
1-1Design and Analysis of Algorithms – Unit I

Chapter 1
Introduction

Lecturer:

PRIYANKA

1-2Design and Analysis of Algorithms – Unit I

Algorithm

 An Algorithm is a sequence of unambiguous
instructions for solving a problem,

 i.e., for obtaining a required output for any
legitimate input in a finite amount of time.

1-3Design and Analysis of Algorithms – Unit I

Notion of algorithm

“computer”

Algorithmic solution

problem

algorithm

input output

1-4Design and Analysis of Algorithms – Unit I

PSEUDOCODE
 Pseudocode (pronounced SOO-doh-kohd) is a detailed yet

readable description of what a computer program or
algorithm must do, expressed in a formally-styled natural
language rather than in a programming language.

 It is sometimes used as a detailed step in the process of
developing a program.

 It allows programmers to express the design in great detail
and provides programmers a detailed template for the next
step of writing code in a specific programming language.

1-5Design and Analysis of Algorithms – Unit I

Formatting and Conventions in Pseudocoding

 INDENTATION in pseudocode should be identical to
its implementation in a programming language. Try to
indent at least four spaces.

 The pseudocode entries are to be cryptic, AND
SHOULD NOT BE PROSE. NO SENTENCES.

 No flower boxes in pseudocode.

 Do not include data declarations in pseudocode.

1-6Design and Analysis of Algorithms – Unit I

Some Keywords That Should be Used

 For looping and selection,

 Do While...EndDo;

 Do Until...Enddo;

 Case...EndCase;

 If...Endif;

 Call ... with (parameters); Call; Return; Return;
When; Always use scope terminators for loops and
iteration.

1-7Design and Analysis of Algorithms – Unit I

Some Keywords …

 As verbs, use the words

 generate, Compute, Process,

 Set, reset,

 increment,

 calculate,

 add, sum, multiply, ...

 print, display,

 input, output, edit, test , etc.

1-8Design and Analysis of Algorithms – Unit I

Methods of finding GCD

M - 1

M - 2

M - 3

1-9Design and Analysis of Algorithms – Unit I

Euclid’s Algorithm
Problem: Find gcd(m,n), the greatest common divisor of two

nonnegative, not both zero integers m and n

Examples: gcd(60,24) = 12, gcd(60,0) = 60, gcd(0,0) = ?

Euclid’s algorithm is based on repeated application of equality

gcd(m,n) = gcd(n, m mod n)

until the second number becomes 0, which makes the problem

trivial.

Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

1-10Design and Analysis of Algorithms – Unit I

Two descriptions of Euclid’s algorithm

Step 1 If n = 0, return m and stop; otherwise go to Step 2

Step 2 Divide m by n and assign the value fo the remainder to r

Step 3 Assign the value of n to m and the value of r to n. Go to
Step 1.

while n ≠ 0 do

r ← m mod n

m← n

n ← r

return m

1-11Design and Analysis of Algorithms – Unit I

Other methods for computing
gcd(m,n)

Consecutive integer checking algorithm

Step 1 Assign the value of min{m,n} to t

Step 2 Divide m by t. If the remainder is 0, go to Step 3;
otherwise, go to Step 4

Step 3 Divide n by t. If the remainder is 0, return t and
stop;

otherwise, go to Step 4

Step 4 Decrease t by 1 and go to Step 2

1-12Design and Analysis of Algorithms – Unit I

Other methods for gcd(m,n) [cont.]

Middle-school procedure

Step 1 Find the prime factorization of m

Step 2 Find the prime factorization of n

Step 3 Find all the common prime factors

Step 4 Compute the product of all the common prime
factors

and return it as gcd(m,n)

Is this an algorithm?

1-13Design and Analysis of Algorithms – Unit I

Sieve of Eratosthenes
Input: Integer n ≥ 2

Output: List of primes less than or equal to n

for p ← 2 to n do A[p] ← p

for p ← 2 to n do

if A[p]  0 //p hasn’t been previously eliminated from the list

j ← p* p

while j ≤ n do

A[j] ← 0 //mark element as eliminated

j ← j + p

Example: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1-14Design and Analysis of Algorithms – Unit I

Termination of Euclid’s Algorithm

 The second number of the pair gets smaller with each
iteration and cannot become negative:

 Indeed, the new value of n is r = m mod n, which is
always smaller than n.

 Eventually, r becomes zero, and the algorithms stops.

1-15Design and Analysis of Algorithms – Unit I

Compute the GCD of 120 and 23.

1-16Design and Analysis of Algorithms – Unit I

Fundamentals of Algorithmic

Problem Solving

1-17Design and Analysis of Algorithms – Unit I

Fundamentals of Algorithmic Problem Solving

 Algorithm = Procedural Solutions to Problem

 NOT an answer, BUT rather specific instructions of
getting answers.

 Therefore, requires steps in designing and
analyzing an algorithm

1-18Design and Analysis of Algorithms – Unit I

Algorithm Design & Analysis Process

1-19Design and Analysis of Algorithms – Unit I

Step 1: Understand the Problem

Before designing an algorithm - understand
completely the problem given.

Read the problem’s description carefully and ask
questions if you have any doubts about the problem,

Do a few small examples by hand, think about special
cases, and ask questions again if needed.

1-20Design and Analysis of Algorithms – Unit I

Step 1: Understand the Problem
An input to an algorithm specifies an instance of the

problem the algorithm solves.

It is very important to specify exactly the range of
instances the algorithm needs to handle.

Failing which – the algorithm works correctly for some
inputs , but crashes on some boundary values.

Remember that a correct algorithm is not one that
works most of the time but one that works correctly for
all legitimate inputs.

1-21Design and Analysis of Algorithms – Unit I

Step 2: Ascertaining the
capabilities of a computational
device

 Algorithms designed to be executed on machines that
executes intstructions one after another are called
sequential algorithms.

 Algorithms that take advantage of computers that can
execute operations concurrently are called parallel
algorithms.

1-22Design and Analysis of Algorithms – Unit I

Step 3: Choosing between Exact
& Approximate Problem Solving

 Solving the problem exactly - Exact algorithms

 Solving the problem approximately - Approximation
algorithms

 Why approximation algorithms?
1. Problems cannot be solved exactly.

Eg. Extracting square roots, solving non-linear equations

2. Available exact algorithms are unacceptably slow because of
problem’s complexity

Eg. Traveling Salesman Problem

3. Approx. Algs can be a part of algorithms that solve the
problem exactly.

1-23Design and Analysis of Algorithms – Unit I

Step 4: Deciding on Appropriate
Data Structures

 In the new world of object-oriented programming,
data structures remain important for both design and
analysis of algorithms.

 However, we will assume a very basic data structure for
now and concentrate on the algorithm side.

1-24Design and Analysis of Algorithms – Unit I

Step 5: Algorithm Design
Techniques

 An algorithm design technique (or “strategy” or
“paradigm”) is a general approach to solving problems
algorithmically that is applicable to a variety of
problems from different areas of computing.

 Eg. Brute force, Divide-and-Conquer, Transform-and-
Conquer

 Importance:

1. Provide guidance for designing algorithms for new
problems.

2. To classify algorithms according to an underlying
design idea.

1-25Design and Analysis of Algorithms – Unit I

Step 6: Methods of Specifying
an Algorithm

Pseudocode, a mixture of a natural language and
programming language-like constructs.

 flowchart, a method of expressing an algorithm by a
collection of connected geometric shapes containing
descriptions of the algorithm’s steps.

1-26Design and Analysis of Algorithms – Unit I

Step 7: Proving an Algorithm’s
Correctness

Prove algorithm’s correctness = prove that the
algorithm yields a required result for every legitimate
input in a finite amount of time.

For an approximation algorithm, correctness means to
be able to show that the error produced by the
algorithm does not exceed a predefined limit.

1-27Design and Analysis of Algorithms – Unit I

Step 8: Analyzing an
Algorithm

1. Efficiency
Time efficiency indicates how fast the algorithm runs.
space efficiency indicates how much extra memory the

algorithm needs.

2. Simplicity

3. Generality
Design an algorithm for a problem posed in more

general terms.
Design an algorithm that can handle a range of inputs

that is natural for the problem at hand.

1-28Design and Analysis of Algorithms – Unit I

Step 9: Coding the algorithm

More than implementation

Peril of incorrect & inefficient implementation

Require testing & debugging

Require code optimizing

1-29Design and Analysis of Algorithms – Unit I

Important Problem Types

1-30Design and Analysis of Algorithms – Unit I

Important Problem Types

Sorting

Searching

String processing

Graph problems

Combinatorial problems

Geometric problems

Numerical problems

1-31Design and Analysis of Algorithms – Unit I

Sorting

The sorting problem asks us to rearrange the items of a
given list in ascending order.

we usually need to

sort lists of numbers,

characters from an alphabet,

character strings,

 records similar to those maintained by schools about
their students,

libraries about their holdings,

companies about their employees.

1-32Design and Analysis of Algorithms – Unit I

Searching

The searching problem deals with finding a given
value, called a search key, in a given set (or a multiset,
which permits several elements to have the same
value).

1-33Design and Analysis of Algorithms – Unit I

String Processing

 A string is a sequence of characters from an alphabet.

 String of particular interest:

1. Text string – comprises letters, numbers, and
special characters

2. Bit string – comprises zeros and ones

3. Gene sequence

 Mainly string matching problem: searching for a given
word in a text

1-34Design and Analysis of Algorithms – Unit I

Graph Problems
A graph can be thought of as a collection of points

called vertices, some of which are connected by line
segments called edges.

Used for modeling a wide variety of real-life
applications.

Basic graph algorithms include:
1. Graph traversal algorithms - How can one visit all

the points in a network?
2. Shortest-path algorithms - What is the best

Introduction route between two cities?
3. Topological sorting for graphs with directed edges

1-35Design and Analysis of Algorithms – Unit I

Combinatorial Problems

 combinatorial problems: problems that ask (explicitly
or implicitly) to find a combinatorial object—such as
a permutation, a combination, or a subset—that
satisfies certain constraints and has some desired
property (e.g., maximizes a value or minimizes a
cost).

1. Combinatorial grows extremely fast with problem size

2. No known algorithm solving most such problems
exactly in an acceptable amount of time.

1-36Design and Analysis of Algorithms – Unit I

Geometric Problems

Geometric algorithms deal with geometric objects such
as points, lines, and polygons.

2 class problems:

The closest pair problem: given n points in the plane,
find the closest pair among them.

The convex hull problem asks to find the smallest
convex polygon that would include all the points of a
given set. If

1-37Design and Analysis of Algorithms – Unit I

Numerical Problems

Numerical problems, another large special area of
applications, are problems that involve mathematical
objects of continuous nature: solving equations and
systems of equations, computing definite integrals,
evaluating functions, and so on.

1-38Design and Analysis of Algorithms – Unit I

Fundamentals of Analysis of

algorithm efficiency

1-39Design and Analysis of Algorithms – Unit I

Analysis of algorithms
 Issues:

 correctness

 time efficiency

 space efficiency

 optimality

 Approaches:

 theoretical analysis

 empirical analysis

1-40Design and Analysis of Algorithms – Unit I

Theoretical analysis of time
efficiencyTime efficiency is analyzed by determining the number

of repetitions of the basic operation as a function of
input size

 Basic operation: the operation that contributes the
most towards the running time of the algorithm

T(n) ≈ copC(n)running time execution time

for basic operation

or cost

Number of times

basic operation is

executed

input size

Note: Different basic operations may cost differently!

1-41Design and Analysis of Algorithms – Unit I

Input size and basic operation
examples

Problem Input size measure Basic operation

Searching for key

in a list of n items

Number of list’s

items, i.e. n
Key comparison

Multiplication of

two matrices

Matrix dimensions or

total number of

elements

Multiplication of

two numbers

Checking primality

of a given integer n

n’size = number of

digits (in binary

representation)

Division

Typical graph

problem

#vertices and/or

edges

Visiting a vertex

or traversing an

edge

1-42Design and Analysis of Algorithms – Unit I

Empirical analysis of time
efficiency
 Select a specific (typical) sample of inputs

 Use physical unit of time (e.g., milliseconds)

or

Count actual number of basic operation’s executions

 Analyze the empirical data

1-43Design and Analysis of Algorithms – Unit I

Efficiencies
 Worst Case Efficiency:

 Is its efficiency for the worst case input of size n, which
is an input of size n for which the algorithm runs the
longest among all possible inputs of that size

 Cworst(n)

 Best-case efficiency:

 Is its efficiency for the worst case input of size n, which
is an input of size n for which the algorithm runs the
fastest among all possible inputs of that size

 Cbest(n)

1-44Design and Analysis of Algorithms – Unit I

Amortized efficiency
 It applies not to a single run of an

algorithm, but rather to a sequence of
operations performed on the same data
structure

1-45Design and Analysis of Algorithms – Unit I

Best-case, average-case,
worst-case
For some algorithms, efficiency depends on form of input:

 Worst case: Cworst(n) – maximum over inputs of size n

 Best case: Cbest(n) – minimum over inputs of size n

 Average case: Cavg(n) – “average” over inputs of size n

 Number of times the basic operation will be executed on
typical input

 NOT the average of worst and best case

 Expected number of basic operations considered as a
random variable under some assumption about the
probability distribution of all possible inputs. So, avg =
expected under uniform distribution.

1-46Design and Analysis of Algorithms – Unit I

Example: Sequential search

 Worst case

 Best case

 Average case

n key comparisons

1 comparisons

(n+1)/2, assuming K is in A

1-47Design and Analysis of Algorithms – Unit I

Types of formulas for basic operation’s count

 Exact formula

e.g., C(n) = n(n-1)/2

 Formula indicating order of growth with specific
multiplicative constant

e.g., C(n) ≈ 0.5 n2

 Formula indicating order of growth with unknown
multiplicative constant

e.g., C(n) ≈ cn2

1-48Design and Analysis of Algorithms – Unit I

Order of growth  Most important: Order of growth within a constant
multiple as n→∞

 Example:

 How much faster will algorithm run on computer that is
twice as fast?

 How much longer does it take to solve problem of double
input size?

1-49Design and Analysis of Algorithms – Unit I

Values of some important functions as n 

1-50Design and Analysis of Algorithms – Unit I

Asymptotic Notations
 O (Big-Oh)-notation

 Ω (Big-Omega) -notation

 Θ (Big-Theta) -notation

1-51Design and Analysis of Algorithms – Unit I

Asymptotic order of growthA way of comparing functions that ignores constant factors
and small input sizes (because?)

 O(g(n)): class of functions f(n) that grow no faster than
g(n)

 Θ(g(n)): class of functions f(n) that grow at same rate as
g(n)

 Ω(g(n)): class of functions f(n) that grow at least as fast as
g(n)

1-52Design and Analysis of Algorithms – Unit I

O-notation

Definition: A function t(n) is said to be in O(g(n)),
denoted t(n)  O(g(n)) is bounded above by some
constant multiple of g(n) for all large n, i.e., there exist
positive constant c and non-negative integer n0 such
that

f(n) ≤ c g(n) for every n ≥ n0

1-53Design and Analysis of Algorithms – Unit I

Big-oh

1-54Design and Analysis of Algorithms – Unit I

-notation
 Formal definition

 A function t(n) is said to be in (g(n)), denoted t(n) 
(g(n)), if t(n) is bounded below by some constant
multiple of g(n) for all large n, i.e., if there exist some
positive constant c and some nonnegative integer n0

such that

t(n)  cg(n) for all n  n0

1-55Design and Analysis of Algorithms – Unit I

Big-omega

1-56Design and Analysis of Algorithms – Unit I

-notation Formal definition
 A function t(n) is said to be in (g(n)), denoted t(n)
 (g(n)), if t(n) is bounded both above and below by
some positive constant multiples of g(n) for all large
n, i.e., if there exist some positive constant c1 and c2
and some nonnegative integer n0 such that
c2 g(n)  t(n)  c1 g(n) for all n  n0

1-57Design and Analysis of Algorithms – Unit I

Big-theta

1-58Design and Analysis of Algorithms – Unit I

Theorem If t1(n)  O(g1(n)) and t2(n)  O(g2(n)), then
t1(n) + t2(n)  O(max{g1(n), g2(n)}).
 The analogous assertions are true for the -notation and
-notation.

Proof. There exist constants c1, c2, n1, n2 such that

t1(n)  c1*g1(n), for all n  n1

t2(n)  c2*g2(n), for all n  n2

Define c3 = c1 + c2 and n3 = max{n1,n2}. Then

t1(n) + t2(n)  c3*max{g1(n), g2(n)}, for all n  n3

1-59Design and Analysis of Algorithms – Unit I

Some properties of asymptotic order of growth

 f(n)  O(f(n))

 f(n)  O(g(n)) iff g(n) (f(n))

 If f (n)  O(g (n)) and g(n)  O(h(n)) , then f(n) 
O(h(n))

Note similarity with a ≤ b

 If f1(n)  O(g1(n)) and f2(n)  O(g2(n)) , then

f1(n) + f2(n)  O(max{g1(n), g2(n)})

1-60Design and Analysis of Algorithms – Unit I

Establishing order of growth
using limits

lim T(n)/g(n) =

0 order of growth of T(n) < order of growth of g(n)

c > 0 order of growth of T(n) = order of growth of g(n)

∞ order of growth of T(n) > order of growth of g(n)

n→∞

1-61Design and Analysis of Algorithms – Unit I

L’Hôpital’s rule and Stirling’s
formula

L’Hôpital’s rule: If limn f(n) = limn g(n) =  and

the derivatives f´, g´ exist, then

Stirling’s formula: n!  (2n)1/2 (n/e)n

f(n)

g(n)
lim
n

=
f ´(n)

g ´(n)
lim
n

Example: log n vs. n

Example: 2n vs. n!

1-62Design and Analysis of Algorithms – Unit I

Orders of growth of some important functions

 All logarithmic functions loga n belong to the same class
(log n) no matter what the logarithm’s base a > 1 is

because

 All polynomials of the same degree k belong to the same
class:

aknk + ak-1n
k-1 + … + a0  (nk)

 Exponential functions an have different orders of growth
for different a’s

 order log n < order n (>0) < order an < order n! < order
nn

ann bba log/loglog 

1-63Design and Analysis of Algorithms – Unit I

Basic asymptotic efficiency
classes 1 constant

log n logarithmic

n linear

n log n n-log-n

n2 quadratic

n3 cubic

2n exponential

n! factorial

1-64Design and Analysis of Algorithms – Unit I

Plan for analyzing nonrecursive
algorithms

General Plan for Analysis

 Decide on parameter n indicating input size

 Identify algorithm’s basiyc operation

 Determine worst, average, and best cases for input of
size n

 Set up a sum for the number of times the basic
operation is executed

 Simplify the sum using standard formulas and rules
(see Appendix A)

1-65Design and Analysis of Algorithms – Unit I

Useful summation formulas and
rules

lin1 = 1+1+…+1 = n - l + 1

In particular, lin1 = n - 1 + 1 = n  (n)

1in i = 1+2+…+n = n(n+1)/2  n2/2  (n2)

1in i2 = 12+22+…+n2 = n(n+1)(2n+1)/6  n3/3  (n3)

0in ai = 1 + a +…+ an = (an+1 - 1)/(a - 1) for any a  1

In particular, 0in 2i = 20 + 21 +…+ 2n = 2n+1 - 1  (2n)

(ai ± bi) = ai ± bi cai = cai liuai = limai +
m+1iuai

1-66Design and Analysis of Algorithms – Unit I

Example 1: Maximum
element

T(n) = 1in-1 1 = n-1 = (n) comparisons

1-67Design and Analysis of Algorithms – Unit I

Example 2: Element uniqueness
problem

T(n) = 0in-2 (i+1jn-1 1)

= 0in-2 n-i-1 = (n-1+1)(n-1)/2

= () comparisons2n

1-68Design and Analysis of Algorithms – Unit I

Example 3: Matrix
multiplication

T(n) = 0in-1 0in-1 n

= 0in-1 ()

= () multiplications

2n

3n

1-69Design and Analysis of Algorithms – Unit I

Example 4: Gaussian
elimination

Algorithm GaussianElimination(A[0..n-1,0..n])

//Implements Gaussian elimination on an n-by-(n+1)
matrix A

for i  0 to n - 2 do
for j  i + 1 to n - 1 do

for k  i to n do

A[j,k]  A[j,k] - A[i,k]  A[j,i] / A[i,i]

Find the efficiency class and a constant factor
improvement.

for i  0 to n - 2 do

for j  i + 1 to n - 1 do

B  A[j,i] / A[i,i]

for k  i to n do

A[j,k]  A[j,k] – A[i,k] * B

1-70Design and Analysis of Algorithms – Unit I

Example 5: Counting binary
digits

1-71Design and Analysis of Algorithms – Unit I

Plan for Analysis of Recursive
Algorithms

 Decide on a parameter indicating an input’s size.

 Identify the algorithm’s basic operation.

 Check whether the number of times the basic op. is
executed may vary on different inputs of the same size.
(If it may, the worst, average, and best cases must be
investigated separately.)

 Set up a recurrence relation with an appropriate initial
condition expressing the number of times the basic op. is
executed.

 Solve the recurrence (or, at the very least, establish its
solution’s order of growth) by backward substitutions or
another method.

1-72Design and Analysis of Algorithms – Unit I

Example 1: Recursive evaluation
of n!

Definition: n ! = 1  2  … (n-1)  n for n ≥ 1 and 0! = 1

Recursive definition of n!: F(n) = F(n-1)  n for n ≥ 1 and
F(0) = 1

Size:
Basic operation:
Recurrence relation:

n

multiplication

M(n) = M(n-1) + 1

M(0) = 0

1-73Design and Analysis of Algorithms – Unit I

Solving the recurrence for M(n)

M(n) = M(n-1) + 1, M(0) = 0M(n) = M(n-1) + 1

= (M(n-2) + 1) + 1 = M(n-2) + 2

= (M(n-3) + 1) + 2 = M(n-3) + 3

…

= M(n-i) + i

= M(0) + n

= n

The method is called backward substitution.

1-74Design and Analysis of Algorithms – Unit I

Example 2: The Tower of Hanoi
Puzzle

1

2

3

Recurrence for number of moves: M(n) = 2M(n-1) + 1

1-75Design and Analysis of Algorithms – Unit I

Solving recurrence for number of
moves

M(n) = 2M(n-1) + 1, M(1) = 1M(n) = 2M(n-1) + 1

= 2(2M(n-2) + 1) + 1 = 2^2*M(n-2) + 2^1 + 2^0

= 2^2*(2M(n-3) + 1) + 2^1 + 2^0

= 2^3*M(n-3) + 2^2 + 2^1 + 2^0

= …

= 2^(n-1)*M(1) + 2^(n-2) + … + 2^1 + 2^0

= 2^(n-1) + 2^(n-2) + … + 2^1 + 2^0

= 2^n - 1

1-76Design and Analysis of Algorithms – Unit I

Example 3: Counting #bits

A() = A() + 1, A() = 1 (using the Smoothness Rule)

= (A() + 1) + 1 = A() + 2

= A() + i

= A() + k = k + 0

=

k2 12 k 02

22 k

n2log

22 k

ik2

kk2

A(n) = A() + 1, A(1) = 0 2/n

1-77Design and Analysis of Algorithms – Unit I

DIVIDE AND CONQUER

77

1-78Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 78

Divide and ConquerThe most well known algorithm design strategy:

1. Divide instance of problem into two or more smaller
instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger) instance by
combining these solutions

1-79Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 79

Divide-and-conquer technique

subproblem 2

of size n/2

subproblem 1

of size n/2

a solution to

subproblem 1

a solution to

the original problem

a solution to

subproblem 2

a problem of size n

1-80Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 80

Divide and Conquer Examples

 Sorting: mergesort and quicksort

 Tree traversals

 Binary search

 Matrix multiplication-Strassen’s algorithm

 Convex hull-QuickHull algorithm

1-81Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 81

General Divide and Conquer recurrence:

Master Theorem

T(n) = aT(n/b) + f (n) where f (n) € Θ(nd)

1. a < bd T(n) € Θ(nd)

2. a = bd T(n) € Θ(nd lg n)

3. a > bd T(n) € Θ(nlog b a)

4. Note: the same results hold with O instead of Θ.

1-82Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 82

Mergesort
Algorithm:

 Split array A[1..n] in two and make copies of each half

in arrays B[1.. n/2] and C[1.. n/2]

 Sort arrays B and C

 Merge sorted arrays B and C into array A as follows:

 Repeat the following until no elements remain in one of
the arrays:

 compare the first elements in the remaining unprocessed
portions of the arrays

 copy the smaller of the two into A, while incrementing the
index indicating the unprocessed portion of that array

 Once all elements in one of the arrays are processed,
copy the remaining unprocessed elements from the

1-83Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 83

Mergesort Example8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 7 8 9

1-84Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 84

Pseudocode for Mergesort
ALGORITHM Mergesort(A[0..n-1])

//Sorts array A[0..n-1] by recursive mergesort

// Input: An array A[0..n-1] of orderable elements

// Output: Array A[0..n-1] sorted in non-increasing
order

If n>1

copy A[0..[n/2]-1] to B[0..[n/2]-1]

copy A[[n/2]..n-1] to C[0..[n/2]-1]

Mergesort(B[0..[n/2]-1])

Mergesort(C[0..[n/2]-1])

Merge(B,C,A)

1-85Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 85

Pseudocode for Merge
ALGORITHM Merge (B[0..p-1], C[0..q-1], A[0..p+q-1]

// Merges two sorted arrays into one sorted array

// Input: Arrays B[0..p-1] and C[0..q-1] both sorted

// Output: Sorted array A[0..p+q-1] of the elements of B and C

i  0; j 0; k0

While i<p and j<q do

if B[i]<=C[j]

A[k]  B[i]; i  i+1

else A[k]  C[j]; j  j+1

k  k+1

If i=p

copy C[j..q-1] to A[k..p+q-1]

Else

copy B[i..p-1] to A[k..p+q-1]

1-86Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 86

Recurrence Relation for
Mergesort
 Let T(n) be worst case time on a sequence of n keys

 If n = 1, then T(n) = (1) (constant)

 If n > 1, then T(n) = 2 T(n/2) + (n)

 two subproblems of size n/2 each that are solved
recursively

 (n) time to do the merge

1-87Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 87

Efficiency of mergesort
 All cases have same efficiency: Θ(n log n)

 Number of comparisons is close to theoretical
minimum for comparison-based sorting:

 log n ! ≈ n lg n - 1.44 n

 Space requirement: Θ(n) (NOT in-place)

 Can be implemented without recursion (bottom-up)

1-88Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 88

Quick-Sort Quick-sort is a randomized
sorting algorithm based on
the divide-and-conquer
paradigm:

 Divide: pick a random
element x (called pivot) and
partition S into

 L elements less than x

 E elements equal x

 G elements greater than x

 Recur: sort L and G

 Conquer: join L, E and G

x

x

L GE

x

1-89Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 89

Quicksort
 Select a pivot (partitioning element)

 Rearrange the list so that all the elements in the
positions before the pivot are smaller than or equal to
the pivot and those after the pivot are larger than the
pivot

 Exchange the pivot with the last element in the first
(i.e., ≤ sublist) – the pivot is now in its final position

 Sort the two sublists
p

A[i]≤p A[i]>p

1-90Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 90

The partition algorithm

1-91Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 91

Efficiency of quicksort
 Best case: split in the middle — Θ(n log n)

 Worst case: sorted array! — Θ(n2)

 Average case: random arrays — Θ(n log n)

 Improvements:

 better pivot selection: median of three partitioning
avoids worst case in sorted files

 switch to insertion sort on small subfiles

 Considered the method of choice for internal sorting
for large files (n ≥ 10000)

1-92Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 92

Binary Search - an Iterative
Algorithm

Very efficient algorithm for searching in sorted
array:

K vs A[0] . . . A[m] . . . A[n-1]

If K = A[m], stop (successful search);

otherwise, continue searching by the same method
in A[0..m-1] if K < A[m]

and in A[m+1..n-1] if K > A[m]

1-93Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 93

Pseudocode for Binary Search
ALGORITHM BinarySearch(A[0..n-1], K)

l  0; r  n-1

while l  r do // l and r crosses over can’t
find K

m  (l+r)/2

if K = A[m] return m //the key is found

else if K < A[m] r  m-1 //the key is on the left half
of

the array

else l  m+1 // the key is on the right
half of the array

1-94Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 94

Binary Search – a Recursive
AlgorithmALGORITHM BinarySearchRecur(A[0..n-1], l, r, K)

if l > r

return –1

else

m  (l + r) / 2

if K = A[m]

return m

else if K < A[m]

return BinarySearchRecur(A[0..n-1], l, m-1, K)

else

return BinarySearchRecur(A[0..n-1], m+1, r, K)

1-95Design and Analysis of Algorithms – Unit IDesign and Analysis of Algorithms - Unit II
95

Analysis of Binary Search

 Worst-case (successful or fail) :

 Cw (n) = 1 + Cw(n/2),

 Cw (1) = 1
solution: Cw(n) =  log2 n +1 = log2(n+1)

 This is VERY fast: e.g., Cw(106) = 20

 Best-case: successful Cb (n) = 1,

fail Cb (n) =  log2 n +1

 Average-case: successful Cavg(n) = log2 n – 1
fail Cavg(n) = log2(n+1)

1-96Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 96

Binary Tree Traversals
 Definitions

 A binary tree T is defined as a finite set of nodes that is
either empty or consists of a root and two disjoint binary
trees TL and TR called, respectively, the left and right
subtree of the root.

 The height of a tree is defined as the length of the
longest path from the root to a leaf.

 Problem: find the height of a binary tree.
T TL R

1-97Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 97

Pseudocode - Height of a
Binary Tree

ALGORITHM Height(T)
//Computes recursively the height of a binary tree
//Input: A binary tree T
//Output: The height of T
if T = 

return –1
else

return max{Height(TL), Height(TR)} + 1

1-98Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 98

Analysis:

Number of comparisons of a tree T with : 2n + 1

Number of comparisons made to compute height is
the same as number of additions:

A(n(T)) = A(n(TL)) + A(n(TR)) +1 for n>0,

A(0) = 0

The solution is A(n) = n

1-99Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 99

Binary Tree Traversals– preorder, inorder, and
postorder traversal

 Binary tee traversal: visit all nodes of a binary tree
recursively.

Algorithm Preorder(T)

//Implement the preorder traversal of a binary tree

//Input: Binary tree T (with labeled vertices)

//Output: Node labels listed in preorder

if T ‡ 

write label of T’s root

Preorder(TL)

Preorder(TR)

1-100Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 100

Multiplication of Large
Integers
Consider the problem of multiplying two (large) n-digit integers represented
by arrays of their digits such as:

A = 12345678901357986429 B = 87654321284820912836

The grade-school algorithm:

a1 a2 … an

b1 b2 … bn

(d10) d11d12 … d1n

(d20) d21d22 … d2n

… … … … … … …

(dn0) dn1dn2 … dnn

Efficiency: n2 one-digit multiplications

1-101Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 101

First Divide-and-Conquer Algorithm

A small example: A  B where A = 2135 and B = 4014

A = (21·102 + 35), B = (40 ·102 + 14)

So, A  B = (21 ·102 + 35)  (40 ·102 + 14)

= 21  40 ·104 + (21  14 + 35  40) ·102 + 35  14

In general, if A = A1A2 and B = B1B2 (where A and B are n-digit,

A1, A2, B1, B2 are n/2-digit numbers),

A  B = A1  B1·10
n + (A1  B2 + A2  B1) ·10

n/2 + A2  B2

Recurrence for the number of one-digit multiplications M(n):

M(n) = 4M(n/2), M(1) = 1
Solution: M(n) = n2

1-102Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 102

Second Divide-and-Conquer Algorithm

A  B = A1  B1·10
n + (A1  B2 + A2  B1) ·10

n/2 + A2  B2

The idea is to decrease the number of multiplications from 4 to 3:

(A1 + A2)  (B1 + B2) = A1  B1 + (A1  B2 + A2  B1) + A2  B2,

I.e., (A1  B2 + A2  B1) = (A1 + A2)  (B1 + B2) - A1  B1 - A2  B2,

which requires only 3 multiplications at the expense of (4-1) extra add/sub.

Recurrence for the number of multiplications M(n):
M(n) = 3M(n/2), M(1) = 1

Solution: M(n) = 3log 2n = nlog 23 ≈ n1.585

1-103Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 103

Strassen’s matrix multiplication
 Strassen observed [1969] that the product of two

matrices can be computed as follows:

C00 C01 A00 A01 B00 B01

= *

C10 C11 A10 A11 B10 B11

M1 + M4 - M5 + M7 M3 + M5

=

M2 + M4 M1 + M3 - M2 + M6

1-104Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 104

Submatrices:
 M1 = (A00 + A11) * (B00 + B11)

 M2 = (A10 + A11) * B00

 M3 = A00 * (B01 - B11)

 M4 = A11 * (B10 - B00)

 M5 = (A00 + A01) * B11

 M6 = (A10 - A00) * (B00 + B01)

 M7 = (A01 - A11) * (B10 + B11)

1-105Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 105

Efficiency of Strassen’s
algorithm
 If n is not a power of 2, matrices can be padded with

zeros

 Number of multiplications: 7

 Number of additions: 18

1-106Design and Analysis of Algorithms – Unit I
Design and Analysis of Algorithms - Unit II 106

Time Analysis

1-107Design and Analysis of Algorithms – Unit IDesign and Analysis of Algorithms - Unit II
107

Standard vs Strassen

N Multiplications Additions

Standard alg. 100 1,000,000 990,000

Strassen’s alg. 100 411,822 2,470,334

Standard alg. 1000 1,000,000,000 999,000,000

Strassen’s alg. 1000 264,280,285 1,579,681,709

Standard alg. 10,000 1012 9.99*1011

Strassen’s alg. 10,000 0.169*1012 1012

108

Feasible Solution vs. Optimal

Solution

 DFS, BFS, hill climbing and best-first

search can be used to solve some

searching problem for searching a feasible

solution.

 However, they cannot be used to solve

the optimization problems for searching an

(the) optimal solution.

109

The branch-and-bound strategy

This strategy can be used to

solve optimization problems

without an exhaustive search in

the average case.

110

Branch-and-bound strategy

 2 mechanisms:

 A mechanism to generate branches when

searching the solution space

 A mechanism to generate a bound so that many

braches can be terminated

111

Branch-and-bound strategy

 It is efficient in the average case because
many branches can be terminated very early.

 Although it is usually very efficient, a very
large tree may be generated in the worst case.

 Many NP-hard problem can be solved by B&B
efficiently in the average case; however, the
worst case time complexity is still exponential.

112

A Multi-Stage Graph Searching Problem.

113

Find the shortest path from V0 to V3

E.G.:A Multi-Stage Graph Searching Problem

114

Solved by branch-and-bound (hill-

climbing with bounds)

115

A feasible solution is found whose cost is equal to 5.
An upper bound of the optimal solution is first found here.

For Minimization Problems

 Usually, LB<UB.

 If LBUB, the expanding node can be terminated.

116

Upper Bound
(for feasible solutions)

Lower Bound
(for expanding nods)

0



Optimal

For Maximization Problems

 Usually, LB<UB.

 If LBUB, the expanding node can be terminated.

117

Lower Bound
(for feasible solutions)

0



Optimal

Upper Bound
(for expanding nods)

The traveling salesperson optimization

problem

 Given a graph, the TSP Optimization

problem is to find a tour, starting from any

vertex, visiting every other vertex and

returning to the starting vertex, with minimal

cost.

 It is NP-hard.

 We try to avoid n! exhaustive search by the

branch-and-bound technique on the average

case. (Recall that O(n!)>O(2n).)

118

The traveling salesperson optimization

problem

 E.g. A Cost Matrix for a Traveling Salesperson Problem.

119

j
i

1 2 3 4 5 6 7

1 ∞ 3 93 13 33 9 57

2 4 ∞ 77 42 21 16 34

3 45 17 ∞ 36 16 28 25

4 39 90 80 ∞ 56 7 91

5 28 46 88 33 ∞ 25 57

6 3 88 18 46 92 ∞ 7

7 44 26 33 27 84 39 ∞

The basic idea

 There is a way to split the solution space

(branch)

 There is a way to predict a lower bound for

a class of solutions. There is also a way to

find a upper bound of an optimal solution. If

the lower bound of a solution exceeds the

upper bound, this solution cannot be

optimal and thus we should terminate the

branching associated with this solution.

120

Splitting

 We split a solution into two groups:

 One group including a particular arc

 The other excluding the arc

 Each splitting incurs a lower bound and

we shall traverse the searching tree with

the “lower” lower bound.

121

The traveling salesperson optimization

problem

 The Cost Matrix for a Traveling Salesperson Problem.

122

j
i

1 2 3 4 5 6 7

1 ∞ 3 93 13 33 9 57

2 4 ∞ 77 42 21 16 34

3 45 17 ∞ 36 16 28 25

4 39 90 80 ∞ 56 7 91

5 28 46 88 33 ∞ 25 57

6 3 88 18 46 92 ∞ 7

7 44 26 33 27 84 39 ∞

Step 1 to reduce: Search each row for the smallest value

from i

to j

The traveling salesperson optimization

problem

 Reduced cost matrix:

A Reduced Cost Matrix.
123

j
i

1 2 3 4 5 6 7

1 ∞ 0 90 10 30 6 54 (-3)

2 0 ∞ 73 38 17 12 30 (-4)

3 29 1 ∞ 20 0 12 9 (-16)

4 32 83 73 ∞ 49 0 84 (-7)

5 3 21 63 8 ∞ 0 32 (-25)

6 0 85 15 43 89 ∞ 4 (-3)

7 18 0 7 1 58 13 ∞ (-26)

reduced:84

Step 2 to reduce: Search each column for the smallest value

The traveling salesperson optimization

problem

Table 6-5 Another Reduced Cost Matrix.

124

j

i

1 2 3 4 5 6 7

1 ∞ 0 83 9 30 6 50

2 0 ∞ 66 37 17 12 26

3 29 1 ∞ 19 0 12 5

4 32 83 66 ∞ 49 0 80

5 3 21 56 7 ∞ 0 28

6 0 85 8 42 89 ∞ 0

7 18 0 0 0 58 13 ∞

(-7) (-1) (-4)

Lower bound

 The total cost of 84+12=96 is subtracted.

Thus, we know the lower bound of

feasible solutions to this TSP problem is

96.

125

The traveling salesperson optimization

problem

 Total cost reduced: 84+7+1+4 = 96 (lower bound)

decision tree:

The Highest Level of a Decision Tree.

 If we use arc 3-5 to split, the difference on the lower
bounds is 17+1 = 18.

126

Heuristic to select an arc to split the

solution space

 If an arc of cost 0 (x) is selected, then

the lower bound is added by 0 (x) when

the arc is included.

 If an arc <i,j> is not included, then the

cost of the second smallest value (y) in

row i and the second smallest value (z)

in column j is added to the lower bound.

 Select the arc with the largest (y+z)-x

127

For the right subtree

(Arc 4-6 is excluded)

We only have to set c4-6 to be .

128128

j

i

1 2 3 4 5 6 7

1 ∞ 0 83 9 30 6 50

2 0 ∞ 66 37 17 12 26

3 29 1 ∞

∞

19 0 12 5

4 32 83 66 ∞ 49 80

5 3 21 56 7 ∞ 0 28

6 0 85 8 42 89 ∞ 0

7 18 0 0 0 58 13 ∞

For the left subtree

(Arc 4-6 is included)

j

i

1 2 3 4 5 7

1 ∞ 0 83 9 30 50

2 0 ∞ 66 37 17 26

3 29 1 ∞ 19 0 5

5 3 21 56 7 ∞ 28

6 0 85 8 ∞ 89 0

7 18 0 0 0 58 ∞

129

A Reduced Cost Matrix if Arc 4-6 is included.

1. 4th row is deleted.

2. 6th column is deleted.

3. We must set c6-4 to be . (The reason will be clear later.)

For the left subtree

 The cost matrix for all solution with arc 4-6:

A Reduced Cost Matrix for that in Table 6-6.

 Total cost reduced: 96+3 = 99 (new lower bound)

130

j

i

1 2 3 4 5 7

1 ∞ 0 83 9 30 50

2 0 ∞ 66 37 17 26

3 29 1 ∞ 19 0 5

5 0 18 53 4 ∞ 25 (-3)

6 0 85 8 ∞ 89 0

7 18 0 0 0 58 ∞

Upper bound

 We follow the best-first search scheme

and can obtain a feasible solution with

cost C.

 C serves as an upper bound of the

optimal solution and many branches

may be terminated if their lower bounds

are equal to or larger than C.

131

Fig 6-26 A Branch-and-Bound Solution of a Traveling Salesperson

Problem.
132

1 2

3

5

6

7
4

Preventing an arc

 In general, if paths i1-i2-…-im and j1-j2-…-jn have

already been included and a path from im to j1 is to

be added, then path from jn to i1 must be

prevented (by assigning the cost of jn to i1 to be )

 For example, if 4-6, 2-1 are included and 1-4 is to

be added, we must prevent 6-2 from being used

by setting c6-2=. If 6-2 is used, there will be a

loop which is forbidden.

133

The 0/1 knapsack problem

 Positive integer P1, P2, …, Pn (profit)

W1, W2, …, Wn (weight)

M (capacity)

134

maximize P Xi i
i

n




1

subject to W X Mi i
i

n





1

 Xi = 0 or 1, i =1, …, n.

The problem is modified:

minimize 


P Xi i
i

n

1

The 0/1 knapsack problem

Fig. 6-27 The Branching Mechanism in the Branch-and-Bound

Strategy to Solve 0/1 Knapsack Problem.

135

How to find the upper bound?

 Ans: by quickly finding a feasible

solution in a greedy manner: starting

from the smallest available i, scanning

towards the largest i’s until M is

exceeded. The upper bound can be

calculated.

136

The 0/1 knapsack problem

 E.g. n = 6, M = 34

 A feasible solution: X1 = 1, X2 = 1, X3 = 0, X4 = 0,

X5 = 0, X6 = 0

-(P1+P2) = -16 (upper bound)

Any solution higher than -16 can not be an optimal solution.

137

i 1 2 3 4 5 6

Pi 6 10 4 5 6 4

Wi 10 19 8 10 12 8

(Pi/Wi  Pi+1/Wi+1)

How to find the lower bound?

 Ans: by relaxing our restriction from Xi = 0 or 1 to

0  Xi  1 (knapsack problem)

Let 


P Xi i
i

n

1

 be an optimal solution for 0/1

knapsack problem and  


P Xi
i

n

i
1

 be an optimal

solution for fractional knapsack problem. Let

Y=


P Xi i
i

n

1

, Y’ =  


P Xi
i

n

i
1

.

 Y’  Y

138

The knapsack problem

 We can use the greedy method to find an optimal solution
for knapsack problem.

 For example, for the state of X1=1 and X2=1, we have

X1 = 1, X2 =1, X3 = (34-6-10)/8=5/8, X4 = 0, X5 = 0, X6 =0

-(P1+P2+5/8P3) = -18.5 (lower bound)

-18 is our lower bound. (We only consider integers, since
the benefits of a 0/1 knapsack problem will be integers.)

139

How to expand the tree?

 By the best-first search scheme

 That is, by expanding the node with the

best lower bound. If two nodes have the

same lower bounds, expand the node

with the lower upper bound.

140

0/1 Knapsack Problem Solved by Branch-and-Bound Strategy 141

 Node 2 is terminated because its lower

bound is equal to the upper bound of

node 14.

 Nodes 16, 18 and others are terminated

because the local lower bound is equal

to the local upper bound.

(lower bound  optimal solution  upper

bound)

142

The A* algorithm

 Used to solve optimization problems.

 Using the best-first strategy.

 If a feasible solution (goal node) is selected to expand, then it is
optimal and we can stop.

 Estimated cost function of a node n : f(n)

f(n) = g(n) + h(n)

g(n): cost from root to node n.

h(n): estimated cost from node n to a goal node.

h*(n): “real” cost from node n to a goal node.

f*(n): “real” cost of node n

h(n)  h*(n)

 f(n) = g(n) + h(n)  g(n)+h*(n) = f*(n) …………. (1)

143

Estimated further cost should never
exceed the real further cost.

Reasoning

 Let t be the selected goal node. We have
f*(t)=f(t)+h(t)=f(t)+0=f(t)…..(2)

 Assume that t is not the optimal node. There must exist
one node, say s, that has been generated but not
selected and that will lead to the optimal node.

 Since we take the best first search strategy, we have f
(t)f(s)……(3).

 We have f*(t)=f(t)f(s)f*(s) by Eqs. (1), (2) and (3),
which means that s is not the node leading to the
optimal node. Contradiction occurs.

 Therefore, t is the optimal node.

144

The A* algorithm

 Stop when the selected node is also a goal node. It
is optimal iff h(n)h*(n)

 E.g.: To find a shortest path from node s to node t

145

The A* algorithm

 Step 1.

146

g(A)=2 h(A)=min{2,3}=2 f(A)=2+2=4

g(B)=4 h(B)=min{2}=2 f(B)=4+2=6

g(C)=3 h(C)=min{2,2}=2 f(C)= 3+2=5

The A* algorithm

 Step 2. Expand A

147

g(D)=2+2=4 h(D)=min{3,1}=1 f(D)=4+1=5

g(E)=2+3=5 h(E)=min{2,2}=2 f(E)=5+2=7

The A* algorithm

 Step 3. Expand C

148

g(F)=3+2=5 h(F)=min{3,1}=1 f(F)=5+1=6

g(G) =3+2=5 h(G)=min{5}=5 f(G) =5+5=10

The A* algorithm

 Step 4. Expand D

149

g(H)=2+2+1=5 h(H)=min{5}=5 f(H)=5+5=10

g(I)=2+2+3=7 h(I)=0 f(I)=7+0=7

The A* algorithm

 Step 5. Expand B

150

g(J)=4+2=6 h(J)=min{5}=5 f(J)=6+5=11

The A* algorithm

 Step 6. Expand F

151

g(K)=3+2+1=6 h(K)=min{5}=5 f(K)=6+5=11

g(L)=3+2+3=8 h(L)=0 f(L)=8+0=8

I is selected to expand.

The A* algorithm stops,

since I is a goal node.

The A* Algorithm

 Can be considered as a special type of

branch-and-bound algorithm.

 When the first feasible solution is found,

all nodes in the heap (priority queue) are

terminated.

 * stands for “real”

 “A* algorithm” stands for

“real good algorithm”

152

Unit III-153

UNIT – III

DYNAMIC PROGRAMMING

Lecturer:

Dhananjay

Unit III-154

Introduction

 Dynamic programming is a technique for
solving problems with overlapping sub-
problems.

 Typically, these sub-problems arise from a
recurrence relating a solution to a given
problem with solutions to its smaller sub-
problems of the same type.

Unit III-155

Introduction

 Rather than solving overlapping sub-problems
again and again,

 dynamic programming suggests solving each of the
smaller sub-problems only once

 and recording the results in a table from which we
can then obtain a solution to the original problem.

Unit III-156

Dynamic Programming

Dynamic Programming is a general algorithm design technique
for solving problems defined by or formulated as recurrences
with overlapping subinstances

• Invented by American mathematician Richard Bellman in the
1950s to solve optimization problems

• “Programming” here means “planning”

• Main idea:
- set up a recurrence relating a solution to a larger instance

to solutions of some smaller instances
- solve smaller instances once
- record solutions in a table
- extract solution to the initial instance from that table

Unit III-157

Example: Fibonacci numbers

• Recall definition of Fibonacci numbers:

F(n) = F(n-1) + F(n-2)

F(0) = 0

F(1) = 1

• Computing the nth Fibonacci number recursively (top-down):

F(n)

F(n-1) + F(n-2)

F(n-2) + F(n-3) F(n-3) + F(n-4)

...

Unit III-158

Example: Fibonacci numbers (cont.)

Computing the nth Fibonacci number using bottom-up iteration and

recording results:

F(0) = 0

F(1) = 1

F(2) = 1+0 = 1

…

F(n-2) =

F(n-1) =

F(n) = F(n-1) + F(n-2)

Efficiency:
- time
- space

 0

 1

 1

 . . .

 F(n-2)

F(n-1)

 F(n)

n
n

What if we solve

it recursively?

Unit III-159

Introduction

 The Fibonacci numbers are the elements of the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . ,

Algorithm fib(n)

if n = 0 or n = 1 return 1

return fib(n − 1) + fib(n − 2)

 The original problem F(n) is defined by F(n-1) and F(n-2)

Unit III-160

Introduction

 Notice that if we call, say, fib(5), we produce a call tree that

calls the function on the same value many different times:

 fib(5)

 fib(4) + fib(3)

 (fib(3) + fib(2)) + (fib(2) + fib(1))

 ((fib(2) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) +

fib(1))

 (((fib(1) + fib(0)) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) +

fib(0)) + fib(1))

 If we try to use recurrence directly to compute the nth

Fibonacci number F(n) , we would have to recompute the
same values of this function many times

Unit III-161

Introduction

 Certain algorithms compute the nth Fibonacci number
without computing all the preceding elements of this
sequence.

 It is typical of an algorithm based on the classic bottom-up
dynamic programming approach,

 A top-down variation of it exploits so-called memory
functions

 The crucial step in designing such an algorithm remains the
same => Deriving a recurrence relating a solution to the
problem’s instance with solutions of its smaller (and
overlapping) subinstances.

Unit III-162

Introduction

 Dynamic programming usually takes one of two
approaches:

 Bottom-up approach: All subproblems that might be

needed are solved in advance and then used to build up
solutions to larger problems. This approach is slightly
better in stack space and number of function calls, but it is
sometimes not intuitive to figure out all the subproblems
needed for solving the given problem.

 Top-down approach: The problem is broken into

subproblems, and these subproblems are solved and the
solutions remembered, in case they need to be solved again.
This is recursion and Memory Function combined together.

Unit III-163

Bottom Up

 In the bottom-up approach we calculate the smaller values
of Fibo first, then build larger values from them. This
method also uses linear (O(n)) time since it contains a loop
that repeats n − 1 times.

 In both these examples, we only calculate fib(2) one time,

and then use it to calculate both fib(4) and fib(3), instead of

computing it every time either of them is evaluated.

Algorithm Fibo(n)

a = 0, b = 1

repeat n − 1 times

c = a + b

a = b

b = c

return b

Unit III-164

Top-Down

 suppose we have a simple map object, m, which maps each
value of Fibo that has already been calculated to its result,
and we modify our function to use it and update it. The
resulting function requires only O(n) time instead of
exponential time:

 This technique of saving values that have already been

calculated is called Memory Function; this is the top-down

approach, since we first break the problem into

subproblems and then calculate and store values

m [0] = 0

m [1] = 1

Algorithm Fibo(n)

if map m does not contain key n

m[n] := Fibo(n − 1) + Fibo(n − 2)

return m[n]

Unit III-165

Examples of DP algorithms

• Computing a binomial coefficient

• Longest common subsequence

• Warshall’s algorithm for transitive closure

• Floyd’s algorithm for all-pairs shortest paths

• Constructing an optimal binary search tree

• Some instances of difficult discrete optimization problems:

- traveling salesman

- knapsack

Unit III-166

Computing a binomial coefficient by DP

Binomial coefficients are coefficients of the binomial formula:

(a + b)n = C(n,0)anb0 + . . . + C(n,k)an-kbk + . . . + C(n,n)a0bn

Recurrence: C(n,k) = C(n-1,k) + C(n-1,k-1) for n > k > 0

C(n,0) = 1, C(n,n) = 1 for n  0

Value of C(n,k) can be computed by filling a table:

0 1 2 . . . k-1 k

0 1

1 1 1

.

.

.

n-1 C(n-1,k-1) C(n-1,k)

n C(n,k)

Unit III-167

Computing C(n,k): pseudocode and analysis

Time efficiency: Θ(nk)

Space efficiency: Θ(nk)

Unit III-168

Warshall’s Algorithm: Transitive Closure

• Computes the transitive closure of a relation

• Alternatively: existence of all nontrivial paths in a digraph

• Example of transitive closure:

3

4
2

1

0 0 1 0

1 0 0 1

0 0 0 0

0 1 0 0

0 0 1 0

1 1 1 1

0 0 0 0

1 1 1 1

3

4
2

1

Unit III-169

Warshall’s Algorithm

Constructs transitive closure T as the last matrix in the sequence

of n-by-n matrices R(0), … , R(k), … , R(n) where

R(k)[i,j] = 1 iff there is nontrivial path from i to j with only the

first k vertices allowed as intermediate

Note that R(0) = A (adjacency matrix), R(n) = T (transitive closure)

3

42

1
3

42

1
3

42

1

3

42

1

R(0)

0 0 1 0

1 0 0 1

0 0 0 0

0 1 0 0

R(1)

0 0 1 0

1 0 1 1

0 0 0 0

0 1 0 0

R(2)

0 0 1 0

1 0 1 1

0 0 0 0

1 1 1 1

R(3)

0 0 1 0

1 0 1 1

0 0 0 0

1 1 1 1

R(4)

0 0 1 0

1 1 1 1

0 0 0 0

1 1 1 1

3

42

1

Unit III-170

Warshall’s Algorithm (recurrence)

On the k-th iteration, the algorithm determines for every pair of

vertices i, j if a path exists from i and j with just vertices 1,…,k

allowed as intermediate

R(k-1)[i,j] (path using just 1 ,…,k-1)

R(k)[i,j] = or

R(k-1)[i,k] and R(k-1)[k,j] (path from i to k

and from k to j

using just 1 ,…,k-1)
i

j

k

{

Initial condition?

Unit III-171

Warshall’s Algorithm (matrix generation)

Recurrence relating elements R(k) to elements of R(k-1) is:

R(k)[i,j] = R(k-1)[i,j] or (R(k-1)[i,k] and R(k-1)[k,j])

It implies the following rules for generating R(k) from R(k-1):

Rule 1 If an element in row i and column j is 1 in R(k-1),

it remains 1 in R(k)

Rule 2 If an element in row i and column j is 0 in R(k-1),

it has to be changed to 1 in R(k) if and only if

the element in its row i and column k and the element

in its column j and row k are both 1’s in R(k-1)

Unit III-172

Warshall’s Algorithm (example)

3

42

1 0 0 1 0

1 0 0 1

0 0 0 0

0 1 0 0

R(0) =

0 0 1 0

1 0 1 1

0 0 0 0

0 1 0 0

R(1) =

0 0 1 0

1 0 1 1

0 0 0 0

1 1 1 1

R(2) =

0 0 1 0

1 0 1 1

0 0 0 0

1 1 1 1

R(3) =

0 0 1 0

1 1 1 1

0 0 0 0

1 1 1 1

R(4) =

Unit III-173

Warshall’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors

(with some care), so it’s Θ(n^2).

Unit III-174

Floyd’s Algorithm: All pairs shortest paths

Problem: In a weighted (di)graph, find shortest paths between

every pair of vertices

Same idea: construct solution through series of matrices D(0), …,

D (n) using increasing subsets of the vertices allowed

as intermediate

Example: 3

4
2

1

4

1

6
1

5

3

0 ∞ 4 ∞

1 0 4 3

∞ ∞ 0 ∞

6 5 1 0

Unit III-175

Floyd’s Algorithm (matrix generation)

On the k-th iteration, the algorithm determines shortest paths

between every pair of vertices i, j that use only vertices among

1,…,k as intermediate

D(k)[i,j] = min {D(k-1)[i,j], D(k-1)[i,k] + D(k-1)[k,j]}

i

j

k

D(k-1)[i,j]

D(k-1)[i,k]

D(k-1)[k,j]

Initial condition?

Unit III-176

Floyd’s Algorithm (example)

0 ∞ 3 ∞

2 0 ∞ ∞

∞ 7 0 1

6 ∞ ∞ 0

D(0) =

0 ∞ 3 ∞

2 0 5 ∞

∞ 7 0 1

6 ∞ 9 0

D(1) =

0 ∞ 3 ∞

2 0 5 ∞

9 7 0 1

6 ∞ 9 0

D(2) =

0 10 3 4

2 0 5 6

9 7 0 1

6 16 9 0

D(3) =

0 10 3 4

2 0 5 6

7 7 0 1

6 16 9 0

D(4) =

3
1

3

2

6 7

4

1 2

Unit III-177

Floyd’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors

Note: Works on graphs with negative edges but without negative cycles.

Shortest paths themselves can be found, too. How?

If D[i,k] + D[k,j] < D[i,j] then P[i,j] k

Since the superscripts k or k-1 make

no difference to D[i,k] and D[k,j].

Unit III-178

Optimal Binary Search Trees

Problem: Given n keys a1 < …< an and probabilities p1, …, pn

searching for them, find a BST with a minimum

average number of comparisons in successful search.

Since total number of BSTs with n nodes is given by

C(2n,n)/(n+1), which grows exponentially, brute force is hopeless.

Example: What is an optimal BST for keys A, B, C, and D with

search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?

D

A

B

C

Average # of comparisons

= 1*0.4 + 2*(0.2+0.3) + 3*0.1

= 1.7

Unit III-179

DP for Optimal BST Problem

Let C[i,j] be minimum average number of comparisons made in

T[i,j], optimal BST for keys ai < …< aj , where 1 ≤ i ≤ j ≤ n.

Consider optimal BST among all BSTs with some ak (i ≤ k ≤ j)

as their root; T[i,j] is the best among them.

a

Optimal

BST for

a , ..., a

Optimal

BST for

a , ..., ai

k

k-1 k+1 j

C[i,j] =

min {pk · 1 +

∑ ps (level as in T[i,k-1] +1) +

∑ ps (level as in T[k+1,j] +1)}

i ≤ k ≤ j

s = i

k-1

s =k+1

j

Unit III-180

goal0

0

C[i,j]

0

1

n+1

0 1 n

p 1

p
2

np

i

j

DP for Optimal BST Problem (cont.)

After simplifications, we obtain the recurrence for C[i,j]:

C[i,j] = min {C[i,k-1] + C[k+1,j]} + ∑ ps for 1 ≤ i ≤ j ≤ n

C[i,i] = pi for 1 ≤ i ≤ j ≤ n
s = i

j

i ≤ k ≤ j

Example: key A B C D

probability 0.1 0.2 0.4 0.3

The tables below are filled diagonal by diagonal: the left one is filled

using the recurrence

C[i,j] = min {C[i,k-1] + C[k+1,j]} + ∑ ps , C[i,i] = pi ;

the right one, for trees’ roots, records k’s values giving the minima

0 1 2 3 4

1 0 .1 .4 1.1 1.7

2 0 .2 .8 1.4

3 0 .4 1.0

4 0 .3

5 0

0 1 2 3 4

1 1 2 3 3

2 2 3 3

3 3 3

4 4

5

i ≤ k ≤ j s = i

j

optimal BST

B

A

C

D

i
j

i
j

Unit III-182

Optimal Binary Search Trees

Unit III-183

Analysis DP for Optimal BST Problem

Time efficiency: Θ(n3) but can be reduced to Θ(n2) by taking

advantage of monotonicity of entries in the

root table, i.e., R[i,j] is always in the range

between R[i,j-1] and R[i+1,j]

Space efficiency: Θ(n2)

Method can be expanded to include unsuccessful searches

Unit III-184

Knapsack Problem by DP

Given n items of

integer weights: w1 w2 … wn

values: v1 v2 … vn

a knapsack of integer capacity W

find most valuable subset of the items that fit into the knapsack

Consider instance defined by first i items and capacity j (j  W).

Let V[i,j] be optimal value of such an instance. Then

max {V[i-1,j], vi + V[i-1,j- wi]} if j- wi  0
V[i,j] =

V[i-1,j] if j- wi < 0

Initial conditions: V[0,j] = 0 and V[i,0] = 0

{

Unit III-185

Knapsack Problem by DP (example)

Example: Knapsack of capacity W = 5

item weight value

1 2 $12

2 1 $10

3 3 $20

4 2 $15 capacity j

0 1 2 3 4 5

0

w1 = 2, v1= 12 1

w2 = 1, v2= 10 2

w3 = 3, v3= 20 3

w4 = 2, v4= 15 4 ?

0 0 0

0 0 12

0 10 12 22 22 22

0 10 12 22 30 32

0 10 15 25 30 37

Backtracing

finds the actual

optimal subset,

i.e. solution.

Unit III-186

Example – Dynamic Programming Table

capacity W = 5

Unit III-187

Example

 Thus, the maximal value is V [4, 5]= $37. We can find the

composition of an optimal subset by tracing back the

computations of this entry in the table.

 Since V [4, 5] is not equal to V [3, 5], item 4 was included in an

optimal solution along with an optimal subset for filling 5 - 2 = 3

remaining units of the knapsack capacity.

capacity W = 5

Unit III-188

Example

 The remaining is V[3,3]

 Here V[3,3] = V[2,3] so item 3 is not included

 V[2,3]  V[1,3] so item 2 is included

capacity W = 5

Unit III-189

Example

 The remaining is V[1,2]

 V[1,2]  V[0,2] so item 1 is included

 The solution is {item 1, item 2, item 4}

 Total weight is 5

 Total value is 37

capacity W = 5

Unit III-190

The Knapsack Problem

 The time efficiency and space efficiency of this algorithm

are both in θ(nW).

 The time needed to find the composition of an optimal

solution is in O(n + W).

Unit III-191

Knapsack Problem by DP (pseudocode)

Algorithm DPKnapsack(w[1..n], v[1..n], W)

var V[0..n,0..W], P[1..n,1..W]: int

for j := 0 to W do

V[0,j] := 0

for i := 0 to n do

V[i,0] := 0

for i := 1 to n do

for j := 1 to W do

if w[i]  j and v[i] + V[i-1,j-w[i]] > V[i-1,j] then

V[i,j] := v[i] + V[i-1,j-w[i]]; P[i,j] := j-w[i]

else

V[i,j] := V[i-1,j]; P[i,j] := j

return V[n,W] and the optimal subset by backtracing

Running time and space:

O(nW).

Unit III-192

Memory Function

 The classic dynamic programming approach, fills a
table with solutions to all smaller subproblems but
each of them is solved only once.

 An unsatisfying aspect of this approach is that
solutions to some of these smaller subproblems are
often not necessary for getting a solution to the
problem given.

Unit III-193

Memory Function

 Since this drawback is not present in the top-down
approach, it is natural to try to combine the
strengths of the top-down and bottom-up
approaches.

 The goal is to get a method that solves only
subproblems that are necessary and does it only
once. Such a method exists; it is based on using
memory functions

Unit III-194

Memory Function

 Initially, all the table’s entries are initialized with a

special “null” symbol to indicate that they have not

yet been calculated.

 Thereafter, whenever a new value needs to be

calculated, the method checks the corresponding

entry in the table first: if this entry is not “null,” it

is simply retrieved from the table;

 otherwise, it is computed by the recursive call

whose result is then recorded in the table.

Unit III-195

Memory Function for solving Knapsack Problem

Unit III-196

Memory Function for solving Knapsack Problem

Unit III-197

Memory Function

 In general, we cannot expect more than a constant-factor

gain in using the memory function method for the

knapsack problem because its time efficiency class is the

same as that of the bottom-up algorithm

 A memory function method may be less space-efficient than

a space efficient version of a bottom-up algorithm.

Unit III-198

Conclusion

 Dynamic programming is a useful technique of solving

certain kind of problems

 When the solution can be recursively described in

terms of partial solutions, we can store these partial

solutions and re-use them as necessary

UNIT-IV

GREEDY ALGORITHM

Lecturer:

DHANANJAY

Optimization problems
• Dynamic programming, but overkill sometime.

• Greedy algorithm:

 Being greedy for local optimization with the hope it

will lead to a global optimal solution, not always, but

in many situations, it works.

 Suppose A set of activities S={a1, a2,…, an}
• They use resources, such as lecture hall, one

lecture at a time
• Each ai, has a start time si, and finish time fi, with

0 si< fi<.
• ai and aj are compatible if [si, fi) and [sj, fj) do not

overlap
 Goal: select maximum-size subset of

mutually compatible activities.
 Start from dynamic programming, then

greedy algorithm, see the relation between
the two.

 Optimal substructure of activity-selection

problem.

• Furthermore, assume that f1 … fn.

• Define Sij={ak: fi sk<fksj}, i.e., all activities starting after

ai finished and ending before aj begins.

• Define two fictitious activities a0 with f0=0 and an+1 with

sn+1=

 So f0 f1 … fn+1.

• Then an optimal solution including ak to Sij contains

within it the optimal solution to Sik and Skj.

 A recursive solution

 Assume c[n+1,n+1] with c[i,j] is the number of activities in a

maximum-size subset of mutually compatible activities in Sij. So

the solution is c[0,n+1]=S0,n+1.

 C[i,j]= 0 if Sij=

max{c[i,k]+c[k,j]+1} if Sij

i<k<j and akSij

 How to implement?

• How to compute the initial cases by checking Sij=?

• How to loop to iteratively compute C[i,j]:

• For i=… for j=… for k=…? This is wrong?

• Need to be similar to MCM:

 For len=… for i=… j=i+len; for k=…

 Theorem 16.1: consider any nonempty

subproblem Sij, and let am be the activity in Sij

with earliest finish time: fm=min{fk : ak  Sij}, then

1. Activity am is used in some maximum-size subset

of mutually compatible activities of Sij.

2. The subproblem Sim is empty, so that choosing am

leaves Smj as the only one that may be nonempty.

 Proof of the theorem:

To solve Sij, choose am in Sij with the

earliest finish time, then solve Smj, (Sim is

empty)

 It is certain that optimal solution to Smj is

in optimal solution to Sij.

No need to solve Smj ahead of Sij.

Subproblem pattern: Si,n+1.

 In DP, optimal solution depends:
• How many subproblems to divide. (2 subproblems)

• How many choices to determine which subproblem to
use. (j-i-1 choices)

 However, the above theorem (16.1) reduces both
significantly
• One subproblem (the other is sure to be empty).

• One choice, i.e., the one with earliest finish time in Sij.

• Moreover, top-down solving, rather than bottom-up in
DP.

• Pattern to the subproblems that we solve, Sm,n+1 from Sij.

• Pattern to the activities that we choose. The activity with
earliest finish time.

• With this local optimal, it is in fact the global optimal.

 Determine the optimal substructure
 Develop the recursive solution
 Prove one of the optimal choices is the greedy

choice yet safe
 Show that all but one of subproblems are empty

after greedy choice
 Develop a recursive algorithm that implements

the greedy strategy
 Convert the recursive algorithm to an iterative

one.

 Knapsack problem
• I1 (v1,w1), I2(v2,w2),…,In(vn,wn).
• Given a weight W at most he can carry,
• Find the items which maximize the values

 Fractional knapsack,
• Greed algorithm, O(nlogn)

 0/1 knapsack.
• DP, O(nW).
• Questions: 0/1 knapsack is an NP-complete problem,

why O(nW) algorithm?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

 A little bit change to the previous activity selection.

For each activity ai such as a talk, there is an

associated attendance atti.
• i.e., given

{a1,a2,…,an}={(s1,f1,att1),(s2,f2,att2),…(sn,fn,attn),

compute its maximum attendance of compatible

activities.

 Use the one similar to the previous activity-selection:
 C[i,j]= 0 if Sij=

max{c[i,k]+c[k,j]+attk} if Sij

i<k<j and akSij

 New analysis (easy to think sort activities):
• For any ai, which is the most recent previous one compatible with it?

 so, define P(i)=max{k: k<i && fk si}.

 compute P(i) is easy. P(1)=0. (for easy coding, a dummy

a0=(0,0,0))

• Also, define T(i): the maximum attendance of all

compatible activities from a1 to ai. T(n) will be an

answer.

• Consider activity ai, two cases:

 ai is contained within the solution, then only aP(i) can be included

too.

 ai is not included, then ai-1 can be included.

• T(i)= 0 if i=0

max{T(i-1),atti+T(P(i))} if i>0

 Coin changes
• 25, 10, 5, 1

• How about 7, 5, 1
 Minimum Spanning Tree

• Prim’s algorithm
 Begin from any node, each time add a new node which is closest to the

existing subtree.

• Kruskal’s algorithm
 Sorting the edges by their weights

 Each time, add the next edge which will not create cycle after added.
 Single source shortest pathes

• Dijkstra’s algorithm
 Huffman coding
 Optimal merge

Disjoint Sets
 Some applications require maintaining a collection

of disjoint sets.

 A Disjoint set S is a collection of sets

where

 Each set has a representative which is a member of
the set (Usually the minimum if the elements are
comparable)

1,...... nS S i j i jS S   

Disjoint Set Operations
 Make-Set(x) – Creates a new set where x is it’s

only element (and therefore it is the
representative of the set). O(1) time.

 Union(x,y) – Replaces by one
of the elements of becomes the

representative of the new set. O(log n) time.

 Find(x) – Returns the representative of the set
containing x O(log n) time

,x yS S
x yS S

x yS S

Analyzing Operations
 We usually analyze a sequence of m operations, of

which n of them are Make_Set operations, and m is the
total of Make_Set, Find, and Union operations

 Each union operations decreases the number of sets in
the data structure, so there can not be more than n-1
Union operations

Applications

 Equivalence Relations (e.g Connected Components)

 Minimal Spanning Trees

Connected Components
 Given a graph G we first preprocess G to maintain a set

of connected components.

CONNECTED_COMPONENTS(G)

 Later a series of queries can be executed to check if
two vertexes are part of the same connected
component

SAME_COMPONENT(U,V)

Connected Components
CONNECTED_COMPONENTS(G)

for each vertex v in V[G]

do MAKE_SET (v)

for each edge (u,v) in E[G]

do if FIND_SET(u) != FIND_SET(v)

then UNION(u,v)

Connected Components
SAME_COMPONENT(u,v)

return FIND_SET(u) ==FIND_SET(v)

Example

f

i

h

c d

a b

e

g

j

(b,d)

f

i

h

c d

a b

e

g

j

(e,g)

f

i

h

c d

a b

e

g

j

(a,c)

f

i

h

c d

a b

e

g

j

(h,i)

f

i

h

c d

a b

e

g

j

(a,b)

f

i

h

c d

a b

e

g

j

(e,f)

f

i

h

c d

a b

e

g

j

(b,c)

f

i

h

c d

a b

e

g

j

Result

f

i

h

c d

a b

e

g

j

Connected Components

 During the execution of CONNECTED-
COMPONENTS on a undirected graph G = (V, E) with
k connected components, how many time is FIND-SET
called? How many times is UNION called? Express you
answers in terms of |V|, |E|, and k.

Solution
 FIND-SET is called 2|E| times. FIND-SET is called

twice on line 4, which is executed once for each
edge in E[G].

 UNION is called |V| - k times. Lines 1 and 2 create
|V| disjoint sets. Each UNION operation decreases
the number of disjoint sets by one. At the end
there are k disjoint sets, so UNION is called |V| - k
times.

Linked List implementation
 We maintain a set of linked list, each list corresponds to a

single set.

 All elements of the set point to the first element which is
the representative

 A pointer to the tail is maintained so elements are inserted
at the end of the list

a b c d

Union with linked lists

5

a b c d

e f g

a b c de f g

+

Analysis
 Using linked list, MAKE_SET and FIND_SET are

constant operations, however UNION requires to
update the representative for at least all the elements
of one set, and therefore is linear in worst case time

 A series of m operations could take

2()m

Analysis
 Let . Let n be the

number of make set operations, then a series of n
MAKE_SET operations, followed by q-1 UNION
operations will take since

 q,n are an order of m, so in total we get

which is an amortized cost of m for each
operations

1 / 2 , / 2 1q m n m n m           

2()m
1

2

1

1 2 3 1
q

i

n q n i n q




        

2()m

Improvement – Weighted
Union
 Always append the shortest list to the longest list.

A series of operations will now cost only

 MAKE_SET and FIND_SET are constant time and
there are m operations.

 For Union, a set will not change it’s representative
more than log(n) times. So each element can be
updated no more than log(n) time, resulting in
nlogn for all union operations

(log)m n n 

Disjoint-Set Forests
 Maintain A collection of trees, each element points

to it’s parent. The root of each tree is the
representative of the set

 We use two strategies for improving running time

 Union by Rank

 Path Compression
c

fba

d

Make Set
 MAKE_SET(x)

p(x)=x

rank(x)=0

x

Find Set
 FIND_SET(d)

if d != p[d]

p[d]= FIND_SET(p[d])

return p[d]

c

fba

d

Union
 UNION(x,y)

link(findSet(x),

findSet(y))

 link(x,y)

if rank(x)>rank(y)

then p(y)=x

else

p(x)=y

if rank(x)=rank(y)

then rank(y)++

c

fba

d

w

x

y

z

c

fba

d

w

x

y

z

Analysis
 In Union we attach a smaller tree to the larger tree,

results in logarithmic depth.

 Path compression can cause a very deep tree to
become very shallow

 Combining both ideas gives us (without proof) a
sequence of m operations in)),((nmmO 

Exercise
 Describe a data structure that supports the following

operations:

 find(x) – returns the representative of x

 union(x,y) – unifies the groups of x and y

 min(x) – returns the minimal element in the group of x

Solution
 We modify the disjoint set data structure so that

we keep a reference to the minimal element in the
group representative.

 The find operation does not change (log(n))

 The union operation is similar to the original
union operation, and the minimal element is the
smallest between the minimal of the two groups

Example
 Executing find(5)

7 1 4 4

52

7

13

4 6

1 2 3 4 5 6 .. N

Parent 4 7 4 4 7 6

min 1 6

Example
 Executing union(4,6)

52

7

13

4 6

1 2 3 4 5 6 .. N

Parent 4 7 4 4 7 4

min 1 1

Exercise
 Describe a data structure that supports the following

operations:

 find(x) – returns the representative of x

 union(x,y) – unifies the groups of x and y

 deUnion() – undo the last union operation

Solution
 We modify the disjoint set data structure by

adding a stack, that keeps the pairs of
representatives that were last merged in the union
operations

 The find operations stays the same, but we can not
use path compression since we don’t want to
change the modify the structure after union
operations

Solution
 The union operation is a regular operation and

involves an addition push (x,y) to the stack

 The deUnion operation is as follows
 (x,y)  s.pop()

 parent(x) x

 parent(y) y

Example
 Example why we can not use path compression.

 Union (8,4)

 Find(2)

 Find(6)

 DeUnion()

1 2 3 4 5 6 7 8 9 10

parent 4 7 7 4 8 1 5 8 1 4

