
NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 1 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Unit 1:

SOFTWARE PROCESS MATURITY

Software maturity Framework, Principles of Software Process Change, Software

Process Assessment, The Initial Process, The Repeatable Process, The Defined

Process, The Managed Process, The Optimizing Process. Process Reference Models

Capability Maturity Model (CMM), CMMI, PCMM, PSP, TSP).

IMPORTANT QUOTES:

If you don't know where you are going, any road will do." Chinese Proverb

"If you don’t know where you are, a map won't help." Watts Humphrey

"If you don't know where you are going, a map won't get you there any faster."

Anonymous

"You can't expect to be a functional employee in a dysfunctional environment"

Watts Humphrey

WHY SHOULD WE MANAGE THE SOFTWARE PROCESS?

Individuals, Teams, and Armies:

History of software is one of increasing scale

Initially a few people could craft small programs

Today large projects require the coordinated work of many teams

The increase in scale requires a more structured approach to software process

management

People and the Software Process

• Talented people are the most important element in a software organization

• Successful organizations provide a structured and disciplined environment

to do cooperative work

• Alternative

– Endless hours of repetitively solving technically trivial problems

– Time is consumed by mountains of uncontrolled detail

• If the details are not managed, the best people cannot be productive

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 2 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

• First class people need the support of an orderly process to do first-class

work

MYTH OF THE SUPER PROGRAMMERS:

• Common view: First-class people intuitively know how to do first-class work

– Implication: No orderly process framework is needed

– Conclusion: Organizations with the best people should not suffer

from software quality and productivity problems

• However, studies show that companies with top graduates from leading

universities are still plagued with the same problems

– New Conclusion: The best people need to be supported with an

effectively managed software process

MYTH OF TOOLS AND TECHNOLOGY:

• Common View: Some technically advanced tool or method will provide a

magic answer to the software crisis

• Reality: Technology is vital, but unthinking reliance on an undefined "silver

bullet" will divert attention from the need for better process management

MAJOR CONCERNS OF SOFTWARE PROFESSIONALS:

• Open-ended requirements

• Uncontrolled change

• Arbitrary schedules

• Insufficient test time

• Inadequate training

• Unmanaged system standards

LIMITING FACTORS IN USING SOFTWARE TECHNOLOGY:

• Poorly-defined process

• Inconsistent implementation

• Poor process management

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 3 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

FOCUSING ON SOFTWARE PROCESS MANAGEMENT:

• Software process: the set of actions required to efficiently transform a user's

need into an effective software solution

• Many software organizations have trouble defining and controlling this

process

– Even though this is where they have the greatest potential for

improvement

• This is the focus of the book "Managing the Software Process"

A SOFTWARE MATURITY FRAMEWORK:

Software maturity Framework: Fundamentally, software development must be

predictable. The software process is the set of tools, methods, and practices we

use to produce a software product. The objectives of software process

management are to produce products according to plan while simultaneously

improving the organization’s capability to produce better products. The basic

principles are those of statistical process control. A process is said to be stable or

under statistical control if its future performance is predictable within established

statistical limits.

When a process is under statistical control, repeating the work in roughly the

same way will produce roughly the same result. To obtain consistently better

results, it is necessary to improve the process. If the process is not under

statistical control, sustained progress is not possible until it is.

Lord Kelvin - “When you can measure what you are speaking about, and express

it in numbers, you know something about it; but when you cannot measure it,

when you cannot express it in numbers, your knowledge is of a meager and

unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely

in your thoughts advanced the stage of science.” (But, your numbers must be

reasonably meaningful.)

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 4 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

The mere act of measuring human processes changes them because of people’s

fears, and so forth. Measurements are both expensive and disruptive; overzealous

measurements can disrupt the process under study.

Principles of Software Process Change:

People:

•The best people are always in short supply

•you probably have about the best team you can get right now.

•With proper leadership and support, most people can do much better than they

are currently doing Design:

•Superior products have superior design. Successful products are designed by

people who understand the application (domain engineer).

•A program should be viewed as executable knowledge. Program designers should

have application knowledge.

The Six Basic Principles of Software Process Change:

 •Major changes to the process must start at the top

. •Ultimately, everyone must be involved.

•Effective change requires great knowledge of the current process

•Change is continuous

•Software process changes will not be retained without conscious effort and

periodic reinforcement

•Software process improvement requires investment.

Continuous Change:

•Reactive changes generally make things worse

•Every defect is an improvement opportunity

•Crisis prevention is more important than crisis recovery

SOFTWARE PROCESSES CHANGES WON’T STICK BY THEMSELVES

The tendency for improvements to deteriorate is characterized by the term

entrophy

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 5 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

(Webster’s: a measure of the degree of disorder in a...system; entrophy always

increases and

available energy diminishes in a closed system.). New methods must be carefully

introduced

and periodically monitored, or they to will rapidly decay. Human adoption of new

process

involves four stages:

• Installation - Initial training

• Practice - People learn to perform as instructed

• Proficiency - Traditional learning curve

• Naturalness - Method ingrained and performed without intellectual effort.

It Takes Time, Skill, and Money!

•To improve the software process, someone must work on it

•Unplanned process improvement is wishful thinking

•Automation of a poorly defined process will produce poorly defined results

•Improvements should be made in small steps

•Train!!!!

Some Common Misconceptions about the Software Process

•We must start with firm requirements

•If it passes test it must be OK

•Software quality can’t be measured

•The problems are technical

•We need better people

•Software management is different

SOFTWARE PROCESS ASSESSMENT

Process assessments help software organizations improve themselves by

identifying their

crucial problems and establishing improvement priorities. The basic assessment

objectives

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 6 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

are:

•Learn how the organization works

•Identify its major problems

•Enroll its opinion leaders in the change process

The essential approach is to conduct a series of structured interviews with key

people in the

organization to learn their problems, concerns, and creative ideas.

ASSESSMENT OVERVIEW:

 A software assessment is not an audit. Audits are conducted for senior managers

who suspect problems and send in experts to uncover them. A software process

assessment is a review of a software organization to advise its management and

professionals on how they can improve their operation.

The phases of assessment are:

•Preparation - Senior management agrees to participate in the process and to take

actions on the resulting recommendations or explain why not. Concludes with a

training program for the assessment team

•Assessment - The on-site assessment period. It takes several days to two or more

weeks. It concludes with a preliminary report to local management.

•Recommendations - Final recommendations are presented to local managers. A

local action team is then formed to plan and implement the recommendations.

Five Assessment Principles:

•The need for a process model as a basis for assessment

•The requirement for confidentiality

•Senior management involvement

•An attitude of respect for the views of the people in the organization be assessed

•An action orientation

Start with a process model - Without a model, there is no standard; therefore, no

measure of change. Observe strict confidentiality - Otherwise, people will learn

they cannot speak in confidence. This means managers can’t be in interviews with

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 7 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

their subordinates. Involve senior management - The senior manager (called site

manager here) sets the organizations priorities. The site manager must be

personally involved in the assessment and its follow-up actions. Without this

support, the assessment is a waste of time because lasting improvement must

survive periodic crises. Respect the people in the assessed organization - They

probably work hard and are trying to improve. Do not appear arrogant; otherwise,

they will not cooperate and may try to prove the team is ineffective. The only

source of real information is from the workers.

Assessment recommendations should highlight the three or four items of highest

priority. Don’t overwhelm the organization. The report must always be in writing.

Implementation Considerations - The greatest risk is that no significant

improvement actions will be taken (the “disappearing problem” syndrome).

Superficial changes won’t help. A small, full-time group should guide the

implementation effort, with participation from other action plan working groups.

Don’t forget that site managers can change or be otherwise distracted, so don’t

rely on that person solely, no matter how committed.

THE INITIAL PROCESS(LEVEL1)

Usually ad hoc and chaotic - Organization operates without formalized

procedures, cost estimates, and project plans. Tools are neither well integrated

with the process nor uniformly applied. Change control is lax, and there is little

senior management exposure or understanding of the problems and issues. Since

many problems are deferred or even forgotten, software installation and

maintenance often present serious problems. While organizations at this level may

have formal procedures for planning and tracking work, there is no management

mechanism to insure they are used. Procedures are often abandoned in a crisis in

favor of coding and testing. Level 1 organizations don’t use design and code

inspections and other techniques not directly related to shipping a product.

Organizations at Level 1 can improve their performance by instituting basic

project controls.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 8 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

The most important ones are

•Project management

•Management oversight

•Quality assurance

•Change control

THE REPEATABLE PROCESS (LEVEL 2)

This level provides control over the way the organization establishes plans and

commitments. This control provides such an improvement over Level 1 that the

people in the organization tend to believe they have mastered the software

problem. This strength, however, stems from their prior experience in doing

similar work. Level 2 organizations face major risks when presented with new

challenges.

Some major risks:

•New tools and methods will affect processes, thus destroying the historical base

on which the organization lies. Even with a defined process framework, a new

technology can do more harm than good.

•When the organization must develop a new kind of product, it is entering new

territory.

•Major organizational change can be highly disruptive. At Level 2, a new manager

has no orderly basis for understanding an organization’s operation, and new

members must learn the ropes by word of mouth. Key actions required to advance

from Repeatable to the next stage, the Defined Process, are:

•Establish a process group: A process group is a technical resource that focuses

heavily on improving software processes. In most software organizations, all the

people are generally devoted to product work. Until some people are assigned full-

time to work on the process, little orderly progress can be made in improving it.

•Establish a software development process architecture (or development cycle)

that describes the technical and management activities required for proper

execution of the development process. The architecture is a structural

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 9 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

decomposition of the development cycle into tasks, each of which has a defined set

of prerequisites, functional decompositions, verification procedures, and task

completion specifications.

•Introduce a family of software engineering methods and technologies. These

include design and code inspections, formal design methods, library control

systems, and comprehensive testing methods. Prototying and modern languages

should be considered.

THE DEFINED PROCESS (LEVEL 3)

The organization has the foundation for major and continuing change. When faced

with a crisis, the software teams will continue to use the same process that has

been defined.

However, the process is still only qualitative; there is little data to indicate how

much is accomplished or how effective the process is. There is considerable debate

about the value of software process measurements and the best one to use.

The key steps required to advance from the Defined Process to the next level are:

•Establish a minimum set of basic process measurements to identify the quality

and cost parameters of each process step. The objective is to quantify the relative

costs and benefits of each major process activity, such as the cost and yield of

error detection and correction methods.

•Establish a process database and the resources to manage and maintain it. Cost

and yield data should be maintained centrally to guard against loss, to make it

available for all projects, and to facilitate process quality and productivity

analysis. Provide sufficient process resources to gather and maintain the process

data and to advise project members on its use. Assign skilled professionals to

monitor the quality of the data before entry into the database and to provide

guidance on the analysis methods and interpretation.

•Assess the relative quality of each product and inform management where quality

targets are

not being met. Should be done by an independent quality assurance group.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 10 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

THE MANAGED PROCESS (LEVEL 4)

Largest problem at Level 4 is the cost of gathering data. There are many sources of

potentially valuable measure of the software process, but such data are expensive

to collect and maintain.

Productivity data are meaningless unless explicitly defined. For example, the

simple measure of lines of source code per expended development month can vary

by 100 times or more,

depending on the interpretation of the parameters When different groups gather

data but do not use identical definitions, the results are not comparable, even if it

makes sense to compare them. It is rare when two processes are comparable by

simple measures. The variations in task complexity caused by different product

types can exceed five to one. Similarly, the cost per line of code for small

modifications is often two to three times that for new programs.

Process data must not be used to compare projects or individuals. Its purpose is

too illuminate the product being developed and to provide an informed basis for

improving the process.

When such data are used by management to evaluate individuals or terms, the

reliability of the data itself will deteriorate. The two fundamental requirements for

advancing from the Managed Process to the next level are:

•Support automatic gathering of process data. All data is subject to error and

omission, some data cannot be gathered by hand, and the accuracy of manually

gathered data is often poor.

•Use process data to analyze and to modify the process to prevent problems and

improve efficiency.

THE OPTIMIZING PROCESS (LEVEL 5)

To this point software development managers have largely focused on their

products and will typically gather and analyze only data that directly relates to

product improvement. In the Optimizing Process, the data are available to tune

the process itself. For example, many types of errors can be identified far more

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 11 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

economically by design or code inspections than by testing. However, some kinds

of errors are either uneconomical to detect or almost impossible to find except by

machine. Examples are errors involving interfaces, performance, human factors,

and error recovery.

So, there are two aspects of testing: removal of defects and assessment of program

quality. To reduce the cost of removing defects, inspections should be emphasized.

The role of functional and system testing should then be changed to one of

gathering quality data on the program. This involves studying each bug to see if it

is an isolated problem or if it indicates design problems that require more

comprehensive analysis. With Level 5, the organization should identify the

weakest elements of the process and fix them. Data are available to justify the

application of technology to various critical tasks, and numerical evidence is

available on the effectiveness with which the process has been applied to any

given product.

Process reference models; The process framework or reference model acts as an

interface between the way the content is organized and the way work is performed.

A uniform process model organized under a process reference model makes

business modeling and systems designing much easier

CAPABILITY MATURITY MODEL (CMM):

Broadly refers to a process improvement approach that is based on a process

model. CMM also refers specifically to the first such model, developed by the

Software Engineering Institute (SEI) in the mid-1980s, as well as the family of

process models that followed.

The Software Engineering Institute (SEI) Capability Maturity Model (CMM)

specifies an increasing series of levels of a software development organization. The

higher the level, the better the software development process, hence reaching each

level is an expensive and timeconsuming process.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 12 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Level One :Initial - The software process is characterized as inconsistent, and

occasionally even chaotic. Defined processes and standard practices that exist are

abandoned during a crisis. Success of the organization majorly depends on an

individual effort, talent, and heroics. The heroes eventually move on to other

organizations taking their wealth of knowledge or lessons learnt with them.

 Level Two: Repeatable - This level of Software Development Organization has a

basic and consistent project management processes to track cost, schedule, and

functionality. The process is in place to repeat the earlier successes on projects

with similar applications. Program management is a key characteristic of a level

two organization.

Level Three: Defined - The software process for both management and engineering

activities are documented, standardized, and integrated into a standard software

process for the entire organization and all projects across the organization use an

approved, tailored version of the organization's standard software process for

developing,testing and maintaining the application.

Level Four: Managed - Management can effectively control the

softwaredevelopment effort using precise measurements. At this level, organization

set a quantitative quality goal for both software process and software

maintenance. At this maturity level, the performance of processes is controlled

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 13 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

using statistical and other quantitative techniques, and is quantitatively

predictable.

 Level Five: Optimizing - The Key characteristic of this level is focusing on

continually improving process performance through both incremental and

innovative technological improvements. At this level, changes to the process are to

improve the process performance and at the same time maintaining statistical

probability to achieve the established quantitative process-improvement

objectives.

WHAT IS CMMI ?

CMM Integration project was formed to sort out the problem of using multiple

CMMs.

CMMI Product Team's mission was to combine three Source Models into a single

improvement framework to be used by the organizations pursuing enterprise-wide

process

improvement. These three Source Models are :

• Capability Maturity Model for Software (SW-CMM) - v2.0 Draft C

• Electronic Industries Alliance Interim Standard (EIA/IS) - 731

Systems Engineering

• Integrated Product Development Capability Maturity Model (IPD-

CMM) v0.98

CMM Integration:

• builds an initial set of integrated models.

• - improves best practices from source models based on lessons learned.

• - establishes a framework to enable integration of future models.

Following are obvious objectives of CMMI:

Produce quality products or services: The process-improvement concept in

CMMI models evolved out of the Deming, Juran, and Crosby quality paradigm:

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 14 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Quality products are a result of quality processes. CMMI has a strong focus on

qualityrelated activities including requirements management, quality assurance,

verification, and validation.

Create value for the stockholders: Mature organizations are more likely to make

better cost and revenue estimates than those with less maturity, and then perform

in line with those estimates. CMMI supports quality products, predictable

schedules, and effective measurement to support management in making accurate

and defensible forecasts. This process maturity can guard against project

performance problems that could weaken the value of the organization in the eyes

of investors.

Enhance customer satisfaction: Meeting cost and schedule targets with high-

quality products that are validated against customer needs is a good formula for

customer satisfaction. CMMI addresses all of these ingredients through its

emphasis on planning, monitoring, and measuring, and the improved

predictability that comes with more capable processes.

The CMM Integration is a model that has integrated several disciplines/bodies of

knowledge. Currently there are four bodies of knowledge available to you when

selecting a CMMI model. SYSTEMS ENGINEERING

 Systems engineering covers the development of complete systems, which may or

may not include software. Systems engineers focus on transforming customer

needs, expectations, and constraints into product solutions and supporting these

product solutions throughout the entire lifecycle of the product.

SOFTWARE ENGINEERING

Software engineering covers the development of software systems. Software

engineers focus on the application of systematic, disciplined, and quantifiable

approaches to the development, operation, and maintenance of software.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 15 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

INTEGRATED PRODUCT AND PROCESS DEVELOPMENT

 Integrated Product and Process Development (IPPD) is a systematic approach that

achieves a timely collaboration of relevant stakeholders throughout the life of the

product to better satisfy customer needs, expectations, and requirements. The

processes to support an IPPD approach are integrated with the other processes in

the organization. If a project or organization chooses IPPD, it performs the IPPD

best practices concurrently with other best practices used to produce products

(e.g., those related to systems engineering). That is, if an organization or project

wishes to use IPPD, it must select one or more disciplines in addition to IPPD.

SUPPLIER SOURCING

As work efforts become more complex, project managers may use suppliers to

perform functions or add modifications to products that are specifically needed by

the project. When those activities are critical, the project benefits from enhanced

source analysis and from monitoring supplier activities before product delivery.

Under these circumstances, the supplier sourcing discipline covers the acquisition

of products from suppliers. Similar to IPPD best practices, supplier sourcing best

practices must be selected in conjunction with best practices used to produce

products.

 CMMI Discipline Selection Selecting a discipline may be a difficult step and

depends on what an organization wants to improve.

• If you are improving your systems engineering processes, like Configuration

Management, Measurement and Analysis, Organizational Process Focus,

Project Monitoring and Control, Process and Product Quality Assurance,

Risk Management, Supplier Agreement Management etc., then you should

select Systems engineering (SE) discipline. The discipline amplifications for

systems engineering receive special emphasis.

• If you are improving your integrated product and process development

processes like Integrated Teaming, Organizational Environment for

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 16 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Integration, then you should select IPPD. The discipline amplifications for

IPPD receive special emphasis.

• If you are improving your source selection processes like Integrated Supplier

Management then you should select Supplier sourcing (SS). The discipline

amplifications for supplier sourcing receive special emphasis.

• If you are improving multiple disciplines, then you need to work on all the

areas related to those disciplines and pay attention to all of the discipline

amplifications for those disciplines

The CMMI is structured as follows −

 Maturity Levels (staged representation) or Capability Levels (continuous

representation)

 Process Areas

 Goals: Generic and Specific

 Common Features

 Practices: Generic and Specific

This chapter will discuss about two CMMI representations and rest of the subjects

will be

covered in subsequent chapters.

A representation allows an organization to pursue different improvement

objectives. An

organization can go for one of the following two improvement paths.

Staged Representation The staged representation is the approach used in the

Software CMM. It is an approach that uses predefined sets of process areas to

define an improvement path for an organization. This improvement path is

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 17 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

described by a model component called a Maturity Level. A maturity level is a well-

defined evolutionary plateau towards achieving improved organizational processes.

CMMI Staged Representation Provides a proven sequence of improvements, each

serving as a foundation for the next. Permits comparisons across and among

organizations by the use of maturity levels. Provides an easy migration from the

SW-CMM to CMMI. Provides a single rating that summarizes appraisal results and

allows comparisons among organizations.

Thus Staged Representation provides a pre-defined roadmap for organizational

improvement based on proven grouping and ordering of processes and associated

organizational relationships. You cannot divert from the sequence of steps.

The People Capability Maturity Model (People CMM, P-CMM) is part of the CMMI product

family of process maturity models. It is a framework to guide organisations in improving

their processes for managing and developing human workforces. It helps organisations to

characterize the maturity of their workforce practices, establish a program of continuous

workforce development, set priorities for improvement actions, integrate workforce

development with Process Improvement, and establish a culture of excellence. PCMM is

based on proven practices in fields of human resources, knowledge management, and

organisational development. P-CMM is part of the CMMI product family of process

maturity models. It describes a progression for continuous improvement and process

improvement of the HR processes for managing and developing human workforces. The P-

CMM framework enables organisations to incrementally focus on key process areas and to

lay foundations for improvement in workforce practices. Unlike other HR models, P-CMM

requires that key process areas, improvements, interventions, policies, and procedures

are institutionalised across the organisation — irrespective of function or level. Therefore,

all improvements have to percolate throughout the organisation, to ensure consistency of

focus, to place emphasis on a participatory culture, embodied in a team-based

environment, and encouraging individual innovation and creativity. Process Maturity

Rating The process maturity rating is from ad hoc and inconsistently performed practices,

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 18 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

to a mature and disciplined development of the knowledge, skills, and motivation of the

workforce.

Traditionally, process maturity models like ISO/IEC 15504 or CMMI focus on

organisational improvement with respect to operational (Product) Development Processes.

PCMM in contrast focus instead on the three prominent factors for operational capability

to deliver successful products and services:

1. People

2. Process

3. Products, Technology

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 19 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

PSP

The Personal Software Process (PSP) is a structured software development process

that is designed to help software engineers better understand and improve their

performance by bringing discipline to the way they develop software and tracking

their predicted and actual development of the code. It clearly shows developers

how to manage the quality of their products, how to make a sound plan, and how

to make commitments. It also offers them the data to justify their plans. They can

evaluate their work and suggest improvement direction by analyzing and reviewing

development time, defects, and size data. The PSP was created by Watts

Humphrey to apply the underlying principles of the Software Engineering

Institute's (SEI) Capability Maturity Model (CMM) to the software development

practices of a single developer. It claims to give software engineers the process

skills necessary to work on a team software process (TSP) team.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 20 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

The PSP aims to provide software engineers with disciplined methods for

improving personal

software development processes. The PSP helps software engineers to:

 Improve their estimating and planning skills.

 Make commitments they can keep.

 Manage the quality of their projects.

 Reduce the number of defects in their work.

PSP training follows an evolutionary improvement approach: an engineer learning

to integrate the PSP into his or her process begins at the first level – PSP0 – and

progresses in process maturity to the final level – PSP2.1. Each Level has detailed

scripts, checklists and templates to guide the engineer through required steps and

helps the engineer improve their own personal software process. Humphrey

encourages proficient engineers to customize these scripts and templates as they

gain an understanding of their own strengths and weaknesses.

 Process The input to PSP is the requirements; requirements document is

completed and delivered to the engineer.

TSP

The team software process (TSP) provides a defined operational process framework

that is designed to help teams of managers and engineers organize projects and

produce software the principles products that range in size from small projects of

several thousand lines of code (KLOC) to very large projects greater than half a

million lines of code. The TSP is intended to improve the levels of quality and

productivity of a team's software development project, in order to help them better

meet the cost and schedule commitments of developing a software system The

initial version of the TSP was developed and piloted by Watts Humphrey in the late

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 21 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

1990s and the Technical Report for TSP sponsored by the U.S. Department of

Defense was published in November 2000. The book by Watts Humphrey,

Introduction to the Team Software Process, presents a view of the TSP intended for

use in academic settings, that focuses on the process of building a software

production team, establishing team goals, distributing team roles, and other

teamwork-related activities. The primary goal of TSP is to create a team

environment for establishing and maintaining a self-directed team, and supporting

disciplined individual work as a base of PSP framework. Self-directed team means

that the team manages itself, plans and tracks their work, manages the quality of

their work, and works proactively to meet team goals. TSP has two principal

components: team-building and team-working. Team-building is a process that

defines roles for each team member and sets up teamwork through TSP launch

and periodical relaunch. Team-working is a process that deals with engineering

processes and practices utilized by the team. TSP, in short, provides engineers

and managers with a way that establishes and manages their team to produce the

high-quality software on schedule and budget.

HOW TSP WORKS:

Before engineers can participate in the TSP, it is required that they have already

learned about the PSP, so that the TSP can work effectively. Training is also

required for other team members, the team lead and management. The TSP

software development cycle begins with a planning process called the launch, led

by a coach who has been specially trained, and is either certified or provisional.

The launch is designed to begin the team building process, and during this time

teams and managers establish goals, define team roles, assess risks, estimate

effort, allocate tasks, and produce a team plan. During an execution phase,

developers track planned and actual effort, schedule, and defects meeting

regularly (usually weekly) to report status and revise plans. A development cycle

ends with a Post Mortem to assess performance,revise planning parameters, and

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 22 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

capture lessons learned for process improvement. The coach role focuses on

supporting the team and the individuals on the team as the process expert while

being independent of direct project management responsibility. The team leader

role is different from the coach role in that, team leaders are responsible to

management for products and project outcomes while the coach is responsible for

developing individual and team performance

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 23 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Unit 2:

Software Project Management Renaissance

Conventional Software Management, Evolution of Software Economics, Improving

Software

Economics, The old way and the new way.

Life-Cycle Phases and Process artifacts

Engineering and Production stages, inception phase, elaboration phase,

construction phase, transition

phase, artifact sets, management artifacts, engineering artifacts and pragmatic

artifacts, model-based

software architectures.

 CONVENTIONAL SOFTWARE MANAGEMENT

Conventional software management practices are sound in theory, but practice is

still tied to archaic (outdated) technology and techniques.

Conventional software economics provides a benchmark of performance for

conventional software management principles.

The best thing about software is its flexibility: It can be programmed to do

almost anything.

The worst thing about software is also its flexibility: The "almost anything"

characteristic has made it difficult to plan, monitors, and control software

development.

Three important analyses of the state of the software engineering industry are

1.Software development is still highly unpredictable. Only about 10% of

software projects are delivered successfully within initial budget and sched-

ule estimates.

2.Management discipline is more of a discriminator in success or failure

than are technology advances.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 24 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

3.The level of software scrap and rework is indicative of an immature

process.

All three analyses reached the same general conclusion: The success rate for

software projects is very low. The three analyses provide a good introduction to

the magnitude of the software problem and the current norms for conventional

software management performance.

THE WATERFALL MODEL

Most software engineering texts present the waterfall model as the source of the

"conventional" software process

IN THEORY

It provides an insightful and concise summary of conventional software

management.Three main primary points are

1.There are two essential steps common to the development of computer programs:

analysis and coding.

Waterfall Model part 1: The two basic steps to building a program.

2. In order to manage and control all of the intellectual freedom associated with

software development, one must introduce several other "overhead" steps,

including system requirements definition, software requirements definition,

program design, and testing. These steps supplement the analysis and coding

steps. Below Figure illustrates the resulting project profile and the basic steps in

developing a large-scale program.

Analysis and coding both involve creative

work that directly contributes to the

usefulness of the end product.

Analysis

Coding

Requirement

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 25 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

3. The basic framework described in the waterfall model is risky and invites

failure. The testing phase that occurs at the end of the development cycle is the

first event for which timing, storage, input/output transfers, etc., are experienced

as distinguished from analyzed. The resulting design changes are likely to be so

disruptive that the software requirements upon which the design is based are

likely violated. Either the requirements must be modified or a substantial design

change is warranted.

Five necessary improvements for waterfall model are:-

1. Program design comes first. Insert a preliminary program design phase

between the software requirements generation phase and the analysis phase.

By this technique, the program designer assures that the software will

not fail because of storage, timing, and data flux (continuous change). As

analysis proceeds in the succeeding phase, the program designer must impose

on the analyst the storage, timing, and operational constraints in such a way

that he senses the consequences. If the total resources to be applied are

insufficient or if the embryonic(in an early stage of development) operational

design is wrong, it will be recognized at this early stage and the iteration with

requirements and preliminary design can be redone before final design,

Analysis

Design

Coding

Operation

Testing

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 26 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

coding, and test commences. How is this program design procedure

implemented?

The following steps are required:

Begin the design process with program designers, not analysts or programmers.

Design, define, and allocate the data processing modes even at the risk of being

wrong. Allocate processing functions, design the database, allocate execution

time, define interfaces and processing modes with the operating system, describe

input and output processing, and define preliminary operating procedures.

Write an overview document that is understandable, informative, and current so

that every worker on the project can gain an elemental understanding of the

system.

2. Document the design. The amount of documentation required on most

software programs is quite a lot, certainly much more than most program-

mers, analysts, or program designers are willing to do if left to their own

devices. Why do we need so much documentation? (1) Each designer must

communicate with interfacing designers, managers, and possibly customers.

(2) During early phases, the documentation is the design. (3) The real

monetary value of documentation is to support later modifications by a

separate test team, a separate maintenance team, and operations personnel

who are not software literate.

3.Do it twice. If a computer program is being developed for the first time,

arrange matters so that the version finally delivered to the customer for

operational deployment is actually the second version insofar as critical

design/operations are concerned. Note that this is simply the entire process

done in miniature, to a time scale that is relatively small with respect to the

overall effort. In the first version, the team must have a special broad com-

petence where they can quickly sense trouble spots in the design, model

them, model alternatives, forget the straightforward aspects of the design that

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 27 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

aren't worth studying at this early point, and, finally, arrive at an error-free

program.

4.Plan, control, and monitor testing. Without question, the biggest user of

project resources-manpower, computer time, and/or management judgment-

is the test phase. This is the phase of greatest risk in terms of cost and

schedule. It occurs at the latest point in the schedule, when backup

alternatives are least available, if at all. The previous three recommendations

were all aimed at uncovering and solving problems before entering the test

phase. However, even after doing these things, there is still a test phase and

there are still important things to be done, including: (1) employ a team of

test specialists who were not responsible for the original design; (2) employ

visual inspections to spot the obvious errors like dropped minus signs,

missing factors of two, jumps to wrong addresses (do not use the computer to

detect this kind of thing, it is too expensive); (3) test every logic path; (4)

employ the final checkout on the target computer.

5. Involve the customer. It is important to involve the customer in a formal

way so that he has committed himself at earlier points before final delivery.

There are three points following requirements definition where the insight,

judgment, and commitment of the customer can bolster the development

effort. These include a "preliminary software review" following the preliminary

program design step, a sequence of "critical software design reviews" during

program design, and a "final software acceptance review".

IN PRACTICE

Some software projects still practice the conventional software management

approach.

It is useful to summarize the characteristics of the conventional process as it has

typically been applied, which is not necessarily as it was intended. Projects

destined for trouble frequently exhibit the following symptoms:

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 28 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

•Protracted integration and late design breakage.

•Late risk resolution.

•Requirements-driven functional decomposition.

•Adversarial (conflict or opposition) stakeholder relationships.

•Focus on documents and review meetings.

Protracted Integration and Late Design Breakage

For a typical development project that used a waterfall model management

process, Figure 1-2 illustrates development progress versus time. Progress is

defined as percent coded, that is, demonstrable in its target form.

The following sequence was common:

•Early success via paper designs and thorough (often too thorough)

briefings.

•Commitment to code late in the life cycle.

•Integration nightmares (unpleasant experience) due to unforeseen

implementation issues and interface ambiguities.

•Heavy budget and schedule pressure to get the system working.

•Late shoe-homing of no optimal fixes, with no time for redesign.

•A very fragile, unmentionable product delivered late.

Figure 1-2: Progress profile of a conventional software Project

In the conventional model, the entire system was designed on paper, then

implemented all at once, then integrated. Table 1-1 provides a typical profile of

cost expenditures across the spectrum of software activities.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 29 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Table 1-1: Expenditures of by activity for a conventional software project

Late risk resolution A serious issue associated with the waterfall lifecycle was

the lack of early risk resolution. Figure 1.3 illustrates a typical risk profile for

conventional waterfall model projects. It includes four distinct periods of risk

exposure, where risk is defined as the probability of missing a cost, schedule,

feature, or quality goal. Early in the life cycle, as the requirements were being

specified, the actual risk exposure was highly unpredictable.

Figure 1.3: risk profile

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 30 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Requirements-Driven Functional Decomposition: This approach depends on

specifying requirements completely and unambiguously before other

development activities begin. It naively treats all requirements as equally

important, and depends on those requirements remaining constant over the

software development life cycle. These conditions rarely occur in the real world.

Specification of requirements is a difficult and important part of the software

development process.

 Another property of the conventional approach is that the

requirements were typically specified in a functional manner. Built into the

classic waterfall process was the

fundamental assumption that the software itself was decomposed into functions;

requirements were then allocated to the resulting components. This

decomposition was often very different from a decomposition based on object-

oriented design and the use of existing components. Figure 1-4 illustrates the

result of requirements-driven approaches: a software structure that is organized

around the requirements specification structure.

Adversarial Stakeholder Relationships:

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 31 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

The conventional process tended to result in adversarial stakeholder

relationships, in large part because of the difficulties of requirements

specification and the exchange of information solely through paper documents

that captured engineering information in ad hoc formats.

The following sequence of events was typical for most contractual software

efforts:

1. The contractor prepared a draft contract-deliverable document that captured

an intermediate artifact and delivered it to the customer for approval.

2. The customer was expected to provide comments (typically within 15 to 30

days).

3. The contractor incorporated these comments and submitted (typically within

15 to 30 days) a final version for approval.

This one-shot review process encouraged high levels of sensitivity on the part of

customers and contractors.

Focus on Documents and Review Meetings:

The conventional process focused on producing various documents that

attempted to describe the software product, with insufficient focus on producing

tangible increments of the products themselves. Contractors were driven to

produce literally tons of paper to meet milestones and demonstrate progress to

stakeholders, rather than spend their energy on tasks that would reduce risk

and produce quality software. Typically,

 Presenters and the audience reviewed the simple things that they understood

rather than the complex and important issues. Most design reviews therefore

resulted in low engineering value and high cost in terms of the effort and

schedule involved in their preparation and conduct. They presented merely a

facade of progress.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 32 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

CONVENTIONAL SOFTWARE MANAGEMENT PERFORMANCE

Barry Boehm's "Industrial Software Metrics Top 10 List” is a good, objective

characterization of the state of software development.

1. Finding and fixing a software problem after delivery costs 100 times more

than finding and fixing the problem in early design phases.

2. You can compress software development schedules 25% of nominal, but no

more.

3. For every $1 you spend on development, you will spend $2 on maintenance.

4. Software development and maintenance costs are primarily a function of the

number of source lines of code.

5. Variations among people account for the biggest differences in software

productivity.

6. The overall ratio of software to hardware costs is still growing. In 1955 it was

15:85; in 1985, 85:15.

7. Only about 15% of software development effort is devoted to programming.

8. Software systems and products typically cost 3 times as much per SLOC as

individual software programs. Software-system products (i.e., system of sys-

tems) cost 9 times as much.

9. Walkthroughs catch 60% of the errors

10. 80% of the contribution comes from 20% of the contributors.

EVOLUTION OF SOFTWARE ECONOMICS

SOFTWARE ECONOMICS:

Most software cost models can be abstracted into a function of five basic

parameters: size, process, personnel, environment, and required quality.

1.The size of the end product (in human-generated components), which is

typically quantified in terms of the number of source instructions or the

number of function points required to develop the required functionality

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 33 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

2.The process used to produce the end product, in particular the ability of

the process to avoid non-value-adding activities (rework, bureaucratic

delays, communications overhead)

3.The capabilities of software engineering personnel, and particularly their

experience with the computer science issues and the applications domain

issues of the project

4.The environment, which is made up of the tools and techniques available

to support efficient software development and to automate the process

5.The required quality of the product, including its features, performance,

reliability, and adaptability

The relationships among these parameters and the estimated cost can be written

as follows:

Effort = (Personnel) (Environment) (Quality) (Sizeprocess)

 One important aspect of software economics (as represented within

today's software cost models) is that the relationship between effort and size

exhibits a diseconomy of scale. The diseconomy of scale of software development

is a result of the process exponent being greater than 1.0. Contrary to most

manufacturing processes, the more software you build, the more expensive it is

per unit item.

 Figure 1-5 shows three generations of basic technology advancement

in tools, components, and processes. The required levels of quality and personnel

are assumed to be constant. The ordinate of the graph refers to software unit

costs (pick your favorite: per SLOC, per function point, per component) realized

by an organization.

The three generations of software development are defined as follows:

1) Conventional: 1960s and 1970s, craftsmanship. Organizations used custom

tools, custom processes, and virtually all custom components built in primitive

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 34 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

languages. Project performance was highly predictable in that cost, schedule,

and quality objectives were almost always underachieved.

2) Transition: 1980s and 1990s, software engineering. Organizations used more-

repeatable processes and off-the-shelf tools, and mostly (>70%) custom

components built in higher level languages. Some of the components (<30%)

were available as commercial products, including the operating system,

database management system, networking, and graphical user interface.

3) Modern practices: 2000 and later, software production. This book's philos-

ophy is rooted in the use of managed and measured processes, integrated

automation environments, and mostly (70%) off-the-shelf components. Perhaps

as few as 30% of the components need to be custom built

Technologies for environment automation, size reduction, and process

improvement are not independent of one another. In each new era, the key is

complementary growth in all technologies. For example, the process advances

could not be used successfully without new component technologies and

increased tool automation.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 35 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Figure 1-5: Three generations of software economics leading to the target

objective

 Organizations are achieving better economies of scale in successive technology

eras-with very large projects (systems of systems), long-lived products, and lines

of business comprising multiple similar projects. Figure 1-6 provides an overview

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 36 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

of how a return on investment (ROI) profile can be achieved in subsequent efforts

across life cycles of various domains

Figure 1-6: Return on Investment in different domains

PRAGMATIC SOFTWARE COST ESTIMATION

 One critical problem in software cost estimation is a lack of well-

documented case studies of projects that used an iterative development

approach. Software industry has inconsistently defined metrics or atomic units

of measure, the data from actual projects are highly suspect in terms of

consistency and comparability. It is hard enough to collect a homogeneous set of

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 37 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

project data within one organization; it is extremely difficult to homogenize data

across different organizations with different processes, languages, domains, and

so on.

There have been many debates among developers and vendors of software cost

estimation models and tools. Three topics of these debates are of particular

interest here:

1.Which cost estimation model to use?

2.Whether to measure software size in source lines of code or function

points.

3.What constitutes a good estimate?

There are several popular cost estimation models (such as COCOMO,

CHECKPOINT, ESTIMACS, KnowledgePlan, Price-S, ProQMS, SEER, SLIM,

SOFTCOST, and SPQR/20), CO COMO is also one of the most open and well-

documented cost estimation models. The general accuracy of conventional cost

models (such as COCOMO) has been described as "within 20% of actual, 70% of

the time."

Most real-world use of cost models is bottom-up (substantiating a target cost)

rather than top-down (estimating the "should" cost). Figure 2-3 illustrates the

predominant practice: The software project manager defines the target cost of the

software, and then manipulates the parameters and sizing until the target cost

can be justified. The rationale for the target cost maybe to win a proposal, to

solicit customer funding, to attain internal corporate funding, or to achieve some

other goal.

The process described in Figure 1-7 is not all bad. In fact, it is absolutely neces-

sary to analyze the cost risks and understand the sensitivities and trade-offs

objectively. It forces the software project manager to examine the risks associated

with achieving the target costs and to discuss this information with other

stakeholders.

A good software cost estimate has the following attributes:

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 38 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

• It is conceived and supported by the project manager, architecture team,

development team, and test team accountable for performing the work.

• It is accepted by all stakeholders as ambitious but realizable.

• It is based on a well-defined software cost model with a credible basis.

• It is based on a database of relevant project experience that includes similar

processes, similar technologies, similar environments, similar quality

requirements, and similar people.

• It is defined in enough detail so that its key risk areas are understood and

the probability of success is objectively assessed.

Extrapolating from a good estimate, an ideal estimate would be derived from a

mature cost model with an experience base that reflects multiple similar projects

done by the same team with the same mature processes and tools.

Figure 1-7: The predominant cost estimation process

IMPROVING SOFTWARE ECONOMICS

Five basic parameters of the software cost model are

1. Reducing the size or complexity of what needs to be developed.

2. Improving the development process.

3. Using more-skilled personnel and better teams (not necessarily the same

thing).

4. Using better environments (tools to automate the process).

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 39 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

5. Trading off or backing off on quality thresholds.

These parameters are given in priority order for most software domains. Table 3-

1 lists some of the technology developments, process improvement efforts, and

management approaches targeted at improving the economics of software

development and integration.

REDUCING SOFTWARE PRODUCT SIZE

The most significant way to improve affordability and return on investment (ROI)

is usually to produce a product that achieves the design goals with the minimum

amount of human-generated source material. Component-based development

is introduced as the general term for reducing the "source" language size to

achieve a software solution.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 40 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Reuse, object-oriented technology, automatic code production, and higher order

programming languages are all focused on achieving a given system with fewer

lines of human-specified source directives (statements).

size reduction is the primary motivation behind improvements in higher order

languages (such as C++, Ada 95, Java, Visual Basic), automatic code generators

(CASE tools, visual modeling tools, GUI builders), reuse of commercial

components (operating systems, windowing environments, database

management systems, middleware, networks), and object-oriented technologies

(Unified Modeling Language, visual modeling tools, architecture frameworks).

The reduction is defined in terms of human-generated source material. In

general, when size-reducing technologies are used, they reduce the number of

human-generated source lines.

LANGUAGES

Universal function points (UFPs) are useful estimators for language-independent,

early life-cycle estimates. The basic units of function points are external user

inputs, external outputs, internal logical data groups, external data interfaces,

and external inquiries. SLOC metrics are useful estimators for software after a

candidate solution is formulated and an implementation language is known.

Substantial data have been documented relating SLOC to function points. Some

of these results are shown in Table 3-2.

Languages expressiveness of some of today’s popular languages

LANGUAGES SLOC per

UFP

Assembly 320

C 128

FORTAN77 105

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 41 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

COBOL85 91

Ada83 71

C++ 56

Ada95 55

Java 55

Visual Basic 35

Table 3-2

OBJECT-ORIENTED METHODS AND VISUAL MODELING

Object-oriented technology is not germane to most of the software management

topics discussed here, and books on object-oriented technology abound. Object-

oriented programming languages appear to benefit both software productivity

and software quality. The fundamental impact of object-oriented technology is in

reducing the overall size of what needs to be developed.

People like drawing pictures to explain something to others or to themselves.

When they do it for software system design, they call these pictures diagrams or

diagrammatic models and the very notation for them a modeling language.

These are interesting examples of the interrelationships among the dimensions of

improving software economics.

1.An object-oriented model of the problem and its solution encourages a

common vocabulary between the end users of a system and its developers,

thus creating a shared understanding of the problem being solved.

2.The use of continuous integration creates opportunities to recognize risk

early and make incremental corrections without destabilizing the entire

development effort.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 42 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

3.An object-oriented architecture provides a clear separation of concerns

among disparate elements of a system, creating firewalls that prevent a

change in one part of the system from rending the fabric of the entire

architecture.

Booch also summarized five characteristics of a successful object-oriented

project.

1.A ruthless focus on the development of a system that provides a well

understood collection of essential minimal characteristics.

2.The existence of a culture that is centered on results, encourages

communication, and yet is not afraid to fail.

3.The effective use of object-oriented modeling.

4.The existence of a strong architectural vision.

5.The application of a well-managed iterative and incremental development

life cycle.

REUSE

Reusing existing components and building reusable components have been

natural software engineering activities since the earliest improvements in

programming languages. With reuse in order to minimize development costs

while achieving all the other required attributes of performance, feature set, and

quality. Try to treat reuse as a mundane part of achieving a return on

investment.

Most truly reusable components of value are transitioned to commercial products

supported by organizations with the following characteristics:

•They have an economic motivation for continued support.

•They take ownership of improving product quality, adding new features,

and transitioning to new technologies.

•They have a sufficiently broad customer base to be profitable.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 43 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

The cost of developing a reusable component is not trivial. Figure 3-1 examines

the economic trade-offs. The steep initial curve illustrates the economic obstacle

to developing reusable components.

Reuse is an important discipline that has an impact on the efficiency of all

workflows and the quality of most artifacts.

COMMERCIAL COMPONENTS

A common approach being pursued today in many domains is to maximize

integration of commercial components and off-the-shelf products. While the use

of commercial components is certainly desirable as a means of reducing custom

development, it has not proven to be straightforward in practice. Table 3-3

identifies some of the advantages and disadvantages of using commercial

components.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 44 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

IMPROVING SOFTWARE PROCESSES

Process is an overloaded term. Three distinct process perspectives are.

• Metaprocess: an organization's policies, procedures, and practices for pur-

suing a software-intensive line of business. The focus of this process is on

organizational economics, long-term strategies, and software ROI.

• Macroprocess: a project's policies, procedures, and practices for producing

a complete software product within certain cost, schedule, and quality con-

straints. The focus of the macro process is on creating an adequate instance

of the Meta process for a specific set of constraints.

• Microprocess: a project team's policies, procedures, and practices for

achieving an artifact of the software process. The focus of the micro process

is on achieving an intermediate product baseline with adequate quality and

adequate functionality as economically and rapidly as practical.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 45 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Although these three levels of process overlap somewhat, they have different

objectives, audiences, metrics, concerns, and time scales as shown in Table 3-4

In a perfect software engineering world with an immaculate problem description,

an obvious solution space, a development team of experienced geniuses, ade-

quate resources, and stakeholders with common goals, we could execute a

software development process in one iteration with almost no scrap and rework.

Because we work in an imperfect world, however, we need to manage engineering

activities so that scrap and rework profiles do not have an impact on the win

conditions of any stakeholder. This should be the underlying premise for most

process improvements.

IMPROVING TEAM EFFECTIVENESS

Teamwork is much more important than the sum of the individuals. With soft-

ware teams, a project manager needs to configure a balance of solid talent with

highly skilled people in the leverage positions. Some maxims of team

management include the following:

• A well-managed project can succeed with a nominal engineering team.

• A mismanaged project will almost never succeed, even with an expert

team of engineers.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 46 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

• A well-architected system can be built by a nominal team of software

builders.

• A poorly architected system will flounder even with an expert team of

builders.

Boehm five staffing principles are

1. The principle of top talent: Use better and fewer people

2. The principle of job matching: Fit the tasks to the skills and motivation of

the people available.

3. The principle of career progression: An organization does best in the long

run by helping its people to self-actualize.

4. The principle of team balance: Select people who will complement and har-

monize with one another

5. The principle of phase-out: Keeping a misfit on the team doesn't benefit

anyone

Software project managers need many leadership qualities in order to enhance

team effectiveness. The following are some crucial attributes of successful

software project managers that deserve much more attention:

1.Hiring skills. Few decisions are as important as hiring decisions. Placing

the right person in the right job seems obvious but is surprisingly hard to

achieve.

2.Customer-interface skill. Avoiding adversarial relationships among

stakeholders is a prerequisite for success.

Decision-making skill. The jillion books written about management have failed

to provide a clear definition of this attribute. We all know a good leader when we

run into one, and decision-making skill seems obvious despite its intangible

definition.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 47 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Team-building skill. Teamwork requires that a manager establish trust,

motivate progress, exploit eccentric prima donnas, transition average people into

top performers, eliminate misfits, and consolidate diverse opinions into a team

direction.

Selling skill. Successful project managers must sell all stakeholders (including

themselves) on decisions and priorities, sell candidates on job positions, sell

changes to the status quo in the face of resistance, and sell achievements against

objectives. In practice, selling requires continuous negotiation, compromise, and

empathy.

IMPROVING AUTOMATION THROUGH SOFTWARE ENVIRONMENTS

 The tools and environment used in the software process generally

have a linear effect on the productivity of the process. Planning tools,

requirements management tools, visual modeling tools, compilers, editors,

debuggers, quality assurance analysis tools, test tools, and user interfaces

provide crucial automation support for evolving the software engineering

artifacts. Above all, configuration management environments provide the

foundation for executing and instrument the process. At first order, the isolated

impact of tools and automation generally allows improvements of 20% to 40% in

effort. However, tools and environments must be viewed as the primary delivery

vehicle for process automation and improvement, so their impact can be much

higher.

 Automation of the design process provides payback in quality, the ability to

estimate costs and schedules, and overall productivity using a smaller team.

Round-trip engineering describe the key capability of environments that

support iterative development. As we have moved into maintaining different

information repositories for the engineering artifacts, we need automation

support to ensure efficient and error-free transition of data from one artifact to

another. Forward engineering is the automation of one engineering artifact from

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 48 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

another, more abstract representation. For example, compilers and linkers have

provided automated transition of source code into executable code.

Reverse engineering is the generation or modification of a more abstract

representation from an existing artifact (for example, creating a .visual design

model from a source code representation).

Economic improvements associated with tools and environments. It is common

for tool vendors to make relatively accurate individual assessments of life-cycle

activities to support claims about the potential economic impact of their tools.

For example, it is easy to find statements such as the following from companies

in a particular tool.

• Requirements analysis and evolution activities consume 40% of life-cycle

costs.

• Software design activities have an impact on more than 50% of the

resources.

• Coding and unit testing activities consume about 50% of software devel-

opment effort and schedule.

• Test activities can consume as much as 50% of a project's resources.

• Configuration control and change management are critical activities that

can consume as much as 25% of resources on a large-scale project.

• Documentation activities can consume more than 30% of project

engineering resources.

• Project management, business administration, and progress assessment

can consume as much as 30% of project budgets.

ACHIEVING REQUIRED QUALITY

Software best practices are derived from the development process and

technologies. Table 3-5 summarizes some dimensions of quality improvement.

Key practices that improve overall software quality include the following:

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 49 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

• Focusing on driving requirements and critical use cases early in the life

cycle, focusing on requirements completeness and traceability late in the life

cycle, and focusing throughout the life cycle on a balance between

requirements evolution, design evolution, and plan evolution

• Using metrics and indicators to measure the progress and quality of an

architecture as it evolves from a high-level prototype into a fully compliant

product

• Providing integrated life-cycle environments that support early and contin-

uous configuration control, change management, rigorous design methods,

document automation, and regression test automation

• Using visual modeling and higher level languages that support architectural

control, abstraction, reliable programming, reuse, and self-documentation

• Early and continuous insight into performance issues through demonstra-

tion-based evaluations

Conventional development processes stressed early sizing and timing estimates

of computer program resource utilization. However, the typical chronology of

events in performance assessment was as follows

• Project inception. The proposed design was asserted to be low risk with

adequate performance margin.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 50 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

• Initial design review. Optimistic assessments of adequate design margin

were based mostly on paper analysis or rough simulation of the critical

threads. In most cases, the actual application algorithms and database sizes

were fairly well understood.

• Mid-life-cycle design review. The assessments started whittling away at the

margin, as early benchmarks and initial tests began exposing the optimism

inherent in earlier estimates.

• Integration and test. Serious performance problems were uncovered, neces-

sitating fundamental changes in the architecture. The underlying infra-

structure was usually the scapegoat, but the real culprit was immature use

of the infrastructure, immature architectural solutions, or poorly under-

stood early design trade-offs.

PEER INSPECTIONS: A PRAGMATIC VIEW

Peer inspections are frequently over hyped as the key aspect of a quality system.

In my experience, peer reviews are valuable as secondary mechanisms, but they

are rarely significant contributors to quality compared with the following primary

quality mechanisms and indicators, which should be emphasized in the

management process:

• Transitioning engineering information from one artifact set to another,

thereby assessing the consistency, feasibility, understandability, and tech-

nology constraints inherent in the engineering artifacts

• Major milestone demonstrations that force the artifacts to be assessed

against tangible criteria in the context of relevant use cases

• Environment tools (compilers, debuggers, analyzers, automated test suites)

that ensure representation rigor, consistency, completeness, and change

control

• Life-cycle testing for detailed insight into critical trade-offs, acceptance cri-

teria, and requirements compliance

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 51 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

• Change management metrics for objective insight into multiple-perspective

change trends and convergence or divergence from quality and progress

goals

Inspections are also a good vehicle for holding authors accountable for quality

products. All authors of software and documentation should have their products

scrutinized as a natural by-product of the process. Therefore, the coverage of

inspections should be across all authors rather than across all components.

THE OLD WAY AND THE NEW

THE PRINCIPLES OF CONVENTIONAL SOFTWARE ENGINEERING

1.Make quality #1. Quality must be quantified and mechanisms put into

place to motivate its achievement

2.High-quality software is possible. Techniques that have been demon-

strated to increase quality include involving the customer, prototyping,

simplifying design, conducting inspections, and hiring the best people

3.Give products to customers early. No matter how hard you try to learn

users' needs during the requirements phase, the most effective way to deter-

mine real needs is to give users a product and let them play with it

4.Determine the problem before writing the requirements. When faced

with what they believe is a problem, most engineers rush to offer a solution.

Before you try to solve a problem, be sure to explore all the alternatives and

don't be blinded by the obvious solution

5.Evaluate design alternatives. After the requirements are agreed upon,

you must examine a variety of architectures and algorithms. You certainly

do not want to use” architecture" simply because it was used in the

requirements specification.

6.Use an appropriate process model. Each project must select a process

that makes ·the most sense for that project on the basis of corporate

culture, willingness to take risks, application area, volatility of

requirements, and the extent to which requirements are well understood.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 52 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

7.Use different languages for different phases. Our industry's eternal

thirst for simple solutions to complex problems has driven many to declare

that the best development method is one that uses the same notation

throughout the life cycle.

8.Minimize intellectual distance. To minimize intellectual distance, the

software's structure should be as close as possible to the real-world

structure

9.Put techniques before tools. An undisciplined software engineer with a

tool becomes a dangerous, undisciplined software engineer

10.Get it right before you make it faster. It is far easier to make a working

program run faster than it is to make a fast program work. Don't worry

about optimization during initial coding

11.Inspect code. Inspecting the detailed design and code is a much better

way to find errors than testing

12.Good management is more important than good technology. Good

management motivates people to do their best, but there are no universal

"right" styles of management.

13.People are the key to success. Highly skilled people with appropriate

experience, talent, and training are key.

14.Follow with care. Just because everybody is doing something does not

make it right for you. It may be right, but you must carefully assess its

applicability to your environment.

15.Take responsibility. When a bridge collapses we ask, "What did the engi-

neers do wrong?" Even when software fails, we rarely ask this. The fact is

that in any engineering discipline, the best methods can be used to produce

awful designs, and the most antiquated methods to produce elegant

designs.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 53 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

16.Understand the customer's priorities. It is possible the customer would

tolerate 90% of the functionality delivered late if they could have 10% of it

on time.

17.The more they see, the more they need. The more functionality (or

performance) you provide a user, the more functionality (or performance)

the user wants.

18.Plan to throw one away. One of the most important critical success

factors is whether or not a product is entirely new. Such brand-new

applications, architectures, interfaces, or algorithms rarely work the first

time.

19.Design for change. The architectures, components, and specification

techniques you use must accommodate change.

20.Design without documentation is not design. I have often heard

software engineers say, "I have finished the design. All that is left is the

documentation. "

21.Use tools, but be realistic. Software tools make their users more

efficient.

22.Avoid tricks. Many programmers love to create programs with tricks

constructs that perform a function correctly, but in an obscure way. Show

the world how smart you are by avoiding tricky code

23.Encapsulate. Information-hiding is a simple, proven concept that results

in software that is easier to test and much easier to maintain.

24.Use coupling and cohesion. Coupling and cohesion are the best ways to

measure software's inherent maintainability and adaptability

25.Use the McCabe complexity measure. Although there are many metrics

available to report the inherent complexity of software, none is as intuitive

and easy to use as Tom McCabe's

26.Don't test your own software. Software developers should never be the

primary testers of their own software.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 54 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

27.Analyze causes for errors. It is far more cost-effective to reduce the

effect of an error by preventing it than it is to find and fix it. One way to do

this is to analyze the causes of errors as they are detected

28.Realize that software's entropy increases. Any software system that

undergoes continuous change will grow in complexity and will become more

and more disorganized

29.People and time are not interchangeable. Measuring a project solely by

person-months makes little sense

30.Expect excellence. Your employees will do much better if you have high

expectations for them.

THE PRINCIPLES OF MODERN SOFTWARE MANAGEMENT

Top 10 principles of modern software management are. (The first five, which are

the main themes of my definition of an iterative process, are summarized in

Figure 4-1.)

1. Base the process on an architecture-first approach. This requires that a

demonstrable balance be achieved among the driving requirements, the

architecturally significant design decisions, and the life-cycle plans before the

resources are committed for full-scale development.

2. Establish an iterative life-cycle process that confronts risk early. With

today's sophisticated software systems, it is not possible to define the entire

problem, design the entire solution, build the software, and then test the end

product in sequence. Instead, an iterative process that refines the problem

understanding, an effective solution, and an effective plan over several iterations

encourages a balanced treatment of all stakeholder objectives. Major risks must

be addressed early to increase predictability and avoid expensive downstream

scrap and rework.

3. Transition design methods to emphasize component-based development.

Moving from a line-of-code mentality to a component-based mentality is

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 55 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

necessary to reduce the amount of human-generated source code and custom

development.

4. Establish a change management environment. The dynamics of iterative

development, including concurrent workflows by different teams working on

shared artifacts, necessitates objectively controlled baselines.

 5. Enhance change freedom through tools that support round-trip

engineering. Round-trip engineering is the environment support necessary to

automate and synchronize engineering information in different formats (such as

requirements specifications, design models, source code, executable code, test

cases).

 6. Capture design artifacts in rigorous, model-based notation. A model

based approach (such as UML) supports the evolution of semantically rich

graphical and textual design notations.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 56 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

 7. Instrument the process for objective quality control and progress

assessment. Life-cycle assessment of the progress and the quality of all

intermediate products must be integrated into the process.

8. Use a demonstration-based approach to assess intermediate artifacts.

9. Plan intermediate releases in groups of usage scenarios with evolving

levels of detail. It is essential that the software management process drive

toward early and continuous demonstrations within the operational context of

the system, namely its use cases.

10. Establish a configurable process that is economically scalable. No single

process is suitable for all software developments.

Table 4-1 maps top 10 risks of the conventional process to the key attributes and

principles of a modern process

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 57 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

TRANSITIONING TO AN ITERATIVE PROCESS

Modern software development processes have moved away from the conventional

waterfall model, in which each stage of the development process is dependent on

completion of the previous stage.

 The economic benefits inherent in transitioning from the conventional

waterfall model to an iterative development process are significant but difficult to

quantify. As one benchmark of the expected economic impact of process

improvement, consider the process exponent parameters of the COCOMO II

model. (Appendix B provides more detail on the COCOMO model) This exponent

can range from 1.01 (virtually no diseconomy of scale) to 1.26 (significant

diseconomy of scale). The parameters that govern the value of the process

exponent are application precedentedness, process flexibility, architecture risk

resolution, team cohesion, and software process maturity.

The following paragraphs map the process exponent parameters of CO COMO II

to my top 10 principles of a modern process.

• Application precedentedness. Domain experience is a critical factor in

understanding how to plan and execute a software development project. For

unprecedented systems, one of the key goals is to confront risks and

establish early precedents, even if they are incomplete or experimental. This

is one of the primary reasons that the software industry has moved to an

iterative life-cycle process. Early iterations in the life cycle establish

precedents from which the product, the process, and the plans can be elab-

orated in evolving levels of detail.

• Process flexibility. Development of modern software is characterized by

such a broad solution space and so many interrelated concerns that there is

a paramount need for continuous incorporation of changes. These changes

may be inherent in the problem understanding, the solution space, or the

plans. Project artifacts must be supported by efficient change management

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 58 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

commensurate with project needs. A configurable process that allows a

common framework to be adapted across a range of projects is necessary to

achieve a software return on investment.

• Architecture risk resolution. Architecture-first development is a crucial

theme underlying a successful iterative development process. A project team

develops and stabilizes architecture before developing all the components

that make up the entire suite of applications components. An architecture-

first and component-based development approach forces the infrastructure,

common mechanisms, and control mechanisms to be elaborated early in the

life cycle and drives all component make/buy decisions into the architecture

process.

• Team cohesion. Successful teams are cohesive, and cohesive teams are

successful. Successful teams and cohesive teams share common objectives

and priorities. Advances in technology (such as programming languages,

UML, and visual modeling) have enabled more rigorous and understandable

notations for communicating software engineering information, particularly

in the requirements and design artifacts that previously were ad hoc and

based completely on paper exchange. These model-based formats have also

enabled the round-trip engineering support needed to establish change

freedom sufficient for evolving design representations.

• Software process maturity. The Software Engineering Institute's Capability

Maturity Model (CMM) is a well-accepted benchmark for software process

assessment. One of key themes is that truly mature processes are enabled

through an integrated environment that provides the appropriate level of

automation to instrument the process for objective quality control.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 59 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Life Cycle Phases and Process artifacts:

Introduction:

Characteristic of a successful software development process is the well-defined

separation between "research and development" activities and "production"

activities. Most unsuccessful projects exhibit one of the following characteristics:

• An overemphasis on research and development

• An overemphasis on production.

Successful modern projects-and even successful projects developed under the

conventional process-tend to have a very well-defined project milestone when

there is a noticeable transition from a research attitude to a production attitude.

Earlier phases focus on achieving functionality. Later phases revolve around

achieving a product that can be shipped to a customer, with explicit attention to

robustness, performance, and finish.

A modern software development process must be defined to support the

following:

• Evolution of the plans, requirements, and architecture, together with well

defined synchronization points

• Risk management and objective measures of progress and quality

• Evolution of system capabilities through demonstrations of increasing

functionality

 ENGINEERING AND PRODUCTION STAGES

 To achieve economies of scale and higher returns on investment, we must move

toward a software manufacturing process driven by technological improvements

in process automation and component-based development. Two stages of the life

cycle are:

1.The engineering stage, driven by less predictable but smaller teams doing

design and synthesis activities

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 60 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

2.The production stage, driven by more predictable but larger teams doing

construction, test, and deployment activities

The transition between engineering and production is a crucial event for the var-

ious stakeholders. The production plan has been agreed upon, and there is a

good enough understanding of the problem and the solution that all stakeholders

can make a firm commitment to go ahead with production.

Engineering stage is decomposed into two distinct phases, inception and

elaboration, and the production stage into construction and transition. These

four phases of the life-cycle process are loosely mapped to the conceptual

framework of the spiral model as shown in Figure 5-1

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 61 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

INCEPTION PHASE

The overriding goal of the inception phase is to achieve concurrence among

stakeholders on the life-cycle objectives for the project.

PRIMARY OBJECTIVES

• Establishing the project's software scope and boundary conditions, includ-

ing an operational concept, acceptance criteria, and a clear understanding

of what is and is not intended to be in the product

• Discriminating the critical use cases of the system and the primary scenar-

ios of operation that will drive the major design trade-offs

• Demonstrating at least one candidate architecture against some of the pri-

mary scenanos

• Estimating the cost and schedule for the entire project (including detailed

estimates for the elaboration phase)

• Estimating potential risks (sources of unpredictability)

ESSENTIAL ACTIVTIES

• Formulating the scope of the project. The information repository should be

sufficient to define the problem space and derive the acceptance criteria for

the end product.

• Synthesizing the architecture. An information repository is created that is

sufficient to demonstrate the feasibility of at least one candidate

architecture and an, initial baseline of make/buy decisions so that the cost,

schedule, and resource estimates can be derived.

• Planning and preparing a business case. Alternatives for risk management,

staffing, iteration plans, and cost/schedule/profitability trade-offs are eval-

uated.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 62 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

PRIMARY EVALUATION CRITERIA

•Do all stakeholders concur on the scope definition and cost and schedule

estimates?

•Are requirements understood, as evidenced by the fidelity of the critical use

cases?

•Are the cost and schedule estimates, priorities, risks, and development pro-

cesses credible?

•Do the depth and breadth of an architecture prototype demonstrate the

preceding criteria? (The primary value of prototyping candidate architecture

is to provide a vehicle for understanding the scope and assessing the

credibility of the development group in solving the particular technical

problem.)

•Are actual resource expenditures versus planned expenditures acceptable

 ELABORATION PHASE

At the end of this phase, the "engineering" is considered complete. The

elaboration phase activities must ensure that the architecture, requirements,

and plans are stable enough, and the risks sufficiently mitigated, that the cost

and schedule for the completion of the development can be predicted within an

acceptable range. During the elaboration phase, an executable architecture

prototype is built in one or more iterations, depending on the scope, size, & risk.

PRIMARY OBJECTIVES

• Baselining the architecture as rapidly as practical (establishing a configura-

tion-managed snapshot in which all changes are rationalized, tracked, and

maintained)

• Baselining the vision

• Baselining a high-fidelity plan for the construction phase

• Demonstrating that the baseline architecture will support the vision at a

reasonable cost in a reasonable time

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 63 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

ESSENTIAL ACTIVITIES

• Elaborating the vision.

• Elaborating the process and infrastructure.

• Elaborating the architecture and selecting components.

PRIMARY EVALUATION CRITERIA

• Is the vision stable?

• Is the architecture stable?

• Does the executable demonstration show that the major risk elements have

been addressed and credibly resolved?

• Is the construction phase plan of sufficient fidelity, and is it backed up with

a credible basis of estimate?

• Do all stakeholders agree that the current vision can be met if the current

plan is executed to develop the complete system in the context of the cur-

rent architecture?

• Are actual resource expenditures versus planned expenditures acceptable?

CONSTRUCTION PHASE

During the construction phase, all remaining components and application

features are integrated into the application, and all features are thoroughly

tested. Newly developed software is integrated where required. The construction

phase represents a production process, in which emphasis is placed on

managing resources and controlling operations to optimize costs, schedules, and

quality.

PRIMARY OBJECTIVES

•Minimizing development costs by optimizing resources and avoiding

unnecessary scrap and rework

•Achieving adequate quality as rapidly as practical

•Achieving useful versions (alpha, beta, and other test releases) as rapidly as

practical

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 64 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

ESSENTIAL ACTIVITIES

•Resource management, control, and process optimization

•Complete component development and testing against evaluation criteria

•Assessment of product releases against acceptance criteria of the vision

PRIMARY EVALUATION CRITERIA

•Is this product baseline mature enough to be deployed in the user commu-

nity? (Existing defects are not obstacles to achieving the purpose of the next

release.)

•Is this product baseline stable enough to be deployed in the user commu-

nity? (Pending changes are not obstacles to achieving the purpose of the

next release.)

•Are the stakeholders ready for transition to the user community?

•Are actual resource expenditures versus planned expenditures acceptable?

TRANSITION PHASE

The transition phase is entered when a baseline is mature enough to be deployed

in the end-user domain. This typically requires that a usable subset of the

system has been achieved with acceptable quality levels and user documentation

so that transition to the user will provide positive results. This phase could

include any of the following activities:

1.Beta testing to validate the new system against user expectations

2.Beta testing and parallel operation relative to a legacy system it is

replacing

3.Conversion of operational databases

4.Training of users and maintainers

The transition phase concludes when the deployment baseline has achieved the

complete vision.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 65 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

PRIMARY OBJECTIVES

•Achieving user self-supportability

•Achieving stakeholder concurrence that deployment baselines are complete

and consistent with the evaluation criteria of the vision

•Achieving final product baselines as rapidly and cost-effectively as practical

ESSENTIAL ACTIVITIES

•Synchronization and integration of concurrent construction increments

into consistent deployment baselines

•Deployment-specific engineering (cutover, commercial packaging and pro-

duction, sales rollout kit development, field personnel training)

•Assessment of deployment baselines against the complete vision and

acceptance criteria in the requirements set

EVALUATION CRITERIA

•Is the user satisfied?

•Are actual resource expenditures versus planned expenditures acceptable?

 ARTIFACTS OF THE PROCESS

 THE ARTIFACT SETS

To make the development of a complete software system manageable, distinct

collections of information are organized into artifact sets. Artifact represents

cohesive information that typically is developed and reviewed as a single entity.

Life-cycle software artifacts are organized into five distinct sets that are roughly

partitioned by the underlying language of the set: management (ad hoc textual

formats), requirements (organized text and models of the problem space), design

(models of the solution space), implementation (human-readable programming

language and associated source files), and deployment (machine-process able

languages and associated files). The artifact sets are shown in Figure 6-1.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 66 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

THE MANAGEMENT SET

The management set captures the artifacts associated with process planning and

execution. These artifacts use ad hoc notations, including text, graphics, or

whatever representation is required to capture the "contracts" among project

personnel (project management, architects, developers, testers, marketers,

administrators), among stakeholders (funding authority, user, software project

manager, organization manager, regulatory agency), and between project

personnel and stakeholders. Specific artifacts included in this set are the work

breakdown structure (activity breakdown and financial tracking mechanism), the

business case (cost, schedule, profit expectations), the release specifications

(scope, plan, objectives for release baselines), the software development plan

(project process instance), the release descriptions (results of release baselines),

the status assessments (periodic snapshots of project progress), the software

change orders (descriptions of discrete baseline changes), the deployment docu-

ments (cutover plan, training course, sales rollout kit), and the environment

(hardware and software tools, process automation, & documentation).

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 67 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Management set artifacts are evaluated, assessed, and measured through a com-

bination of the following:

•Relevant stakeholder review

•Analysis of changes between the current version of the artifact and previ-

ous versions

•Major milestone demonstrations of the balance among all artifacts and, in

particular, the accuracy of the business case and vision artifacts

THE ENGINEERING SETS

The engineering sets consist of the requirements set, the design set, the

implementation set, and the deployment set.

Requirements Set

Requirements artifacts are evaluated, assessed, and measured through a combi-

nation of the following:

•Analysis of consistency with the release specifications of the management

set

•Analysis of consistency between the vision and the requirements models

•Mapping against the design, implementation, and deployment sets to eval-

uate the consistency and completeness and the semantic balance between

information in the different sets

•Analysis of changes between the current version of requirements artifacts

and previous versions (scrap, rework, and defect elimination trends)

•Subjective review of other dimensions of quality

Design Set

UML notation is used to engineer the design models for the solution. The design

set contains varying levels of abstraction that represent the components of the

solution space (their identities, attributes, static relationships, dynamic

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 68 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

interactions). The design set is evaluated, assessed, and measured through a

combination of the following:

•Analysis of the internal consistency and quality of the design model

•Analysis of consistency with the requirements models

•Translation into implementation and deployment sets and notations (for

example, traceability, source code generation, compilation, linking) to

evaluate the consistency and completeness and the semantic balance

between information in the sets

•Analysis of changes between the current version of the design model and

previous versions (scrap, rework, and defect elimination trends)

•Subjective review of other dimensions of quality

Implementation set

The implementation set includes source code (programming language notations)

that represents the tangible implementations of components (their form,

interface, and dependency relationships)

Implementation sets are human-readable formats that are evaluated, assessed,

and measured through a combination of the following:

•Analysis of consistency with the design models

•Translation into deployment set notations (for example, compilation and

linking) to evaluate the consistency and completeness among artifact sets

•Assessment of component source or executable files against relevant evalu-

ation criteria through inspection, analysis, demonstration, or testing

•Execution of stand-alone component test cases that automatically compare

expected results with actual results

•Analysis of changes between the current version of the implementation set

and previous versions (scrap, rework, and defect elimination trends)

•Subjective review of other dimensions of quality

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 69 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Deployment Set

The deployment set includes user deliverables and machine language notations,

executable software, and the build scripts, installation scripts, and executable

target specific data necessary to use the product in its target environment.

Deployment sets are evaluated, assessed, and measured through a combination

of the following:

•Testing against the usage scenarios and quality attributes defined in the

requirements set to evaluate the consistency and completeness and the~

semantic balance between information in the two sets

•Testing the partitioning, replication, and allocation strategies in mapping

components of the implementation set to physical resources of the deploy-

ment system (platform type, number, network topology)

•Testing against the defined usage scenarios in the user manual such as

installation, user-oriented dynamic reconfiguration, mainstream usage, and

anomaly management

•Analysis of changes between the current version of the deployment set and

previous versions (defect elimination trends, performance changes)

•Subjective review of other dimensions of quality

Each artifact set is the predominant development focus of one phase of the life

cycle; the other sets take on check and balance roles. As illustrated in Figure 6-

2, each phase has a predominant focus: Requirements are the focus of the

inception phase; design, the elaboration phase; implementation, the construction

phase; and deployment, the transition phase. The management artifacts also

evolve, but at a fairly constant level across the life cycle.

Most of today's software development tools map closely to one of the five artifact

sets.

1.Management: scheduling, workflow, defect tracking, change management,

documentation, spreadsheet, resource management, and presentation tools

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 70 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

2.Requirements: requirements management tools

3.Design: visual modeling tools

4.Implementation: compiler/debugger tools, code analysis tools, test cover-

age analysis tools, and test management tools

5.Deployment: test coverage and test automation tools, network manage-

ment tools, commercial components (operating systems, GUIs, RDBMS,

networks, middleware), and installation tools.

Implementation Set versus Deployment Set

The separation of the implementation set (source code) from the deployment set

(executable code) is important because there are very different concerns with

each set. The structure of the information delivered to the user (and typically the

test organization) is very different from the structure of the source code

information. Engineering decisions that have an impact on the quality of the

deployment set but are relatively incomprehensible in the design and

implementation sets include the following:

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 71 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

•Dynamically reconfigurable parameters (buffer sizes, color palettes,

number of servers, number of simultaneous clients, data files, run-time

parameters)

•Effects of compiler/link optimizations (such as space optimization versus

speed optimization)

•Performance under certain allocation strategies (centralized versus distrib-

uted, primary and shadow threads, dynamic load balancing, hot backup

versus checkpoint/rollback)

•Virtual machine constraints (file descriptors, garbage collection, heap size,

maximum record size, disk file rotations)

•Process-level concurrency issues (deadlock and race conditions)

•Platform-specific differences in performance or behavior

ARTIFACT EVOLUTION OVER THE LIFE CYCLE

Each state of development represents a certain amount of precision in the final

system description. Early in the life cycle, precision is low and the representation

is generally high. Eventually, the precision of representation is high and

everything is specified in full detail. Each phase of development focuses on a

particular artifact set. At the end of each phase, the overall system state will have

progressed on all sets, as illustrated in Figure 6-3.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 72 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

The inception phase focuses mainly on critical requirements usually with a sec-

ondary focus on an initial deployment view. During the elaboration phase, there

is much greater depth in requirements, much more breadth in the design set,

and further work on implementation and deployment issues. The main focus of

the construction phase is design and implementation. The main focus of the

transition phase is on achieving consistency and completeness of the deployment

set in the context of the other sets.

TEST ARTIFACTS

•The test artifacts must be developed concurrently with the product from

inception through deployment. Thus, testing is a full-life-cycle activity, not a

late life-cycle activity.

•The test artifacts are communicated, engineered, and developed within the

same artifact sets as the developed product.

•The test artifacts are implemented in programmable and repeatable for-

mats (as software programs).

•The test artifacts are documented in the same way that the product is

documented.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 73 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

•Developers of the test artifacts use the same tools, techniques, and training

as the software engineers developing the product.

Test artifact subsets are highly project-specific, the following example clarifies

the relationship between test artifacts and the other artifact sets. Consider a

project to perform seismic data processing for the purpose of oil exploration. This

system has three fundamental subsystems: (1) a sensor subsystem that captures

raw seismic data in real time and delivers these data to (2) a technical operations

subsystem that converts raw data into an organized database and manages

queries to this database from (3) a display subsystem that allows workstation

operators to examine seismic data in human-readable form. Such a system

would result in the following test artifacts:

•Management set. The release specifications and release descriptions cap-

ture the objectives, evaluation criteria, and results of an intermediate mile-

stone. These artifacts are the test plans and test results negotiated among

internal project teams. The software change orders capture test results

(defects, testability changes, requirements ambiguities, enhancements) and

the closure criteria associated with making a discrete change to a baseline.

•Requirements set. The system-level use cases capture the operational con-

cept for the system and the acceptance test case descriptions, including the

expected behavior of the system and its quality attributes. The entire

requirement set is a test artifact because it is the basis of all assessment

activities across the life cycle.

•Design set. A test model for nondeliverable components needed to test the

product baselines is captured in the design set. These components include

such design set artifacts as a seismic event simulation for creating realistic

sensor data; a "virtual operator" that can support unattended, after-hours

test cases; specific instrumentation suites for early demonstration of

resource usage; transaction rates or response times; and use case test driv-

ers and component stand-alone test drivers.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 74 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

•Implementation set. Self-documenting source code representations for test

components and test drivers provide the equivalent of test procedures and

test scripts. These source files may also include human-readable data files

representing certain statically defined data sets that are explicit test source

files. Output files from test drivers provide the equivalent of test reports.

•Deployment set. Executable versions of test components, test drivers, and

data files are provided.

MANAGEMENT ARTIFACTS

The management set includes several artifacts that capture intermediate results

and ancillary information necessary to document the product/process legacy,

maintain the product, improve the product, and improve the process.

Business Case

The business case artifact provides all the information necessary to determine

whether the project is worth investing in.

It details the expected revenue, expected cost, technical and management plans,

and backup data necessary to demonstrate the risks and realism of the plans.

The main purpose is to transform the vision into economic terms so that an

organization can make an accurate ROI assessment. The financial forecasts are

evolutionary, updated with more accurate forecasts as the life cycle progresses.

Figure 6-4 provides a default outline for a business case.

Software Development Plan

The software development plan (SDP) elaborates the process framework into a

fully detailed plan. Two indications of a useful SDP are periodic updating (it is

not stagnant shelfware) and understanding and acceptance by managers and

practitioners alike. Figure 6-5 provides a default outline for a software

development plan.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 75 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Work Breakdown Structure

Work breakdown structure (WBS) is the vehicle for budgeting and collecting

costs. To monitor and control a project's financial performance, the software

project man1ger must have insight into project costs and how they are expended.

The structure of cost accountability is a serious project planning constraint.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 76 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Software Change Order Database

 Managing change is one of the fundamental primitives of an iterative

development process. With greater change freedom, a project can iterate more

productively. This flexibility increases the content, quality, and number of

iterations that a project can achieve within a given schedule. Change freedom

has been achieved in practice through automation, and today's iterative

development environments carry the burden of change management.

Organizational processes that depend on manual change management

techniques have encountered major inefficiencies.

Release Specifications

The scope, plan, and objective evaluation criteria for each baseline release are

derived from the vision statement as well as many other sources (make/buy

analyses, risk management concerns, architectural considerations, shots in the

dark, implementation constraints, quality thresholds). These artifacts are

intended to evolve along with the process, achieving greater fidelity as the life

cycle progresses and requirements understanding matures. Figure 6-6 provides a

default outline for a release specification

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 77 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Release Descriptions

Release description documents describe the results of each release, including

performance against each of the evaluation criteria in the corresponding release

specification. Release baselines should be accompanied by a release description

document that describes the evaluation criteria for that configuration baseline

and provides substantiation (through demonstration, testing, inspection, or

analysis) that each criterion has been addressed in an acceptable manner. Figure

6-7 provides a default outline for a release description.

Status Assessments

Status assessments provide periodic snapshots of project health and status,

including the software project manager's risk assessment, quality indicators, and

management indicators. Typical status assessments should include a review of

resources, personnel staffing, financial data (cost and revenue), top 10 risks,

technical progress (metrics snapshots), major milestone plans and results, total

project or product scope & action items

Environment

An important emphasis of a modern approach is to define the development and

maintenance environment as a first-class artifact of the process. A robust,

integrated development environment must support automation of the

development process.

This environment should include requirements management, visual modeling,

document automation, host and target programming tools, automated regression

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 78 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

testing, and continuous and integrated change management, and feature and

defect tracking.

Deployment

A deployment document can take many forms. Depending on the project, it could

include several document subsets for transitioning the product into operational

status.

In big contractual efforts in which the system is delivered to a separate mainte-

nance organization, deployment artifacts may include computer system

operations manuals, software installation manuals, plans and procedures for

cutover (from a legacy system), site surveys, and so forth. For commercial

software products, deployment artifacts may include marketing plans, sales

rollout kits, and training courses.

Management Artifact Sequences

In each phase of the life cycle, new artifacts are produced and previously

developed artifacts are updated to incorporate lessons learned and to capture

further depth and breadth of the solution. Figure 6-8 identifies a typical

sequence of artifacts across the life-cycle phases.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 79 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

ENGINEERING ARTIFACTS

Most of the engineering artifacts are captured in rigorous engineering notations

such as UML, programming languages, or executable machine codes. Three

engineering artifacts are explicitly intended for more general review, and they

deserve further elaboration.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 80 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Vision Document

The vision document provides a complete vision for the software system under

development and. supports the contract between the funding authority and the

development organization. A project vision is meant to be changeable as

understanding evolves of the requirements, architecture, plans, and technology.

A good vision document should change slowly. Figure 6-9 provides a default

outline for a vision document.

Architecture Description

The architecture description provides an organized view of the software

architecture under development. It is extracted largely from the design model

and includes views of the design, implementation, and deployment sets sufficient

to understand how the operational concept of the requirements set will be

achieved. The breadth of the architecture description will vary from project to

project depending on many factors. Figure 6-10 provides a default outline for an

architecture description.

Software User Manual

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 81 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

The software user manual provides the user with the reference documentation

necessary to support the delivered software. Although content is highly variable

across application domains, the user manual should include installation

procedures, usage procedures and guidance, operational constraints, and a user

interface description, at a minimum. For software products with a user interface,

this manual should be developed early in the life cycle because it is a necessary

mechanism for communicating and stabilizing an important subset of

requirements. The user manual should be written by members of the test team,

who are more likely to understand the user's perspective than the development

team.

PRAGMATIC ARTIFACTS

• People want to review information but don't understand the language of the

artifact. Many interested reviewers of a particular artifact will resist having

to learn the engineering language in which the artifact is written. It is not

uncommon to find people (such as veteran software managers, veteran

quality assurance specialists, or an auditing authority from a regulatory

agency) who react as follows: "I'm not going to learn UML, but I want to

review the design of this software, so give me a separate description such as

some flowcharts and text that I can understand."

• People want to review the information but don't have access to the tools. It

is not very common for the development organization to be fully tooled; it is

extremely rare that the/other stakeholders have any capability to review the

engineering artifacts on-line. Consequently, organizations are forced to

exchange paper documents. Standardized formats (such as UML, spread-

sheets, Visual Basic, C++, and Ada 95), visualization tools, and the Web are

rapidly making it economically feasible for all stakeholders to exchange

information electronically.

• Human-readable engineering artifacts should use rigorous notations that

are complete, consistent, and used in a self-documenting manner. Properly

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 82 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

spelled English words should be used for all identifiers and descriptions.

Acronyms and abbreviations should be used only where they are well

accepted jargon in the context of the component's usage. Readability should

be emphasized and the use of proper English words should be required in

all engineering artifacts. This practice enables understandable

representations, browse able formats (paperless review), more-rigorous

notations, and reduced error rates.

• Useful documentation is self-defining: It is documentation that gets used.

• Paper is tangible; electronic artifacts are too easy to change. On-line and

Web-based artifacts can be changed easily and are viewed with more

skepticism because of their inherent volatility.

MODEL BASED SOFTWARE ARCHITECTURE

 ARCHITECTURE: A MANAGEMENT PERSPECTIVE

The most critical technical product of a software project is its architecture: the

infrastructure, control, and data interfaces that permit software components to

cooperate as a system and software designers to cooperate efficiently as a team.

When the communications media include multiple languages and intergroup

literacy varies, the communications problem can become extremely complex and

even unsolvable. If a software development team is to be successful, the inter

project communications, as captured in the software architecture, must be both

accurate and precise

From a management perspective, there are three different aspects of

architecture.

1.An architecture (the intangible design concept) is the design of a software

system this includes all engineering necessary to specify a complete bill of

materials.

2.An architecture baseline (the tangible artifacts) is a slice of information

across the engineering artifact sets sufficient to satisfy all stakeholders that

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 83 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

the vision (function and quality) can be achieved within the parameters of

the business case (cost, profit, time, technology, and people).

3.An architecture description (a human-readable representation of an archi-

tecture, which is one of the components of an architecture baseline) is an

organized subset of information extracted from the design set model(s). The

architecture description communicates how the intangible concept is

realized in the tangible artifacts.

The number of views and the level of detail in each view can vary widely.

The importance of software architecture and its close linkage with modern soft-

ware development processes can be summarized as follows:

•Achieving a stable software architecture represents a significant project

milestone at which the critical make/buy decisions should have been

resolved.

•Architecture representations provide a basis for balancing the trade-offs

between the problem space (requirements and constraints) and the solution

space (the operational product).

•The architecture and process encapsulate many of the important (high-

payoff or high-risk) communications among individuals, teams,

organizations, and stakeholders.

•Poor architectures and immature processes are often given as reasons for

project failures.

•A mature process, an understanding of the primary requirements, and a

demonstrable architecture are important prerequisites for predictable

planning.

•Architecture development and process definition are the intellectual steps

that map the problem to a solution without violating the constraints; they

require human innovation and cannot be automated.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 84 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

ARCHITECTURE: A TECHNICAL PERSPECTIVE

An architecture framework is defined in terms of views that are abstractions of

the UML models in the design set. The design model includes the full breadth

and depth of information. An architecture view is an abstraction of the design

model; it contains only the architecturally significant information. Most real-

world systems require four views: design, process, component, and deployment.

The purposes of these views are as follows:

•Design: describes architecturally significant structures and functions of the

design model

•Process: describes concurrency and control thread relationships among the

design, component, and deployment views

•Component: describes the structure of the implementation set

•Deployment: describes the structure of the deployment set

Figure 7-1 summarizes the artifacts of the design set, including the architecture

views and architecture description.

The requirements model addresses the behavior of the system as seen by its end

users, analysts, and testers. This view is modeled statically using use case and

class diagrams, and dynamically using sequence, collaboration, state chart, and

activity diagrams.

•The use case view describes how the system's critical (architecturally

significant) use cases are realized by elements of the design model. It is

modeled statically using use case diagrams, and dynamically using any of

the UML behavioral diagrams.

•The design view describes the architecturally significant elements of the

design model. This view, an abstraction of the design model, addresses the

basic structure and functionality of the solution. It is modeled statically

using class and object diagrams, and dynamically using any of the UML

behavioral diagrams.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 85 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

•The process view addresses the run-time collaboration issues involved in

executing the architecture on a distributed deployment model, including the

logical software network topology (allocation to processes and threads of

control), interprocess communication, and state management. This view is

modeled statically using deployment diagrams, and dynamically using any

of the UML behavioral diagrams.

•The component view describes the architecturally significant elements of

the implementation set. This view, an abstraction of the design model,

addresses the software source code realization of the system from the per-

spective of the project's integrators and developers, especially with regard to

releases and configuration management. It is modeled statically using

component diagrams, and dynamically using any of the UML behavioral

diagrams.

•The deployment view addresses the executable realization of the system,

including the allocation of logical processes in the distribution view (the log-

ical software topology) to physical resources of the deployment network (the

physical system topology). It is modeled statically using deployment dia-

grams, and dynamically using any of the UML behavioral diagrams.

Generally, an architecture baseline should include the following:

•Requirements: critical use cases, system-level quality objectives, and prior-

ity relationships among features and qualities

•Design: names, attributes, structures, behaviors, groupings, and relation-

ships of significant classes and components

•Implementation: source component inventory and bill of materials (num-

ber, name, purpose, cost) of all primitive components

•Deployment: executable components sufficient to demonstrate the critical

use cases and the risk associated with achieving the system qualities

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 86 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 87 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

UNIT - III

Workflows and Checkpoints of process, Software process workflows, Iteration

workflows, Major milestones, minor milestones, periodic status assessments.

Process Planning Work breakdown structures, Planning guidelines, cost and

schedule estimating process, iteration planning process, Pragmatic planning.

SOFTWARE MANAGEMENT PROCESS FRAMEWORK:

Software process workflows:

The term workflow is used to mean a thread of cohesive and mostly

sequential activities. Workflows are mapped to product artifacts.

There are seven top level workflows:

1. Management workflow: Controlling the process and ensuring with conditions

for all stakeholders

2. Environment workflow: automating the process and evolving the maintenance

environment

3. Requirements workflow: analyzing the problem space and evolving the

requirements artifacts.

4. Design workflow: modeling the solution and evolving the architecture and

design artifacts

5. Implementation workflow: programming the components and evolving the

implementation and deployment artifacts

6. Assessment workflow: assessing the trends in process and product quality

7. Deployment workflow: transitioning the end products to the user

Four basic key principles of the modern process frame work:

Architecture-first approach: implementing and testing the architecture must precede

full-scale development and testing and must precede the downstream focus on

completeness and quality of the product features.

Iterative life-cycle process: the activities and artifacts of any given workflow may

require more than one pass to achieve adequate results.

Roundtrip engineering: Raising the environment activities to a first-class workflow is

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 88 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

critical; the environment is the tangible embodiment of the project’s process and

notations for producing the artifacts.

Demonstration-based approach: Implementation and assessment activities are

initiated nearly in the life-cycle, reflecting the emphasis on constructing executable

subsets of the involving architecture.

Explain in detail about the iteration workflows of the software process?

Iteration consists of sequential set of activities in various proportions, depending on

where the iteration is located in the development cycle. Each iteration is defined in

terms of a se t of allocated usage scenarios. The components needed to implement all

selected scenarios are developed and integrated with the results of previous

iterations. An individual iteration’s workflow illustrated in the following sequence:

Management: Iteration planning to determine the content of the release and develop

the detailed plan for the iteration, assignment of work packages, or tasks, to the

development team.

Environment: evolving the software change order database to reflect all new

baselines and changes to existing baselines for all product, test and environment

components

 Requirements: analyzing the baseline plan, the baseline architecture, and the

baseline requirements set artifacts to fully elaborate the use cases to the

demonstrated at the end of the iteration and their evaluation criteria.

 Design: Evolving the baseline architecture and the baseline design set artifacts to

elaborate fully the design model and test model components necessary to

demonstrate against the evolution criteria allocated to this iteration.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 89 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Implementation: developing any new components, and enhancing or modifying any

existing components, to demonstrate the evolution criteria allocated to this iteration

Assessment: evaluating the results of the iteration, including compliance with the

allocated evaluation criteria and the quality of the current baselines; identifying any

rework required and determining whether it should be performed before deployment

of this release or allocated to the next release.

Deployment: transitioning the released either to an external organization or to

internal closure by conducting a post mortem so that lessons learned can be captured

and reflected in the next iteration.

The following is an example of a simple development life cycle, illustrates the

difference between iterations and increments. This example also illustrates a typical

build sequence from the perspective of an abstract layered architecture.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 90 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Iteration emphasis across the life cycle

CHECK POINTS OF THE PROCESS

It is important to have visible milestones in the life cycle, where various stakeholders

meet to discuss progress and planes.

 The purpose of this events is to:

Synchronize stakeholder expectations and achieve concurrence on the requirements,

the design, and the plan.

Synchronize related artifacts into a consistent and balanced state.

Synchronize related artifacts into a consistent and balanced state Identify the

important risks, issues, and out-of-tolerance conditions.

Perform a global assessment for the whole life-cycle.

Three types of joint management reviews are conducted throughout the process:

Major milestones –provide visibility to system wide issues, synchronize the

management and engineering perspectives and verify that the aims of the phase have

been achieved.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 91 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Minor milestones – iteration-focused events, conducted to review the content of

iteration in detail and to authorize continued work.

Status assessments – periodic events provide management with frequent and regular

insight into the progress being made.

MAJOR MILESTONES

The four major milestones occur at the transition points between life-cycle phases.

They can be used in many different process models, including the conventional

waterfall model. In an iterative model, the major milestones are used to achieve

concurrence among all stakeholders on the current state of the project. Different

stakeholders have very different concerns:

Customers: schedule and budget estimates, feasibility, risk assessment,

requirements understanding, progress, product line compatibility

Users: consistency with requirements and usage scenarios, potential for

accommodating growth, quality attributes.

Architectures and systems engineers: product line compatibility, requirements

change, tradeoff analyses, completeness and consistency, balance among risk,

quality, and usability.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 92 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Developers: sufficiency of requirements detail and usage scenario descriptions,

frameworks for component selection of development, resolution of development

risk, sufficiency of the development environment

Maintainers: sufficiency of product and documentation artifacts,

understandability, interoperability with existing systems, sufficiency of

maintenance environment.

Others: possibly many other perspectives by stakeholders such as regulatory

agencies, independent verification and validation contractors, venture capital

investors, subcontractors, associate contractors, and sales and marketing teams.

The milestones may be conducted as one continuous meeting of all concerned

parties or incrementally through mostly on-line review of the various artifacts.

There are considerable differences in the levels of ceremony for these events

depending on several factors.

The essence of each major milestone is to ensure that the requirements

understanding, the life-cycle plans, and the product’s form, function, and quality

are evolving in balanced levels of detail and to ensure consistency among the

various artifacts. The following table summarizes the balance of information

across the major milestones.

MINOR MILESTONES

All iterations are not created equal. An iteration can take on very different forms and

priorities, depending on where the project is in the life cycle. Early iterations focus on

analysis and design with substantial elements of discovery, experimentation, and risk

assessment. Later iterations focus much more on completeness, consistency,

usability, and change management.

Iteration readiness review: this informal milestone is conducted at the start of each

iteration to review the detailed iteration plan the evolution criteria that have been

allocated to this iteration.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 93 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Iteration Assessment review: this informal milestone is conducted at the end of each

iteration to assess the degree of which the iteration achieved its objectives and

satisfied its evaluation criteria, to review iteration achieved its objectives and satisfied

its evaluation criteria, to review iteration results, to review qualification test results, to

determine the amount of rework to be done, and to review the impact of the iteration

results on the plan for subsequent iterations.

PERIODIC STATUS ASSESSMENTS

Periodic stats assessments are management reviews conducted at regular intervals to

address progress and quality indicators, ensure continuous attention to project

dynamics, and maintain open communications among all stakeholders.

Status assessments provide the following:

A mechanism for openly addressing, communicating, and resolving management

issues, technical issues, and project risks

Objective data directly from on-going activities and evolving product configurations

A mechanism for disseminating process, progress quality trends, practices and

experience information to and from all stakeholders in an open forum.

The default content of periodic status assessments should include the topics

identified in the following ta

ITERATIVE PROCESS PLANNING

A WBS is simply a hierarchy of elements that decomposes the project plan into the

discrete work tasks. A WBS provides the following information structure:

A delineation of all significant work A clear task decomposition for assignment of

responsibilities

A framework for scheduling, budgeting, and expenditure tracking.

The development of a work breakdown structure is dependent on the project

management style, organizational culture, customer preference, financial constraints

and several other hard- to-define parameters.

Conventional WBS Issues:

Conventional WBS frequently suffer from three fundamental flaws:

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 94 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Conventional WBS are prematurely structured around the productdesign:

Once this structure is ingrained in the WBS and then allocated to responsible

managers with budgets, schedules and expected deliverables, a concrete planning

foundation has been set that is difficult and expensive to change.

Conventional WBS are prematurely decomposed, planned, and budgeted in

wither too much or too little detail:

Large software projects tend to be over planned and small projects tend to be

under planned. The WBS shown in the above figure is overly simplistic for

most large-scale systems, where size or more levels of WBS elements are

commonplace.

Conventional WBS are project-specific, and cross-project comparisons are

usually difficult or impossible:

Most organizations allow individual projects to define their own project-specific

structure tailored to the project manager’s style, the customer’s demands, or

other project-specific preferences.

It is extremely difficult to compare plans, financial data, schedule data,

organizational efficiencies, cost trends, productivity tends, or quality tends

across multiple projects.

Some of the following simple questions, which are critical to any organizational

process improvement program, cannot be answered by most project teams

that use conventional WBS.

What is the ratio of productive activities to overhead activities?

What is the percentage of effort expanded in rework activities?

What is the percentage of cost expended in software capital equipment?

What is the ration of productive testing versus integration?

What is the cost of release?

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 95 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Evolutionary Work Breakdown Structures:

An evolutionary WBS should organize the planning elements around the process

framework rather than the product framework. The basic recommendation

for the WBS is to organize the hierarchy as follows:

First level WBS elements are the workflows (Management, environment,

requirement, design, implementation, assessment, and deployment)

Second level elements are defined for each phase of the life cycle (inceptions,

elaboration, construction and transition)

Third level elements are defined for the focus of activities that produce the

artifacts of each phase.

A default WBS consistent with the process framework (phases, workflows, and

artifacts) is shown in the following figure

The structure shown is intended to be merely a starting point. It needs to be

tailored to the specifics of a project in many ways.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 96 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

PLANNING GUIDELINES

• Software projects span a broad range of application domains. It is valuable

but risky to make specific planning recommendations independent of

project context. Project-independent planning advice is also risky. There is

the risk that the guidelines may be adopted blindly without being adapted to

specific project circumstance. Two simple planning guidelines should be

considered when a project plan is being initiated or assessed. The first

guideline, detailed in Table 10-1, prescribes a default allocation of costs

among the first-level WBS elements. The second guideline, detailed in Table

10-25, prescribes allocation of effort and schedule across the lifecycle

phases.

Web budgeting defaults

First Level WBS Element Default Budget

Management 10%

Environment 10%

Requirement 10%

Design 15%

Implementation 25%

Assessment 25%

Deployment 5%

Total 100%

Table 10-2 Default distributions of effort and schedule by phase

Domain Incepti Elaboratio Constructio Transitio

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 97 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

on n n n

Effor

t

5% 20% 65% 10

%

Sche

dule

10% 30% 50% 10

%

THE COST AND SCHEDULE ESTIMATING PROCESS

• Project plans need to be derived from two perspectives. The first is a

forward-looking, top-down approach. It starts with an understanding of the

general requirements and constraints, derives a macro-level budget and

schedule, then decomposes these elements into lower level budgets and

intermediate milestones. From this perspective, the following planning

sequence would occur:

– The software project manager (and others) develops a characterization

of the overall size, process, environment, people, and quality required

for the project.

– The software project manager partitions the estimate for the effort into

top-level WBS using guidelines such as those in Table 10-1.

– At this point, subproject managers are given the responsibility for

decomposing each of the WBS elements into lower levels using their

top-level allocation, staffing profile, and major milestone dates as

constraints.

• The second perspective is a backward-looking, bottom-up approach. We

start with the end in mind, analyze the micro-level budgets and schedules,

then sum all these elements into the higher level budgets and intermediate

milestones. This approach tends to define and populate the WBS from the

lowest levels upward. From this perspective, the following planning

sequence would occur:

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 98 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

 1. The lowest level WBS elements are elaborated into detailed tasks

 2. Estimates are combined and integrated into higher level budgets and

milestones.

 3. Comparisons are made with the top-down budgets and schedule

milestones.

Engineering Stage Production Stage

Inception Elaboration Construction Transition

Engineering stage planning

emphasis:

Production stage planning

emphasis:

▪ Macro level task estimation

for production stage artifacts

▪ Micro level task estimation

for engineering artifacts

▪ Stakeholder concurrence

▪ Coarse grained variance

analysis of actual Vs

planned expenditures

▪ Tuning the top down project

independent planning

guidelines into project

specific planning guidelines

▪ WBS definition and

elaboration

▪ Micro level task estimation for

production stage artifacts

▪ Macro level task estimation for

maintenance of engineering

artifacts

▪ Stakeholder concurrence

▪ Fine grained variance analysis of

actual Vs planned expenditures

THE ITERATION PALNNING PROCESS

▪ Planning is concerned with defining the actual sequence of intermediate

results. An evolutionary build plan is important because there are always

adjustments in build content and schedule as early conjecture evolves into

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 99 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

well-understood project circumstance. Iteration is used to mean a complete

synchronization across the project, with a well-orchestrated global

assessment of the entire project baseline.

Inception Iterations: the early prototyping activities integrate the

foundation components of candidate architecture and provide an executable

framework for elaborating the critical use cases of eth system. This

framework includes existing components, commercial components and

custom prototypes sufficient to demonstrate candidate architecture and

sufficient requirements understanding to establish a credible business case,

vision and software development plan

• Elaboration Iteration: These iterations result in architecture, including a

complete framework and infrastructure for execution. Upon completion of

the architecture iteration, a few critical use cases should be demonstrable:

(1) initializing the architecture (2) injecting a scenario to drive the worst-

case data processing flow through the system (for example, the peak

transaction throughput or peak loan scenario) and (3) injecting a scenario to

drive the worst-case control flow through the system (for example,

orchestrating the fault-tolerance use cases).

• Construction Iterations: Most projects require at least two major

construction iterations: an alpha release and a beta release.

• Transition Iterations: Most projects use a single iteration to transition a

beta release into the final product.

• The general guideline is that most projects will use between four and nine

iteration. The typical project would have the following six-iteration profile:

• One iteration in inception: an architecture prototype

• Two iterations in elaboration: architecture prototype and

architecture baseline

• Two iterations in construction: alpha and beta releases

• One iteration in transition: product release

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 100 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

PRAGMATIC PLANNING

• Even though good planning is more dynamic in an iterative process, doing it

accurately is far easier. While executing iteration N of any phase, the

software project manager must be monitoring and controlling against a plan

that was initiated in iteration N-1 and must be planning iteration N+1. the

art of good project management is to make trade-offs in the current iteration

plan and the next iteration plan based on objective results in the current

iteration and previous iterations. Aside form bad architectures and

misunderstood requirement, inadequate planning (and subsequent bad

management) is one of the most common reasons for project failures.

Conversely, the success of every successful project can be attributed in part

to good planning.

• A project’s plan is a definition of how the project requirements will be

transformed into a product within the business constraints. It must be

realistic, it must be current, it must be a team product, it must be

understood by the stake holders, and it must be used. Plans are not just for

mangers. The more open and visible the planning process and results, the

more ownership there is among the team members who need to execute it.

Bad, closely held plans cause attrition. Good, open plans can shape

cultures and encourage teamwork.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 101 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

UNIT 4:

PROJECT ORGANIZATIONS

Line-of- business organizations, project organizations, evolution of organizations,

process automation. Project Control and process instrumentation, The seven-core

metrics, management indicators, quality indicators, life-cycle expectations,

Pragmatic software metrics, metrics automation.

PROJECT ORGANIZATION AND RESPONSIBILITIES:

INTRODUCTION: Software lines of business and project teams have different

motivations. Software lines of business are motivated by return on investment,

new business discriminators, market diversification and profitability. Software

professionals in both types of organizations are motivated by career growth, job

satisfaction and the opportunity to make a difference.

LINES-OF-BUSINESS ORGANIZATIONS: Figure 11-1 maps roles and

responsibilities to a default line-of-business organization. This structure can be

tailored to specific circumstances.

• The main features of the default organization are as follows:

• Responsibility for process definition and maintenance is specific to a

cohesive line of business.

• Responsibility for process automation is an organizational role and is

equal in importance to the process definition role.

Organization roles may be fulfilled by a single individual or several different

teams, depending on the scale of the organization

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 102 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

The line of business organization consists of four component teams.

▪ SOFTWARE ENGINEERING PROCESS AUTHORITY

▪ The software engineering process authority (SEPA) is responsible for

exchanging the information and project guidance to or from the project

practitioners.

▪ PROJECT REVIEW AUTHORITY

▪ The project review Authority (PRA) is responsible for reviewing the financial

performance, customer commitments, risks and accomplishments,

adherence to organizational policies by the customer etc.

▪ SOFTWARE ENGINEERING ENVIRONMENT AUTHORITY

The software Engineering Environment Authority (SEEA) deals with the

maintenance or organizations standard environment, training projects and

process automation

INFRASTRUCTURE

▪ An organization’s infrastructure provides human resources support, project-

independent research and development other capital software engineering

assets. The typical components of the organizational infrastructure are as

follows:

▪ Project Administration: time accounting system; contracts, pricing,

terms and conditions; corporate information systems integration.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 103 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

▪ Engineering Skill Centers: custom tools repository and maintenance,

bid and proposal support, independent research and development.

Professional Development: Internal training boot camp, personnel recruiting,

personnel skills database maintenance, literature and assets library, technical

publications

PROJECT ORGANIZATIONS

▪ shows a default project organization and maps project-level roles and

responsibilities. This structure can be tailored to the size and circumstance

of the specific project organization are as follows:

▪ The project management team is an active participant, responsible for

producing as well as managing. Project management is not a

spectator sport.

▪ The architecture team is responsible for real artifacts and for the

integration of components, not just for staff functions.

▪ The development team owns the component construction and

maintenance activities. The assessment team is separate form

development

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 104 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

SOFTWARE MANAGEMENT TEAM

This is active participant in an organization and is incharge of producing as well

as managing. As the software attributes, such as Schedules, costs, functionality

and quality are interrelated to each other, negotiation among multiple

stakeholders is required and these are carried out by the software management

team.

Responsibilities: Software management team is responsible for:

• Effort planning

• Conducting the plan

• Adapting the plan according to the changes in requirements and design

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 105 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

• Resource management

• Stakeholders satisfaction

• Risk management

• Assignment or personnel

• Project controls and scope definition

• Quality assurance

SOFTWARE ARCHITECTURE TEAM

• The software architecture team performs the tasks of integrating the

components, creating real artifacts etc. The skill possessed by the

architecture team is of utmost importance as it promotes team

communications and implements the applications with a system-wide

quality. The success of the development team is depends on the

effectiveness of the architecture team along with the software management

team controls the inception and elaboration phases of a life-cycle.

• The architecture team must have:

• Domain experience to generate an acceptable design and use-case view.

• Software technology experience to generate an acceptable process view,

component and development views

• Responsibilities: Software architecture team is responsible for:

• System-level quality i.e., performance, reliability and maintainability.

• Requirements and design trade-offs.

• Component selection

• Technical risk solution

• Initial integration

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 106 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

SOFTWARE DEVELOPMENT TEAM

• The Development team is involved in the construction and

maintenance activities. It is most application specific team. It consists

of several sub teams assigned to the groups of components requiring

a common skill set. The skill set include the following:

• Commercial component: specialists with detailed knowledge of

commercial components central to a system's architecture.

• Database: specialists with experience in the organization,

storage, and retrieval of data.

• Graphical user interfaces: specialists with experience in the

display organization; data presentation, and user interaction.

• Operating systems and networking: specialists with experience

in various control issues arises due to synchronization,

resource sharing, reconfiguration, inter object communications,

name space management etc.

• Domain applications: Specialists with experience in the

algorithms, application processing, or business rules specific to

the system.

• Responsibilities: Software development team is responsible for

• Component development, testing and maintenance.

• Component design and implementation

• Component documentation

SOFTWARE ASSESSMENT TEAM

• The team is involved in testing and product activities in parallel with

the ongoing development. This is an independent team for utilizing

the concurrency of activities. The use-case oriented and capability-

based testing of a process is done by using two artifacts:

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 107 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

• Release specification (the plan and evaluation criteria for a

release);

• Release description (the results of a release)

• Responsibilities: The assessment team is responsible for

• The exposure of the quality issues that affect the customer’s

expectations.

• Metric analysis.

• Verifying the requirements.

• Independent testing.

• Configuration control and user development.

• Building project infrastructure

EVOLUTION OF ORGANIZATIONS

▪ The project organization represents the architecture of the team and needs

to evolve consistent with the project plan captured in the work breakdown

structure. Figure 11-7 illustrates how the team's center of gravity shifts over

the life cycle, with about 50% of the staff assigned to one set of activities in

each phase.

▪ A different set of activities is emphasized in each phase, as follows:

▪ Inception team: An organization focused on planning, with enough

support from the other teams to ensure that the plans represent a

consensus of all perspectives.

▪ Elaboration team: An architecture-focused organization in which the

driving forces of the project reside in the software architecture team

and are supported, by the software development and software

assessment teams as necessary to achieve a stable architecture

baseline.

▪ Construction team: A fairly balanced organization in which most of

the activity resides in the software development and software

assessment teams.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 108 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

▪ Transition team: A customer-focused organization in which usage

feedback drives the deployment activities

PROCESS AUTOMATION

▪ Three levels of process are

▪ Metaprocess: An organization’s policies, procedures, and practices for

managing a software intensive line of business. The automation support for

this level is called an infrastructure. An infrastructure is an inventory of

preferred tools, artifact templates, microprocess guidelines, macroprocess

guidelines, project performance repository, database of organizational skill

sets, and library of precedent examples of past project plans and results.

▪ Macroprocess: A project's policies, procedures, and practices for producing

a complete software product within certain cost, schedule, and quality

constraints. The automation support for a project's process is called an.

environment. An environment is a specific collection of tools to produce a

specific set of artifacts as governed by a specific project plan.

▪ Microprocess: A project team's policies, procedures, and practices for

achieving an artifact of the software process. The automation support for

generating an artifact is generally called a tool. Typical tools include

requirements management, visual modeling, compilers, editors, debuggers,

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 109 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

change management, metrics automation, document automation, test

automation, cost estimation, and workflow automation

TOOLS: AUTOMATION BUILDING BLOCKS

▪ It introduces some of the important tools that tend to be needed universally

across software projects and that correlate well to the process framework.

(Many other tools and process automation aids are not included.) Most of

the core software development tools map closely to one of the process

workflows, as illustrated ill Figure 12-1.

▪ MANAGEMENT

▪ There are many opportunities for automating the project planning and

control activities of the management workflow. Software cost

estimation tools and WBS tools are useful for generating the planning

artifacts. For managing against a plan, workflow management tools

and a software project control panel that can maintain an on-line

version of the status assessment are advantageous. This automation

support can considerably improve the insight of the metrics collection

and reporting concepts.

▪ ENVIRONMENT

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 110 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Configuration management and version control are essential in a modern

iterative development process. (change management automation that must

be supported by the environment

▪ REQUIREMENTS

▪ Conventional approaches decomposed system requirements into

subsystem requirements, subsystem requirements into component

requirements, and component requirements into unit requirements.

The equal treatment of all requirements drained away engineering

hours from the driving requirements then wasted that time on

paperwork associated with detailed traceability that was inevitably

discarded later as the driving requirements and subsequent design

understanding evolved.

▪ The ramifications of this approach on the environment’s support for

requirements management are twofold:

 1. The recommended requirements approach is dependent on both textual

and model-based representations

 2. Traceability between requirements and other artifacts needs to be

automated.

▪ DESIGN

The too1s that Support the requirements, design, implementation, and

assessment workflows are usually used together. The primary support required for

the design workflow is visual modeling, which is used for capturing design models,

presenting them in human-readable format, and translating them into source

code. Architecture-first and demonstration-based process is enabled by existing

architecture components and middleware

▪ IMPLEMENTATION

▪ The implementation workflow relies primarily on a programming

environment (editor, compiler, debugger, linker, run time) but

must also include substantial integration with the change

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 111 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

management tools, visual modeling tools, and test automation

tools to support productive iteration.

▪ ASSESSMENT AND DEPLOYMENT

The assessment workflow requires all the tools just discussed as well as additional

capabilities to support test automation and test management. To increase change

freedom, testing and document production must be mostly automated. Defect

tracking is another important tool that supports assessment: It provides the

change management instrumentation necessary to automate metrics and control

release baselines. It is also needed to support the deployment workflow

throughout the life cycle

THE PROJECT ENVIRONMENT

▪ The project environment artifacts evolve through three discrete states: the

prototyping environment, the development environment, and the

maintenance environment.

▪ The proto typing environment includes an architecture tested for prototyping

project architectures to evaluate trade-offs during the inception and

elaboration phases of the life cycle. This informal configuration of tools

should be capable of supporting the following activities:

▪ Performance trade-offs and technical risk analyses

▪ Make /buy trade-offs and feasibility studies for commercial

products

▪ Fault tolerance/dynamic reconfiguration trade-offs

▪ Analysis of the risks associated with transitioning to full-scale

implementation

▪ Development of test scenarios, tools, and instrumentation

suitable for analyzing the requirements.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 112 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

▪ The development environment should include a full suite of development

tools needed to support the various process workflows and to support

round-trip engineering to the maximum extent possible.

The maintenance environment should typically coincide with a mature version of

the development environment. In some cases, the maintenance environment may

be a subset of the development environment delivered as one of the project's end

products

▪ Four important environment disciplines that is critical to the management

context and the success of a modern iterative development process:

▪ Tools must be integrated to maintain consistency and traceability.

Roundtrip Engineering is the term used to describe this key

requirement for environments that support iterative development.

▪ Change management must be automated and enforced to manage

multiple, iterations and to enable change freedom. Change is the

fundamental primitive of iterative development.

▪ Organizational infrastructures A common infrastructure promotes

interproject consistency, reuse of training, reuse of lessons learned,

and other strategic improvements to the organization's metaprocess.

Extending automation support for stakeholder environments enables further

support for paperless exchange of information and more effective review of

engineering artifacts

ROUND-TRIP ENGINEERING

▪ Round-trip engineering is the environment support necessary to maintain

consistency among the engineering artifacts.

▪ Figure 12-2 depicts some important transitions between information

repositories. The automated translation of design models to source code

(both forward and reverse engineering) is fairly well established. The

automated translation of design models to process (distribution) models is

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 113 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

also becoming straightforward through technologies such as ActiveX and

the Common Object Request Broker Architecture (CORBA).

The primary reason for round-trip engineering is to allow freedom in changing

software engineering data sources

CHANGE MANAGEMENT

Change management is as critical to iterative processes as planning. Tracking

changes in the technical artifacts is crucial to understanding the true technical

progress trends and quality trends toward delivering an acceptable end product or

interim release. In a modern process-in which requirements, design, and

implementation set artifacts are captured in rigorous notations early in the life

cycle and are evolved through multiple generations-change management has

become fundamental to all phases and almost all activities

SOFTWARE CHANGE ORDERS

▪ The atomic unit of software work that is authorized to create, modify, or

obsolesce components within a configuration baseline is called a software

change order (SCO). Software change orders are a key mechanism for

partitioning, allocating, and scheduling software work against an

established software baseline and for assessing progress and quality. The

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 114 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

example SCO shown in Figure 12-3 is a good starting point for describing a

set of change primitives. It shows the level of detail required to achieve the

metrics and change management rigor necessary for a modern software

process.

▪ The basic fields of the SCO are title, description, metrics, resolution,

assessment and disposition.

▪ Title. The title is suggested by the originator and is finalized upon

acceptance by the configuration control board (CCB).

▪ Description: The problem description includes the name of the originator,

date of origination, CCB-assigned SCO identifier, and relevant version

identifiers of related support software.

▪ Metrics: The metrics collected for each sea are important for planning, for

scheduling, and for assessing quality improvement. Change categories are

type 0 (critical bug), type 1 (bug), type 2 (enhancement), type 3 (new

feature), and type 4 (other)

▪ Resolution: This field includes the name of the person responsible for

implementing the change, the components changed, the actual metrics, and

a description of the change

▪ Assessment: This field describes the assessment technique as inspection,

analysis, demonstration, or test. Where applicable, it should also reference

all existing test cases and new test cases executed, and it should identify all

different test configurations, such as platforms, topologies, and compilers.

▪ Disposition: The SCO is assigned one of the following states by the CCB:

▪ Proposed: written, pending CCB review

▪ Accepted: CCB-approved for resolution

▪ Rejected: closed, with rationale, such as not a problem, duplicate, obsolete

change, resolved by another SCO

▪ Archived: accepted but postponed until a later release

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 115 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

▪ In progress: assigned and actively being resolved by the development

organization

▪ In assessment: resolved by the development organization; being assessed by

a test organization

▪ Closed: completely resolved, with the concurrence of all CCB members.

CONFIGURATION BASELINE

A configuration baseline is a named collection of software components and

supporting documentation that is subject to change management and is

upgraded, maintained, tested, statused and obsolesced as a unit.

There are general1y two classes of baselines: external product releases and

internal testing releases.

A configuration baseline is a named collection of components that is treated

as a unit. It is controlled formally because it is a packaged exchange

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 116 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

between groups. A project may release a configuration baseline to the user

community for beta testing.

Generally, three levels of baseline releases arc required for most systems:

major, minor, and interim. Each level corresponds to a numbered identifier

such as N.M.X, where N is the major release number, M is the minor release

number, and X is the interim release identifier. A major release represents a

new generation of the product or project, while a minor release represents

the same basic product but with enhanced features, performance, or

quality. Major and minor releases are intended to be external product

releases that are persistent and supported for a period of time. An interim

release corresponds to a developmental configuration that is intended to be

transient. The shorter its life cycle, the better. Figure 12-4 shows examples

of some release name histories for two different situations

▪ Once software is placed in a controlled baseline, all changes are tracked. A

distinction must be made for the cause of a change. Change categories are

as follows:

▪ Type 0: Critical failures, which are defects that are nearly always fixed

before any external release.

▪ Type 1: A bug or defect that either does not impair the usefulness of

the system or can be worked around.

▪ Type 2: A change that is an enhancement rather than a response to a

defect.

▪ Type 3: A change that is necessitated by an update to the

requirements.

▪ Type 4: changes that are not accommodated by the other categories.

▪ Table 12-1 provides examples of these changes in the context of two

different project domains: a large-scale, reliable air traffic control system

and a packaged software development tool

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 117 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Chang

e

Type

Air Traffic control

Project

Packaged

visual Modeling

Tool

Type 0 Control deadlock and loss of

flight data

Loss of user data

Type 1 Display response time that

exceeds the requirement by 0.5

second

Browser expands but

does not collapse

displayed entries

Type 2 Add internal message field for

response time instrumentation

Use of color to

differentiate updates

from previous version

of visual model

Type 3 Increase air traffic management

capacity from 1,200 to 2,400

simultaneous flights

Port to new platform

such as WinNT

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 118 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Type 4 Upgrade from Oracle 7 to

Oracle 8 to improve query

performance

Exception raised when

interfacing to MS

Excel 5.0 due to

windows resource

management bug.

CONFIGURATION CONTROL BOARD

▪ A CCB is a team of people that functions as the decision authority on the

content of configuration baselines. A CCB usually includes the software

manager, software architecture manager, software development manager,

software assessment manager and other stakeholders (customer, software

project manager, systems engineer, user) who are integral to the

maintenance of a controlled software delivery system. The [bracketed] words

constitute the state of an SCO transitioning through the process.

[Proposed]: A proposed change is drafted and submitted to the CCB. The

proposed change must include a technical description of the problem and

an estimate of the resolution effort

▪ [Accepted, archived or rejected]: The CCB assigns a unique identifier

and accepts, archives, or rejects each proposed change. Acceptance

includes the change for resolution in the next release; archiving

accepts the change but postpones it for resolution in a future release;

and rejection judges the change to be without merit, redundant with

other proposed changes, or out of scope.

▪ [In progress]: the responsible person analyzes, implements and tests a

solution to satisfy the SCQ. This task includes updating

documentation, release notes and SCO metrics actual and submitting

new SCOs.

▪ [In assessment]: The independent test assesses whether the SCO is

completely resolved. When the independent test team deems the

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 119 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

change to be satisfactorily resolved, the SCO is submitted to the CCB

for final disposition and closure.

▪ [Closed]: when the development organization, independent test

organization and CCB concur that the SCO is resolved, it is

transitioned to a closed status.

INFRASTRUCTURES

▪ From a process automation perspective, the organization’s

infrastructure provides the organization capital assets,

including two key artifacts: a policy that captures the standards

for project software development processes, and an environment

that captures an inventory of tools.

▪ ORGANIZATION POLICY

▪ The organization policy is usually packaged as a handbook that

defines the life cycle and the process primitives (major

milestones, intermediate artifacts, engineering repositories,

metrics, roles and responsibilities). The handbook provides a

general framework for answering the following questions:

▪ What gets done? (activities and artifacts)

▪ When does it get done? (mapping to the life-cycle phases

and milestones)

▪ Who does it? (team roles and responsibilities)

▪ How do we know that it is adequate? (Checkpoints,

metrics and standards of performance

▪ The need for balance is an important consideration in defining

organizational policy. Effective organizational policies have several recurring

themes:

▪ They are concise and avoid policy statements that fill 6-inch-

thick documents.

▪ They confine the policies to the real shalls, then enforce them.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 120 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

▪ They avoid using the word should in policy statements. Rather

than a menu of options (shoulds), policies need a concise set of

mandatory standards (shalls).

▪ Waivers are the exception, not the rule.

▪ Appropriate policy is written at the appropriate level.

▪ The organization policy is the defining document for the organization’s

software policies. In any process assessment, this is the tangible artifact

that says what you do. From this document, reviewers should be able to

question and review projects and personnel and determine whether the

organization does what it says. Figure 12-5 shows a general outline for an

organizational policy.

▪ Process-Primitive definitions

▪ Life-cycle phases (inception, elaboration, construction,

transition)

▪ Checkpoints (major milestones, minor milestones, status

assessments)

▪ Artifacts (requirements, design, implementation, deployment,

management sets)

▪ Roles and responsibilities (PRA, SEPA, SEEA, project teams).

▪ Organization software policies

▪ Work breakdown structure

▪ Software development plan

▪ Baseline change management

▪ Software metrics

▪ Development environment

▪ Evaluation criteria and acceptance criteria

▪ Risk management

▪ Testing and assessment.

▪ Walver policy

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 121 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

▪ Appendixes

▪ Current process assessment

▪ Software process improvement plan.

▪ Some of the typical components of an organization’s automation

building blocks are as follows:

▪ Standardized tool selections (through investment by the

organization in a site license or negotiation of a favorable

discount with a tool vendor so that project teams are motivated

economically to use that tool), which promote common

workflows and a higher ROI on training.

▪ Standard notations for artifacts, such as UML for all design

models, or Ada 95 for all custom-developed, reliability-critical

implementation artifacts.

▪ Tool adjuncts such as existing artifact templates (architecture

description, evaluation criteria, release descriptions, status

assessment) or customizations.

▪ Activity templates (iteration planning, major milestone

activities, configuration control boards).

▪ Other indirectly useful components of an organization’s infrastructure

▪ A reference library of precedent experience for planning, assessing

and improving process performance parameters; answers for how

well? How much? Why?

▪ Existing case studies, including objective benchmarks of performance

for successful projects that followed the organization process.

▪ A library of project artifact examples such as software development

plans, architecture descriptions and status assessment histories.

▪ Mock audits and compliance traceability for external process

assessment frameworks.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 122 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

▪ Such as the software Engineering Institute’s Capability Maturity Model (SEI

CMM)

STAKEHOLDER ENVIRONMENTS

▪ The transition to a modern iterative development process with supporting

automation should not be restricted to the development team. many large

scale contractual projects include people in external organization that

represent other stakeholders participating in the development process.

▪ An on-line environment accessible by the external stakeholders allows them

to participate in the process as follows:

▪ Accept and use executable increments for hands-on evaluation.

▪ Use the same on-line tools, data and reports that the software

development organization uses to manage and monitor the project.

Avoid excessive travel, paper interchange delays, format translations, paper and

shipping costs and other overhead costs

▪ FIGURE 12-6: Illustrates some of the new opportunities for value-added

activities by external stakeholders in large contractual efforts. There are

several important reasons for extending development environment resources

into certain stakeholder domains.

▪ Technical artifacts are not just paper. Electronic artifacts in rigorous

notations such as visual models and source code are viewed far more

efficiently by using tools with smart browsers.

▪ Independent assessments of the evolving artifacts are encouraged by

electronic read-only access to on-line data such as configuration

baseline libraries and the change management database. Reviews and

inspections, breakage/rework assessments, metrics analyses and

even beta testing can be performed independently of the development

team.

Even paper documents should be delivered electronically to reduce production

costs and turn around time.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 123 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

PROJECT CONTROL & PROCESS INSTRUMENTATION

INTRODUCTION: Software metrics are used to implement the activities and

products of the software development process. Hence, the quality of the software

products and the achievements in the development process can be determined

using the software metrics.

products of the software development process. Hence, the quality of the software

products and the achievements in the development process can be determined

using the software metrics.

Need for Software Metrics:

Software metrics are needed for calculating the cost and schedule of a software

product with great accuracy.

Software metrics are required for making an accurate estimation of the progress.

The metrics are also required for understanding the quality of the software

product.

INDICATORS:

An indicator is a metric or a group of metrics that provides an understanding of

the software process or software product or a software project. A software engineer

assembles measures and produce metrics from which the indicators can be

derived.

Two types of indicators are:

Management indicators.

Quality indicators.

Management Indicators

The management indicators i.e., technical progress, financial status and staffing

progress are used to determine whether a project is on budget and on schedule.

The management indicators that indicate financial status are based on earned

value system.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 124 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Quality Indicators

The quality indicators are based on the measurement of the changes occurred in

software.

SEVEN CORE METRICS OF SOFTWARE PROJECT

Software metrics instrument the activities and products of the software

development/integration process. Metrics values provide an important perspective

for managing the process. The most useful metrics are extracted directly from the

evolving artifacts.

There are seven core metrics that are used in managing a modern process.

Seven core metrics related to project control:

Management Indicators

1. Work and Progress

2. Budgeted cost and expenditures

3. Staffing and team dynamics

Quality Indicators

4. Change traffic and stability

5. Breakage and modularity

6. Rework and adaptability

7. Mean time between failures (MTBF) and maturity

MANAGEMENTINDICATORS:

1. Work and progress

This metric measures the work performed over time. Work is the effort to

be accomplished to complete a certain set of tasks. The various activities

of an iterative development project can be measured by defining a

planned estimate of the work in an objective measure, then tracking

progress (work completed overtime) against that plan.

The default perspectives of this metric are: Software architecture team: -

Use cases demonstrated.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 125 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Software development team: - SLOC under baseline change

management, SCOs closed Software assessment team: - SCOs opened,

test hours executed and evaluation criteria meet. Software management

team: - milestones completed.

Budgeted cost and expenditures

This metric measure cost incurred over time. Budgeted cost is the

planned expenditure profile over the life cycle of the project. To maintain

management control, measuring cost expenditures over the project life

cycle is always necessary. Tracking financial progress takes on an

organization - specific format. Financial performance can be measured

by the use of an earned value system, which provides highly detailed

cost and schedule insight. The basic parameters of an earned value

system, expressed in units of dollars, are as follows:

Expenditure Plan - It is the planned spending profile for a project over

its planned schedule. Actual progress - It is the technical

accomplishment relative to the planned progress underlying thespending

profile.

Actual cost: It is the actual spending profile for a project over its actual

schedule.

Earned value: It is the value that represents the planned cost of the

actual progress.

Cost variance: It is the difference between the actual cost and the earned

value.

staff per month and percentage of budget expended.

Staffing and team dynamics

This metric measures the personnel changes over time, which involves

staffing additions and reductions over time. An iterative development

should start with a small team until the risks in the requirements and

architecture have been suitably resolved. Depending on the overlap of

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 126 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

iterations and other project specific circumstances, staffing can vary.

Increase in staff can slow overall project progress as new people

consume the productive team of existing people in coming up to speed.

Low attrition of good people is a sign of success.

The default perspectives ofthis metric are people per month added and

people per month leaving. These three management indicators are

responsible for technical progress, financial status and staffing progress.

Budgeted cost and expenditures

This metric measure cost incurred over time. Budgeted cost is the

planned expenditure profile over the life cycle of the project. To maintain

management control, measuring cost expenditures over the project life

cycle is always necessary. Tracking financial progress takes on an

organization - specific format. Financial performance can be measured

by the use of an earned value system, which provides highly detailed

cost and schedule insight. The basic parameters of an earned value

system, expressed in units of dollars, are as follows:

Expenditure Plan - It is the planned spending profile for a project over its

planned schedule. Actual progress - It is the technical accomplishment

relative to the planned progress underlying the spending profile.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 127 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Actual cost: It is the actual spending profile for a project over its actual

schedule.

Earned value: It is the value that represents the planned cost of the

actual progress.

Staffing and team dynamics

This metric measures the personnel changes over time, which involves

staffing additions and reductions over time. An iterative development

should start with a small team until the risks in the requirements and

architecture have been suitably resolved. Depending on the overlap of

iterations and other project specific circumstances, staffing can vary.

Increase in staff can slow overall project progress as new people

consume the productive team of existing people in coming up to speed.

Low attrition of good people is a sign of success. The default perspectives

of this metric are people per month added and people per month leaving.

These three management indicators are responsible for technical

progress, financial status and staffing progress.

Fig: staffing and Team dynamics

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 128 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

This metric measures the change traffic over time. The number of

software change orders opened and closed over the life cycle is called

change traffic. Stability specifies the relationship between opened versus

closed software change orders. This metric can be collected by change

type, by release, across all releases, by term, by components, by

subsystems, etc.

The below figure shows stability expectation over a healthy project’s life

cycle

Fig: Change traffic and stability

Breakage and modularity

This metric measures the average breakage per change over time.

Breakage is defined as the average extent of change, which is the

amount of software baseline that needs rework and measured in source

lines of code, function points, components, subsystems, files or other

units. Modularity is the average breakage trend over time. This metric

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 129 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

can be collected by revoke SLOC per change, by change type, by release,

by components and by subsystems.

Rework and adaptability:

This metric measures the average rework per change over time. Rework

is defined as the average cost of change which is the effort to analyze,

resolve and retest all changes to software baselines. Adaptability is

defined as the rework trend over time. This metric provides insight into

rework measurement. All changes are not created equal. Some changes

can be made in a staff- hour, while others take staff-weeks. This metric

can be collected by average hours per change, by change type, by

release, by components and by subsystems.

MTBF and Maturity

This metric measure defect rather over time. MTBF (Mean Time Between

Failures) is theaverage usage time between software faults. It is

computed by dividing the test hours by the number of type 0 and type 1

SCOs. Maturity is defined as the MTBF trend over time. Software errors

can be categorized into two types deterministic and nondeterministic.

Deterministic errors are also known as Bohr-bugs and nondeterministic

errors are also called as Heisen-bugs. Bohr-bugs are a class of errors

caused when the software is stimulated in a certain way such as coding

errors. Heisen-bugs are software faults that are coincidental with a

certain probabilistic occurrence of a given situation, such as design

errors. This metric can be collected by failure counts, test hours until

failure, by release, by components and by subsystems. These four

quality indicators are based primarily on the measurement of software

change across evolving baselines of engineering data.

LIFE -CYCLE EXPECTATIONS:

There is no mathematical or formal derivation for using seven core metrics

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 130 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

properly. However, there were specific reasons for selecting them:

The quality indicators are derived from the evolving product rather than the

artifacts. They provide inside into the waste generated by the process. Scrap

and rework metrics are a standard measurement perspective of most

manufacturing processes. They recognize the inherently dynamic nature of

an iterative development process. Rather than focus on the value, they

explicitly concentrate on the trends or changes with respect to time. The

combination of insight from the current and the current trend provides

tangible indicators for management action.

Table: The default pattern of life cycle evolution

Metric

Incept

ion

Elabora

tion

Constru

ction

Transi

tion

Progress

5%

25%

90%

100%

Architectu

re

30%

90%

100%

100%

Applicatio

ns

<5%

20%

85%

100%

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 131 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Expenditu

res

Low Moderat

e

High High

Effort

5%

25%

90%

100%

Schedule

10%

40%

90%

100%

Staffing

Small

team

Ramp

up

Steady

Varyin

g

Stability

Volatil

e

Moderate

Moderat

e

Stable

Architecture

Volatile

Moderate

Stable

Stable

Applications

Volatile

Volatile

Moderate

Stable

Modularity

50%-

100%

25%-50%

<25%

5%-10%

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 132 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Architecture

>50%

>50%

<15%

<5%

Applications

>80%

>80%

<25%

<10%

METRICS AUTOMATION:

Many opportunities are available to automate the project control activities of

a software project. A Software Project Control Panel (SPCP) is essential for

managing against a plan. This panel integrates data from multiple sources to

show the current status of some aspect of the project. The panel can support

standard features and provide extensive capability for detailed situation

analysis. SPCP is one example of metrics automation approach that collects,

organizes and reports values and trends extracted directly from the evolving

engineering artifacts.

SPCP:

To implement a complete SPCP, the following are necessary.

➢ Metrics primitives - trends, comparisons and progressions

➢ A graphical user interface.

➢ Metrics collection agents

➢ Metrics data management server

➢ Metrics definitions - actual metrics presentations for

requirementsprogress, implementation progress, assessment progress,

design progress and other progress dimensions.

➢ Actors - monitor and administrator.

Monitor defines panel layouts, graphical objects and linkages to project

data. Specific monitors called roles include software project managers,

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 133 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

software development team leads, software architects and customers.

Administrator installs the system, defines new mechanisms, graphical

objects and linkages. The whole display is called a panel. Within a panel

are graphical objects, which are types of layouts such as dials and bar

charts for information. Each graphical object displays a metric. A panel

contains a number of graphical objects positioned in a particular

geometric layout. A metric shown in a graphical object is labelled with

the metric type, summary level and insurance name (line of code,

subsystem, server1). Metrics can be displayed in two modes – value,

referring to a given point in time and graph referring to multiple and

consecutive points in time. Metrics can be displayed with or without

control values. A control value is an existing expectation either absolute

or relative that is used for comparison with a dynamicallychanging

metric. Thresholds are examples of control values.

The basic fundamental metrics classes are trend, comparison and

progress.

The format and content of any project panel are configurable to the

software project manager's preference for tracking metrics of top-level

interest. The basic operation of an SPCP can be described by

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 134 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

the following top - level use case.

i. Start the SPCP

ii. Select a panel preference

iii. Select a value or graph metric

iv. Select to superimpose controls

v. Drill down to trend

vi. Drill down to point in time.

vii. Drill down to lower levels of information

viii. Drill down to lower level of indicators.

,

(3) The real monetary value of documentation is to support later

modifications by a separate test team, a separate maintenance team,

and operations personnel who are not software literate.

Do it twice. If a computer program is being developed for the first time,

arrange matters so that the version finally delivered to the customer for

operational deployment is actually the second version insofar as critical

design/operations are concerned. Note that this is simply the entire

process done in miniature, to a time scale that is relatively small with

respect to the overall effort. In the first version, the team must have a

special broad competence where they can quickly sense trouble spots in

the design, model them, model alternatives, forget the straightforward

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 135 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

aspects of the design that aren't worth studying at this early point, and,

finally, arrive at an error-free program.

Plan, control, and monitor testing. Without question, the biggest user of

project resources-manpower, computer time, and/or management

judgment-is the test phase.

This is the phase of greatest risk in terms of cost and schedule.

It occurs at the latest point in the schedule, when backup alternatives are

least available, if at all. The previous three recommendations were all

aimed at uncovering and solving problems before entering the test

phase. However, even after doing these things, there is still a test phase

and there are still important things to be done, including:

(1) employ a team of test specialists who were not responsible for the

original design;

(2) employ visual inspections to spot the obvious errors like dropped

minus signs, missing factors of two, jumps to wrong addresses (do not

use the computer to detect this kind of thing, it is too expensive);

(3) test every logic path;

(4) employ the final checkout on the target computer.

1. Involve the customer. It is important to involve the customer in a

formal way so that hehas committed himself at earlier points before final

delivery. There are three points following requirements definition where

the insight, judgment, and commitment of the customer can bolster the

development effort. These include a "preliminary software review"

following the preliminary program design step, a sequence of "critical

software design reviews" during program design, and a "final software

acceptance review".

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 136 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

UNIT 5:

CCPDS-R Case Study and Future Software Project Management Practices Modern

Project Profiles, Next-Generation software Economics, Modern Process Transitions

COMMAND CENTER PROCESSING AND DISPLAY SYSTEM-REPLACEMENT

(CCPDS-R)

• The Command Center Processing and Display Sys-tem-Replacement

(CCPDS-R) project was performed for the U.S. Air Force by TRW Space and

Defense in Redondo Beach, California. The entire project included systems

engineering, hardware procurement, and software development, with each of

these three major activities consuming about one-third of the total cost. The

schedule spanned 1987 through 1994.

a The metrics histories were all derived directly from the artifacts of the project's

process. These data were used to manage the project and were embraced by

practitioners, managers, and stakeholders.

There are very few well-documented projects with objective descriptions of what

worked, what didn't, and why. This was one of my primary motivations for

providing the level of detail contained in this appendix. It is heavy in project-

specific details, approaches, and results, for three reasons:

1. Generating the case study wasn't much work. CCPDS-R is unique in its

detailed and automated metrics approach. All the data were derived directly from

the historical artifacts of the project's process.

2. This sort of objective case study is a true indicator of a mature organization and

a mature project process. The absolute values of this historical perspective are

only marginally useful. However, the trends, lessons learned, and relative

priorities are distinguishing characteristics of successful software development.

http://www.globalsecurity.org/space/library/report/1999/nssrm/initiatives/ccposr.htm

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 137 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

3. Throughout previous chapters, many management and technical approaches

are discussed generically. This appendix provides in a real-world example at least

one relevant benchmark of performance

• The CCPDS-R project produced a large-scale, highly reliable command and

control system that provides missile warning information used by the

National Command Authority. The procurement agency was Air Force

Systems Command Headquarters, Electronic Systems Division, at Hanscom

Air Force Base, Massachusetts. The primary user was US Space Command,

and the full-scale development contract was awarded to TRWs Systems

Integration Group in 1987. The CCPDS-R contract called for the

development of three subsystems:

1. The Common Subsystem was the primary missile warning system within the

Cheyenne Mountain Upgrade program. It required about 355,000 source lines of

code, had a 48-month software development schedule, and laid the foundations

for the subsystems that followed (reusable components, tools, environment,

process, procedures). The Common Subsystem included a primary installation in

Cheyenne Mountain, with a backup system deployed at Offutt Air Force Base,

Nebraska.

2. The Processing and Display Subsystem (PDS) was a scaled-down missile

warning display system for all nuclear-capable commanders-in-chief. The PDS

software (about 250,000 SLOC) was fielded on remote, read-only workstations that

were distributed worldwide.

3. The STRATCOM Subsystem (about 450,000 SLOC) provided both missile

warning and force management capability for the backup missile warning center

at the command center of the Strategic Command

https://www.gristprojectmanagement.us/software-3/ccpdsr-case-study.html
https://www.gristprojectmanagement.us/software-3/ccpdsr-case-study.html

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 138 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

CCPDS-R LIFE-CYCLE OVERVIEW

• The CD phase was very similar in intent to the inception phase. The primary

products were a system specification (a vision document), an FSD phase

proposal (a business case, including the technical approach and a fixed-

price-incentive and award-fee cost proposal), and a software development

plan. The CD phase also included a system design review, technical

interchange meetings with the government stakeholders (customer and

user), and several contract-deliverable documents. These events and

products enabled the FSD source selection to be based on demonstrated

performance of the contractor-proposed team as well as the FSD proposal.

• From a software perspective, there was one additional source selection

criterion included in the FSD proposal activities: a software engineering

exercise. This was a unique but very effective approach for assessing the

abilities of the two competing contractors to perform software development.

The Air Force was extremely concerned with the overall software risk of this

project: Recent projects had demonstrated dismal software development

performance. The Air Force acquisition authorities had also been frustrated

with previous situations in which a contractor's crack proposal team was

not the team committed to perform after contract award, and contractor

proposals exaggerated their approaches or capabilities beyond what they

could deliver.

CCPDS-R was also a very large software development activity and was one of

the first projects to use the Ada programming language. There was serious

concern that the Ada development environments, contractor processes, and

contractor training programs might not be mature enough to use on a full-

scale development effort. The purpose of the software engineering exercise

was to demonstrate that the contractor's proposed software process, Ada

https://www.gristprojectmanagement.us/software-3/ccpdsr-case-study.html

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 139 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

environment, and software team were in place, were mature, and were

demonstrable

• The software engineering exercise occurred immediately after the FSD

proposals were submitted. The customer provided both bidders with a

simple two-page specification of a "missile warning simulator." This

simulator had some of the same fundamental requirements as the CCPDS-R

full-scale system, including a distributed architecture, a flexible user

interface, and the basic processing scenarios of a simple CCPDS-R missile

warning thread. The exercise requirements included the following:

• Use the proposed software team.

• Use the proposed software development techniques and tools.

• Use the FSD-proposed software development plan.

• Conduct a mock design review with the customer 23 days after receipt of

the specification.

• Four primary use cases were elaborated and demonstrated.

• A software architecture skeleton was designed, prototyped, and

documented, including two executable, distributed processes; five

concurrent tasks (separate threads of control); eight components; and 72

component-to-component interfaces.

• A total of 4,163 source lines of prototype components were developed and

executed. Several thousand lines of reusable components were also

integrated into the demonstration.

• Three milestones were conducted and more than 30 action items resolved.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 140 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

• Production of 11 documents (corresponding to the proposed artifacts)

demonstrated the automation inherent in the documentation tools.

• The Digital Equipment Corporation VAX/VMS tools, Rational R1000

environment, LaTeX documentation templates, and several custom-

developed tools were used.

• Several needed improvements to the process and the tools were identified.

The concept of evolving the plan, requirements, process, design, and

environment at each major milestone was considered potentially risky but

was implemented with rigorous change management.

• In preparing for the CCPDS-R project, TRW placed a strong emphasis on

evolving the right team. The CD phase team represented the essence of the

architecture team which is responsible for an efficient engineering stage.

This team had the following primary responsibilities:

• Analyze and specify the project requirements

• Define and develop the top-level architecture

• Plan the FSD phase software development activities

• Configure the process and development environment

• Establish trust and win-win relationships among the stakeholders

1.Network Architecture Services (NAS). This foundation middleware provided

reusable components for network management, interprocess

communications, initialization, reconfiguration, anomaly management, and

instrumentation of software health, performance, and state. This CSCI was

designed to be reused across all three CCPDS-R subsystems.

https://www.gristprojectmanagement.us/software-3/ccpdsr-case-study.html
https://www.gristprojectmanagement.us/software-3/ccpdsr-case-study.html

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 141 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

2. System Services (SSV). This CSCI comprised the software architecture

skeleton, real-time data distribution, global data types, and the computer

system operator interface.

3. Display Coordination (DCO). This CSCI comprised user interface control,

display formats, and display population.

4. Test and Simulation (TAS). This CSCI comprised test scenario generation,

test message injection, data recording, and scenario playback.

5. Common Mission Processing (CMP). This CSCI comprised the missile

warning algorithms for radar, nuclear detonation, and satellite early

warning messages.

6. Common Communications (CCO). This CSCI comprised external

interfaces with other systems and message input, output, and protocol

management

MODERN PROJECT PROFILES

 Continuous Integration

In the iterative development process, firstly, the overall architecture of the project

is created and then all the integration steps are evaluated to identify and eliminate

the design errors. This approach eliminates problems such as down stream

integration, late patches and shoe-horned software fixes by implementing

sequential or continuous integration rather than implementing large-scale

integration during the project completion

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 142 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

▪ Moreover, it produces feasible and a manageable design by delaying the

‘design breakage’ to the engineering phase, where they can be efficiently

resolved. This can be one by making use of project demonstrations which

forces integration into the design phase.

▪ With the help of this continuous integration incorporated in the iterative

development process, the quality tradeoffs are better understood and the

system features such as system performance, fault tolerance and

maintainability are clearly visible even before the completion of the project.

In the modern project profile, the distribution of cost among various workflows or

project is completely different from that of traditional project profile as shown

below

Software Engineering

Workflows

Conventional Process

Expenditures

Modern process

Expenditures

Management 5% 10%

Environment 5% 10%

Requirements 5% 10%

Design 10% 15%

Implementation 30% 25%

Assessment 40% 25%

Deployment 5% 5%

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 143 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

Total 100% 100%

As shown in the table, the modern projects spend only 25% of their budget for

integration and Assessment activities whereas; traditional projects spend almost

40% of their total budget for these activities. This is because, the traditional

project involve inefficient large-scale integration and late identification of design

issues

EARLY RISK RESOLUTION

▪ In the project development lifecycle, the engineering phase concentrates on

identification and elimination of the risks associated with the resource

commitments just before the production stage. The traditional projects

involve, the solving of the simpler steps first and then goes to the

complicated steps, as a result the progress will be visibly good, whereas, the

modern projects focuses on 20% of the significant requirements, use cases,

components and risk and hence they occasionally have simpler steps.

▪ To obtain a useful perspective of risk management, the project life cycle has

to be applied on the principles of software management. The following are

the 80:20 principles.

▪ The 80% of Engineering is utilized by 20% of the requirementsBefore

selecting any of the resources, try to completely understand all the

requirement because irrelevant resource selection (i.e., resources selected

based on prediction) may yield severe problems.

▪ 80% of the software cost is utilized by 20% of the components

▪ Firstly, the cost-critical components must be elaborated which forces the

project to focus more on controlling the cost.

▪ 80% of the bugs occur because of 20% of the components

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 144 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

▪ Firstly, the reliability-critical components must be elaborated which give

sufficient time for assessment activities like integration and testing, in order

to achieve the desired level of maturity.

▪ 80% of the software scrap and rework is due to 20% if the changes.

▪ The change-critical components r elaborated first so that the changes that

have more impact occur when the project is matured.

▪ 80% of the resource consumption is due to 20% of the components.

▪ Performance critical components are elaborated first so that, the trade-offs

with reliability; changeability and cost-consumption can be solved as early

as possible.

▪ 80% of the project progress is carried-out by 20% of the people

▪ It is important that planning and designing team should consist of best

processionals because the entire success of the project depends upon a

good plan and architecture.

▪ The following figure shows the risk management profile of a modern project.

EVOLUTIONARY REQUIREMENTS

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 145 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

▪ The traditional methods divide the system requirements into subsystem

requirements which in turn gets divided into component requirements.

These component requirements are further divided into unit requirements.

The reason for this systematic division is to simplify the traceability of the

requirements.

▪ In the project life cycle the requirements and design are given the first and

the second preference respectively. The third preference is given to the

traceability between the requirement and the design components these

preferences are given in order to make the design structure evolve into an

organization so it parallels the structure of the requirements organization.

▪ Modern architecture finds it difficult to trace the requirements because of

the following reasons.

▪ Usage of Commercial components

▪ Usage of legacy components

▪ Usage of distributed resources

▪ Usage of object oriented methods.

Moreover, the complex relationships such as one-one, many-one, one-many,

conditional, time-based and state based exists the requirements statement and

the design elements

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 146 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

As shown in the above figure, the top category system requirements are kept as

the vision whereas, those with the lower category are evaluated. The motive

behind theses artifacts is to gain fidelity with respect to the progress in the project

lifecycle. This serves as a significant different from the traditional approach

because, in traditional approach the fidelity is predicted early in the project life

cycle

TEAMWORK AMONG STAKEHOLDERS

▪ Most of the characteristics of the classic development process worsen the

stakeholder relationship s which in turn makes the balancing of

requirement product attributes and plans difficult. An iterative process

which ahs a good relationship between the stakeholders mainly focuses on

objective understanding by each and every individual stakeholder. This

process needs highly skilled customers, users and monitors which have

experience in both the application as well as software. Moreover, this

process requires an organization whose focus is on producing a quality

product and achieves customer satisfaction.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 147 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

The table below shows the tangible results of major milestones in a modern

process

Obvious result Actual result

Demonstration at early stage reveals

the design issued and uncertainty in

a tangible form.

Demonstration firstly reveals the significant

assets and risks associated with complicated

software systems such that they can be

worked out at the time of setting the life-

cycle goals.

Non-Complaint design Various perspective like requirements use

cases etc are observed in order to completely

understand the compliance.

Issues of influential requirements

are reveals but without traceability

Both the requirement changes and the

design trade-offs are considerably balanced.

The design is considered to be

“guilty until its innocency is proved.

The engineering issues can be integrated

into the succeeding iteration’s plans.

▪ From the above table, it can be observed that the progress of the project is

not possible unless all the demonstration objectives are satisfied. This

statement does not present the renegotiation of objectives, even when the

demonstration results allow the further processing of trade offs present in

the requirement, design, plans and technology.

▪ Modern iterative process that rely on the results of the demonstration need

al its stakeholders to be well-educated and with a g good analytical ability

so as to distinguish between the obviously negative results and the real

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 148 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

progress visible. For example, an early determined design error can be

treated as a positive progress instead to a major issue.

Principles of Software Management

▪ Software management basically relies on the following principles, they are,

1. Process must be based on architecture-first approach

 If the architecture is focused at the initial stage, then there will be a good

foundation for almost 20% of the significant stuff that are responsible for the

overall success of the project. This stuff include the requirements, components

use cases, risks and errors. In other words, if the components that are being

involved in the architecture are well known then the expenditure causes by scrap

and rework will be comparatively less.

2. Develop an iterative life-cycle process that identifies the risks at an early stage

 An iterative process supports a dynamic planning framework that facilitates

the risk management predictable performance moreover, if the risks are resolved

earlier, the predictability will be more and the scrap and rework expenses will be

reduced.

3.After the design methods in-order to highlight components-based development.

 The quantity of the human generated source code and the customized

development can be reduced by concentrating on individual components rather

than individual lines-of-code. The complexity of software is directly proportional to

the number of artifacts it contains that is, if the solution is smaller then the

complexity associated with its management is less.

4. Create a change management Environment

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 149 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

 Highly-controlled baselines are needed to compensate the changes caused by

various teams that concurrently work on the shared artifacts.

5. Improve change freedom with the help of automated tools that support round-

trip engineering.

 The roundtrip-engineering is an environment that enables the automation

and synchronization of engineering information into various formats. The

engineering information usually consists requirement specification, source code,

design models test cases and executable code. The automation of this information

allows the teams to focus more on engineering rather than dealing with over head

involved

Design artifacts must be captured in model based notation.

 The design artifacts that are modeled using a model based notation like

UML, are rich in graphics and texture. These modeled artifacts facilitate the

following tasks.

▪ Complexity control

▪ Objective fulfillment

▪ Performing automated analysis

7. Process must be implemented or obtaining objective quality control and

estimation of progress.

 The progress in the lifecycle as well as the quality of intermediately products

must be estimated and incorporated into the process. This can be done with the

help of well defined estimation mechanism that are directly derived from the

emerging artifacts. These mechanisms provide detailed information about trends

and correlation with requirements.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 150 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

8. Implement a Demonstration-based Approach for Estimation of intermediately

Artifacts

 This approach involves giving demonstration on different scenarios. It

facilitates earl integration and better understanding of design trade-offs. Moreover,

it eliminates architectural defects earlier in the lifecycle. The intermediately

results of this approach are definitive

9.The Points Increments and generations must be made based on the evolving levels

of detail

 Here, the ‘levels of detail’ refers to the level of understanding requirements and

architecture. The requirements, iteration content, implementations and

acceptance testing can be organized using cohesive usage scenarios.

10. Develop a configuration process that should be economically scalable

 The process framework applied must be suitable for variety of applications.

The process must make use of processing spirit, automation, architectural

patterns and components such that it is economical and yield investment benefits.

BEST PRACTICES ASSOCIATED WITH SOFTWARE MANAGEMENT

▪ According to airline software council, there are about nine best practices

associated with software management. Theses practices are implemented in

order to reduce the complexity of the larger projects and to improve software

management discipline.

▪ The following are the best practices of software management:

1. Formal Risk Management: Earlier risk management can be done by making use

of iterative life cycle process that identifies the risks at early stage.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 151 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

2. Interface Settlement: The interface settlement is one of the important aspects of

architecture first approach because; obtaining architecture involves the selection

of various internal and external interfaces that are incorporated into the

architecture.

3. Formal Inspections: There are various defect removal strategies available.

Formal inspection is one of those strategies. However this is the least important

strategy because the cost associated with human recourses is more and is defect

detection rate for the critical architecture defects is less

Management and scheduling based on metrics: This principle is related to the

model based approach and objective quality control principles. It states to use

common notations fro the artifacts so that quality and progress can be easily

measured.

5. Binary quality Gates at the inch-pebble level: The concept behind this practice is

quite confusing. Most of the organizations have misunderstood the concept and

have developed an expensive and a detailed plan during the initial phase of the

lifecycle, but later found the necessity to change most of their detailed plan due to

the small changes in requirements or architectural. This principle states that first

start planning with an understanding of requirements and the architecture.

Milestones must be established during engineering stage and inch-pebble must be

followed in the production stage.

6. Plan versus visibility of progress throughout the progress: This practice involves a

direct communication between different team members of a project so that, they

can discuss the significant issues related to the project as well as notice the

progress of the project in-comparison to their estimated progress

7.Identifying defects associated with the desired quality: This practice is similar to

the architecture-first approach and objective quality control principles of software

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 152 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

management. It involves elimination of architectural defects early in the life-cycle,

thereby maintaining the architectural quality so as to successfully complete the

project.

8. Configuration management: According to Airline software council, configuration

management serves as a crucial element for controlling the complexity of the

artifacts and for tracing the changes that occur in the artifacts. This practice is

similar to the change management principle of software management and prefers

automation of components so as to reduce the probability of errors that occur in

the large-scale projects.

9.Disclose management accountability: The entire managerial process is disclosed

to al the people dealing with the project

NEXT GENERATION SOFTWARE COST MODELS

▪ In comparison to the current generation software cost modes, the next

generation software cost models should perform the architecture

engineering and application production separately. The cost associated with

designing, building, testing and maintaining the architecture is defined in

terms of scale, quality, process, technology and the team employed.

▪ After obtaining the stable architecture, the cost of the production is an

exponential function of size, quality and complexity involved.

▪ The architecture stage cost model should reflect certain diseconomy of scale

(exponent less than 1.0) because it is based on research and development-

oriented concerns. Whereas the production stage cost model should reflect

economy of scale (exponent less than 1.0) for production of commodities.

▪ The next generation software cost models should be designed in a way

that, they can assess larger architectures with economy of scale. Thus,

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 153 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

the process exponent will be less than 1.0 at the time of production

because large systems have more automated proves components and

architectures which are easily reusable.

▪ The next generation cost model developed on the basis of architecture-

first approach is shown below.

▪ At architectural engineering Stage

▪ A Plan with less fidelity and risk resolution

▪ It is technology or schedule-based

▪ It has contracts with risk sharing

▪ Team size is small but with experienced professionals.

▪ The architecture team, consists of small number of software engineers

▪ The application team consists of small number of domain engineers.

▪ The output will be an executable architecture, production and

requirements

▪ The focus of the architectural engineering will be on design and

integration of entities as well as host development environment.

▪ It contains two phases they are inspection and elaboration

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 154 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

• At Application production stage

• A plan with high fidelity and lower risk

• It is cost-based

• It has fixed-priced contracts

• Team size is large and diverse as needed.

• Architecture team consists of a small number of software

engineers.

• The Application team may have nay number of domain

engineers.

• The output will be a function which is deliverable and useful,

tested

 baseline and warranted quality.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 155 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

• The focus of the application production will be on implementing

testing

 and maintaining target technology.

• It contains two phases they are construction and transition

Total Effort = Func(TechnologyArch, ScaleArch, Quality Arch, Process Arch) +

Func(TechnologyApp, ScaleApp, Quality App, Process App)

Total Time = Func(ProcessArch, EffortArch) + Func(ProcessApp, EffortApp,)

▪ The next generation infrastructure and environment automated various

management activities with low effort. It relieves many of the sources of

diseconomy of scale by reusing the common processes that are repetitive in

a particular project. It also reuses the common outcomes of the project. The

prior experience and matured processes utilized in these types of models

eliminate the scrap rework sources. Here, the economics of scale will be

affected.

▪ The architecture and applications of next generation cost models have

difference scales and sized which represents the solution space. The size

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 156 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

can be computed inters of SLOC or megabytes of executable code while the

scale can be computed in 0-terms of components, classes, processes or

nodes. The requirement or use cases of solution space are different from

that of a problem space. Moreover, there can be more than one solution to a

problem. Where cost serves as a key discriminator. The cost estimates must

be determined to find an optimal solution. If an optional solution is not

found then different solution s need to be selected or to change the problem

statement.

▪ A strict notation must be applied for design artifacts so, that the prediction

of a design scale can be improved. The Next-generation software cost model

should automate the process of measuring design scale directly from UML

diagrams. There should be two major improvements. There are,

▪ Separate architectural engineering stage from application production

stage. This will yield greater accuracy and more precision of lifecycle

estimate.

▪ The use of rigorous design notations. This will enable the automation

and standardization of scale measure so that they can be easily traced

which helps to determine the total cost associated with production.

▪ The next generation software process has two potential breakthroughs, they

are,

▪ Certain integrated tools would be available that automates the

information transition between the requirements, design,

implementation and deployment elements. These tools facilitate

roundtrip engineering between various artifacts of engineering.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 157 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

It will reduce the four sets of fundamental technical artifacts into three sets. This

is achieved by automating the activities related to human-generated source code

so as to eliminate the need fro a separate implementation set

An organizational manager should strive for making the transition to a

modern process’.

▪ The transition to a modern process should be made based on the following

quotations laid by Boehm.

Identifying and solving a software problem in the design phase is almost 100

times cost effective than solving the same problem after delivery.

 This quotation or metric serves as a base for most software processes. Modern

processes, component-based development techniques and architectural

frameworks mainly focuses on enhancing this relationship. The architectural

errors are solved by implementing an architecture-first approach. Modern process

plays a crucial role in identification of risks

Software Development schedules can be compressed to a Maximum of 25

percent

 If we want a reduction in the scheduled time, then we must increase the

personnel resources which inturn increases the management overhead. The

management overhead, concurrent activities scheduling, sequential activities

conservation along some resource constraints will have the flexibility limit of

about 25 percent.

 This metric must be acceptable by the engineering phase which consists of

detailed system content if we have successfully completed the engineering then

compression in the production stage will be automatically flexible. The concurrent

development must be possible irrespective of whether a business organization

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 158 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

implements the engineering phase over multiple projects or whether a project

implements the engineering phase over multiple incremental stages

The maintenance cost will be almost double the development cost

 Most o the experts in the software industry find it difficult to maintain the

software than development. The ratio between development and maintenance can

be measured by computing productivity cost. One of the interesting fact of

iterative development is that the dividing line between the development and

maintenance is vanishing. Moreover, a good iterative process and an architecture

will cause the reduction in the scrap and rework levels so this ratio (i.e.,) 2:1 can

be reduced to 1:1.

Both the software development cot and the maintenance cost are dependent

on the number of lines in the source code.

 This metric was applicable to the conventional cost models which were

lacking in-terms of commercial components, reusing techniques, automated code

generators etc. The implementation of commercial components, reusing

techniques and automated code generators will make this metric inappropriate.

However, the development cost is still dependent on the commercial components,

reuse technique and automatic code generators and their integration.

 The next-generation cost models should focus more on the number of

components and their integration efforts rather than on the number of lines of

code.

 Software productivity mainly relies on the type of people employed

 The personal skills, team work ability and the motivation of employees are the

crucial factors responsible for the success and the failure of any project. The next-

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 159 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

generation cost models failure should concentrate more on employing a highly

skilled team of professionals at engineering stage

The ratio of software to hardware cost is increasing.

 As the computers are becoming more and more popular, the need for software

an hardware applications is also increasing. The hardware components are

becoming cheaper whereas, the software applications are becoming more

complicated as a result, highly skilled professionals needed for development and

controlling the software applications, the in turn increases the cost. In 1955 the

software to hardware cost ratio was 15:85 and in 1985 this ratio was 85:15. This

ratio continuously increases with respect to the need for variety of software

applications. Certain software applications have already been developed which

provides automated configuration control and analysis of quality assurance. The

next-generation cost models must focus on automation of production and testing.

Only 15% of the overall software development is dedicated process to

programming.

▪ The automation and reusability of codes have lead to the reduction in

programming effort. Earlier in 1960s, the programming staff was producing

about 200 machine instructions per month and in 1970s and 1980s, the

machine instruction count has raised to about 1000 machine instructions.

Now as days, programmers are able to produce several thousand

instructions without even writing few hundreds of them

Software system and products cost three times the cost associated with

individual software programs per SLOC software-system products cost 9

times more than the cost of individual software program.

▪ In the software development, the cost of each instruction depends

upon the complexity of the software. Modern processes and technologies

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 160 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

must reduce this diseconomy of scale. The economy of the scale must be

achievable under the customer specific software systems with a common

architecture, common environment and common process.

 60% of Errors are caught by walkthrough

▪ The walkthrough and other forms of human inspection catch only the

surface and style issues. However, the critical issues are not caught by the

walkthroughs so, this metric doesn’t prove to the reliable.

 Only 20% of the contributors are responsible for the 80% of the

contributions.

▪ This metric is applicable to most of the engineering concepts such as

80:20 principles of software project management. The next generation

software process must facilitate the software organizations in achieving

economic scale.

MODERN PROCESS TRANSITIONS

 Indications of a successful project transition to a modern culture

▪ Several indicators are available that can be observed in order to distinguish

projects that have made a genuine cultural transition from projects that

only pretends.

▪ The following are some rough indicators available.

 The lower-level managers and the middle level managers should participate

in the project development

 Any organization which ha an employee count less than or equal to 25 does not

need to have pure managers. The responsibility of the managers in this type of

organization will be similar to that of a project manager. Pure managers are

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 161 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

needed when personal resources exceed 25. Firstly, these managers understand

the status of the project them, develop the plans and estimate the results. The

manager should participate in developing the plans. This transition affects the

software project managers

Tangible design and requirements

 The traditional processes utilize tons of paper in order to generate the

documents relevant to the desired project. Even the significant milestones of a

project are expressed via documents. Thus, the traditional process spends most of

their crucial time on document preparation instead of performing software

development activities.

 An iterative process involves the construction of systems that describe the

architecture, negotiates the significant requirements, identifies and resolves the

risks etc. These milestones will be focused by all the stakeholders because they

show progressive deliveries of important functionalities instead of documental

descriptions about the project. Engineering teams will accept this transition of

environment from to less document-driven while conventional monitors will refuse

this transition.

 Assertive Demonstrations are prioritized

 The design errors are exposed by carrying-out demonstrations in the early

stages of the life cycle. The stake holders should not over-react to these design

errors because overemphasis of design errors will discourage the development

organizations in producing the ambitious future iterating. This does not mean that

stakeholders should bare all these errors. Infact, the stakeholders must follow all

the significant steps needed for resolving these issues because these errors will

sometimes lead to serious down-fall in the project.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 162 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

 This transition will unmark all the engineering or process issues so, it is

mostly refused by management team, and widely accepted by users, customers

and the engineering team.

The performance of the project can be determined earlier in the life cycle.

 The success and failure of any project depends on the planning and

architectural phases of life cycle so, these phases must employ high-skilled

professionals. However, the remaining phases may work well an average team.

 Earlier increments will be adolescent

 The development organizations must ensure that customers and users

should not expect to have good or reliable deliveries at the initial stages. This can

be done by demonstration of flexible benefits in successive increments. The

demonstration is similar to that of documentation but involves measuring of

changes, fixes and upgrades based on the objectives so as to highlight the process

quality and future environments

Artifacts tend to be insignificant at the early stages but proves to be the

most significant in the later stages : The details of the artifacts should not be

considered unless a stable and a useful baseline is obtained. This transition is

accepted by the development team while the conventional contract monitors

refuse this transition.

Identifying and Resolving of real issues is done in a systematic order

 The requirements and designs of any successful project arguments along with

the continuous negotiations and trade-offs. The difference between real and

apparent issued of a successful project can easily be determined. This transition

may affect any team of stakeholders

Everyone should focus on quality assurance

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 163 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

 The software project manager should ensure that quality assurance is

integrated in every aspect of project that is it should be integrated into every

individuals role, every artifact, and every activity performed etc. There are some

organizations which maintains a separate group of individuals know as quality

assurance team, this team would perform inspections, meeting and checklist

inorder to measure quality assurance. However, this transition involves replacing

of separate quality assurance team into an organizational teamwork with mature

process, common objectives and common incentives. So, this transition is

supported by engineering teams and avoided by quality assurance team and

conventional managers.

Performance issues crop up earlier in the projects life cycle

 Earlier performance issues are a mature design process but resembles as an

immature design. This transition is accepted by development engineers because it

enables the evaluation of performance tradeoffs in subsequent releases.

 Automation must be done with appropriate investments

 Automation is the key concept of iterative development projects and must be

done with sufficient funds. Moreover, the stakeholders must select an

environment that supports iterative development. This transition is mainly

opposed by organizational managers.

 Good software organizations should have good profit margins.

 Most of the contractors for any software contracting firm focus only on

obtaining their profit margins beyond the acceptable range of 5% and 15%. They

don’t look for the quality of finished product as a result, the customers will be

affected. For the success of any software industry, the good quality and at a

reasonable rate them, customer will not worry about the profit the contractor has

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 164 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

made. The bad contractors especially in a government contracting firm will be

against this transition

Characteristics of conventional and iterative software development Process

▪ The characteristics of the conventional software process are listed below:

1. It evolves in the sequential order (requirement design-code-test).

2. It gives the same preference to all the artifacts, components,

requirements etc.

3. It completes all the artifacts of a stage before moving to the other

stage in the project life cycle.

4. It achieves traceability with high-fidelity for al the artifacts present at

each life cycle stage.

▪ The characteristics of the modern iterative development process framework

are listed below:

1. It continuously performs round-trip engineering of requirements,

design, coding and testing at evolving levels of abstraction.

2. It evolves the artifacts depending on the priorities of the risk

management.

3. It postpones the consistency analysis and completeness of the

artifacts to the later stages in the life cycle.

4. It achieves the significant drives (i.e. 20 percent) with high-fidelity

during the initial stages of the life cycle.

NR21: CS4116PE-Software Project Management

Dept of CSE, NRCM 165 Dr. P. Dileep Kumar Reddy, Professor, Dean-IPR

