

CSE,NRCM Page 1 T.Rupa Rani,Assistant Professor

FORMAL LANGUAGES AND AUTOMATA
THEORY

Course Objectives

 To provide introduction to some of the central ideas oftheoreticalcomputer science from the

perspective of formal languages.

 Tointroducethefundamentalconceptsofformallanguages,grammarsandautomata theory.

 Classifymachinesbytheir powertorecognizelanguages.

 Employfinitestatemachinestosolveproblemsincomputing.

 Tounderstanddeterministicandnon-deterministicmachines.

 Tounderstandthedifferencesbetweendecidabilityand undecidability.

Course Outcomes

 Abletounderstandtheconceptofabstractmachinesandtheirpowertorecognizethe languages.

 Abletoemployfinitestatemachinesformodelingandsolvingcomputingproblems.

 Abletodesigncontextfreegrammars forformal languages.

 Abletodistinguishbetweendecidabilityandundecidability.

 Abletogainproficiencywith mathematicaltoolsandformalmethods.

MODULE-I

Introductionto Finite Automata: Structural Representations, Automata and Complexity, the Central Concepts

of Automata Theory–Alphabets, Strings, Languages, Problems.

Nondeterministic Finite Automata: Formal Definition, an application, Text Search, Finite Automata with

Epsilon-Transitions.

DeterministicFiniteAutomata:DefinitionofDFA,HowaDFAProcessStrings,The

languageofDFA,ConversionofNFAwith€-transitionstoNFAwithout€-transitions.

CSE,NRCM Page 2 T.Rupa Rani,Assistant Professor

ConversionofNFAto DFA,Mooreand Melaymachines.

MODULE-II

Regular Expressions: Finite Automata and Regular Expressions, Applications of Regular Expressions,

Algebraic Laws for Regular Expressions, Conversion of Finite Automata toRegular Expressions.

Pumping Lemma for Regular Languages: Statement of the pumping lemma, Applications of the Pumping

Lemma.

Closure Properties of Regular Languages: Closure properties of Regular languages, Decision Properties of

Regular Languages, Equivalence and Minimization of Automata.

MODULE-III

Context-Free Grammars: Definition of Context- Free Grammars, Derivations Using a Grammar, Left

most and Right most Derivations, the Language of a Grammar, Sentential Forms, Parse Tress,

 ApplicationsofContext-FreeGrammars,Ambiguityin GrammarsandLanguages.

Push Down Automata: Definition of the Push down Automaton, the Languages of a PDA, Equivalence

of PDA's and CFG's, Acceptance by final state, Acceptance by empty stack, Deterministic Pushdown

Automata. From CFG to PDA, From PDA to CFG.

MODULE-IV
Normal Forms for Context-Free Grammars: Eliminating useless symbols, Eliminating €- Productions.

Chomsky Normal form, Griebech Normal form.

PumpingLemmaforContext-FreeLanguages:Statementofpumpinglemma, Applications.

ClosurePropertiesofContext-FreeLanguages:ClosurepropertiesofCFL’s,Decision Properties of CFL's

TuringMachines:IntroductiontoTuringMachine,FormalDescription,Instantaneousdescription, The language of a

Turing machine

MODULE-V

TypesofTuringmachine:Turingmachinesand halting

CSE,NRCM Page 3 T.Rupa Rani,Assistant Professor

Undecidability: Undecidability, A Language that is Not Recursively Enumerable, An Undecidable

ProblemThat is RE, Undecidable Problems about Turing Machines, Recursive languages,

Propertiesofrecursive languages, Post'sCorrespondenceProblem, ModifiedPost Correspondence

problem, Other Undecidable Problems, Counter machines.

TEXTBOOKS:

1. IntroductiontoAutomataTheory,LanguagesandComputation,3rd Edition,John

E.Hopcroft, Rajeev Motwani, Jeffrey D.Ullman, Pearson Education.

2. TheoryofComputerScience–Automatalanguagesandcomputation,Mishraand

Chandrashekaran, 2nd edition, PHI.

REFERENCEBOOKS:

1. Introductionto Languagesand theTheoryofComputation,JohnCMartin,TMH.

2. IntroductiontoComputerTheory,DanielI.A. Cohen,JohnWiley.

3. ATextbookonAutomataTheory,P.K.Srimani,NasirS.F.B,CambridgeUniversityPress.

4. IntroductiontotheTheoryofComputation,MichaelSipser,3rdedition,Cengage Learning.

5. IntroductiontoFormallanguagesAutomataTheoryandComputationKamala

Krithivasan, Rama R, Pearson.

CSE,NRCM Page 4 T.Rupa Rani,Assistant Professor

Unit-1: Finite Automata

AUTOMATA THEORY:

• Automaton = an abstract computing device. A mathematical device which acts as a computer

for computation.

• Note: A “device” need not even be a physical hardware.

• The term "Automata" is derived from the Greek word "αὐτόματα" which means "self-acting".

• Automaton is singular and Automata is plural.

Why study automata theory? or Applications of automata Theory

• The lexical analyzer and Syntax analyzers of a typical Compiler

• Software for designing and checking the behavior of digital circuits

• Software for scanning large bodies of text such as collections of Web pages to find

occurrences of words, phrases or other patterns.

• The software for Natural Language Processing take the help of an automata theory (Chat

boat Application).

INTRODUCTION TO FINITE AUTOMATA:

Symbol:A Symbol is an abstract entity. It cannot be formerly defined as points in geometry.

Ex: letters or digits or special symbols like !,@,#,$..

Alphabet: A finite set of symbols denoted by ∑.

Ex: ∑= {a,b,..z} is called english alphabet

∑={0,1} is called Binary Alphabet

String/Word: Finite sequence of letters from the alphabet. It Is denoted by S or W

Ex: S= computer is a string defined over ∑ ={a,b,c,..z}

Ex: W=010100 is a binary word defined over ∑={0,1}

Length of a string: It is the number of symbols present in a given string. It is denoted by |S|.

Ex: S= computer then |S|=8

Empty/Null string (ε) :If |S|= 0 then it is called an empty string. It is denoted by λ or ε.

Powers of an alphabet (∑k):if ∑ is an alphabet then ∑k is the set of strings of length k.

Ex: ∑0 ={ε }, ∑1 ={0,1 }, ∑2 ={00,11,01,10 }

Kleene /Star Closure (∑*): The infinite set of all possible strings of all possible lengths over ∑ including

ε.i.e., ∑* = ∑0 ∪ ∑1 ∪ ∑2 ∪ where ∑k is the set of all possible strings of length k.

CSE,NRCM Page 5 T.Rupa Rani,Assistant Professor

Ex: If ∑ = {a, b} then ∑* = {ε, a, b, aa, ab, ba, bb, }

Positive Closure (∑+):The infinite set of all possible strings of all possible lengths over ∑ excluding

ε.i.e., ∑+ = ∑1 ∪ ∑2 ∪ where ∑k is the set of all possible strings of length k.

Ex: If ∑ = {a, b} then ∑+ = { a, b, aa, ab, ba, bb,… }

Strings Concatenation:Let S1 and S2 be two strings. The Concatenation of S1 and S2 is adding the

string S2 at the of string S1.

Ex: S1= Computer, S2=Science then S1S2=ComputerScience and S2S1=Science Computer

Language:A non Empty Subset of ∑* is called a language. It is denoted by L.

Ex: Let ∑={0,1}

∑* ={ε ,0,1,00,11,01,10,111,000,101,011,..}

L={0,00,10,110,…} is called even binary numbers language.

OPERATIONS ON LANGUAGES:

If L1, L2 are two languages then

Union operation: It is denoted as L1UL2 or L1 + L2 , L1/L2 and is defined as L1UL2={s|s is in L1 or s is

in L2}.

Intersection operation: It is denoted as L1∩L2 ,and is defined as L1∩L2={s|s is in L1 and s is in L2}.

Concatenation operation: It is denoted as L1L2 and is defined as L1L2 = { xy | L1 є x and L2 є y}

Difference operation:It is denoted as L1-L2 ,and is defined as L1-L2={s|s is in L1 and s is not in L2}.

Keen Closure operation (L*):It is the language consisting of all words that are Concatenations of 0 or

more words in the original language (including null string).

Problems in Automata Theory: It is the question of deciding whether a given string is a member of

some particular language. Precisely, if ∑ is an alphabet and L is a language over ∑ then the problem L

is a given a string W in ∑* decide whether or not w is in L.

BLOCK DIAGRAM OF FINITE AUTOMATA:

CSE,NRCM Page 6 T.Rupa Rani,Assistant Professor

 An automaton with a finite no of states is called finite automaton or Finite state machine.

It consists of three components 1) Input Tape 2) Read/Write Head 3) Finite Control

• Input Tape: i) the input tape is divided in to squares, each square contains a single symbol

from the input alphabet ∑. ii) The end squares of each tape contain end markers different

from symbols of ∑. iii) Absence of end markers indicate the tape is of infinite length. iv) The

symbols between end markers is the input string to be processed.

• Read/Write Head: The R/W head examines only one square at a time and can move one

square either to the left or the right.

• Finite control: Finite control can be considered as the control unit of an FA. An automaton

always resides in a state. The reading head scans the input from the input tape and sends it

to finite control. In this finite control, it is decided that ‘the machine is in this state and it is

getting this input, so it will go to this state’. The state transition relations are written in this

finite control.

DEF: FINITE AUTOMATA

A finite automaton is a collection of 5-tuple M=(Q, ∑, δ, q0, F), where:

• Q: finite set of states

• ∑: finite set of the input symbol

• q0: initial state

• F: Set of final states

• δ: QX ∑  Q is a Transition function

REPRESENTATION OF FA: Finite automata can be represented in two ways: (i) Graphical

representation and (ii) Tabular representation.

Graphical Representation of FA:

CSE,NRCM Page 7 T.Rupa Rani,Assistant Professor

• It is called as transition graph or diagram

• It is a collection of states and transitions

• A state is represented by a circle

• A beginning/initial state is represented as

q2

• A final state is represented as

• A directed edge indicates the transition from one state to another state and edges are labeled

with input symbols.

• EX: GRAPHICAL REPRESENTATION OF FA

Tabular Representation: Transition table

• It is a table of order mXn.

• First row indicates inputs and first column indicates states and the corresponding entities are

outputs of a transition function.

• Start state is marked with arrow and final state is marked with * or circle.

δ 0 1

q1 q1 q2

q2 q3 q2

q3 -- q3

Ex: Consider an automata M=(Q, ∑, δ, q0, F) where Q={q0,q1,q2}, ∑={a,b}, F={q2} , δ(q0,a) =q1,

δ(q0,b)=q2, δ(q1,a)=q2, δ(q1,b)=q0, δ(q2,a)=q2, δ(q2,b)=q2. Draw transition diagram and

transition table.

q

q0

0 1 1

q
1

1

q
2

0 q

3

CSE,NRCM Page 8 T.Rupa Rani,Assistant Professor

PROPERTIES OF TRANSITION FUNCTION (δ):

• δ(q,ε)=q i.e., If the input symbol is null for a given state q, it remains in the same state.

• For all strings w and input symbol a, δ(q, aw) = δ(δ(q,a),w)

ACCEPTANCE OF A STRING BY FA: A string w is accepted by a finite automata M= (Q,∑,δ,q0,F) if

δ(q0,w) = q for some q є F.

Ex: Now let us consider the finite state machine whose transition function δ is given in the form of

transition table. Where Q= {q0,q1,q2,q3}, ∑={0,1} & F={q0}.Test whether the string 110101 is accepted

or not

• Sol:

δ(q0,110101)= δ(q1,10101)= δ(q0,0101)= δ(q2,101) = δ(q3,01)= δ(q1,1)= δ(q0, ε) = q0

Hence
1 1 0 1 0 1

δ 0 1

*q0 q2 q1

q1 q3 q0

q2 q0 q3

q3 q1 q2

CSE,NRCM Page 9 T.Rupa Rani,Assistant Professor

q0q1q0q2q3q1q0
Here q0 is not a final state. Hence the string is rejected.

 TYPES OF FINITE AUTOMATA: There are two types of finite automata

DFA-Deterministic Finite Automata

NFA -Nondeterministic Finite Automata

DFA: It refers to deterministic finite automata. Deterministic refers to the uniqueness of the

computation. In the DFA, the machine goes to one state only for a particular input character.

DFA does not accept the null move.

NFA:It is used to transmit any number of states for a particular input. It can accept the null

move.

• Some important points about DFA and NFA:

• Every DFA is NFA, but the converse need not be true i.e., every NFA need not be DFA.

• There can be multiple final states in both NFA and DFA.

• DFA is used in Lexical Analysis in Compiler.

• Construction of NFA is easier than the construction of DFA

• To test string is Accepted or not easier in DFA than in NFA

DETERMINISTIC FINITE AUTOMATA (DFA):A DFA can be represented by a 5-tuple (Q, ∑, δ, q0, F) where

• Q is a finite set of states.

• ∑ is a finite set of symbols called the alphabet.

• δ is the transition function where δ: Q × ∑ → Q

• q0 is the initial state from where any input is processed (q0 ∈ Q).

• F is a set of Final states

• Design a DFA which accepts strings ending with 0 defined over ∑ = {0, 1}

Transition Diagram: Transition Table:

δ 0 1

q0 q1 q0

q1 q1 q0

CSE,NRCM Page 10 T.Rupa Rani,Assistant Professor

 Design a DFA to accept all strings starting with 0 defined over ∑ = {0, 1}

Transition Diagram: Transition Table:

Test whether the string 0101010 is accepted or not

• Design a FA which accepts strings starts with 1 and ends with 0 defined over ∑ = {0, 1}

Transition Diagram:

Transition Table:

δ 0 1

q0

q1

*q2

Test whether the string 11010101 is accepted or not

• Design a FA which accepts the only input 101 defined over ∑ = {0, 1}

Transition Diagram:

 0 1

q0 q1 q2

q1 q1 q1

q2 -- --

CSE,NRCM Page 11 T.Rupa Rani,Assistant Professor

Transition Table:

• Design FA which accepts even number of 0's and even number of 1's over ∑ = {0, 1}

Transition Diagram:

Transition Table:

 0 1

q0 q1 q3

q1 q0 q2

q2 q3 q1

q3 q2 q0

• Design FA which accepts odd number of 0's and odd number of 1's defined over ∑ = {0, 1}

Transition Diagram: Transition Table

• Design FA accepts even number of 0's and odd number of 1's defined over ∑ = {0, 1}

Transition Diagram: Transition Table

• Design FA which accepts odd number of 0's and even number of 1's defined over ∑ = {0, 1}

Transition Diagram: Transition Table

• Design FA which accepts the set of all strings with three consecutive 0's.

Transition Table:

• Design a DFA for L(M) = {w | w ε {0, 1}*} and W is a string that does not contain three

CSE,NRCM Page 12 T.Rupa Rani,Assistant Professor

consecutive 1's}.

• When three consecutive 1's occur the DFA will be:

Here two consecutive 1's or single 1 is acceptable, hence

The stages q0, q1, q2 are the final states. The DFA will generate the strings that do not

contain consecutive 1's like 10, 110, 101,. ... etc.

Transition Table:

• Design a FA which accepts the strings with an even number of 0's followed by single 1

Transition Diagram: Transition Table:



Practice Problems
 Design a FA with ∑ = {0, 1} accepts the strings with an even number of 0's followed

by single 1

CSE,NRCM Page 13 T.Rupa Rani,Assistant Professor

 Design a finite automata that recognizes i) even no of a’s ii) odd no of b’s defined

over ∑ = {a, b}

 Design a DFA that contains 001as a substring defined over ∑ = {0, 1}

 Design a FA to accept strings of a’s and b’s ending with abb defined over ∑ = {a, b}

 Design a DFA which accepts the strings starting with 1 and ending with 0.

 Obtain the DFA that recognizes the language L(M)={W/W is in {a, b c}* and W

contains the pattern abac}
 Design a DFA for the language L={0m1n: m>=0,n>=1}

 Design a DFA for the language L={0m1n: m>=1,n>=1}

 Note: Decimal to Binary

 { 0-0, 1-1, 2-10 , 3-11, 4-100, 5-101,

6-110, 7-111, 8-1000, 9-1001, 10-1010, 11-

1011, 12-1100, 13-1101, 14-1110,…….}

 Design a FA which checks whether a given binary number is even
 Design a FA that accepts the set of all strings that interpreted as binary

representation of an unsigned decimal number i) which is divisible by 2 ii) divisible

by 3, iii) which is divisible by 5.

Divisible by 2:

Divisible by 3:

Divisible by 4:
Divisible by 5:

Non-Deterministic Finite Automata (NFA):

 NFA stands for Non-Deterministic Finite Automata. It is easy to construct an NFA

than DFA for a given regular language.

 The finite automata are called NFA when there exist many paths for specific input

from the current state to the next state.

 Every NFA is not DFA, but each NFA can be translated into DFA.

 NFA is defined in the same way as DFA but with the following two exceptions, it

contains multiple next states, and it contains ε transition.

CSE,NRCM Page 14 T.Rupa Rani,Assistant Professor

Formal definition of NFA:

A NFA can be represented by a 5-tuple (Q, ∑, δ, q0, F) where

• Q is a finite set of states.

• ∑ is a finite set of symbols called the alphabet.

• δ: Q x ∑ →2Q is a transition function

• q0: initial state

• F: Set of final states

Ex: Design an NFA with ∑ = {0, 1} accepts all string ending with 01

Transition Table:

 0 1

q0 {q0,q1} {q0}

q1 -- {q2}

*q2 -- --

Ex: Design an NFA with ∑ = {0, 1} in which double '1' is followed by double '0'.

Transition Diagram:

Transition Table:

Ex: Design an NFA in which all the string contain a substring 1110

Transition Diagram:

CSE,NRCM Page 15 T.Rupa Rani,Assistant Professor

Transition Table:

Ex: Design an NFA with ∑ = {0, 1} accepts all string in which the third symbol from the right

end is always 0.

CONVERSION OF NFA to DFA:

• Let, M = (Q, ∑, δ, q0, F) is an NFA which accepts the language L(M). There should be

equivalent DFA denoted by M' = (Q', ∑', q0', δ', F') such that L(M) = L(M').

Steps for converting NFA to DFA:

• Step 1: Start from the initial state of NFA. Take the state with the ‘[]’.

• Step 2: place the next states for the initial state for the given inputs in the next

columns put them also in [].

• Step 3: If any new combination of state appears in next state column then take the

combination in the present state column.

• Step 4: If no new combination of state appears then stop the process.

• Step 5: The initial state for the constructed DFA will be the initial state of NFA.

• Step 6: The Final state(s) for the constructed DFA will be the combinations of states

containing at least one final state of NFA.

EX: CONVERT THE GIVEN NFA TO DFA

S.

No

DFA

NFA

1

The transition from a state is to a single

particular next state for each input symbol.

Hence it is called deterministic

The transition from a state can be to

multiple next states for each input

symbol. Hence it is called non-

deterministic.

2 Empty string transitions are not seen in

DFA.
NDFA permits empty string transitions.

CSE,NRCM Page 16 T.Rupa Rani,Assistant Professor

3

Backtracking is allowed in DFA In NDFA, backtracking is not always

possible.

4 Requires more space. Requires less space.

5

A string is accepted by a DFA, if it transits

to a final state.

A string is accepted by a NDFA, if at least

one of all possible transitions ends in a

final state.

 0 1

→q0 {q0} {q1}

q1 {q1,q2} {q1}

*q2 {q2} {q1,q2}

Now we will obtain δ' transition for state q0.

δ'([q0], 0) = [q0] δ'([q0], 1) = [q1] (new state generated)

δ'([q1], 0) = [q1, q2] (new state generated)

δ'([q1], 1) = [q1]

Now we will obtain δ' transition on [q1, q2].

δ'([q1, q2], 0) = δ(q1, 0) ∪ δ(q2, 0) = {q1, q2} ∪ {q2} = [q1, q2]

δ'([q1, q2], 1) = δ(q1, 1) ∪ δ(q2, 1) = {q1} ∪ {q1, q2} = {q1, q2} = [q1, q2]

The state [q1, q2] is the final state because it contains a final state q2.

CSE,NRCM Page 17 T.Rupa Rani,Assistant Professor

 0 1

→[q0] [q0] [q1]

[q1] [q1,q2] [q1]

*[q1, q2] [q1,q2] [q1,q2]

EX:NFA TO DFA CONVERSION

Now we will obtain δ' transition for state q0.

δ'([q0], 0) = {q0, q1} = [q0, q1] (new state generated)

 0 1

q0 {q0,q1} {q1}

*q1 -- {q0,q1}

CSE,NRCM Page 18 T.Rupa Rani,Assistant Professor

δ'([q0], 1) = {q1} = [q1] (new state generated)

The δ' transition for state q1 is obtained as:

δ'([q1], 0) = ϕ , δ'([q1], 1) = [q0, q1]

Now we will obtain δ' transition on [q0, q1].

δ'([q0, q1], 0) = δ(q0, 0) ∪ δ(q1, 0) = {q0, q1} ∪ ϕ = {q0, q1} = [q0, q1]

Similarly,

δ'([q0, q1], 1) = δ(q0, 1) ∪ δ(q1, 1) = {q1} ∪ {q0, q1} = {q0, q1} = [q0, q1]

As in the given NFA, q1 is a final state, then in DFA wherever, q1 exists that state

becomes a final state. Hence in the DFA, final states are [q1] and [q0, q1]. Therefore

set of final states F = {[q1], [q0, q1]}.

Even we can change the name of the states of DFA.

SupposeA = [q0] B = [q1] C = [q0, q1]

With these new names the DFA will be as follows:

NFA WITH EPSILON TRANSITIONS

Def: If any finite automata contain ε (null) move or transition, then that finite automaton is

called NFA with ∈ moves

 0 1

→[q0] [q0, q1] [q1]

*[q1] ϕ [q0, q1]

*[q0, q1] [q0, q1] [q0, q1]

CSE,NRCM Page 19 T.Rupa Rani,Assistant Professor

STATES

0

1

EPSILON

A {B, C} {A} {B}

B – {B} {C}

C {C} {C} –

CSE,NRCM Page 20 T.Rupa Rani,Assistant Professor

0 1 ε
A {E} {B} ∅

B ∅ {C}

C ∅ {D}

* D ∅ ∅

E {F} ∅

F {D} ∅

{D}

∅

∅

{B, C}

∅

EPSILON (∈) – CLOSURE:

• Epsilon closure for a given state X is a set of states which can be reached from the states X

with only (null) or ε moves including the state X itself. In other words, ε-closure for a state can

be obtained by union operation of the ε-closure of the states which can be reached from X

with a single ε move in recursive manner.

• For the above example ∈ closure are as follows :

• ∈ closure(A) : {A, B, C} , ∈ closure(B) : {B, C}, ∈ closure(C) : {C}

ε
1 1

1 B C D

A ε ε 0

0
E

0
F

CSE,NRCM Page 21 T.Rupa Rani,Assistant Professor

Construction of ∈ -NFA:

Ex: Construct ∈-NFA with e-transitions and it accepts strings of the

form{Onlm2o/n,m,o>=0},thatis,anynumberof0'sfollowedbyanynumberofl'sfollowed by any number

of 2's.

Transition Diagram:

Transition Table:

Ex: Design NFA for language L ={0KIk is multiple of 2 or 3}.

NFA for multiple of 3
NFA for multiple of 2

 0 1 2 ∈

q0 {q0} -- -- {q1}

q1 -- {q1} -- {q2}

*q2 -- -- {q2} --

CSE,NRCM Page 22 T.Rupa Rani,Assistant Professor

Conversion of∈ -NFA TO NFA or elimination of ∈ transitions

• Find ε-closure {qi} for all qi ∈ Q.

• Find δ^ (q,a)= ε-closure (δ (δ^ (q, ε),a)) =ε-closure (δ (ε-closure(q),a))

• Repeat Step-2 for each input symbol and each state of given NFA.

• Using the resultant states, the transition table for equivalent NFA without ε can be built.

• If the ε-closure of a state contains a final state then make the state as final.

Ex: Convert the following ∈ -NFA TO NFA

Solutions: We will first obtain

ε-closures of q0, q1 and q2 as follows:

ε-closure(q0) = {q0} , ε-closure(q1) = {q1, q2}

ε-closure(q2) = {q2}

Now the δ^transition on each input symbol is obtained as:

δ^ (q0, a) = ε-closure(δ(δ^(q0, ε),a)) = ε-closure(δ(ε-closure(q0),a)) = ε-closure(δ(q0, a))= ε-

closure(q1)

= {q1, q2}

δ^ (q0, b) = ε-closure(δ(δ^(q0, ε),b)) = ε-closure(δ(ε-closure(q0),b)) = ε-closure(δ(q0, b)) = Ф

δ^(q2, a) = ε-closure(δ(δ^(q2, ε),a)) = ε-closure(δ(ε-closure(q2),a)) = ε-closure(δ(q2, a))

= ε-closure(Ф) = Ф

δ^(q2, b) = ε-closure(δ(δ^(q2, ε),b)) = ε-closure(δ(ε-closure(q2),b))

= ε-closure(δ(q2, b)) = ε-closure(q2) = {q2}

Now we will summarize all the computed δ' transitions:

δ^(q0, a) = {q0, q1} δ^(q0, b) = Ф δ^(q1, a) = Ф , δ^(q1, b) = {q2} δ^(q2, a) = Ф , δ^(q2, b) = {q2} .

CSE,NRCM Page 23 T.Rupa Rani,Assistant Professor

State q1 and q2 become the final state as ε-closure of q1 and q2 contain the final state q2.

Ex: Convert the following ∈ -NFA TO NFA

The transition table is

CONVERSION FROM ε-NFA TO DFA

Step 1: If ε-closure(q0)= {P1,P2,..Pn} then [P1P2..Pn] becomes the starting state of DFA.

Step 2: Find δD ([P1P2..Pn] ,a)= ε-closure(δ(P1,P2,..Pn),a))

Step 3: If we found a new state, take it as current state and repeat step 2.

Step 4: Repeat Step 2 and Step 3 until there is no new state present in the transition table of DFA.

 a b

→q0 {q1, q2} Ф

*q1 Ф {q2}

*q2 Ф {q2}

CSE,NRCM Page 24 T.Rupa Rani,Assistant Professor

Step 5: Mark the states of DFA as a final state which contains the final state of NFA.

EX: CONVERT THE NFA WITH ε INTO ITS EQUIVALENT DFA.

Let us obtain ε-closure of each state.

ε-closure {q0} = {q0, q1, q2}

ε-closure {q1} = {q1}

ε-closure {q2} = {q2}

ε-closure {q3} = {q3}

ε-closure {q4} = {q4}

Now, let ε-closure {q0} = {q0, q1, q2} be state A.

Hence

δ'(A, 0) = ε-closure {δ((q0, q1, q2), 0) } = ε-closure {δ(q0, 0) ∪δ(q1, 0) ∪δ(q2, 0) }

= ε-closure {q3} = {q3} call it as state B.

δ'(A, 1) = ε-closure {δ((q0, q1, q2), 1) } = ε-closure {δ((q0, 1) ∪δ(q1, 1) ∪δ(q2, 1)}

= ε-closure {q3} = {q3} = B.

Now,

δ'(B, 0) = ε-closure {δ(q3, 0) } = ϕ

δ'(B, 1) = ε-closure {δ(q3, 1) }= ε-closure {q4} = {q4} i.e. state C

For state C: δ'(C, 0) = ε-closure {δ(q4, 0) } = ϕ

CSE,NRCM Page 25 T.Rupa Rani,Assistant Professor

δ'(C, 1) = ε-closure {δ(q4, 1) } = ϕ

CSE,NRCM Page 26 T.Rupa Rani,Assistant Professor

The DFA will be

Ex: Convert the given NFA with epsilon into its equivalent DFA

L= any no of a’s followed by any no of b’s followed by any no of c’s

Solution: Let us obtain the ε-closure of each state.

ε-closure(q0) = {q0, q1, q2}

ε-closure(q1) = {q1, q2}

ε-closure(q2) = {q2}

Now we will obtain δ' transition.

Let ε-closure(q0) = {q0, q1, q2} call it as state A.

δ'(A, 0) = ε-closure{δ((q0, q1, q2), 0)} = ε-closure{δ(q0, 0) ∪δ(q1, 0) ∪δ(q2, 0)}

= ε-closure{q0}= {q0, q1, q2}

δ'(A, 1) = ε-closure{δ((q0, q1, q2), 1)} = ε-closure{δ(q0, 1) ∪δ(q1, 1) ∪δ(q2, 1)}

= ε-closure{q1} = {q1, q2} call it as state B

δ'(A, 2) = ε-closure{δ((q0, q1, q2), 2)} = ε-closure{δ(q0, 2) ∪δ(q1, 2) ∪δ(q2, 2)}

= ε-closure{q2} = {q2} call it state C

Thus we have obtained

δ'(A, 0) = A δ'(A, 1) = B δ'(A, 2) = C

Now we will find the transitions on states B and C for each input.

Hence

CSE,NRCM Page 27 T.Rupa Rani,Assistant Professor

δ'(B, 0) = ε-closure{δ((q1, q2), 0)} =ε-closure{δ(q1, 0) ∪δ(q2, 0)} = ε-closure{ϕ} = ϕ

δ'(B, 1) = ε-closure{δ((q1, q2), 1)}= ε-closure{δ(q1, 1) ∪δ(q2, 1)} = ε-closure{q1}= {q1, q2} i.e. state B

itself

δ'(B, 2) = ε-closure{δ((q1, q2), 2)} = ε-closure{δ(q1, 2) ∪δ(q2, 2)} = ε-closure{q2} = {q2} i.e. state C

itself

Thus we have obtained

δ'(B, 0) = ϕ δ'(B, 1) = B δ'(B, 2) = C

Now we will obtain transitions for C:

δ'(C, 0) = ε-closure{δ(q2, 0)} = ε-closure{ϕ} = ϕ

δ'(C, 1) = ε-closure{δ(q2, 1)}= ε-closure{ϕ}= ϕ

δ'(C, 2) = ε-closure{δ(q2, 2)}= {q2}

As A = {q0, q1, q2} in which final state q2 lies hence A is final state. B = {q1, q2} in which the state q2

lies hence B is also final state. C = {q2}, the state q2 lies hence C is also a final state.

CSE,NRCM Page 28 T.Rupa Rani,Assistant Professor

MINIMIZATION OF DFA: REDUCTION OF NO OF STATES IN FA:

Any DFA defines a unique language but the converse is not true i.e., for any language there is a

unique DFA is not always true.

INDISTINGUISHABLE AND DISTINGUISHABLE STATES:

Two states p and q of a DFA are indistinguishable if δ(p,w) is in F => δ(q,w) is in F and δ(p,w) is not in

F => δ(q,w) is not in F

Two states p and q of a DFA are distinguishable if δ(p,w) is in F and δ(q,w) is not in F or vice versa.

DFA MINIMIZATION: MYHILLNERODE THEOREM

Algorithm:

Input − DFA, Output − Minimized DFA

Step 1 :For each pair [p,q] where p is in F and q is in Q-F, mark[p,q]=X

Step 2 :For each pair of distinct state [p,q] in FXF or (Q-F)X(Q-F) do

• if for some input symbol a, δ([p,q],a)=[r,s], if [r,s]=X then

 mark[p,q]=X

 Recursively mark all unmarked pairs which lead to [p,q] on input for all a is in ∑

• else

 For all input symbols a do

put [p.q] on the list for δ([p,q],a) unless δ([p,q],a)=[r,r]

Step 3: For each pair [p,q] which is unmarked are the states which are equivalent

Ex: Find minimum-state automaton equivalent to the transition diagram

CSE,NRCM Page 29 T.Rupa Rani,Assistant Professor

Transition Table:

 0 1

a b a

b a c

c d b

d d a

e d f

f g e

g f g

h g D

Q={a,b,c,d,e,f,g,h}F={d}NF={a,b,c,e,f,g,h}

Step1: FXNF={(d,a), (d,b), (d,c),(d,e),(d,f),(d,g),(d,h)}

Mark the above states as one is final and other is non final.

b

c

d X X X

e X

f X

g X

h X

 a b c d e f g

NFX NF={(a,b),(a,c),(a,e),(a,f),(a,g),(a,h),(b,c),(b,e),(b,f),(b,g),(b,h),(e,f),(e,g),(e,h),(f,g),(f,h),(g,h)}

CSE,NRCM Page 30 T.Rupa Rani,Assistant Professor

Step 2:

(a) Find the states that are distinguishable with a

δ([a, b], 0) = [b, a] δ([a, b], 1) = [a, c]

δ([a, c], 0) = [b, d] δ([a, c], 1) = [a, b] since [b,d]=X mark [a,c]=X

since [a,c]=X mark [a,b]=X

δ([a, e], 0) = [b, d] δ([a, e], 1) = [a, f] since[b,d]=X mark[a,e]=X

δ([a, f], 0) = [b, g] δ([a, f], D) = [a, e] since [a,e]=X mark [a,f]=X

δ([a, g], 0) = [b, f] δ([a, g], D) = [a, g]

δ([a, h], 0) = [b, g] δ([a, h], D) = [a, d] since[a, d]=X mark[a,h]=X

(b) Find the states that are distinguishable with b

δ([b, c], 0) = [a,d] δ([b, c], 1) = [c, b] since [a,d]=X mark [b,c]=X

δ([b, e], 0) = [a, d] δ([b, e], 1) = [c, f] since[a,d]=X mark[b,e]=X

δ([b, f], 0) = [a, g] δ([b, f], 1) = [c, e]

δ([b, g], 0) = [a, f] δ([b, g], 1) = [c, g] since [a,f]=X mark[b,g]=X

δ([b, h], 0) = [a, g] δ([b, h], 1) = [c, d] since[c, d]=X mark[b,h]=X

(c)Find the states that are distinguishable with c

δ([c, e], 0) = [d, d] δ([c, e], 1) = [b, f]

δ([c, f], 0) = [d, g] δ([c, f], 1) = [b, e] since [d,g]=X mark[c,f]=X

δ([c, g], 0) = [d, f] δ([c, g], 1) = [b, g] since [d,f]=X mark[c,g]=X

δ([c, h], 0) = [d, g] δ([c, h], 1) = [b, d] since[d,g]=X mark[c,h]=X

(d) Find the states that are distinguishable with e

δ([e, f], 0) = [d, g] δ([e, f], 1) = [f, e] since [d,g]=X mark[e,f]=X

δ([e, g], 0) = [d, f] δ([e, g], 1) = [f, g] since [d,f]=X mark[e,g]=X

δ([e, h], 0) = [d, g] δ([e, h], 1) = [f, d] since[d,g]=X mark[e,h]=X

(e) Find the states that are distinguishable with f

δ([f, g], 0) = [g, f] δ([f, g], 1) = [e, g] since [e,g]=X mark[f,g]=X

δ([f, h], 0) = [g, g] δ([f, h], 1) = [e, d] since[e,d]=X mark[f,h]=X

(f) Find the states that are distinguishable with g

δ([g, h], 0) = [f, g] δ([g, h], 1) = [g, d] since[g,d]=X mark[g,h]=X

CSE,NRCM Page 31 T.Rupa Rani,Assistant Professor

b X

c X X

d X X X

e X X X

f X X X X

g X X X X X

h X X X X X X X

 a b c d e f g

In the above table, [a,g], [b,f] and [c,e] are equivalent states.

Hence a==g, b==f, and c==e

 0 1

a b a

b a c

c d b

d d a

e d f

f g e

g f g

h g d

 0 1

a b a

b a c

c d b

d d a

e=c d f=b

f=b g=a e=c

g= a f=b g=a

h g=a d

 0 1

a b a

b a c

c d b

d d a

c d b

b a C

a b a

h a d

CSE,NRCM Page 32 T.Rupa Rani,Assistant Professor

Simplified DFA

 0 1

a b a

b a c

c d b

d d a

h a d

Ex: Minimize the following DFA

FINITE AUTOMATA WITH OUTPUTS: MOORE& MEALY M/C

• Finite automata may have outputs corresponding to state or transition. There are two types

of finite state machines that generate output: (i) Moore Machine (ii) Mealy Machine

• If the output associated with state then such a machine is called Moore machine, and if the

output is associated with transition then it is called mealy machine.

Moore Machine Mealy Machine

MOORE MACHINE:

• Moore machine is a finite state machine in which the next state is decided by the current

state and current input symbol. The output symbol at a given time depends only on the

present state of the machine.

• Def: Moore machine can be described by 6-tuple M=(Q, ∑ , Δ, δ,q0, λ) where

• Q: finite set of states

• ∑: finite set of input symbols

CSE,NRCM Page 33 T.Rupa Rani,Assistant Professor

• Δ: output alphabet

• q0: initial state of machine

• δ: Q × ∑ → Q is a transition function

• λ: Q → Δ output function

Ex: Design a Moore machine to generate 1's complement of a given binary number.

Solution: To generate 1's complement of a given binary number the simple logic is that if the input is

0 then the output will be 1 and if the input is 1 then the output will be 0. That means there are three

states. One state is start state. The second state is for taking 0's as input and produces output as 1.

The third state is for taking 1's as input and producing output as 0.

Hence the Moore machine will be,

For instance, take one binary number 1011 then

Input

1 0 1 1

CSE,NRCM Page 34 T.Rupa Rani,Assistant Professor

State q0 q2 q1 q2 q2

Output 0 0 1 0 0

Thus we get 00100 as 1's complement of 1011, we can neglect the initial 0 and the output which we

get is 0100 which is 1's complement of 1011.

Note: The output length for a Moore machine is greater than input by 1.

Ex: Design a Moore machine for a binary input sequence such that if it has a substring 101, the

machine output A, if the input has substring 110, it outputs B otherwise it outputs C.

Solution: For designing such a machine, we will check two conditions, and those are 101 and 110. If

we get 101, the output will be A, and if we recognize 110, the output will be B. For other strings, the

output will be C.

The partial diagram will be:

Now we will insert the possibilities of 0's and 1's for each state. Thus the Moore machine becomes:

CSE,NRCM Page 35 T.Rupa Rani,Assistant Professor

Ex: Construct a Moore machine that determines whether an input string contains an even or odd

number of 1's. The machine should give 1 as output if an even number of 1's are in the string and 0

otherwise.

Sol: The Moore machine will be:

This is the required Moore machine. In this machine, state q1 accepts an odd number of 1's and state

q0 accepts even number of 1's. There is no restriction on a number of zeros. Hence for 0 input, self-

loop can be applied on both the states.

Ex: Design a Moore machine with the input alphabet {0, 1} and output alphabet {Y, N} which

produces Y as output if input sequence contains 1010 as a substring otherwise, it produces N as

output.

CSE,NRCM Page 36 T.Rupa Rani,Assistant Professor

MEALY MACHINE

• A Mealy machine is a machine in which output symbol depends upon the present input symbol

and present state of the machine. In the Mealy machine, the output is represented with each

input symbol for each state separated by /.

Def: The Mealy machine can be described by 6- tuple M= (Q, ∑, Δ, q0, δ, λ') where

• Q: finite set of states

• q0: initial state of machine

• ∑: finite set of input alphabet

• Δ: output alphabet

• δ: Q × ∑ → Q transition function

• λ: Q × ∑ →Δ output function

Ex: Design a Mealy machine for a binary input sequence such that if it has a substring 101, the

machine output A, if the input has substring 110, it outputs B otherwise it outputs C.

Solution: For designing such a machine, we will check two conditions, and those are 101 and 110. If

we get 101, the output will be A. If we recognize 110, the output will be B. For other strings the output

will be C.

The partial diagram will be:

Now we will insert the possibilities of 0's and 1's for each state. Thus the Mealy machine becomes:

CSE,NRCM Page 37 T.Rupa Rani,Assistant Professor

CSE,NRCM Page 38 T.Rupa Rani,Assistant Professor

Ex: Design a mealy machine that scans sequence of input of 0 and 1 and generates output 'A' if the

input string terminates in 00, output 'B' if the string terminates in 11, and output 'C' otherwise.

CONVERSION FROM MEALY MACHINE TO MOORE MACHINE:

In Moore machine, the output is associated with every state, and in Mealy machine, the output is

given along the edge with input symbol. To convert Moore machine to Mealy machine, state output

symbols are distributed to input symbol paths. But while converting the Mealy machine to Moore

machine, we will create a separate state for every new output symbol and according to incoming and

outgoing edges are distributed.

Mealy to Moore machine Conversion:

Step 1: For each state (Qi), calculate the number of different outputs that are available in the

transition table of the Mealy machine.

Step 2: Copy state Qi, if all the outputs of Qi are the same. Break qi into n states as Qin, if it has n

distinct outputs where n = 0, 1, 2....

Step 3: If the output of initial state is 0, insert a new initial state at the starting which gives ε output.

Ex: Convert the following Mealy machine into equivalent Moore machine.

CSE,NRCM Page 39 T.Rupa Rani,Assistant Professor

• For state q1, there is only one incident edge with output 0. So, we don't need to split this state

in Moore machine.

• For state q2, there is 2 incident edges with output 0 and 1. So, we will split this state into two

states q20(state with output 0) and q21(with output 1).

• For state q3, there is 2 incident edges with output 0 and 1. So, we will split this state into two

states q30(state with output 0) and q31(state with output 1).

• For state q4, there is only one incident edge with output 0. So, we don't need to split this state

in Moore machine.

CSE,NRCM Page 40 T.Rupa Rani,Assistant Professor

Transition table for Moore machine

Input 0 1 Output

q1 q1 q21 1

q20 q4 q4 0

q21 q4 q4 1

q30 q21 q31 0

q31 q21 q31 1

q4 q30 q1 1

Input 0 1

q1 q1 1 q21 1

q20 q4 1 q4 1

q21 q4 1 q4 1

q30

q21

1

q31

1

q31

q21

1

q31

1

q4 q30 0 q1 1

0 1 Output

q1 q1 q21 1

q20 q4 q4 0

q21 q4 q4 1

q30 q21 q31 0

q31 q21 q31 1

q4 q30 q1 1

0 1 Output

q0 q1 q21 1

q1 q1 q21 1

q20 q4 q4 0

q21 q4 q4 1

q30 q21 q31 0

q31 q21 q31 1

q4 q30 q1 1

CSE,NRCM Page 41 T.Rupa Rani,Assistant Professor

Transition diagram for Moore machine :

Ex: Convert the following Mealy machine into equivalent Moore machine.

Transition Diagram:

CSE,NRCM Page 42 T.Rupa Rani,Assistant Professor

The state q1 has only one output. The state q2 and q3 have both output 0 and 1. So we will create two

states for these states. For q2, two states will be q20(with output 0) and q21(with output 1). Similarly,

for q3 two states will be q30(with output 0) and q31(with output 1).

Transition table for Moore machine will be:

Transition diagram for Moore machine will be:

CONVERSION FROM MOORE MACHINE TO MEALY MACHINE

• In the Moore machine, the output is associated with every state, and in the mealy machine,

the output is given along the edge with input symbol. The equivalence of the Moore machine

and Mealy machine means both the machines generate the same output string for same input

string.

• We cannot directly convert Moore machine to its equivalent Mealy machine because the

length of the Moore machine is one longer than the Mealy machine for the given input. To

convert Moore machine to Mealy machine, state output symbols are distributed into input

symbol paths. We are going to use the following method to convert the Moore machine to

CSE,NRCM Page 43 T.Rupa Rani,Assistant Professor

Mealy machine.

Method for conversion of Moore machine to Mealy machine

Let M = (Q, ∑, δ, λ, q0) be a Moore machine. The equivalent Mealy machine can be represented by M'

= (Q, ∑, δ, λ', q0). The output function λ' can be obtained as: λ' (q, a) = λ(δ(q, a))

Ex:Convert the following Moore machine into its equivalent Mealy machine.

Solution:

The transition table of given Moore machine is as follow.

Q a b Output(λ)

q0 q0 q1 0

q1 q0 q1 1

The equivalent Mealy machine can be obtained as follows:

λ' (q0, a) = λ(δ(q0, a)) = λ(q0) = 0

λ' (q0, b) = λ(δ(q0, b)) = λ(q1) = 1

The λ for state q1 is as follows:

λ' (q1, a) = λ(δ(q1, a)) = λ(q0) = 0

λ' (q1, b) = λ(δ(q1, b)) = λ(q1) = 1

CSE,NRCM Page 44 T.Rupa Rani,Assistant Professor

Hence the transition table for the Mealy machine can be drawn as follows:

The equivalent Mealy machine will be

Note: The length of output sequence is 'n+1' in Moore machine and is 'n' in the Mealy machine

Ex: Convert the following Moore machine into its equivalent Mealy machine.

Q a b Output(λ)

q0 q1 q0 0

q1 q1 q2 0

q2 q1 q0 1

CSE,NRCM Page 45 T.Rupa Rani,Assistant Professor

The equivalent Mealy machine can be obtained as follows:

λ' (q0, a) = λ(δ(q0, a)) = λ(q1) = 0

λ' (q0, b) = λ(δ(q0, b)) = λ(q0) = 0

The λ for state q1 is as follows:

λ' (q1, a) = λ(δ(q1, a)) = λ(q1) = 0

λ' (q1, b) = λ(δ(q1, b)) = λ(q2) = 1

The λ for state q2 is as follows:

λ' (q2, a) = λ(δ(q2, a)) = λ(q1) = 0
λ' (q2, b) = λ(δ(q2, b)) = λ(q0) = 0
Hence the transition table for the Mealy machine can be drawn as follows:

Ex:Convert the given Moore machine into its equivalent Mealy machine.

Q a b Output(λ)

q0 q0 q1 0

q1 q2 q0 1

q2 q1 q2 2

CSE,NRCM Page 46 T.Rupa Rani,Assistant Professor

Differences between Mealy and Moore Machines:

S.No Mealy Machine Moore Machine

1

Output depends both upon the present state

and the present input

Output depends only upon the present state.

2

Generally, it has fewer states than Moore

Machine.

Generally, it has more states than Mealy Machine.

3

The value of the output function is a function of

the transitions and the changes, when the input

logic on the present state is done.

The value of the output function is a function of the

current state and the changes at the clock edges,

whenever state changes occur.

4

Mealy machines react faster to inputs. They

generally react in the same clock cycle.

In Moore machines, more logic is required to decode

the outputs resulting in more circuit delays. They

generally react one clock cycle later.

1. Define alphabet, string

Important Questions

PART-A

2. Define Star closure / Kleen Closure

3. Define Positive Closure

4. Define Language

5. Define DFA, NFA and epsilon NFA

6. Define epsilon closure

7. Define Moore and Mealy machines.

PART-B
8. Draw the block diagram of Finite Automata and explain each component

9. Design FA which accepts i) even number of 0's and even number of 1's ii) even

number of 0’s and odd number of 1’s iii) odd number of 0’s and even number of 1’s

and iv) odd number of 0’s and odd number of 1’s over ∑ = {0, 1}

10. Design a DFA for L(M) = {w | w ε {0, 1}*} and W is a string that does not contain

consecutive 1's}.

11. Obtain the DFA that recognizes the language L(M)={W/W is in {a, b c}* and W

contains the pattern abac}

CSE,NRCM Page 47 T.Rupa Rani,Assistant Professor

12. Design a FA that accepts the set of all strings that interpreted as binary

representation of an unsigned decimal number i) which is divisible by 2 ii) divisible

by 4 iii) which is divisible by 5.

13. Design an NFA with ∑ = {0, 1} in which double '1' is followed by double '0'.

14. Design an NFA with ∑ = {0, 1} accepts all string in which the third symbol from the

right end is always 0.

15. What are the differences between DFA, NFA

16. Write the algorithm to convert i) NFA to DFA ii) epsilon NFA to NFA and iii) epsilon

NFA to DFA. Explain by taking an example for each conversion.

17. Find minimum-state automaton equivalent to the transition diagram

18. Design a Moore machine for a binary input sequence such that if it has a substring

101, the machine output A, if the input has substring 110, it outputs B otherwise it

outputs C

19. Construct a Moore machine that determines whether an input string contains an

even or odd number of 1's. The machine should give 1 as output if an even number

of 1's are in the string and 0 otherwise.

20. Design a Mealy machine for a binary input sequence such that if it has a substring

101, the machine output A, if the input has substring 110, it outputs B otherwise it

outputs C.

21. Design a mealy machine that scans sequence of input of 0 and 1 and generates

output 'A' if the input string terminates in 00, output 'B' if the string terminates in 11,

and output 'C' otherwise.

22. Convert the following Mealy machine into equivalent Moore machine

CSE,NRCM Page 48 T.Rupa Rani,Assistant Professor

 Convert the following Moore machine into its equivalent Mealy machine

Assignment Questions

1. Design a FA that accepts the set of all strings that interpreted as binary

representation of an unsigned decimal number i) which is divisible by 2

ii)divisible by 4 iii) which is divisible by 5.

2. Minimize the following DFA.

3. Enumerate the differences between NFA and DFA.

4. Obtain a DFA to accept strings of 0’s, 1’s and 2’s, beginning with a 1, followed

by odd number of 0’s and ending with a 2?

5. Obtain a DFA to accept strings starting with two 0’s and ending with at least

two 1’s?

6. Obtain a DFA to accept the integer numbers represented in binary and is a

multiple of 5.

CSE,NRCM Page 56 T.Rupa Rani,Assistant Professor

UNIT-2: REGULAR LANGUAGES AND REGULAR EXPRESSIONS

1. Regular Expressions (RE),

2. Finite Automata and Regular Expressions,

3. Applications of Regular Expressions,

4. Algebraic laws for Regular Expressions,

5. The Arden‘s Theorem,

6. Using Arden‘s theorem to construct RE from FA,

7. Pumping Lemma for RLs, Applications of Pumping Lemma,

8. Equivalence of Two FAs,

9. Equivalence of Two REs,

10. Construction of Regular Grammar from RE,

11. Constructing FA from Regular Grammar,

12. Closure properties of RLs,

13. Decision problems of RLS,

14. Applications of REs and FAs.

2.1. REGULAR EXPRESSION

• The language accepted by finite automata can be easily described by simple expressions called

Regular Expressions. It is the most effective way to represent any language.

• The languages accepted by some regular expression are referred to as Regular languages.

• A regular expression can also be described as a sequence of pattern that defines a string.

• Regular expressions are used to match character combinations in strings. String searching

algorithm used this pattern to find the operations on a string.

• Regular Set: sets which are accepted by FA

• Ex: L={a,aa,aaa,…}

Regular Expression: Let  be an I/P alphabet . The RE over  can be defined as follows:

•  is a regular expression.

•  is a regular expression.

• For any a in , a is a regular expression.

• If r1 and r2 are regular expressions, then

• (r1 + r2) is a regular expression.

• (r1 .r2) is a regular expression.

• (r1*) is a regular expression.

• (r1+) is a regular expression.

WRITE RES FOR THE FOLLOWING LANGUAGES:

CSE,NRCM Page 57 T.Rupa Rani,Assistant Professor

• Accepting all combinations of a’s over the set ={a}

Ans: a*

• Accepting all combinations of a’s over the set ={a} except null string

Ans: a+

• Accepting any no of a’s and b’s

Ans: (a+b)* or (a/b)*

• Strings ending with 00 over the set {0,1}

Ans: (0+1)*00

• Strings starts with 1 and ends with 0 over the set {0,1}

Ans: 1(0/1)*1

• Any no of a’s followed by any no of b’s then followed by any no of c’s

Ans: a*b*c*

• starting and ending with a and having any combination of b's in between.

Ans: a b* b

 Starting with a but not having consecutive b's.

Ans: L = {a, aba, aab, aba, aaa, abab, }

R = {a + ab}*

• The language accepting all the string in which any number of a's is followed by any

number of b's is followed by any number of c's.

Ans: R = a* b* c*

• The language over ∑ = {0} having even length of the string.

Ans: R = (00)*

• For the language L over ∑ = {0, 1} such that all the string do not contain the substring 01.

Ans: The Language is as follows: L = {ε, 0, 1, 00, 11, 10, 100,..... }

R = (1* 0*)

• For the language containing the string over {0, 1} in which there are at least two occurrences of

1's between any two occurrences of 1's between any two occurrences of 0’s.

Ans: (0111*0)*.

CSE,NRCM Page 58 T.Rupa Rani,Assistant Professor

Similarly, if there is no occurrence of 0's, then any number of 1's are also allowed. Hence the r.e. for

required language is:

R = (1 + (0111*0))*

• The regular expression for the language containing the string in which every 0 is immediately

followed by 11.

Ans:R = (011 + 1)*

• String which should have at least one 0 and at least one 1.

Ans: R = [(0 + 1)* 0 (0 + 1)* 1 (0 + 1)*] + [(0 + 1)* 1 (0 + 1)* 0 (0 + 1)*]

• Describe the language denoted by following regular expression (b* (aaa)* b*)*

Ans: The language consists of the string in which a's appear triples, there is no restriction on the

number of b’s.

Algebraic laws for Regular Expressions

• Given R, P, L, Q as regular expressions, the following identities hold:

• ∅* = ε, ε* = ε

• RR* = R*R=R+

• (R*)* = R*

• (PQ)*P =P(QP)*

• (P+Q)* = (P*Q*)* = (P*+Q*)*

• R + ∅ = ∅ + R = R (The identity for union)

• R ε = ε R = R (The identity for concatenation)

• ∅ R = R ∅ = ∅ (The annihilator for concatenation)

• R + R = R (Idempotent law)

• P(Q+R) = PQ+PR (Left distributive law)

• (Q+R) P = QP+RP (Right distributive law)

• ε + RR* = ε + R*R = R*

ARDEN'S THEOREM

Statement: Let B and C are two regular expressions. If C does not contain null string, then A=B+AC has a

unique solution A= BC*

Proof: Given that B and C are two regular expressions and C does not contain null string

Case(i): Let us verify whether A=BC* is a solution of A=B+AC

CSE,NRCM Page 59 T.Rupa Rani,Assistant Professor

Substitute A =BC* in the above equation

A=B+AC

A=B+BC*C=B(ε +C*C)=BC* since ε+RR*=R*

BC*=BC*

LHS=RHS==>

Therefore A=BC* is a solution of A=B+AC

Case (ii): Let us PT A=BC* is a unique solution of A=B+AC

A=B+AC

=B+(B+AC)C=B+BC+AC2

=B+BC+(B+AC)C= B+BC+BC2 +AC3

= B+BC+BC2 +BC3 +AC4

=B(ε+C+C2 +C3 +……)

= BC*

Therefore A=BC* is a unique solution

Note: Assumptions for Applying Arden’s Theorem

• The transition diagram must not have NULL transitions

• It must have only one initial state.

Using Arden‘s theorem to construct RE from FA

• If there are n number of states in the FA then we will get n number of equations.

• The equations are constructed in the following way:

• State name= state name from which inputs are coming. Input symbol .i.e., αji represents the

transition from qj to qi then qi = αji . qj

• If qj is a start state then we have:

• qi = αji * qj + ε

• Solve the above equations to obtain final state which contains input symbols only.

Ex: Construct the regular expression for the given DFA

CSE,NRCM Page 60 T.Rupa Rani,Assistant Professor

Solution:

Let us write down the equations q1 = q1 0 + ε

Since q1 is the start state, so ε will be added, and the input 0 is coming to q1 from q1 hence we

write State = source state of input × input coming to it

Similarly, q2 = q1 1 + q2 1 q3 = q2 0 + q3 (0+1)

Since the final states are q1 and q2, we are interested in solving q1 and q2 only. Let us see q1

first q1 = q1 0 + ε

We can re-write it as q1 = ε + q1 0

Which is similar to R = Q + RP, and gets reduced to R = OP*.

Assuming R = q1, Q = ε, P = 0 We get q1 = ε.(0)* q1 = 0* (ε.R*= R*)

Substituting the value into q2, we will get

q2 = 0* 1 + q2 1 q2 = 0* 1 (1)* (R = Q + RP → Q P*)

The regular expression is given by

r = q1 + q2 = 0* + 0* 1.1* r = 0* + 0* 1+ (1.1* = 1+)

Construction of FA from RE: There are two methods to construct FA from RE. They are i) Top down

approach and ii) Bottom up approach.

Top down Approach:

This is divided into several steps as given in the following.

Step-1: Take two states, one is the beginning state and another is the final state. Make a transition from

the beginning state to the final state and place the RE in between the beginning and final states

Step-2:If in the RE there is a + (union) sign, then there are parallel paths between the two states

CSE,NRCM Page 61 T.Rupa Rani,Assistant Professor

Step-3: If in the RE there is a .(dot) sign, then one extra state is added between the two states.

Step-4: If in the RE there is a ‘*’ (closure) sign, then a new state is added in between. A loop is added on

the new state and the label Λ is put between the first to new and new to last.

Ex: Construct Finite Automata equivalent to the Regular Expression L = ab(aa + bb)(a + b)* b.

Step I: Take a beginning state q0 and a final state qf. Between the beginning and final state place the

regular expression.

Step II: There are three dots (.) between ab, (aa + bb), (a + b)*, and b. Three extra states are added

between q0 and qf.

Step III: Between ‘a’ and ‘b’ there is a dot (.), so extra state is added

CSE,NRCM Page 62 T.Rupa Rani,Assistant Professor

Step IV: In aa + bb there is a +, therefore there is parallel edges between q1 and q2. Between q2 and q3

there is (a + b)*. So, extra state q5 is added between q2 and q3. Loop with label a, b is placed on q5 and

Λ transition is made between q2, q5 and q5, q3.

Step V: In aa and bb there are dots (.). Thus two extra states are added between q1 and q2 (one for aa

and another bb). The final finite automata for the given regular expression is given below.

Ex: Construct an FA equivalent to the RE: L = (a + b)*(aa + bb)(a + b)*.

CSE,NRCM Page 63 T.Rupa Rani,Assistant Professor

Ex: Construct an FA equivalent to the RE: L = ab + (aa + bb)(a + b)* b.

CSE,NRCM Page 64 T.Rupa Rani,Assistant Professor

BOTTOM-UP APPROACH (THOMSON CONSTRUCTION):

Step-1: For input a ∈ ∑, the transition diagram is

Step-2: If r1 and r2 are two RES then the transition diagram for the RE r1 + r 2 is

Step-3: If r1 and r2 are two RES then the transition diagram for the RE r1 . r 2 is

CSE,NRCM Page 65 T.Rupa Rani,Assistant Professor

Step-4: If r is a RE then the transition diagram for r* is

Ex: Construct Finite Automata equivalent to the Regular Expression L = ab(aa + bb)(a + b)*a.
Solution:

Step I: The terminal symbols in L are ‘a’ and ‘b’. The transition diagrams for ‘a’ and ‘b’ are given below:

Step II: The transition diagrams for ‘aa’, ‘ab’, ‘bb’ are given below

Step III: The transition diagram for (a+b) is given below

Step IV: The transition diagram for (a+b)* is given below

CSE,NRCM Page 66 T.Rupa Rani,Assistant Professor

Step V: For (aa+bb) the transitional diagram is given below

Step VI: The constructed transitional diagram for ab(aa+bb) is given below

Step VII: The constructed transitional diagram for ab(aa + bb)(a + b)*a is given below.This can be simplified
by removing ε transitions

EQUIVALENCE OF TWO RES

For every RE there is a finite automata. If the FA constructed both of the REs are same then we can say

that two REs are equivalent

Ex: Prove that the following REs are equivalent. L1 = (a + b)* L2 = a*(b*a)*

Solution:

Construct FA for L1:

CSE,NRCM Page 67 T.Rupa Rani,Assistant Professor

Construct FA for L2:

CSE,NRCM Page 68 T.Rupa Rani,Assistant Professor

The two FAs are same. Hence the Res are also same.

Ex: Prove that the following REs are equivalent. L1 = 1*(011)*(1*(011)*)* L2 = (1 + 011)*

Grammars:

The grammar is basically defined as a set of 4-tuple (V, T, P, S)

where

V is a set of non-terminals (variables), T is a set of terminals (primitive symbols), P is a set of productions

(rules) that relate the non-terminals and terminals and S is the start symbol with which strings in grammar

are derived. These productions define the strings belonging to the corresponding language.

Production Rule: The production rules of grammar consist of two parts. I) LHS and ii) RHS. The LHS may

contain terminal or non-terminal or both but at least one non-terminal. The RHS may contain any

combination of terminal or non-terminal or both or epsilon.

CSE,NRCM Page 69 T.Rupa Rani,Assistant Professor

Language Acceptance: Start with the start symbol, at every step, and replace the non-terminal by the

right-hand side (RHS) of the rule. Continue this until a string of terminals is derived. The string of terminals

gives the language accepted by grammar.

Types of Grammars–Chomsky Hierarchy:

Linguist Noam Chomsky defined a hierarchy of languages, in terms of complexity. This four-level hierarchy,

called the Chomsky hierarchy, corresponds to four classes of machines. Each higher level in the hierarchy

incorporates the lower levels, that is, anything that can be computed by a machine at the lowest level can

also be computed by a machine at the next highest level.

The Chomsky hierarchy classifies grammar according to the form of their productions into the following

levels:

 Type 0 grammars–unrestricted grammars: These grammars include all formal grammars. In

unrestricted grammars (URGs), all the productions are of the form α → β where α and β may have

any number of terminals and non-terminals, that is, no restrictions on either side of productions.

Every grammar is included in it if it has at least one non-terminal on the left-hand side (LHS). They

generate exactly all languages that can be recognized by a Turing machine. The language that is

recognized by a Turing machine is defined as a set of all the strings on which it halts. These

languages are also known as recursively enumerable languages.

Ex:

aA → abCB

aA → bAA

bA → a

S → aAb | ε

 Type 1 grammars–context-sensitive grammars: These grammars define the context-sensitive

languages. In context-sensitive grammar (CSG), all the productions of the form α → β where the

length of α is less than or equal to the length of β i.e. |α| ≤ |β|, α and β may have any number

of terminals and non-terminals.

These grammars can have rules of the form αAβ → αγβ with A as non-terminal and α, β, and γ are strings

of terminals and non-terminals. We can replace A by γ where A lies between α and β. Hence the name

CSG. The strings α and β may be empty, but γ must be non-empty. It cannot include the rule S→ ε. These

languages are exactly all languages that can be recognized by linear bound automata.

Ex: aAbcD → abcDbcD

 Type 2 grammars – context-free grammars: These grammars define context-free languages.

These are defined by rules of the form α → β with |α| ≤ | β where |α| = 1 and is a non-terminal

and β is a string of terminals and non-terminals. We can replace α by β regardless of where it

appears. Hence the name context-free grammar (CFG). These languages are exactly those

languages that can be recognized by a pushdown automaton. Context-free languages define the

CSE,NRCM Page 70 T.Rupa Rani,Assistant Professor

 syntax of all programming languages.

Ex:

1. S → aS |S a| a

2. S→ aAA |bBB| ε

 Type 3 grammars – regular grammars: These grammars generate regular languages. Such a

grammar restricts its rules to a single non-terminal on the LHS. The RHS consists of either a single

terminal or a string of terminals with a single nonterminal on the left or right end. Here rules can

be of the form A→ a B | a or A →Ba | a.

The rule S → ε is also allowed here. These languages are exactly those languages that can be recognized

by a finite state automaton. This family of formal languages can be obtained by regular expressions also.

Regular languages are used to define search patterns and the lexical structure of programming languages.

Right linear grammar: A → a A | a

Left linear grammar: A → A a | a

Table 1.1 Chomsky’s hierarchy

Grammar Languages Automaton Production rules

Type 0 Recursively enumerable Turing machine α → β
No restrictions on b, a should have
At least one non-terminal

Type 1 Context-sensitive Linear bounded automata α → β, |α| ≤ |β|

Type 2 Context-free Pushdown automaton α → β, |α| ≤ |β|, |α| =1

Type 3 Regular Finite state automaton α → β, α = {V} and β = V{T}* or
{T}*V or T*

The hierarchy of languages and the machine that can recognize the same is shown below.

Every RG is context-free, every CFG is context-sensitive and every CSG is unrestricted. So the family of

regular languages can be recognized by any machine. CFLs are recognized by pushdown automata, linear

bound automata, and Turing machines. CSLs are recognized by linear bound automata and Turing

machines. Unrestricted languages are recognized by only Turing machines.

CSE,NRCM Page 71 T.Rupa Rani,Assistant Professor

REGULAR GRAMMAR

• A regular grammar is a mathematical object, G, with four components,

G = (N, T, P, S), where

• N is a nonempty, finite set of nonterminal symbols,

• T is a finite set of terminal symbols , or alphabet, symbols,

• P is a set of grammar rules, each of one having one of the forms A → aB A → a A → ε, for A, B

∈ N, a ∈ Σ, and ε the empty string, and

• S ∈ N is the start symbol.

RE TO RG CONVERSION

• Step 1: Construct an equivalent FA for the given RE

• Step 2: The no of non-Terminals of the grammar will be equal to the no of states of FA

• Step 3: For all transition functions (a) if δ(qi, a)=qj is not in F then the production is of the form

AaB (b) if δ(qi,a)=qj is in F then the productions are of the form AaB and Aa, where A &B

are corresponding to states qi and qj respectively.

• Step 4: The start symbol of the grammar corresponding to the initial state of finite automata

Ex: Construct Regular grammar for the RE a*(a+b)b*

RG for the above RE is

AaA/aB/bB/a/b

BbB/b

CSE,NRCM Page 72 T.Rupa Rani,Assistant Professor

Ex: Construct RG for the RE ab(a+b)*

RG is

AaB

BbC/b

CaC/bC/a/b

PUMPING LEMMA FOR RLS

• The pumping lemma is generally used to prove certain languages are not regular

• Language is said to be regular: If a DFA,NFA or epsilon NFA can be constructed to exactly accept

a language

• If a RE can be constructed to exactly generate the strings in a language.

Formal Definition of Pumping Lemma:

• if L is a regular language represented with automaton with maximum of n states , then there is

a word in L such that the length |Z|>=n, we may write Z=UVW in such a way that |UV|<+n,

|V|>=1, and for all i>=0, UVi W is in L.

• Ex: Prove that L = {aibi | i ≥ 0} is not regular.

At first, we assume that L is regular and n is the number of states.

Let z= aabb=uvw

Where u=a, v= ab, w=b

Whein i=0, uviw=uw=ab is in L

When i=1, uviw=uvw=aabb is in l

When i=2, uviw=uv2w=aababbis not in L

Hence L is not Regular

Ex: State whether L = {a2n| n > 0} is regular.

Ex: State whether L = {0n | n is a prime} is regular

Ex: State whether L = {an| n ≥ 0} is regular

Ex: State whether L = {an bm | n, m ≥ 0} is regular

CSE,NRCM Page 73 T.Rupa Rani,Assistant Professor

CLOSURE PROPERTIES OF RLS

1) Context-free languages are closed under

Union: Let L1 and L2 be two context-free languages. Then L1 ∪ L2 is also context free.

Example

• Let L1 = { anbn , n > 0}. Corresponding grammar G1 will have P: S1 → aAb|ab

• Let L2 = { cmdm , m ≥ 0}. Corresponding grammar G2 will have P: S2 → cBb| ε

• Union of L1 and L2, L = L1 ∪ L2 = { anbn } ∪ { cmdm }

• The corresponding grammar G will have the additional production S → S1 | S2

Concatenation: If L1 and L2 are context free languages, then L1L2 is also context free.

Example: Union of the languages L1 and L2, L = L1L2 = { anbncmdm }

The corresponding grammar G will have the additional production S → S1 S2

Kleene Star: If L is a context free language, then L* is also context free.

Example

• Let L = { anbn , n ≥ 0}. Corresponding grammar G will have P: S → aAb| ε

• Kleene Star L1 = { anbn }*

• The corresponding grammar G1 will have additional productions S1 → SS1 | ε

Context-free languages are not closed under Intersection: If L1 and L2 are context free languages, then

L1 ∩ L2 is not necessarily context free.

Intersection with Regular Language − If L1 is a regular language and L2 is a context free language, then

L1 ∩ L2 is a context free language.

Complement − If L1 is a context free language, then L1’ may not be context free

CSE,NRCM Page 74 T.Rupa Rani,Assistant Professor

• Define Regular Expression

Part-A

• Write a regular expression for the language accepting all the strings in which any

number of a's is followed by any number of b's is followed by any number of c's.
• State ARDEN'S THEOREM

• State and prove ARDEN'S theorem

• Define Regular Grammar

• State pumping lemma for CFL

PART-B

• Construct the regular expression for the given DFA

• Construct an FA equivalent to the RE: L = (a + b)*(aa + bb)(a + b)*.

• : Construct Finite Automata equivalent to the Regular Expression L = ab(aa + bb)(a + b)*a using

bottom-up approach.

• Construct Regular grammar for the RE a*(a+b)b*

• Applications of pumping lemma

• Closure Properties of CFLs

CSE,NRCM Page 75 T.Rupa Rani,Assistant Professor

Assignments

1. Prove that e + 0*(1)*(0*(1)*)* = (0 + 1)*

2. List out a few applications of regular expressions and finite automata.

3. Construct a NFA that accepts the following languages:

a. L(aa* + aba*b*)

b. L(ab(a + ab)*(a + aa))

c. L(ab*aa + bba*ab)

CSE,NRCM Page 76 T.Rupa Rani,Assistant Professor

d. L(0* + 1*2*)

e. L(10 + (0 + 11)0*1)

f. L((a + ba)*bb(b + a)*)

4.

5.

CSE,NRCM Page 72 T.Rupa Rani,Assistant Professor

UNIT-3: CONTEXT FREE GRAMMARS (CFG)

Def:

A grammar G=(V,T,P,S) is said to be CFG if all productions in Pare of the form α β Where

α is in V , i.e., set of non-terminals and | α | = 1, i.e., there will be only one non-terminal at

the left hand side (LHS) and β is in V U Σ, i.e., β is a combination of non-terminals and

terminals.

Ex: Construct a CFG for the language L = {WCWR | W ∈ (a, b)*}

Ans: SaSa/bSb/C

Ex: Construct a CFG for the regular expression (0 + 1)* 0 1*.

Ans:

S ASB/0 A 0A/1A/ε B 1B/ε

Ex:Construct a CFG for the regular expression (011 + 1)* (01)*.

Ans:

S  BC B AB/ε A 011/1 CDC/ ε D 01

Ex: Construct CFG for defining palindrome over {a , b}.

Ans: S → aSa/bSb/a/b/ε

Ex: Construct CFG for the set of strings with equal number of a’s and b’s.

Ans: S → SaSbS /SbSaS/ε

Ex: Write the language generated by the grammar S → SaSbS /SbSaS/ε

Ex: Write the language generated by the grammar S → aSa/bSb/a/b/ε

Ex: Write the language generated by the grammar SaSa/bSb/C

CSE,NRCM Page 73 T.Rupa Rani,Assistant Professor

DERIVATION AND PARSE TREE:

• Derivation: The process of generating a language from the given production rules of

a grammar. The non-terminals are replaced by the corresponding strings of the right

hand side (RHS) of the production. But if there are more than one non-terminal, then

which of the ones will be replaced must be determined. Depending on this selection,

the derivation is divided into two parts:

• Leftmost derivation: A derivation is called a leftmost derivation if we replace only

the leftmost non-terminal by some production rule at each step of the generating

process of the language from the grammar.

• Rightmost derivation: A derivation is called a rightmost derivation if we replace

only the right- most non-terminal by some production rule at each step of the

generating process of the language from the grammar.

Ex: Derive a4 from by grammar S → aS/ ε

S ⇒aS⇒aaS⇒aaaS⇒aaaaS⇒aaaaε = aaaa

The language has the strings {ε, a, aa, aaa, …….}.

Ex: Derive a2 from by grammarS → SS/ a/ ε

Ans: S ⇒ SS⇒Sa⇒aa (or)

S ⇒ SS⇒ SSS⇒SSa⇒SSSa⇒SaSa⇒εaSa⇒εa εa = aa

Ex: Find L(G) and derive the string abbab for the following grammar?

S → aS/bS/a/b

Solution:

S ⇒aS⇒abS⇒abbS⇒abbaS⇒abbab

Context free language generated by the grammar is (a + b)+.

Ex: Find the language and derive abbaaba from the following grammar:

S → XaaX X → aX | bX |ε

Solution:

CFL is (a + b)*aa(a + b)*.

We can derive abbaaba as follows:

S ⇒XaaX⇒aXaaX⇒abXaaX⇒abbXaaX⇒abbεaaX = abbaaX⇒abbaabX⇒abbaabaX

⇒abbaabae⇒abbaaba

Ex: Give the language defined by grammarG = {{S}, {a}, {S → SS}, S}

Ans: L(G) = Φ. Since there is no terminal that is derived from S.

Ex: Give the language defined by grammar

CSE,NRCM Page 74 T.Rupa Rani,Assistant Professor

G = {{S, C}, {a, b}, P, S} where P is given byS → aCa, C → aCa | b,

Ans:S ⇒aCa⇒aaCaa⇒aaaCaaa

L(G) = {an ban / n ≥ 1}.

Ex: Give the language defined by grammarG = {{S}, {0, 1}, P, S} where P is given by

S → 0S1 | |ε

Ans: S ⇒ 0S1 ⇒ 00S11 ⇒ 0011.

L(G) = {0n 1n / n ≥ 0}.

• Construct the string 0100110 from the following grammar by using (i)Leftmost

derivation (ii) Rightmost derivation

S0S/1AA ,A 0/1A/0B , B 1/0BB,

Ans: Leftmost Derivation

S => 0S=> 01AA => 010BA => 0100BBA => 01001BA => 010011A=> 0100110

(The non-terminals that are replaced are underlined.)

Rightmost Derivation

S => 0S=> 01AA=> 01A0 => 010B0 => 0100BB0 => 0100B10 => 0100110

(The non-terminals that are replaced are underlined.)

Ex: Consider the CFG ({S, X}, {a, b), P, S) where productions are S → baXaS | ab, X →

Xab|aa. Find LMD and RMD for string w = baaaababaab.

Solution: The following is a LMD:

S ⇒baXaS {as S →baXaS}

⇒baXabaS {as X →Xab}

⇒baXababaS {as X →Xab}

⇒baaaababaS {as X →aa}

⇒baaaababaab {as S →ab}

The following is a RMD:

S ⇒baXaS {as S →baXaS}

⇒baXaab {as S →ab}

⇒baXabaab {as X →Xab}

⇒baXababaab {as X →Xab}

⇒baaaababaab {as X →aa}

Any word that can be generated by a given CFG can have LMD|RMD.

Ex: Consider the CFG:S → aB | bA, A → a | aS | bAA, B → b | bS | aBB. Find LMD and

RMD for (the string) w = aabbabba.

Ans: The following is a LMD:

CSE,NRCM Page 75 T.Rupa Rani,Assistant Professor

S ⇒aB⇒aaBB⇒aabSB⇒aabbAB⇒aabbaB⇒aabbabS⇒aabbabbA⇒aabbabba

The following is a RMD:

S ⇒aB⇒aaBB⇒aaBbS⇒aaBbbA⇒aaBbba⇒aabSbba⇒aabbAbba⇒aabbabba

PARSE TREE:

• A parse tree is the tree representation of deriving a CFL from a given context free

grammar. These types of trees are sometimes called as derivation trees.

• A parse tree is an ordered tree in which the LHS of a production represents a parent

node and the RHS of a production represents a children node.

• Note: The parse tree construction is possible only for CFG.

Procedure to Construct Parse Tree:

• Each vertex of the tree must have a label. The label is a non-terminal or terminal or

null (ε).

• The root of the tree is the start symbol, i.e., S.

• The label of the internal vertices is a non-terminal symbol.

• If there is a production A  X1X2….XK, then for a vertex label A, the children of that

node will be X1, X2, .. XK.

• A vertex n is called a leaf of the parse tree if its label is a terminal symbol or null (ε).

Ex:Find the parse tree for generating the string 0100110 from the following grammar.

S 0S/1AAA 0/1A/0B B 1/0BB

For generating the string 0100110 from the given CFG

The Left Most Derivation (LMD) will be S  0S 01AA  010BA 0100BBA 

01001BA  010011A  0100110 and the derivation tree is called Left Most Derivation

Tree(LMD Tree)

The Right Most Derivation (RMD) will be S  0S 01AA  01A0  010B0 

0100BB0  0100B10  0100110 and the derivation tree is called Right Most Derivation

Tree(RMD Tree).

LMD AND RMD TREES:

Find the parse tree for generating the string 0100110 from the following grammar.

CSE,NRCM Page 76 T.Rupa Rani,Assistant Professor

Left Most Derivation Tree Right Most Derivation Tree

Ex: Construct a parse tree for the string aabbaa from the following grammar.

Sa/aAS, A SS/SbA/ba

Solution: For generating the string from the given grammar, the derivation will be

S =>aAS=>aSbAS=>aabAS=>aabbaS=>aabbaa

The derivation tree is given in Fig

AMBIGUOUS GRAMMAR:The different parse trees generated from the different

derivations may be the same or may be different.

A grammar of a language is called ambiguous if any of the cases for generating a

particular string, more than one parse tree(LMD Tree. RMD Tree) can be generated.

CSE,NRCM Page 77 T.Rupa Rani,Assistant Professor

Procedure to test ambiguous Grammar: Grammar will be given.Consider a string which

produces two derivation trees to prove that the grammar is ambiguous.

Ex: Prove that the following grammar is ambiguous.

P: S  E + E/E * E/id

Let us take a string id + id*id.

The string can be generated in the following ways.

Derivation (i):S=> S + S=>S + S*S => id + S*S => id + id*S=> id + id*id

Derivation (ii): S => S*S => S + S*S => id + S*S => id + id*S => id + id*id

The parse trees for derivation (i) and (ii) are shown below.

Ex: Consider the Grammar G with productions: S → aS | Sa | a.Show that G is

ambiguous.

Ans: Consider the string w=aa

LMD Tree RMD Tree

LMD Tree!=RMD Tree. Hence the grammar is ambiguous

Ex: The grammar G for PALINDROMES isS → aSa | bSb | a | b |ε. Check if G is

ambiguous.

Ans: Consider the string w=babbab.

CSE,NRCM Page 78 T.Rupa Rani,Assistant Professor

LMD Tree RMD Tree

LMD Tree=RMD Tree. Hence the grammar is unambiguous

Ex: Check whether the following grammar is ambiguous or not.

S → i C t S | i C t S e S | a, C → b

Ans: Consider the string w=ibtibtaea

LMD Tree RMD Tree

LMD Tree!=RMD Tree. Hence the grammar is ambiguous

Ex: Consider the Grammar G with productions: S → aS | aSb | X, X → Xa | a

Show that G is ambiguous.

Ans: Consider the string w=aa

CSE,NRCM Page 79 T.Rupa Rani,Assistant Professor

LMD Tree RMD Tree

LMD Tree!=RMD Tree. Hence the grammar is ambiguous

SIMPLIFICATION OF CONTEXT-FREE GRAMMAR:

• CFG can be simplified in the following three processes.

• Removal of useless symbols

 Removal of non-generating symbols

 Removal of non-reachable symbols

• Removal of unit productions

• Removal of null productions

Removal of useless symbols

Useless symbols are of two types:

• Non-generating symbols are those symbols which do not produce any string of

terminals. Remove those productions whose productions contain those symbols.

• Non-reachable symbols are those symbols which cannot be reached at any time

starting from the start symbol.

• Dependency graph can be drawn to identify the symbols that are reachable. To draw

dependency graph all non-terminals are indicated as nodes for each production A →

x1, x2,. xn place an edge from A to xi where xi is non terminal. The set of nodes that

have path from start node indicate the non-terminals that are reachable.

Ex:Eliminate useless symbols and productions from the following grammar

S → ABa | BC, A → aC | BCC, C → a, B → bcc,D → E, E → d, F → e

Ans:

Step 1: Eliminate non-generating symbols:

All variables are found to be generating as each of themderive a terminal.

CSE,NRCM Page 80 T.Rupa Rani,Assistant Professor

Step 2: Elimination of non-reachable variables: Draw the dependency graph

From the above graph, D,E and F are non-reachable from S. Hence remove all the

productions which contain non-reachable variables. Therefore the simplified grammar is

S → ABa | BC, A → aC | BCC, C → a, B → bcc

Ex: Eliminate useless symbols in the following grammar G:S → BC | AB | CA, A → a,

C → aB | b

Ans: Here B is not defined; hence it is non-generating symbol. C and A are reachable and are

derivingterminals. Hence, C and A are useful. The reduced grammar isS → CA, A → a, C →

b.

The non-terminals A and C are reachable from S. Hence the simplified grammar is S → CA,

A → a, C → b.

Ex: Eliminate useless symbols in the given G:S → aAa, A → bBB, B → ab, C → a b

Solution: Here all the variables are generating symbols.

C is not reachable from start symbol S. Hence remove it.

So the reduced grammar isS → aAa, A → bBB, B → ab,

Ex:Eliminate useless symbols in the following grammar G:S → aS | A | BC, A → a, B →

aa,

C → a Cb

Ans: Here C is useless, as it is not deriving any string. B is not reachable.

So the reduced grammar isS → aS | A, A → a

Ex:Remove the useless symbols from the given CFG

S  AC S  BA C  CB C  ACA aB aC/b

To find Non-Generating Symbols:

In the above grammar, C is a non-generating symbol since it does not generate a

string with terminals. Hence, eliminate the productions which contain the symbol C.

Therefore, SBA, Aa, Bb

To find Non-Reachable Symbols:

The symbols which cannot be reached at any time starting from the start symbol.

There is no non-reachable symbol in the grammar. So, the minimized form of the grammar

by removing useless symbols is SBA, Aa, Bb.

CSE,NRCM Page 81 T.Rupa Rani,Assistant Professor

REMOVAL OF UNIT PRODUCTIONS:

• Production in the form non-terminal  single non-terminal is called unit production.

• Ex: Remove the unit production from the following grammar. S AB, A  E, B

C,C  D, D  b, E  a

The productions are A  E, B  C, and C  D.

From B  C, and C  D we will get BD

Therefore, S  AB, A E, B  D, D ->b, E  a

From AE and Ea, we get Aa

From BD and Db we get Bb

Therefore, SAB, Aa, Bb,Db, Ea

In the above productions, D and E are non-Reachable variables. Hence eliminate D

and E.

Therefore, the simplified grammar is SAB, Aa, Bb

REMOVAL OF NULL PRODUCTIONS

• A production in the form NT ε is called null production.

• Ifε (null string) is in the language set generated from the grammar, then that null

production cannot be removed.

• That is, if we get, S ε , then that null production cannot be removed from the

production rules.

Procedure to Remove Null Production

Step-1: Construct Vn, the set of all nullable variables

Step-2: For each production B → A, if A is a nullable variable, replace the nullable variable

A by ε , and add, all possible combinations of strings on the RHS of production.

Step-3: Do not add the production A → ε

Ex: Remove the ε- production from the following grammar. S aA, A b/ ε

A ε is a null production. Therefore A is nullable variable.

Vn={A}

Consider SaA.

Replace A by ε we get Sa

Add Sa to SaA

Therefore, the simplified grammar is SaA/a, Ab

CSE,NRCM Page 82 T.Rupa Rani,Assistant Professor

In the above grammar, no null productions, no unit productions, and no useless symbols.

Hence the grammar is simplified

Ex: Eliminate the null production from the following grammar

S→ ABaC, ABC, Bb/ ε, CD/ ε, Dd

Vn={A,B,C}

Consider SABaC. Replace AorBorCorAB or AC orBC or ABC by ε. Then we get

SABaC/BaC/AaC/ABa/aC/Aa/Ba/a.

Similarly, ABC/B/C, Bb, CD, Dd

Eliminate Unit Productions, then we get

SABaC/BaC/AaC/ABa/aC/Aa/Ba/a, ABC/d/b, Bb,

NORMAL FORM

• For a grammar, the RHS of a production can be any string of terminals and non-

terminals

• A grammar is said to be in normal form when every production of the grammar has

some septic form.

• That means, instead of allowing any no of terminals and non-terminals on the RHS of

the production, we permit only specific members on the RHS of the production.

• Two types of normal forms: (a) CNF (Chomsky Normal Form) and (b) GNF

(Greibach Normal Form)

CNF: CHOMSKY NORMAL FORM

• A CFG is said to be in CNF if all the productions of the grammar are in the following

form.

• Non-terminal  String of exactly two non-terminals

• Non-terminal  Single terminal

Ex: ABC, Bb, Cc

PROCEDURE TO CONVERT CFG IN TO CNF:

1. Eliminate null productions and unit productions. i.e., simplify the grammar

2. Include productions of the form A → BC / a as it is.

3. Eliminate strings of terminals on the right-hand side of production if they exceed one as

follows: Suppose we have the production S → a1a2a3 where a1,a2,a3 are terminals then

introduce non-terminal Cai for terminal ai asCa1 → a1, Ca2 → a2, Ca3 → a3

4. To restrict the number of variables on the right-hand side, introduce new variables and

separate them as follows:

Suppose we have the production with n non-terminals as shown below with 5 non-terminals

CSE,NRCM Page 83 T.Rupa Rani,Assistant Professor

Y → X1 X2 X3 X4 X5

Add n-2 new productions using n-2 new non-terminals and modify the production as in the

following:

Y → X1 R1

R1 → X2 R2

R2 → X3 R3

R3 → X4 X5 where the Ri are new non-terminals.

The language generated by the new CFG is the same as that generated by the original CFG.

Ex: Convert the following grammar into CNF. S bA/aB, AbAA/aS/a,

B aBB/bS/a

Step1: The Grammar is minimized.

Step2: The productions Aa and Ba are in CNF. Hence leave the productions as it

is.

Step 3: The productions SbA, S aB, A bAA, A aS, B aBB, B bS are not

in CNF. So, we have to convert these into CNF.

Let us replace terminal ‘a’ by a non-terminal Ca and terminal ‘b’ by a non-terminal

Cb.

Hence, two new productions Ca a and Cb b will be added to the grammar

By replacing a and b by new non-terminals and including the two productions, the

modified grammar will be

S CbA/CaB, A CbAA/CaS/a , B CaBB/CbS/a , Ca a, Cb b

In the modified grammar, all the productions are not in CNF.

The productions A CbAA and B CaBB are not in CNF, because they contain

more than two non-terminals at the RHS.

Let us replace AA by a new non-terminal D and BB by another new non-terminal E.

Hence, two new productions D AA and E  BB will be added to the grammar.

So, the new modified grammar will be

S CbA/CaB

A CbD/CaS/a

B CaE/CaS/a

D  AA

E BB

Ca a

CSE,NRCM Page 84 T.Rupa Rani,Assistant Professor

Cb b

It is in CNF

Ex: Convert following CFG to CNF:

S → AB | aB

A → aab | ε

B → bbA

Ex: Convert following CFG to CNF.

S → bA | aB

A → bAA | aS | a

B → aBB | bS | b

Ex: Convert following CFG to CNF.

S → ASB | ε

A → aAS | a

B → SbS | A | bb

LEFT RECURSION AND LEFT FACTORING:

• Left Recursion: A context-free grammar is called left recursive if a non-terminal ‘A’

as a leftmost symbol on the right side of a production. AAa

• In other words, a grammar is left recursive if it has a non-terminal ‘A’ such that there

is a derivation.

• A =>Aa for some string a

• There are two types of left recursion

• i) Direct Left Recursion ii) Indirect Left Recursion

DIRECT LEFT RECURSION:

Let the grammar be A Aα/β, where α and β consists of terminal and/or non-terminals but β

does not start with A.

Elimination of Left Recursion:

For the production A  Aα/β, the equivalent grammar after removing the left

recursion is A βA1, A1 αA1/ε

In general, for a grammar in the form

A  Aα1 / Aα2 / ……/Aαn /β1 / β2 /……./ βn

CSE,NRCM Page 85 T.Rupa Rani,Assistant Professor

The equivalent productions are

Aβ1A
1 / β2 A

1 /……./ βn A
1

A1
α1 A

1 / α2 A
1 / ……/αn A

1 / ε

Ex: Remove the left recursion from the following grammar.

E E + T | T, T T*F | F , F  id | (E)

In the grammar there are two immediate left recursions E E + T and T T * F.

For E E + T, the equivalent productions are E TE1 and E1
 + TE1/ε

For T T * F, the equivalent productions are T FT1, T1
 *FT1/ε

The CFG after removing the left recursion becomes

E => TE1

E1 => + TE1/ε

T FT1

T1
 *FT1|ε

F  id | (E)

INDIRECT LEFT RECURSION:

A grammar of the form A1  A2a/b, A2A1c/d is called indirect left recursion.

Convert indirect left recursion in to direct left recursion and then apply the

elimination of direct left recursion.

Consider A2 A1c/d

CSE,NRCM Page 86 T.Rupa Rani,Assistant Professor

2 2

Then A2A2ac/bc/d. it is in the direct left recursion. Eliminate Direct left recursion

A2bcA2
1 /dA 1 , A 1ac A2

1 /ε

LEFT FACTORING:

A production rule of the form A αβ1/αβ2/. . ./αβn is called left factoring.

After left factoring, the previous grammar is transformed into:

A  αA1, A1  β1/β2/. . . /βn

Ex: Left Factor the following grammar.

A abB | aB | cdg | cdeB | cdfB

The left factored grammar is

A aA1 /cdA²

A1 bB/B

A² g/eB/fB

GREIBACH NORMAL FORM

• A grammar is said to be in GNF if every production of the grammar is of the form

• Non-terminal  (single terminal)(non-terminal)*i.e. terminal followed by any

combination of NTs including null.

Lemma I: Substitution Rule:

• Let G be a CFG.

• If A Ba and B  b1/b2/. . . /bn belongs to the production rules (P) of G, then

a new grammar will A  b1a/b2a/. . . /bna

Lemma II: Elimination of Left Recursion

• Let G be a CFG.

• If A  Aa1/Aa2/. . . /Aam/b1/b2/. . . /bn belongs to P of G, then equivalent

grammar is

A b1 A
1/b2 A

1 /. . . /bnA
1 / b1/b2/. . . /bn

A1
a1A

1/a2 A
1 /. . . /am A

1 /a1/a2/. . . /am

PROCESS FOR CONVERSION OF A CFG INTO GNF

• Step I: The given grammar is in CNF

• Step II: Rename the non-terminals as A1, A2 ……An with A1=S

• Step III: we need productions must be in the form that the RHS of productions must

start with a terminal or with higher indexed variable.

CSE,NRCM Page 87 T.Rupa Rani,Assistant Professor

For each production Ai Aj a

(i) ifi<j leave the production as it is.

(ii) ifi=j then apply lemma2 (Elimination of Left Recursion)

(iii) ifi>j then apply lemma1. (Apply Substitution Rule)

• Step IV: For each production Ai Aj a where i<j apply substitution rule.

The resulting productions of the modified grammar will come into GNF.

Ex:Convert the following grammar in to GNF. SAA/a, ASS/b

• Step I: There are no unit productions and no null production in the grammar. The

given grammar is in CNF.

• Step II: In the grammar, there are two non-terminals S and A. Rename the non-

terminals as A1 and A2 respectively. The modified grammar will be A1 A2A2/a,

A2 A1A1/b

• Step III: In the grammar, A2  A1A1 is not in the form Ai Aj a where i<j

Apply substitutionrule Therefore, A2  A2A2A1/aA1/b

On the above production apply Lemma II,

A2aA1X/bX/aA1/b, XA2A1X/A2A1

The modified grammar A1 A2A2/a, A2aA1X/bX/aA1/b, XA2A1X/A2A1

• Step IV: apply substitution rule on A1 A2A2/a

Therefore, A1 aA1XA2/bXA2/aA1A2/bA2/a

Apply substitution rule on XA2A1X/A2A1

Therefore, X aA1XA1X/bXA1X/aA1A1X/bA1X/ aA1XA1/bXA1/aA1A1/bA1

The modified grammar is

A1 aA1XA2/bXA2/aA1A2/bA2/a

A2aA1X/bX/aA1/b

X aA1XA1X/bXA1X/aA1A1X/bA1X/ aA1XA1/bXA1/aA1A1/bA1

The above grammar is in GNF

Ex: Convert the following grammar in to GNF.

S → XA | BB

B → b | SB

X → b

A → a

CSE,NRCM Page 88 T.Rupa Rani,Assistant Professor

Ex: Convert the CFG to GNF

S → AB A

A → aA | ε

B → bB | ε

CLOSURE PROPERTIES OF CONTEXT-FREE LANGUAGES

• A set is closed (under an operation) if and only if the operation on two elements of the

set produces another element of the set. If an element outside the set is produced, then

the operation is not closed.

• CFL are closed under Union.

• If L1 and If L2 are two context free languages, their union L1 ∪ L2 will also be

context free.

• Ex: L1 = { anbncm | m >= 0 and n >= 0 } and L2 = { anbmcm | n >= 0 and m >= 0 }

L1 ∪ L2 = { anbncm ∪anbmcm | n >= 0, m >= 0 } is also context free.

L1 says number of a’s should be equal to number of b’s and L2 says number of b’s

should be equal to number of c’s. Their union says either of two conditions to be true.

So it is also context free language.

• CFL are closed under Concatenation

• If L1 and If L2 are two context free languages, their concatenation L1.L2 will also be

context free.

• Ex: L1 = { anbn | n >= 0 } and L2 = { cmdm | m >= 0 }

L3 = L1.L2 = { anbncmdm | m >= 0 and n >= 0} is also context free.

• L1 says number of a’s should be equal to number of b’s and L2 says number of c’s

should be equal to number of d’s. Their concatenation says first number of a’s should

be equal to number of b’s, then number of c’s should be equal to number of d’s. So,

we can create a PDA which will first push for a’s, pop for b’s, push for c’s then pop

for d’s. So it can be accepted by pushdown automata, hence context free.

• CFL are closed under Kleen Closure

If L1 is context free, its Kleene closure L1* will also be context free. For example,

L1 = { anbn | n >= 0 }

L1* = { anbn | n >= 0 }* is also context free.

• CFL are not closed under Intersection

Consider two languages L1= {an+1bn+1cn, where n, l>= 0} and L2 == {anbncn+k, where n, k >=

0}.

Consider L = L1 ∩ L2

So, L = an+1bn+1cn Ç anbncn+k = anbncn, where n >= 0.

CSE,NRCM Page 89 T.Rupa Rani,Assistant Professor

anbncn is a context sensitive language not a context free. As one instance is proved not to be

context free then we can decide that context free languages are not closed under intersection.

CFL are not closed under Intersection and Complementation.

From the set theory, we can prove L1 Ç L2 = L1 UL2. (D’ Morgan’s Law) If the

union of the complements of L1 and L2 are closed, i.e., also context free, then the LHS will

also be context free. But we have proved that L1 Ç L2 is not context free. We are getting a

contradiction here. So, CFLs are not closed under complementation.

PUMPING LEMMA FOR CFL

Let L be a CFL. Then, we can find a natural number n such that 1) Every z ∈ L where|z|>=n

and z can be written as z = uvwxy, for some strings u,v,w,x,yi) | vx | >=1 ii) | vwx | <= n and

uviwxiy∈ L for all i>= 0

Note: Method to test a language is CFL or not.

• Step I: Assume that L is context free. Find a natural number such that | z | >=n.

• Step II: So, we can write z = uvwxy for some strings u, v, w, x, y.

CSE,NRCM Page 90 T.Rupa Rani,Assistant Professor

• Step III: Find a suitable k such that uviwxiy is not in L. This is a contradiction, and

so L is not context free.

Ex: Using Pumping Lemma, Show that L = {anbncn where n >=1} is not CFL

The given language is L = {anbncn where n >=1}

L={ab, aabbcc, aaabbbccc,….}

Let z=aabbcc=uvwxy

Where u=a,v=a,w=b,x=b,y=cc

When i=0, uviwxiy=uwy=abcc is not in L, Therefore L is not a CFL

Ex: ST L={ap:p is a prime number} is not CFL

Ex: Prove that the language L = {ai2/i ≥ 1 } is not context free.

APPLICATIONS OF CONTEXT-FREE GRAMMAR

• The compiler is a program that takes a program written is the source language as input

and translates it into an equivalent program in the target language.

• Syntax analysis in an important phase in the compiler design.

• In this phase, mainly grammatical errors called syntax errors are checked.The syntax

analyzer (parser) checks whether a given source program satisfies the rules

implied by context-free grammar or not.

• If it satisfies, the parser creates the parse tree of that program. Otherwise, the parser

gives the error messages

• CFGs are used in speech recognition and also in processing spoken words.

Ex1:

In C language, an identifier is described by the following CFG.

• The definition of an identifier in a programming language is

Letter A | B | . . . | Z | a | b | ... | z

Digit 0 | 1 | . . . | 9 idletter (letter | digit)*

 ASSIGNMENT-3

1. Construct a CFG for the following

a) Set of strings of 0 and 1 where consecutive 0 can occur but no consecutive 1 can

CSE,NRCM Page 91 T.Rupa Rani,Assistant Professor

occur.

b) Set of all (positive and negative) odd integers.

c) Set of all (positive and negative) even integers.

2. Check whether the following grammar is ambiguous or not.

S → a/Sa/bSS/SSb/SbS, W=baababaa

3. Simplify the following CFG.

S → AaB/aaB, A → D, B → bbA/∈, D → E, E → F, F → As

4. Convert the following grammar into CNF.

E → E + T/T, T → (E)/a

5. Convert the following grammar into GNF.

S → A, A → aBa/a, B → bAb/b

CSE,NRCM Page 92 T.Rupa Rani,Assistant Professor

Unit-4: Push-Down Automata

Limitations of FA:

• The memory capability of Finite Automata is very limited.

• It can memorize the current input symbol.

• It cannot memorize previously processed symbols.

• Hence, by adding memory concept to FA, we will get Push down Automata.

• PDA is the same as Finite Automata with the attachment of an auxiliary amount of

storage as a stack.

Block Diagram of PDA:

• A PDA consists of four components:

• 1) An input tape, 2) a reading head, 3) a finite control and 4) a stack.

• Input tape: The input tape contains the input symbols. The tape is divided into a

number of squares. Each square contains a single input character. The string placed

in the input tape is traversed from left to right. The two end sides of the input string

contain an infinite number of blank symbols.

• Reading head: The head scans each square in the input tape and reads the input

from the tape. The head moves from left to right. The input scanned by the reading

head is sent to the finite control of the PDA.

• Finite control: The finite control can be considered as a control unit of a PDA. An

automaton always resides in a state. The reading head scans the input from the

input tape and sends it to the finite control. A two-way head is also added with the

finite control to the stack top. Depending on the input taken from the input tape and

the input from the stack top, the finite control decides in which state the PDA will

CSE,NRCM Page 93 T.Rupa Rani,Assistant Professor

move and which stack symbol it will push to the stack or pop from the stack or do nothing on

the stack.

• Stack: A stack is a temporary storage of stack symbols. Every move of the PDA indicates

one of the following to the stack

• Push: One stack symbol may be added to the stack

• Pop: One stack symbol may be deleted from the top of the stack. In the stack, there is always

a symbol z0 which denotes the bottom of the stack.

• Def: Push Down Automata

A PDA consists of a 7-tuple M = (Q, Σ, G, δ, q0, z0, F), Where

Q: Finite set of states.

Σ: Finite set of input symbols.

Γ: Finite set of stack symbols.

δ: Q X(Σ U {ε}) XΓ*
 QXΓ* is a Transition function q0: Initial

state of the PDA.

z0: Stack bottom symbol. F: Final

state of the PDA.

• PDA has 2 alphabets:

• a) An input alphabet ∑

• b) A stack alphabet Γ

Moves on PDA: A move on PDA may indicate:

• An element may be added to the stack (q, a, b) = (q, ab)

• An element may be deleted from the stack: (q, a, b) = (q, ε) and

• There may or may not be a change of state.

• δ(q, a, b) = (q, ab) indicates that in the state q on seeing a, a is pushed onto the

stack. There is no change of state.

• δ(q, a, b) = (q, ε) indicates that in the state q on seeing a the current top symbol

b is deleted from the stack.

• δ(q, a, b) = (q1, ab) indicates that a is pushed onto the stack and the state is

changed to q1.

GRAPHICAL REPRESENTATION OF PDA:

CSE,NRCM Page 94 T.Rupa Rani,Assistant Professor

• Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA where Q = {p, q}, ∑ = {a, b, c}, Γ = {a, b}, q0 = q, F
= {p}, and δ is given by the following equations:

δ(q, a, z0) = {(q, az0)} /*Push*/

δ(q, b, z0) = {(q, bz0)} /*Push*/

δ(q, a, a) = {(q, aa)}

δ(q, b, a) = {(q, ba)}

δ(q, a , b) = {(q, ab)}

δ(q, b, b) = {(q, bb)}

δ(q, c, z0) = {(p, z0)} /* Neither Push nor Pop*/

δ(q, c,a) = {(p, a)}

δ(q, c, b) = {(p,b)}

δ(p, a, a) = {(p, ε)} /*Pop*/

δ(p, b, b) = {(p, ε)} /*pop*/

INSTANTANEOUS DESCRIPTION OF PDA:

• During processing, the PDA moves from one configuration to another configuration.

CSE,NRCM Page 95 T.Rupa Rani,Assistant Professor

At any given instance, the configuration of PDA is expressed by the current state, the

input symbol, and the content of stack.

• The configuration is expressed as a triple (q, x, y), where

q- current state.

x - input string to be processed.

y- is the content of the stack where the leftmost symbol corresponds to top of stack,

and the rightmost is the bottom element.

Ex: When string ababcbcb is processed, the instantaneous description is as shown below.

δ(q, ababcbab, z0)

⇒δ (q, babcbab, az0)

⇒δ(q, abcbab, baz0)

⇒δ(q, bcbab, abaz0)

⇒δ(q, cbab, babaz0)

⇒δ(p, bab, babaz0)

⇒δ(p, ab, abaz0)

⇒δ(p, b, baz0)

⇒ (p, ε, az0)

LANGUAGE ACCEPTANCE BY PDA:

A language can be accepted by a PDA using two approaches:

1. Acceptance by final state: The PDA accepts its input by consuming it and finally it enters

the final state.

2. Acceptance by empty stack: On reading the input string from the initial configuration for

some PDA, the stack of PDA becomes empty.

Design a PDA which accepts the language L={anbn/n>=1}

• Transition Diagram

CSE,NRCM Page 96 T.Rupa Rani,Assistant Professor

• Transition functions

δ(q0, a, Z0) = {(q0, aZ0)} /*Push a*/

δ(q0, a, a) = {(q0, aa)} /*Push a*/

δ(q0, b, a) = {(q1, ε)} /* Pop a and change the state*/

δ(q1, b, a) = {(q1, ε)} /*Pop a*/

CSE,NRCM Page 97 T.Rupa Rani,Assistant Professor

δ(q1, ε, Z0) = {(qf, Z0)} /*change to final state and halt*/

LANGUAGE ACCEPTANCE BY PDA:

Test whether the string aaabbb is accepted or not using

(a) Stack Empty Method (b) Final State Method

Stack Empty Method:

CSE,NRCM Page 98 T.Rupa Rani,Assistant Professor

LANGUAGE ACCEPTANCE BY PDA:

Final State Method

δ(q0, aaabbb, Z0)

⇒δ (q0, aabbb, aZ0)

⇒δ(q0, abbb, aaZ0)

⇒δ(q0, bbb, aaaZ0)

⇒δ(q1, bb, aaZ0)

⇒δ(q1, b, aZ0)

⇒δ(q1, ε , Z0)

⇒δ(qf, ε, Z0)

⇒string is accepted as PDA reached to final state and string is empty.

Ex: Design a PDA which accepts equal number of a’s and b’s over Σ = {a, b}.

CSE,NRCM Page 99 T.Rupa Rani,Assistant Professor

Consider a string abbbaa

Ex: Design a PDA that accepts L={0n12n/n>=1}

CSE,NRCM Page 100 T.Rupa Rani,Assistant Professor

Ex: Design a PDA that accepts L={a3bncn/n>=0}

Ex: Design a PDA that accepts L={wcwr / w is in (a+b)*}

CSE,NRCM Page 101 T.Rupa Rani,Assistant Professor

Ex: Design a PDA which accepts L={WWR|W is in (a+b)*}

Transition Diagram

Transition Functions

 δ(q0, a, Z0) = (q0, aZ0)

• δ(q0, b, Z0) = (q0, bZ0)

• δ(q0, a, a) = (q0, aa)

• δ(q0, a, a)=(q1, ε)

• δ(q0, b, b) = (q0, bb)

• δ(q0, b, b)=(ql, ε)

• δ(q0, a, b) = (q0, ab)

• δ(q0, b, a) = (q0, ba)

• δ(q1, a, a) = (ql, ε)

δ(ql, b, b) = (q1, ε), δ(q1, ε, Z0) = (qf, Z0)

CSE,NRCM Page 102 T.Rupa Rani,Assistant Professor

CONSTRUCTION OF PDA FROM CFG:

• Step 1 − Convert the productions of the CFG into GNF.

• Step 2 − The PDA will have only one state {q}.

• Step 3 − the start symbol of CFG will be the start symbol in the PDA.

• Step 4 − All non-terminals of the CFG will be the stack symbols of the PDA and all the

terminals of the CFG will be the input symbols of the PDA.

• Step 5 − For each production in the form A → aX make a transition δ (q, a, A)=(q,X).

• Step 6- For each production in the form A → a make a transition δ (q, a, A)=(q, ε).

Ex: Convert the following CFG in to PDA SaAA, AaS/bS/a

Sol: The grammar is in GNF

For SaAA: δ (q, a, S)=(q,AA).

For AaS : δ (q, a, A)=(q,S).

For AbS : δ (q, b, A)=(q,S)

For Aa :δ (q, a, A)=(q, ε).

For A → aX :δ (q, a, A)=(q,X).

For A → a :δ (q, a, A)=(q, ε)

The Equivalent PDA:

δ (q, a, S)=(q,AA).

δ (q, a, A)=(q,S).

δ (q, b, A)=(q,S)

δ (q, a, A)=(q, ε)

CONSTRUCTING CFG FOR GIVEN PDA

• To convert the PDA to CFG, we use the following three rules:

• R1: The productions for start symbol S are given by S ➔ [qO, ZO, q] for each state q in

Q.

• R2: Each move that pops a symbol from stack with transition as δ(q, a, Zi) = (q1, ε)

induces a production as [q, Zi, q1] ➔ a for q1in Q.

• R3: Each move that does not pop symbol from stack with transition as

• δ (q, a, ZO) = (q , Z1Z2 Z3Z4…..) induces a production as [q, ZO, qm]  a[ql, Zl q2] [q2, Z2

q3] [q3, Z3 q4] [q4, Z4 q5]…[qm-l, Zmqm] for each qi in Q, where l <i< m.

CSE,NRCM Page 103 T.Rupa Rani,Assistant Professor

• After defining all the rules, apply simplification of grammar to get reduced grammar

Ex:Give the equivalent CFG for the following PDA M = {{q0 , q1 },{a, b}, {Z, ZO}, δ, qO, ZO}

where δ is defined by

δ(qO, b, ZO) = (qO, ZZO)δ(qO, ε, ZO) = (qO, ε)δ(qO, b, Z) = (qO, ZZ)

δ(qO, a, Z) = (q1, Z)δ(q1, b, Z) = (q1, ε)δ(q1, a, ZO) = (qO, ZO)

Solution: The states are qO andql, and the stack symbols are Z and ZO.

The states are {S, [qO, ZO, qO], [qO, ZO, q1], [q1, ZO, qO], [q1, ZO, ql], [qO, Z, qO], [qO, Z, ql], [ql, Z,

qO], [q1, Z, q1]}. S- Productions are given by Rule 1

S  [qO, ZO, qO] | [qO, ZO, q1]

(1) The CFG for δ(qO, b, ZO) = (qO, ZZO) is obtained by rule 3

[qO, ZO, qO]  b [qO, Z, qO] [qO, ZO, qO]

[qO, ZO, qO]  b [qO, Z, q1] [q1, ZO, qO]

[qO, ZO, q1]  b [qO, Z, qO] [qO, ZO, q1]

[qO, ZO, q1] b [qO, Z, q1] [q1, ZO, q1]

(2) The CFG for δ(qO, ε, ZO) = (qO, ε) is obtained by rule 2 [qO, ZO, qO] ε

(3) The CFG for δ(qO, b, Z) = (qO, ZZ) is obtained by rule 3

[qO, Z, qO]  b [qO, Z, qO] [qO, Z, qO]

[qO, Z, qO]  b [qO, Z, q1] [q1, Z, qO]

[qO, Z, q1]  b [qO, Z, qO] [qO, Z, q1]

[qO, Z, q1]  b [qO, Z, q1] [q1, Z, q1]

(4) The CFG for δ(qO, a, Z) = (q1, Z) is obtained by rule 3

[qO, Z, qO]  a [q1, Z, qO]

[qO, Z, q1]  a[q1, Z, q1]

(5) The CFG for δ(q1, b, Z) = (q1, ε) is obtained by rule 2

[q1, Z, q1]  b

(6) The CFG for δ(q1, a, ZO) = (qO, ZO) is obtained by rule 2

[ql, ZO, qO]  a [qO, ZO, qO]

CSE,NRCM Page 104 T.Rupa Rani,Assistant Professor

Unit-5: Turing Machine

Limitations of Finite State Machine/Finite Automata:

• Can remember only current symbol

• Cannot remember previous long sequence of input

Limitations of Pushdown Automata:

• It uses stack to remember any long input sequence

• Accepts a larger class of languages than that of FA, Computation power is limited

• To overcome the above limitations, Alan Turing has proposed a model called a Turing

Machine(TM) with a two-way infinite tape. The tape is divided into cells, each of

which can hold only one symbol. The input of the machine is a string w=w1w2w...wn

initially written on the left most portion of the tape, followed by an infinite sequence

of blanks B.

• The machine is able to move a read/write head left and right over the tape as it

performs computation. It can read and write symbols on the tape as it pleases.

 B B. W1. W2 Wn B B

BLOCK DIAGRAM OF TURING MACHINE

It is a simple mathematical model of a general purpose computer. It is capable of

performing any calculation which can be performed by any computing machine. Hence this

CSE,NRCM Page 105 T.Rupa Rani,Assistant Professor

model is popularly known as “Turing Machine”.

FEATURES OF TM:

• It has external memory which remembers arbitrarily long sequence of input.

• It has unlimited memory capability.

• The model has a facility by which the input at left or right on the tape can be read

easily.

• The machine can produce certain output based on its input. In this machine there is

no distinction between input and output symbols.

• The TM can be thought of as a finite state automata connected to a read or write

head,

• It has one tape which is divided into a number of cells. Each cell can store only one

symbol.

• The read or write head can examine one cell at a time.

• In one move the machine examine the present symbol under the head on the tape

and present state of an automaton to determine:

• A new symbol should be written on the tape in the cell under the head

• The head moves one cell either left(L) or right(R), The next state of the automata.

• Whether to halt or not.

DEF: TURING MACHINE:

• A TM is expressed as a 7-tuple (Q, T, B,∑, δ, q0, F) where:

• Q-finite set of states

• T -tape alphabet (symbols which can be written on Tape)

• B∈ T -blank symbol (every cell is filled with B except input alphabet initially)

• ∑ -the input alphabet (symbols which are part of input alphabet)

• δ :Q × T → Q × T × {L,R} transition function which maps.

• q0 -the initial state

• F -the set of final states.

INSTANTANEOUS DESCRIPTION OF TM

• ID of TM is (l,q,r) where

• l- tape contents left to the head of TM

CSE,NRCM Page 106 T.Rupa Rani,Assistant Professor

• r- tape contents right to the head of TM including the symbol under head and

• q- current state

Moves: At any given time the move of TM depends on i) Current state and ii) input symbol

i.e., (q,a). the o/p of move would be (q1, b, L) Where q1 = next state, b= symbol to be

replaced by a and L= move left one symbol.

Ex: δ(qi,a)= (qj,b,L) i.e., in the state qi on receiving a symbol a , then change to a new state

qj , replace a by b and the move left.

Acceptance or Rejection by TM:

• Let us assume the final Configuration of TM is (u,q,w)

• Accept: If q ∈ F

• Reject: If q ∉ F and /or next moves are not defined/loops

• If either accept or reject then TM halts(Stops)

TM as Language Accepter:

• M accepts w iff the execution of M on w terminating and ends in the accepting state

• M rejects w iff the execution of M on w terminating and ends in the non accepting

state

• M does not accept w iff M rejects or M loops on w,

Ex: Write IDs for the following TM

δ(q0,a)= (q0,X,R), δ(q0,b)= (q0,b,R), δ(q0,B)= (q1,B,L), δ(q1,b)= (q1,Y,L) , δ(q1,X)= (q1,X,L), δ(
q1,B)= (q2,B,H) and string w=abba.

• Where l=ab l=abb

r=abb r=bb

Current state=q current state=q1

CSE,NRCM Page 107 T.Rupa Rani,Assistant Professor

B B B a b b a B B B

Current state= q0

B B B X b b a B B B

Current state= q0

B B B X b b a B B B

Current state= q0

B B B X b b a B B B

Current state= q0

B B B X b b X B B B

Current state= q0

B B B X b b X B B B

Current state= q1

B B B X b b X B B B

Current state= q1

B B B X b Y X B B B

Current state= q1

B B B X Y Y X B B B

Current state= q1

B B B X Y Y X B B B

Current state= q1

δ(q1,B)= (q2,B,H)

CSE,NRCM Page 108 T.Rupa Rani,Assistant Professor

• Representation of TM: A TM can be represented by means of Transition Table and

Transition diagram.

• Representation of TM using Transition Table: The Transition table for the above TM

is as given below.

δ a b X Y B

q0 (q0,X,R) (q0,b,R) -- - (q1,B,L)

q1 -- (q1,Y,L) (q1,X,L) - (q2,B,H)

Ex: Construct a TM for language consisting of strings having any no of b’s and even no of

a’s defined over {a,b}.

Design a TM to accept strings formed with 0 and 1 and having substring 000

CSE,NRCM Page 109 T.Rupa Rani,Assistant Professor

Ex: Design TM for Multiplication of two integers

Ex: Design TM for f(m,n)=m-n, m>=n

CSE,NRCM Page 110 T.Rupa Rani,Assistant Professor

CONVERSION OF REGULAR EXPRESSION TO TM

• Step1: Convert the RE to an equivalent Automaton without epsilon transitions

• Step2: Change both the +-initial and final states of the Automata to an intermediate

state

• Step3: insert a new initial state with a transition (B,B,R) to the Automata’s initial

state

• Step4: convert the transitions with label a to (a,a,R)

• Step5: insert a new final state with a transition (B,B,R) from Automata’s final state to

the new final state.

	FORMAL LANGUAGES AND AUTOMATA THEORY
	Course Outcomes
	MODULE-I
	MODULE-II
	MODULE-III
	MODULE-IV
	MODULE-V
	TEXTBOOKS:
	REFERENCEBOOKS:
	Practice Problems
	EX: CONVERT THE GIVEN NFA TO DFA
	EX:NFA TO DFA CONVERSION
	NFA WITH EPSILON TRANSITIONS

	Important Questions PART-A
	PART-B
	Assignment Questions

	Part-A
	PART-B
	DERIVATION AND PARSE TREE:
	PARSE TREE:
	LMD AND RMD TREES:
	REMOVAL OF UNIT PRODUCTIONS:
	REMOVAL OF NULL PRODUCTIONS
	NORMAL FORM
	CNF: CHOMSKY NORMAL FORM
	PROCEDURE TO CONVERT CFG IN TO CNF:
	LEFT RECURSION AND LEFT FACTORING:
	DIRECT LEFT RECURSION:
	INDIRECT LEFT RECURSION:
	LEFT FACTORING:
	GREIBACH NORMAL FORM
	PROCESS FOR CONVERSION OF A CFG INTO GNF
	CLOSURE PROPERTIES OF CONTEXT-FREE LANGUAGES
	PUMPING LEMMA FOR CFL
	APPLICATIONS OF CONTEXT-FREE GRAMMAR
	Unit-4: Push-Down Automata
	GRAPHICAL REPRESENTATION OF PDA:
	INSTANTANEOUS DESCRIPTION OF PDA:
	LANGUAGE ACCEPTANCE BY PDA:
	LANGUAGE ACCEPTANCE BY PDA: (1)
	LANGUAGE ACCEPTANCE BY PDA: (2)
	CONSTRUCTION OF PDA FROM CFG:
	CONSTRUCTING CFG FOR GIVEN PDA

	Unit-5: Turing Machine
	BLOCK DIAGRAM OF TURING MACHINE
	FEATURES OF TM:
	DEF: TURING MACHINE:
	INSTANTANEOUS DESCRIPTION OF TM
	CONVERSION OF REGULAR EXPRESSION TO TM

