI
=0

=0

Computer Organization Computer Architecture

Basic Computer Organization & Design 85 I/O and Interrupt

REGISTER TRANSFER OPERATIONS IN INTERRUPT CYCLE

Computer Organization Computer Architecture

Register Transfer Statements for Interrupt Cycle
- R F/F 1 if IEN (FGI + FGO)T0T1T2

 T0T1T2 (IEN)(FGI + FGO): R 1

- The fetch and decode phases of the instruction cycle
must be modified Replace T0, T1, T2 with R'T0, R'T1, R'T2

- The interrupt cycle :
RT0: AR 0, TR PC
RT1: M[AR] TR, PC 0
RT2: PC PC + 1, IEN 0, R 0, SC 0

After interrupt cycle

0
1

Before interrupt

255
PC = 256

1120

0 BUN 1120

Main
Program

I/O
Program

1 BUN 0

0
PC = 1

Memory

255
256

1120

256
0 BUN 1120

Main
Program

I/O
Program

1 BUN 0

Basic Computer Organization & Design 86 I/O and Interrupt

FURTHER QUESTIONS ON INTERRUPT

Computer Organization Computer Architecture

How can the CPU recognize the device
requesting an interrupt ?

Since different devices are likely to require
different interrupt service routines, how can
the CPU obtain the starting address of the
appropriate routine in each case ?

Should any device be allowed to interrupt the
CPU while another interrupt is being serviced ?

How can the situation be handled when two or
more interrupt requests occur simultaneously ?

COMPLETE COMPUTER DESCRIPTION
Flowchart of Operations

Description

=0 (Register) =1(Indir) =0(Dir)

start
SC 0, IEN 0, R 0

R

AR PC
R’T0

IR M[AR], PC PC + 1
R’T1

AR IR(0~11), I IR(15)
D0...D7 Decode IR(12 ~ 14)

R’T2

AR 0, TR PC
RT0

M[AR] TR, PC 0
RT1

PC PC + 1, IEN 0
R 0, SC 0

RT2

D7

=1 (I/O) I I

Execute
I/O

Instruction

Execute
RR

Instruction

AR <- M[AR] Idle
D7IT3 D7I’T3 D7’IT3 D7’I’T3

Execute MR
Instruction

=0(Instruction
Cycle)

=1(Interrupt
Cycle)

=1(Register or I/O) =0(Memory Ref)

D7’T4

Basic Computer Organization & Design 87

Computer Organization Computer Architecture

COMPLETE COMPUTER DESCRIPTION
Microoperations

Fetch

Decode

Indirect
Interrupt

AND

ADD

LDA

STA
BUN
BSA

ISZ

R T 0 :
R T 1 :
RT2:

D7IT3:

RT2:
Memory-Reference

D0T4:
D0T5:
D1T4:
D1T5:
D2T4:
D2T5:
D3T4:
D4T4:
D5T4:
D5T5:
D6T4:
D6T5:
D6T6:

AR PC
IR M[AR], PC PC + 1
D0, ..., D7 Decode IR(12 ~ 14),

AR IR(0 ~ 11), I IR(15)
AR M[AR]

R 1
AR 0, TR PC
M[AR] TR, PC 0
PC PC + 1, IEN 0, R 0, SC 0

DR M[AR]
AC AC DR, SC 0
DR M[AR]
AC AC + DR, E Cout, SC 0
DR M[AR]
AC DR, SC 0
M[AR] AC, SC 0
PC AR, SC 0
M[AR] PC, AR AR + 1
PC AR, SC 0
DR M[AR]
DR DR + 1
M[AR] DR, if(DR=0) then (PC PC + 1),
SC 0

T0T1T2(IEN)(FGI + FGO):
RT0:
RT1:

Basic Computer Organization & Design 88 Description

Computer Organization Computer Architecture

CLA
CLE
CMA
CME
CIR
CIL
INC
SPA
SNA
SZA
SZE
HLT

Input-Output

INP
OUT
SKI
SKO
ION
IOF

Register-Reference
D7IT3 = r
IR(i) = Bi
r:
rB11:
rB10:
rB9:
rB8:
rB7:
rB6:
rB5:
rB4:
rB3:
rB2:
rB1:
rB0:

D7IT3 = p
IR(i) = Bi
p:
pB11:
pB10:
pB9:
pB8:
pB7:
pB6:

(Common to all register-reference instr)
(i = 0,1,2, ..., 11)
SC 0
AC 0
E 0
AC AC
E E
AC shr AC, AC(15) E, E AC(0)
AC shl AC, AC(0) E, E AC(15)
AC AC + 1
If(AC(15) =0) then (PC PC + 1)
If(AC(15) =1) then (PC PC + 1)
If(AC = 0) then (PC PC + 1)
If(E=0) then (PC PC + 1)
S 0

(Common to all input-output instructions)
(i = 6,7,8,9,10,11)
SC 0
AC(0-7) INPR, FGI 0
OUTR AC(0-7), FGO 0
If(FGI=1) then (PC PC + 1)
If(FGO=1) then (PC PC + 1)
IEN 1
IEN 0

Description
COMPLETE COMPUTER DESCRIPTION

Microoperations

Basic Computer Organization & Design 89

Computer Organization Computer Architecture

Basic Computer Organization & Design 90 Design of Basic Computer

DESIGN OF BASIC COMPUTER(BC)

- AC, and Adder and Logic circuit

Computer Organization Computer Architecture

Hardware Components of BC
A memory unit: 4096 x 16.
Registers:

AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC
Flip-Flops(Status):

I, S, E, R, IEN, FGI, and FGO
Decoders: a 3x8 Opcode decoder

a 4x16 timing decoder
Common bus: 16 bits
Control logic gates:
Adder and Logic circuit: Connected to AC

Control Logic Gates
- Input Controls of the nine registers
- Read and Write Controls of memory
- Set, Clear, or Complement Controls of the flip-flops
- S2, S1, S0 Controls to select a register for the bus

Basic Computer Organization & Design 91 Design of Basic Computer

CONTROL OF REGISTERS AND MEMORY

LD(AR) = R'T0 + R'T2 + D'7IT3
CLR(AR) = RT0
INR(AR) = D5T4

Address Register; AR
Scan all of the register transfer statements that change the content of AR:

R’T0:
R’T2:
D’7IT3:
RT0:
D5T4:

AR PC
AR IR(0-11)
AR M[AR]
AR 0
AR AR + 1

LD(AR)
LD(AR)
LD(AR)
CLR(AR)
INR(AR)

AR

LD
INR

CLR

Clock

To bus
12

From bus
12

D' 7
I

T3T2

R
T 0
D
T4

Computer Organization Computer Architecture

CONTROL OF FLAGS

pB7: IEN 1 (I/O Instruction)
pB6: IEN 0 (I/O Instruction)
RT2: IEN 0 (Interrupt)

p = D7IT3 (Input/Output Instruction)

IEN: Interrupt Enable Flag

Design of Basic Computer

T3

D 7
I J

K

Q IEN
p

B7

B 6

R
T2

Computer Organization Computer Architecture

Basic Computer Organization & Design 92

Basic Computer Organization & Design 93 Design of Basic Computer

CONTROL OF COMMON BUS

For AR D4T4: PC AR
D5T5: PC AR

x1 = D4T4 + D5T5

x1
x2
x3
x4
x5
x6
x7

Encoder

S 2
Multiplexer

S 1 bus select

inputs
S 0

Computer Organization Computer Architecture

x1 x2 x3 x4 x5 x6 x7 S2 S1 S0
selected
register

0 0 0 0 0 0 0 0 0 0 none
1 0 0 0 0 0 0 0 0 1 AR
0 1 0 0 0 0 0 0 1 0 PC
0 0 1 0 0 0 0 0 1 1 DR
0 0 0 1 0 0 0 1 0 0 AC
0 0 0 0 1 0 0 1 0 1 IR
0 0 0 0 0 1 0 1 1 0 TR
0 0 0 0 0 0 1 1 1 1 Memory

Basic Computer Organization & Design 94 Design of AC Logic

DESIGN OF ACCUMULATOR LOGIC
Circuits associated with AC

All the statements that change the content of AC

16

16

8

Adder and
logic
circuit

16
ACFrom DR

From INPR

Control
gates

LD INR CLR

16

To bus

Clock

Computer Organization Computer Architecture

D0T5:
D1T5:
D2T5:
pB11:
rB9:
rB7 :
rB6 :
rB11 :
rB5 :

AC AC DR
AC AC + DR
AC DR
AC(0-7) INPR
AC AC
AC shr AC, AC(15) E
AC shl AC, AC(0) E
AC 0
AC AC + 1

AND with DR
Add with DR
Transfer from DR
Transfer from INPR
Complement
Shift right
Shift left
Clear
Increment

CONTROL OF AC REGISTER

Gate structures for controlling
the LD, INR, and CLR of AC

AC

LD
INR

CLR

Clock

To bus16From Adder
and Logic

16

AND

 ADD

DR

INPR

COM

SHR

SHL

 INC

B11

Computer Organization Computer Architecture

CLR
B11

r
B9

B7

B6

B5

p

D0
T 5
D1

D2
T 5

Design of AC LogicBasic Computer Organization & Design 95

Basic Computer Organization & Design 96 Design of AC Logic

ALU (ADDER AND LOGIC CIRCUIT)

One stage of Adder and Logic circuit

AND

ADD

DR

INPR

COM

J

K

Q
AC(i)

LD

FA

From
INPR
bit(i)

DR(i) AC(i)

SHR

AC(i+1)
SHL

AC(i-1)

C i

C i+1

I i

Computer Organization Computer Architecture

PROGRAMMING THE BASIC COMPUTER

Computer Organization Computer Architecture

Introduction

Machine Language

Assembly Language

Assembler

Program Loops

Programming Arithmetic and Logic Operations

Subroutines

Input-Output Programming

Programming the Basic Computer 97

98

m: effective address
M: memory word (operand)

found at m

Computer Organization Computer Architecture

Introduction

Symbol Hexa code Description
AND 0 or 8 AND M to AC
ADD 1 or 9 Add M to AC, carry to E
LDA 2 or A Load AC from M
STA 3 or B Store AC in M
BUN 4 or C Branch unconditionally to m
BSA 5 or D Save return address in m and branch to m+1
ISZ 6 or E Increment M and skip if zero
CLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circulate right E and AC
CIL 7040 Circulate left E and AC
INC 7020 Increment AC, carry to E
SPA 7010 Skip if AC is positive
SNA 7008 Skip if AC is negative
SZA 7004 Skip if AC is zero
SZE 7002 Skip if E is zero
HLT 7001 Halt computer
INP F800 Input information and clear flag
OUT F400 Output information and clear flag
SKI F200 Skip if input flag is on
SKO F100 Skip if output flag is on
ION F080 Turn interrupt on
IOF F040 Turn interrupt off

INTRODUCTION
Those concerned with computer architecture should
have a knowledge of both hardware and software
because the two branches influence each other.

Instruction Set of the Basic Computer

Programming the Basic Computer

MACHINE LANGUAGE

Computer Organization Computer Architecture

• Program
A list of instructions or statements for directing
the computer to perform a required data
processing task

• Various types of programming languages
- Hierarchy of programming languages

• Machine-language
- Binary code
- Octal or hexadecimal code

(Assembler)• Assembly-language
- Symbolic code

• High-level language (Compiler)

Machine LanguageProgramming the Basic Computer 99

Programming the Basic Computer 100 Machine Language

COMPARISON OF PROGRAMMING LANGUAGES

Computer Organization Computer Architecture

Location Instruction Code
0 0010 0000 0000 0100
1 0001 0000 0000 0101

10 0011 0000 0000 0110
11 0111 0000 0000 0001

100 0000 0000 0101 0011
101 1111 1111 1110 1001
110 0000 0000 0000 0000

• Binary Program to Add Two Numbers • Hexa program
Location Instruction

000 2004
001 1005
002 3006
003 7001
004 0053
005 FFE9
006 0000

• Program with Symbolic OP-Code
Location Instruction Comments
000 LDA 004 Load 1st operand into AC
001 ADD 005 Add 2nd operand to AC
002 STA 006 Store sum in location 006
003 HLT Halt computer
004 0053 1st operand
005 FFE9 2nd operand (negative)
006 0000 Store sum here

• Assembly-Language Program

• Fortran Program

I N T E G E R A , B , C
DATA A,83 / B,-23
C = A + B
END

ORG 0 /Origin of program is location 0
LDA A /Load operand from location A
ADD B /Add operand from location B
STA C /Store sum in location C
HLT /Halt computer

A, DEC 83 /Decimal operand
B, DEC -23 /Decimal operand
C, DEC 0 /Sum stored in location C

END /End of symbolic program

Syntax of the BC assembly language
Each line is arranged in three columns called fields
Label field

- May be empty or may specify a symbolic
address consists of up to 3 characters

- Terminated by a comma
Instruction field

- Specifies a machine or a pseudo instruction
- May specify one of

* Memory reference instr. (MRI)
MRI consists of two or three symbols separated by spaces.

ADD OPR (direct address MRI)
ADD PTR I (indirect address MRI)

* Register reference or input-output instr.
Non-MRI does not have an address part

* Pseudo instr. with or without an operand
Symbolic address used in the instruction field must be

defined somewhere as a label
Comment field

- May be empty or may include a comment

Computer Organization Computer Architecture

Assembly LanguageProgramming the Basic Computer 101

ASSEMBLY LANGUAGE

PSEUDO-INSTRUCTIONS
ORG N

Hexadecimal number N is the memory loc.
for the instruction or operand listed in the following line

END
Denotes the end of symbolic program

DEC N
Signed decimal number N to be converted to the binary

HEX N
Hexadecimal number N to be converted to the binary

Example: Assembly language program to subtract two numbers

ORG 100
LDA SUB
CMA
INC
ADD MIN
STA DIF
HLT
DEC 83
DEC -23
HEX 0
END

/ Origin of program is location 100
/ Load subtrahend to AC
/ Complement AC
/ Increment AC
/ Add minuend to AC
/ Store difference
/ Halt computer
/ Minuend
/ Subtrahend
/ Difference stored here
/ End of symbolic program

MIN,
SUB,
DIF,

Assembly Language

Computer Organization Computer Architecture

Programming the Basic Computer 102

TRANSLATION TO BINARY

Computer Organization Computer Architecture

Hexadecimal Code
Symbolic ProgramLocation Content

ORG 100
100 2107 LDA SUB
101 7200 CMA
102 7020 INC
103 1106 ADD MIN
104 3108 STA DIF
105 7001 HLT
106 0053 MIN, DEC 83
107 FFE9 SUB, DEC -23
108 0000 DIF, HEX 0

END

Assembly LanguageProgramming the Basic Computer 103

104

ASSEMBLER - FIRST PASS -
Assembler

Source Program - Symbolic Assembly Language Program
Object Program - Binary Machine Language Program

Two pass assembler
1st pass: generates a table that correlates all user defined

(address) symbols with their binary equivalent value
2nd pass: binary translation

First pass

Assembler

First pass

LC := 0

Scan next line of code Set LC

Label no

yes

yes
 noORG

Store symbol
in address-
symbol table
together with
value of LC

END

Increment LC

Go to
second
pass

no

Computer Organization Computer Architecture

yes

Programming the Basic Computer

105 Assembler

LC <- 0

Scan next line of code
Set LC

yes

yes

ORG yes ENDno

Done

yes

MRI

Pseudo
instr.

no

Valid
non-MRI

instr.

no
C o n v e r t
o p e r a n d
t o b i n a r y
a n d s t o r e
in location
given by LC

no
DEC or
HEX

Error in
line of
code

Store binary
equivalent of
instruction
in location
given by LC

yes

 no
Get operation code
and set bits 2-4

Search address-
symbol table for
binary equivalent
of symbol address
and set bits 5-16

I

Set
first
bit to 0

Set
first

bit to 1

yes no

Assemble all parts of
binary instruction and
store in location given by LC

Increment LC

ASSEMBLER - SECOND PASS -
Second Pass

Machine instructions are translated by means of table-lookup procedures;
(1. Pseudo-Instruction Table, 2. MRI Table, 3. Non-MRI Table

4. Address Symbol Table)

Second pass

Computer Organization Computer Architecture

Programming the Basic Computer

106

PROGRAM LOOPS

DIMENSION A(100)
INTEGER SUM, A
SUM = 0
DO 3 J = 1, 100

3 SUM = SUM + A(J)

O R G 1 0 0
LDA ADS
S T A P T R
LDA NBR
S T A C T R
CLA
ADD PTR I
ISZ PTR
ISZ CTR
BUN LOP
STA SUM
HLT
HEX 150
HEX 0
DEC -100
HEX 0
HEX 0
ORG 150
DEC 75

/ Origin of program is HEX 100
/ Load first address of operand
/ Store in pointer
/ Load -100
/ Store in counter
/ Clear AC
/ Add an operand to AC
/ Increment pointer
/ Increment counter
/ Repeat loop again
/ Store sum
/ Halt
/ First address of operands
/ Reserved for a pointer
/ Initial value for a counter
/ Reserved for a counter
/ Sum is stored here
/ Origin of operands is HEX 150
/ First operand

/ Last operand
/ End of symbolic program

LOP,

ADS,
PTR,
NBR,
CTR,
SUM,

Program Loops

Computer Organization Computer Architecture

Loop: A sequence of instructions that are executed many times,
each with a different set of data

Fortran program to add 100 numbers:

.. .
DEC 23
END

Assembly-language program to add 100 numbers:

Programming the Basic Computer

PROGRAMMING ARITHMETIC AND LOGIC OPERATIONS

Computer Organization Computer Architecture

- Software Implementation
- Implementation of an operation with a program

using machine instruction set
- Usually when the operation is not included

in the instruction set

- Hardware Implementation
- Implementation of an operation in a computer

with one machine instruction

Software Implementation example:

* Multiplication
- For simplicity, unsigned positive numbers
- 8-bit numbers -> 16-bit product

Implementation of Arithmetic and Logic Operations

Programming the Basic Computer 107 Programming Arithmetic and Logic Operations

X holds the multiplicand
Y holds the multiplier
P holds the product

Example with four significant digits

cil

CTR - 8
P 0

E 0

AC Y

Y AC

cir EAC

E
P P + X

E 0

AC X

cil EAC

X AC

CTR CTR + 1

=0 =1

CTR Stop

Computer Organization Computer Architecture

 0 =0

X = 0000 1111 P
Y = 0000 1011 0000 0000

0000 1111 0000 1111
0001 1110 0010 1101
0000 0000 0010 1101
 0111 1000 1010 0101
1010 0101

Programming the Basic Computer 108 Programming Arithmetic and Logic Operations

FLOWCHART OF A PROGRAM - Multiplication -

ASSEMBLY LANGUAGE PROGRAM - Multiplication -

LOP,
ORG
CLE

100
/ Clear E

LDA Y / Load multiplier
CIR / Transfer multiplier bit to E
STA Y / Store shifted multiplier
SZE / Check if bit is zero
BUN ONE / Bit is one; goto ONE
BUN ZRO / Bit is zero; goto ZRO

ONE, LDA X / Load multiplicand
ADD P / Add to partial product
STA P / Store partial product
CLE / Clear E

ZRO, LDA X / Load multiplicand
CIL / Shift left
STA X / Store shifted multiplicand
ISZ CTR
BUN LOP

/ Increment counter
/ Counter not zero; repeat loop

HLT / Counter is zero; halt
CTR, DEC -8 / This location serves as a counter
X, HEX 000F / Multiplicand stored here
Y, HEX 000B / Multiplier stored here
P, HEX 0 / Product formed here

END

Programming the Basic Computer 109 Programming Arithmetic and Logic Operations

Computer Organization Computer Architecture

ASSEMBLY LANGUAGE PROGRAM
- Double Precision Addition -

Computer Organization Computer Architecture

LDA
ADD
S T A
CLA

AL
B L
CL

/ Load A low
/ Add B low, carry in E
/ Store in C low
/ Clear AC

CIL / Circulate to bring carry into AC(16)
ADD AH / Add A high and carry
ADD BH / Add B high
STA CH / Store in C high
HLT

Programming the Basic Computer 110 Programming Arithmetic and Logic Operations

ASSEMBLY LANGUAGE PROGRAM
- Logic and Shift Operations -

• Logic operations

- BC instructions : AND, CMA, CLA
- Program for OR operation

LDA A
CMA
STA TMP
LDA B
CMA
AND TMP
CMA

/ Load 1st operand
/ Complement to get A’
/ Store in a temporary location
/ Load 2nd operand B
/ Complement to get B’
/ AND with A’ to get A’ AND B’
/ Complement again to get A OR B

• Shift operations - BC has Circular Shift only

- Logical shift-right operation - Logical shift-left operation
CLECLE

CIR CIL

- Arithmetic right-shift operation

C L E
S P A
CME
CIR

/ Clear E to 0
/ Skip if AC is positive
/ AC is negative
/ Circulate E and AC

Programming the Basic Computer 111 Programming Arithmetic and Logic Operations

Computer Organization Computer Architecture

112

SUBROUTINES

Computer Organization Computer Architecture

Loc. ORG 100 / Main program
LDA X / Load X
BSA SH4 / Branch to subroutine
STA X / Store shifted number
LDA Y / Load Y
BSA SH4 / Branch to subroutine again
STA Y / Store shifted number
HLT

X, HEX 1234
Y, HEX 4321

/ Subroutine to shift left 4 times
SH4, HEX 0 / Store return address here

CIL / Circulate left once
CIL
CIL
CIL / Circulate left fourth time
AND MSK / Set AC(13-16) to zero
BUN SH4 I / Return to main program

MSK, HEX FFF0 / Mask operand
END

100
101
102
103
104
105
106
107
108

109
10A
10B
10C
10D
10E
10F
110

Subroutines

Subroutine

- A set of common instructions that can be used in a program many times.
- Subroutine linkage : a procedure for branching

to a subroutine and returning to the main program

Example

Programming the Basic Computer

Programming the Basic Computer 113 Subroutines

SUBROUTINE PARAMETERS AND DATA LINKAGE

Computer Organization Computer Architecture

Loc. ORG 200
LDA X / Load 1st operand into AC
BSA OR / Branch to subroutine OR
HEX 3AF6 / 2nd operand stored here
STA Y / Subroutine returns here
HLT

X, HEX 7B95 / 1st operand stored here
Y, HEX 0 / Result stored here
OR, HEX 0 / Subroutine OR

CMA / Complement 1st operand
STA TMP / Store in temporary location
LDA OR I / Load 2nd operand
CMA / Complement 2nd operand
AND TMP / AND complemented 1st operand
CMA / Complement again to get OR
ISZ OR / Increment return address
BUN OR I / Return to main program

TMP, HEX 0 / Temporary storage
END

200
201
202
203
204
205
206
207
208
209
20A
20B
20C
20D
20E
20F
210

Example: Subroutine performing LOGICAL OR operation; Need two parameters

Linkage of Parameters and Data between the Main Program and a Subroutine
- via Registers
- via Memory locations
- ….

Computer Organization Computer Architecture

114

SUBROUTINE - Moving a Block of Data -

MVE,

LOP,

BSA MVE
HEX 100
HEX 200
DEC -16
HLT
HEX 0
LDA MVE I
STA PT1
ISZ MVE
LDA MVE I
STA PT2
ISZ MVE
LDA MVE I
STA CTR
ISZ MVE
LDA PT1 I
STA PT2 I
ISZ PT1

/ Main program
/ Branch to subroutine
/ 1st address of source data
/ 1st address of destination data
/ Number of items to move

/ Subroutine MVE
/ Bring address of source
/ Store in 1st pointer
/ Increment return address
/ Bring address of destination
/ Store in 2nd pointer
/ Increment return address
/ Bring number of items
/ Store in counter
/ Increment return address
/ Load source item
/ Store in destination
/ Increment source pointer • Fortran subroutine

PT1,
PT2,
CTR,

ISZ PT2
ISZ CTR
BUN LOP
BUN MVE I
--
--
--

/ Increment destination pointer
/ Increment counter
/ Repeat 16 times
/ Return to main program

SUBROUTINE MVE (SOURCE, DEST, N)
DIMENSION SOURCE(N), DEST(N)
DO 20 I = 1, N

20 DEST(I) = SOURCE(I)
RETURN
END

SubroutinesProgramming the Basic Computer

Program to Input one Character(Byte)

CIF, SKI / Check input flag
BUN CIF / Flag=0, branch to check again
INP / Flag=1, input character
OUT / Display to ensure correctness
STA CHR / Store character

CHR,
HLT
-- / Store character here

LDA CHR
SKO
BUN COF
OUT
HLT
HEX 0057

/ Load character into AC
/ Check output flag
/ Flag=0, branch to check again
/ Flag=1, output character

/ Character is "W"

COF,

CHR,

Input Output Program

Computer Organization Computer Architecture

Program to Output a Character

Programming the Basic Computer 115

INPUT OUTPUT PROGRAM

--
SKI
BUN FST
INP
OUT
BSA SH4
BSA SH4
SKI
BUN SCD
INP
OUT
BUN IN2 I

/ Subroutine entry

/ Input 1st character

/ Logical Shift left 4 bits
/ 4 more bits

/ Input 2nd character

/ Return

IN2,
FST,

SCD,

Subroutine to Input 2 Characters and pack into a word

Programming the Basic Computer 116 Input Output Program

CHARACTER MANIPULATION

Computer Organization Computer Architecture

PROGRAM INTERRUPT

Computer Organization Computer Architecture

Tasks of Interrupt Service Routine
- Save the Status of CPU

Contents of processor registers and Flags

- Identify the source of Interrupt
Check which flag is set

- Service the device whose flag is set
(Input Output Subroutine)

- Restore contents of processor registers and flags

- Turn the interrupt facility on

- Return to the running program
Load PC of the interrupted program

Input Output ProgramProgramming the Basic Computer 117

Programming the Basic Computer 118 Input Output Program

INTERRUPT SERVICE ROUTINE

Computer Organization Computer Architecture

Loc.
ZRO, - / Return address stored here

BUN SRV / Branch to service routine
CLA / Portion of running program
ION / Turn on interrupt facility
LDA X
ADD Y / Interrupt occurs here
STA Z / Program returns here after interrupt

/ Interrupt service routine
SRV, STA SAC / Store content of AC

CIR / Move E into AC(1)
STA SE / Store content of E
SKI / Check input flag
BUN NXT / Flag is off, check next flag
INP / Flag is on, input character
OUT / Print character
STA PT1 I / Store it in input buffer
ISZ PT1 / Increment input pointer

NXT, SKO / Check output flag
BUN EXT / Flag is off, exit
LDA PT2 I / Load character from output buffer
OUT / Output character
ISZ PT2 / Increment output pointer

EXT, LDA SE / Restore value of AC(1)
CIL / Shift it to E
LDA SAC / Restore content of AC
ION / Turn interrupt on
BUN ZRO I / Return to running program

SAC, - / AC is stored here
SE, - / E is stored here
PT1, - / Pointer of input buffer
PT2, - / Pointer of output buffer

0
1

100
101
102
103
104

200

MICROPROGRAMMED CONTROL

Computer Organization Computer Architecture

• Control Memory

• Sequencing Microinstructions

• Microprogram Example

• Design of Control Unit

• Microinstruction Format

• Nanostorage and Nanoprogram

Microprogrammed Control 119

COMPARISON OF CONTROL UNIT IMPLEMENTATIONS

Microprogram

I R Status F/Fs

Control Unit Implementation
Combinational Logic Circuits (Hard-wired)

Control Data

Combinational
Logic Circuits

Control
Points CPU

Memory

Timing State

Ins. Cycle State

Control Unit's State

Status F/Fs
Control Data

Next Address
Generation
Logic

C
S
A
R

Control
Storage

(-program
memory)

Memory
I R

C
S
D
R

C
P
s

CPUD
}

Microprogrammed Control 120 Implementation of Control Unit

Computer Organization Computer Architecture

121

TERMINOLOGY

Computer Organization Computer Architecture

Microprogram
- Program stored in memory that generates all the control signals required

to execute the instruction set correctly
- Consists of microinstructions

Microinstruction
- Contains a control word and a sequencing word

Control Word - All the control information required for one clock cycle
Sequencing Word - Information needed to decide

the next microinstruction address
- Vocabulary to write a microprogram

Control Memory(Control Storage: CS)
- Storage in the microprogrammed control unit to store the microprogram

Writeable Control Memory(Writeable Control Storage:WCS)
- CS whose contents can be modified

-> Allows the microprogram can be changed
-> Instruction set can be changed or modified

Dynamic Microprogramming
- Computer system whose control unit is implemented with

a microprogram in WCS
- Microprogram can be changed by a systems programmer or a user

Microprogrammed Control

122

TERMINOLOGY

Computer Organization Computer Architecture

Sequencer (Microprogram Sequencer)

A Microprogram Control Unit that determines
the Microinstruction Address to be executed
in the next clock cycle

- In-line Sequencing
- Branch
- Conditional Branch
- Subroutine
- Loop
- Instruction OP-code mapping

Microprogrammed Control

MICROINSTRUCTION SEQUENCING

Sequencing Capabilities Required in a Control Storage
- Incrementing of the control address register
- Unconditional and conditional branches
- A mapping process from the bits of the machine

instruction to an address for control memory
- A facility for subroutine call and return

Sequencing

Instruction code

Mapping
logic

Multiplexers

Control memory (ROM)

Subroutine
register
(SBR)

Branch
logic

Status
bits

Microoperations

Control address register
(CAR)

Incrementer

MUX
select

select a status
bit

Branch address

Microprogrammed Control 123

Computer Organization Computer Architecture

124

CONDITIONAL BRANCH
Sequencing

Conditional Branch

If Condition is true, then Branch (address from
the next address field of the current microinstruction)
else Fall Through

Conditions to Test: O(overflow), N(negative),
Z(zero), C(carry), etc.

Unconditional Branch
Fixing the value of one status bit at the input of the multiplexer to 1

Control memoryMUX

Load address
Control address register

Increment

Status bits
(condition)

Micro-operationsCondition select

Next address

...

Microprogrammed Control

Computer Organization Computer Architecture

MAPPING OF INSTRUCTIONS
Sequencing

ADD Routine
AND Routine
LDA Routine
STA Routine
BUN Routine

Control
Storage

ADD 0000
AND 0001
LDA 0010
STA 0011
BUN 0100

.

.

.

Direct Mapping
OP-codes of Instructions

Address
000010 010

000110 010

001010 010

001110 010

010010 010

Mapping
Bits 10 xxxx 010

Address
0000
0001
0010
0011
0100

Computer Organization Computer Architecture

ADD Routine

AND Routine

LDA Routine

STA Routine

BUN Routine

Microprogrammed Control 125

Microprogrammed Control 126 Sequencing

MAPPING OF INSTRUCTIONS TO MICROROUTINES

OP-code

Mapping memory
(ROM or PLA)

Control address register

Control Memory

Mapping from the OP-code of an instruction to the
address of the Microinstruction which is the starting
microinstruction of its execution microprogram

1 0 1 1 Address
OP-code

Mapping bits
Microinstruction

address

Mapping function implemented by ROM or PLA

0 x x x x 0 0

0 1 0 1 1 0 0

Machine
Instruction

Computer Organization Computer Architecture

MICROPROGRAM EXAMPLE
Microprogram

Computer Configuration

MUX

AR
10 0

PC
10 0

Address Memory
2048 x 16

MUX

DR
15 0

Arithmetic
logic and
shift unit

AC
15 0

SBR CAR
6 0 6 0

Control memory
128 x 20

Control unit

Microprogrammed Control 127

Computer Organization Computer Architecture

MACHINE INSTRUCTION FORMAT

Computer Organization Computer Architecture

Microprogram

EA is the effective address
Symbol OP-code Description

ADD 0000 AC AC + M[EA]
BRANCH 0001 if (AC < 0) then (PC EA)
STORE 0010 M[EA] AC
EXCHANGE 0011 AC M[EA], M[EA] AC

Machine instruction format
15 14 11 10
I Opcode Address

0

Sample machine instructions

F1 F2 F3 CD BR AD

Microinstruction Format
3 3 3 2 2 7

F1, F2, F3: Microoperation fields
CD: Condition for branching
BR: Branch field
AD: Address field

Microprogrammed Control 128

Microprogrammed Control 129 Microprogram

MICROINSTRUCTION FIELD DESCRIPTIONS - F1,F2,F3

Computer Organization Computer Architecture

F1 Microoperation Symbol
000 None NOP
001 AC AC + DR ADD
010 AC 0 CLRAC
011 AC AC + 1 INCAC
100 AC DR DRTAC
101 AR DR(0-10) DRTAR
110 AR PC PCTAR
111 M[AR] DR WRITE

F2 Microoperation Symbol
000 None NOP
001 AC AC - DR SUB
010 AC AC DR OR
011 AC AC DR AND
100 DR M[AR] READ
101 DR AC ACTDR
110 DR DR + 1 INCDR
111 DR(0-10) PC PCTDR

F3 Microoperation Symbol
000 None NOP
001 AC AC DR XOR
010 AC AC’ COM
011 AC shl AC SHL
100 AC shr AC SHR
101 PC PC + 1 INCPC
110 PC AR ARTPC
111 Reserved

Microprogrammed Control 130 Microprogram

MICROINSTRUCTION FIELD DESCRIPTIONS - CD, BR

Computer Organization Computer Architecture

CD Condition Symbol Comments
00 Always = 1 U Unconditional branch
01 DR(15) I Indirect address bit
10 AC(15) S Sign bit of AC
11 AC = 0 Z Zero value in AC

BR Symbol Function
00 JMP CAR AD if condition = 1

CAR CAR + 1 if condition = 0
CAR AD, SBR CAR + 1 if condition = 1
CAR CAR + 1 if condition = 0
CAR SBR (Return from subroutine)
CAR(2-5) DR(11-14), CAR(0,1,6) 0

01 CALL

10 RET
11 MAP

SYMBOLIC MICROINSTRUCTIONS

Computer Organization Computer Architecture

• Symbols are used in microinstructions as in assembly language
• A symbolic microprogram can be translated into its binary equivalent

by a microprogram assembler.

Sample Format
five fields: label; micro-ops; CD; BR; AD

Label: may be empty or may specify a symbolic
address terminated with a colon

Micro-ops: consists of one, two, or three symbols
separated by commas

CD: one of {U, I, S, Z}, where U: Unconditional Branch
I: Indirect address bit
S: Sign of AC
Z: Zero value in AC

BR: one of {JMP, CALL, RET, MAP}

AD: one of {Symbolic address, NEXT, empty}

MicroprogramMicroprogrammed Control 131

Microprogrammed Control 132 Microprogram

SYMBOLIC MICROPROGRAM - FETCH ROUTINE

AR PC
DR M[AR], PC PC + 1
AR DR(0-10), CAR(2-5) DR(11-14), CAR(0,1,6) 0

Symbolic microprogram for the fetch cycle:
ORG 64
PCTAR U JMP NEXT
READ, INCPC U JMP NEXT
DRTAR U MAP

FETCH:

Binary equivalents translated by an assembler
Binary
address F1 F2 F3 CD BR AD
1000000 110 000 000 00 00 1000001
1000001 000 100 101 00 00 1000010
1000010 101 000 000 00 11 0000000

During FETCH, Read an instruction from memory
and decode the instruction and update PC

Sequence of microoperations in the fetch cycle:

Computer Organization Computer Architecture

SYMBOLIC MICROPROGRAM

Computer Organization Computer Architecture

• Control Storage: 128 20-bit words
• The first 64 words: Routines for the 16 machine instructions
• The last 64 words: Used for other purpose (e.g., fetch routine and other subroutines)
• Mapping: OP-code XXXX into 0XXXX00, the first address for the 16 routines are

0(0 0000 00), 4(0 0001 00), 8, 12, 16, 20, ..., 60

Microprogram

Label Microops CD BR AD
ORG 0

ADD: NOP I CALL INDRCT
READ U JMP NEXT
ADD U JMP FETCH

ORG 4
BRANCH: NOP S JMP OVER

NOP U JMP FETCH
OVER: NOP I CALL INDRCT

ARTPC U JMP FETCH

ORG 8
STORE: NOP I CALL INDRCT

ACTDR U JMP NEXT
WRITE U JMP FETCH

ORG 12
EXCHANGE: NOP I CALL INDRCT

READ U JMP NEXT
ACTDR, DRTAC U JMP NEXT
WRITE U JMP FETCH

ORG 64
FETCH: PCTAR U JMP NEXT

READ, INCPC U JMP NEXT
DRTAR U MAP

INDRCT: READ U JMP NEXT
DRTAR U RET

Partial Symbolic Microprogram

Microprogrammed Control 133

134

This microprogram can be implemented using ROM

Computer Organization Computer Architecture

Microprogram

Micro Routine
Address Binary Microinstruction

Decimal Binary F1 F2 F3 CD BR AD
ADD 0 0000000 000 000 000 01 01 1000011

1 0000001 000 100 000 00 00 0000010
2 0000010 001 000 000 00 00 1000000
3 0000011 000 000 000 00 00 1000000

BRANCH 4 0000100 000 000 000 10 00 0000110
5 0000101 000 000 000 00 00 1000000
6 0000110 000 000 000 01 01 1000011
7 0000111 000 000 110 00 00 1000000

STORE 8 0001000 000 000 000 01 01 1000011
9 0001001 000 101 000 00 00 0001010
10 0001010 111 000 000 00 00 1000000
11 0001011 000 000 000 00 00 1000000

EXCHANGE 12 0001100 000 000 000 01 01 1000011
13 0001101 001 000 000 00 00 0001110
14 0001110 100 101 000 00 00 0001111
15 0001111 111 000 000 00 00 1000000

FETCH 64 1000000 110 000 000 00 00 1000001
65 1000001 000 100 101 00 00 1000010
66 1000010 101 000 000 00 11 0000000

INDRCT 67 1000011 000 100 000 00 00 1000100
68 1000100 101 000 000 00 10 0000000

BINARY MICROPROGRAM
Microprogrammed Control

DESIGN OF CONTROL UNIT
- DECODING ALU CONTROL INFORMATION -

Design of Control Unit

3 x 8 decoder
7 6 5 4 3 2 1 0

F1

3 x 8 decoder
7 6 5 4 3 2 1 0

microoperation fields
F2

3 x 8 decoder
7 6 5 4 3 2 1 0

F3

Arithmetic
logic and
shift unit

AND
ADD

DRTAC

AC
Load

From From
PC DR(0-10)

Select 0 1
Multiplexers

ARLoad Clock

AC

Computer Organization Computer Architecture

DR

DR
TA

R

PC
TA

R

Decoding of Microoperation Fields

Microprogrammed Control 135

MICROPROGRAM SEQUENCER
- NEXT MICROINSTRUCTION ADDRESS LOGIC -

136 Design of Control Unit

Subroutine
CALL

MUX-1 selects an address from one of four sources and routes it into a CAR

- In-Line Sequencing CAR + 1
- Branch, Subroutine Call CS(AD)
- Return from Subroutine Output of SBR
- New Machine instruction MAP

3 2 1 0
S1 MUX1

External
(MAP)

SBR L

Incrementer

CARClock

S0
Address
source
selection

In-Line
RETURN form Subroutine

 Branch, CALL Address

Control Storage

S1S0 Address Source
00 CAR + 1, In-Line
01 SBR RETURN
10 CS(AD), Branch or CALL
11 MAP

Microprogrammed Control

Computer Organization Computer Architecture

MICROPROGRAM SEQUENCER
- CONDITION AND BRANCH CONTROL -

Design of Control Unit

I0 logicI
1

T Input
MUX2
Select

1
I

S
Z

TestFrom
CPU BR field

of CS S0
S1

L(load SBR with PC)
for subroutine Call
for next address
selection

I1I0T Meaning Source of Address S1S0 L

000 In-Line CAR+1 00 0
001 JMP CS(AD) 01 0
010 In-Line CAR+1 00 0
011 CALL CS(AD) and SBR <- CAR+1 01 1
10x RET SBR 10 0
11x MAP DR(11-14) 11 0

L

S1 = I1
S0 = I1I0 + I1’T
L = I1’I0T

CD Field of CS

Input Logic

Microprogrammed Control 137

Computer Organization Computer Architecture

Microprogrammed Control 138 Design of Control Unit

MICROPROGRAM SEQUENCER

3 2 1 0
S1 MUX1

External
(MAP)

SBR Load

Incrementer

CAR

MUX2
Select

1
I
S
Z

 Test

Clock

Microops

Control memory

CD BR AD

L

Computer Organization Computer Architecture

I Input
I0 logic
T1 S0

.

MICROINSTRUCTION FORMAT

Computer Organization Computer Architecture

Information in a Microinstruction
- Control Information
- Sequencing Information
- Constant

Information which is useful when feeding into the system

These information needs to be organized in some way for
- Efficient use of the microinstruction bits
- Fast decoding

Field Encoding

- Encoding the microinstruction bits
- Encoding slows down the execution speed

due to the decoding delay
- Encoding also reduces the flexibility due to

the decoding hardware

Microprogrammed Control 139 Microinstruction Format

140
HORIZONTAL AND VERTICAL
MICROINSTRUCTION FORMAT

Horizontal Microinstructions
Each bit directly controls each micro-operation or each control point
Horizontal implies a long microinstruction word
Advantages: Can control a variety of components operating in parallel.

--> Advantage of efficient hardware utilization
Disadvantages: Control word bits are not fully utilized

--> CS becomes large --> Costly
Vertical Microinstructions

A microinstruction format that is not horizontal
V e r t i c a l i m p l i e s a s h o r t m i c r o i n s t r u c t i o n w o r d
Encoded Microinstruction fields

--> Needs decoding circuits for one or two levels of decoding

Microinstruction Format

One-level decoding

2 x 4
Decoder

3 x 8
Decoder

Field A
2 bits

Field B
3 bits

1 of 4 1 of 8

Two-level decoding

2 x 4
Decoder

6 x 64
Decoder

Field A
2 bits

Field B
6 bits

Decoder and
selection logic

Microprogrammed Control

Computer Organization Computer Architecture

NANOSTORAGE AND NANOINSTRUCTION

Computer Organization Computer Architecture

The decoder circuits in a vertical microprogram
storage organization can be replaced by a ROM

=> Two levels of control storage
First level - Control Storage
Second level - Nano Storage

Two-level microprogram

First level
-Vertical format Microprogram

Second level
-Horizontal format Nanoprogram
- Interprets the microinstruction fields, thus converts a vertical

microinstruction format into a horizontal
nanoinstruction format.

Usually, the microprogram consists of a large number of short
microinstructions, while the nanoprogram contains fewer words
with longer nanoinstructions.

Microprogrammed Control 141 Control Storage Hierarchy

TWO-LEVEL MICROPROGRAMMING - EXAMPLE
* Microprogram: 2048 microinstructions of 200 bits each
* With 1-Level Control Storage: 2048 x 200 = 409,600 bits
* Assumption:

256 distinct microinstructions among 2048
* With 2-Level Control Storage:

Nano Storage: 256 x 200 bits to store 256 distinct nanoinstructions
Control storage: 2048 x 8 bits

To address 256 nano storage locations 8 bits are needed
* Total 1-Level control storage: 409,600 bits

Total 2-Level control storage: 67,584 bits (256 x 200 + 2048 x 8)

Control address register

11 bits

Control memory
2048 x 8

Microinstruction (8 bits)
Nanomemory address

Nanomemory
256 x 200

Nanoinstructions (200 bits)

Computer Organization Computer Architecture

Microprogrammed Control 142 Control Storage Hierarchy

143

Overview

Computer Organization Computer Architecture

• Instruction Set Processor (ISP)
• Central Processing Unit (CPU)
• A typical computing task consists of a series of

steps specified by a sequence of machine
instructions that constitute a program.

• An instruction is executed by carrying out a
sequence of more rudimentary operations.

Central Processing Unit

Fundamental Concepts

Computer Organization Computer Architecture

• Processor fetches one instruction at a time and
perform the operation specified.

• Instructions are fetched from successive
memory locations until a branch or a jump
instruction is encountered.

• Processor keeps track of the address of the
memory location containing the next instruction
to be fetched using Program Counter (PC).

• Instruction Register (IR)

Central Processing Unit 144

Executing an Instruction

Computer Organization Computer Architecture

• Fetch the contents of the memory location
pointed to by the PC. The contents of this
location are loaded into the IR (fetch phase).

IR ← [[PC]]
• Assuming that the memory is byte addressable,

increment the contents of the PC by 4 (fetch
phase).

PC ← [PC] + 4
• Carry out the actions specified by the instruction

in the IR (execution phase).

Central Processing Unit 145

146

Processor Organization

MDR HAS
TWO INPUTS

AND TWO
OUTPUTS

Datapath

Textbook Page 413

Computer Organization Computer Architecture

Central Processing Unit

Executing an Instruction

Computer Organization Computer Architecture

• Transfer a word of data from one processor register
to another or to the ALU.

• Perform an arithmetic or a logic operation and store
the result in a processor register.

• Fetch the contents of a given memory location and
load them into a processor register.

• Store a word of data from a processor register into a
given memory location.

Central Processing Unit 147

148

Register Transfers

BA

Z

Y

ALU

Zin

Ri

Riout

Yin

Internal processor
bus

Riin

Constant 4

MUX

Zout

Figure 7.2. Input and output gating for the registers in Figure 7.1.

Select

Central Processing Unit

Computer Organization Computer Architecture

149

Register Transfers

• All operations and data transfers are controlled by the processor
clock.

Figure 7.3. Input and output gating for one register bit.
Computer Organization Computer Architecture

Central Processing Unit

Performing an Arithmetic or Logic
Operation

Computer Organization Computer Architecture

• The ALU is a combinational circuit that has no
internal storage.

• ALU gets the two operands from MUX and bus.
The result is temporarily stored in register Z.

• What is the sequence of operations to add the
contents of register R1 to those of R2 and store
the result in R3?

1. R1out, Yin
2. R2out, SelectY, Add, Zin
3. Zout, R3in

Central Processing Unit 150

Fetching a Word from Memory

• Address into MAR; issue Read operation; data into MDR.

Figure 7.4. Connection and control signals for register MDR.
Computer Organization Computer Architecture

Central Processing Unit 151

Fetching a Word from Memory

Computer Organization Computer Architecture

• The response time of each memory access
varies (cache miss, memory-mapped I/O,…).

• To accommodate this, the processor waits until
it receives an indication that the requested
operation has been completed (Memory-
Function-Completed, MFC).

• Move (R1), R2
 MAR ← [R1]
 Start a Read operation on the memory bus
 Wait for the MFC response from the memory
 Load MDR from the memory bus
 R2 ← [MDR]

Central Processing Unit 152

153

Timing

Computer Organization Computer Architecture

Assume MAR
is always available
on the address lines
of the memory bus.

R2 ← [MDR]

MAR ← [R1]

Start a Read operation on the memory bus

Wait for the MFC response from the memory

Load MDR from the memory bus

Central Processing Unit

Execution of a Complete
Instruction

Computer Organization Computer Architecture

• Add (R3), R1
• Fetch the instruction
• Fetch the first operand (the contents of the memory

location pointed to by R3)
• Perform the addition
• Load the result into R1

Central Processing Unit 154

155

Architecture

BA

Z

Y

ALU

Zin

Ri

Riout

Yin

Internal processor
bus

Riin

Constant 4

MUX

Zout

Figure 7.2. Input and output gating for the registers in Figure 7.1.

Select

Central Processing Unit

Computer Organization Computer Architecture

Execution of a Complete
Instruction

Computer Organization Computer Architecture

Add (R3), R1

Central Processing Unit 156

Execution of Branch Instructions

Computer Organization Computer Architecture

• A branch instruction replaces the contents of PC
with the branch target address, which is usually
obtained by adding an offset X given in the branch
instruction.

• The offset X is usually the difference between the
branch target address and the address immediately
following the branch instruction.

• Conditional branch

Central Processing Unit 157

Execution of Branch Instructions

Step Action

1
2
3
4
5

PCout, MAR in , Read, Select4,Add, Zin

Zout, PCin , Yin, WMF C
MDRout , IRin

Offset-field-of-IoRut, Add, Zin

Zout, PCin , End

Figure 7.7. Control sequence for an unconditional branch instruction.

Computer Organization Computer Architecture

Central Processing Unit 158

Multiple-Bus Organization

Computer Organization Computer Architecture

Central Processing Unit 159

Multiple-Bus Organization

• Add R4, R5, R6

Step

Computer Organization Computer Architecture

Action

1 PC , R=B,
out

MAR
in

, Read, IncPC

2 WMF C

3 MDR , R=B, IR
outB in

4 R4 outA, R5 outB, SelectA, Add, R6 in, End

Figure 7.9. Control sequence for the instruction. Add R4,R5,R6,
for the three-bus organization in Figure 7.8.

Central Processing Unit 160

161

Quiz

Computer Organization Computer Architecture

• What is the control
sequence for execution
of the instruction

Add R1, R2
including the instruction
fetch phase? (Assume
single bus architecture)

Central Processing Unit

Control Unit Organization

Figure 7.10. Control unit organization.

CLKClock

IR
Decoder/
encoder

Control signals

Control step
counter

Condition
codes

External
inputs

Central Processing Unit 162

Computer Organization Computer Architecture

Detailed Block Description

Computer Organization Computer Architecture

Central Processing Unit 163

164

Generating Zin

• Zin = T1 + T6 • ADD + T4 • BR + …

Figure 7.12. Generation of the Zin control signal for the processor in Figure 7.1.

T1

Add

Computer Organization Computer Architecture

Branch

T4 T6

Central Processing Unit

165

Generating End

• End = T7 • ADD + T5 • BR + (T5 • N + T4 • N) • BRN +…

Central Processing Unit

Computer Organization Computer Architecture

A Complete Processor

Computer Organization Computer Architecture

Central Processing Unit 166

167

Overview

Computer Organization Computer Architecture

• Control signals are generated by a program similar to machine
language programs.

• Control Word (CW); microroutine; microinstruction

Microprogrammed Control

168

Overview

Computer Organization Computer Architecture

Microprogrammed Control

169

Overview

Computer Organization Computer Architecture

• Control store

One function
cannot be carried
out by this simple
organization.

Microprogrammed Control

170

Overview

• The previous organization cannot handle the situation when the
control unit is required to check the status of the condition codes
or external inputs to choose between alternative courses of action.

• Use conditional branch microinstruction.
AddressMicroinstruction

0

1
2

3

PCout , MARin , Read,Select4,Add, Zin

Zout , PCin , Yin , WMFC

MDRout , IRin

Branchto startingaddressof appropriatemicroroutine
. .

25
26

27

If N=0, thenbranchto microinstructio0n
Offset-field-of-IRout , SelectY,Add, Zin

Zout , PCin , End

Figure 7.17. Microroutine for the instruction Branch<0.
Computer Organization Computer Architecture

Microprogrammed Control

171

Overview

Figure 7.18. Organization of the control unit to allow
conditional branching in the microprogram.

Control
store

Clock

generator

Starting and
branch address Condition

codes

External
inputs

CW

IR

PC

Computer Organization Computer Architecture

Microprogrammed Control

172

Microinstructions

Computer Organization Computer Architecture

• A straightforward way to structure microinstructions
is to assign one bit position to each control signal.

• However, this is very inefficient.
• The length can be reduced: most signals are not

needed simultaneously, and many signals are
mutually exclusive.

• All mutually exclusive signals are placed in the same
group in binary coding.

Microprogrammed Control

What is the price paid for
this scheme?

Computer Organization Computer Architecture

Microprogrammed Control 173

Partial Format for the
Microinstructions

Further Improvement

Computer Organization Computer Architecture

• Enumerate the patterns of required signals in all
possible microinstructions. Each meaningful
combination of active control signals can then be
assigned a distinct code.

• Vertical organization
• Horizontal organization

Microprogrammed Control 174

Computer Architecture

Microprogram Sequencing

• If all microprograms require only straightforward
sequential execution of microinstructions except
for branches, letting a μPC governs the
sequencing would be efficient.

• However, two disadvantages:
 Having a separate microroutine for each machine instruction

results in a large total number of microinstructions and a large
control store.

 Longer execution time because it takes more time to carry out
the required branches.

• Example: Add src, Rdst
• Four addressing modes: register, autoincrement,

autodecrement, and indexed (with indirect
CompfuoterrOmrgasn)iz.ation

Microprogrammed Control 175

176

- Bit-ORing
- Wide-Branch Addressing
- WMFC

Computer Organization Computer Architecture

Microprogrammed Control

177
Mode

OP code 0 1 0 Rsrc RdstContents of IR

11 10 8 7 4 3 0

Address Microinstruction
(octal)

1. PCout, MARin, Read, Sele4c,tAdd, Zin

2. Zout, PCin, Yin, WMFC
3. MDRout, IRin

4. Branch{PC 101 (from Instruction decoder);
PC5,4 [IR10,9]; PC3 [IR10] ×[IR9] ×[IR8]}

121 Rsrcout, MARin, Read, Select4, Addi,n Z
122 Zout, Rsrci n

123 Branch {PC 170;PC0 [IR8]}, WMFC
170 MDRout, MARin, Read, WMFC
171 MDRout, Yin

172 Rdsotut, Select,YAdd, Zin

173 Zout, Rdsitn, End

Figure 7.21. Microinstruction for Add (Rsrc)+,Rdst.
Note:Microinstruction at location 170 is not executed for this addressing mode.

Microprogrammed Control

Computer Organization Computer Architecture

Microinstructions with Next-
Address Field

Computer Organization Computer Architecture

• The microprogram we discussed requires
several branch microinstructions, which perform
no useful operation in the datapath.

• A powerful alternative approach is to include an
address field as a part of every microinstruction
to indicate the location of the next
microinstruction to be fetched.

• Pros: separate branch microinstructions are
virtually eliminated; few limitations in assigning
addresses to microinstructions.

• Cons: additional bits for the address field
(around 1/6)

Microprogrammed Control 178

Microinstructions with Next-
Address Field

Computer Organization Computer Architecture

Microprogrammed Control 179

180Microprogrammed Control

Computer Organization Computer Architecture

Implementation of the Microroutine

Computer Organization Computer Architecture

Microprogrammed Control 181

182Microprogrammed Control

Computer Organization Computer Architecture

183

bit-ORing
Microprogrammed Control

n CComputer Organizatio omputer Architecture

184

PIPELINING AND VECTOR PROCESSING

Computer Organization Computer Architecture

• Parallel Processing

• Pipelining

• Arithmetic Pipeline

• Instruction Pipeline

• RISC Pipeline

• Vector Processing

• Array Processors

Pipelining and Vector Processing

185

PARALLEL PROCESSING

Computer Organization Computer Architecture

Levels of Parallel Processing

- Job or Program level

- Task or Procedure level

- Inter-Instruction level

- Intra-Instruction level

Execution of Concurrent Events in the computing
process to achieve faster Computational Speed

Parallel ProcessingPipelining and Vector Processing

186

Number of Data Streams

Single Multiple

Number of
Instruction
Streams

Single SISD SIMD

Multiple MISD MIMD

Computer Organization Computer Architecture

PARALLEL COMPUTERS

Architectural Classification

– Flynn's classification
» Based on the multiplicity of Instruction Streams and

Data Streams
» Instruction Stream

• Sequence of Instructions read from memory
» Data Stream

• Operations performed on the data in the processor

Parallel ProcessingPipelining and Vector Processing

187
COMPUTER ARCHITECTURES FOR PARALLEL

PROCESSING
Von-Neuman
based

Dataflow

 Reduction

SISD

MISD

SIMD

MIMD

Superscalar processors

Superpipelined processors

VLIW

Nonexistence

Array processors

Systolic arrays

Associative processors

Shared-memory multiprocessors

Bus based
Crossbar switch based
Multistage IN based

Message-passing multicomputers

Hypercube
Mesh
Reconfigurable

Parallel Processing

Computer Organization Computer Architecture

Pipelining and Vector Processing

188

SISD COMPUTER SYSTEMS

Control
Unit

Processor
Unit

Memory

Instruction stream

Data stream

Characteristics

- Standard von Neumann machine
- Instructions and data are stored in memory
- One operation at a time

Limitations

Computer Organization Computer Architecture

Von Neumann bottleneck

Maximum speed of the system is limited by the
Memory Bandwidth (bits/sec or bytes/sec)

- Limitation on Memory Bandwidth
- Memory is shared by CPU and I/O

Parallel ProcessingPipelining and Vector Processing

189

SISD PERFORMANCE IMPROVEMENTS

Computer Organization Computer Architecture

• Multiprogramming

• Spooling

• Multifunction processor

• Pipelining

• Exploiting instruction-level parallelism
- Superscalar
- Superpipelining
- VLIW (Very Long Instruction Word)

Parallel ProcessingPipelining and Vector Processing

190

MISD COMPUTER SYSTEMS

M CU P

M CU P

M CU P

•
•
•

•
•
•

Memory

Instruction stream

Computer Organization Computer Architecture

Data stream

Characteristics

- There is no computer at present that can be
classified as MISD

Parallel ProcessingPipelining and Vector Processing

191

SIMD COMPUTER SYSTEMS

Control Unit

Memory

Alignment network

P P P• • •

M MM • • •

Data bus

Computer Organization Computer Architecture

Instruction stream

Data stream

Processor units

Memory modules

Characteristics

- Only one copy of the program exists
- A single controller executes one instruction at a time

Parallel ProcessingPipelining and Vector Processing

192

TYPES OF SIMD COMPUTERS

Array Processors

- The control unit broadcasts instructions to all PEs,
and all active PEs execute the same instructions

- ILLIAC IV, GF-11, Connection Machine, DAP, MPP

Systolic Arrays

- Regular arrangement of a large number of
very simple processors constructed on
VLSI circuits

- CMU Warp, Purdue CHiP

Associative Processors

- Content addressing
- Data transformation operations over many sets

of arguments with a single instruction
- STARAN, PEPE

Computer Organization Computer Architecture

Parallel ProcessingPipelining and Vector Processing

193

MIMD COMPUTER SYSTEMS

Interconnection Network

P M P MP M • • •

Shared Memory

Characteristics

- Multiple processing units

- Execution of multiple instructions on multiple data

Types of MIMD computer systems

- Shared memory multiprocessors

- Message-passing multicomputers

Computer Organization Computer Architecture

Parallel ProcessingPipelining and Vector Processing

194

SHARED MEMORY MULTIPROCESSORS

Characteristics
All processors have equally direct access to

one large memory address space
Example systems

Bus and cache-based systems
- Sequent Balance, Encore Multimax

Multistage IN-based systems
- Ultracomputer, Butterfly, RP3, HEP
Crossbar switch-based systems

- C.mmp, Alliant FX/8
Limitations

Memory access latency
Hot spot problem

Interconnection Network(IN)

• • •

• • •P P P

M MM

Buses,
Multistage IN,
Crossbar Switch

Parallel Processing

Computer Organization Computer Architecture

Pipelining and Vector Processing

195

MESSAGE-PASSING MULTICOMPUTER

Characteristics

- Interconnected computers
- Each processor has its own memory, and
communicate via message-passing

Example systems

- Tree structure: Teradata, DADO
- Mesh-connected: Rediflow, Series 2010, J-Machine
- Hypercube: Cosmic Cube, iPSC, NCUBE, FPS T Series, Mark III

Limitations

- Communication overhead
- Hard to programming

Message-Passing Network

• • •P PP

M M M• • •

Point-to-point connections

Parallel Processing

Computer Organization Computer Architecture

Pipelining and Vector Processing

196

PIPELINING

R1 Ai, R2 Bi
R3 R1 * R2, R4 Ci
R5 R3 + R4

Load Ai and Bi
Multiply and load Ci
Add

A technique of decomposing a sequential process
into suboperations, with each subprocess being
executed in a partial dedicated segment that
operates concurrently with all other segments.

Ai * Bi + Ci for i = 1, 2, 3, ... , 7

R1 R2

Multiplier

R3 R4

Adder

R5

MemoryAi Bi Ci

Computer Organization Computer Architecture

Pipelining

Segment 1

Segment 2

Segment 3

Pipelining and Vector Processing

197

OPERATIONS IN EACH PIPELINE STAGE

Computer Organization Computer Architecture

Clock
Pulse

Number R

Segment 1 Segment 2 Segment 3

1 R2 R3 R4 R5
1 A 1 B1

2 A2 B2 A1 * B1 C1
3 A3 B3 A2 * B2 C2 A1 * B1 + C1
4 A4 B4 A3 * B3 C3 A2 * B2 + C2
5 A5 B5 A4 * B4 C4 A3 * B3 + C3
6 A6 B6 A5 * B5 C5 A4 * B4 + C4
7 A7 B7 A6 * B6 C6 A5 * B5 + C5
8 A7 * B7 C7 A6 * B6 + C6
9 A7 * B7 + C7

PipeliningPipelining and Vector Processing

198

GENERAL PIPELINE

General Structure of a 4-Segment Pipeline

S1 R1 S2 R2 S3 R3 S4 R4Input

Clock

Space-Time Diagram
1

T1

2

T2

3

T3

4

T4

5

T5

6

T6

7 8 9

T1 T2 T3 T4 T5 T6

T1 T2 T3 T4 T5 T6

T1 T2 T3 T4 T5 T6

Clock cycles
Segment 1

2

3

4

PipeliningPipelining and Vector Processing

Computer Organization Computer Architecture

199

PIPELINE SPEEDUP

n: Number of tasks to be performed

Conventional Machine (Non-Pipelined)
tn: Clock cycle
1: Time required to complete the n tasks
1 = n * tn

Pipelined Machine (k stages)
tp: Clock cycle (time to complete each suboperation)
: Time required to complete the n tasks
 = (k + n - 1) * tp

Speedup
Sk: Speedup

Sk = n*tn / (k + n - 1)*tp

n k
tn
tp

Computer Organization Computer Architecture

(= k, if tn p= k * t)lim S =

PipeliningPipelining and Vector Processing

200

PIPELINE AND MULTIPLE FUNCTION UNITS
Example

- 4-stage pipeline
- subopertion in each stage; tp = 20nS
- 100 tasks to be executed
- 1 task in non-pipelined system; 20*4 = 80nS

Pipelined System
(k + n - 1)*tp = (4 + 99) * 20 = 2060nS

Non-Pipelined System
n*k*tp = 100 * 80 = 8000nS

Speedup
Sk = 8000 / 2060 = 3.88

4-Stage Pipeline is basically identical to the system
with 4 identical function units I i I i + 1 I i+2 I i+3

Multiple Functional Units P 1 P 2 P3 P 4

Pipelining

Computer Organization Computer Architecture

Pipelining and Vector Processing

201

ARITHMETIC PIPELINE

1 Compare the exponents
2 Align the mantissa
3 Add/sub the mantissa
4 Normalize the result

Floating-point adder
X = A x 2a

Y = B x 2b
R

Compare
exponents

by subtraction

R

Choose exponent

Exponents
a b

R

Align mantissa

Mantissas
A B

Difference

R

Add or subtract
mantissas

R

Normalize
result

R

R

Adjust
exponent

R

Segment 1:

Computer Organization Computer Architecture

Segment 2:

Segment 3:

Segment 4:

Arithmetic PipelinePipelining and Vector Processing

202

4-STAGE FLOATING POINT ADDER
A = a x 2p B = b x 2q

p a q b

Exponent
subtractor

Fraction
selector

Fraction with min(p,q)
Right shifter

Other
fraction

t = |p - q|
r = max(p,q)

Fraction
adder

Leading zero
counter

r c

Left shifter
c

Exponent
adder

r

d

d

Stages:
S1

S2

S3

S4

s

C = A + B = c x 2r = d x 2s
(r = max (p,q), 0.5 d < 1)

Computer Organization Computer Architecture

Arithmetic PipelinePipelining and Vector Processing

203

INSTRUCTION CYCLE

Computer Organization Computer Architecture

Six Phases* in an Instruction Cycle
1 Fetch an instruction from memory
2 Decode the instruction
3 Calculate the effective address of the operand
4 Fetch the operands from memory
5 Execute the operation
6 Store the result in the proper place

* Some instructions skip some phases
* Effective address calculation can be done in

the part of the decoding phase
* Storage of the operation result into a register

is done automatically in the execution phase

==> 4-Stage Pipeline

1 FI: Fetch an instruction from memory
2 DA: Decode the instruction and calculate

the effective address of the operand
3 FO: Fetch the operand
4 EX: Execute the operation

Instruction PipelinePipelining and Vector Processing

204

INSTRUCTION PIPELINE

Computer Organization Computer Architecture

Instruction Pipeline

FI DA FO EX

FI DA FO EX

FI DA FO EX

i

i+1

i+2

Execution of Three Instructions in a 4-Stage Pipeline

Conventional

Pipelined

i FI DA FO EX

i+1 FI DA FO EX

i+2 FI DA FO EX

Pipelining and Vector Processing

205

INSTRUCTION EXECUTION IN A 4-STAGE PIPELINE

Instru

(Bran

Step: 1 2 3 4 5 6 7 8 9 10 11 12 13
ction 1 FI DA FO EX

2

ch) 3

FI DA FO EX

FI DA FO EX

4 FI FI DA FO EX

5 FI DA FO EX

6 FI DA FO EX

7 FI DA FO EX

Instruction Pipeline

Fetch instruction
from memory

Decode instruction
and calculate

effective address

Branch?

Fetch operand
from memory

Execute instruction

Interrupt?Interrupt
handling

Update PC

Empty pipe

no

yes

yes
no

Segment1:

Computer Organization Computer Architecture

Segment2:

Segment3:

Segment4:

Pipelining and Vector Processing

206

MAJOR HAZARDS IN PIPELINED EXECUTION
Structural hazards(Resource Conflicts)

Hardware Resources required by the instructions in
simultaneous overlapped execution cannot be met

Data hazards (Data Dependency Conflicts)

An instruction scheduled to be executed in the pipeline requires the
result of a previous instruction, which is not yet available

JMP ID PC + PC

bubble IF ID OF OE OS

Branch address dependency

Hazards in pipelines may make it
necessary to stall the pipeline

Pipeline Interlock:
Detect Hazards Stall until it is cleared

Instruction Pipeline

ADD DA B,C +

INC DA +1R1bubble

Data dependencyR1 <- B + C
R1 <- R1 + 1

Control hazards

Computer Organization Computer Architecture

Branches and other instructions that change the PC
make the fetch of the next instruction to be delayed

Pipelining and Vector Processing

207

STRUCTURAL HAZARDS

Computer Organization Computer Architecture

Structural Hazards
Occur when some resource has not been
duplicated enough to allow all combinations
of instructions in the pipeline to execute

Example: With one memory-port, a data and an instruction fetch
cannot be initiated in the same clock

The Pipeline is stalled for a structural hazard
<- Two Loads with one port memory

-> Two-port memory will serve without stall

Instruction Pipeline

i

i+1

i+2

FI DA FO EX

FI DA FO EX

stall stall FI DA FO EX

Pipelining and Vector Processing

208

DATA HAZARDS

Computer Organization Computer Architecture

Data Hazards

Occurs when the execution of an instruction
depends on the results of a previous instruction

ADD R1, R2, R3
SUB R4, R1, R5

Data hazard can be dealt with either hardware
techniques or software technique

Hardware Technique

Interlock
- hardware detects the data dependencies and delays the scheduling

of the dependent instruction by stalling enough clock cycles
Forwarding (bypassing, short-circuiting)

- Accomplished by a data path that routes a value from a source
(usually an ALU) to a user, bypassing a designated register. This
allows the value to be produced to be used at an earlier stage in the
pipeline than would otherwise be possible

Software Technique
Instruction Scheduling(compiler) for delayed load

Instruction PipelinePipelining and Vector Processing

209

FORWARDING HARDWARE

Register
file

Result
write bus

Bypass
path

ALU result buffer

MUX

ALU

R4

MUX

Instruction Pipeline

Computer Organization Computer Architecture

Example:

ADD R1, R2, R3
SUB R4, R1, R5

3-stage Pipeline

I: Instruction Fetch
A: Decode, Read Registers,

ALU Operations
E: Write the result to the

destination register

ADD

SUB

I A E

I A E Without Bypassing

I A ESUB With Bypassing

Pipelining and Vector Processing

210

INSTRUCTION SCHEDULING
a = b + c;
d = e - f;

Unscheduled code:

Delayed Load
A load requiring that the following instruction not use its result

Scheduled Code:
LW Rb, b LW Rb, b
LW Rc, c LW Rc, c
ADD Ra, Rb, Rc LW Re, e
SW a, Ra ADD Ra, Rb, Rc
LW Re, e LW Rf, f
LW Rf, f SW a, Ra
SUB Rd, Re, Rf SUB Rd, Re, Rf
SW d, Rd SW d, Rd

Instruction Pipeline

Computer Organization Computer Architecture

Pipelining and Vector Processing

211

CONTROL HAZARDS
Branch Instructions

- Branch target address is not known until
the branch instruction is completed

FI DA FO EX

FI DA FO EX

Branch
Instruction

Next
Instruction

Target address available

- Stall -> waste of cycle times

Dealing with Control Hazards

* Prefetch Target Instruction
* Branch Target Buffer
* Loop Buffer
* Branch Prediction
* Delayed Branch

Computer Organization Computer Architecture

Instruction PipelinePipelining and Vector Processing

212

CONTROL HAZARDS

Computer Organization Computer Architecture

Instruction Pipeline

Prefetch Target Instruction
– Fetch instructions in both streams, branch not taken and branch taken
– Both are saved until branch branch is executed. Then, select the right

instruction stream and discard the wrong stream
Branch Target Buffer(BTB; Associative Memory)

– Entry: Addr of previously executed branches; Target instruction
and the next few instructions

– When fetching an instruction, search BTB.
– If found, fetch the instruction stream in BTB;
– If not, new stream is fetched and update BTB

Loop Buffer(High Speed Register file)
– Storage of entire loop that allows to execute a loop without accessing memory

Branch Prediction
– Guessing the branch condition, and fetch an instruction stream based on

the guess. Correct guess eliminates the branch penalty
Delayed Branch

– Compiler detects the branch and rearranges the instruction sequence
by inserting useful instructions that keep the pipeline busy
in the presence of a branch instruction

Pipelining and Vector Processing

213

RISC PIPELINE

Computer Organization Computer Architecture

RISC
- Machine with a very fast clock cycle that
executes at the rate of one instruction per cycle
<- Simple Instruction Set

Fixed Length Instruction Format
Register-to-Register Operations

Instruction Cycles of Three-Stage Instruction Pipeline
Data Manipulation Instructions

I: Instruction Fetch
A: Decode, Read Registers, ALU Operations
E: Write a Register

Load and Store Instructions
I: Instruction Fetch
A: Decode, Evaluate Effective Address
E: Register-to-Memory or Memory-to-Register

Program Control Instructions
I: Instruction Fetch
A: Decode, Evaluate Branch Address
E: Write Register(PC)

RISC PipelinePipelining and Vector Processing

214

DELAYED LOAD

clock cycle 1 2 3 4 5 6
Load R1 I A E
Load R2 I A E
Add R1+R2 I A E
Store R3 I A E

Pipeline timing with delayed load

clock cycle 1 2 3 4 5 6 7
Load R1 I A E
Load R2 I A E
NOP I A E
Add R1+R2 I A E
Store R3 I A E

LOAD: R1 M[address 1]
LOAD: R2 M[address 2]
ADD: R3 R1 + R2
STORE: M[address 3] R3

Three-segment pipeline timing
Pipeline timing with data conflict

RISC Pipeline

The data dependency is taken
care by the compiler rather
than the hardware

Computer Organization Computer Architecture

Pipelining and Vector Processing

215

DELAYED BRANCH

Computer Organization Computer Architecture

Clock cycles: 1 2 3 4 5 6 7 8 9 10
1. Load I A E
2. Increment I A E
3. Add I A E
4. Subtract I A E
5. Branch to X I A E
6. NOP I A E
7. NOP I A E
8. Instr. in X I A E

Clock cycles: 1 2 3 4 5 6 7 8
1. Load I A E
2. Increment I A E
3. Branch to X I A E
4. Add I A E
5. Subtract I A E
6. Instr. in X I A E

Compiler analyzes the instructions before and after
the branch and rearranges the program sequence by
inserting useful instructions in the delay steps

Using no-operation instructions

Rearranging the instructions

RISC PipelinePipelining and Vector Processing

216

VECTOR PROCESSING

Computer Organization Computer Architecture

Vector Processing

Vector Processing Applications
• Problems that can be efficiently formulated in terms of vectors

– Long-range weather forecasting
– Petroleum explorations
– Seismic data analysis
– Medical diagnosis
– Aerodynamics and space flight simulations
– Artificial intelligence and expert systems
– Mapping the human genome
– Image processing

Vector Processor (computer)
Ability to process vectors, and related data structures such as matrices
and multi-dimensional arrays, much faster than conventional computers

Vector Processors may also be pipelined

Pipelining and Vector Processing

217

VECTOR PROGRAMMING

Computer Organization Computer Architecture

DO 20 I = 1, 100
20 C(I) = B(I) + A(I)

Conventional computer

Initialize I = 0
20 Read A(I)

Read B(I)
Store C(I) = A(I) + B(I)
Increment I = i + 1
If I 100 goto 20

Vector computer

C(1:100) = A(1:100) + B(1:100)

Vector ProcessingPipelining and Vector Processing

218

VECTOR INSTRUCTIONS
f1: V V
f2: V S
f3: V x V V
f4: V x S V

V: Vector operand
S: Scalar operand

Type Mnemonic Description (I = 1, ..., n)

Vector Processing

f1 VSQR Vector square root B(I) SQR(A(I))
VSIN Vector sine B(I) sin(A(I))
VCOM Vector complement A(I) A(I)

f2 VSUM Vector summation
VMAX Vector maximum

f3 VADD Vector add

VMPY Vector multiply
VAND Vector AND
VLAR Vector larger
VTGE Vector test >

S A(I)
S max{A(I)}

C(I) A(I) + B(I)

C(I) A(I) * B(I)
C(I) A(I) . B(I)

C(I) max(A(I),B(I))
C(I) 0 if A(I) < B(I)

C(I) 1 if A(I) > B(I)
f4 SADD Vector-scalar add B(I) S + A(I)

SDIV Vector-scalar divide B(I) A(I) / S

Pipelining and Vector Processing

Computer Organization Computer Architecture

219

VECTOR INSTRUCTION FORMAT

Operation
code

Base address
source 1

Base address
source 2

Base address
destination

Vector
length

Vector Processing

Vector Instruction Format

S o u r c e
A

S o u r c e
B

Mult ip l ier
p ipe l ine

A d d e r
p ipe l ine

Pipeline for Inner Product

Computer Organization Computer Architecture

Pipelining and Vector Processing

220

MULTIPLE MEMORY MODULE AND INTERLEAVING
Vector Processing

Address Interleaving

Different sets of addresses are assigned to
different memory modules

Multiple Module Memory
Address bus

Data bus

M0 M1 M2 M3

AR

Memory
array

DR

AR

Memory
array

DR

AR

Memory
array

DR

AR

Memory
array

DR

Pipelining and Vector Processing

Computer Organization Computer Architecture

221

MULTIPROCESSORS

Computer Organization Computer Architecture

• Characteristics of Multiprocessors

• Interconnection Structures

• Interprocessor Arbitration

• Interprocessor Communication
and Synchronization

• Cache Coherence

Multiprocessors

222

TERMINOLOGY

Parallel Computing

Simultaneous use of multiple processors, all components
of a single architecture, to solve a task. Typically processors identical,
single user (even if machine multiuser)

Distributed Computing

Use of a network of processors, each capable of being
viewed as a computer in its own right, to solve a problem. Processors
may be heterogeneous, multiuser, usually individual task is assigned
to a single processors

Concurrent Computing

All of the above?

Computer Organization Computer Architecture

Characteristics of MultiprocessorsMultiprocessors

223

TERMINOLOGY
Supercomputing

Use of fastest, biggest machines to solve big, computationally
intensive problems. Historically machines were vector computers,
but parallel/vector or parallel becoming the norm

Pipelining
Breaking a task into steps performed by different units, and multiple
inputs stream through the units, with next input starting in a unit when
previous input done with the unit but not necessarily done with the task

Vector Computing
Use of vector processors, where operation such as multiply
broken into several steps, and is applied to a stream of operands
(“vectors”). Most common special case of pipelining

Systolic
Similar to pipelining, but units are not necessarily arranged linearly,
steps are typically small and more numerous, performed in lockstep
fashion. Often used in special-purpose hardware such as image or signal
processors

Computer Organization Computer Architecture

Characteristics of MultiprocessorsMultiprocessors

SPEEDUP AND EFFICIENCY
A: Given problem

T*(n): Time of best sequential algorithm to solve an
instance of A of size n on 1 processor

Tp(n): Time needed by a given parallel algorithm
and given parallel architecture to solve an
instance of A of size n, using p processors

Note: T*(n) T1(n)

Speedup: pT*(n) / T (n)

Efficiency: T*(n) / [pTp(n)]

Speedup should be between 0 and p, and
Efficiency should be between 0 and 1

Speedup is linear if there is a constant c > 0
so that speedup is always at least cp.

1 2 3 4 5 6 7 8 9 10
Processors

Speedup
Perfect Speedup

224 Characteristics of MultiprocessorsMultiprocessors

Computer Organization Computer Architecture

225

AMDAHL’S LAW
Given a program

f : Fraction of time that represents operations
that must be performed serially

Maximum Possible Speedup: S

Computer Organization Computer Architecture

S , with p processors1
f + (1 - f) / p

S < 1 / f , with unlimited number of processors

- Ignores possibility of new algorithm, with much smaller f

- Ignores possibility that more of program is run from higher speed
memory such as Registers, Cache, Main Memory

- Often problem is scaled with number of processors, and f is a
function of size which may be decreasing (Serial code may take
constant amount of time, independent of size)

Characteristics of MultiprocessorsMultiprocessors

SI: Single Instruction Stream
- All processors are executing the same instruction in the same cycle
- Instruction may be conditional
- For Multiple processors, the control processor issues an instruction

MI: Multiple Instruction Stream
- Different processors may be simultaneously

executing different instructions
SD: Single Data Stream

- All of the processors are operating on the same
data items at any given time

MD: Multiple Data Stream
- Different processors may be simultaneously

operating on different data items

Computer Organization Computer Architecture

SISD : standard serial computer
MISD : very rare
MIMD and SIMD : Parallel processing computers

I: Instruction Stream
D: Data Stream [M] I [M] D

S S

226 Characteristics of Multiprocessors

FLYNN’s HARDWARE TAXONOMY
Multiprocessors

Tightly Coupled System
- Tasks and/or processors communicate in a highly synchronized

fashion
- Communicates through a common shared memory
- Shared memory system

Loosely Coupled System
- Tasks or processors do not communicate in a

synchronized fashion
- Communicates by message passing packets
- Overhead for data exchange is high
- Distributed memory system

Computer Organization Computer Architecture

COUPLING OF PROCESSORS
227 Characteristics of MultiprocessorsMultiprocessors

GRANULARITY OF PARALLELISM

Computer Organization Computer Architecture

Granularity of Parallelism

Coarse-grain

- A task is broken into a handful of pieces, each
of which is executed by a powerful processor

- Processors may be heterogeneous
- Computation/communication ratio is very high

Medium-grain

- Tens to few thousands of pieces
- Processors typically run the same code
- Computation/communication ratio is often hundreds or more

Fine-grain

- Thousands to perhaps millions of small pieces, executed by very
small, simple processors or through pipelines

- Processors typically have instructions broadcasted to them
- Compute/communicate ratio often near unity

228 Characteristics of MultiprocessorsMultiprocessors

229

SHARED MEMORY
Memory

Network

Processors

DISTRIBUTED MEMORY

Network

Processors/Memory
Computer Organization Computer Architecture

MEMORY
Shared (Global) Memory

- A Global Memory Space accessible by all processors
- Processors may also have some local memory

Distributed (Local, Message-Passing) Memory
- All memory units are associated with processors
- To retrieve information from another processor's

memory a message must be sent there
Uniform Memory

- All processors take the same time to reach all memory locations
Nonuniform (NUMA) Memory

- Memory access is not uniform

Characteristics of MultiprocessorsMultiprocessors

SHARED MEMORY MULTIPROCESSORS

Characteristics

All processors have equally direct access to one
large memory address space

Example systems

- Bus and cache-based systems: Sequent Balance, Encore Multimax
- Multistage IN-based systems: Ultracomputer, Butterfly, RP3, HEP
- Crossbar switch-based systems: C.mmp, Alliant FX/8

Limitations

Memory access latency; Hot spot problem

Interconnection Network

. . .

. . .P PP

M MM

Buses,
Multistage IN,
Crossbar Switch

230 Characteristics of Multiprocessors

Computer Organization Computer Architecture

Multiprocessors

MESSAGE-PASSING MULTIPROCESSORS

Characteristics

- Interconnected computers
- Each processor has its own memory, and

communicate via message-passing

Example systems

- Tree structure: Teradata, DADO
- Mesh-connected: Rediflow, Series 2010, J-Machine
- Hypercube: Cosmic Cube, iPSC, NCUBE, FPS T Series, Mark III

Limitations

- Communication overhead; Hard to programming

Message-Passing Network

. . .P PP

M M M. . .

Point-to-point connections

231 Characteristics of Multiprocessors

Computer Organization Computer Architecture

Multiprocessors

* Time-Shared Common Bus
* Multiport Memory
* Crossbar Switch
* Multistage Switching Network
* Hypercube System

Computer Organization Computer Architecture

INTERCONNECTION STRUCTURES
232 Interconnection Structure

Bus
All processors (and memory) are connected to a
common bus or busses
- Memory access is fairly uniform, but not very scalable

Multiprocessors

233

Operations of Bus

 Bus

M3 wishes to communicate with S5

1 M3 sends signals (address) on the bus that causes
S5 to respond

2 M3 sends data to S5 or S5 sends data to
M3(determined by the command line)

Master Device: Device that initiates and controls the communication
Slave Device: Responding device
Multiple-master buses

-> Bus conflict
-> need bus arbitration

Devices

M3 S7 M6 S5 M4
S2

BUS

- A collection of signal lines that carry module-to-module communication
- Data highways connecting several digital system elements

Computer Organization Computer Architecture

Interconnection StructureMultiprocessors

SYSTEM BUS STRUCTURE FOR MULTIPROCESSORS

Common
Shared
Memory

System
Bus

Controller
CPU IOP Local

Memory
System

Bus
Controller

CPU Local
Memory

System
Bus

Controller
CPU IOP Local

Memory

Local Bus

SYSTEM BUS

Local Bus Local Bus

Multiprocessors 234 Interconnection Structure

Computer Organization Computer Architecture

235 Interconnection Structure

Disadvantages
- Memory control logic
- Large number of cables and

connections

MM 1 MM 2 MM 3 MM 4

CPU 1

CPU 2

CPU 3

CPU 4

MULTIPORT MEMORY

Multiport Memory Module
- Each port serves a CPU

Memory Module Control Logic
- Each memory module has control logic
- Resolve memory module conflicts Fixed priority among CPUs

Advantages
- Multiple paths -> high transfer rate

Memory Modules

Computer Organization Computer Architecture

Multiprocessors

236 Interconnection Structure

CROSSBAR SWITCH

Block Diagram of Crossbar Switch

CPU1

CPU2

CPU3

CPU4

MM1

Memory modules

MM2 MM3 MM4

data

address
Memory
Module R/W

memory
enable

Multiplexers
and

arbitration
logic

} data,address, and
control from CPU 1

} data,address, and
control from CPU 2

} data,address, and
control from CPU 3

} data,address, and
control from CPU 4

Multiprocessors

Computer Organization Computer Architecture

MULTISTAGE SWITCHING NETWORK
237 Interconnection Structure

A

B

0

1

A connected to 0

A

B

0

1

A connected to 1

A

B

0

1

B connected to 0

A

B

0

1

B connected to 1

Interstage Switch

Computer Organization Computer Architecture

Multiprocessors

MULTISTAGE INTERCONNECTION NETWORK

 1
 0
000

001

1
 0
010

011

0

1
100

101

0 110
 1

111

0

1

0

1

0

1

P1

Computer Organization Computer Architecture

P2

8x8 Omega Switching Network
0
1

2
3

4
5

6
7

000
001

010
011

100
101

110
111

Binary Tree with 2 x 2 Switches

Multiprocessors 238 Interconnection Structure

HYPERCUBE INTERCONNECTION
239 Interconnection Structure

One-cube

Computer Organization Computer Architecture

Two-cube Three-cube

11010

1 00 10

010
110

- p = 2n

- processors are conceptually on the corners of a
n-dimensional hypercube, and each is directly
connected to the n neighboring nodes

- Degree = n
011 111

101

100

001

000

n-dimensional hypercube (binary n-cube)

Multiprocessors

INTERPROCESSOR ARBITRATION

Computer Organization Computer Architecture

Bus
Board level bus
Backplane level bus
Interface level bus

System Bus - A Backplane level bus

- Printed Circuit Board
- Connects CPU, IOP, and Memory
- Each of CPU, IOP, and Memory board can be

plugged into a slot in the backplane(system bus)
- Bus signals are grouped into 3 groups

Data, Address, and Control(plus power)

- Only one of CPU, IOP, and Memory can be
granted to use the bus at a time

- Arbitration mechanism is needed to handle
multiple requests

240 Interprocessor Arbitration

e.g. IEEE standard 796 bus
- 86 lines

Data: 16(multiple of 8)
Address: 24
Control: 26
Power: 20

Multiprocessors

SYNCHRONOUS & ASYNCHRONOUS DATA TRANSFER

Computer Organization Computer Architecture

Synchronous Bus
Each data item is transferred over a time slice
known to both source and destination unit
- Common clock source
- Or separate clock and synchronization signal

is transmitted periodically to synchronize
the clocks in the system

Asynchronous Bus

* Each data item is transferred by Handshake
mechanism

- Unit that transmits the data transmits a control
signal that indicates the presence of data

- Unit that receiving the data responds with
another control signal to acknowledge the
receipt of the data

* Strobe pulse - supplied by one of the units to
indicate to the other unit when the data transfer
has to occur

Multiprocessors 241 Interprocessor Arbitration

242

BUS SIGNALS

Computer Organization Computer Architecture

Bus signal allocation
- address
- data
- control
- arbitration
- interrupt
- timing
- power, ground

IEEE Standard 796 Multibus Signals

DATA0 - DATA15
ADRS0 - ADRS23

MRDC
MWTC
IORC
IOWC
TACK (XACK)

Data and address
Data lines (16 lines)
Address lines (24 lines)

Data transfer
M e m o r y r e a d
Memory write
IO read
IO write
Transfer acknowledge

Interrupt control
Interrupt request
interrupt acknowledge

INT0 - INT7
INTA

Interprocessor ArbitrationMultiprocessors

243

BUS SIGNALS

IEEE Standard 796 Multibus Signals (Cont’d)

Computer Organization Computer Architecture

CCLK
INIT
BHEN
INH1 - INH2
LOCK

BREQ
CBRQ
BUSY
BCLK
BPRN
BPRO

Miscellaneous control
Master clock
System initialization
Byte high enable
Memory inhibit (2 lines)
Bus lock

Bus arbitration
Bus request
Common bus request
Bus busy
Bus clock
Bus priority in
Bus priority out

Power and ground (20 lines)

Interprocessor ArbitrationMultiprocessors

INTERPROCESSOR ARBITRATION STATIC ARBITRATION

Parallel Arbitration Procedure

arbiter 1
PI Bus PO PI Bus PO

arbiter 2
PI Bus PO

arbiter 3
Bus

arbiter 4
PI PO

Serial Arbitration Procedure
Highest
priority

1

Bus busy line

To next
arbiter

Bus
arbiter 1

Ack Req

Bus
arbiter 2

Ack Req

Bus
arbiter 3

Ack Req

Bus
arbiter 4

Ack Req

Bus busy line

4 x 2
Priority encoder

2 x 4
Decoder

Multiprocessors 244 Interprocessor Arbitration

Computer Organization Computer Architecture

INTERPROCESSOR ARBITRATION DYNAMIC ARBITRATION

Computer Organization Computer Architecture

Priorities of the units can be dynamically changeable
while the system is in operation

Time Slice
Fixed length time slice is given sequentially to
each processor, round-robin fashion

Polling
Unit address polling - Bus controller advances
the address to identify the requesting unit

LRU

FIFO

Rotating Daisy Chain
Conventional Daisy Chain - Highest priority to the

nearest unit to the bus controller
Rotating Daisy Chain - Highest priority to the unit

that is nearest to the unit that has
most recently accessed the bus(it
becomes the bus controller)

Multiprocessors 245 Interprocessor Arbitration

INTERPROCESSOR COMMUNICATION
Interprocessor Communication

246Interprocessor Communication and Synchronization

Shared Memory

Communication Area

Receiver(s)
Mark

Sending
Processor

Receiving
Processor

Receiving
Processor

Receiving
Processor

..
Message

Shared Memory

Receiver(s)
Mark

Sending
Processor

Receiving
Processor

Receiving
Processor

Receiving
Processor

..
Message

Instruction

Interrupt

Computer Organization Computer Architecture

Communication Area

Multiprocessors

INTERPROCESSOR SYNCHRONIZATION
Synchronization

Communication of control information between processors
- To enforce the correct sequence of processes
- To ensure mutually exclusive access to shared writable data

Hardware Implementation

Mutual Exclusion with a Semaphore
Mutual Exclusion

- One processor to exclude or lock out access to shared resource by
other processors when it is in a Critical Section

- Critical Section is a program sequence that,
once begun, must complete execution before
another processor accesses the same shared resource

Semaphore
- A binary variable
- 1: A processor is executing a critical section,

that not available to other processors
0: Available to any requesting processor

- Software controlled Flag that is stored in
memory that all processors can be access

Computer Organization Computer Architecture

247Interprocessor Communication and SynchronizationMultiprocessors

SEMAPHORE
Testing and Setting the Semaphore

- Avoid two or more processors test or set the same semaphore
- May cause two or more processors enter the

same critical section at the same time
- Must be implemented with an indivisible operation

Computer Organization Computer Architecture

R <- M[SEM]
M[SEM] <- 1

/ Test semaphore /
/ Set semaphore /

These are being done while locked, so that other processors cannot test
and set while current processor is being executing these instructions

If R=1, another processor is executing the
critical section, the processor executed
this instruction does not access the
shared memory

If R=0, available for access, set the semaphore to 1 and access

The last instruction in the program must clear the semaphore

248Interprocessor Communication and SynchronizationMultiprocessors

249

CACHE COHERENCE
Cache Coherence

Caches are Coherent

Cache Incoherency in
Write Through Policy

Cache Incoherency in Write Back Policy

X = 120

X = 120

P1

X = 52

P2

X = 52

P3

Main memory

Caches

Processors

Bus

X = 52

X = 120

P1

X = 52

P2

X = 52

P3

Main memory

Caches

Processors

Bus

X = 52

X = 52

P1

X = 52

P2

X = 52

P3

Main memory

Caches

Processors

Bus

Multiprocessors

Computer Organization Computer Architecture

250

MAINTAINING CACHE COHERENCY

Computer Organization Computer Architecture

Shared Cache
- Disallow private cache
- Access time delay

Software Approaches
* Read-Only Data are Cacheable
- Private Cache is for Read-Only data
- Shared Writable Data are not cacheable
- Compiler tags data as cacheable and noncacheable
- Degrade performance due to software overhead

* Centralized Global Table
- Status of each memory block is maintained in CGT: RO(Read-Only); RW(Read and Write)
- All caches can have copies of RO blocks
- Only one cache can have a copy of RW block

Hardware Approaches
* Snoopy Cache Controller

- Cache Controllers monitor all the bus requests from CPUs and IOPs
- All caches attached to the bus monitor the write operations
- When a word in a cache is written, memory is also updated (write through)
- Local snoopy controllers in all other caches check their memory to determine if they have
a copy of that word; If they have, that location is marked invalid(future reference to
this location causes cache miss)

Cache CoherenceMultiprocessors

251

PARALLEL COMPUTING

Computer Organization Computer Architecture

Grosche’s Law

Grosch’s Law states that the speed of computers is proportional to the
square of their cost. Thus if you are looking for a fast computer, you are
better off spending your money buying one large computer than two
small computers and connecting them.
Grosch’s Law is true within classes of computers, but not true between
classes. Computers may be priced according to Groach’s Law, but the
Law cannot be true asymptotically.

Minsky’s Conjecture

Minsky’s conjecture states that the speedup achievable
by a parallel computer increases as the logarithm of the
number of processing elements,thus making large-scale
parallelism unproductive.

Many experimental results have shown linear speedup for over
100 processors.

Parallel ComputingMultiprocessors

252

PARALLEL COMPUTING

Computer Organization Computer Architecture

n

Amdahl’s Law

A small number of sequential operations can effectively
limit the speedup of a parallel algorithm.
Let f be the fraction of operations in a computation that must be performed sequentially,
where 0 < f < 1. Then the maximum speedup S achievable by a parallel computer with p processors
performing the computation is S < 1 / [f + (1 - f) / p]. For example, if 10% of the computation must be
performed sequentially, then the maximum speedup achievable is 10, no matter how many
processors a parallel computer has.

There exist some parallel algorithms with almost no sequential operations. As the problem size(n)
increases, f becomes smaller (f -> 0 as n->. In this case, lim S = p.

Parallel Computing

History

History tells us that the speed of traditional single CPU
Computers has increased 10 folds every 5 years.
Why should great effort be expended to devise a parallel
computer that will perform tasks 10 times faster when,
by the time the new architecture is developed and
implemented, single CPU computers will be just as fast.
Utilizing parallelism is better than waiting.

Multiprocessors

253

PARALLEL COMPUTING

Computer Organization Computer Architecture

Pipelined Computers are Sufficient

Most supercomputers are vector computers, and most of the successes
attributed to supercomputers have accomplished on pipelined vector
processors, especially Cray=1 and Cyber-205.

If only vector operations can be executed at high speed, supercomputers
will not be able to tackle a large number of important problems. The
latest supercomputers incorporate both pipelining and high level
parallelism (e.g., Cray-2)

Software Inertia

Billions of dollars worth of FORTRAN software exists.
Who will rewrite them? Virtually no programmers have
any experience with a machine other than a single CPU
computer. Who will retrain them ?

Parallel ComputingMultiprocessors

INTERCONNECTION NETWORKS

Computer Organization Computer Architecture

Switching Network (Dynamic Network)
Processors (and Memory) are connected to routing
switches like in telephone system
- Switches might have queues(combining logic),

which improve functionality but increase latency
- Switch settings may be determined by message

headers or preset by controller
- Connections can be packet-switched or circuit-

switched(remain connected as long as it is needed)
- Usually NUMA, blocking, often scalable and upgradable

Point-Point (Static Network)
Processors are directly connected to only certain other processors and
must go multiple hops to get to additional processors

- Usually distributed memory
- Hardware may handle only single hops, or multiple hops
- Software may mask hardware limitations
- Latency is related to graph diameter, among many other factors
- Usually NUMA, nonblocking, scalable, upgradable
- Ring, Mesh, Torus, Hypercube, Binary Tree

254 Interconnection StructureMultiprocessors

INTERCONNECTION NETWORKS

Switch

Computer Organization Computer Architecture

Processor

Multistage Interconnect

Bus

255 Interconnection StructureMultiprocessors

INTERCONNECTION NETWORKS

Computer Organization Computer Architecture

Static Topology - Direct Connection

- Provide a direct inter-processor communication path
- Usually for distributed-memory multiprocessor

Dynamic Topology - Indirect Connection

- Provide a physically separate switching network
for inter-processor communication

- Usually for shared-memory multiprocessor

Direct Connection
Interconnection Network

A graph G(V,E)
V: a set of processors (nodes)
E: a set of wires (edges)

Performance Measures: - degree, diameter, etc

256 Interconnection StructureMultiprocessors

INTERCONNECTION NETWORKS

Complete connection

- Every processor is directly connected to every other processors
- Diameter = 1, Degree = p - 1
- # of wires = p (p - 1) / 2; dominant cost
- Fan-in/fanout limitation makes it impractical for large p
- Interesting as a theoretical model because algorithm bounds for this

model are automatically lower bounds for all direct connection machines

Ring

- Degree = 2, (not a function of p)
- Diameter = p/2

257 Interconnection Structure

Computer Organization Computer Architecture

Multiprocessors

258

INTERCONNECTION NETWORKS

• 2-Mesh

- Degree = 4
- Diameter = 2(m - 1)
- In general, an n-dimensional mesh has

diameter = d (p1/n - 1)
- Diameter can be halved by having wrap-around

connections (-> Torus)
- Ring is a 1-dimensional mesh with wrap-around

connection

m2 = p

 . . .

 m
 . . .

m

Computer Organization Computer Architecture

Interconnection StructureMultiprocessors

259

INTERCONNECTION NETWORK

Binary Tree

- Degree = 3
- Diameter = 2 log p + 1

2

Interconnection Structure

Computer Organization Computer Architecture

Multiprocessors

260

• Baseline [Wu80]
• Flip [Batcher76]
• Indirect binary

n-cube [Peas77]
• Omega [Lawrie75]
• Regular SW banyan

[Goke73]

Computer Organization Computer Architecture

Delta network [Patel81]

Banyan network
=(unique path network)

PM2I network

• Data Manipulator
[Feng74]

• Augmented DM
[Siegel78]

• Inverse ADM

• Gamma [Pa
[Siegel79]

rker84]

• Extra stage Cube
[Adams82]

• Replicated/Dialted
Delta netork
[Kruskal83]

• B-delta [Yoon88]

Multiple Path Network

Permutation/Sorting Network
(N !)

• Clos network [53]
• Benes network [62]
• Batcher sorting

network [68]

MIN SPACE

M I N

Interconnection StructureMultiprocessors

SOME CURRENT PARALLEL COMPUTERS

Computer Organization Computer Architecture

DM-SIMD
• AMT DAP
• Goodyear MPP
• Thinking Machines CM series
• MasPar MP1
• IBM GF11

SM-MIMD
• Alliant FX
• BBN Butterfly
• Encore Multimax
• Sequent Balance/Symmetry
• CRAY 2, X-MP, Y-MP
• IBM RP3
• U. Illinois CEDAR

DM-MIMD
• Intel iPSC series, Delta machine
• NCUBE series
• Meiko Computing Surface
• Carnegie-Mellon/ Intel iWarp

Multiprocessors 261

