Chapter 1
Introcluction

Lecturer:
PRIYAN KA

/]

s Design and Analysis of Algorithms — Unit |
m

Algorithm — -

An Algorithm is a sequence of unambiguous
instructions for solving a problem,

i.e., for obtaining a required output for any
legitimate input in a finite amount of time.

/]

s Design and Analysis of Algorithms — Unit |
m

1-2

Notion of algorithm——=

problem

|

algorithm

input > “computer” » output

Algorithmic solution

/]

s Design and Analysis of Algorithms — Unit | 13
e

— i

o Il
PSEUDOCODE

Pseudocode (pronounced SOO-doh-kohd) is a detailed yet
readable description of what a computer program or
algorithm must do, expressed in a formally-styled natural
language rather than in a programming language.

[t is sometimes used as a detailed step in the process of
developing a program.

[t allows programmers to express the design in great detail
and provides programmers a detailed template for the next
step of writing code in a specific programming language.

/]

s Design and Analysis of Algorithms — Unit | 1-4
|

"

‘Formatting and Conventions-in Pseudocoﬁi‘ﬁé- , , ,

INDENTATION in pseudocode should be identical to
its implementation in a programming language. Try to
indent at least four spaces.

The pseudocode entries are to be cryptic, AND
SHOULD NOT BE PROSE. NO SENTENCES.

No flower boxes in pseudocode.
Do not include data declarations in pseudocode.

/]

s Design and Analysis of Algorithms — Unit | 1-5
[

~Seme Keywords That Shoutdbe Used— , , ,

For looping and selection,
e Do While...EndDo;
e Do Until...Enddo;
e Case...EndCase;

e If...Endif;

e Call ... with (parameters); Call; Return; Return;
When; Always use scope terminators for loops and
iteration.

/]

s Design and Analysis of Algorithms — Unit | 16
[

Some Keywords ...

As verbs, use the words
e generate, Compute, Process,
e Set, reset,
e increment,
e calculate,
e add, sum, multiply; ...
e print, display,
e input, output, edit, test , etc.

/]

s Design and Analysis of Algorithms — Unit |
m

Methods of finding GCD

oo
eeen
g eenn
Competition 33
- - - @ C
Computing Greatest Common Divisor: gecd(m,n) | =
Primary School University
1. t:=min{m, n) 1. n=0?
2. mmodt=0? Secondary School 2, Yes? Return m
3. Yes? nmodt=07? 1. Find prime factors of m 3 r=mmod n,
Return ! : mi=n
e Eradn D 2. Find prime factors of n n=r
O NOETE TS 3. Identity common factors 4 Gotot
4

- . Return product of these

433-253 Algormims and Data Structures

/]

s Design and Analysis of Algorithms — Unit | 1-8
e

——— ; ,/"P.l-

f11.
Euclid’s Algorithm

Problem: Find gcd(m,n), the greatest common divisor of two
nonnegative, not both zero integers m and n

Examples: ged(60,24) =12, gcd(60,0) = 60, gcd(0,0) =7

Euclid’s algorithm is based on repeated application of equality
gcd(m,n) = ged(n, m mod n)
until the second number becomes o, which makes the problem

trivial.

Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

/]

s Design and Analysis of Algorithms — Unit | 19
[

Two descriptions of Euclid’s algorithm

Step1 If n = o, return m and stop; otherwise go to Step 2
Step 2 Divide m by n and assign the value fo the remainder to r

Step 3 Assign the value of n to m and the value of rton. Go to
Step 1.

while n £ o do
r«— m mod n
m<— n
n<«—r

return m
s Design and Analysis of Algorithms — Unit | 1-10
[

/]

ged(m,n) ————

Consecutive integer checking algorithm
Step 1 Assign the value of min{m,n} to t

Step 2 Divide m by t. If the remainder is o, go to Step 3;
otherwise, go to Step 4

Step 3 Divide n by t. If the remainder is o, return t and
stop;
otherwise, go to Step 4

Step 4 Decrease t by 1 and go to Step 2

/]

s Design and Analysis of Algorithms — Unit | 111
[

Other methods forged(m,n) feont |

il

Middle-school procedure

Step 1 Find the prime factorization of m
Step 2 Find the prime factorization of n
Step 3 Find all the common prime factors

Step 4 Compute the product of all the common prime
factors

and return it as gcd(m,n)

[s this an algorithm?

/]

s Design and Analysis of Algorithms — Unit |
m

1-12

Sieve of Eratostheneés =

Input: Integer n 2 2
Output: List of primes less than or equal to n
forp«—2tondo Alp] < p
for p — 2 tol.n]do
if A[p] # o //p hasn’t been previously eliminated from the list
J<p*p
whilej<n do
Alj] < o //mark element as eliminated

J<J+Pp

Example:2 3 4 56 7 8 910 11 12 13 14 15 16 17 18 19 20

/]

s Design and Analysis of Algorithms — Unit |
m

1-13

=

—

Termination of Euclid’s Algorithm=—"

T

The second number of the pair gets smaller with each
iteration and cannot become negative:

Indeed, the new value of n is r = m mod n, which is
always smaller than n.

Eventually, r becomes zero, and the algorithms stops.

/]

s Design and Analysis of Algorithms — Unit | 1-14
e

C Step Q) Fenminder Substitate Combine terins

1 120 120 =120*1+23*0
2 23 23=120*0+23*1
3 5 S5=120-23*5 S=(120*1+23*M-(120*0+23*10*5 S=120*1+23*-5
4 4 3=123-5%4 S=(120* 0+ 23* 13 -C120* 1+ 23* -5 %4 A=120*% 4+ 23* 21
5 1 2=5-3*%1 2=0120* 1+ 23* -5 -0120*% 4+ 253* 215 * 1 2=120*%5+23* 26
i 1 1=3-2*1 1=0120* 4+ 253 * 215 -(120* 5+ 23 * -déy* 1 1=120%* -9+ 23 *47
7 2 1 Ehd of o goritien

/]

s Design and Analysis of Algorithms — Unit | 1415
[

FUNDAMENTALS OF ALGORITHMIC
PROBLEM SOLVING

/]

s Design and Analysis of Algorithms — Unit |
m

—

—Fundamentals cSFNéorithmiC problewr;Sor ’F

Algorithm = Procedural Solutions to Problem

NOT an answer, BUT rather specific instructions of
getting answers.

Therefore, requires steps in designing and
analyzing an algorithm

/]

s Design and Analysis of Algorithms — Unit |
m

1-17

—__—Algorithm Design-& Analysis Proce.g,g//ﬁ

1.

Understand the problam

l

Decide an:
computational means,
axact vs. approximate solving, .\
data structurais,
algaorithm design technigue

w
Dasign an algornthm —

L J
Frove comactniass

¥
Analyze the algarithm

¥
Code the algorithm

. T
\} Design and Analysis of Algorithms — Unit | 1-18
e

Sten 1:- Understand the Probiem —- m

Before designing an algorithm - understand
completely the problem given.

Read the problem’s description carefully and ask
questions if you have any doubts about the problem,

Do a few small examples by hand, think about special
cases, and ask questions again if needed.

/]

s Design and Analysis of Algorithms — Unit | 1-19
[

1.

Step 1: Understand the Problem

An input to an algorithm specifies an instance of the
problem the algorithm solves.

[t is very important to specity exactly the range of
instances the algorithm needs to handle.

Failing which - the algorithm works correctly for some
inputs , but crashes on some boundary values.

Remember that a correct algorithm is not one that

works most of the time but one that works correctly for
all legitimate inputs.

/]

s Design and Analysis of Algorithms — Unit |
[

1-20

device —— ' ,‘”‘

Algorithms designed to be executed on machines that
executes intstructions one after another are called
sequential algorithms.

Algorithms that take advantage of computers that can

execute operations concurrently are called parallel
algorithms.

/]

s Design and Analysis of Algorithms — Unit |
m

1-21

—& Approximate Problem SoTVinF,,

Solving the problem exactly - Exact algorithms

Solving the problem approximately - Approximation
algorithms
Why approximation algorithms?
1. Problems cannot be solved exactly.
Eg. Extracting square roots, solving non-linear equations

2. Available exact algorithms are unacceptably slow because of
problem’s complexity

Eg. Traveling Salesman Problem

3. Approx. Algs can be a part of algorithms that solve the
problem exactly.

/]

s Design and Analysis of Algorithms — Unit | 1-22
|

tlep 4. Deciding on \ppropriate

.;:'-?
-

e ——

Data Structures - * I

In the new world of object-oriented programming,
data structures remain important for both design and
analysis of algorithms.

However, we will assume a very basic data structure for
now and concentrate on the algorithm side.

i

s Design and Analysis of Algorithms — Unit | 1-23

Eechniques

Il

An algorithm design technique (or “strategy” or

“paradigm”) is a general approach to solving problems
algorithmically that is applicable to a variety of
problems from different areas of computing.

Eg. Brute force, Divide-and-Conquer, Transform-and-
Conquer

Importance:

1. Provide guidance for designing algorithms for new
problems.

>. To classify algorithms according to an underlying
design idea.

/]

s Design and Analysis of Algorithms — Unit |
[

1-24

L -
an-Algorithm

Pseudocode, a mixture of a natural language and
programming language-like constructs.

flowchart, a method of expressing an algorithm by a
collection of connected geometric shapes containing
descriptions of the algorithm’s steps.

/]

s Design and Analysis of Algorithms — Unit |
m

Correctness /,”

Prove algorithm’s correctness = prove that the
algorithm yields a required result for every legitimate
input in a finite amount of time.

For an approximation algorithm, correctness means to
be able to show that the error produced by the
algorithm does not exceed a predefined limit.

/]

s Design and Analysis of Algorithms — Unit | 1-26
[

lgorithm ——— -

1.

1. Efficiency
C0Time efficiency indicates how fast the algorithm runs.

CIspace e]fﬁciencg indicates how much extra memory the
algorithm needs.

2. Simplicity

3. Generality

[1Design an algorithm for a problem posed in more
general terms.

[ODesign an algorithm that can handle a range of inputs
that is natural for the problem at hand.

/]

s Design and Analysis of Algorithms — Unit | 1-27
[

Step 9: Coding the algorithm—
E S I

I More than implementation
[Peril of incorrect & inefficient implementation
[1Require testing & debugging

1 Require code optimizing

/]

s Design and Analysis of Algorithms — Unit | 1-28
[

Important Problem Types

/]

s Design and Analysis of Algorithms — Unit | 1-29
[

mportant Problem Types -
Ht.

LISorting

[1Searching

L1 String processing

1 Graph problems

1 Combinatorial problems
1 Geometric problems

I Numerical problems

/]

s Design and Analysis of Algorithms — Unit | 1-30
[

Sorting — -

il

The sorting problem asks us to rearrange the items of a
given list in ascending order.

we usually need to
Csort lists of numbers,
[Icharacters from an alphabet,
Clcharacter strings,

[1 records similar to those maintained by schools about
their students,

Cllibraries about their holdings,
[Jcompanies about their employees.

/]

s Design and Analysis of Algorithms — Unit | 1-31
[

Searching —— N

1.

The searching problem deals with finding a given
value, called a search key, in a given set (or a multiset,
which permits several elements to have the same
value).

/]

s Design and Analysis of Algorithms — Unit | 1-32
[

String Processing — =

IR

A string is a sequence of characters from an alphabet.

String of particular interest:

1. Text string — comprises letters, numbers, and
special characters

2. Bit string — comprises zeros and ones
3. Gene sequence

Mainly string matching problem: searching for a given
word in a text

/]

s Design and Analysis of Algorithms — Unit |
m

1-33

Graph Problems—— =
- .

A i]ra h can be thought of as a collection of CFoin’gs
called vertices, some of which are connected by line
segments called edges.

Used for modeling a wide variety of real-life
applications.

Basic graph algorithms include:

1. trave - How can one visit all
the points in a network?

2.) - What is the best
Introduction route between two cities?

3. for graphs with directed edges

/]

s Design and Analysis of Algorithms — Unit | 1-34
|

Combinatorial-Problems— ==

e

combinatorial problems: problems that ask (explicitly
or implicitly) to find a combinatorial object—such as
a permutation, a combination, or a subset—that
satisfies certain constraints and has some desired
prop)erty (e.g., maximizes a value or minimizes a
cost).

1. Combinatorial grows extremely fast with problem size

2. No known algorithm solving most such problems
exactly in an acceptable amount of time.

/]

s Design and Analysis of Algorithms — Unit | 135
|

Geometric Problems =

il

Geometric algorithms deal with geometric objects such
as points, lines, and polygons.

2 class problems:

The closest pair problem: given n points in the plane,
find the closest pair among them.

The convex hull problem asks to find the smallest
convex polygon that would include all the points of a
given set. [f

/]

s Design and Analysis of Algorithms — Unit | 1-36
[

N U merica | P I’Ob-lem S ==

Il

Numerical problems, another large special area of
applications, are problems that involve mathematical
objects of continuous nature: solving equations and
systems of equations, computing definite integrals,
evaluating functions, and so on.

/]

s Design and Analysis of Algorithms — Unit |
m

1-37

Fundamentals of Analysis of
algorithm efficiency

Design and Analysis of Algorithms — Unit |

Analysis of algorithms

® Issues:

e correctness

e time efficiency
e space efficiency
e optimality

* Approaches:
e theoretical analysis

o .emPirical analysis
Design and Analysis of Algorithms — Unit |

1-39

Theoretical analysis of time "
él'ﬁfq @f@ﬂlgyys analyzed by determining the number :

of repetitions of the basic operation as a function of
Input size

Basic operation: the operation that contributes the
most towards the runimmgsizame of the algorithm

RN

——
running time Ténallﬁ('ﬁajﬁc(vh Number of times

for basic operation basic operation is
or cost executed

Note: Different basic operations may cost differently!
Design and Analysis of Algorithms — Unit | 1-40

‘examples

E Design and Analysis of Algorit
e

hms — Unit |

1-41

' Empirical analysis of time """ pap
efficiency .

Select a specific (typical) sample of inputs
Use physical unit of time (e.g., milliseconds)
or

Count actual number of basic operation’s executions

Analyze the empirical data

/]

s Design and Analysis of Algorithms — Unit | 1-42
e

Efficiencies

Worst Case Efficiency:

e Is its efficiency for the worst case input of size n, which
is an input of size n for which the algorithm runs the
longest among all possible inputs of that size

. CWOI‘St(n)
Best-case efficiency:

e Is its efficiency for the worst case input of size n, which
is an input of size n for which the algorithm runs the
fastest among all possible inputs of that size

s ° Cbest(n)

s Design and Analysis of Algorithms — Unit | 1-43
e

Amortized efficiency

e [t applies not to a single run of an
algorithm, but rather to a sequence of
operations performed on the same data
structure

/]

s Design and Analysis of Algorithms — Unit | 1-44
e

worst-case -

I‘N‘

For some algorithms, efficiency depends on form of input:
Worst case: C,...(n) - maximum over inputs of size n
Best case: Ci.((n) - minimum over inputs of size n
Average case: C,,(n) - “average” over inputs of size n

- Number of times the basic operation will be executed on
typical input
- NOT the average of worst and best case

- Expected number of basic operations considered as a
random variable under some assumption about the
probability distribution of all possible inputs. So, avg =
expected under uniform distribution.

i

s Design and Analysis of Algorithms — Unit | 1-45

‘Example: Sequential'sea

ALGORITHM SequentialSearch(A[0..n — 1], K)

//Searches for a given value in a given array by sequential search
//Input: An array A[0..n — 1] and a search key K
//Output: The index of the first element of A that matches K
/! or —1 if there are no matching elements
i <0
while i <n and A[i] # K do
i <1+ 1
if i <n return i
else return —1

* Worst case :
n key comparisons

* Best case 1 comparisons

O Average case (n+1)/2, assuming KisinA
Design and Analysis of Algorithms — Unit |

Hi

1-46

=

1.

“Types-of formulas for basic-operation’s R

Exact formula
e.g., C(n) = n(n-1)/2

Formula indicating order of growth with specific
multiplicative constant

e.g., C(n) = 0.5 n?

Formula indicating order of growth with unknown
multiplicative constant

/]

e.g., C(n) = cn?

s Design and Analysis of Algorithms — Unit | 1-47
e

1.

C H\d)@ rm@)ftglr:@\[%t IST growth within a constant

multiple as n—oo

Example:

e How much faster will algorithm run on computer that is
twice as fast?

e How much longer does it take to solve problem of double
input size?

/]

s Design and Analysis of Algorithms — Unit | 1-48
e

“Valuesof some important-functions-as+

n [log,m n nlogyn n? n’ 2% n!

10 3.3 107 33107 107 10° 10° 3.6-10°
104 | 6.6 10° 6.610° 10¢ 10° 1.310% 9.3.10%7
10° | 10 10° 1010 10° 10°

104 13 104 1.310° 108 102

10° 17 10° 1.7.10% 1019 1015

108 | 20 108 20107 102 108

Table 2.1 Values (some approximate) of several functions important
for analysis of algorithms

/]

s Design and Analysis of Algorithms — Unit |
m

1-49

Asymptotic Notations

* O (Big-Oh)-notation
* Q) (Big-Omega) -notation
* O (Big-Theta) -notation

/]

s Design and Analysis of Algorithms — Unit | 1-50
[

e

1.

Asy PN PABTHE OGS I Tz @ttt factors

and small input sizes (because?)

O(g(n)): class of functions f{n) that grow no faster than
g(n)

O(g(n)): class of functions f{n) that grow at same rate as
g(n)

Q(g(n)): class of functions f{n) that grow at least as fast as
.y g(n)
™

s Design and Analysis of Algorithms — Unit | 1-51
[

O-notation —— =

Definition: A function t(n) is said to be in O(g(n)),
denoted t(n) € O(g(n)) is bounded above by some
constant multiple of g(n) for all large n, i.e., there exist
positive constant ¢ and non-negative integer n_ such
that

fln) <cg(n) foreveryn =n,

/]

s Design and Analysis of Algorithms — Unit | 1-52
[

doesn't
matter

. | PO RS

Figure 2.1 Big-oh notation: #(n) € O(g(n))

/]

s Design and Analysis of Algorithms — Unit |
m

()-notation

Formal definition

e A function t(n) is said to be in Q(g(n)), denoted t(n) €
Q(g(n)), if t(n) is bounded below by some constant
multiple of g(n) for all large n, i.e., if there exist some
positive constant ¢ and some nonnegative integer n_
such that)

/]

s Design and Analysis of Algorithms — Unit |
m

1-54

doesn't
matter

|
|
|
|
|
|
|
!
M,

Fig. 2.2 Big-omega notation: #(n) € 2(g(n))

/]

s Design and Analysis of Algorithms — Unit |
m

1.

O hneiadian.

e A function t(n) is said to be in ®(g(n)), denoted t(n)
e ®(g(n)), if t(n) is bounded botlg above and below by
some positive constant multiples of g(n) for all large
n, i.e., if there exist some positive constant ¢, and c,
and some nonnegative integer n_such that -

/]

s Design and Analysis of Algorithms — Unit | 1-56
[

doesn't
matter

Figure 2.3 Big-theta notation: t(n) € ©(g(n))

/]

s Design and Analysis of Algorithms — Unit |
m

(n))and t,(n) € O(g,(n)), then
TH?Q t,(n) € O(max{g,(n), g,(n)}).

e The analogous assertions are true for the Q-notation and
®-notation.

Proof. There exist constants c1, ¢2, n1, n2 such that
11(n) < er*gi(n), for alln 2 n1
i2(n) < ¢2*g2(n), for all n 2> n2

Define ¢3 = ¢1 + ¢2 and n3 = max{n1,n2}. Then
t(n) + 12(n) < e3*max{gi(n), g2(n)}, for all n > A3

i

s Design and Analysis of Algorithms — Unit | 1-58

Some properties of asymptoticiorder of- grow th

1.

fin) € O(fin))
fin) € O(g(n)) iff g(n) Q(fin))

If f(n) € O(g (n)) and g(n) € O(h(n)) , then f(n)
O(h(n))

Note similarity with a <b

If fi(n) € O(g,(n)) and £,(n) € O(g,(n)) , then
h Design andAnaIysiflcﬁnI)]oﬁth(nDJnEI O(max{gl(n), gz(n)}) 1.59

/i

using limits—

/’
() order of growth of I(n) < order of growth of g (n)

im T(n)/g(n) < ¢ > 0 order of growth of r'(n) = order of growth of ¢ (n)

MN—-CO

order of growth of r(n) > order of growth of g(n)

Hi

s Design and Analysis of Algorithms — Unit | 1-60

formula — =

L'Hopital’s rule: If lim ., fin)=1lim_ _ g(n)=oo and
the derivatives f', g exist, then

. i = F(n
Jim ”—ﬂ) = Jim 2 /()
Al—-c0 g (ﬂr) Al—-c9 g (“ﬂl)
rxamples logn vs, n
E ruples 2% vs, p!
mgs formula: n!~ (2nn)"2 (n/e)"
s Design and Analysis of Algorithms — Unit | 1-61
o

=

Orders-of growth of some-importantfu netions

i1

®(log n) no matter what the logarithm’s base a > 11is
log,n=1log, n/log, a

because
a,n® + a,_n*" + ... + a, € O(n)

Exponential functions a™ have different orders of growth
for different a’s

s Desjgn and Analysis of Alggrithms — Unit | 1462
= = order log n < order n* (o>0) < order a® < order n! < ordér

- Basic asym pto‘t‘icefficiency“""'/",
clagses '

/]

s Design and Analysis of Algorithms — Unit | 1-63
[

Hi

algorithms = ”,”

General Plan for Analysis

Decide on parameter n indicating input size

Identify algorithm’s basiyc operation

Determine worst, average, and best cases for input of
size n

Set up a sum for the number of times the basic
operation is executed

Simplify the sum using standard formulas and rules
(see Appendix A)

Design and Analysis of Algorithms — Unit | 1-64

rules — =

Yl =11+ +1=n-1+1

In particular, .. 1=n-1+1=n € O(n)
Y icnl =1+2+...4n = n(n+1)/2 ~ n?/2 € O(n?)
Y i 2= 124224412 = n(n+1)(2n+1)/6 = n3/3 € O(n3)

Yocicn @ =1+ a +..+ a’ = (a"-1)/(a-1) forany a#1

In particular, ¥__._ 2! =2°+ 2'+...+ 2" =21 -1 € O(2")

> (a;x b)) =2a,x3h;, Xca, =cZa;, .. 4 =i A+
@mg@gaﬂaglysis of Algorithms — Unit | 165

L]

element — =

M

ALGORITHM MaxElement(A[0..n — 1])

//Determines the value of the largest element in a given array
/[Input: An array A[0..n — 1] of real numbers
//Output: The value of the largest element in A
maxval < A[0]
fori < 1ton—1do

if Al[i] > maxval

maxval < Ali]

return maxval

T(n) = Z1<i<n-11 = p-1 = O(R) comparisons

/]

s Design and Analysis of Algorithms — Unit | 1-66
[

problem ——=

ALGORITHM UnigqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
/[Input: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
/l and “false” otherwise
fori < Oton —2do

for j «—i+1ton—1do

if A[i]= A[/] return false

return true

A%

2,0<i<n-2 (LJrF_qr_m' I

= _fU_uJ_Jl"'Z
- ®(n?)
s Design and Analysis of Algorithms — Unit | 1-67
e

1

|

ALGORITHM MatrixMultiplication(A[0..n — 1, 0..n — 1], B[0..n — 1. 0..n — 1])
//Multiplies two n-by-n matrices by the definition-based algorithm
//ITnput: Two n-by-n matrices A and B
//Output: Matrix C = AB
fori < Oton —1do
for j «<0ton—1do
C[i, j]< 0.0
fork <—0Oton 1ldo
C[i, j] < CIi. j1+ Ali, k% Bk, j]

return C

Hi

<l . AW -
2, 0<i<n-1 2,0<i<n-1

2,0<i<n-1 O n?

o(n’
Design and Analysis of Algorithms — Unit | 1-68

s Design and Analysis of Algorithms — Unit |

elimination —— =

Algorithm GaussianElimination(A[o..n-1,0..n])

//Implements Gaussian elimination on an n-by-(n+1)
matrix A
fori<- oton-2do

forj« i+1ton-1do
fork < itondo

Alj,k] < Alj,k] - Ali,k] = Alj,i] / Ali,i]

Find the eff1c1£01§¢é;§f£sﬁ§n fgﬁﬂ copstant factor
improvement. B « A[j,i] / A[i,i]

for k «— iton do
Alj k] < A[j k] - Alik] *B

i

1-69

ALGORITHM Binary(n)

/[Input: A positive decimal integer n
/Output: The number of binary digits in n’s binary representation
count <1

while n > 1 do
count < count + 1

n<|n/2|
return count

Design and Analysis of Algorithms — Unit |

Algorithms— =
1Y

Decide on a parameter indicating an input’s size.

Identify the algorithm’s basic operation.

Check whether the number of times the basic op. is
executed may vary on different inputs of the same size.
(If it may, the worst, average, and best cases must be
investigated separately.)

Set up a recurrence relation with an appropriate initial
condition expressing the number of times the basic op. is
executed.

oy Solve the recurrence (or, at the very least, establish its
solution’s order of growth) by backward substitutions or
S DapfinthereirEthieims - Unit 17

ofn!

Definition: n!=1%*2* .. *(n-1) *n forn=1 and o!=1

Recursive definition of n!: F(n) = F(n-1) * n forn=1 and
F(o) =1
ALGORITHM F(n)
[/Computes n! recursively
/[Input: A nonnegative integer n
//Output: The value of n!
if » =0 return 1

else return F(n — 1) xn
n

Basic operation: multiplication
= M(n) = M(n-1) +1
Recurrence relation: () _ ()
h Design and Analysis of Algorithms — Unit | M(O) =0 1-72

Size:

Solvmg the recurrence forW)

1.

MAe#) =Mtk + 1 M(0) = o
=(M(n-2)+1)+1 = M(n-2)+2
=(M(n-3)+1)+2 = M(n-3)+3

=M(n-i) + i
= M(0) +n
=n

=™ The method is called backward substitution.
s Design and Analysis of Algorithms — Unit | 1-73
e

iy Reeurrence for pumuber of movess M(n) = 2M(n-1) + 1

s Design and Analysis of Algorithms — Unit |
|

MOVES — ==

M) = 2Mnn 1, MQ) =1
= 2(2M(n-2) + 1) + 1 = 272*M(n-2) + 271 + 270
= 2/2%(2M(n-3) + 1) + 271 + 270
= 2A3*M(n-3) + 22 + 271 + 210

= 27(N-1)*M(L) + 2°(N-2) + ... + 271 + 270
= 27(n-1) + 2M(N-2) + ... + 271 + 270

=2"n -1
s Design and Analysis of Algorithms — Unit | 175
[

/]

s Design and Analysis of Algorithms — Unit |
m

[ALGORITHM BinRec(n)
/[Input: A positive decimal integer n

//Output: The number of binary digits in »’s binary representation
if n =1 return 1

else return BinRec(|n/2|) + 1

/]

log., n

1-76

DIVIDE AND CONQUER

Design and Analysis of Algorithms — Unit |

1.

Dhvirdewalrkabv@ ggaduredesign strategy:
Divide instance of problem into two or more smaller
instances

Solve smaller instances recursively

Obtain solution to original (larger) instance by
combining these solutions

=

s Design and Analysis of Algorithms — Unit | _ 78
o Design and Analysis of Algorithms - Unit 11 75

subproblem 1 subproblem 2
of size n/2 of size n/2

a solution to a solution to
subproblem 1 subproblem 2

a solution to
the original problem

s Design and Analysis of Algorithms — Unit | _ 79
o Design and Analysis of Algorithms - Unit |1 75

/]

1.

Divide and Conquer Examples

Sorting: mergesort and quicksort
Tree traversals
Binary search

Matrix multiplication-Strassen’s algorithm

- Dsigpnhvesdalydislde gg wtiaksHudil |a1 orithm

and Analysis ofAIgorlth - Unit 11 gtr80

General Divide IﬂEIIIOl I'OGII‘IOIIG..
~ Master Theorem = , , ,‘

IFin)=allnb)-r fn) where f(n) £ ©(n?)
1. a<b? T(n) £ ©On?)

2. a=0¢ Tn) £ Onlgn)

3. a>b¢ T(n) € ©(n'oss%)

4. Note: the sarne resulis hold with O instead of 6),

i

s Design and Analysis of AI%orlthms —Unit | 81
and Analysis of Algorithms - Unit 11 gk

Desi

Mergesort
Algorithm: (

Split array A[i..n] in two and make copies of each half

in arrays B[1.. n/2 | and C|1.. n/2 |
Sort arrays B and C
Merge sorted arrays B and C into array A as follows:

e Repeat the following until no elements remain in one of
the arrays:

« compare the first elements in the remaining unprocessed
portions of the arrays

o copy the smaller of the two into A, while incrementing the
Desigr gr}é:lgac }ﬂdlﬁ%lt&g{ﬁr}nlg}bnﬁﬁocessed portion of that array

alysIS OoT A - - - 82
Design and Analysis of Algorithmgs - Wnit 11 gb
e ()nce all elemen N one of the arravs are processed

Hi

—— : = __.M’

/\ /\
/\ /\ /\ /\
VRVERVAN
i &y

11111111
h Design and Analysis of Algorithms - Unit1 .~ .| 5183

w
< co
(%2}

7 O
o

—r

>=

Q

o

=

~—

=

FALGORITHM Mergesort(A[0.n — 1))

, /iSorts array A[(..n — 1] by recursive mergesort
/fInput: An array A[0..n — 1] of orderable elements
/[Output: Array A[0..n — 1] sorted in nondecreasing order

ifn>1

copy A[0..|n/2] —1]to B

copy A[[n/2].
0..|n/2)
0..[n/2]1 -1

Mergesort(B
Mergesori(C

n—1]to C

Merge(B C A)

DeMﬁa;g@\ﬁm(&l

OI'I[IJIH'YéZLI’]I

Demg and Analysis of Algorithms - Unit 11

0..|n/2| - 1]
0..[n/2] - 1]
-1])

)

[ALGORIT HM Merge(Bl0.p—1].C[0.g =1L A[l.p+g —1])
//Merges two sorted arravs intc one sorted array
{/Mnput: Arrays B[0..p — 1] and C[0..¢ — 1] both sorted
/Output: Sorted array A[0)..p + ¢ — 1] of the elements of B and C
i+ jelkh k<D
whilei <pand | <g do

if B[i] < C[J]
Alk] < Bliki<i+1
else A[k] « C[JF j « j+1
ke—k+1
ifi =p
copy Clj.¢ — 1] Alk.p+g—1]
else copy Bli.p —1|to Alk.p+ g —1]

(&4

COpygB bhdpsadlyeis’oflalgorienm

}TUMH_ _
esigh and"Analysis of Algorithms - Unit |1

| Recurrence Relation for
Mergesort :

Let T(n) be worst case time on a sequence of n keys

Ifn=1, tl

hen T(n) = 6&X1) (constant)

Ifn>1, tl

hen T(n) =2 T(n/2) + &(n)

e two subproblems of size n/2 each that are solved
recursively

e @(n) time to do the merge

/]

s Design and Analysis of Algorithms — Unit | _ 86
o Design and Analysis of Algorithms - Unit |1 gk

Efficiency of mergesort

All cases have same efficiency: @(n log n)

Number of comparisons is close to theoretical
minimum for comparison-based sorting:

e logn! = nlgn -144n
Space requirement: ©(n) (NOT in-place)

Can be implemented without recursion (bottom-up)

/]

s Design and Analysis of Algorithms — Unit | _ 87
o Design and Analysis of Algorithms - Unit 11 gl

chck—sgt(y ptandomized

sorting algorithm based on

the divide-and-conquer I I I
paradigm: I m]

* Divide: pick a random

element x (called pivot) and
partition S into I . « I
U)\ y
Y
G

e [elements less than x =t

e F elements equal x L E

e G elements greater than x
* Recur:sort Land G I I I
* Conquer:join L, Eand G N I .

/]

s Design and Analysis of Algorithms — Unit | _ 88
o Design and Analysis of Algorithms - Unit |1 gk

Quicksort

* Select a pivot (partitioning element)

* Rearrange the list so that all the elements in the
positions before the pivot are smaller than or equal to
the pivot and those after the pivot are larger than the
pivot

* Exchange the pivot with the last element in the first

i . — =

N T
All]=p Ali]>p

=

s Design and Analysis of Algorithms — Unit | _ 89
o Design and Analysis of Algorithms - Unit |1 ghr

/]

The partition algorithm

Algorithm Pertition(A[l.r])

/ {Partitions a subarray by using its first element as a pivot
[{Imput: A subarray A[l..r] of A[0..n — 1], defined by its left and right
[indices I and r (I < r)

[{Output: A partition of A[l..r], with the split position returned as

[this fumction’s value
p + Afl]

1+l je—r+1

repeat

repeat ¢ + ¢+ 1 until A[{] > p
repeat j + § — 1 until A[j] - »
swap(Al], Alj])
until ¢ > j
swap(A[f], A[j]) [/undo last swap when ¢ = j
swap(A[l], Alf])
return j

s Design and Analysis of Algorithms — Unit | _ 90
o Design and Analysis of Algorithms - Unit |1 obr

Efficiency of quicksort

Best case: split in the middle — ©(n log n)

Worst case: sorted array! — ©(n?)

Average case: random arrays — O(n log n)

Improvements:

e better pivot selection: median of three partitioning
avoids worst case in sorted files

e switch to insertion sort on small subfiles

/

%= Considered the method of choice for internal sorting
s esign and Anglysis of _I%orlthms —unit | _ 1-01
- or large files SH _df‘@lﬁ'tfﬁ\ orithms - Unit 11 9

Algorithm ——= e

/]

-

Very efficient algorithm for searching in sorted
array:

K vs Alo] ... Alm] ... Aln-1]
If K = A[m], stop (successful search);

otherwise, continue searching by the same method
in Alo..m-1] if K < Alm]

and in Alm+1..n-1] if K > A[m]

Design and Analysis of Algorithms — Unit | _ 92
Design and Analysis of Algorithms - Unit 11 ob

Pseudocode for Binary Search

ALGORITHM BinarySearch(Afo..n-1], K)
[< 0; 1< n-1
while [<rdo

m <« L(Il+r)/2.
if K=A[m] return m
elseif K < Alm] r< m-

else | « m+1
De;%gn and Anaggis of A_I%orithms —Unit | _
Design and Analysis of Algorithms - Unit 11

Hi

1.

o593

. Binary Search —a Recursive M
Alg@i’[iltl’l\’rﬂnarySearchRecur(A[o..n—1],], r, K) ’

ifl>r
return -1
else
mé& | (1+1) /2.
if K=A[m]
return m

else if K < A|m]
return BinarySearchRecur(A[o..n-1], I, m-1, K)

else

return BinarySearchRecur(A[o..n-1], m+1, r, K)

s Design and Analysis of Algorithms — Unit | _ 94
o Design and Analysis of Algorithms - Unit 11 ol

=

—

Analysis of Binary'Search—=

1.

Worst-case (successful or fail) :
e C,(n)=1+C,(Ln/2)),

e C,(1)=1
solution: C,(n) =L log, n] +1 =[log,(n+1) |

This is VERY fast: e.g., C (10°) = 20

Best-case: successful C,(n) =1,
fail C,(n) = L log, nl+

Average-case: successful C, ,(n) = log,n -1
fail C_.(n) = log,(n+1)

avg

h Design angdifnadysis,of Adggsithms-olnit | 1-955

/]

Binary Tree Traversals

Definitions

e A binary tree T is defined as a finite set of nodes that is
either empty or consists of a root and two disjoint binary
trees T; and Ty, called, respectively, the left and right
subtree of the root.

e The height of a tree is defined as the length
longest path from the root to a leaf.

Problem: find the height of a binary

/]

s Design and Analysis of Algorithms — Unit | _ 9%
o Design and Analysis of Algorithms - Unit 11 ok

Binary Tree ™= =

| f11.
ALGORITHM Height(T)

//Computes recursively the height of a binary tree
//Input: A binary tree T

//Output: The height of T

if T=9
return -1
else

return max{Height(T,), Height(Ty)} + 1

=

s Design and Analysis of Algorithms — Unit | _ 97
o Design and Analysis of Algorithms - Unit 11 of

“Analysis: L

Number of comparisons of a tree T with &: 2n + 1

Number of comparisons made to compute height is
the same as number of additions:

A(n(T)) = A(n(T;)) + A(n(Tg)) +1 for n>o,
A(o) =0

The solution is A(n) = n

=

s Design and Analysis of Algorithms — Unit | _ 98
o Design and Analysis of Algorithms - Unit 11 ok

Binary Tree Traversals— preorder morder and/'

“postorder traversal ,,,‘

Binary tee traversal: visit all nodes of a binary tree
recursively.

Algorithm Preorder(T)

//Implement the preorder traversal of a binary tree
//Input: Binary tree T (with labeled vertices)
//Output: Node labels listed in preorder

ifT+O
write label of T's root
Preorder(T,)
Preorder(Tg)
h Design and AnaIySIS Olgéas\ll%%”(}mrglsyas LoJfr,]AI\Itg(IJrlthms Unit 11 o9

Integers —— B

Consider the problem of multiplying two (large) n-digit integers represené
by arrays of their digits such as:

A =12345678901357986429 B = 87654321284820912836

The grade-school algorithm:

a a,... a,
b b,.. b,
(dlo) 11 12 dn
(d) le 22 ° d 2n

(d)dnl n2° d nn

Efficiency: n? one-digit multiplications

i

s DEslel S/ ATE el Olgéas\ll%%”(}mrglsys_ls L(JJfr,]AI\;[g(IJrlthms Unit 1 1bd 00

First-Bivide-and-ConquerAlgorithm ——
A small example: A * B where A = 2135 and B = 4014 , , , .
A= (21-102 + 35), B = (40 102 + 14)

So, A * B = (21 -10% + 35) * (40 ‘10> + 14)

= 21 * 40 104 + (21 * 14 + 35 * 40) -10% + 35 * 14

In general, if A= AA,and B = BB, (where A and B are n-digit,
A, A,, B, B, are n/2-digit numbers),
A*B=A*B10" + (A *B,+A,*B) 1072+ A, * B,

Recurrence for the number of one-digit multiplications M(n):

M(n) = 4M(n/2), M@() =1
Solution: M(n) = n2

=

s Design and Analysis of Algorithms — Unit | _ 101
o Design and Analysis of Algorithms - Unit 11 1b

Secdh‘d"Divide-and-C;)‘r;qUe-r_Algorithm * ,,,
| |

A*B=A*B-10" + (A *B,+A, *B) 107>+ A, * B,

The idea is to decrease the number of multiplications from 4 to 3:
(A, +A,)*(B,+B,)=A*B +(A*B,+A,*B)+A,*B,

Le, (A *B,+A,*B)=(A+A,)*(B,+B,)-A*B-A,*B,
which requires only 3 multiplications at the expense of (4-1) extra add/sub.

Recurrence for the number of multiplications M(n):
M(n) =3M(n/2), M(@)=1

Solution: M(n) = 30827 = plog 23 = 1585

=

s Design and Analysis of Algorithms — Unit | _ 02
o Design and Analysis of Algorithms - Unit 11 b4

—— = /

LR

Strassen’s matrix multiplication

* Strassen observed [1969] that the product of two

mat ces cambe EmputT llows =

C, C

10 1 1 11 10 11
M2+M4 M1 +M3_M2+M6
h Sl and AnaIySIS Olgéas\ll%%”(}mrglsysw LoJfr,]AI\Itg(IJrlthms Unit 11 16903

Submatrices:

o M1 = (Aoo i Au) = (BOO = BH)

°* M,=(A_ +A,)*B,,
* M,=A,*(B,-B,)
°* M, = A,*(B,-B,)
© M;=(Ag +As) * B,

M6 = (A1o - Aoo) = (BOO = BOl)

pp7s Ign(ﬁnglAnA!}ﬁlsk%Igﬂ%lﬂmlsys_is lgfr,lbl\;[g!)rithms - Unit 11 1404

==

| Efficiency of Strassen’s
- /1.
algorithm

* Ifn is nota power of 2, matrices can be padded with
ZEeros

* Number of multiplications: 7

* Number of additions: 18

=

s Design and Analysis of Algorithms — Unit | _ 05
- Design and Analysis of Algorithms - Unit |1 1bd

— == = __—M’

Time Analysis
T =1 (assume N =2%)
T(N)=7T(N/2)
T(N)=TT(N/2*)=7"
T(N)=T7¢" = N'¢" = N**

/]

h DeSIQn and AnaIySIS Olgéas\ilg%%';llt}mrglsys_is LoJfr,]AI\Itg(IJrithms - Unit 11 11)606

- 'Standard vs Strassen— ==

/]

h Design andifAnalysis,of Adgesithms-oldnit | 1-10707

UIN
BRANCH AND BOUND

LECTURER:
DHANANJAY

Feasible Solution vs. Optimal
Solution

DFS, BFS, hill climbing and best-first
search can be used to solve some
searching problem

However, they cannot be used to solve
the optimization problems

The branch-and-bound strategy

This strategy can be used to
solve optimization problems

Branch-and-bound strategy

2 mechanisms:

A mechanism to generate branches when
searching the solution space

A mechanism to generate a bound so that many
braches can be terminated

Branch-and-bound strategy

It is efficient because
many branches can be terminated very early.

Although it i1s usually very efficient, a very
large tree may be generated in the worst case.

Many NP-hard problem can be solved by B&B
efficiently in the average case; however,

A Multi-Stage Graph Searching Problem.

Find the shortest path from V, to V;

E.G.:A Multi-Stage Graph Searching Problem

Solved by branch-and-bound (hill-
climbing with bounds)

For Minimization Problems

Usually, LB<UB.
If LB>UB, the expanding node can be terminated.

116

For Maximization Problems

Usually, LB<UB.
If LB>UB, the expanding node can be terminated.

117

The traveling salesperson optimization
problem

Given a graph, the TSP Optimization
problem iIs to find a tour, starting from any
vertex, visiting every other vertex and
returning to the starting vertex, with

COSt.

It Is NP-hard.

We try to avoid n! exhaustive search by the
branch-and-bound techniqgue on the average
case. (Recall that O(n!)>0(2").)

The traveling salesperson optimization
problem

E.g. A Cost Matrix for a Traveling Salesperson Problem.

—
-
N
w
N
Ul
o
~

45 17 o0 36 16 28 25
39 90 80 o0 56 I 91
28 46 88 33 00 25 57

~N O O B WO DN P |-

4 26 33 2/ 84 39 00

The basic idea

There is a way to split the solution space
(branch)

There Is a way to predict a lower bound for
a class of solutions. There Is also a way to
find a upper bound of an optimal solution. If
the lower bound of a solution exceeds the
upper bound, this solution cannot be
optimal and thus we should terminate the
branching associated with this solution.

Splitting

We split a solution into two groups:
One group
The other

Each splitting incurs a lower bound and
we shall traverse the searching tree with
the

The traveling salesperson optimization
problem

The Cost Matrix for a Traveling Salesperson Problem.

to j

from i

jj1 2 3 4 5 6 7
|

1 |o 3 93 13 33 9 57
2 | 4 o 77 42 21 16 34
3 |45 17 « 36 16 28 25
4 |39 9 8 o 5 7 91
5 |28 46 88 33 o 25 57
6 | 3 88 18 46 92 o« 7
7 |44 26 33 27 84 39

The traveling

problem

aiesperson oplimizaxion

Reduced cost matrix:

i] |1 2 3 4 5 6 7
1 |o 0 9 10 3 6 54
2 |0 o 73 38 17 12 30
3 |29 1 o 20 0 12 9
4 |32 83 73 o 49 0 84
5 |3 21 63 8 « 0 32
6 |0 8 15 43 89 o 4
7 |18 0 7 1 58 13

A Reduced Cost Matrix.

The traveling salesperson optimization
problem

—
—
N
w
DS
Ul
o
~

o0 0 83 9 30 6 50
0 o0 66 37 17 12 26
29 1 o0 19 0 12 5
32 83 66 o0 49 0 80
3 21 56 7 o0 0 28
0 85 8 42 89 00 0

18 0) 0 0) 58 13 00
Table 6-5 Another Reduced Cost Matrix.

~ » o1 ~ w N = | -

Lower bound

The total cost of 84+12=96 Is subtracted.
Thus, we know the lower bound of
feasible solutions to this TSP problem is
06.

The traveling salesperson optimization
problem

Total cost reduced: 84+7+1+4 = 96 (lower bound)
decision tree:

All solutions Lower bound = 96

All solutions All solutions
with arc 4-6 without arc 4-6

~

Lower bound = 96 Lower bound = 96+32 = 128

The Highest Level of a Decision Tree.

If we use arc 3-5 to split, the difference on the lower
boundsis 17+1 = 18.

Heuristic to select an arc to split the
solution space

If an arc of cost 0 (X) Is selected, then
the lower bound is added by 0 (x) when
the arc is included.

If an arc <I,]> Is not included, then the

cost of the second smallest value (y) In
row | and the second smallest value (z)
In column | is added to the lower bound.

Select the arc with the largest (y+z)-x

For the right subtree

(

)

i1 2 3 4 5 6 7
|
1 B 0 8 9 30 6 50
2 0 © 66 37 17 12 26
3 |29 1 © 19 0 12 5
4 |32 8 66 o 49 80
5 3 21 56 7 o 0 28
6 0 8 8 42 89 o 0
7 |18 0 0 0 58 13

For the left subtree

()

A Reduced Cost Matrix if
1. 4% row is deleted.
2. 6™ column is deleted.
3. We must set c6-4 to be oo. (The reason will be clear later.)

For the left subtree

The cost matrix for all solution with arc 4-6:

jlt 2 3 4 5 7
i

o 0 8 9 30 50
0 o 66 37 17 26

29 1 o 19 0 5
0 18 53 4 o 25
0 8 8 « 89 0

7| 18\ rdduce® costMatrBor tRat in Table 6-6.
Total cost reduced: 96+3 = 99 (new lower bound)

o O W DN -

Upper bound

We follow the best-first search scheme

and can obtain a feasible solution with
cost C.

C serves as an upper bound of the
optimal solution and many branches
may be terminated

add s o% O dLx All | LB.=96

O | With4-6 ¥ 1..B.=99 Without 4-6 £1. B.=128

Node to be terminated

N g = = Node to be
A LB=99 (9| Without 3-5 4.LB.=117 exvnded

_ ; i, — Node to be
SL.B.=112 Without 2-1 |,L.B.=125 S

- : Ak . | Node to be
71L.B.=126 Without 1-4 K1..B.=153 facminated

Node to be

L.B.=126 Without 6-7 | L.B.=141 (arminated

\

L.B.=126 Without 5-2 | No solution

Solution Without 7-3 | No solution

1-4-6-7-3-5-2-

Cost=126 C({;%3 \ble so\\ﬁ“ on\ \]

Fig 6-26 A Branch-and-Bound Solution of a Traveling Salesperson
Problem.

Preventing an arc

In general, if paths i;-I,-...-1, and j;-|,-...-], have
already been included and a path from i to |, is to
e added, then path from j, to i; must be
orevented (by assigning the cost of J, to I; to be «)

~or example, If 4-6, 2-1 are included and 1-4 is to
ne added, we must prevent 6-2 from being used
Dy setting c6-2=0. If 6-2 IS used, there will be a
oop which is forbidden.

The O/1 knapsack problem

Positive integer P, P,, ..., P, (profit)
W, W, ..., W_(weight)
M (capacity)

The O/1 knapsack problem

Fig. 6-27 The Branching Mechanism in the Branch-and-Bound
Strategy to Solve 0/1 Knapsack Problem.

How to find the upper bound?

Ans: by quickly finding a feasible
solution in a . starting
from the smallest available i, scanning
towards the largest I’s until M Is
exceeded. The upper bound can be
calculated.

The O/1 knapsack problem

W. 10 19 8 10 12 8

(PJW. > P, IW.,,)

i+1
Afeasible solution: X, =1,X,=1,X,=0, X, =0,
Xe=0,X;=0

'(P1+P2) =-16 ()

Any solution higher than -16 can not be an optimal solution.

How to find the lower bound?

Ans: by relaxing our restriction from X, =0 or 1 to
0 < X <1 (knapsack problem)

The knapsack problem

We can use the greedy method to find an optimal solution
for knapsack problem.

For example, for the state of X;=1 and X,=1, we have
X, =1, X, =1, X; =(34-6-10)/8=5/8, X, =0, X; =0, X; =0
-(P,+P,+5/8P;) = -18.5 (lower bound)

-18 i1s our lower bound. (We only consider integers, since
the benefits of a 0/1 knapsack problem will be integers.)

How to expand the tree?

By the best-first search scheme

That Is, by expanding the node with the
best lower bound. If two nodes have the
same lower bounds, expand the node
with the lower upper bound.

\r\% O\ R -

P W\g@_r tib” 5YT&E¥ Xi=

Xo= 1

2 [

U.B=-16
L.B.=-18

Xa=0
6

U.B=-16

infeasible LB.=-18

LX;: 0

UB=-16
8 l.B.=-18

|
XS: IAS'XQ: (0 Xﬁz |

I() U.B=-16 27

infeasible LB.=-18

V Xo= () Xe= |

I,) UB=-16
“ |IL.B.=-16

%

infeasible

Xs= (0

28

30

>

U.B.=-15
L.B=-18

Xs= |

U.B.=-16
L..B.=-18

112

U.B=-15
LLB=-18

% A7)
l Xh-_-() x():l

U.B=-15
L.B=-15

1= ()

¢ 2 |
X

(a good upper bound
is found here)

U.B.=-14
LB.=17
2

I
X3= ()

71!.1&.:47

L.B.=-18

" UB=-16
<« |L.B.=-18

U.B.=-17

Xs=0 Xs=1\

U.B.=-14 UB.=
24 7 |LB.=

L.B.=. 19 I

Xo=0 Xg= IV
U.B.=-16
L.B=-16

Node 2 Is terminated because Its lower
bound is equal to the upper bound of
node 14.

Nodes 16, 18 and others are terminated
because the local lower bound is equal
to the local upper bound.

(lower bound < optimal solution < upper
bound)

The A™ algorithm

O]

Used to solve optimization problems.
Using the

If a feasible solution (goal node) , then
and we can stop.

Estimated cost function of a node n : f(n)
f(n) = g(n) + h(n)
g(n): cost from root to node n.
h(n): estimated cost from node n to a goal node.
h'(n): “real” cost from node n to a goal node.
f*(n): “real” cost of node n
h(n) < h*(n)
= f(n) = g(n) + h(n) < g(n)+h*(n EEEluEEEERERgEReeE el Rls;
exceed the real further cost.

143

Reasoning

Let t be the selected goal node. We have
*(O)=f(t)+h(t)=f(t)+O0=f(t).....(2)

. There must exist
one node, say s, that has been generated but not
selected and that will lead to the optimal node.

Since we take the best first search strategy, we have f
(t)<f(s)...... (3).

We have *(t)=f(t)<f(s)<f*(s) by Egs. (1), (2) and (3),
which means that s is not the node leading to the
optimal node.

The A™ algorithm

© Stop when the s led
IS optimal Iff h(n)<h*(n)
E.g.: To find a shortest path from node s to node t

The A™ algorithm

Step 1.

The A™ algorithm

Step 2. Expand A

The A™ algorithm

Step 3. Expand C

The A™ algorithm

Step 4. Expand D

The A™ algorithm

Step 5. Expand B

The A™ algorithm

Step 6. Expand F

| Is selected to expand.
The A* algorithm stops,
since | Is a goal node.

The A* Algorithm

Can be considered as a special type of
branch-and-bound algorithm.

When the first feasible solution Is found,
all nodes in the heap (priority queue) are
terminated.

* stands for “real”

"A* algorithm” stands for
“real good algorithm”

i

i

144

UNIT = Il
I

DY NAMIC PROGRAMMING

|_ecturer:

Unit [11-153

|

Introduction

r'rs

Dynamic programming IS a technigque for
solving proplems With oVeriappIng sun-
PropleEmS.

Typically, these sub-proplems arise ficom a
FECUKrENCE relating a solutionitora given
problemyaathsoltutionsito s smallersuin-
Proplems ofithe same ty/pe.

il

Unit [1-154

i

i

i1

Introduction
'r

Rather than solving overlapping sub-problems e
again and again,

dynamic programming stiggests solving each ofithe
smaller sub-problems only once

and recoraing the resultsin a table fromwhichiwe
can then obtain a solution to the original problem.

Unit [1-155

Dynamic Programming '

rvra
Dynamic Programming IS a general algorithmi design technigue

for solving problems defined by or formulated as recurrences
with overlapping subinstances

o |[nvented by American mathematician Richard Bellmaniin the
1950s to solve optimization problems

e “Programming” here means “planning”

o Main idea:

- Set up a recurrence relating a solution to a larger instance
to solutions of:some smaller instances

- solve smaller instances once

- record solutions in a table

- extract solution to the initial instance from that table

i

i

144

Unit [1-156

Example: Fibonaccl nUmBErS
rrs

o Recall definition of: Eibonaccl numpbers:
F(n) = F(n-1) + F(n-2)
= (0)=H0
F1) =1

» Compuiing the nt™ Fibonaccl numier: recursively (top-down):

Unit [1I-157

Example: Fibonaccr nUmBErs: (cont.)

rrr

Computing the Nt Fibonacci number: using bottom-up iteration and L]
recording results:

F(0)=0
F() =1
F(2)=1+0=1

E&n-Z) -
F(n-1) =
F(n) = F(n-1) + F(n-2)

Efficiency: _
- time n What if we solve
Ty P N it recursively?
<~
-~ Unit 111-158

Introduction
'r

yvrau
The Fibonacci numibers are the elements ofithe seguence

0,1 1 2,5, 5,86, 13, 21, 54, .. .,

Algorithm fib(n)
ifn=0o0r n=1return 1
return fib(n = 1) + fib(n — 2)

T'he original problem E(n) 1s defined by F(n-1) and £(n-2)

i

i

i1

Unit [11-159

i

144

Introduction

Irs

Vv au

Notice that 1f:we call; say, fib(5), we produce a call tree that
calls the function on the same value many. different times:
110](3)

fib(4) + fib(3)

(fib(3) + fib(2)) + (fib(2) + fib(1))

(fib(2) + fib (1)) + (fab (1) + filb(0))) + ((frl(L) + fib(0)) +
fib(1))

(((Fib(2) + fib(0)) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) +
fib(0)) + fib(1))

If we try to use recurrence directly to compute the nt
Fibonaccr number F(n) , we would have to recompute the

same values of this function many times
Unit 11160

i

i

i1

Introduction

Irs

| |
Certain algorithms compute the nt Fibonacci number:
without computing all the preceding elements of this
Sequence.

IT IS typical ofan algorithm based on the classic bottom-up
dynamic programming approach,

A top-down variation of 1t exploits so-called memory/
functions

T'he crucial step i designing suchian algorithm remains the
same == Deriving a recurrence relating a solution to the
problem’s instance with solutions of its smaller (and
oVerlapping) subinstances.

Unit [1I-161

i

i

144

Introduction

Irs

rvra
Dynamic programming usually takes one ofitwo
approaches:

Bottom-up approeach: All subproblems that might be

needed are solved in advance and then used to build up
solutions to larger problems. This approach Is slightly
petter in stack space and number: of:function calls, but It IS
sometimes not intuitive to figure out all the subproblems
needed for solving the given problem.

Top-down approach: The problem is broken into
subproblems, and these subproblems are solved and the
solutions remembered, In case they need to be solved again.
This Is recursion and Memory Function combined together.

Unit [1-162

Bottom Up ’rr

In the bottom-up approach we calculate the smaller values
oftFibo first, then build larger valtes from them. This
method also uses linear: (O(n)) time since It contains a 1oop

that repeats n — 1 times.

Algorithm Fibo(n)

a=0,b=1

repeatn — 1 times
c=a+b
a=>b
b =c

return b

In both these examples, We only calculate fib(2) one time,
and then use It to calculate both filb(4) and fib(3), instead of

- w o : : :
e COMpULING It eVery time either ofithem Is evaluated.

s =

Unit [11-163

Top-Down
lvlvl_

SUpPPOoSe We have a simple map object, m, Which maps each
value of: F1bo that has already been calculated to its result,
and we modify our function to use It and update 1t. Tine
resulting function requires only O(n) time instead of
exponential time:

m[0]=0
mill]=1

Algorithm Fibo(n)
if map m does not contain key n
m[n] := Fibo(n — 1) + Fibo(n — 2)
return m[n]

This technigue of saving values that have already been
calculated'is called Memory_Eunction; this Is the top-down
Sy Approach; since we first break the problem into
= ™ subproblems and then calculate and store values Unit Il-164

i

i

i1

Examples ofi DR algorithms
r'rr
Computing a binomial coefficient
[_ongest common subsequence

Warshall’s algorithm for transitive closure

Floyd’s algorithm for all-pairs shortest paths

Constructing an optimal binary search tree
Some instances of: difficult discrete optimization problems:

- traveling salesman
- knapsack

Unit [1l-165

Computing a binomial coefficient by DP

I

Binomial coefficients are coefficients of the binomial formula; =" %

(@+b)"=C(n,0)a™? + ... + C(n,k)a™hk+ . .. + C(n,n)a’b"

RecGURrences Gk = C(NEINkg SRl KEIN N TORME=SESA0)
Cl(n,0) =1, (n,n) =1 forn =0

\alue of C(n,k) can be computed by filling a table:
01 2... kil K

0 1

1 1

n-1 C(n-1.k-1) C(n-1,K)
n C(n.k)

i

11l

Unit [1l-166

Computing C(n,k): pseucocode and analysis
Iy

ALGORITHM Binomial(n. k)

//[Computes C(n. k) by the dynamic programming algorithm
/[Input: A pair of nonnegative integers n > k > (0
//Output: The value of C(n, k)
fori < Otondo
for j < 0 to min(i, k) do
it j=00r j=i
Cli, j] <1

else C[i, j] < Cli—1,j—-1]+C[i -1, j]

return C|n, k|

Time efficiency: ©(nk)

:: Space efficiency: O(nk)

Unit [1l-167
[& -

Warshall’s Algorithm: Transitive Closnlnie’

- Computes the transitive closure of a relation
o Alternatively: existence of all nontrivial paths in a digrapnh

» Example of transitive closure:

0010 0010
1001 1111
0000 0000
0100 1111

<~

<~

.y Unit 111-168

Warshall’s Algorithm
I'rr

Constructs transitive closure T as the last matrix in the sequénce®
of n-by-n matrices RO, ..., RW, ..., RO where

RW[j] = 1 iffithere is nontrivial path from i'to j with only the
first k vertices allowed as intermediate

Note that R%'= A (adjacency matrix), RW="T (transitive closure)

LR BRA

Unit [11-169

i

i

144

Warshall’s Algorithm (recurrence)

Irr

On the k-th iteration, the algorithm determines for every pair of
vertices I, | If a path exists from 1'and | with just vertices 1.....K
allowed as intermediate

RSO (path using just 1 ,...,k-1)
RO= o)
RSO ancdfREYIICH (path fromiitto k
and from K to |
using just 1k-1)

i Initial condition?

Unit [1I-170

Warshall’s Algorithm (matrix generation)
r'rr

Recurrence relating elements R® to elements of R&D is:

RO = RESHEor (RESH[K] anc RESOTIE])

It implies the following rules for generating R® firom RECD:

Rule 1 If an element in row i'and column jis 1 in R&D,
It remains 1 in RK

Rule 2 Ifian element in row i'and column jis 0'in R,
It has to be changed to 1 in RWifand only: if
the element in 1ts row 1 and column k and the element
in its column j and row k are both 1°s in R&D)

111

i

Unit [1I-171

i

i

111

Warshall’s Algorithm (example)

8

=t

rrr

Vv au

Unit [1-172

Warshall’s Algorithm (pseudocode and analysis)
I'rr

ALGORITHM Warshall(A[l..n, 1..n])

//ITmplements Warshall’s algorithm for computing the transitive closure
//Input: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
RO « A
for k < 1ton do
fori < 1tondo
for j < 1tondo
RO[i, j1< R V[, jlor (R*=D[;, k] and R*~ D[k, j])
return R

Thime efficiency: ©(n°)
Space efficiency: Matrices can be WEItten oVer: thelr Predecessors
(with some care), so it’s @(N"2).

Unit [1I-173

Floyd’s Algorithm: All pairs shortest paths
rrr

In a weighted (di)graph, find shortest paths between
every pair of vertices

Problem:

Same idea: construct solution through series of matrices D9, ...,
D (W using increasing subsets of:the vertices allowed

as intermediate

Example: -

i

144

Unit [1l-174

i

Floyd’s Algorithm (matrix generation)

rr

On the k-th iteration, the algorithm determines shortest paths
PEtween every pair ofi VErtices I, J that use only Vertices among
1.....,k as intermediate

DONI= mimADESH] RSP k] = DAY

DK K]

s
ws®
Y
.

'~ D(k 211

D 1)[I,J] - -
6 Initial condition?

Unit 1I-175

i

i

111

Floyd’s Algorithm (example)

Unit [1l-176

Floyd’s Algorithm (pseudocode and analysis)
I'rl

ALGORITHM Floyd(W|l..n, 1..n])

/[Implements Floyd’s algorithm for the all-pairs shortest-paths problem
//Input: The weight matrix W of a graph with no negative-length cycle
//Output: The distance matrix of the shortest paths’ lengths

D <« W //is not necessary if W can be overwritten

fork < 1tondo
fori < 1tondo
for j < 1ton do

Di, j] < min{D[i, j}, D|i, k] + Dk, jl}

return D

Since the superscripts k or k-1 make
no difference to D[i,k] and D[k,j].
Space efficiency: Matrices can be Written oVer: their predecessors

Time efficiency: ©(n°)

o Note: \Works on graphs with negative edges but without negative cycles.

\ Shortest paths themselves can be found, too.
"y Unit 111-177

Optimal Binary: Search Tirees
rrr

rvra
Problem: Given n keys a; < ...< a, and probabilities py, ---» P

searching for them, find a BSHT withia minimum
average number of:comparisons in successtul search.

Since total number: off BSH's With n nodes Is given by,
C(2n,n)/(n+1), which grows exponentially, brute force 1s Nopeless.

Example: What 1s an optimal BST: for keys A, B, C, and D with
search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?

(c)
Average # of comparisons
© © = 1%0.4 + 2%(0.2+0.3) + 3%0.1

(1) =1.7

i

i

44

Unit [11-178

i

DP for Optimal BS1 Problem
Irr

et Cl1,j] be minimum average number ofi comparisons made in
i), optimal’ BST for keys a; < ...< a;, where I'< I'< j<n.
Consider optimal BST among all BSTs withisome a, (< k< J)
as their root; TI,j] 1s the best among them.

(o, Clij] =

min {p,- 1+
I<k<j

~

-1
Ps (levelag i T k=11 +1) +
I

Optimal S

Optimal
BST for BST for

ak+1 y weny a.J

J
Y. P (level ag in T{k+1,1] +1)}
— 5 =k+1
-y Unit 111-179

A

i

idd

DP for Optimal BSTPropblem (cont.)

After simplifications, We obtain the recurrence for Cfi,j}:

I

Y u

Unit [11-180

Example: key A B C D

probability 0.1 0.2 0.4 0.3

[he tables below are filled diagonal by dlagonal the left one Is filled

using the recurrence
Clijl = min {C[ik-1] + C[k+1,j]§ + Z Ps, CILil=p;;

I<k<] S=I
the right one, for trees’ roots, records k’s values giving the minima
101 |2 |3 |4 10|21 |23 |4

| |
1 0 (.1 |4 [11]|17 1 1 |23 |3 ‘S//Gl\ib
2 0 |2 | & |14 2 2 d{

optimal BST

(@9)
(@9)

(09)
(69)

Optimal Binary: Search Tirees

ALGORITHM OptimalBST(P[1..n])
//Tinds an optimal binary search tree by dynamic programming
/Input: An array P|1..n]| of search probabilities for a sorted list of n keys
//Output: Average number of comparisons in successful searches in the
i/ optimal BST and table R of subtrees’ roots in the optimal BST
fori «— 1tondo
Cli,i —1] <0
C[i, 1]« P[i]
R[i,i]«i
Cln+1,n]«0
for d < 1to n — 1do //diagonal count
fori < 1ton—ddo
J—i+d
minval < oo
for k < ito j do
if C[i, k — 1]+ Clk + 1, j]| < minval
minval < Cli, k = 1]+ C[k+ 1, j]: kmin <k
R[i. j] < kmin
sum < P[i]; fors < i+ 1to j do sum < sum + P|s]
C[i. j] < minval + sum
return C[1, n], R

Unit [1-182

Analysis DP for Optimal BST Problem’"

Vv au

Time efficiency: O(n°) but can be reduced to ®(n?) by taking
advantage of monotonicity of entries in the
root table, 1.e., R[i,j] 1s always in the range
petween R[i,j-1] and R[i+1,j]

Space efficiency: ®(n?)

Method can be expanded to imclude unsuccesstul searches

i

i

i1

Unit [11-183
| &

Knapsack Problem by DP

Given n items of SR
Integer Weights: Wy W, ... w,
Values: Vi o eee Y,

a knapsack of: integer capacity \W
find most valuable subset ofi the items that fit into the knapsack

Consider: instance defined by first i'items and capacity J (j < \W).

et ViI,J] be optimal value ofisuch an instance. Tthen
M\ R W W= 0

Vgl =
VL] S0
<::Initial conditionse\Y Uil = OFanc\V| s OIF=0
<* Unit 111-184
[4

Knapsack Problem by DP (example)

Example: Knapsack of capacity W =5 ""’l
item weight value
1 2 $12
2 1 $10
S 3 520
4 2 $15 capacity |
o0 1 2 3 4 5
0 0 0 O
w,=2,V,=12 1 0 0 12

w,=1,V,=10 2 0 10 12 22 22 22 Backtracing

w;=3,V;=20 3 0 10 12 22 30 32 [findstheactua
o optimal subset,

W, =2,V,=15 4 7 i.e.solution.

111

i

Unit [11-185

Example — Dynamic Programming Table

capacity W =5

(2,12) (1,10) (3,20) (2,15)
1 l 3 4 tem
()]] 0
(10 10 10

12 12 12 15
12 22 22 25
12 22 30 30
12 22 32 37

A

i

il

Unit [11-186

Example

capacity W =5 vy om

(2,12) (1,10) (3,20) (2,15)
1 2 3 4 kem
0 0 0
0 10 10

12 12 15
12 22 25
12 22 30
12 22 37

Thus, the maximal value i1s \/ [4; 5]= $37. We can find the
composition ofian optimal subset by tracing back the
computations of this entry/ in the table.

Since \V [4; 5] Is not equal to V|3, 5], item 4 was included in an
optimal solutionralong with anioptimal’subset for filling 5°- 2 =3
remaining units of: the knapsack capacity.

A

i

'FF

Unit [1-187

Example

| |
(2,12) (1,10) (3,20) (2,15)
1 2 3 4 tem
0 0 0 0
0 10 10 10
12 12 12 15
12 22 22 25
12 22 30 30
12 22 32 37
Tihe remaining 1s \/[3,3]
Here V/[3,3] = V/[2,3] soitem 3 i1s not included
\/[2,3] # V/[1,3] soitem 2 is included
|
-
m Unit 111-188

Example

capacity W =5 vy

(2,12) (1,10) (3,20) (2,15}
1 2 3 4 tem
0 0 0 0
0 10 10 10

12 12 12 15
12 22 22 25
12 22 30 30
12 22 32 37

The remaining 1s V/[1,2]
\/[1,2] = V/[0,2] soitem 1 is included

T'he solution is {fitem 1, item 2, item 4}
Total weight 1s 5
Total value Is 37

A

i

il

Unit [11-189

The Knapsack Problem
r'rr

rvra
T'he time efficiency and space efficiency of: this algorithm
are both in 6(n\W).

['he time needed to find the composition of an optimal
solution s in O(n + \\).

i

i

144

Unit [11-190

Knapsack Problem by DP (pseudocode)

Algorithm DPKnapsack(w[1:.n], v[1..n], W) """
var V[0..n,0..\W], P[Ll..n,1.\W]:int
for | :=0to\W do
V[0,j] :=0
for i:=0tondo Running time and space:
\Vi;0] := 0 O(nW).

fori:=1tondo
for | := 1 to\W do
It wli] < jand vi] + Vi1, j-w[i]] > V]i-1,j] then
VIl == v + V-1 j-wi]l; Pl = j-wii]
else
V[l == V=L g]; Pl =)
return V[n, W] and the optimal subset by backtracing

Unit [1-191

i

i

i1

Memory Function
rrs

Vv au

['he classic dynamic programming approach, fills a
table withisolutions to all smaller stubproblems but
each of them 1S solved only. once.

An unsatistying aspect of: this approach iIs that
solutions to some of these smaller subproblems are
often not necessary for getting a solution to the
problem given.

i

i

i1

Unit [11-192

i

i

i1

Memory Function
rrs

Vv au

Since this drawback Is not present in the top-cdown
approach, It 1s natural to try to combine the
strengths of: the top-down and bottom-up
approaches.

[he goal'is to get a method that solves only.
subproblems that are necessary and does It only
ONnce. Such a method exists; It IS based on using
memary functions

Unit [11-193

i

i

i1

Memory Function
rrs

rrau
Initially, all the table’s entries are initialized with a

special “null” symbol to indicate that they have not
yet been calculated.

T hereafter, whenever a new valtie needs to be
calculated, the method checks the corresponding
entry in the table first: if this entry is not “null,” it
IS simply retrieved frrom the table;

otherwise, It Is computed by the recursive call
Whose result 1s then recorded in the table.

Unit [11-194

Memory: Function for: solving Knapsack Problem

rvrau
ALGORITHM MFKnapsackii. i)

Mmplements the memory function method for the knapsack problem
Hnput: A nonnegative integer § indicating the number of the first
i items being considered and a nonnegative integer j indicating
i the knapsack’s capacity
HfOutput: The value of an optimal feasible subset of the first § ilems
(MMote: Uses as global variables input arrays Weights| L], Values|1.n|
ffand table V0. xn, 0.W]whose entries are initialized with —1's except for
frow [and column O mnitialized with (s
v, i]=0

il j = Weights|i]

value «— MFKnapsack(i — 1, j)
else
velue «— maxiMFRKnapsack(i — 1, j).
Values|i| + MFKnapsackii — 1, j — Weights[i])

Vi, j| + value

return Vi, |
B
B
-y Unit 11I-195

Memory: Function for solving Knapsack Problem

(2,12) (1,10) (3,20} (2,15)
1 2 3 4
0 0 0
0 - -
12 12 -

- 22 22
12 - -
12 22 32

111

i

Unit [1I-196

Memory Function
rrs

yvrau
In general, we cannot expect more than a constant-factor

gain in using the' memory. function method for the
knapsack problem because its time efficiency/ class Is the
same as that of: the bottom-up algorithm

A memory function method may be less space-efficient than
a space efficient version of a bottom-up algorithm.

i

i

144

Unit [1I-197

Conclusion Y,

rvra
Dynamic programming iIs a useful technique of solving
certain kind of problems

\When the solution can be recursively described in
terms of partial solutions, we can store these partial
solutions and re-use them as necessary

111

i

Unit [11-198

UNIT-1V
GREEDY ALGORITHM

L_ecturer:
DHANANJAY

Greedy Algorithms

Optimization problems
- Dynamic programming, but overkill sometime.
« Greedy algorithm:

Being greedy for local optimization with the hope it
will lead to a global optimal solution, not always, but
in many situations, it works.

An Activity-Selection Problem

Suppose A set of activities 5S={a,, a,,..., a,}

They use resources, such as lecture hall, one
lecture at a time

Each a,, has a start time s;, and finish time f;, with
0< s,< f<ox.
a; and a; are compatible if [s;, f) and [sj, fj) do not
overlap
Goal: select maximum-size subset of
mutually compatible activities.
Start from dynamic programming, then
greedy algorithm, see the relation between
the two.

DP solution —step 1

Optimal substructure of activity-selection
problem.
Furthermore, assume that f; <... <f .
Define 5;;={a,: f;i< s, <f,<s;}, 1.e., all activities starting after
q; finished and ending before a; begins.
Define two fictitious activities a, with f,=0 and a ., with
Sp+1=®
Soif <fieei i
Then an optimal solution including a, to 5;; contains
within it the optimal solution to S; and Sy;.

DP solution —step 2

A recursive solution
Assume c[n+1,n+1] with c[i,j] is the number of activities in a
maximum-size subset of mutually compatible activities in S;;. So
the solution is c[0,n+1]=5, ...
Cli,j]= O if 5;=0
ax{c[i,k]+c[k,j]+1} if 5;#C
1<k<j and akeSij
How to imnplement?
- How to compute the initial cases by checking §5,=&?
- How to loop to iteratively compute C[i,j]:
« Fori=...forj=...fork=...? Thisis wrong?
- Need to be similar to MCM:

For len=... fori=... j=i+len;for k=...

Converting DP Solution to Greedy

Solution

Theorem 16.1: consider any nonempty
subproblem S5, and let a,, be the activity in 5,
with earliest finish time: f =min{f, : a, € 5}, then
Activity a_, 1s used in some maximum-size subset
of mutually compatible activities of 5.

The subproblem S, , 1s empty, so that choosing a_,
leaves S,; as the only one that may be nonempty.
Proof of the theorem:

Top-Down Rather Than Bottom-Up

To solve S5,
earliest finish time, then solve S
empty)

It is certain that optimal solution to S, ; is
in optimal solution to S,

No need to solve S, ;ahead of 5.
Subproblem pattern:5; ;.

choose a,, in 5;; with the
(S5, 1s

mj?

IODEtimal Solution Properties

optimal solution depends:
How many subproblems to divide. (2 subproblems)
How many choices to determine which subproblem to
use. (j-i-1 choices)
However, the above theorem (16.1) reduces both
significantly
One subproblem (the other is sure to be empty).
One choice, i.e., the one with earliest finish time in Sjj.

Moreover, top-down solving, rather than bottom-up in
DP.
Pattern to the subproblems that we solve, S ,,, from S;;.

Pattern to the activities that we choose. The activity with
earliest finish time.

With this local optimal, it is in fact the global optimal.

Elements of greedy strategy

Determine the optimal substructure

Develop the recursive solution

Prove one of the optimal choices is the greedy
choice yet safe

Show that all but one of subproblems are empty
after greedy choice

Develop a recursive algorithm that implements
the greedy strategy

Convert the recursive algorithm to an iterative
one.

Greedy vs.DP

Knapsack problem
I1 (vl,wl),12(v2,w2),...,In(vn,wn).
Given a weight W at most he can carry,
Find the items which maximize the values
Fractional knapsack,
Greed algorithm, O(nlogn)
0/1 knapsack.
DP, O(nW).
Questions: 0/1 knapsack is an NP-complete problem,
why O(nW) algorithm?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

23 580
tom 3 30| $120
{ry 1 +
item 2 " A $120
I $100 20] $100
o 0 B .
e 20 20| $100 ’ - ”
$60 10} 560 10} $60
W | S | AR
$60 $100 $120 knapsack = $220 = $160 = $180 = $240
(a) (b) (c)

Figure 16.2 The greedy strategy does not work for the 0-1 knapsack problem. (a) The thief must
select a subset of the three items shown whose weight must not exceed 50 pounds. (b) The optimal
subset includes items 2 and 3. Any solution with item 1 is suboptimal, even though item [has
the greatest value per pound. (¢) For the fractional knapsack problem, taking the items in order of
greatest value per pound yields an optimal solution.

Maximum attendance

A little bit change to the previous activity selection.
For each activity a, such as a talk, there is an

assoclated attendance att;.
* l.e., glven

{a;,a,,...,a,}={(s,f;,att;),(s,,5,att,),... (s, ,att),
compute its maximum attendance of compatible
actjvities.
Use the one similar to the previous activity-selection:
C[i,jl=| 0 if S, =0
max{c[i,k]+c[k,j]+att,} if 5,
1<k<j and g, €5;

Maximum attendance (cont.)
New analysis (easy to think sort activities):

- For any a;, which is the most recent previous one compatible with it?
so, define P(1)=max{k: k<i && f < s.}.

compute P(i) is easy. P(1)=0. (for easy coding, a dummy
3,=(0,0,0))

+ Also, define T(1): the maximum attendance of all

compatible activities from a, to a;. T(n) will be an
answer.

- Consider activity a;, two cases:

3; is contained within the solution, then only ap; can be included
too.

a; 1s nth included, then a, ; can be included.
- T()= o if i=0
max{T(i-1),att,+T(P(1))} ifi>0

Typical tradition problem with greedy
solutions

Coin changes
- 25,10,5,1
- How about 7,5, 1
Minimum Spanning Tree
- Prim’s algorithm
Begin from any node, each time add a new node which is closest to the
existing subtree.
+ Kruskal’s algorithm
Sorting the edges by their weights
Each time, add the next edge which will not create cycle after added.
Single source shortest pathes
- Dijkstra’s algorithm
Huffman coding
Optimal merge

Lecturer:
Dhamamjay

Disjoint Sets

Some applications require maintaining a collection
of disjoint sets.

A Disjoint set S is a collection of sets
swhere v_.S NS =¢

i)Y

Each set has a representative which is a member of
the set (Usually the minimum if the elements are
comparable)

Disjoint Set Operations

Make-Set(x) — Creates a new set where x is
only element (and therefore it is the
representative of the set). O(1) time.

Union(xy) - Replaces s ,s by s U S, one
of the elements of lq:;cglgles the
representative of the new set. O(log n) time.

Find(x) - Returns the representative of the set
containing x O(log n) time

Analyzing Operations

We usually analyze a sequence of m operations, of
which n of them are Make_Set operations, and m is the
total of Make_Set, Find, and Union operations

Each union operations decreases the number of sets in
the data structure, so there can not be more than n-i
Union operations

/"

Applications

Equivalence Relations (e.g Connected Components)

Minimal Spanning Trees

Connected Components

Given a graph G we first preprocess G to maintain a set
of connected components.

CONNECTED_COMPONENTS(G)

Later a series of queries can be executed to check if
two vertexes are part of the same connected
component

SAME_COMPONENT(U,V)

Connected Components
CONNECTED_COMPONENTS(G)

for each vertex v in V[G]
do MAKE_SET (v)

for each edge (u,v) in E[G]
do if FIND_SET(u) = FIND_SET(v)
then UNION(u,v)

———

,»»/--> =

Connected Components
SAME_COMPONENT(u,v)

return FIND SET(u) ==FIND_SET(v)

= V"'*"_q_

Example

X3

0
4

(b d)

=

(h I)

=

Connected Components

During the execution of CONNECTED-
COMPONENTS on a undirected graph G = (V, E) with
k connected components, how many time is FIND-SET
called? How many times is UNION called? Express you
answers in terms of |V|, |E|, and k.

Solution

FIND-SET is called 2|E| times. FIND-SET is called
twice on line 4, which is executed once for each
edge in E[G].

UNION is called |V| - k times. Lines 1 and 2 create
|V| disjoint sets. Each UNION operation decreases
the number of disjoint sets by one. At the end
there are k disjoint sets, so UNION is called |V| - k
times.

= —

—_— | - p/

,»»/-~‘ .

Linked List implementation

* We maintain a set of linked list, each list corresponds to a
single set.

» All elements of the set point to the first element which is
the representative

* A pointer to the tail is maintained so elements are inserted

at the end of the list

Analysis

Using linked list, MAKE_SET and FIND_SET are
constant operations, however UNION requires to
update the representative for at least all the elements
of one set, and therefore is linear in worst case time

A series of m operations could take

Analysis

Let g=m-n+1=|m/2]|, n=[m/2]+Letn be the
number of make set operations, then a series of n
MAKE_SET operations, followed by g-1 UNION

operations will take g(m?)since

g,n are an order of m, so in total we get g(m?)

which is an amortized cost of m for each
operations

B provement — e Eret

Union

Always append the shortest list to the longest list.
A series of operations will now cost only @(m+nlogn)

MAKE_SET and FIND SET are constant time and
there are m operations.

For Union, a set will not change it’s representative
more than log(n) times. So each element can be
updated no more than log(n) time, resulting in
nlogn for all union operations

Disjoint-Set Forests

Maintain A collection of trees, each element points
to it’s parent. The root of each tree is the
representative of the set

We use two strategies for improving running time

e Union by Rank

e Path Compression
@ ED

Make Set

* MAKE SET (x)

Find Set

* FIND SET (d)
if d !'= p[d]
pld]l= FIND SET(p[d])

return p[d]
& E

— /--_

Union

UNION (x,Vy)
link (findSet (x),
findSet (y))

link (x,vy)

if rank (x)>rank(y)
then p(y)=x
else
p (x)=y
1f rank(x)=rank (y)
then rank(y)++

Analysis

In Union we attach a smaller tree to the larger tree,
results in logarithmic depth.

Path compression can cause a very deep tree to
become very shallow

Combining both ideas gives us (without proof) a
sequence of m operations in O(mea(m,n))

Exercise

Describe a data structure that supports the following
operations:

e find(x) - returns the representative of x

e union(x,y) — unifies the groups of xand y

e min(x) - returns the minimal element in the group of x

Solution

We modity the disjoint set data structure so that
we keep a reference to the minimal element in the
group representative.

The find operation does not change (log(n))

The union operation is similar to the original
union operation, and the minimal element is the
smallest between the minimal of the two groups

Example

Executing find(5s)
731> 42 4

Parent | 4
min

Example

Executing union(4,6)

Parent | 4
min

Exercise

Describe a data structure that supports the following
operations:

e find(x) - returns the representative of x

e union(x,y) — unifies the groups of xand y

e deUnion() - undo the last union operation

Solution

We modify the disjoint set data structure by
adding a stack, that keeps the pairs of
representatives that were last merged in the union
operations

The find operations stays the same, but we can not
use path compression since we don't want to
change the modify the structure after union
operations

Solution

The union operation is a regular operation and
involves an addition push (x,y) to the stack

The deUnion operation is as follows
* (x,y) € s.pop()
e parent(x) €x
* parent(y) €y

Example

Example why we can not use path compression.

e Union (8,4)
e Find(2)

e Find(6)

e DeUnion()

