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Algorithm

 An Algorithm is a sequence of unambiguous 
instructions for solving a problem, 

 i.e., for obtaining a required output for any 
legitimate input in a finite amount of time.
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Notion of algorithm

“computer” 

Algorithmic solution

problem

algorithm

input output
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PSEUDOCODE
 Pseudocode (pronounced SOO-doh-kohd) is a detailed yet 

readable description of what a computer program or 
algorithm must do, expressed in a formally-styled natural 
language rather than in a programming language. 

 It is sometimes used as a detailed step in the process of 
developing a program. 

 It allows programmers to express the design in great detail 
and provides programmers a detailed template for the next 
step of writing code in a specific programming language. 
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Formatting and Conventions in Pseudocoding

 INDENTATION in pseudocode should be identical to 
its implementation in a programming language. Try to 
indent at least four spaces. 

 The pseudocode entries are to be cryptic, AND 
SHOULD NOT BE PROSE. NO SENTENCES. 

 No flower boxes in  pseudocode. 

 Do not include data declarations in  pseudocode.
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Some Keywords That Should be Used 

 For looping and selection, 

 Do While...EndDo; 

 Do Until...Enddo; 

 Case...EndCase; 

 If...Endif; 

 Call ... with (parameters); Call; Return ....; Return; 
When; Always use scope terminators for loops and 
iteration. 
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Some Keywords …

 As verbs, use the words 

 generate, Compute, Process, 

 Set, reset,

 increment, 

 calculate,

 add, sum, multiply, ... 

 print, display, 

 input, output, edit, test , etc. 
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Methods of finding GCD

M - 1

M - 2

M - 3
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Euclid’s Algorithm
Problem: Find gcd(m,n), the greatest common divisor of two 

nonnegative, not both zero integers m and n

Examples:  gcd(60,24) = 12,    gcd(60,0) = 60,    gcd(0,0) = ? 

Euclid’s algorithm is based on repeated application of equality

gcd(m,n) = gcd(n, m mod n)

until the second number becomes 0, which makes the problem

trivial.

Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12
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Two descriptions of Euclid’s algorithm

Step 1  If n = 0, return m and stop; otherwise go to Step 2

Step 2 Divide m by n and assign the value fo the remainder to r

Step 3  Assign the value of n to m and the value of r to n.  Go to
Step 1.

while n ≠ 0 do

r ← m mod n

m← n   

n ← r    

return m
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Other methods for computing 
gcd(m,n)

Consecutive integer checking algorithm

Step 1  Assign the value of min{m,n} to t

Step 2  Divide m by t.  If the remainder is 0, go to Step 3;
otherwise, go to Step 4

Step 3  Divide n by t.  If the remainder is 0, return t and 
stop;

otherwise, go to Step 4

Step 4  Decrease t by 1 and go to Step 2
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Other methods for gcd(m,n) [cont.]

Middle-school procedure

Step 1  Find the prime factorization of m

Step 2  Find the prime factorization of n

Step 3  Find all the common prime factors

Step 4  Compute the product of all the  common prime 
factors

and return it as gcd(m,n)

Is this an algorithm?
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Sieve of Eratosthenes
Input: Integer n ≥ 2

Output: List of primes less than or equal to n

for p ← 2 to n do  A[p] ← p

for p ← 2 to n do

if A[p]  0  //p hasn’t been previously eliminated from the list

j ← p* p

while j ≤ n do

A[j] ← 0  //mark element as eliminated

j ← j + p

Example: 2  3  4  5  6  7  8  9 10  11  12  13  14  15  16  17  18  19 20
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Termination of Euclid’s Algorithm

 The second number of the pair gets smaller with each 
iteration and cannot become negative:

 Indeed, the new value of n is r = m mod n, which is 
always smaller than n.  

 Eventually, r becomes zero, and the algorithms stops.
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Compute the GCD of 120 and 23. 
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Fundamentals of Algorithmic 

Problem Solving
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Fundamentals of Algorithmic Problem Solving

 Algorithm = Procedural Solutions to Problem

 NOT an answer, BUT rather specific instructions of 
getting answers.

 Therefore, requires steps in designing and 
analyzing an algorithm
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Algorithm Design & Analysis Process
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Step 1:  Understand the Problem

Before designing an algorithm - understand 
completely the problem given. 

Read the problem’s description carefully and ask 
questions if you have any doubts about the problem, 

Do a few small examples by hand, think about special 
cases, and ask questions again if needed.
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Step 1:  Understand the Problem
An input to an algorithm specifies an instance of the 

problem the algorithm solves. 

It is very important to specify exactly the range of 
instances the algorithm needs to handle.

Failing which – the algorithm works correctly for some 
inputs , but crashes on some boundary values.

Remember that a correct algorithm is not one that 
works most of the time but one that works correctly for 
all legitimate inputs.



1-21Design and Analysis of Algorithms – Unit I

Step 2:  Ascertaining the 
capabilities of a computational 
device

 Algorithms designed to be executed on machines that 
executes intstructions one after another are called 
sequential algorithms.

 Algorithms that take advantage of computers that can 
execute operations concurrently are called parallel 
algorithms.
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Step 3:  Choosing between Exact 
& Approximate Problem Solving

 Solving the problem exactly - Exact algorithms 

 Solving the problem approximately - Approximation 
algorithms

 Why approximation algorithms?
1. Problems cannot be solved exactly. 

Eg. Extracting square roots, solving non-linear equations 

2. Available exact algorithms are unacceptably slow because of 
problem’s complexity

Eg. Traveling Salesman Problem

3. Approx. Algs can be a part of algorithms that solve the 
problem exactly.
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Step 4:  Deciding on Appropriate 
Data Structures

 In the new world of object-oriented programming, 
data structures remain important for both design and 
analysis of algorithms.

 However, we will assume a very basic data structure for 
now and concentrate on the algorithm side.
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Step 5:  Algorithm Design 
Techniques

 An algorithm design technique (or “strategy” or 
“paradigm”) is a general approach to solving problems 
algorithmically that is applicable to a variety of 
problems from different areas of computing.

 Eg. Brute force, Divide-and-Conquer, Transform-and-
Conquer

 Importance:

1. Provide guidance for designing algorithms for new 
problems.

2. To classify algorithms according to an underlying 
design idea.
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Step 6:  Methods of Specifying 
an Algorithm

Pseudocode, a mixture of a natural language and 
programming language-like constructs.

 flowchart, a method of expressing an algorithm by a 
collection of connected geometric shapes containing 
descriptions of the algorithm’s steps.
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Step 7: Proving an Algorithm’s 
Correctness

Prove algorithm’s correctness =  prove that the 
algorithm yields a required result for every legitimate 
input in a finite amount of time.

For an approximation algorithm, correctness means to 
be able to show that the error produced by the 
algorithm does not exceed a predefined limit.
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Step 8:  Analyzing an 
Algorithm

1. Efficiency
Time efficiency indicates how fast the algorithm runs. 
space efficiency indicates how much extra memory the 

algorithm needs.

2. Simplicity

3. Generality
Design an algorithm for a problem posed in more 

general terms.
Design an algorithm that can handle a range of inputs 

that is natural for the problem at hand.
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Step 9:  Coding the algorithm

More than implementation

Peril of incorrect & inefficient implementation

Require testing & debugging

Require code optimizing
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Important Problem Types
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Important Problem Types

Sorting

Searching

String processing

Graph problems

Combinatorial problems

Geometric problems

Numerical problems
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Sorting

The sorting problem asks us to rearrange the items of a 
given list in ascending order.

we usually need to 

sort lists of numbers, 

characters from an alphabet, 

character strings,

 records similar to those maintained by schools about 
their students, 

libraries about their holdings, 

companies about their employees. 



1-32Design and Analysis of Algorithms – Unit I

Searching

The searching problem deals with finding a given 
value, called a search key, in a given set (or a multiset, 
which permits several elements to have the same 
value).
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String Processing

 A string is a sequence of characters from an alphabet.

 String of particular interest: 

1. Text string – comprises letters, numbers, and 
special characters

2. Bit string – comprises zeros and ones

3. Gene sequence

 Mainly string matching problem: searching for a given 
word in a text
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Graph Problems
A graph can be thought of as a collection of points 

called vertices, some of which are connected by line 
segments called edges.

Used for modeling a wide variety of real-life 
applications.

Basic graph algorithms include: 
1.    Graph traversal algorithms - How can one visit all 

the points in a network? 
2.    Shortest-path algorithms - What is the best  

Introduction route between two cities? 
3.    Topological sorting for graphs with directed edges  
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Combinatorial Problems

 combinatorial problems: problems that ask (explicitly 
or implicitly) to find a combinatorial object—such as 
a permutation, a combination, or a subset—that 
satisfies certain constraints and has some desired 
property (e.g., maximizes a value or minimizes a 
cost).

1. Combinatorial grows extremely fast with problem size

2. No known algorithm solving most such problems 
exactly in an acceptable amount of time.
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Geometric Problems

Geometric algorithms deal with geometric objects such 
as points, lines, and polygons.

2 class problems:

The closest pair problem: given n points in the plane, 
find the closest pair among them. 

The convex hull problem asks to find the smallest 
convex polygon that would include all the points of a 
given set. If



1-37Design and Analysis of Algorithms – Unit I

Numerical Problems

Numerical problems, another large special area of 
applications, are problems that involve mathematical 
objects of continuous nature: solving equations and 
systems of equations, computing definite integrals, 
evaluating functions, and so on.



1-38Design and Analysis of Algorithms – Unit I

Fundamentals of Analysis of 

algorithm efficiency
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Analysis of algorithms
 Issues:

 correctness

 time efficiency

 space efficiency

 optimality

 Approaches:

 theoretical analysis

 empirical analysis
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Theoretical analysis of time 
efficiencyTime efficiency is analyzed by determining the number 

of repetitions of the basic operation as a function of 
input size

 Basic operation: the operation that contributes the 
most towards the running time of the algorithm

T(n) ≈ copC(n)running time execution time

for basic operation

or cost

Number of times 

basic operation is 

executed

input size

Note: Different basic operations may cost differently!
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Input size and basic operation 
examples

Problem Input size measure Basic operation

Searching for key 

in a list of n items

Number of list’s 

items,  i.e. n
Key comparison

Multiplication of 

two matrices

Matrix dimensions or 

total number of 

elements

Multiplication of 

two numbers

Checking primality 

of a given integer n

n’size = number of 

digits (in binary 

representation)

Division

Typical graph 

problem

#vertices and/or 

edges

Visiting a vertex 

or traversing an 

edge
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Empirical analysis of time 
efficiency
 Select a specific (typical) sample of inputs

 Use physical unit of time (e.g.,  milliseconds)

or

Count actual number of basic operation’s executions

 Analyze the empirical data
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Efficiencies
 Worst Case Efficiency:

 Is its efficiency for the worst case input of size n, which 
is an input of size n for which the algorithm runs the 
longest among all possible inputs of that size

 Cworst(n)

 Best-case efficiency:

 Is its efficiency for the worst case input of size n, which 
is an input of size n for which the algorithm runs the 
fastest among all possible inputs of that size

 Cbest(n)
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Amortized efficiency
 It applies not to a single run of an 

algorithm, but rather to a sequence of 
operations performed on the same data 
structure



1-45Design and Analysis of Algorithms – Unit I

Best-case, average-case, 
worst-case
For some algorithms, efficiency depends on form of input:

 Worst case:    Cworst(n) – maximum over inputs of size n

 Best case:        Cbest(n) – minimum over inputs of size n

 Average case:  Cavg(n) – “average” over inputs of size n

 Number of times the basic operation will be executed on 
typical  input

 NOT the average of worst and best case

 Expected number of basic operations considered as a 
random variable under some assumption about the 
probability distribution of all possible inputs. So, avg = 
expected under uniform distribution.
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Example: Sequential search

 Worst case

 Best case

 Average case

n key comparisons

1 comparisons

(n+1)/2, assuming K is in A
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Types of formulas for basic operation’s count

 Exact formula

e.g., C(n) = n(n-1)/2

 Formula indicating order of growth with specific 
multiplicative constant

e.g., C(n) ≈ 0.5 n2

 Formula indicating order of growth with unknown 
multiplicative constant

e.g., C(n) ≈ cn2
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Order of growth  Most important: Order of growth within a constant 
multiple as n→∞

 Example:

 How much faster will algorithm run on computer that is 
twice as fast?

 How much longer does it take to solve problem of double 
input size?
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Values of some important functions as n 
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Asymptotic Notations
 O (Big-Oh)-notation

 Ω (Big-Omega) -notation

 Θ (Big-Theta) -notation
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Asymptotic order of growthA way of comparing functions that ignores constant factors 
and small input sizes (because?)

 O(g(n)): class of functions f(n) that grow no faster than 
g(n)

 Θ(g(n)): class of functions f(n) that grow at same rate as 
g(n)

 Ω(g(n)): class of functions f(n) that grow at least as fast as 
g(n)
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O-notation

Definition: A function t(n) is said to be in O(g(n)), 
denoted t(n)  O(g(n)) is bounded above by some 
constant multiple of g(n) for all large n, i.e., there exist 
positive constant c and non-negative integer n0 such 
that

f(n) ≤ c g(n) for every n ≥ n0 
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Big-oh



1-54Design and Analysis of Algorithms – Unit I

-notation
 Formal definition

 A function t(n) is said to be in (g(n)), denoted t(n) 
(g(n)), if t(n) is bounded below by some constant 
multiple of g(n) for all large n, i.e., if there exist some 
positive constant c and some nonnegative integer n0

such that

t(n)  cg(n) for all n  n0
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Big-omega
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-notation Formal definition
 A function t(n) is said to be in (g(n)), denoted t(n) 
 (g(n)), if t(n) is bounded both above and below by 
some positive constant multiples of g(n) for all large 
n, i.e., if there exist some positive constant c1 and c2
and some nonnegative integer n0 such that
c2 g(n)  t(n)  c1 g(n) for all n  n0
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Big-theta
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Theorem If t1(n)  O(g1(n)) and t2(n)  O(g2(n)), then
t1(n) + t2(n)  O(max{g1(n), g2(n)}).
 The analogous assertions are true for the -notation and 
-notation.

Proof.  There exist constants c1, c2, n1, n2 such that 

t1(n)  c1*g1(n),   for all n  n1

t2(n)  c2*g2(n),   for all n  n2

Define c3 = c1 + c2 and n3 = max{n1,n2}. Then

t1(n) + t2(n)  c3*max{g1(n), g2(n)}, for all n  n3
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Some properties of asymptotic order of growth

 f(n)  O(f(n))

 f(n)  O(g(n)) iff g(n) (f(n))

 If f (n)  O(g (n)) and g(n)  O(h(n)) , then f(n) 
O(h(n)) 

Note similarity with a ≤ b

 If f1(n)  O(g1(n)) and f2(n)  O(g2(n)) , then

f1(n) + f2(n)  O(max{g1(n), g2(n)}) 
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Establishing order of growth 
using limits

lim T(n)/g(n) = 

0 order of growth of T(n) <  order of growth of g(n)

c > 0 order of growth of T(n) = order of growth of g(n)

∞ order of growth of T(n) >  order of growth of g(n)

n→∞
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L’Hôpital’s rule and Stirling’s 
formula

L’Hôpital’s rule:  If limn f(n) = limn g(n) =  and 

the derivatives f´, g´ exist, then

Stirling’s formula:  n!  (2n)1/2 (n/e)n

f(n)

g(n)
lim
n

= 
f ´(n)

g ´(n)
lim
n

Example:  log n vs. n

Example:  2n vs. n!
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Orders of growth of some important functions

 All logarithmic functions loga n belong to the same class
(log n) no matter what the logarithm’s base a > 1 is

because  

 All polynomials of the same degree k belong to the same 
class: 

aknk + ak-1n
k-1 + … + a0  (nk) 

 Exponential functions an have different orders of growth 
for different a’s

 order log n  < order n (>0)  < order an < order n! < order 
nn

ann bba log/loglog 
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Basic asymptotic efficiency 
classes 1 constant

log n logarithmic

n linear

n log n n-log-n

n2 quadratic

n3 cubic

2n exponential

n! factorial
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Plan for analyzing nonrecursive 
algorithms

General Plan for Analysis

 Decide on parameter n indicating input size

 Identify algorithm’s basiyc operation

 Determine worst, average, and best cases for input of 
size n

 Set up a sum for the number of times the basic 
operation is executed

 Simplify the sum using standard formulas and rules 
(see Appendix A)
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Useful summation formulas and 
rules

lin1 = 1+1+…+1 = n - l + 1

In particular, lin1 = n - 1 + 1 = n  (n) 

1in i = 1+2+…+n = n(n+1)/2  n2/2  (n2) 

1in i2 = 12+22+…+n2 = n(n+1)(2n+1)/6  n3/3  (n3) 

0in ai = 1 + a +…+ an = (an+1 - 1)/(a - 1)  for any a  1

In particular, 0in 2i = 20 + 21 +…+ 2n = 2n+1 - 1  (2n ) 

(ai ± bi ) = ai ± bi         cai = cai liuai = limai + 
m+1iuai
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Example 1: Maximum 
element

T(n) = 1in-1 1 = n-1 = (n) comparisons
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Example 2: Element uniqueness 
problem

T(n) = 0in-2 (i+1jn-1 1)

= 0in-2 n-i-1 = (n-1+1)(n-1)/2

= (     ) comparisons2n
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Example 3: Matrix 
multiplication

T(n) = 0in-1 0in-1 n

= 0in-1 ( )

=  ( )   multiplications

2n

3n
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Example 4:  Gaussian 
elimination

Algorithm GaussianElimination(A[0..n-1,0..n])

//Implements Gaussian elimination on an n-by-(n+1) 
matrix A

for i  0 to n - 2 do
for j  i + 1 to n - 1 do 

for k  i to n do

A[j,k]  A[j,k] - A[i,k]  A[j,i] / A[i,i]

Find the efficiency class and a constant factor 
improvement.

for i  0 to n - 2 do

for j  i + 1 to n - 1 do 

B  A[j,i] / A[i,i]

for k  i to n do

A[j,k]  A[j,k] – A[i,k] * B 
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Example 5: Counting binary 
digits  
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Plan for Analysis of Recursive 
Algorithms

 Decide on  a parameter indicating an input’s size.

 Identify the algorithm’s basic operation. 

 Check whether the number of times the basic op. is 
executed may vary on different inputs of the same size.  
(If it may, the worst, average, and best cases must be 
investigated separately.)

 Set up a recurrence relation with an appropriate initial 
condition expressing the number of times the basic op. is 
executed.

 Solve the recurrence (or, at the very least, establish its 
solution’s order of growth) by backward substitutions or 
another method.
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Example 1: Recursive evaluation 
of n!

Definition: n ! = 1  2  … (n-1)  n for n ≥ 1  and  0! = 1

Recursive definition of n!:  F(n) = F(n-1)  n for n ≥ 1  and  
F(0) = 1

Size:
Basic operation:
Recurrence relation:

n

multiplication

M(n) = M(n-1) + 1

M(0) = 0
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Solving the recurrence for M(n)

M(n) = M(n-1) + 1,  M(0) = 0M(n) = M(n-1) + 1

= (M(n-2) + 1) + 1   =   M(n-2) + 2

= (M(n-3) + 1) + 2   =   M(n-3) + 3

…

= M(n-i) + i

= M(0) + n

= n

The method is called backward substitution.
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Example 2: The Tower of Hanoi 
Puzzle

1

2

3

Recurrence for number of moves: M(n) = 2M(n-1) + 1



1-75Design and Analysis of Algorithms – Unit I

Solving recurrence for number of 
moves

M(n) = 2M(n-1) + 1,  M(1) = 1M(n) = 2M(n-1) + 1

= 2(2M(n-2) + 1) + 1 = 2^2*M(n-2) + 2^1 + 2^0

= 2^2*(2M(n-3) + 1) + 2^1 + 2^0 

= 2^3*M(n-3) + 2^2 + 2^1 + 2^0

= …

= 2^(n-1)*M(1) + 2^(n-2) + … + 2^1 + 2^0

= 2^(n-1) + 2^(n-2) + … + 2^1 + 2^0

= 2^n    - 1
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Example 3: Counting #bits

A(     ) = A(        ) + 1,   A(    ) = 1    (using the Smoothness Rule)

= (A(         ) + 1) + 1  = A(         ) + 2

= A(        ) + i

= A(         ) + k = k + 0

= 

k2 12 k 02

22 k

n2log

22 k

ik2

kk2

A(n) = A(            ) + 1,   A(1) = 0 2/n
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DIVIDE AND CONQUER

77
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Divide and ConquerThe most well known algorithm design strategy:

1. Divide instance of problem into two or more smaller 
instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger) instance by 
combining these solutions
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Divide-and-conquer technique

subproblem 2 

of size n/2

subproblem 1 

of size n/2

a solution to 

subproblem 1

a solution to

the original problem

a solution to 

subproblem 2

a problem of size n



1-80Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 80

Divide and Conquer Examples

 Sorting: mergesort and quicksort

 Tree traversals

 Binary search

 Matrix multiplication-Strassen’s algorithm

 Convex hull-QuickHull algorithm
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General Divide and Conquer recurrence: 

Master Theorem

T(n) = aT(n/b) + f (n) where f (n) € Θ(nd)

1. a < bd T(n) € Θ(nd)

2. a = bd T(n) € Θ(nd lg n )

3. a > bd T(n) € Θ(nlog b a)

4. Note: the same results hold with O instead of Θ.
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Mergesort
Algorithm:

 Split array A[1..n] in two and make copies of each half

in arrays B[1.. n/2 ] and C[1.. n/2 ]

 Sort arrays B and C

 Merge sorted arrays B and C into array A as follows:

 Repeat the following until no elements remain in one of 
the arrays:

 compare the first elements in the remaining unprocessed 
portions of the arrays

 copy the smaller of the two into A, while incrementing the 
index indicating the unprocessed portion of that array 

 Once all elements in one of the arrays are processed, 
copy the remaining unprocessed elements from the 
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Mergesort Example8  3  2  9  7  1  5  4

8  3  2  9 7  1  5  4

8  3  2  9 7 1 5  4

8 3 2 9 7 1 5 4

3  8 2  9 1  7 4  5

2  3  8  9 1  4  5  7

1  2  3  4  5  7  8   9
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Pseudocode for Mergesort 
ALGORITHM Mergesort(A[0..n-1])

//Sorts array A[0..n-1] by recursive mergesort

// Input: An array A[0..n-1] of orderable elements

// Output: Array A[0..n-1] sorted in non-increasing 
order

If n>1

copy A[0..[n/2]-1] to B[0..[n/2]-1]

copy A[[n/2]..n-1] to C[0..[n/2]-1]

Mergesort(B[0..[n/2]-1])

Mergesort(C[0..[n/2]-1])

Merge(B,C,A)
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Pseudocode for Merge
ALGORITHM Merge (B[0..p-1], C[0..q-1], A[0..p+q-1]

// Merges two sorted arrays into one sorted array

// Input: Arrays B[0..p-1] and C[0..q-1] both sorted

// Output: Sorted array A[0..p+q-1] of the elements of B and C

i  0; j 0; k0

While i<p and j<q do

if B[i]<=C[j]

A[k]  B[i]; i  i+1

else A[k]  C[j]; j  j+1

k  k+1

If i=p

copy C[j..q-1] to A[k..p+q-1]

Else

copy B[i..p-1] to A[k..p+q-1]
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Recurrence Relation for 
Mergesort
 Let T(n) be worst case time on a sequence of n keys

 If n = 1, then T(n) = (1) (constant)

 If n > 1, then T(n) = 2 T(n/2) + (n) 

 two subproblems of size n/2 each that are solved 
recursively

 (n) time to do the merge
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Efficiency of mergesort
 All cases have same efficiency: Θ( n log n) 

 Number of comparisons is close to theoretical 
minimum for comparison-based sorting: 

 log n !   ≈    n lg n  - 1.44 n

 Space requirement: Θ( n ) (NOT in-place)

 Can be implemented without recursion (bottom-up)
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Quick-Sort Quick-sort is a randomized 
sorting algorithm based on 
the divide-and-conquer 
paradigm:

 Divide: pick a random 
element x (called pivot) and 
partition S into 

 L elements less than x

 E elements equal x

 G elements greater than x

 Recur: sort L and G

 Conquer: join L, E and G

x

x

L GE

x
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Quicksort
 Select a pivot (partitioning element)

 Rearrange the list so that all the elements in the 
positions before the pivot are smaller than or equal to 
the pivot and those after the pivot are larger than the 
pivot 

 Exchange the pivot with the last element in the first 
(i.e., ≤ sublist) – the pivot is now in its final position

 Sort the two sublists
p

A[i]≤p A[i]>p
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The partition algorithm



1-91Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 91

Efficiency of quicksort
 Best case: split in the middle — Θ( n log n) 

 Worst case: sorted array! — Θ( n2) 

 Average case: random arrays — Θ( n log n)

 Improvements:

 better pivot selection: median of three partitioning 
avoids worst case in sorted files

 switch to insertion sort on small subfiles

 Considered the method of choice for internal sorting 
for large files (n ≥ 10000)



1-92Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 92

Binary Search - an Iterative 
Algorithm

Very efficient algorithm for searching in sorted 
array:

K vs      A[0]  .  .  .  A[m]  .  .  .  A[n-1]

If K = A[m], stop (successful search);  

otherwise, continue searching by the same method
in           A[0..m-1]  if K < A[m]

and in          A[m+1..n-1] if K > A[m]
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Pseudocode for Binary Search
ALGORITHM BinarySearch(A[0..n-1], K)

l  0;   r  n-1

while l  r do                       // l and r crosses over can’t 
find K

m  (l+r)/2

if  K = A[m]  return m           //the key is found

else if K < A[m]  r  m-1     //the key is on the left half 
of 

the array

else l  m+1                          // the key is on the right 
half of the array
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Binary Search – a Recursive 
AlgorithmALGORITHM BinarySearchRecur(A[0..n-1], l, r, K)

if l > r 

return –1

else

m  (l + r) / 2

if K = A[m] 

return m

else if K < A[m] 

return BinarySearchRecur(A[0..n-1], l, m-1, K) 

else 

return BinarySearchRecur(A[0..n-1], m+1, r, K)
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Analysis of Binary Search

 Worst-case (successful or fail) :  

 Cw (n) = 1 + Cw( n/2 ),  

 Cw (1) = 1 
solution: Cw(n) =  log2 n +1 = log2(n+1)

 This is VERY fast: e.g., Cw(106) = 20

 Best-case: successful  Cb (n) = 1, 

fail  Cb (n) =   log2 n +1

 Average-case: successful Cavg(n) = log2 n – 1
fail Cavg(n) = log2(n+1)
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Binary Tree Traversals
 Definitions

 A binary tree T is defined as a finite set of nodes that is 
either empty or consists of a root and two disjoint binary 
trees TL and TR called, respectively, the left and right 
subtree of the root.

 The height of a tree is defined as the length of the 
longest path from the root to a leaf.

 Problem: find the height of a binary tree.
T TL R
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Pseudocode - Height of a 
Binary Tree

ALGORITHM Height(T)
//Computes recursively the height of a binary tree
//Input: A binary tree T
//Output: The height of T
if T = 

return –1
else 

return max{Height(TL), Height(TR)} + 1
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Analysis:

Number of comparisons of a tree T with : 2n + 1

Number of comparisons made to compute  height is 
the same as number of additions: 

A(n(T)) = A(n(TL)) + A(n(TR)) +1 for n>0,  

A(0) = 0

The solution is A(n) = n
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Binary Tree Traversals– preorder, inorder, and 
postorder traversal

 Binary tee traversal: visit all nodes of a binary tree 
recursively.

Algorithm Preorder(T)

//Implement the preorder traversal of a binary tree

//Input: Binary tree T (with labeled vertices)

//Output: Node labels listed in preorder

if T ‡ 

write label of T’s root

Preorder(TL)

Preorder(TR)
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Multiplication of Large 
Integers 
Consider the problem of multiplying two (large) n-digit integers represented 
by arrays of their digits such as:

A = 12345678901357986429   B = 87654321284820912836

The grade-school algorithm:

a1  a2 …  an

b1  b2 …  bn

(d10) d11d12 … d1n

(d20) d21d22 … d2n

… … … … … … … 

(dn0) dn1dn2 … dnn

Efficiency: n2 one-digit multiplications
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First Divide-and-Conquer Algorithm

A small example: A  B where A = 2135 and B = 4014

A = (21·102 + 35),              B = (40 ·102 + 14)

So, A  B = (21 ·102 + 35)  (40 ·102 + 14) 

= 21  40 ·104  + (21  14 + 35  40) ·102 + 35  14

In general, if A = A1A2 and B = B1B2   (where A and B are n-digit, 

A1, A2, B1, B2 are n/2-digit numbers),

A  B = A1  B1·10
n + (A1  B2 + A2  B1) ·10

n/2 + A2  B2

Recurrence for the number of one-digit multiplications M(n): 

M(n) = 4M(n/2),   M(1) = 1
Solution: M(n) = n2 
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Second Divide-and-Conquer Algorithm

A  B = A1  B1·10
n + (A1  B2 + A2  B1) ·10

n/2 + A2  B2

The idea is to decrease the number of multiplications from 4 to 3:  

(A1 + A2 )  (B1 + B2 ) = A1  B1 + (A1  B2 + A2  B1) + A2  B2,

I.e., (A1  B2 + A2  B1) = (A1 + A2 )  (B1 + B2 ) - A1  B1 - A2  B2,

which requires only 3 multiplications at the expense of (4-1) extra add/sub.

Recurrence for the  number of multiplications M(n):
M(n) = 3M(n/2),   M(1) = 1

Solution: M(n) = 3log 2n = nlog 23 ≈ n1.585 
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Strassen’s matrix multiplication
 Strassen observed [1969] that  the product of two 

matrices can be computed as follows:

C00   C01 A00 A01 B00 B01

=                            *

C10   C11 A10 A11 B10 B11

M1 + M4 - M5 + M7 M3 + M5

=                   

M2 + M4                                               M1 + M3 - M2 + M6
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Submatrices:
 M1 = (A00 + A11) * (B00 + B11)

 M2 = (A10 + A11) * B00

 M3 = A00 * (B01 - B11)

 M4 =  A11 * (B10 - B00)

 M5 = (A00 + A01) * B11

 M6 = (A10 - A00) * (B00 + B01)

 M7 = (A01 - A11) * (B10 + B11)
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Efficiency  of Strassen’s 
algorithm
 If n is not a power of 2, matrices can be padded with 

zeros

 Number of multiplications: 7

 Number of additions: 18
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Time Analysis
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Standard vs Strassen

N Multiplications Additions

Standard alg. 100 1,000,000 990,000

Strassen’s alg. 100 411,822 2,470,334

Standard alg. 1000 1,000,000,000 999,000,000

Strassen’s alg. 1000 264,280,285 1,579,681,709

Standard alg. 10,000 1012 9.99*1011

Strassen’s alg. 10,000 0.169*1012 1012



108



Feasible Solution vs. Optimal 

Solution

 DFS, BFS, hill climbing and best-first 

search can be used to solve some 

searching problem for searching a feasible 

solution.

 However, they cannot be used to solve 

the optimization problems for searching an 

(the) optimal solution.
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The branch-and-bound strategy

This strategy can be used to 

solve optimization problems 

without an exhaustive search in 

the average case. 

110



Branch-and-bound strategy

 2 mechanisms:

 A mechanism to generate branches when 

searching the solution space

 A mechanism to generate a bound so that many 

braches can be terminated
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Branch-and-bound strategy

 It is efficient in the average case because 
many branches can be terminated very early.

 Although it is usually very efficient, a very 
large tree may be generated in the worst case.

 Many NP-hard problem can be solved by B&B 
efficiently in the average case; however, the 
worst case time complexity is still exponential.
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A Multi-Stage Graph Searching Problem.

113

Find the shortest path from V0 to V3



E.G.:A Multi-Stage Graph Searching Problem
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Solved by branch-and-bound (hill-

climbing with bounds)

115

A feasible solution is found whose cost is equal to 5. 
An upper bound of the optimal solution is first found here.



For Minimization Problems

 Usually, LB<UB.

 If LBUB, the expanding node can be terminated.
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Upper Bound
(for feasible solutions)

Lower Bound
(for expanding nods)

0



Optimal



For Maximization Problems

 Usually, LB<UB.

 If LBUB, the expanding node can be terminated.
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Lower Bound
(for feasible solutions)

0



Optimal

Upper Bound
(for expanding nods)



The traveling salesperson optimization 

problem

 Given a graph, the TSP Optimization

problem is to find a tour, starting from any

vertex, visiting every other vertex and

returning to the starting vertex, with minimal

cost.

 It is NP-hard.

 We try to avoid n! exhaustive search by the

branch-and-bound technique on the average

case. (Recall that O(n!)>O(2n).)
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The traveling salesperson optimization 

problem

 E.g. A Cost Matrix for a Traveling Salesperson Problem.
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j
i

1 2 3 4 5 6 7

1 ∞ 3 93 13 33 9 57

2 4 ∞ 77 42 21 16 34

3 45 17 ∞ 36 16 28 25

4 39 90 80 ∞ 56 7 91

5 28 46 88 33 ∞ 25 57

6 3 88 18 46 92 ∞ 7

7 44 26 33 27 84 39 ∞



The basic idea 

 There is a way to split the solution space 

(branch)

 There is a way to predict a lower bound for 

a class of solutions. There is also a way to 

find a upper bound of an optimal solution. If 

the lower bound of a solution exceeds the 

upper bound, this solution cannot be 

optimal and thus we should terminate the 

branching associated with this solution. 
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Splitting

 We split a solution into two groups:

 One group including a particular arc

 The other excluding the arc

 Each splitting incurs a lower bound and 

we shall traverse the searching tree with 

the “lower” lower bound.
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The traveling salesperson optimization 

problem

 The Cost Matrix for a Traveling Salesperson Problem.
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j
i

1 2 3 4 5 6 7

1 ∞ 3 93 13 33 9 57

2 4 ∞ 77 42 21 16 34

3 45 17 ∞ 36 16 28 25

4 39 90 80 ∞ 56 7 91

5 28 46 88 33 ∞ 25 57

6 3 88 18 46 92 ∞ 7

7 44 26 33 27 84 39 ∞

Step 1 to reduce: Search each row for the smallest value

from i

to  j



The traveling salesperson optimization 

problem

 Reduced cost matrix:

A Reduced Cost Matrix.
123

j
i

1 2 3 4 5 6 7

1 ∞ 0 90 10 30 6 54 (-3)

2 0 ∞ 73 38 17 12 30 (-4)

3 29 1 ∞ 20 0 12 9 (-16)

4 32 83 73 ∞ 49 0 84 (-7)

5 3 21 63 8 ∞ 0 32 (-25)

6 0 85 15 43 89 ∞ 4 (-3)

7 18 0 7 1 58 13 ∞ (-26)

reduced:84

Step 2 to reduce: Search each column for the smallest value



The traveling salesperson optimization 

problem

Table 6-5 Another Reduced Cost Matrix.
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j

i

1 2 3 4 5 6 7

1 ∞ 0 83 9 30 6 50

2 0 ∞ 66 37 17 12 26

3 29 1 ∞ 19 0 12 5

4 32 83 66 ∞ 49 0 80

5 3 21 56 7 ∞ 0 28

6 0 85 8 42 89 ∞ 0

7 18 0 0 0 58 13 ∞

(-7) (-1) (-4)



Lower bound

 The total cost of 84+12=96 is subtracted. 

Thus, we know the lower bound of 

feasible solutions to this TSP problem is 

96.
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The traveling salesperson optimization 

problem

 Total cost reduced: 84+7+1+4 = 96 (lower bound)

decision tree: 

The Highest Level of a Decision Tree.

 If we use arc 3-5 to split, the difference on the lower 
bounds is 17+1 = 18. 
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Heuristic to select an arc to split the 

solution space

 If an arc of cost 0 (x) is selected, then 

the lower bound is added by 0 (x) when 

the arc is included.

 If an arc <i,j> is not included, then the 

cost of the second smallest value (y) in 

row i and the second smallest value (z) 

in column j is added to the lower bound.

 Select the arc with the largest (y+z)-x
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For the right subtree 

(Arc 4-6 is excluded)

We only have to set c4-6 to be .

128128

j

i

1 2 3 4 5 6 7

1 ∞ 0 83 9 30 6 50

2 0 ∞ 66 37 17 12 26

3 29 1 ∞

∞

19 0 12 5

4 32 83 66 ∞ 49 80

5 3 21 56 7 ∞ 0 28

6 0 85 8 42 89 ∞ 0

7 18 0 0 0 58 13 ∞



For the left subtree 

(Arc 4-6 is included)

j 

i 

1 2 3 4 5 7 

1 ∞ 0 83 9 30 50 

2 0 ∞ 66 37 17 26 

3 29 1 ∞ 19 0 5 

5 3 21 56 7 ∞ 28 

6 0 85 8 ∞ 89 0 

7 18 0 0 0 58 ∞ 
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A Reduced Cost Matrix if Arc 4-6 is included. 

1. 4th row is deleted.

2. 6th column is deleted.

3. We must set c6-4 to be . (The reason will be clear later.)



For the left subtree

 The cost matrix for all solution with arc 4-6:

A Reduced Cost Matrix for that in Table 6-6.

 Total cost reduced: 96+3 = 99 (new lower bound)
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j

i

1 2 3 4 5 7

1 ∞ 0 83 9 30 50

2 0 ∞ 66 37 17 26

3 29 1 ∞ 19 0 5

5 0 18 53 4 ∞ 25 (-3)

6 0 85 8 ∞ 89 0

7 18 0 0 0 58 ∞



Upper bound

 We follow the best-first search scheme 

and can obtain a feasible solution with 

cost C.

 C serves as an upper bound of the 

optimal solution and many branches 

may be terminated if their lower bounds 

are equal to or larger than C.
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Fig 6-26 A Branch-and-Bound Solution of a Traveling Salesperson 

Problem.
132
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Preventing an arc 

 In general, if paths i1-i2-…-im and j1-j2-…-jn have 

already been included and a path from im to j1 is to 

be added, then path from jn to i1 must be 

prevented (by assigning the cost of jn to i1 to be )

 For example, if 4-6, 2-1 are included and 1-4 is to 

be added, we must prevent 6-2 from being used 

by setting c6-2=.  If 6-2 is used, there will be a 

loop which is forbidden.
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The 0/1 knapsack problem

 Positive integer P1, P2, …, Pn (profit)

W1, W2, …, Wn (weight)

M (capacity)

134

maximize P Xi i
i

n




1

  

subject to W X Mi i
i

n





1

 Xi = 0 or 1, i =1, …, n. 

The problem is modified: 

minimize 


P Xi i
i

n

1

 



The 0/1 knapsack problem

Fig. 6-27 The Branching Mechanism in the Branch-and-Bound 

Strategy to Solve 0/1 Knapsack Problem.
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How to find the upper bound?

 Ans: by quickly finding a feasible 

solution in a greedy manner: starting 

from the smallest available i, scanning 

towards the largest i’s until M is 

exceeded. The upper bound can be 

calculated.
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The 0/1 knapsack problem

 E.g. n = 6, M = 34

 A feasible solution: X1 = 1, X2 = 1, X3 = 0, X4 = 0,

X5 = 0, X6 = 0

-(P1+P2) = -16 (upper bound)

Any solution higher than -16 can not be an optimal solution.
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i 1 2 3 4 5 6

Pi 6 10 4 5 6 4

Wi 10 19 8 10 12 8

(Pi/Wi  Pi+1/Wi+1)



How to find the lower bound?

 Ans: by relaxing our restriction from Xi = 0 or 1 to 

0  Xi  1 (knapsack problem)

Let 


P Xi i
i

n

1

 be an optimal solution for 0/1 

knapsack problem and  


P Xi
i

n

i
1

 be an optimal 

solution for fractional knapsack problem. Let 

Y=


P Xi i
i

n

1

, Y’ =   


P Xi
i

n

i
1

. 

 Y’  Y 
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The knapsack problem

 We can use the greedy method to find an optimal solution 
for knapsack problem.

 For example, for the state of X1=1 and X2=1, we have

X1 = 1, X2 =1, X3 = (34-6-10)/8=5/8, X4 = 0, X5 = 0, X6 =0

-(P1+P2+5/8P3) = -18.5 (lower bound)

-18 is our lower bound. (We only consider integers, since
the benefits of a 0/1 knapsack problem will be integers.)
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How to expand the tree?

 By the best-first search scheme

 That is, by expanding the node with the 

best lower bound. If two nodes have the 

same lower bounds, expand the node 

with the lower upper bound.
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0/1 Knapsack Problem Solved by Branch-and-Bound Strategy 141



 Node 2 is terminated because its lower 

bound is equal to the upper bound of 

node 14.

 Nodes 16, 18 and others are terminated 

because the local lower bound is equal 

to the local upper bound. 

(lower bound  optimal solution  upper 

bound)
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The A* algorithm

 Used to solve optimization problems.

 Using the best-first strategy.

 If a feasible solution (goal node) is selected to expand, then it is
optimal and we can stop.

 Estimated cost function of a node n : f(n)

f(n) = g(n) + h(n)

g(n): cost from root to node n.

h(n): estimated cost from node n to a goal node.

h*(n): “real” cost from node n to a goal node.

f*(n): “real” cost of node n

h(n)  h*(n)

 f(n) = g(n) + h(n)  g(n)+h*(n) = f*(n) …………. (1)

143

Estimated further cost should never 
exceed the real further cost.



Reasoning

 Let t be the selected goal node. We have 
f*(t)=f(t)+h(t)=f(t)+0=f(t)…..(2)

 Assume that t is not the optimal node. There must exist 
one node, say s, that has been generated but not 
selected and that will lead to the optimal node.

 Since we take the best first search strategy, we have f
(t)f(s)……(3).

 We have f*(t)=f(t)f(s)f*(s) by Eqs. (1), (2) and (3), 
which means that s is not the node leading to the 
optimal node. Contradiction occurs.

 Therefore, t is the optimal node.
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The A* algorithm

 Stop when the selected node is also a goal node. It
is optimal iff h(n)h*(n)

 E.g.: To find a shortest path from node s to node t
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The A* algorithm

 Step 1.

146

g(A)=2 h(A)=min{2,3}=2 f(A)=2+2=4 

g(B)=4 h(B)=min{2}=2 f(B)=4+2=6 

g(C)=3 h(C)=min{2,2}=2 f(C)= 3+2=5 

 



The A* algorithm

 Step 2. Expand A

147

g(D)=2+2=4 h(D)=min{3,1}=1 f(D)=4+1=5 

g(E)=2+3=5 h(E)=min{2,2}=2 f(E)=5+2=7 
 



The A* algorithm

 Step 3. Expand C

148

g(F)=3+2=5 h(F)=min{3,1}=1 f(F)=5+1=6 

g(G) =3+2=5 h(G)=min{5}=5 f(G) =5+5=10 
 



The A* algorithm

 Step 4. Expand D

149

g(H)=2+2+1=5 h(H)=min{5}=5 f(H)=5+5=10 

g(I)=2+2+3=7 h(I)=0 f(I)=7+0=7 
 



The A* algorithm

 Step 5. Expand B

150

g(J)=4+2=6 h(J)=min{5}=5 f(J)=6+5=11 
 



The A* algorithm

 Step 6. Expand F

151

g(K)=3+2+1=6 h(K)=min{5}=5 f(K)=6+5=11 

g(L)=3+2+3=8 h(L)=0 f(L)=8+0=8 
 

I is selected to expand.

The A* algorithm stops,

since I is a goal node.



The A* Algorithm

 Can be considered as a special type of 

branch-and-bound algorithm.

 When the first feasible solution is found, 

all nodes in the heap (priority queue) are 

terminated.

 * stands for “real”

 “A* algorithm” stands for 

“real good algorithm”
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Introduction

 Dynamic programming is a technique for 
solving problems with overlapping sub-
problems. 

 Typically, these sub-problems arise from a 
recurrence relating a solution to a given 
problem with solutions to its smaller sub-
problems of the same type. 
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Introduction

 Rather than solving overlapping sub-problems 
again and again, 

 dynamic programming suggests solving each of the 
smaller sub-problems only once 

 and recording the results in a table from which we 
can then obtain a solution to the original problem.
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Dynamic Programming

Dynamic Programming  is  a general algorithm design technique 
for solving problems defined by or formulated as recurrences 
with overlapping subinstances

• Invented by American mathematician Richard Bellman in the  
1950s to solve optimization problems

• “Programming” here means “planning”

• Main idea:
- set up a recurrence relating a solution to a larger instance  

to solutions of some smaller instances
- solve smaller instances once
- record solutions in a table 
- extract solution to the initial instance from that table
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Example: Fibonacci numbers

• Recall definition of Fibonacci numbers:

F(n) = F(n-1) + F(n-2)

F(0) = 0

F(1) = 1

• Computing the nth Fibonacci number recursively (top-down):

F(n)

F(n-1)             +             F(n-2)

F(n-2)     +     F(n-3)          F(n-3)     +     F(n-4)

...
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Example: Fibonacci numbers  (cont.)

Computing the nth Fibonacci number using bottom-up iteration and 

recording results:

F(0) = 0

F(1) = 1

F(2) = 1+0 = 1

…    

F(n-2) = 

F(n-1) = 

F(n) = F(n-1) + F(n-2)

Efficiency:
- time
- space

 

     0 

 

    1 

 

 

   1 

 

 .  .  . 

 

 F(n-2) 

 

F(n-1) 

 

 F(n) 

 

 

n 
n

What if we solve 

it recursively?



Unit III-159

Introduction

 The Fibonacci numbers are the elements of the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . ,

Algorithm fib(n)

if n = 0 or n = 1 return 1

return fib(n − 1) + fib(n − 2)

 The original problem F(n) is defined by F(n-1) and F(n-2)
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Introduction

 Notice that if we call, say, fib(5), we produce a call tree that 

calls the function on the same value many different times:

 fib(5) 

 fib(4) + fib(3) 

 (fib(3) + fib(2)) + (fib(2) + fib(1)) 

 ((fib(2) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) + 

fib(1)) 

 (((fib(1) + fib(0)) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + 

fib(0)) + fib(1)) 

 If we try to use recurrence directly to compute the nth

Fibonacci number F(n) , we would have to recompute the 
same values of this function many times
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Introduction

 Certain algorithms compute the nth Fibonacci number 
without computing all the preceding elements of this 
sequence.

 It is typical of an algorithm based on the classic bottom-up
dynamic programming approach,

 A top-down variation of it exploits so-called memory 
functions

 The crucial step in designing such an algorithm remains the 
same => Deriving a recurrence relating a solution to the 
problem’s instance with solutions of its smaller (and 
overlapping) subinstances.
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Introduction

 Dynamic programming usually takes one of two 
approaches:

 Bottom-up approach: All subproblems that might be 

needed are solved in advance and then used to build up 
solutions to larger problems. This approach is slightly 
better in stack space and number of function calls, but it is 
sometimes not intuitive to figure out all the subproblems 
needed for solving the given problem. 

 Top-down approach: The problem is broken into 

subproblems, and these subproblems are solved and the 
solutions remembered, in case they need to be solved again. 
This is recursion and Memory Function combined together. 
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Bottom Up

 In the bottom-up approach we calculate the smaller values 
of Fibo first, then build larger values from them. This 
method also uses linear (O(n)) time since it contains a loop 
that repeats n − 1 times.

 In both these examples, we only calculate fib(2) one time, 

and then use it to calculate both fib(4) and fib(3), instead of 

computing it every time either of them is evaluated.

Algorithm Fibo(n)

a = 0, b = 1

repeat n − 1 times

c = a + b

a = b

b  = c

return b
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Top-Down

 suppose we have a simple map object, m, which maps each 
value of Fibo that has already been calculated to its result, 
and we modify our function to use it and update it. The 
resulting function requires only O(n) time instead of 
exponential time:

 This technique of saving values that have already been 

calculated is called Memory Function; this is the top-down 

approach, since we first break the problem into 

subproblems and then calculate and store values

m [0] = 0

m [1] = 1

Algorithm Fibo(n)

if map m does not contain key n

m[n] := Fibo(n − 1) + Fibo(n − 2)

return m[n]
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Examples of DP algorithms

• Computing a binomial coefficient

• Longest common subsequence

• Warshall’s algorithm for transitive closure

• Floyd’s algorithm for all-pairs shortest paths

• Constructing an optimal binary search tree

• Some instances of difficult discrete optimization problems:

- traveling salesman

- knapsack
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Computing a binomial coefficient by DP

Binomial coefficients are coefficients of the binomial formula:

(a + b)n = C(n,0)anb0 + . . . + C(n,k)an-kbk + . . . + C(n,n)a0bn

Recurrence: C(n,k) = C(n-1,k) + C(n-1,k-1)  for n > k > 0

C(n,0) = 1,   C(n,n) = 1  for n  0

Value of C(n,k) can be computed by filling a table:

0   1   2  .  .  .   k-1          k

0   1

1   1   1

.

.

.

n-1                 C(n-1,k-1) C(n-1,k) 

n C(n,k) 
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Computing C(n,k): pseudocode and analysis

Time efficiency: Θ(nk)

Space efficiency: Θ(nk)
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Warshall’s  Algorithm: Transitive Closure

• Computes the transitive closure of a relation

• Alternatively: existence of all nontrivial paths in a digraph

• Example of transitive closure:

3

4
2

1

0  0  1  0

1  0  0  1

0  0  0  0

0  1  0  0

0  0  1  0

1  1  1 1

0  0  0  0

1 1  1  1

3

4
2

1
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Warshall’s  Algorithm

Constructs transitive closure T as the last matrix in the sequence 

of n-by-n matrices  R(0), … , R(k), … , R(n) where

R(k)[i,j] = 1 iff there is nontrivial path from i to j with only the 

first k vertices allowed as intermediate 

Note that R(0) = A (adjacency matrix), R(n) = T  (transitive closure)

3

42

1
3

42

1
3

42

1

3

42

1

R(0)

0  0  1  0

1  0  0  1

0  0  0  0

0  1  0  0

R(1)

0  0  1  0

1  0 1 1

0  0  0  0

0  1  0  0

R(2)

0  0  1  0

1  0  1  1

0  0  0  0

1 1  1  1

R(3)

0  0  1  0

1  0  1  1

0  0  0  0

1  1  1  1

R(4)

0  0  1  0

1  1 1  1

0  0  0  0

1  1  1  1

3

42

1
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Warshall’s  Algorithm (recurrence)

On the k-th iteration, the algorithm determines for every pair of 

vertices i, j if a path exists from i and j with just vertices 1,…,k 

allowed as intermediate

R(k-1)[i,j] (path using just 1 ,…,k-1)

R(k)[i,j] = or

R(k-1)[i,k]  and R(k-1)[k,j] (path from i to k

and from k to j

using just 1 ,…,k-1)
i

j

k

{

Initial condition?
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Warshall’s  Algorithm (matrix generation)

Recurrence relating elements R(k) to elements of R(k-1) is: 

R(k)[i,j] = R(k-1)[i,j] or (R(k-1)[i,k] and R(k-1)[k,j])

It implies the following rules for generating R(k) from R(k-1):

Rule 1 If an element in row i and column j is 1 in R(k-1), 

it remains 1 in R(k)

Rule 2  If an element in row i and column j is 0 in R(k-1),

it has to be changed to 1 in R(k) if and only if 

the element in its row i and column k and the element

in its column j and row k are both 1’s in R(k-1)
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Warshall’s Algorithm (example)

3

42

1 0  0  1  0

1  0  0  1

0  0  0  0

0  1  0  0

R(0)  =

0  0  1  0

1  0  1 1

0  0  0  0

0  1  0  0

R(1)  =

0  0  1  0

1  0  1  1

0  0  0  0

1 1  1 1

R(2)  =

0  0  1  0

1  0  1  1

0  0  0  0

1  1  1  1

R(3)  =

0  0  1  0

1  1 1  1

0  0  0  0

1  1  1  1

R(4)  =
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Warshall’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors

(with some care), so it’s Θ(n^2).
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Floyd’s Algorithm: All pairs shortest paths

Problem:    In a weighted (di)graph, find shortest paths between

every pair of vertices

Same idea: construct solution through series of matrices D(0), …,

D (n) using increasing subsets of the vertices allowed

as intermediate

Example: 3

4
2

1

4

1

6
1

5

3

0   ∞  4  ∞

1   0   4  3 

∞  ∞  0  ∞

6  5   1  0
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Floyd’s Algorithm (matrix generation)

On the k-th iteration, the algorithm determines shortest paths 

between every pair of vertices i, j that use only vertices among 

1,…,k as intermediate

D(k)[i,j] =  min {D(k-1)[i,j],  D(k-1)[i,k]  + D(k-1)[k,j]}

i

j

k

D(k-1)[i,j]

D(k-1)[i,k]

D(k-1)[k,j]

Initial condition?
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Floyd’s Algorithm (example)

0   ∞ 3   ∞

2   0  ∞  ∞

∞  7   0   1

6   ∞ ∞  0

D(0)  = 

0   ∞  3   ∞

2   0   5 ∞

∞  7   0   1

6   ∞  9 0

D(1)  =

0   ∞  3   ∞

2   0   5   ∞

9 7   0   1

6   ∞  9   0

D(2)  =

0  10 3  4

2   0   5  6

9   7   0  1

6  16 9  0

D(3)  =

0  10  3  4

2   0   5  6

7 7   0  1

6  16  9  0

D(4)  =

3
1

3

2

6 7

4

1 2
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Floyd’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors

Note: Works on graphs with negative edges but without negative cycles.          

Shortest paths themselves can be found, too. How?

If D[i,k] + D[k,j] < D[i,j] then P[i,j] k

Since the superscripts k or k-1 make 

no difference to D[i,k] and D[k,j].
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Optimal Binary Search Trees

Problem: Given n keys a1 < …< an and probabilities p1, …,  pn

searching for them, find a BST with a minimum

average number of comparisons in successful search.

Since total number of BSTs with n nodes is given by 

C(2n,n)/(n+1), which grows exponentially, brute force is hopeless. 

Example: What is an optimal BST for keys A, B, C, and D with

search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?

 

D 

A 

B 

C 

Average # of comparisons        

= 1*0.4 + 2*(0.2+0.3) + 3*0.1 

= 1.7 
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DP for Optimal BST Problem

Let C[i,j] be minimum average number of comparisons made in 

T[i,j], optimal BST for keys ai < …< aj , where 1 ≤  i ≤  j ≤ n. 

Consider optimal BST among all BSTs with some ak  (i ≤  k ≤ j ) 

as their root; T[i,j] is the best among them. 

a

Optimal

BST for

a   , ...,  a

Optimal

BST for

a      , ...,  ai

k

k-1 k+1 j

C[i,j] =

min  {pk · 1 +

∑ ps (level as in T[i,k-1] +1) +

∑ ps (level as in T[k+1,j] +1)}

i ≤ k ≤ j

s = i

k-1

s =k+1

j
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goal0

0

C[i,j]

0

1

n+1

0 1 n

p 1

p
2

np

i

j

DP for Optimal BST Problem (cont.)

After simplifications, we obtain the recurrence for C[i,j]:

C[i,j] = min {C[i,k-1] + C[k+1,j]} + ∑ ps for 1 ≤ i ≤ j ≤ n

C[i,i] = pi    for 1 ≤ i ≤ j ≤ n
s = i

j

i ≤ k ≤ j



Example:   key                  A     B     C     D

probability   0.1   0.2   0.4  0.3

The tables below are filled diagonal by diagonal: the left one is filled 

using the recurrence 

C[i,j] = min {C[i,k-1] + C[k+1,j]} + ∑ ps ,    C[i,i] = pi ;

the right one, for trees’ roots, records k’s values giving the minima

0 1 2 3 4

1 0 .1 .4 1.1 1.7

2 0 .2 .8 1.4

3 0 .4 1.0

4 0 .3

5 0

0 1 2 3 4

1 1 2 3 3

2 2 3 3

3 3 3

4 4

5

i ≤ k ≤ j s = i

j

optimal BST

B

A

C

D

i 
j

i 
j
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Optimal Binary Search Trees
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Analysis DP for Optimal BST Problem

Time efficiency:  Θ(n3) but can be reduced to Θ(n2) by taking

advantage of monotonicity of entries in the

root table, i.e., R[i,j] is always in the range 

between R[i,j-1] and R[i+1,j]

Space efficiency: Θ(n2)

Method can be expanded to include unsuccessful searches
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Knapsack Problem by DP

Given n items  of 

integer weights:    w1   w2 …  wn

values:                    v1   v2 …  vn

a knapsack of integer capacity W

find most valuable subset of the items that fit into the knapsack

Consider instance defined by first i items and capacity j (j  W).

Let V[i,j] be optimal value of such an instance.  Then

max {V[i-1,j], vi + V[i-1,j- wi]}   if j- wi  0
V[i,j] =

V[i-1,j]                                          if j- wi < 0

Initial conditions: V[0,j] = 0  and V[i,0] = 0

{
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Knapsack Problem by DP (example)

Example:  Knapsack of capacity W = 5

item      weight      value             

1             2             $12

2             1             $10

3             3             $20

4             2             $15                capacity j

0     1     2     3     4 5

0

w1 = 2, v1= 12    1

w2 = 1, v2= 10    2

w3 = 3, v3= 20    3

w4  = 2, v4= 15   4 ?

0    0     0

0    0    12

0   10   12 22   22   22 

0   10   12   22   30   32

0   10   15   25   30   37

Backtracing 

finds the actual 

optimal subset, 

i.e. solution.
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Example – Dynamic Programming Table

capacity W = 5
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Example

 Thus, the maximal value is V [4, 5]= $37. We can find the 

composition of an optimal subset by tracing back the 

computations of this entry in the table. 

 Since V [4, 5] is not equal to V [3, 5], item 4 was included in an 

optimal solution along with an optimal subset for filling 5 - 2 = 3 

remaining units of the knapsack capacity.

capacity W = 5
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Example

 The remaining is V[3,3]

 Here V[3,3]  = V[2,3] so item 3 is not included

 V[2,3]  V[1,3] so item 2 is included

capacity W = 5
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Example

 The remaining is V[1,2]

 V[1,2]  V[0,2] so item 1 is included

 The solution is {item 1, item 2, item 4}

 Total weight is 5

 Total value is 37

capacity W = 5
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The Knapsack Problem

 The time efficiency and space efficiency of this algorithm 

are both in θ(nW).

 The time needed to find the composition of an optimal 

solution is in O(n + W).
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Knapsack Problem by DP (pseudocode)

Algorithm DPKnapsack(w[1..n], v[1..n], W)

var V[0..n,0..W],  P[1..n,1..W]: int

for j := 0 to W do

V[0,j] := 0

for i := 0 to n do

V[i,0] := 0

for i := 1 to n do

for j := 1 to W do

if  w[i]  j and v[i] + V[i-1,j-w[i]] > V[i-1,j] then

V[i,j] := v[i] + V[i-1,j-w[i]]; P[i,j] := j-w[i]

else 

V[i,j] := V[i-1,j]; P[i,j] := j

return V[n,W] and the optimal subset by backtracing

Running time and space: 

O(nW).
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Memory Function

 The classic dynamic programming approach, fills a 
table with solutions to all smaller subproblems but 
each of them is solved only once. 

 An unsatisfying aspect of this approach is that 
solutions to some of these smaller subproblems are 
often not necessary for getting a solution to the 
problem given. 
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Memory Function

 Since this drawback is not present in the top-down 
approach, it is natural to try to combine the 
strengths of the top-down and bottom-up 
approaches. 

 The goal is to get a method that solves only 
subproblems that are necessary and does it only 
once. Such a method exists; it is based on using 
memory functions
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Memory Function

 Initially, all the table’s entries are initialized with a 

special “null” symbol to indicate that they have not 

yet been calculated. 

 Thereafter, whenever a new value needs to be 

calculated, the method checks the corresponding 

entry in the table first: if this entry is not “null,” it 

is simply retrieved from the table; 

 otherwise, it is computed by the recursive call 

whose result is then recorded in the table.
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Memory Function for solving Knapsack Problem
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Memory Function for solving Knapsack Problem
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Memory Function

 In general, we cannot expect more than a constant-factor 

gain in using the memory function method for the 

knapsack problem because its time efficiency class is the 

same as that of the bottom-up algorithm 

 A memory function method may be less space-efficient than 

a space efficient version of a bottom-up algorithm.
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Conclusion

 Dynamic programming is a useful technique of solving 

certain kind of problems

 When the solution can be recursively described in 

terms of partial solutions, we can store these partial 

solutions and re-use them as necessary



UNIT-IV

GREEDY ALGORITHM

Lecturer:

DHANANJAY 



Optimization problems
• Dynamic programming, but overkill sometime.

• Greedy algorithm:

 Being  greedy for local optimization with the hope it 

will lead to a global optimal solution, not always, but 

in many situations, it works.



 Suppose A set of activities S={a1, a2,…, an}
• They use resources, such as lecture hall, one 

lecture at a time
• Each ai, has a start time si, and finish time fi, with 

0 si< fi<.
• ai and aj are compatible if [si, fi) and [sj, fj) do not 

overlap
 Goal: select maximum-size subset of 

mutually compatible activities.
 Start from dynamic programming, then 

greedy algorithm, see the relation between 
the two.



 Optimal substructure of activity-selection 

problem.

• Furthermore, assume that f1 … fn.

• Define Sij={ak: fi sk<fksj}, i.e., all activities starting after 

ai finished and ending before aj begins.

• Define two fictitious activities a0 with f0=0 and an+1 with 

sn+1=

 So f0 f1 … fn+1.

• Then an optimal solution including ak to Sij contains 

within it the optimal solution to Sik and Skj.



 A recursive solution

 Assume c[n+1,n+1] with c[i,j] is the number of activities in a 

maximum-size subset of mutually compatible activities in Sij.  So 

the solution is c[0,n+1]=S0,n+1.

 C[i,j]=   0   if Sij=

max{c[i,k]+c[k,j]+1} if Sij

i<k<j and akSij

 How to implement?

• How to compute the initial cases by checking Sij=?

• How to loop to iteratively compute C[i,j]:

• For i=… for j=… for k=…?    This is wrong? 

• Need to be similar to MCM:

 For len=… for i=… j=i+len; for k=…  



 Theorem 16.1: consider any nonempty 

subproblem Sij, and let am be the activity in Sij

with earliest finish time: fm=min{fk : ak  Sij}, then

1. Activity am is used in some maximum-size subset 

of mutually compatible activities of Sij.

2. The subproblem Sim is empty, so that choosing am

leaves Smj as the only one that may be nonempty.

 Proof of the theorem:



To solve Sij, choose am in Sij with the 

earliest finish time, then solve Smj, (Sim is 

empty)

 It is certain that optimal solution to Smj is 

in optimal solution to Sij.

No need to solve Smj ahead of Sij.

Subproblem pattern: Si,n+1. 



 In DP, optimal solution depends:
• How many subproblems to divide. (2 subproblems)

• How many choices to determine which subproblem to 
use. (j-i-1 choices) 

 However, the above theorem (16.1) reduces both 
significantly
• One subproblem (the other is sure to be empty).

• One choice, i.e., the one with earliest finish time in Sij.  

• Moreover, top-down solving, rather than bottom-up in 
DP.

• Pattern to the subproblems that we solve, Sm,n+1 from Sij.

• Pattern to the activities that we choose. The activity with 
earliest finish time.

• With this local optimal, it is in fact the global optimal.



 Determine the optimal substructure
 Develop the recursive solution
 Prove one of the optimal choices is the greedy 

choice yet safe
 Show that all but one of subproblems are empty 

after greedy choice
 Develop a recursive algorithm that implements 

the greedy strategy
 Convert the recursive algorithm to an iterative 

one. 



 Knapsack problem
• I1 (v1,w1), I2(v2,w2),…,In(vn,wn).
• Given a weight W at most he can carry,
• Find the items which maximize the values

 Fractional knapsack, 
• Greed algorithm, O(nlogn)

 0/1 knapsack.
• DP, O(nW). 
• Questions: 0/1 knapsack is an NP-complete problem, 

why O(nW) algorithm?



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



 A little bit change to the previous activity selection.  

For each activity ai such as a talk, there is an 

associated attendance atti.
• i.e., given 

{a1,a2,…,an}={(s1,f1,att1),(s2,f2,att2),…(sn,fn,attn), 

compute its maximum attendance of compatible 

activities.

 Use the one similar to the previous activity-selection:
 C[i,j]=   0   if Sij=

max{c[i,k]+c[k,j]+attk} if Sij

i<k<j and akSij



 New analysis (easy to think sort activities):
• For any ai, which is the most recent previous one compatible with it?

 so, define P(i)=max{k: k<i && fk si}.  

 compute P(i) is easy. P(1)=0.  (for easy coding, a dummy 

a0=(0,0,0))

• Also, define T(i): the maximum attendance of all 

compatible activities from a1 to ai. T(n) will be an 

answer.

• Consider activity ai, two cases:

 ai is contained within the solution, then only aP(i) can be included 

too.

 ai is not included, then ai-1 can be included.

• T(i)=   0                                       if i=0

max{T(i-1),atti+T(P(i))}  if i>0



 Coin changes
• 25, 10, 5, 1

• How about 7, 5, 1
 Minimum Spanning Tree

• Prim’s algorithm
 Begin from any node, each time add a new node which is closest to the 

existing subtree. 

• Kruskal’s algorithm
 Sorting the edges by their weights

 Each time, add the next edge which will not create cycle after added.
 Single source shortest pathes

• Dijkstra’s algorithm
 Huffman coding
 Optimal merge





Disjoint Sets
 Some applications require maintaining a collection 

of disjoint sets. 

 A Disjoint set S is a collection of sets 

where 

 Each set has a representative which is a member of 
the set (Usually the minimum if the elements are 
comparable)  

1,...... nS S i j i jS S   



Disjoint Set Operations
 Make-Set(x) – Creates a new set where x is it’s 

only element (and therefore it is the 
representative of the set).  O(1) time.

 Union(x,y) – Replaces              by               one 
of the elements of               becomes the 

representative of the new set.  O(log n) time.

 Find(x) – Returns the representative of the set 
containing x   O(log n) time

,x yS S
x yS S

x yS S



Analyzing Operations
 We usually analyze a sequence of m operations, of 

which n of them are Make_Set operations, and m is the 
total of Make_Set, Find, and Union operations 

 Each union operations decreases the number of sets in 
the data structure, so there can not be more than n-1
Union operations



Applications

 Equivalence Relations (e.g Connected Components)

 Minimal Spanning Trees



Connected Components
 Given a graph G we first preprocess G to maintain a set 

of connected components.

CONNECTED_COMPONENTS(G)

 Later a series of queries can be executed to check if 
two vertexes are part of the same connected 
component

SAME_COMPONENT(U,V)



Connected Components
CONNECTED_COMPONENTS(G)

for each vertex v in V[G]

do MAKE_SET (v)

for each edge (u,v) in E[G]

do if FIND_SET(u) != FIND_SET(v)

then UNION(u,v)



Connected Components
SAME_COMPONENT(u,v)

return FIND_SET(u) ==FIND_SET(v)



Example
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(b,c)
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Result
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Connected Components

 During the execution of CONNECTED-
COMPONENTS on a undirected graph G = (V, E) with 
k connected components, how many time is FIND-SET 
called? How many times is UNION called? Express you 
answers in terms of |V|, |E|, and k.



Solution
 FIND-SET is called 2|E| times. FIND-SET is called 

twice on line 4, which is executed once for each 
edge in E[G]. 

 UNION is called |V| - k times. Lines 1 and 2 create 
|V| disjoint sets. Each UNION operation decreases 
the number of disjoint sets by one. At the end 
there are k disjoint sets, so UNION is called |V| - k 
times. 



Linked List implementation
 We maintain a set of linked list, each list corresponds to a 

single set.

 All elements of the set point to the first element which is 
the representative

 A pointer to the tail is maintained so elements are inserted 
at the end of the list

a b c d



Union with linked lists

5

a b c d

e f g

a b c de f g

+



Analysis
 Using linked list, MAKE_SET and FIND_SET are 

constant operations, however UNION requires to 
update the representative for at least all the elements 
of one set, and therefore is linear in worst case time

 A series of m operations could take 

2( )m



Analysis
 Let                                                       . Let n be the 

number of make set operations, then a series of n 
MAKE_SET operations, followed by q-1 UNION 
operations will take           since 

 q,n are an order of m, so in total we get 

which is an amortized cost of m for each 
operations

1 / 2 , / 2 1q m n m n m           

2( )m
1

2

1

1 2 3 ..... 1
q

i

n q n i n q




        

2( )m



Improvement – Weighted 
Union
 Always append the shortest list to the longest list. 

A series of operations will now cost only

 MAKE_SET and FIND_SET are constant time and 
there are m operations.

 For Union, a set will not change it’s representative 
more than log(n) times. So each element can be 
updated no more than log(n) time, resulting in 
nlogn for all union operations

( log )m n n 



Disjoint-Set Forests
 Maintain A collection of trees, each element points 

to it’s parent. The root of each tree is the 
representative of the set

 We use two strategies for improving running time

 Union by Rank

 Path Compression
c

fba

d



Make Set
 MAKE_SET(x)

p(x)=x

rank(x)=0

x



Find Set
 FIND_SET(d)

if d != p[d]

p[d]= FIND_SET(p[d])

return p[d]

c

fba

d



Union
 UNION(x,y)

link(findSet(x),

findSet(y))

 link(x,y)

if rank(x)>rank(y) 

then p(y)=x

else 

p(x)=y

if rank(x)=rank(y) 

then rank(y)++

c

fba

d

w

x

y

z

c

fba

d

w
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y
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Analysis
 In Union we attach a smaller tree to the larger tree, 

results in logarithmic depth.

 Path compression can cause a very deep tree to 
become very shallow

 Combining both ideas gives us (without proof) a 
sequence of m operations in )),(( nmmO 



Exercise
 Describe a data structure that supports the following 

operations:

 find(x) – returns the representative of x

 union(x,y) – unifies the groups of x and y

 min(x) – returns the minimal element in the group of x



Solution
 We modify the disjoint set data structure so that 

we keep a reference to the minimal element in the 
group representative.

 The find operation does not change (log(n))

 The union operation is similar to the original 
union operation, and the minimal element is the 
smallest between the minimal of the two groups



Example
 Executing find(5)

7 1 4 4

52

7

13

4 6

1 2 3 4 5 6 .. N

Parent 4 7 4 4 7 6

min 1 6



Example
 Executing union(4,6)

52

7

13

4 6

1 2 3 4 5 6 .. N

Parent 4 7 4 4 7 4

min 1 1



Exercise
 Describe a data structure that supports the following 

operations:

 find(x) – returns the representative of x

 union(x,y) – unifies the groups of x and y

 deUnion() – undo the last union operation



Solution
 We modify the disjoint set data structure by 

adding a stack, that keeps the pairs of 
representatives that were last merged in the union 
operations

 The find operations stays the same, but we can not 
use path compression since we don’t want to 
change the modify the structure after union 
operations



Solution
 The union operation is a regular operation and 

involves an addition push (x,y) to the stack

 The deUnion operation is as follows
 (x,y)  s.pop()

 parent(x) x

 parent(y) y



Example
 Example why we can not use path compression.

 Union (8,4)

 Find(2)

 Find(6)

 DeUnion()

1 2 3 4 5 6 7 8 9 10

parent 4 7 7 4 8 1 5 8 1 4


