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FORMAL LANGUAGES AND AUTOMATA 
THEORY 

 
Course Objectives 

 To provide introduction to some of the central ideas oftheoreticalcomputer science from the 

perspective of formal languages. 

 Tointroducethefundamentalconceptsofformallanguages,grammarsandautomata theory. 

 Classifymachinesbytheir powertorecognizelanguages. 

 Employfinitestatemachinestosolveproblemsincomputing. 

 Tounderstanddeterministicandnon-deterministicmachines. 

 Tounderstandthedifferencesbetweendecidabilityand undecidability. 

Course Outcomes 

 Abletounderstandtheconceptofabstractmachinesandtheirpowertorecognizethe languages. 

 Abletoemployfinitestatemachinesformodelingandsolvingcomputingproblems. 

 Abletodesigncontextfreegrammars forformal languages. 

 Abletodistinguishbetweendecidabilityandundecidability. 

 Abletogainproficiencywith mathematicaltoolsandformalmethods. 

MODULE-I 

Introductionto Finite Automata: Structural Representations, Automata and Complexity, the Central Concepts 

of Automata Theory–Alphabets, Strings, Languages, Problems. 

Nondeterministic Finite Automata: Formal Definition, an application, Text Search, Finite Automata with 

Epsilon-Transitions. 

DeterministicFiniteAutomata:DefinitionofDFA,HowaDFAProcessStrings,The 

languageofDFA,ConversionofNFAwith€-transitionstoNFAwithout€-transitions. 
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ConversionofNFAto DFA,Mooreand Melaymachines. 

 
 

MODULE-II 

Regular Expressions: Finite Automata and Regular Expressions, Applications of Regular Expressions, 

Algebraic Laws for Regular Expressions, Conversion of Finite Automata toRegular Expressions. 

Pumping Lemma for Regular Languages: Statement of the pumping lemma, Applications of the Pumping 

Lemma. 

Closure Properties of Regular Languages: Closure properties of Regular languages, Decision Properties of 

Regular Languages, Equivalence and Minimization of Automata. 

MODULE-III 

Context-Free Grammars: Definition of Context- Free Grammars, Derivations Using a Grammar, Left 

most and Right most Derivations, the Language of a Grammar, Sentential Forms, Parse Tress,

 ApplicationsofContext-FreeGrammars,Ambiguityin GrammarsandLanguages. 

Push Down Automata: Definition of the Push down Automaton, the Languages of a PDA, Equivalence 

of PDA's and CFG's, Acceptance by final state, Acceptance by empty stack, Deterministic Pushdown 

Automata. From CFG to PDA, From PDA to CFG. 

MODULE-IV 
Normal Forms for Context-Free Grammars: Eliminating useless symbols, Eliminating €- Productions. 

Chomsky Normal form, Griebech Normal form. 

PumpingLemmaforContext-FreeLanguages:Statementofpumpinglemma, Applications. 

 
ClosurePropertiesofContext-FreeLanguages:ClosurepropertiesofCFL’s,Decision Properties of CFL's 

TuringMachines:IntroductiontoTuringMachine,FormalDescription,Instantaneousdescription, The language of a 

Turing machine 

MODULE-V 

TypesofTuringmachine:Turingmachinesand halting 
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Undecidability: Undecidability, A Language that is Not Recursively Enumerable, An Undecidable 

ProblemThat is RE, Undecidable Problems about Turing Machines, Recursive languages, 

Propertiesofrecursive languages, Post'sCorrespondenceProblem, ModifiedPost Correspondence 

problem, Other Undecidable Problems, Counter machines. 

TEXTBOOKS: 

1. IntroductiontoAutomataTheory,LanguagesandComputation,3rd Edition,John 

E.Hopcroft, Rajeev Motwani, Jeffrey D.Ullman, Pearson Education. 

2. TheoryofComputerScience–Automatalanguagesandcomputation,Mishraand 

Chandrashekaran, 2nd edition, PHI. 

REFERENCEBOOKS: 

1. Introductionto Languagesand theTheoryofComputation,JohnCMartin,TMH. 

2. IntroductiontoComputerTheory,DanielI.A. Cohen,JohnWiley. 

3. ATextbookonAutomataTheory,P.K.Srimani,NasirS.F.B,CambridgeUniversityPress. 

4. IntroductiontotheTheoryofComputation,MichaelSipser,3rdedition,Cengage Learning. 

5. IntroductiontoFormallanguagesAutomataTheoryandComputationKamala 

Krithivasan, Rama R, Pearson. 
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Unit-1: Finite Automata 

 

AUTOMATA THEORY: 

 
• Automaton = an abstract computing device. A mathematical device which acts as a computer 

for computation. 

• Note: A “device” need not even be a physical hardware. 

• The term "Automata" is derived from the Greek word "αὐτόματα" which means "self-acting". 

• Automaton is singular and Automata is plural. 

Why study automata theory? or Applications of automata Theory 

 
• The lexical analyzer and Syntax analyzers of a typical Compiler 

• Software for designing and checking the behavior of digital circuits 

•  Software for scanning large bodies of text such as collections of Web pages to find 

occurrences of words, phrases or other patterns. 

• The software for Natural Language Processing take the help of an automata theory (Chat 

boat Application). 

 

 
INTRODUCTION TO FINITE AUTOMATA: 

 
Symbol:A Symbol is an abstract entity. It cannot be formerly defined as points in geometry. 

Ex: letters or digits or special symbols like !,@,#,$.. 

Alphabet: A finite set of symbols denoted by ∑. 

Ex: ∑= {a,b,..z} is called english alphabet 

∑={0,1} is called Binary Alphabet 

String/Word: Finite sequence of letters from the alphabet. It Is denoted by S or W 

Ex: S= computer is a string defined over ∑ ={a,b,c,..z} 

Ex: W=010100 is a binary word defined over ∑={0,1} 

Length of a string: It is the number of symbols present in a given string. It is denoted by |S|. 

Ex: S= computer then |S|=8 

Empty/Null string (ε) :If |S|= 0 then it is called an empty string. It is denoted by λ or ε. 

 
Powers of an alphabet (∑k ):if ∑ is an alphabet then ∑k is the set of strings of length k. 

Ex: ∑0 ={ε }, ∑1 ={0,1 }, ∑2 ={00,11,01,10 } 

Kleene /Star Closure (∑*): The infinite set of all possible strings of all possible lengths over ∑ including 

ε.i.e., ∑* = ∑0 ∪ ∑1 ∪ ∑2 ∪ ........ where ∑k is the set of all possible strings of length k. 
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Ex: If ∑ = {a, b} then ∑* = {ε, a, b, aa, ab, ba, bb, ........ } 

Positive Closure (∑+ ):The infinite set of all possible strings of all possible lengths over ∑ excluding 

ε.i.e., ∑+ = ∑1 ∪ ∑2 ∪ ........ where ∑k is the set of all possible strings of length k. 

Ex: If ∑ = {a, b} then ∑+ = { a, b, aa, ab, ba, bb,… ..... } 

Strings Concatenation:Let S1 and S2 be two strings. The Concatenation of S1 and S2 is adding the 

string S2 at the of string S1. 

Ex: S1= Computer, S2=Science then S1S2=ComputerScience and S2S1=Science Computer 

Language:A non Empty Subset of ∑* is called a language. It is denoted by L. 

Ex: Let ∑={0,1} 

∑* ={ε ,0,1,00,11,01,10,111,000,101,011,..} 

L={0,00,10,110,…} is called even binary numbers language. 

OPERATIONS ON LANGUAGES: 

If L1, L2 are two languages then 

Union operation: It is denoted as L1UL2 or L1 + L2 , L1/L2 and is defined as L1UL2={s|s is in L1 or s is 

in L2}. 

Intersection operation: It is denoted as L1∩L2 ,and is defined as L1∩L2={s|s is in L1 and s is in L2}. 

Concatenation operation: It is denoted as L1L2 and is defined as L1L2 = { xy | L1 є x and L2 є y} 

Difference operation:It is denoted as L1-L2 ,and is defined as L1-L2={s|s is in L1 and s is not in L2}. 

Keen Closure operation (L* ):It is the language consisting of all words that are Concatenations of 0 or 

more words in the original language ( including null string). 

Problems in Automata Theory: It is the question of deciding whether a given string is a member of 

some particular language. Precisely, if ∑ is an alphabet and L is a language over ∑ then the problem L 

is a given a string W in ∑* decide whether or not w is in L. 

BLOCK DIAGRAM OF FINITE AUTOMATA: 
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 An automaton with a finite no of states is called finite automaton or Finite state machine. 

It consists of three components 1) Input Tape 2) Read/Write Head 3) Finite Control 

• Input Tape: i) the input tape is divided in to squares, each square contains a single symbol 

from the input alphabet ∑. ii) The end squares of each tape contain end markers different 

from symbols of ∑. iii) Absence of end markers indicate the tape is of infinite length. iv) The 

symbols between end markers is the input string to be processed. 

• Read/Write Head: The R/W head examines only one square at a time and can move one 

square either to the left or the right. 

• Finite control: Finite control can be considered as the control unit of an FA. An automaton 

always resides in a state. The reading head scans the input from the input tape and sends it 

to finite control. In this finite control, it is decided that ‘the machine is in this state and it is 

getting this input, so it will go to this state’. The state transition relations are written in this 

finite control. 

DEF: FINITE AUTOMATA 

 
A finite automaton is a collection of 5-tuple M=(Q, ∑, δ, q0, F), where: 

• Q: finite set of states 

• ∑: finite set of the input symbol 

• q0: initial state 

• F: Set of final states 

• δ: QX ∑  Q is a Transition function 

REPRESENTATION OF FA: Finite automata can be represented in two ways: (i) Graphical 

representation and (ii) Tabular representation. 

Graphical Representation of FA: 
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• It is called as transition graph or diagram 

• It is a collection of states and transitions 

• A state is represented by a circle 

 

• A beginning/initial state is represented as 

q2 

• A final state is represented as 

• A directed edge indicates the transition from one state to another state and edges are labeled 

with input symbols. 

• EX: GRAPHICAL REPRESENTATION OF FA 

 
 
 

Tabular Representation: Transition table 

 
• It is a table of order mXn. 

• First row indicates inputs and first column indicates states and the corresponding entities are 

outputs of a transition function. 

• Start state is marked with arrow and final state is marked with * or circle. 
 

 
δ 0 1 

q1 q1 q2 

q2 q3 q2 

q3 -- q3 

 
Ex: Consider an automata M=(Q, ∑, δ, q0, F) where Q={q0,q1,q2}, ∑={a,b}, F={q2} , δ(q0,a) =q1, 

δ(q0,b)=q2, δ(q1,a)=q2, δ(q1,b)=q0, δ(q2,a)=q2, δ(q2,b)=q2. Draw transition diagram and 

transition table. 

 

 

 

q 

q0 

0 1 1 

q
1

 
1 

q
2

 
0 q

3
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PROPERTIES OF TRANSITION FUNCTION (δ): 

 
• δ(q,ε)=q i.e., If the input symbol is null for a given state q, it remains in the same state. 

• For all strings w and input symbol a, δ(q, aw) = δ(δ(q,a),w) 

ACCEPTANCE OF A STRING BY FA: A string w is accepted by a finite automata M= (Q,∑,δ,q0,F) if 

δ(q0,w) = q for some q є F. 

Ex: Now let us consider the finite state machine whose transition function δ is given in the form of 

transition table. Where Q= {q0,q1,q2,q3}, ∑={0,1} & F={q0}.Test whether the string 110101 is accepted 

or not 

 
 
 
 
 
 
 

• Sol: 

 
δ(q0,110101)= δ(q1,10101)= δ(q0,0101)= δ(q2,101) = δ(q3,01)= δ(q1,1)= δ(q0, ε) = q0 

 

 
 

Hence 
1 1 0 1 0 1 

δ 0 1 

*q0 q2 q1 

q1 q3 q0 

q2 q0 q3 

q3 q1 q2 
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q0q1q0q2q3q1q0 
Here q0 is not a final state. Hence the string is rejected. 

 
 

 TYPES OF FINITE AUTOMATA: There are two types of finite automata 

DFA-Deterministic Finite Automata 

NFA -Nondeterministic Finite Automata 

DFA: It refers to deterministic finite automata. Deterministic refers to the uniqueness of the 

computation. In the DFA, the machine goes to one state only for a particular input character. 

DFA does not accept the null move. 

NFA:It is used to transmit any number of states for a particular input. It can accept the null 

move. 

• Some important points about DFA and NFA: 

• Every DFA is NFA, but the converse need not be true i.e., every NFA need not be DFA. 

• There can be multiple final states in both NFA and DFA. 

• DFA is used in Lexical Analysis in Compiler. 

• Construction of NFA is easier than the construction of DFA 

• To test string is Accepted or not easier in DFA than in NFA 

DETERMINISTIC FINITE AUTOMATA (DFA):A DFA can be represented by a 5-tuple (Q, ∑, δ, q0, F) where 

 
• Q is a finite set of states. 

• ∑ is a finite set of symbols called the alphabet. 

• δ is the transition function where δ: Q × ∑ → Q 

• q0 is the initial state from where any input is processed (q0 ∈ Q). 

• F is a set of Final states 

• Design a DFA which accepts strings ending with 0 defined over ∑ = {0, 1} 

Transition Diagram: Transition Table: 

  
 
 
 
 
 
 

δ 0 1 

q0 q1 q0 

q1 q1 q0 
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 Design a DFA to accept all strings starting with 0 defined over ∑ = {0, 1} 

Transition Diagram: Transition Table: 
 

 
 

Test whether the string 0101010 is accepted or not 

 

• Design a FA which accepts strings starts with 1 and ends with 0 defined over ∑ = {0, 1} 

 
Transition Diagram: 

 

 
Transition Table: 

 
δ 0 1 

q0   

q1   

*q2   

 

 
Test whether the string 11010101 is accepted or not 

 
 
 
 

 
• Design a FA which accepts the only input 101 defined over ∑ = {0, 1} 

 
Transition Diagram: 

 0 1 

q0 q1 q2 

q1 q1 q1 

q2 -- -- 
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Transition Table: 

• Design FA which accepts even number of 0's and even number of 1's over ∑ = {0, 1} 

Transition Diagram: 

Transition Table: 
 

 0 1 

q0 q1 q3 

q1 q0 q2 

q2 q3 q1 

q3 q2 q0 
 

• Design FA which accepts odd number of 0's and odd number of 1's defined over ∑ = {0, 1} 

Transition Diagram: Transition Table 
 
 
 
 
 
 
 

• Design FA accepts even number of 0's and odd number of 1's defined over ∑ = {0, 1} 

Transition Diagram: Transition Table 
 
 
 
 
 

• Design FA which accepts odd number of 0's and even number of 1's defined over ∑ = {0, 1} 

Transition Diagram: Transition Table 
 

• Design FA which accepts the set of all strings with three consecutive 0's. 

 

 
Transition Table: 

 

 
• Design a DFA for L(M) = {w | w ε {0, 1}*} and W is a string that does not contain three 
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consecutive 1's}. 

• When three consecutive 1's occur the DFA will be: 
 
 
 
 

 
 

Here two consecutive 1's or single 1 is acceptable, hence 

 
 

The stages q0, q1, q2 are the final states. The DFA will generate the strings that do not 

contain consecutive 1's like 10, 110, 101,. ... etc. 

Transition Table: 

 
• Design a FA which accepts the strings with an even number of 0's followed by single 1 

Transition Diagram: Transition Table: 

  
 



Practice Problems 
 Design a FA with ∑ = {0, 1} accepts the strings with an even number of 0's followed

by single 1 
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 Design a finite automata that recognizes i) even no of a’s ii) odd no of b’s defined 

over ∑ = {a, b} 

 

 

 Design a DFA that contains 001as a substring defined over ∑ = {0, 1} 

 
 Design a FA to accept strings of a’s and b’s ending with abb defined over ∑ = {a, b}

 

 Design a DFA which accepts the strings starting with 1 and ending with 0. 
 

 Obtain the DFA that recognizes the language L(M)={W/W is in {a, b c}* and W 

contains the pattern abac} 
 Design a DFA for the language L={0m1n: m>=0,n>=1}

 Design a DFA for the language L={0m1n: m>=1,n>=1} 

 
 Note: Decimal to Binary

 { 0-0, 1-1, 2-10 , 3-11, 4-100, 5-101,

6-110, 7-111, 8-1000, 9-1001, 10-1010, 11- 

1011, 12-1100, 13-1101, 14-1110,…….} 
 

 Design a FA which checks whether a given binary number is even 
 Design a FA that accepts the set of all strings that interpreted as binary 

representation of an unsigned decimal number i) which is divisible by 2 ii) divisible 

by 3, iii) which is divisible by 5.

Divisible by 2: 

Divisible by 3: 

Divisible by 4: 
Divisible by 5: 

 
Non-Deterministic Finite Automata (NFA): 

 NFA stands for Non-Deterministic Finite Automata. It is easy to construct an NFA 

than DFA for a given regular language. 

 The finite automata are called NFA when there exist many paths for specific input 

from the current state to the next state. 

 Every NFA is not DFA, but each NFA can be translated into DFA. 

 NFA is defined in the same way as DFA but with the following two exceptions, it 

contains multiple next states, and it contains ε transition. 
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Formal definition of NFA: 

A NFA can be represented by a 5-tuple (Q, ∑, δ, q0, F) where 

• Q is a finite set of states. 

• ∑ is a finite set of symbols called the alphabet. 

• δ: Q x ∑ →2Q is a transition function 

• q0: initial state 

• F: Set of final states 

Ex: Design an NFA with ∑ = {0, 1} accepts all string ending with 01 
 

Transition Table: 
 

 0 1 

q0 {q0,q1} {q0} 

q1 -- {q2} 

*q2 -- -- 

 
 

Ex: Design an NFA with ∑ = {0, 1} in which double '1' is followed by double '0'. 

Transition Diagram: 
 

Transition Table: 
 

Ex: Design an NFA in which all the string contain a substring 1110 

Transition Diagram: 
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Transition Table: 
 

Ex: Design an NFA with ∑ = {0, 1} accepts all string in which the third symbol from the right 

end is always 0. 
 

 
 

CONVERSION OF NFA to DFA: 

• Let, M = (Q, ∑, δ, q0, F) is an NFA which accepts the language L(M). There should be 

equivalent DFA denoted by M' = (Q', ∑', q0', δ', F') such that L(M) = L(M'). 

Steps for converting NFA to DFA: 

• Step 1: Start from the initial state of NFA. Take the state with the ‘[ ]’. 

• Step 2: place the next states for the initial state for the given inputs in the next 

columns put them also in [ ]. 

• Step 3: If any new combination of state appears in next state column then take the 

combination in the present state column. 

• Step 4: If no new combination of state appears then stop the process. 

• Step 5: The initial state for the constructed DFA will be the initial state of NFA. 

• Step 6: The Final state(s) for the constructed DFA will be the combinations of states 

containing at least one final state of NFA. 

EX: CONVERT THE GIVEN NFA TO DFA 
 

S. 

No 

 

DFA 
 

NFA 

 

1 

The transition from a state is to a single 

particular next state for each input symbol. 

Hence it is called deterministic 

The transition from a state can be to 

multiple next states for each input 

symbol. Hence it is called non- 

deterministic. 

2 Empty string transitions are not seen in 

DFA. 
NDFA permits empty string transitions. 
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3 
 

Backtracking is allowed in DFA In NDFA, backtracking is not always 

possible. 

4 Requires more space. Requires less space. 

 
5 

 

A string is accepted by a DFA, if it transits 

to a final state. 

A string is accepted by a NDFA, if at least 

one of all possible transitions ends in a 

final state. 

 

 

 
 

 0 1 

→q0 {q0} {q1} 

q1 {q1,q2} {q1} 

*q2 {q2} {q1,q2} 

 
 

Now we will obtain δ' transition for state q0. 

δ'([q0], 0) = [q0] δ'([q0], 1) = [q1] (new state generated) 

δ'([q1], 0) = [q1, q2] (new state generated) 

δ'([q1], 1) = [q1] 

Now we will obtain δ' transition on [q1, q2]. 

δ'([q1, q2], 0) = δ(q1, 0) ∪ δ(q2, 0) = {q1, q2} ∪ {q2} = [q1, q2] 

δ'([q1, q2], 1) = δ(q1, 1) ∪ δ(q2, 1) = {q1} ∪ {q1, q2} = {q1, q2} = [q1, q2] 

The state [q1, q2] is the final state because it contains a final state q2. 
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 0 1 

→[q0] [q0] [q1] 

[q1] [q1,q2] [q1] 

*[q1, q2] [q1,q2] [q1,q2] 

 
 

 

EX:NFA TO DFA CONVERSION 
 

 
Now we will obtain δ' transition for state q0. 

δ'([q0], 0) = {q0, q1} = [q0, q1]  (new state generated) 

 0 1 

q0 {q0,q1} {q1} 

*q1 -- {q0,q1} 

 



 

CSE,NRCM                                                                                   Page 18                                           T.Rupa Rani,Assistant Professor  

δ'([q0], 1) = {q1} = [q1] (new state generated) 

The δ' transition for state q1 is obtained as: 

δ'([q1], 0) = ϕ , δ'([q1], 1) = [q0, q1] 

Now we will obtain δ' transition on [q0, q1]. 

δ'([q0, q1], 0) = δ(q0, 0) ∪ δ(q1, 0) = {q0, q1} ∪ ϕ = {q0, q1} = [q0, q1] 
 

Similarly, 

δ'([q0, q1], 1) = δ(q0, 1) ∪ δ(q1, 1) = {q1} ∪ {q0, q1} = {q0, q1} = [q0, q1] 

As in the given NFA, q1 is a final state, then in DFA wherever, q1 exists that state 

becomes a final state. Hence in the DFA, final states are [q1] and [q0, q1]. Therefore 

set of final states F = {[q1], [q0, q1]}. 
 

Even we can change the name of the states of DFA. 

SupposeA = [q0]  B = [q1]  C = [q0, q1] 

With these new names the DFA will be as follows: 
 

NFA WITH EPSILON TRANSITIONS 

Def: If any finite automata contain ε (null) move or transition, then that finite automaton is 

called NFA with ∈ moves 

 0 1 

→[q0] [q0, q1] [q1] 

*[q1] ϕ [q0, q1] 

*[q0, q1] [q0, q1] [q0, q1] 
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STATES 
 

0 
 

1 
 

EPSILON 

A {B, C} {A} {B} 

B – {B} {C} 

C {C} {C} – 
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0 1 ε 
A {E} {B} ∅ 

B ∅ {C} 

C ∅ {D} 

* D ∅ ∅ 

E {F} ∅ 

F {D} ∅ 

{D} 

∅ 

∅ 

{B, C} 

∅ 
 

 

 

EPSILON (∈) – CLOSURE: 

 
• Epsilon closure for a given state X is a set of states which can be reached from the states X 

with only (null) or ε moves including the state X itself. In other words, ε-closure for a state can 

be obtained by union operation of the ε-closure of the states which can be reached from X 

with a single ε move in recursive manner. 

• For the above example ∈ closure are as follows : 

 
• ∈ closure(A) : {A, B, C} , ∈ closure(B) : {B, C}, ∈ closure(C) : {C} 

ε 
1 1 

1 B C D 

A ε ε 0 

0 
E

 

0 
F 
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Construction of ∈ -NFA: 

 
Ex: Construct ∈-NFA with e-transitions and it accepts strings of the 

form{Onlm2o/n,m,o>=0},thatis,anynumberof0'sfollowedbyanynumberofl'sfollowed by any number 

of 2's. 

Transition Diagram: 

Transition Table: 
 

 

Ex: Design NFA for language L ={0KIk is multiple of 2 or 3}. 
 

NFA for multiple of 3 
NFA for multiple of 2 

 
 

 

 0 1 2 ∈ 

q0 {q0} -- -- {q1} 

q1 -- {q1} -- {q2} 

*q2 -- -- {q2} -- 
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Conversion of∈ -NFA TO NFA or elimination of ∈ transitions 

 
• Find ε-closure {qi} for all qi ∈ Q. 

 
• Find δ^ (q,a)= ε-closure (δ (δ^ (q, ε),a)) =ε-closure (δ (ε-closure(q),a)) 

 
• Repeat Step-2 for each input symbol and each state of given NFA. 

 
• Using the resultant states, the transition table for equivalent NFA without ε can be built. 

 
• If the ε-closure of a state contains a final state then make the state as final. 

Ex: Convert the following ∈ -NFA TO NFA 
 

 
 

 
Solutions: We will first obtain 

 
ε-closures of q0, q1 and q2 as follows: 

 
ε-closure(q0) = {q0} , ε-closure(q1) = {q1, q2} 

 
ε-closure(q2) = {q2} 

 
Now the δ^transition on each input symbol is obtained as: 

 
δ^ (q0, a) = ε-closure(δ(δ^(q0, ε),a)) = ε-closure(δ(ε-closure(q0),a)) = ε-closure(δ(q0, a))= ε- 

closure(q1) 

= {q1, q2} 

 
δ^ (q0, b) = ε-closure(δ(δ^(q0, ε),b)) = ε-closure(δ(ε-closure(q0),b)) = ε-closure(δ(q0, b)) = Ф 

 
δ^(q2, a) = ε-closure(δ(δ^(q2, ε),a)) = ε-closure(δ(ε-closure(q2),a)) = ε-closure(δ(q2, a)) 

 
= ε-closure(Ф) = Ф 

 
δ^(q2, b) = ε-closure(δ(δ^(q2, ε),b)) = ε-closure(δ(ε-closure(q2),b)) 

 
= ε-closure(δ(q2, b)) = ε-closure(q2) = {q2} 

Now we will summarize all the computed δ' transitions: 

 
δ^(q0, a) = {q0, q1} δ^(q0, b) = Ф δ^(q1, a) = Ф , δ^(q1, b) = {q2} δ^(q2, a) = Ф , δ^(q2, b) = {q2} . 



 

CSE,NRCM                                                                                   Page 23                                           T.Rupa Rani,Assistant Professor  

State q1 and q2 become the final state as ε-closure of q1 and q2 contain the final state q2. 

 
 
 

 
Ex: Convert the following ∈ -NFA TO NFA 

 

 

The transition table is 

 

 
 
 
 

 
CONVERSION FROM ε-NFA TO DFA 

 
Step 1: If ε-closure(q0 )= {P1,P2,..Pn} then [P1P2..Pn] becomes the starting state of DFA. 

 
Step 2: Find δD ([P1P2..Pn] ,a)= ε-closure(δ(P1,P2,..Pn),a)) 

 
Step 3: If we found a new state, take it as current state and repeat step 2. 

 
Step 4: Repeat Step 2 and Step 3 until there is no new state present in the transition table of DFA. 

 a b 

→q0 {q1, q2} Ф 

*q1 Ф {q2} 

*q2 Ф {q2} 
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Step 5: Mark the states of DFA as a final state which contains the final state of NFA. 

 
EX: CONVERT THE NFA WITH ε INTO ITS EQUIVALENT DFA. 

 

 
Let us obtain ε-closure of each state. 

 
ε-closure {q0} = {q0, q1, q2} 

 
ε-closure {q1} = {q1} 

ε-closure {q2} = {q2} 

ε-closure {q3} = {q3} 

ε-closure {q4} = {q4} 

 
Now, let ε-closure {q0} = {q0, q1, q2} be state A. 

 
Hence 

 
δ'(A, 0) = ε-closure {δ((q0, q1, q2), 0) } = ε-closure {δ(q0, 0) ∪δ(q1, 0) ∪δ(q2, 0) } 

 
= ε-closure {q3} = {q3} call it as state B. 

 
δ'(A, 1) = ε-closure {δ((q0, q1, q2), 1) } = ε-closure {δ((q0, 1) ∪δ(q1, 1) ∪δ(q2, 1)} 

 
= ε-closure {q3} = {q3} = B. 

 
 

 
Now, 

 
δ'(B, 0) = ε-closure {δ(q3, 0) } = ϕ 

 
δ'(B, 1) = ε-closure {δ(q3, 1) }= ε-closure {q4} = {q4} i.e. state C 

 
For state C: δ'(C, 0) = ε-closure {δ(q4, 0) } = ϕ 
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δ'(C, 1) = ε-closure {δ(q4, 1) } = ϕ 
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The DFA will be 

 
 

Ex: Convert the given NFA with epsilon into its equivalent DFA 

 
L= any no of a’s followed by any no of b’s followed by any no of c’s 

 
 

Solution: Let us obtain the ε-closure of each state. 

 
ε-closure(q0) = {q0, q1, q2} 

 
ε-closure(q1) = {q1, q2} 

 
ε-closure(q2) = {q2} 

 
Now we will obtain δ' transition. 

 
Let ε-closure(q0) = {q0, q1, q2} call it as state A. 

 
δ'(A, 0) = ε-closure{δ((q0, q1, q2), 0)} = ε-closure{δ(q0, 0) ∪δ(q1, 0) ∪δ(q2, 0)} 

 
= ε-closure{q0}= {q0, q1, q2} 

 
δ'(A, 1) = ε-closure{δ((q0, q1, q2), 1)} = ε-closure{δ(q0, 1) ∪δ(q1, 1) ∪δ(q2, 1)} 

 
= ε-closure{q1} = {q1, q2} call it as state B 

 
δ'(A, 2) = ε-closure{δ((q0, q1, q2), 2)} = ε-closure{δ(q0, 2) ∪δ(q1, 2) ∪δ(q2, 2)} 

= ε-closure{q2} = {q2} call it state C 

 
Thus we have obtained 

 
δ'(A, 0) = A δ'(A, 1) = B δ'(A, 2) = C 

 
Now we will find the transitions on states B and C for each input. 

 
Hence 
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δ'(B, 0) = ε-closure{δ((q1, q2), 0)} =ε-closure{δ(q1, 0) ∪δ(q2, 0)} = ε-closure{ϕ} = ϕ 

 
δ'(B, 1) = ε-closure{δ((q1, q2), 1)}= ε-closure{δ(q1, 1) ∪δ(q2, 1)} = ε-closure{q1}= {q1, q2} i.e. state B 

itself 

δ'(B, 2) = ε-closure{δ((q1, q2), 2)} = ε-closure{δ(q1, 2) ∪δ(q2, 2)} = ε-closure{q2} = {q2} i.e. state C 

itself 

Thus we have obtained 

 
δ'(B, 0) = ϕ δ'(B, 1) = B δ'(B, 2) = C 

 
Now we will obtain transitions for C: 

 
δ'(C, 0) = ε-closure{δ(q2, 0)} = ε-closure{ϕ} = ϕ 

 
δ'(C, 1) = ε-closure{δ(q2, 1)}= ε-closure{ϕ}= ϕ 

 
δ'(C, 2) = ε-closure{δ(q2, 2)}= {q2} 

 
As A = {q0, q1, q2} in which final state q2 lies hence A is final state. B = {q1, q2} in which the state q2 

lies hence B is also final state. C = {q2}, the state q2 lies hence C is also a final state. 
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MINIMIZATION OF DFA: REDUCTION OF NO OF STATES IN FA: 

Any DFA defines a unique language but the converse is not true i.e., for any language there is a 

unique DFA is not always true. 

INDISTINGUISHABLE AND DISTINGUISHABLE STATES: 

Two states p and q of a DFA are indistinguishable if δ(p,w) is in F => δ(q,w) is in F and δ(p,w) is not in 

F => δ(q,w) is not in F 

Two states p and q of a DFA are distinguishable if δ(p,w) is in F and δ(q,w) is not in F or vice versa. 

DFA MINIMIZATION: MYHILLNERODE THEOREM 

Algorithm: 

Input − DFA, Output − Minimized DFA 

Step 1 :For each pair [p,q] where p is in F and q is in Q-F, mark[p,q]=X 

Step 2 :For each pair of distinct state [p,q] in FXF or (Q-F)X(Q-F) do 

• if for some input symbol a, δ([p,q],a)=[r,s], if [r,s]=X then 

 mark[p,q]=X 

 Recursively mark all unmarked pairs which lead to [p,q] on input for all a is in ∑ 

• else 

 For all input symbols a do 

put [p.q] on the list for δ([p,q],a) unless δ([p,q],a)=[r,r] 

Step 3: For each pair [p,q] which is unmarked are the states which are equivalent 

Ex: Find minimum-state automaton equivalent to the transition diagram 
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Transition Table: 
 

 0 1 

a b a 

b a c 

c d b 

d d a 

e d f 

f g e 

g f g 

h g D 

 

Q={a,b,c,d,e,f,g,h}F={d}NF={a,b,c,e,f,g,h} 

Step1: FXNF={(d,a), (d,b), (d,c),(d,e),(d,f),(d,g),(d,h)} 

Mark the above states as one is final and other is non final. 
 

b        

c        

d X X X     

e    X    

f    X    

g    X    

h    X    

 a b c d e f g 

 

NFX NF={(a,b),(a,c),(a,e),(a,f),(a,g),(a,h),(b,c),(b,e),(b,f),(b,g),(b,h),(e,f),(e,g),(e,h),(f,g),(f,h),(g,h)} 
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Step 2: 

(a) Find the states that are distinguishable with a 

δ([a, b], 0) = [b, a] δ([a, b], 1) = [a, c] 

δ([a, c], 0) = [b, d] δ([a, c], 1) = [a, b] since [b,d]=X mark [a,c]=X 

since [a,c]=X mark [a,b]=X 

 

δ([a, e], 0) = [b, d] δ([a, e], 1) = [a, f ] since[b,d]=X mark[a,e]=X 

δ([a, f ], 0) = [b, g] δ([a, f ], D) = [a, e] since [a,e]=X mark [a,f]=X 

δ([a, g], 0) = [b, f ] δ([a, g], D) = [a, g] 

δ([a, h], 0) = [b, g] δ([a, h], D) = [a, d]  since[a, d]=X mark[a,h]=X 
 

 
(b) Find the states that are distinguishable with b 

δ([b, c], 0) = [a,d] δ([b, c], 1) = [c, b]  since [a,d]=X mark [b,c]=X 

δ([b, e], 0) = [a, d] δ([b, e], 1) = [c, f ] since[a,d]=X mark[b,e]=X 

δ([b, f ], 0) = [a, g] δ([b, f ], 1) = [c, e] 

δ([b, g], 0) = [a, f ] δ([b, g], 1) = [c, g] since [a,f]=X mark[b,g]=X 

δ([b, h], 0) = [a, g] δ([b, h], 1) = [c, d] since[c, d]=X mark[b,h]=X 

(c)Find the states that are distinguishable with c 

δ([c, e], 0) = [d, d] δ([c, e], 1) = [b, f ] 

δ([c, f ], 0) = [d, g] δ([c, f ], 1) = [b, e] since [d,g]=X mark[c,f]=X 

δ([c, g], 0) = [d, f ] δ([c, g], 1) = [b, g] since [d,f]=X mark[c,g]=X 

δ([c, h], 0) = [d, g] δ([c, h], 1) = [b, d]  since[d,g]=X mark[c,h]=X 

(d) Find the states that are distinguishable with e 

δ([e, f ], 0) = [d, g] δ([e, f ], 1) = [f, e] since [d,g]=X mark[e,f]=X 

δ([e, g], 0) = [d, f ] δ([e, g], 1) = [f, g] since [d,f]=X mark[e,g]=X 

δ([e, h], 0) = [d, g] δ([e, h], 1) = [f, d]  since[d,g]=X mark[e,h]=X 

(e) Find the states that are distinguishable with f 

δ([f, g], 0) = [g, f ] δ([f, g], 1) = [e, g] since [e,g]=X mark[f,g]=X 

δ([f, h], 0) = [g, g] δ([f, h], 1) = [e, d]  since[e,d]=X mark[f,h]=X 

(f) Find the states that are distinguishable with g 

δ([g, h], 0) = [f, g] δ([g, h], 1) = [g, d]  since[g,d]=X mark[g,h]=X 
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b X       

c X X      

d X X X     

e X X  X    

f X  X X X   

g  X X X X X  

h X X X X X X X 

 a b c d e f g 

 
 

 
 

In the above table, [a,g], [b,f] and [c,e] are equivalent states. 

Hence a==g, b==f, and c==e 

 0 1 

a b a 

b a c 

c d b 

d d a 

e d f 

f g e 

g f g 

h g d 

 

 0 1 

a b a 

b a c 

c d b 

d d a 

e=c d f=b 

f=b g=a e=c 

g= a f=b g=a 

h g=a d 

 

 0 1 

a b a 

b a c 

c d b 

d d a 

c d b 

b a C 

a b a 

h a d 
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Simplified DFA 
 

 0 1 

a b a 

b a c 

c d b 

d d a 

h a d 

 

Ex: Minimize the following DFA 

FINITE AUTOMATA WITH OUTPUTS: MOORE& MEALY M/C 

• Finite automata may have outputs corresponding to state or transition. There are two types 

of finite state machines that generate output: (i) Moore Machine (ii) Mealy Machine 

• If the output associated with state then such a machine is called Moore machine, and if the 

output is associated with transition then it is called mealy machine. 
 

 
Moore Machine Mealy Machine 

 
 
 
 

MOORE MACHINE: 

• Moore machine is a finite state machine in which the next state is decided by the current 

state and current input symbol. The output symbol at a given time depends only on the 

present state of the machine. 

• Def: Moore machine can be described by 6-tuple M=(Q, ∑ , Δ, δ,q0, λ) where 

• Q: finite set of states 

• ∑: finite set of input symbols 
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• Δ: output alphabet 

• q0: initial state of machine 

• δ: Q × ∑ → Q is a transition function 

• λ: Q → Δ output function 

Ex: Design a Moore machine to generate 1's complement of a given binary number. 

Solution: To generate 1's complement of a given binary number the simple logic is that if the input is 

0 then the output will be 1 and if the input is 1 then the output will be 0. That means there are three 

states. One state is start state. The second state is for taking 0's as input and produces output as 1. 

The third state is for taking 1's as input and producing output as 0. 

Hence the Moore machine will be, 

 
 

 
 
 

For instance, take one binary number 1011 then 
 
 
 
 

Input 
 

1 0 1 1 
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State q0 q2 q1 q2 q2 

Output 0 0 1 0 0 

 

 

Thus we get 00100 as 1's complement of 1011, we can neglect the initial 0 and the output which we 

get is 0100 which is 1's complement of 1011. 

Note: The output length for a Moore machine is greater than input by 1. 

Ex: Design a Moore machine for a binary input sequence such that if it has a substring 101, the 

machine output A, if the input has substring 110, it outputs B otherwise it outputs C. 

Solution: For designing such a machine, we will check two conditions, and those are 101 and 110. If 

we get 101, the output will be A, and if we recognize 110, the output will be B. For other strings, the 

output will be C. 

The partial diagram will be: 
 

 
Now we will insert the possibilities of 0's and 1's for each state. Thus the Moore machine becomes: 

 
 
 



 

CSE,NRCM                                                                                   Page 35                                           T.Rupa Rani,Assistant Professor  

 

 
Ex: Construct a Moore machine that determines whether an input string contains an even or odd 

number of 1's. The machine should give 1 as output if an even number of 1's are in the string and 0 

otherwise. 

Sol: The Moore machine will be: 
 
 

 
This is the required Moore machine. In this machine, state q1 accepts an odd number of 1's and state 

q0 accepts even number of 1's. There is no restriction on a number of zeros. Hence for 0 input, self- 

loop can be applied on both the states. 

Ex: Design a Moore machine with the input alphabet {0, 1} and output alphabet {Y, N} which 

produces Y as output if input sequence contains 1010 as a substring otherwise, it produces N as 

output. 
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MEALY MACHINE 

 
• A Mealy machine is a machine in which output symbol depends upon the present input symbol 

and present state of the machine. In the Mealy machine, the output is represented with each 

input symbol for each state separated by /. 

Def: The Mealy machine can be described by 6- tuple M= (Q, ∑, Δ, q0, δ, λ') where 

 
• Q: finite set of states 

 
• q0: initial state of machine 

 
• ∑: finite set of input alphabet 

 
• Δ: output alphabet 

• δ: Q × ∑ → Q transition function 

 
• λ: Q × ∑ →Δ output function 

 
Ex: Design a Mealy machine for a binary input sequence such that if it has a substring 101, the 

machine output A, if the input has substring 110, it outputs B otherwise it outputs C. 

Solution: For designing such a machine, we will check two conditions, and those are 101 and 110. If 

we get 101, the output will be A. If we recognize 110, the output will be B. For other strings the output 

will be C. 

The partial diagram will be: 
 
 

 

 
Now we will insert the possibilities of 0's and 1's for each state. Thus the Mealy machine becomes: 
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Ex: Design a mealy machine that scans sequence of input of 0 and 1 and generates output 'A' if the 

input string terminates in 00, output 'B' if the string terminates in 11, and output 'C' otherwise. 

 

 
CONVERSION FROM MEALY MACHINE TO MOORE MACHINE: 

 
In Moore machine, the output is associated with every state, and in Mealy machine, the output is 

given along the edge with input symbol. To convert Moore machine to Mealy machine, state output 

symbols are distributed to input symbol paths. But while converting the Mealy machine to Moore 

machine, we will create a separate state for every new output symbol and according to incoming and 

outgoing edges are distributed. 

Mealy to Moore machine Conversion: 

 
Step 1: For each state (Qi), calculate the number of different outputs that are available in the 

transition table of the Mealy machine. 

Step 2: Copy state Qi, if all the outputs of Qi are the same. Break qi into n states as Qin, if it has n 

distinct outputs where n = 0, 1, 2.... 

Step 3: If the output of initial state is 0, insert a new initial state at the starting which gives ε output. 

Ex: Convert the following Mealy machine into equivalent Moore machine. 
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• For state q1, there is only one incident edge with output 0. So, we don't need to split this state 

in Moore machine. 

• For state q2, there is 2 incident edges with output 0 and 1. So, we will split this state into two 

states q20( state with output 0) and q21(with output 1). 

• For state q3, there is 2 incident edges with output 0 and 1. So, we will split this state into two 

states q30( state with output 0) and q31( state with output 1). 

• For state q4, there is only one incident edge with output 0. So, we don't need to split this state 

in Moore machine. 
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Transition table for Moore machine 
 

Input 0 1 Output 

q1 q1 q21 1 

q20 q4 q4 0 

q21 q4 q4 1 

q30 q21 q31 0 

q31 q21 q31 1 

q4 q30 q1 1 

 

Input 0 1 

q1 q1 1 q21 1 

q20 q4 1 q4 1 

q21 q4 1 q4 1 

 

q30 
 

q21 
 

1 
 

q31 
 

1 

 

q31 
 

q21 
 

1 
 

q31 
 

1 

q4 q30 0 q1 1 

 

 
0 1 Output 

q1 q1 q21 1 

q20 q4 q4 0 

q21 q4 q4 1 

q30 q21 q31 0 

q31 q21 q31 1 

q4 q30 q1 1 

 

 
0 1 Output 

q0 q1 q21 1 

q1 q1 q21 1 

q20 q4 q4 0 

q21 q4 q4 1 

q30 q21 q31 0 

q31 q21 q31 1 

q4 q30 q1 1 
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Transition diagram for Moore machine : 
 
 

 

 

 

 

 

 

 

Ex: Convert the following Mealy machine into equivalent Moore machine. 
 
 

 
Transition Diagram: 

 
 



 

CSE,NRCM                                                                                   Page 42                                           T.Rupa Rani,Assistant Professor  

The state q1 has only one output. The state q2 and q3 have both output 0 and 1. So we will create two 

states for these states. For q2, two states will be q20(with output 0) and q21(with output 1). Similarly, 

for q3 two states will be q30(with output 0) and q31(with output 1). 

Transition table for Moore machine will be: 

 

 
Transition diagram for Moore machine will be: 

 

 
CONVERSION FROM MOORE MACHINE TO MEALY MACHINE 

 
• In the Moore machine, the output is associated with every state, and in the mealy machine, 

the output is given along the edge with input symbol. The equivalence of the Moore machine 

and Mealy machine means both the machines generate the same output string for same input 

string. 

• We cannot directly convert Moore machine to its equivalent Mealy machine because the 

length of the Moore machine is one longer than the Mealy machine for the given input. To 

convert Moore machine to Mealy machine, state output symbols are distributed into input 

symbol paths. We are going to use the following method to convert the Moore machine to 
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Mealy machine. 

Method for conversion of Moore machine to Mealy machine 

 
Let M = (Q, ∑, δ, λ, q0) be a Moore machine. The equivalent Mealy machine can be represented by M' 

= (Q, ∑, δ, λ', q0). The output function λ' can be obtained as: λ' (q, a) = λ(δ(q, a)) 

Ex:Convert the following Moore machine into its equivalent Mealy machine. 

 
Solution: 

 
The transition table of given Moore machine is as follow. 

 

Q a b Output(λ) 

q0 q0 q1 0 

q1 q0 q1 1 

 

 
The equivalent Mealy machine can be obtained as follows: 

 
λ' (q0, a) = λ(δ(q0, a)) = λ(q0) = 0 

 
λ' (q0, b) = λ(δ(q0, b)) = λ(q1) = 1 

The λ for state q1 is as follows: 

λ' (q1, a) = λ(δ(q1, a)) = λ(q0) = 0 

 
λ' (q1, b) = λ(δ(q1, b)) = λ(q1) = 1 
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Hence the transition table for the Mealy machine can be drawn as follows: 
 

 
 

 
The equivalent Mealy machine will be 

 
Note: The length of output sequence is 'n+1' in Moore machine and is 'n' in the Mealy machine 

 

 
Ex: Convert the following Moore machine into its equivalent Mealy machine. 

 

 
 

Q a b Output(λ) 

q0 q1 q0 0 

q1 q1 q2 0 

q2 q1 q0 1 



 

CSE,NRCM                                                                                   Page 45                                           T.Rupa Rani,Assistant Professor  

The equivalent Mealy machine can be obtained as follows: 

λ' (q0, a) = λ(δ(q0, a)) = λ(q1) = 0 

λ' (q0, b) = λ(δ(q0, b)) = λ(q0) = 0 

The λ for state q1 is as follows: 

λ' (q1, a) = λ(δ(q1, a)) = λ(q1) = 0 

λ' (q1, b) = λ(δ(q1, b)) = λ(q2) = 1 

The λ for state q2 is as follows: 

λ' (q2, a) = λ(δ(q2, a)) = λ(q1) = 0 
λ' (q2, b) = λ(δ(q2, b)) = λ(q0) = 0 
Hence the transition table for the Mealy machine can be drawn as follows: 

 

 

 
Ex:Convert the given Moore machine into its equivalent Mealy machine. 

 

Q a b Output(λ) 

q0 q0 q1 0 

q1 q2 q0 1 

q2 q1 q2 2 
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Differences between Mealy and Moore Machines: 
 

 

S.No Mealy Machine Moore Machine 

 
1 

Output depends both upon the present state 

and the present input 

 
Output depends only upon the present state. 

 
2 

Generally, it has fewer states than Moore 

Machine. 

 
Generally, it has more states than Mealy Machine. 

 

 
3 

The value of the output function is a function of 

the transitions and the changes, when the input 

logic on the present state is done. 

The value of the output function is a function of the 

current state and the changes at the clock edges, 

whenever state changes occur. 

 
 

4 

 
Mealy machines react faster to inputs. They 

generally react in the same clock cycle. 

In Moore machines, more logic is required to decode 

the outputs resulting in more circuit delays. They 

generally react one clock cycle later. 

 
 
 

1. Define alphabet, string 

Important Questions 

PART-A 

2. Define Star closure / Kleen Closure 

3. Define Positive Closure 

4. Define Language 

5. Define DFA, NFA and epsilon NFA 

6. Define epsilon closure 

7. Define Moore and Mealy machines. 

 
 
 
 
 

PART-B 
8. Draw the block diagram of Finite Automata and explain each component 

9. Design FA which accepts i) even number of 0's and even number of 1's ii) even 

number of 0’s and odd number of 1’s iii) odd number of 0’s and even number of 1’s 

and iv) odd number of 0’s and odd number of 1’s over ∑ = {0, 1} 

10. Design a DFA for L(M) = {w | w ε {0, 1}*} and W is a string that does not contain 

consecutive 1's}. 

11. Obtain the DFA that recognizes the language L(M)={W/W is in {a, b c}* and W 

contains the pattern abac} 
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12. Design a FA that accepts the set of all strings that interpreted as binary 

representation of an unsigned decimal number i) which is divisible by 2 ii) divisible 

by 4 iii) which is divisible by 5. 

13. Design an NFA with ∑ = {0, 1} in which double '1' is followed by double '0'. 

14. Design an NFA with ∑ = {0, 1} accepts all string in which the third symbol from the 

right end is always 0. 

15. What are the differences between DFA, NFA 

16. Write the algorithm to convert i) NFA to DFA ii) epsilon NFA to NFA and iii) epsilon 

NFA to DFA. Explain by taking an example for each conversion. 

17. Find minimum-state automaton equivalent to the transition diagram 
 

 

18. Design a Moore machine for a binary input sequence such that if it has a substring 

101, the machine output A, if the input has substring 110, it outputs B otherwise it 

outputs C 

19. Construct a Moore machine that determines whether an input string contains an 

even or odd number of 1's. The machine should give 1 as output if an even number 

of 1's are in the string and 0 otherwise. 

20. Design a Mealy machine for a binary input sequence such that if it has a substring 

101, the machine output A, if the input has substring 110, it outputs B otherwise it 

outputs C. 

21. Design a mealy machine that scans sequence of input of 0 and 1 and generates 

output 'A' if the input string terminates in 00, output 'B' if the string terminates in 11, 

and output 'C' otherwise. 

22. Convert the following Mealy machine into equivalent Moore machine 
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 Convert the following Moore machine into its equivalent Mealy machine 

 

Assignment Questions 

1. Design a FA that accepts the set of all strings that interpreted as binary 

representation of an unsigned decimal number i) which is divisible by 2 

ii)divisible by 4 iii) which is divisible by 5. 

2. Minimize the following DFA. 
 
 

 

 
3. Enumerate the differences between NFA and DFA. 

4. Obtain a DFA to accept strings of 0’s, 1’s and 2’s, beginning with a 1, followed 

by odd number of 0’s and ending with a 2? 

5. Obtain a DFA to accept strings starting with two 0’s and ending with at least 

two 1’s? 

6. Obtain a DFA to accept the integer numbers represented in binary and is a 

multiple of 5. 
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UNIT-2: REGULAR LANGUAGES AND REGULAR EXPRESSIONS 

1. Regular Expressions (RE), 

2. Finite Automata and Regular Expressions, 

3. Applications of Regular Expressions, 

4. Algebraic laws for Regular Expressions, 

5. The Arden‘s Theorem, 

6. Using Arden‘s theorem to construct RE from FA, 

7. Pumping Lemma for RLs, Applications of Pumping Lemma, 

8. Equivalence of Two FAs, 

9. Equivalence of Two REs, 

10. Construction of Regular Grammar from RE, 

11. Constructing FA from Regular Grammar, 

12. Closure properties of RLs, 

13. Decision problems of RLS, 

14. Applications of REs and FAs. 

2.1. REGULAR EXPRESSION 

• The language accepted by finite automata can be easily described by simple expressions called 

Regular Expressions. It is the most effective way to represent any language. 

• The languages accepted by some regular expression are referred to as Regular languages. 

• A regular expression can also be described as a sequence of pattern that defines a string. 

• Regular expressions are used to match character combinations in strings. String searching 

algorithm used this pattern to find the operations on a string. 

• Regular Set: sets which are accepted by FA 

• Ex: L={a,aa,aaa,…} 

Regular Expression: Let  be an I/P alphabet . The RE over  can be defined as follows: 

•  is a regular expression. 

•  is a regular expression. 

• For any a in , a is a regular expression. 

• If r1 and r2 are regular expressions, then 

• (r1 + r2) is a regular expression. 

• (r1 .r2) is a regular expression. 

• (r1* ) is a regular expression. 

• (r1+ ) is a regular expression. 

WRITE RES FOR THE FOLLOWING LANGUAGES: 
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• Accepting all combinations of a’s over the set ={a} 

Ans: a* 

• Accepting all combinations of a’s over the set ={a} except null string 

Ans: a+ 

• Accepting any no of a’s and b’s 

Ans: (a+b)* or (a/b)* 

• Strings ending with 00 over the set {0,1} 

Ans: (0+1)*00 

• Strings starts with 1 and ends with 0 over the set {0,1} 

Ans: 1(0/1)*1 

• Any no of a’s followed by any no of b’s then followed by any no of c’s 

Ans: a*b*c* 

• starting and ending with a and having any combination of b's in between. 

Ans: a b* b 

 Starting with a but not having consecutive b's. 

Ans: L = {a, aba, aab, aba, aaa, abab, ..... } 

R = {a + ab}* 

• The language accepting all the string in which any number of a's is followed by any 

number of b's is followed by any number of c's. 

Ans: R = a* b* c* 

• The language over ∑ = {0} having even length of the string. 

Ans: R = (00)* 

• For the language L over ∑ = {0, 1} such that all the string do not contain the substring 01. 

Ans: The Language is as follows: L = {ε, 0, 1, 00, 11, 10, 100,..... } 

R = (1* 0*) 

• For the language containing the string over {0, 1} in which there are at least two occurrences of 

1's between any two occurrences of 1's between any two occurrences of 0’s. 

Ans: (0111*0)*. 
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Similarly, if there is no occurrence of 0's, then any number of 1's are also allowed. Hence the r.e. for 

required language is: 

R = (1 + (0111*0))* 

• The regular expression for the language containing the string in which every 0 is immediately 

followed by 11. 

Ans:R = (011 + 1)* 

• String which should have at least one 0 and at least one 1. 

Ans: R = [(0 + 1)* 0 (0 + 1)* 1 (0 + 1)*] + [(0 + 1)* 1 (0 + 1)* 0 (0 + 1)*] 

• Describe the language denoted by following regular expression (b* (aaa)* b*)* 

Ans: The language consists of the string in which a's appear triples, there is no restriction on the 

number of b’s. 

Algebraic laws for Regular Expressions 

• Given R, P, L, Q as regular expressions, the following identities hold: 

• ∅* = ε, ε* = ε 

• RR* = R*R=R+ 

• (R*)* = R* 

• (PQ)*P =P(QP)* 

• (P+Q)* = (P*Q*)* = (P*+Q*)* 

• R + ∅ = ∅ + R = R (The identity for union) 

• R ε = ε R = R (The identity for concatenation) 

• ∅ R = R ∅ = ∅ (The annihilator for concatenation) 

• R + R = R (Idempotent law) 

• P(Q+R) = PQ+PR (Left distributive law) 

• (Q+R) P = QP+RP (Right distributive law) 

• ε + RR* = ε + R*R = R* 

ARDEN'S THEOREM 

Statement: Let B and C are two regular expressions. If C does not contain null string, then A=B+AC has a 

unique solution A= BC* 

Proof: Given that B and C are two regular expressions and C does not contain null string 

Case(i): Let us verify whether A=BC* is a solution of A=B+AC 
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Substitute A =BC* in the above equation 

A=B+AC 

A=B+BC*C=B(ε +C*C)=BC* since ε+RR*=R* 

BC*=BC* 

LHS=RHS==> 

Therefore A=BC* is a solution of A=B+AC 

Case (ii): Let us PT A=BC* is a unique solution of A=B+AC 

A=B+AC 

=B+(B+AC)C=B+BC+AC2 

=B+BC+(B+AC)C= B+BC+BC2 +AC3 

= B+BC+BC2 +BC3 +AC4 

=B(ε+C+C2 +C3 +……) 

= BC* 

Therefore A=BC* is a unique solution 

Note: Assumptions for Applying Arden’s Theorem 

• The transition diagram must not have NULL transitions 

• It must have only one initial state. 

Using Arden‘s theorem to construct RE from FA 

• If there are n number of states in the FA then we will get n number of equations. 

• The equations are constructed in the following way: 

• State name= state name from which inputs are coming. Input symbol .i.e., αji represents the 

transition from qj to qi then qi = αji . qj 

• If qj is a start state then we have: 

• qi = αji * qj + ε 

• Solve the above equations to obtain final state which contains input symbols only. 

Ex: Construct the regular expression for the given DFA 
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Solution: 

Let us write down the equations q1 = q1 0 + ε 

Since q1 is the start state, so ε will be added, and the input 0 is coming to q1 from q1 hence we 

write State = source state of input × input coming to it 

Similarly,  q2 = q1 1 + q2 1 q3 = q2 0 + q3 (0+1) 

Since the final states are q1 and q2, we are interested in solving q1 and q2 only. Let us see q1 

first q1 = q1 0 + ε 

We can re-write it as q1 = ε + q1 0 

Which is similar to R = Q + RP, and gets reduced to R = OP*. 

Assuming R = q1, Q = ε, P = 0 We get q1 = ε.(0)* q1 = 0* (ε.R*= R*) 

Substituting the value into q2, we will get 

q2 = 0* 1 + q2 1 q2 = 0* 1 (1)* (R = Q + RP → Q P*) 

The regular expression is given by 

r = q1 + q2 = 0* + 0* 1.1* r = 0* + 0* 1+ (1.1* = 1+) 

Construction of FA from RE: There are two methods to construct FA from RE. They are i) Top down 

approach and ii) Bottom up approach. 

Top down Approach: 

This is divided into several steps as given in the following. 

Step-1: Take two states, one is the beginning state and another is the final state. Make a transition from 

the beginning state to the final state and place the RE in between the beginning and final states 
 

 
Step-2:If in the RE there is a + (union) sign, then there are parallel paths between the two states 
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Step-3: If in the RE there is a .(dot) sign, then one extra state is added between the two states. 
 
 
 

 

 
 

Step-4: If in the RE there is a ‘*’ (closure) sign, then a new state is added in between. A loop is added on 

the new state and the label Λ is put between the first to new and new to last. 

 
 
 
 
 
 

Ex: Construct Finite Automata equivalent to the Regular Expression L = ab(aa + bb)(a + b)* b. 

Step I: Take a beginning state q0 and a final state qf. Between the beginning and final state place the 

regular expression. 
 

Step II: There are three dots (.) between ab, (aa + bb), (a + b)*, and b. Three extra states are added 

between q0 and qf. 
 

 

 

Step III: Between ‘a’ and ‘b’ there is a dot (.), so extra state is added 
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Step IV: In aa + bb there is a +, therefore there is parallel edges between q1 and q2. Between q2 and q3 

there is (a + b)*. So, extra state q5 is added between q2 and q3. Loop with label a, b is placed on q5 and 

Λ transition is made between q2, q5 and q5, q3. 
 

 
 

Step V: In aa and bb there are dots (.). Thus two extra states are added between q1 and q2 (one for aa 

and another bb). The final finite automata for the given regular expression is given below. 
 

 
 

Ex: Construct an FA equivalent to the RE: L = (a + b)*(aa + bb)(a + b)*. 
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Ex: Construct an FA equivalent to the RE: L = ab + (aa + bb)(a + b)* b. 
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BOTTOM-UP APPROACH (THOMSON CONSTRUCTION): 

Step-1: For input a ∈ ∑, the transition diagram is 
 

 

 
Step-2: If r1 and r2 are two RES then the transition diagram for the RE r1 + r 2 is 

 

Step-3: If r1 and r2 are two RES then the transition diagram for the RE r1 . r 2 is 
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Step-4: If r is a RE then the transition diagram for r* is 
 

 

 
Ex: Construct Finite Automata equivalent to the Regular Expression L = ab(aa + bb)(a + b)*a. 
Solution: 

Step I: The terminal symbols in L are ‘a’ and ‘b’. The transition diagrams for ‘a’ and ‘b’ are given below: 
 
 

 
Step II: The transition diagrams for ‘aa’, ‘ab’, ‘bb’ are given below 

 

 

 
Step III: The transition diagram for (a+b) is given below 

 

 
 
 

 
Step IV: The transition diagram for (a+b)* is given below 
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Step V: For (aa+bb) the transitional diagram is given below 
 
 
 

 

 
Step VI: The constructed transitional diagram for ab(aa+bb) is given below 

 
 

 

 

 
Step VII: The constructed transitional diagram for ab(aa + bb)(a + b)*a is given below.This can be simplified 
by removing ε transitions 

 
EQUIVALENCE OF TWO RES 

For every RE there is a finite automata. If the FA constructed both of the REs are same then we can say 

that two REs are equivalent 

Ex: Prove that the following REs are equivalent. L1 = (a + b)* L2 = a*(b*a)* 

Solution: 

Construct FA for L1: 
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Construct FA for L2: 
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The two FAs are same. Hence the Res are also same. 

Ex: Prove that the following REs are equivalent. L1 = 1*(011)*(1*(011)*)* L2 = (1 + 011)* 
 
 
 
 
 
 
 
 
 
 

Grammars: 

The grammar is basically defined as a set of 4-tuple (V, T, P, S) 

where 

V is a set of non-terminals (variables), T is a set of terminals (primitive symbols), P is a set of productions 

(rules) that relate the non-terminals and terminals and S is the start symbol with which strings in grammar 

are derived. These productions define the strings belonging to the corresponding language. 

Production Rule: The production rules of grammar consist of two parts. I) LHS and ii) RHS. The LHS may 

contain terminal or non-terminal or both but at least one non-terminal. The RHS may contain any 

combination of terminal or non-terminal or both or epsilon. 
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Language Acceptance: Start with the start symbol, at every step, and replace the non-terminal by the 

right-hand side (RHS) of the rule. Continue this until a string of terminals is derived. The string of terminals 

gives the language accepted by grammar. 

Types of Grammars–Chomsky Hierarchy: 

Linguist Noam Chomsky defined a hierarchy of languages, in terms of complexity. This four-level hierarchy, 

called the Chomsky hierarchy, corresponds to four classes of machines. Each higher level in the hierarchy 

incorporates the lower levels, that is, anything that can be computed by a machine at the lowest level can 

also be computed by a machine at the next highest level. 

The Chomsky hierarchy classifies grammar according to the form of their productions into the following 

levels: 

 Type 0 grammars–unrestricted grammars: These grammars include all formal grammars. In 

unrestricted grammars (URGs), all the productions are of the form α → β where α and β may have 

any number of terminals and non-terminals, that is, no restrictions on either side of productions. 

Every grammar is included in it if it has at least one non-terminal on the left-hand side (LHS). They 

generate exactly all languages that can be recognized by a Turing machine. The language that is 

recognized by a Turing machine is defined as a set of all the strings on which it halts. These 

languages are also known as recursively enumerable languages. 

Ex: 

aA → abCB 

aA → bAA 

bA → a 

S → aAb | ε 

  Type 1 grammars–context-sensitive grammars: These grammars define the context-sensitive 

languages. In context-sensitive grammar (CSG), all the productions of the form α → β where the 

length of α is less than or equal to the length of β i.e. |α| ≤ |β|, α and β may have any number 

of terminals and non-terminals. 

These grammars can have rules of the form αAβ → αγβ with A as non-terminal and α, β, and γ are strings 

of terminals and non-terminals. We can replace A by γ where A lies between α and β. Hence the name 

CSG. The strings α and β may be empty, but γ must be non-empty. It cannot include the rule S→ ε. These 

languages are exactly all languages that can be recognized by linear bound automata. 

Ex: aAbcD → abcDbcD 

 Type 2 grammars – context-free grammars: These grammars define context-free languages. 

These are defined by rules of the form α → β with |α| ≤ | β where |α| = 1 and is a non-terminal 

and β is a string of terminals and non-terminals. We can replace α by β regardless of where it 

appears. Hence the name context-free grammar (CFG). These languages are exactly those 

languages that can be recognized by a pushdown automaton. Context-free languages define the  
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 syntax of all programming languages. 

Ex: 
 

1. S → aS |S a| a 

2. S→ aAA |bBB| ε 

 Type 3 grammars – regular grammars: These grammars generate regular languages. Such a 

grammar restricts its rules to a single non-terminal on the LHS. The RHS consists of either a single 

terminal or a string of terminals with a single nonterminal on the left or right end. Here rules can 

be of the form A→ a B | a or A →Ba | a. 

The rule S → ε is also allowed here. These languages are exactly those languages that can be recognized 

by a finite state automaton. This family of formal languages can be obtained by regular expressions also. 

Regular languages are used to define search patterns and the lexical structure of programming languages. 

Right linear grammar: A → a A | a 

Left linear grammar: A → A a | a 

Table 1.1 Chomsky’s hierarchy 
 

Grammar Languages Automaton Production rules 

Type 0 Recursively enumerable Turing machine α → β 
No restrictions on b, a should have 
At least one non-terminal 

Type 1 Context-sensitive Linear bounded automata α → β, |α| ≤ |β| 

Type 2 Context-free Pushdown automaton α → β, |α| ≤ |β|, |α| =1 

Type 3 Regular Finite state automaton α → β, α = {V} and β = V{T}* or 
{T}*V or T* 

 

The hierarchy of languages and the machine that can recognize the same is shown below. 
 
 

 
 

Every RG is context-free, every CFG is context-sensitive and every CSG is unrestricted. So the family of 

regular languages can be recognized by any machine. CFLs are recognized by pushdown automata, linear 

bound automata, and Turing machines. CSLs are recognized by linear bound automata and Turing 

machines. Unrestricted languages are recognized by only Turing machines. 
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REGULAR GRAMMAR 

• A regular grammar is a mathematical object, G, with four components, 

G = (N, T, P, S), where 

• N is a nonempty, finite set of nonterminal symbols, 

• T is a finite set of terminal symbols , or alphabet, symbols, 

• P is a set of grammar rules, each of one having one of the forms A → aB A → a A → ε, for A, B 

∈ N, a ∈ Σ, and ε the empty string, and 

• S ∈ N is the start symbol. 

RE TO RG CONVERSION 

• Step 1: Construct an equivalent FA for the given RE 

• Step 2: The no of non-Terminals of the grammar will be equal to the no of states of FA 

• Step 3: For all transition functions (a) if δ(qi, a)=qj is not in F then the production is of the form 

AaB (b) if δ(qi,a)=qj is in F then the productions are of the form AaB and Aa, where A &B 

are corresponding to states qi and qj respectively. 

• Step 4: The start symbol of the grammar corresponding to the initial state of finite automata 

 
 

Ex: Construct Regular grammar for the RE a*(a+b)b* 

RG for the above RE is 

AaA/aB/bB/a/b 

BbB/b 
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Ex: Construct RG for the RE ab(a+b)* 

RG is 

AaB 

BbC/b 

CaC/bC/a/b 

PUMPING LEMMA FOR RLS 

• The pumping lemma is generally used to prove certain languages are not regular 

• Language is said to be regular: If a DFA,NFA or epsilon NFA can be constructed to exactly accept 

a language 

• If a RE can be constructed to exactly generate the strings in a language. 

Formal Definition of Pumping Lemma: 

•  if L is a regular language represented with automaton with maximum of n states , then there is 

a word in L such that the length |Z|>=n, we may write Z=UVW in such a way that |UV|<+n, 

|V|>=1, and for all i>=0, UVi W is in L. 

• Ex: Prove that L = {aibi | i ≥ 0} is not regular. 

At first, we assume that L is regular and n is the number of states. 

Let z= aabb=uvw 

Where u=a, v= ab, w=b 

Whein i=0, uviw=uw=ab is in L 

When i=1, uviw=uvw=aabb is in l 

When i=2, uviw=uv2w=aababbis not in L 

Hence L is not Regular 

Ex: State whether L = {a2n| n > 0} is regular. 

Ex: State whether L = {0n | n is a prime} is regular 

Ex: State whether L = {an| n ≥ 0} is regular 

Ex: State whether L = {an bm | n, m ≥ 0} is regular 
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CLOSURE PROPERTIES OF RLS 

1) Context-free languages are closed under 

Union: Let L1 and L2 be two context-free languages. Then L1 ∪ L2 is also context free. 

Example 

• Let L1 = { anbn , n > 0}. Corresponding grammar G1 will have P: S1 → aAb|ab 

• Let L2 = { cmdm , m ≥ 0}. Corresponding grammar G2 will have P: S2 → cBb| ε 

• Union of L1 and L2, L = L1 ∪ L2 = { anbn } ∪ { cmdm } 

• The corresponding grammar G will have the additional production S → S1 | S2 

Concatenation: If L1 and L2 are context free languages, then L1L2 is also context free. 

Example: Union of the languages L1 and L2, L = L1L2 = { anbncmdm } 

The corresponding grammar G will have the additional production S → S1 S2 

Kleene Star: If L is a context free language, then L* is also context free. 

Example 

• Let L = { anbn , n ≥ 0}. Corresponding grammar G will have P: S → aAb| ε 

• Kleene Star L1 = { anbn }* 

• The corresponding grammar G1 will have additional productions S1 → SS1 | ε 

Context-free languages are not closed under Intersection: If L1 and L2 are context free languages, then 

L1 ∩ L2 is not necessarily context free. 

Intersection with Regular Language − If L1 is a regular language and L2 is a context free language, then 

L1 ∩ L2 is a context free language. 

Complement − If L1 is a context free language, then L1’ may not be context free 
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• Define Regular Expression 

Part-A 

• Write a regular expression for the language accepting all the strings in which any 

number of a's is followed by any number of b's is followed by any number of c's. 
• State ARDEN'S THEOREM 

• State and prove ARDEN'S theorem 

• Define Regular Grammar 

• State pumping lemma for CFL 

 
 

 
PART-B 

• Construct the regular expression for the given DFA 
 

 
• Construct an FA equivalent to the RE: L = (a + b)*(aa + bb)(a + b)*. 

• : Construct Finite Automata equivalent to the Regular Expression L = ab(aa + bb)(a + b)*a using 

bottom-up approach. 

• Construct Regular grammar for the RE a*(a+b)b* 

• Applications of pumping lemma 

• Closure Properties of CFLs 
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Assignments 

1. Prove that e + 0*(1)*(0*(1)*)* = (0 + 1)* 

2. List out a few applications of regular expressions and finite automata. 

3. Construct a NFA that accepts the following languages: 

a. L(aa* + aba*b*) 

b. L(ab(a + ab)*(a + aa)) 

c. L(ab*aa + bba*ab) 
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d. L(0* + 1*2*) 

e. L(10 + (0 + 11)0*1) 

f. L((a + ba)*bb(b + a)*) 

4.  

 

 
5.  
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UNIT-3: CONTEXT FREE GRAMMARS (CFG) 

 
Def: 

A grammar G=(V,T,P,S) is said to be CFG if all productions in Pare of the form α β Where 

α is in V , i.e., set of non-terminals and | α | = 1, i.e., there will be only one non-terminal at 

the left hand side (LHS) and β is in V U Σ, i.e., β is a combination of non-terminals and 

terminals. 

Ex: Construct a CFG for the language L = {WCWR | W ∈ (a, b)*} 

Ans: SaSa/bSb/C 

Ex: Construct a CFG for the regular expression (0 + 1)* 0 1*. 

Ans: 

S ASB/0 A 0A/1A/ε B 1B/ε 

Ex:Construct a CFG for the regular expression (011 + 1)* (01)*. 

Ans: 

S  BC B AB/ε A 011/1 CDC/ ε D 01 

Ex: Construct CFG for defining palindrome over {a , b}. 

Ans: S → aSa/bSb/a/b/ε 

Ex: Construct CFG for the set of strings with equal number of a’s and b’s. 

Ans: S → SaSbS /SbSaS/ε 

Ex: Write the language generated by the grammar S → SaSbS /SbSaS/ε 

 

 

 

Ex: Write the language generated by the grammar S → aSa/bSb/a/b/ε 

 

 

 

Ex: Write the language generated by the grammar SaSa/bSb/C 



 

CSE,NRCM                                                              Page 73                     T.Rupa Rani,Assistant Professor  

DERIVATION AND PARSE TREE: 

• Derivation: The process of generating a language from the given production rules of 

a grammar. The non-terminals are replaced by the corresponding strings of the right 

hand side (RHS) of the production. But if there are more than one non-terminal, then 

which of the ones will be replaced must be determined. Depending on this selection, 

the derivation is divided into two parts: 

• Leftmost derivation: A derivation is called a leftmost derivation if we replace only 

the leftmost non-terminal by some production rule at each step of the generating 

process of the language from the grammar. 

• Rightmost derivation: A derivation is called a rightmost derivation if we replace 

only the right- most non-terminal by some production rule at each step of the 

generating process of the language from the grammar. 

Ex: Derive a4 from by grammar S → aS/ ε 

S ⇒aS⇒aaS⇒aaaS⇒aaaaS⇒aaaaε = aaaa 

The language has the strings {ε, a, aa, aaa, …….}. 

Ex: Derive a2 from by grammarS → SS/ a/ ε 

Ans: S ⇒ SS⇒Sa⇒aa (or) 

S ⇒ SS⇒ SSS⇒SSa⇒SSSa⇒SaSa⇒εaSa⇒εa εa = aa 

Ex: Find L(G) and derive the string abbab for the following grammar? 

S → aS/bS/a/b 

Solution: 

S ⇒aS⇒abS⇒abbS⇒abbaS⇒abbab 

Context free language generated by the grammar is (a + b)+. 

Ex: Find the language and derive abbaaba from the following grammar: 

S → XaaX X → aX | bX |ε 

Solution: 

CFL is (a + b)*aa(a + b)*. 

We can derive abbaaba as follows: 

S ⇒XaaX⇒aXaaX⇒abXaaX⇒abbXaaX⇒abbεaaX = abbaaX⇒abbaabX⇒abbaabaX 

⇒abbaabae⇒abbaaba 

Ex: Give the language defined by grammarG = {{S}, {a}, {S → SS}, S} 

Ans: L(G) = Φ. Since there is no terminal that is derived from S. 

Ex: Give the language defined by grammar 
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G = {{S, C}, {a, b}, P, S} where P is given byS → aCa, C → aCa | b, 

Ans:S ⇒aCa⇒aaCaa⇒aaaCaaa 

L(G) = {an ban / n ≥ 1}. 

Ex: Give the language defined by grammarG = {{S}, {0, 1}, P, S} where P is given by 

S → 0S1 | |ε 

Ans: S ⇒ 0S1 ⇒ 00S11 ⇒ 0011. 

L(G) = {0n 1n / n ≥ 0}. 

 

 
• Construct the string 0100110 from the following grammar by using (i)Leftmost 

derivation (ii) Rightmost derivation 

S0S/1AA ,A 0/1A/0B , B 1/0BB, 

Ans: Leftmost Derivation 

S => 0S=> 01AA => 010BA => 0100BBA => 01001BA => 010011A=> 0100110 

(The non-terminals that are replaced are underlined.) 

Rightmost Derivation 

S => 0S=> 01AA=> 01A0 => 010B0 => 0100BB0 => 0100B10 => 0100110 

(The non-terminals that are replaced are underlined.) 

Ex: Consider the CFG ({S, X}, {a, b), P, S) where productions are S → baXaS | ab, X → 

Xab|aa. Find LMD and RMD for string w = baaaababaab. 

Solution: The following is a LMD: 

S ⇒baXaS {as S →baXaS} 

⇒baXabaS {as X →Xab} 

⇒baXababaS {as X →Xab} 

⇒baaaababaS {as X →aa} 

⇒baaaababaab {as S →ab} 

The following is a RMD: 

S ⇒baXaS {as S →baXaS} 

⇒baXaab {as S →ab} 

⇒baXabaab {as X →Xab} 

⇒baXababaab {as X →Xab} 

⇒baaaababaab {as X →aa} 

Any word that can be generated by a given CFG can have LMD|RMD. 

Ex: Consider the CFG:S → aB | bA, A → a | aS | bAA, B → b | bS | aBB. Find LMD and 

RMD for (the string) w = aabbabba. 

Ans: The following is a LMD: 
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S ⇒aB⇒aaBB⇒aabSB⇒aabbAB⇒aabbaB⇒aabbabS⇒aabbabbA⇒aabbabba 

The following is a RMD: 

S ⇒aB⇒aaBB⇒aaBbS⇒aaBbbA⇒aaBbba⇒aabSbba⇒aabbAbba⇒aabbabba 

PARSE TREE: 

• A parse tree is the tree representation of deriving a CFL from a given context free 

grammar. These types of trees are sometimes called as derivation trees. 

• A parse tree is an ordered tree in which the LHS of a production represents a parent 

node and the RHS of a production represents a children node. 

• Note: The parse tree construction is possible only for CFG. 

Procedure to Construct Parse Tree: 

• Each vertex of the tree must have a label. The label is a non-terminal or terminal or 

null (ε). 

• The root of the tree is the start symbol, i.e., S. 

• The label of the internal vertices is a non-terminal symbol. 

• If there is a production A  X1X2….XK, then for a vertex label A, the children of that 

node will be X1, X2, .. XK. 

• A vertex n is called a leaf of the parse tree if its label is a terminal symbol or null (ε). 

Ex:Find the parse tree for generating the string 0100110 from the following grammar. 

S 0S/1AAA 0/1A/0B B 1/0BB 

For generating the string 0100110 from the given CFG 

The Left Most Derivation (LMD) will be S  0S 01AA  010BA 0100BBA  

01001BA  010011A  0100110 and the derivation tree is called Left Most Derivation 

Tree(LMD Tree) 

The Right Most Derivation (RMD) will be S  0S 01AA  01A0  010B0  

0100BB0  0100B10  0100110 and the derivation tree is called Right Most Derivation 

Tree(RMD Tree). 

 
LMD AND RMD TREES: 

Find the parse tree for generating the string 0100110 from the following grammar. 
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Left Most Derivation Tree Right Most Derivation Tree 

Ex: Construct a parse tree for the string aabbaa from the following grammar. 

Sa/aAS, A SS/SbA/ba 

Solution: For generating the string from the given grammar, the derivation will be 

S =>aAS=>aSbAS=>aabAS=>aabbaS=>aabbaa 

The derivation tree is given in Fig 
 

 
AMBIGUOUS GRAMMAR:The different parse trees generated from the different 

derivations may be the same or may be different. 

A grammar of a language is called ambiguous if any of the cases for generating a 

particular string, more than one parse tree(LMD Tree. RMD Tree) can be generated. 
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Procedure to test ambiguous Grammar: Grammar will be given.Consider a string which 

produces two derivation trees to prove that the grammar is ambiguous. 

Ex: Prove that the following grammar is ambiguous. 

P: S  E + E/E * E/id 

Let us take a string id + id*id. 

The string can be generated in the following ways. 

Derivation (i):S=> S + S=>S + S*S => id + S*S => id + id*S=> id + id*id 

Derivation (ii): S => S*S => S + S*S => id + S*S => id + id*S => id + id*id 

The parse trees for derivation (i) and (ii) are shown below. 

 

 

 
Ex: Consider the Grammar G with productions: S → aS | Sa | a.Show that G is 

ambiguous. 

Ans: Consider the string w=aa 
 

 

 
 

LMD Tree RMD Tree 

LMD Tree!=RMD Tree. Hence the grammar is ambiguous 

Ex: The grammar G for PALINDROMES isS → aSa | bSb | a | b |ε. Check if G is 

ambiguous. 

Ans: Consider the string w=babbab. 
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LMD Tree RMD Tree 

LMD Tree=RMD Tree. Hence the grammar is unambiguous 

 

 
Ex: Check whether the following grammar is ambiguous or not. 

S → i C t S | i C t S e S | a, C → b 

Ans: Consider the string w=ibtibtaea 
 

 

 

LMD Tree RMD Tree 

LMD Tree!=RMD Tree. Hence the grammar is ambiguous 

Ex: Consider the Grammar G with productions: S → aS | aSb | X, X → Xa | a 

Show that G is ambiguous. 

Ans: Consider the string w=aa 
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LMD Tree RMD Tree 

LMD Tree!=RMD Tree. Hence the grammar is ambiguous 

SIMPLIFICATION OF CONTEXT-FREE GRAMMAR: 

• CFG can be simplified in the following three processes. 

• Removal of useless symbols 

 Removal of non-generating symbols 

 Removal of non-reachable symbols 

• Removal of unit productions 

• Removal of null productions 

Removal of useless symbols 

Useless symbols are of two types: 

• Non-generating symbols are those symbols which do not produce any string of 

terminals. Remove those productions whose productions contain those symbols. 

• Non-reachable symbols are those symbols which cannot be reached at any time 

starting from the start symbol. 

• Dependency graph can be drawn to identify the symbols that are reachable. To draw 

dependency graph all non-terminals are indicated as nodes for each production A → 

x1, x2,. xn place an edge from A to xi where xi is non terminal. The set of nodes that 

have path from start node indicate the non-terminals that are reachable. 

Ex:Eliminate useless symbols and productions from the following grammar 

S → ABa | BC, A → aC | BCC, C → a, B → bcc,D → E, E → d, F → e 

Ans: 

Step 1: Eliminate non-generating symbols: 

All variables are found to be generating as each of themderive a terminal. 
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Step 2: Elimination of non-reachable variables: Draw the dependency graph 

 

 

From the above graph, D,E and F are non-reachable from S. Hence remove all the 

productions which contain non-reachable variables. Therefore the simplified grammar is 

S → ABa | BC, A → aC | BCC, C → a, B → bcc 

Ex: Eliminate useless symbols in the following grammar G:S → BC | AB | CA, A → a, 

C → aB | b 

Ans: Here B is not defined; hence it is non-generating symbol. C and A are reachable and are 

derivingterminals. Hence, C and A are useful. The reduced grammar isS → CA, A → a, C → 

b. 

The non-terminals A and C are reachable from S. Hence the simplified grammar is S → CA, 

A → a, C → b. 

Ex: Eliminate useless symbols in the given G:S → aAa, A → bBB, B → ab, C → a b 

Solution: Here all the variables are generating symbols. 

C is not reachable from start symbol S. Hence remove it. 

So the reduced grammar isS → aAa, A → bBB, B → ab, 

Ex:Eliminate useless symbols in the following grammar G:S → aS | A | BC, A → a, B → 

aa, 

C → a Cb 

Ans: Here C is useless, as it is not deriving any string. B is not reachable. 

So the reduced grammar isS → aS | A, A → a 

Ex:Remove the useless symbols from the given CFG 

S  AC S  BA C  CB C  ACA aB aC/b 

To find Non-Generating Symbols: 

In the above grammar, C is a non-generating symbol since it does not generate a 

string with terminals. Hence, eliminate the productions which contain the symbol C. 

Therefore, SBA, Aa, Bb 

To find Non-Reachable Symbols: 

The symbols which cannot be reached at any time starting from the start symbol. 

There is no non-reachable symbol in the grammar. So, the minimized form of the grammar 

by removing useless symbols is SBA, Aa, Bb. 
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REMOVAL OF UNIT PRODUCTIONS: 

• Production in the form non-terminal  single non-terminal is called unit production. 

• Ex: Remove the unit production from the following grammar. S AB, A  E, B 

C,C  D, D  b, E  a 

The productions are A  E, B  C, and C  D. 

From B  C, and C  D we will get BD 

Therefore, S  AB, A E, B  D, D ->b, E  a 

From AE and Ea, we get Aa 

From BD and Db we get Bb 

Therefore, SAB, Aa, Bb,Db, Ea 

In the above productions, D and E are non-Reachable variables. Hence eliminate D 

and E. 

Therefore, the simplified grammar is SAB, Aa, Bb 

REMOVAL OF NULL PRODUCTIONS 

• A production in the form NT ε is called null production. 

• Ifε (null string) is in the language set generated from the grammar, then that null 

production cannot be removed. 

• That is, if we get, S ε , then that null production cannot be removed from the 

production rules. 

Procedure to Remove Null Production 

Step-1: Construct Vn, the set of all nullable variables 

Step-2: For each production B → A, if A is a nullable variable, replace the nullable variable 

A by ε , and add, all possible combinations of strings on the RHS of production. 

Step-3: Do not add the production A → ε 

Ex: Remove the ε- production from the following grammar. S aA, A b/ ε 

A ε is a null production. Therefore A is nullable variable. 

Vn={A} 

Consider SaA. 

Replace A by ε we get Sa 

Add Sa to SaA 

Therefore, the simplified grammar is SaA/a, Ab 
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In the above grammar, no null productions, no unit productions, and no useless symbols. 

Hence the grammar is simplified 

Ex: Eliminate the null production from the following grammar 

S→ ABaC, ABC, Bb/ ε, CD/ ε, Dd 

Vn={A,B,C} 

Consider SABaC. Replace AorBorCorAB or AC orBC or ABC by ε. Then we get 

SABaC/BaC/AaC/ABa/aC/Aa/Ba/a. 

Similarly, ABC/B/C, Bb, CD, Dd 

Eliminate Unit Productions, then we get 

SABaC/BaC/AaC/ABa/aC/Aa/Ba/a, ABC/d/b, Bb, 

NORMAL FORM 

• For a grammar, the RHS of a production can be any string of terminals and non- 

terminals 

• A grammar is said to be in normal form when every production of the grammar has 

some septic form. 

• That means, instead of allowing any no of terminals and non-terminals on the RHS of 

the production, we permit only specific members on the RHS of the production. 

• Two types of normal forms: (a) CNF (Chomsky Normal Form) and (b) GNF 

(Greibach Normal Form) 

CNF: CHOMSKY NORMAL FORM 

• A CFG is said to be in CNF if all the productions of the grammar are in the following 

form. 

• Non-terminal  String of exactly two non-terminals 

• Non-terminal  Single terminal 

Ex: ABC, Bb, Cc 

PROCEDURE TO CONVERT CFG IN TO CNF: 

1. Eliminate null productions and unit productions. i.e., simplify the grammar 

2. Include productions of the form A → BC / a as it is. 

3. Eliminate strings of terminals on the right-hand side of production if they exceed one as 

follows: Suppose we have the production S → a1a2a3 where a1,a2,a3 are terminals then 

introduce non-terminal Cai for terminal ai asCa1 → a1, Ca2 → a2, Ca3 → a3 

4. To restrict the number of variables on the right-hand side, introduce new variables and 

separate them as follows: 

Suppose we have the production with n non-terminals as shown below with 5 non-terminals 
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Y → X1 X2 X3 X4 X5 

Add n-2 new productions using n-2 new non-terminals and modify the production as in the 

following: 

Y → X1 R1 

R1 → X2 R2 

R2 → X3 R3 

R3 → X4 X5 where the Ri are new non-terminals. 

The language generated by the new CFG is the same as that generated by the original CFG. 

Ex: Convert the following grammar into CNF. S bA/aB, AbAA/aS/a, 

B aBB/bS/a 

Step1: The Grammar is minimized. 

Step2: The productions Aa and Ba are in CNF. Hence leave the productions as it 

is. 

Step 3: The productions SbA, S aB, A bAA, A aS, B aBB, B bS are not 

in CNF. So, we have to convert these into CNF. 

Let us replace terminal ‘a’ by a non-terminal Ca and terminal ‘b’ by a non-terminal 

Cb. 

Hence, two new productions Ca a and Cb b will be added to the grammar 

By replacing a and b by new non-terminals and including the two productions, the 

modified grammar will be 

S CbA/CaB, A CbAA/CaS/a , B CaBB/CbS/a , Ca a, Cb b 

In the modified grammar, all the productions are not in CNF. 

The productions A CbAA and B CaBB are not in CNF, because they contain 

more than two non-terminals at the RHS. 

Let us replace AA by a new non-terminal D and BB by another new non-terminal E. 

Hence, two new productions D AA and E  BB will be added to the grammar. 

So, the new modified grammar will be 

S CbA/CaB 

A CbD/CaS/a 

B CaE/CaS/a 

D  AA 

E BB 

Ca a 
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Cb b 

It is in CNF 

Ex: Convert following CFG to CNF: 

S → AB | aB 

A → aab | ε 

B → bbA 
 

Ex: Convert following CFG to CNF. 

S → bA | aB 

A → bAA | aS | a 

B → aBB | bS | b 

 

Ex: Convert following CFG to CNF. 

S → ASB | ε 

A → aAS | a 

B → SbS | A | bb 

 

 
LEFT RECURSION AND LEFT FACTORING: 

• Left Recursion: A context-free grammar is called left recursive if a non-terminal ‘A’ 

as a leftmost symbol on the right side of a production. AAa 

• In other words, a grammar is left recursive if it has a non-terminal ‘A’ such that there 

is a derivation. 

• A =>Aa for some string a 

• There are two types of left recursion 

• i) Direct Left Recursion ii) Indirect Left Recursion 

DIRECT LEFT RECURSION: 

Let the grammar be A Aα/β, where α and β consists of terminal and/or non-terminals but β 

does not start with A. 

Elimination of Left Recursion: 

For the production A  Aα/β, the equivalent grammar after removing the left 

recursion is A βA1, A1 αA1/ε 

In general, for a grammar in the form 

A  Aα1 / Aα2 / ……/Aαn /β1 / β2 /……./ βn 
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The equivalent productions are 

Aβ1A
1 / β2 A

1 /……./ βn A
1 

A1
α1 A

1 / α2 A
1 / ……/αn A

1 / ε 

 
Ex: Remove the left recursion from the following grammar. 

E E + T | T, T T*F | F , F  id | (E) 

In the grammar there are two immediate left recursions E E + T and T T * F. 

For E E + T, the equivalent productions are E TE1 and E1
 + TE1/ε 

For T T * F, the equivalent productions are T FT1, T1
 *FT1/ε 

The CFG after removing the left recursion becomes 

E => TE1 

E1 => + TE1/ε 

T FT1 

T1
 *FT1|ε 

F  id | (E) 

INDIRECT LEFT RECURSION: 

A grammar of the form A1  A2a/b, A2A1c/d is called indirect left recursion. 

Convert indirect left recursion in to direct left recursion and then apply the 

elimination of direct left recursion. 

Consider A2 A1c/d 
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2 2 

Then A2A2ac/bc/d. it is in the direct left recursion. Eliminate Direct left recursion 

A2bcA2
1 /dA 1 , A 1ac A2

1 /ε 

LEFT FACTORING: 

A production rule of the form A αβ1/αβ2/. . ./αβn is called left factoring. 

After left factoring, the previous grammar is transformed into: 

A  αA1, A1  β1/β2/. . . /βn 

Ex: Left Factor the following grammar. 

A abB | aB | cdg | cdeB | cdfB 

The left factored grammar is 

A aA1 /cdA² 

A1 bB/B 

A² g/eB/fB 

 

GREIBACH NORMAL FORM 

• A grammar is said to be in GNF if every production of the grammar is of the form 

• Non-terminal  (single terminal)(non-terminal)*i.e. terminal followed by any 

combination of NTs including null. 

Lemma I: Substitution Rule: 

• Let G be a CFG. 

• If A Ba and B  b1/b2/. . . /bn belongs to the production rules (P) of G, then 

a new grammar will A  b1a/b2a/. . . /bna 

Lemma II: Elimination of Left Recursion 

• Let G be a CFG. 

• If A  Aa1/Aa2/. . . /Aam/b1/b2/. . . /bn  belongs to P of G, then equivalent 

grammar is 

A b1 A
1/b2 A

1 /. . . /bnA
1 / b1/b2/. . . /bn 

A1
a1A

1/a2 A
1 /. . . /am A

1 /a1/a2/. . . /am 

PROCESS FOR CONVERSION OF A CFG INTO GNF 

• Step I: The given grammar is in CNF 

• Step II: Rename the non-terminals as A1, A2 ……An with A1=S 

• Step III: we need productions must be in the form that the RHS of productions must 

start with a terminal or with higher indexed variable. 
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For each production Ai Aj a 

(i) ifi<j leave the production as it is. 

(ii) ifi=j then apply lemma2 (Elimination of Left Recursion) 

(iii) ifi>j then apply lemma1. (Apply Substitution Rule) 

• Step IV: For each production Ai Aj a where i<j apply substitution rule. 

The resulting productions of the modified grammar will come into GNF. 

Ex:Convert the following grammar in to GNF. SAA/a, ASS/b 

• Step I: There are no unit productions and no null production in the grammar. The 

given grammar is in CNF. 

• Step II: In the grammar, there are two non-terminals S and A. Rename the non- 

terminals as A1 and A2 respectively. The modified grammar will be A1 A2A2/a, 

A2 A1A1/b 

• Step III: In the grammar, A2  A1A1 is not in the form Ai Aj a where i<j 

Apply substitutionrule Therefore, A2  A2A2A1/aA1/b 

On the above production apply Lemma II, 

A2aA1X/bX/aA1/b, XA2A1X/A2A1 

The modified grammar A1 A2A2/a, A2aA1X/bX/aA1/b, XA2A1X/A2A1 

• Step IV: apply substitution rule on A1 A2A2/a 

Therefore, A1 aA1XA2/bXA2/aA1A2/bA2/a 

Apply substitution rule on XA2A1X/A2A1 

Therefore, X aA1XA1X/bXA1X/aA1A1X/bA1X/ aA1XA1/bXA1/aA1A1/bA1 

The modified grammar is 

A1 aA1XA2/bXA2/aA1A2/bA2/a 

A2aA1X/bX/aA1/b 

X aA1XA1X/bXA1X/aA1A1X/bA1X/ aA1XA1/bXA1/aA1A1/bA1 

The above grammar is in GNF 

Ex: Convert the following grammar in to GNF. 

S → XA | BB 

B → b | SB 

X → b 

A → a 
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Ex: Convert the CFG to GNF 

S → AB A 

A → aA | ε 

B → bB | ε 

CLOSURE PROPERTIES OF CONTEXT-FREE LANGUAGES 

• A set is closed (under an operation) if and only if the operation on two elements of the 

set produces another element of the set. If an element outside the set is produced, then 

the operation is not closed. 

• CFL are closed under Union. 

•  If L1 and If L2 are two context free languages, their union L1 ∪ L2 will also be 

context free. 

• Ex: L1 = { anbncm | m >= 0 and n >= 0 } and L2 = { anbmcm | n >= 0 and m >= 0 } 

L1 ∪ L2 = { anbncm ∪anbmcm | n >= 0, m >= 0 } is also context free. 

L1 says number of a’s should be equal to number of b’s and L2 says number of b’s 

should be equal to number of c’s. Their union says either of two conditions to be true. 

So it is also context free language. 

• CFL are closed under Concatenation 

•  If L1 and If L2 are two context free languages, their concatenation L1.L2 will also be 

context free. 

• Ex:  L1  =  {  anbn |  n  >=  0  }  and  L2  =  {  cmdm |  m  >=  0  } 

L3 = L1.L2 = { anbncmdm | m >= 0 and n >= 0} is also context free. 

• L1 says number of a’s should be equal to number of b’s and L2 says number of c’s 

should be equal to number of d’s. Their concatenation says first number of a’s should 

be equal to number of b’s, then number of c’s should be equal to number of d’s. So, 

we can create a PDA which will first push for a’s, pop for b’s, push for c’s then pop 

for d’s. So it can be accepted by pushdown automata, hence context free. 

• CFL are closed under Kleen Closure 

If L1 is context free, its Kleene closure L1* will also be context free. For example, 

L1 = { anbn | n >= 0 } 

L1* = { anbn | n >= 0 }* is also context free. 

• CFL are not closed under Intersection 

Consider two languages L1= {an+1bn+1cn, where n, l>= 0} and L2 == {anbncn+k, where n, k >= 

0}. 

Consider L = L1 ∩ L2 

So, L = an+1bn+1cn Ç anbncn+k = anbncn, where n >= 0. 
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anbncn is a context sensitive language not a context free. As one instance is proved not to be 

context free then we can decide that context free languages are not closed under intersection. 

CFL are not closed under Intersection and Complementation. 

From the set theory, we can prove L1 Ç L2 = L1 UL2. (D’ Morgan’s Law) If the 

union of the complements of L1 and L2 are closed, i.e., also context free, then the LHS will 

also be context free. But we have proved that L1 Ç L2 is not context free. We are getting a 

contradiction here. So, CFLs are not closed under complementation. 

 

 

 

PUMPING LEMMA FOR CFL 

Let L be a CFL. Then, we can find a natural number n such that 1) Every z ∈  L where|z|>=n 

and z can be written as z = uvwxy, for some strings u,v,w,x,yi) | vx | >=1 ii) | vwx | <= n and 

uviwxiy∈ L for all i>= 0 

Note: Method to test a language is CFL or not. 

• Step I: Assume that L is context free. Find a natural number such that | z | >=n. 

• Step II: So, we can write z = uvwxy for some strings u, v, w, x, y. 
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• Step III: Find a suitable k such that uviwxiy is not in L. This is a contradiction, and 

so L is not context free. 

Ex: Using Pumping Lemma, Show that L = {anbncn where n >=1} is not CFL 

The given language is L = {anbncn where n >=1} 

L={ab, aabbcc, aaabbbccc,….} 

Let z=aabbcc=uvwxy 

Where u=a,v=a,w=b,x=b,y=cc 

When i=0, uviwxiy=uwy=abcc  is not in L,  Therefore L is not a CFL 

Ex: ST L={ap:p is a prime number} is not CFL 

 

 
 

Ex: Prove that the language L = {ai2/i ≥ 1 } is not context free. 

 

 

 
APPLICATIONS OF CONTEXT-FREE GRAMMAR 

• The compiler is a program that takes a program written is the source language as input 

and translates it into an equivalent program in the target language. 

• Syntax analysis in an important phase in the compiler design. 

• In this phase, mainly grammatical errors called syntax errors are checked.The syntax 

analyzer (parser) checks whether a given source program satisfies the rules 

implied by context-free grammar or not. 

•  If it satisfies, the parser creates the parse tree of that program. Otherwise, the parser 

gives the error messages 

• CFGs are used in speech recognition and also in processing spoken words. 

 

 
Ex1: 

In C language, an identifier is described by the following CFG. 

• The definition of an identifier in a programming language is 

Letter A | B | . . . | Z | a | b | ... | z 

Digit 0 | 1 | . . . | 9 idletter (letter | digit)* 

 ASSIGNMENT-3 

1. Construct a CFG for the following 

a) Set of strings of 0 and 1 where consecutive 0 can occur but no consecutive 1 can 
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occur. 

b) Set of all (positive and negative) odd integers. 

c) Set of all (positive and negative) even integers. 

2. Check whether the following grammar is ambiguous or not. 

S → a/Sa/bSS/SSb/SbS, W=baababaa 

3. Simplify the following CFG. 

S → AaB/aaB, A → D, B → bbA/∈, D → E, E → F, F → As 

4. Convert the following grammar into CNF. 

E → E + T/T, T → (E)/a 

5. Convert the following grammar into GNF. 

S → A, A → aBa/a, B → bAb/b 
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Unit-4: Push-Down Automata 

Limitations of FA: 

• The memory capability of Finite Automata is very limited. 

• It can memorize the current input symbol. 

• It cannot memorize previously processed symbols. 

• Hence, by adding memory concept to FA, we will get Push down Automata. 

• PDA is the same as Finite Automata with the attachment of an auxiliary amount of 

storage as a stack. 

Block Diagram of PDA: 
 
 

 
• A PDA consists of four components: 

• 1) An input tape, 2) a reading head, 3) a finite control and 4) a stack. 

• Input tape: The input tape contains the input symbols. The tape is divided into a 

number of squares. Each square contains a single input character. The string placed 

in the input tape is traversed from left to right. The two end sides of the input string 

contain an infinite number of blank symbols. 

• Reading head: The head scans each square in the input tape and reads the input 

from the tape. The head moves from left to right. The input scanned by the reading 

head is sent to the finite control of the PDA. 

• Finite control: The finite control can be considered as a control unit of a PDA. An 

automaton always resides in a state. The reading head scans the input from the 

input tape and sends it to the finite control. A two-way head is also added with the 

finite control to the stack top. Depending on the input taken from the input tape and 

the input from the stack top, the finite control decides in which state the PDA will 
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move and which stack symbol it will push to the stack or pop from the stack or do nothing on 

the stack. 

• Stack: A stack is a temporary storage of stack symbols. Every move of the PDA indicates 

one of the following to the stack 

• Push: One stack symbol may be added to the stack 

• Pop: One stack symbol may be deleted from the top of the stack. In the stack, there is always 

a symbol z0 which denotes the bottom of the stack. 

• Def: Push Down Automata 

A PDA consists of a 7-tuple M = (Q, Σ, G, δ, q0, z0, F), Where 

Q: Finite set of states. 

Σ: Finite set of input symbols. 

Γ: Finite set of stack symbols. 

δ: Q X(Σ U {ε}) XΓ*
 QXΓ* is a Transition function q0: Initial 

state of the PDA. 

z0: Stack bottom symbol. F: Final 

state of the PDA. 

• PDA has 2 alphabets: 

• a) An input alphabet ∑ 

• b) A stack alphabet Γ 

Moves on PDA: A move on PDA may indicate: 

• An element may be added to the stack (q, a, b) = (q, ab) 

• An element may be deleted from the stack: (q, a, b) = (q, ε) and 

• There may or may not be a change of state. 

 
 

• δ(q, a, b) = (q, ab) indicates that in the state q on seeing a, a is pushed onto the 

stack. There is no change of state. 

• δ(q, a, b) = (q, ε) indicates that in the state q on seeing a the current top symbol 

b is deleted from the stack. 

• δ(q, a, b) = (q1, ab) indicates that a is pushed onto the stack and the state is 

changed to q1. 

GRAPHICAL REPRESENTATION OF PDA: 
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• Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA where Q = {p, q}, ∑ = {a, b, c}, Γ = {a, b}, q0 = q, F 
= {p}, and δ is given by the following equations: 

δ(q, a, z0) = {(q, az0)} /*Push*/ 

δ(q, b, z0 ) = {(q, bz0)} /*Push*/ 

δ(q, a, a) = {(q, aa)} 

δ(q, b, a) = {(q, ba)} 

δ(q, a , b) = {(q, ab)} 

δ(q, b, b) = {(q, bb)} 

δ(q, c, z0) = {(p, z0)} /* Neither Push nor Pop*/ 

δ(q, c,a) = {(p, a)} 

δ(q, c, b) = {(p,b)} 

δ(p, a, a) = {(p, ε)} /*Pop*/ 

δ(p, b, b) = {(p, ε)} /*pop*/ 
 

 

 
 

INSTANTANEOUS DESCRIPTION OF PDA: 

• During processing, the PDA moves from one configuration to another configuration. 



 

CSE,NRCM                                                              Page 95                     T.Rupa Rani,Assistant Professor  

At any given instance, the configuration of PDA is expressed by the current state, the 

input symbol, and the content of stack. 

• The configuration is expressed as a triple (q, x, y), where 

q- current state. 

x - input string to be processed. 

y- is the content of the stack where the leftmost symbol corresponds to top of stack, 

and the rightmost is the bottom element. 

Ex: When string ababcbcb is processed, the instantaneous description is as shown below. 

δ(q, ababcbab, z0) 

⇒δ (q, babcbab, az0) 

⇒δ(q, abcbab, baz0) 

⇒δ(q, bcbab, abaz0) 

⇒δ(q, cbab, babaz0) 

⇒δ(p, bab, babaz0) 

⇒δ(p, ab, abaz0) 

⇒δ(p, b, baz0) 

⇒ (p, ε, az0) 

LANGUAGE ACCEPTANCE BY PDA: 

A language can be accepted by a PDA using two approaches: 

1. Acceptance by final state: The PDA accepts its input by consuming it and finally it enters 

the final state. 

2. Acceptance by empty stack: On reading the input string from the initial configuration for 

some PDA, the stack of PDA becomes empty. 

Design a PDA which accepts the language L={anbn/n>=1} 

• Transition Diagram 
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• Transition functions 

δ(q0, a, Z0) = {(q0, aZ0)} /*Push a*/ 

δ(q0, a, a) = {(q0, aa)} /*Push a*/ 

δ(q0, b, a) = {(q1, ε)} /* Pop a and change the state*/ 

δ(q1, b, a) = {(q1, ε)} /*Pop a*/ 
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δ(q1, ε, Z0) = {(qf, Z0)} /*change to final state and halt*/ 

LANGUAGE ACCEPTANCE BY PDA: 

Test whether the string aaabbb is accepted or not using 

(a) Stack Empty Method (b) Final State Method 
 
 
 
 

Stack Empty Method: 
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LANGUAGE ACCEPTANCE BY PDA: 

Final State Method 

δ(q0, aaabbb, Z0) 

⇒δ (q0, aabbb, aZ0) 

⇒δ(q0, abbb, aaZ0) 

⇒δ(q0, bbb, aaaZ0) 

⇒δ(q1, bb, aaZ0) 

⇒δ(q1, b, aZ0) 

⇒δ(q1, ε , Z0) 

⇒δ(qf, ε, Z0) 

⇒string is accepted as PDA reached to final state and string is empty. 

Ex: Design a PDA which accepts equal number of a’s and b’s over Σ = {a, b}. 
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Consider a string abbbaa 

 
 
 
 
 
 

 
 
 
 

Ex: Design a PDA that accepts L={0n12n/n>=1} 
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Ex: Design a PDA that accepts L={a3bncn/n>=0} 
 
 
 
 

 

 
 

Ex: Design a PDA that accepts L={wcwr / w is in (a+b)*} 
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Ex: Design a PDA which accepts L={WWR|W is in (a+b)*} 

Transition Diagram 

 

Transition Functions 

 δ(q0, a, Z0) = (q0, aZ0) 

• δ(q0, b, Z0) = (q0, bZ0) 

• δ(q0, a, a) = (q0, aa) 

• δ(q0, a, a)=(q1, ε) 

• δ(q0, b, b) = (q0, bb) 

• δ(q0, b, b)=(ql, ε) 

• δ(q0, a, b) = (q0, ab) 

• δ(q0, b, a) = (q0, ba) 

• δ(q1, a, a) = (ql, ε) 

δ(ql, b, b) = (q1, ε), δ(q1, ε, Z0) = (qf, Z0) 
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CONSTRUCTION OF PDA FROM CFG: 

• Step 1 − Convert the productions of the CFG into GNF. 

• Step 2 − The PDA will have only one state {q}. 

• Step 3 − the start symbol of CFG will be the start symbol in the PDA. 

• Step 4 − All non-terminals of the CFG will be the stack symbols of the PDA and all the 

terminals of the CFG will be the input symbols of the PDA. 

• Step 5 − For each production in the form A → aX make a transition δ (q, a, A)=(q,X). 

• Step 6- For each production in the form A → a make a transition δ (q, a, A)=(q, ε). 

Ex: Convert the following CFG in to PDA SaAA, AaS/bS/a 

Sol: The grammar is in GNF 

For SaAA: δ (q, a, S)=(q,AA). 

For AaS : δ (q, a, A)=(q,S). 

For AbS : δ (q, b, A)=(q,S) 

For Aa :δ (q, a, A)=(q, ε). 

For A → aX :δ (q, a, A)=(q,X). 

For A → a :δ (q, a, A)=(q, ε) 

The Equivalent PDA: 

δ (q, a, S)=(q,AA). 

δ (q, a, A)=(q,S). 

δ (q, b, A)=(q,S) 

δ (q, a, A)=(q, ε) 
 

CONSTRUCTING CFG FOR GIVEN PDA 

• To convert the PDA to CFG, we use the following three rules: 

• R1: The productions for start symbol S are given by S ➔ [qO, ZO, q] for each state q in 

Q. 

• R2: Each move that pops a symbol from stack with transition as δ(q, a, Zi) = (q1, ε) 

induces a production as [q, Zi, q1] ➔ a for q1in Q. 

• R3: Each move that does not pop symbol from stack with transition as 

• δ (q, a, ZO) = (q , Z1Z2 Z3Z4…..) induces a production as [q, ZO, qm]  a[ql, Zl q2] [q2, Z2 

q3] [q3, Z3 q4] [q4, Z4 q5]…[qm-l, Zmqm] for each qi in Q, where l <i< m. 
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• After defining all the rules, apply simplification of grammar to get reduced grammar 

Ex:Give the equivalent CFG for the following PDA M = {{q0 , q1 },{a, b}, {Z, ZO}, δ, qO, ZO} 

where δ is defined by 

δ(qO, b, ZO) = (qO, ZZO)δ(qO, ε, ZO) = (qO, ε)δ(qO, b, Z) = (qO, ZZ) 

δ(qO, a, Z) = (q1, Z)δ(q1, b, Z) = (q1, ε)δ(q1, a, ZO) = (qO, ZO) 

Solution: The states are qO andql, and the stack symbols are Z and ZO. 

The states are {S, [qO, ZO, qO], [qO, ZO, q1], [q1, ZO, qO], [q1, ZO, ql], [qO, Z, qO], [qO, Z, ql], [ql, Z, 

qO], [q1, Z, q1]}. S- Productions are given by Rule 1 

S  [qO, ZO, qO] | [qO, ZO, q1] 

(1) The CFG for δ(qO, b, ZO) = (qO, ZZO) is obtained by rule 3 

[qO, ZO, qO]  b [qO, Z, qO] [qO, ZO, qO] 

[qO, ZO, qO]  b [qO, Z, q1] [q1, ZO, qO] 

[qO, ZO, q1]  b [qO, Z, qO] [qO, ZO, q1] 

[qO, ZO, q1] b [qO, Z, q1] [q1, ZO, q1] 

(2) The CFG for δ(qO, ε, ZO) = (qO, ε) is obtained by rule 2 [qO, ZO, qO] ε 

(3) The CFG for δ(qO, b, Z) = (qO, ZZ) is obtained by rule 3 

[qO, Z, qO]  b [qO, Z, qO] [qO, Z, qO] 

[qO, Z, qO]  b [qO, Z, q1] [q1, Z, qO] 

[qO, Z, q1]  b [qO, Z, qO] [qO, Z, q1] 

[qO, Z, q1]  b [qO, Z, q1] [q1, Z, q1] 

(4) The CFG for δ(qO, a, Z) = (q1, Z) is obtained by rule 3 

[qO, Z, qO]  a [q1, Z, qO] 

[qO, Z, q1]  a[q1, Z, q1] 

(5) The CFG for δ(q1, b, Z) = (q1, ε) is obtained by rule 2 

[q1, Z, q1]  b 

(6) The CFG for δ(q1, a, ZO) = (qO, ZO) is obtained by rule 2 

[ql, ZO, qO]  a [qO, ZO, qO] 
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Unit-5: Turing Machine 

Limitations of Finite State Machine/Finite Automata: 

• Can remember only current symbol 

• Cannot remember previous long sequence of input 

Limitations of Pushdown Automata: 

• It uses stack to remember any long input sequence 

• Accepts a larger class of languages than that of FA, Computation power is limited 

• To overcome the above limitations, Alan Turing has proposed a model called a Turing 

Machine(TM) with a two-way infinite tape. The tape is divided into cells, each of 

which can hold only one symbol. The input of the machine is a string w=w1w2w...wn 

initially written on the left most portion of the tape, followed by an infinite sequence 

of blanks B. 

• The machine is able to move a read/write head left and right over the tape as it 

performs computation. It can read and write symbols on the tape as it pleases. 
 

 B B. W1. W2   Wn B B  

 
 

 
BLOCK DIAGRAM OF TURING MACHINE 

 

 
It is a simple mathematical model of a general purpose computer. It is capable of 

performing any calculation which can be performed by any computing machine. Hence this 
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model is popularly known as “Turing Machine”. 

FEATURES OF TM: 

• It has external memory which remembers arbitrarily long sequence of input. 

• It has unlimited memory capability. 

• The model has a facility by which the input at left or right on the tape can be read 

easily. 

• The machine can produce certain output based on its input. In this machine there is 

no distinction between input and output symbols. 

• The TM can be thought of as a finite state automata connected to a read or write 

head, 

• It has one tape which is divided into a number of cells. Each cell can store only one 

symbol. 

• The read or write head can examine one cell at a time. 

• In one move the machine examine the present symbol under the head on the tape 

and present state of an automaton to determine: 

• A new symbol should be written on the tape in the cell under the head 

• The head moves one cell either left(L) or right(R), The next state of the automata. 

• Whether to halt or not. 

DEF: TURING MACHINE: 

• A TM is expressed as a 7-tuple (Q, T, B,∑, δ, q0, F) where: 

• Q-finite set of states 

• T -tape alphabet (symbols which can be written on Tape) 

• B∈ T -blank symbol (every cell is filled with B except input alphabet initially) 

• ∑ -the input alphabet (symbols which are part of input alphabet) 

• δ :Q × T → Q × T × {L,R} transition function which maps. 

• q0 -the initial state 

• F -the set of final states. 

INSTANTANEOUS DESCRIPTION OF TM 

• ID of TM is (l,q,r) where 

• l- tape contents left to the head of TM 
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• r- tape contents right to the head of TM including the symbol under head and 

• q- current state 
 

Moves: At any given time the move of TM depends on i) Current state and ii) input symbol 

i.e., (q,a). the o/p of move would be (q1, b, L) Where q1 = next state, b= symbol to be 

replaced by a and L= move left one symbol. 

Ex: δ(qi,a)= ( qj,b,L) i.e., in the state qi on receiving a symbol a , then change to a new state 

qj , replace a by b and the move left. 

Acceptance or Rejection by TM: 

• Let us assume the final Configuration of TM is (u,q,w) 

• Accept: If q ∈ F 

• Reject: If q ∉ F and /or next moves are not defined/loops 

• If either accept or reject then TM halts(Stops) 

TM as Language Accepter: 

• M accepts w iff the execution of M on w terminating and ends in the accepting state 

• M rejects w iff the execution of M on w terminating and ends in the non accepting 

state 

• M does not accept w iff M rejects or M loops on w, 

Ex: Write IDs for the following TM 

δ( q0,a)= (q0,X,R), δ( q0,b)= (q0,b,R), δ( q0,B)= (q1,B,L), δ( q1,b)= (q1,Y,L) , δ( q1,X)= (q1,X,L), δ( 
q1,B)= (q2,B,H) and string w=abba. 

 
 

 

• Where l=ab l=abb 

r=abb r=bb 

Current state=q current state=q1 
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B B B a b b a B B B 

Current state= q0 
 
 

B B B X b b a B B B 

Current state= q0 
 
 

B B B X b b a B B B 

Current state= q0 
 
 

B B B X b b a B B B 

Current state= q0 
 
 

B B B X b b X B B B 

Current state= q0 
 
 

B B B X b b X B B B 

Current state= q1 
 
 

B B B X b b X B B B 

Current state= q1 
 
 

B B B X b Y X B B B 

Current state= q1 
 
 

B B B X Y Y X B B B 

Current state= q1 
 
 
 
 

B B B X Y Y X B B B 

Current state= q1 
 

δ( q1,B)= (q2,B,H) 
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• Representation of TM: A TM can be represented by means of Transition Table and 

Transition diagram. 

• Representation of TM using Transition Table: The Transition table for the above TM 

is as given below. 
 

δ a b X Y B 

q0 (q0,X,R) (q0,b,R) -- - (q1,B,L) 

q1 -- (q1,Y,L) (q1,X,L) - (q2,B,H) 

 

Ex: Construct a TM for language consisting of strings having any no of b’s and even no of 

a’s defined over {a,b}. 

 
Design a TM to accept strings formed with 0 and 1 and having substring 000 
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Ex: Design TM for Multiplication of two integers 
 

 

 

Ex: Design TM for f(m,n)=m-n, m>=n 
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CONVERSION OF REGULAR EXPRESSION TO TM 

• Step1: Convert the RE to an equivalent Automaton without epsilon transitions 

• Step2: Change both the +-initial and final states of the Automata to an intermediate 

state 

• Step3: insert a new initial state with a transition (B,B,R) to the Automata’s initial 

state 

• Step4: convert the transitions with label a to (a,a,R) 

• Step5: insert a new final state with a transition (B,B,R) from Automata’s final state to 

the new final state. 
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