Set No. 1

IV B.Tech II Semester Regular Examinations, September - 2020 MACHINE LEARNING

(Common to Computer Science and Engineering and Information Technology)
Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B

PART-A (14 Marks)

1.	a)	Define binary Classification.	[2]
	b)	Describe the performance of Multi-class classifier.	[3]
	c)	What is a decision tree?	[2]
	d)	What is Minkowski distance?	[2]
	e)	What is discriminative probabilistic model?	[2]
	f)	What is the representational power of perceptron?	[3]
		$\underline{\mathbf{PART-B}} \ (4x14 = 56 \ Marks)$	
2.	a)	What are the different types of a Machine Learning models?	[7]
	b)	Explain about Feature Construction and Transformation.	[7]
3.	a)	How to handle more than two classes in beyond Binary Classification.	[7]
	b)	Explain the following	
		i. One-versus-one voting.	
		ii. Loss based decoding.	
		iii. Coverage counts as scores.	[7]
1	۵)	Evaloin Dula set for Donking and Drobability estimation	[7]
4.	a)	Explain Rule set for Ranking and Probability estimation.	[7]
	b)	Discuss in detail about Learning Ordered Rule Lists.	[7]
5.	a)	Discuss in detail about Soft Margin SVM.	[7]
	b)	Describe Nearest-Neighbor Classification in detail.	[7]
		10740A 100 100 - 200 100 - 200 100 - 200 100 A	
6.	a)	Write detailed note on Feature Transformations.	[7]
٠.	b)	Explain about normal distribution with the help of sample data.	[7]
	٠,		r, 1
7.	a)	Explain about Principle Component Analysis in detail.	[7]
	b)	Discuss in detail about representation of Neural Networks.	[7]

Code No: R1642053

R16

Set No. 2

${\bf IV~B. Tech~II~Semester~Regular~Examinations,~September~-~2020} \\ {\bf \underline{MACHINE~LEARNING}}$

(Common to Computer Science and Engineering and Information Technology)
Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B

PART-A (14 Marks)

1.	a)b)c)d)e)f)	What is Scoring Classifier? What is unsupervised learning? Define Feature Tree. What is Support Vector Regression? Write a short note on random forests. Write a short note on PCA?		[2] [3] [2] [3] [2] [2]
		$\underline{\mathbf{PART-B}} \ (4x14 = 56 \ Marks)$		
2. b)	,	Explain in detail about geometric model. ain the two uses of features in machine learning.	[7]	[7]
3.	a) b)	 Explain the following i. most general consistent hypothesis. ii. closed concepts in path through the hypothesis Write in detailed note on Regression. 		[7] [7]
4.	,	Explain in detail about ranking and probability estimation tree.	[7]	[7]
b)	Disc	uss about First-Order rule learning in detail.	[7]	
5.	a) b)	Explain about the Least-Squares method? Discuss in detail about Distance Based Clustering. Write its importance in machine learning.		[7]
	data			
b)	Disc	[7] uss about the Normal Distribution and its Geometric interpretations?	[7]	
	PC			
b)	Desc	cribe in detail about neural networks role in machine learning.	[7] [7]	

Code No: 137DV

R16

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year I Semester Examinations,

December - 2019MACHINE LEARNING

(Computer Science and Engineering)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART – A

(25 Marks) List the basic design issues to machine learning. 1.a) [2] b) State version space representation theorem. [3] What is the representational power of perceptrons? [2] c) How to compute expected value and variance of a random variable? d) [3] State Bayes theorem. e) [2] Under what conditions is successful learning possible? f) [3] How to use entropy as evaluation function? [2] g) h) What factors contribute to the popularity of genetic algorithm? [3] What is the essential difference between analytical and inductive learning methods? i) [2] <u>i</u>) What are the limitations of explanation based learning? [3] PART - B

(50 Marks)

2. Which disciplines have their influence on machine learning? Explain with examples.

[10]

OR

- Contrast the hypothesis space search in ID3 and candidate elimination algorithm. 3.a)
 - Illustrate the impact of overfitting in a typical application of decision tree learning.[5+5] b)
- 4. Discuss how a multi-layer network learns using a gradient descent algorithm. [10] OR
- Distinguish between inductive bias and estimation bias. 5.a)
 - Explain the methods for comparing the accuracy of two hypotheses. b) [4+6]
- 6.a) Explain the features of Bayesian learning methods.
- Discuss the relationship between the maximum likelihood hypothesis and the leastsquared error hypothesis. [6+4]

Prove C-exhausting the version space theorem. 7.ab) With suitable example discuss a radial basis function network. [5+5]8. Describe the representation of hypotheses and genetic algorithms used in this. [10] How rules are post pruned? Explain with an example. 9.a) What is Q function? Write an algorithm for learning Q. b) [5+5]Explain an algorithm for regressing a set of literals through a single horn clause. [10] 10. OR Describe the TANGENTPROP algorithm to train a neural network to fit both training 11. values and training derivatives. [10]

