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For Machine Learning Course were commend that students meet the
following prerequisites:

• Basic programmingskills(in Python)

• Algorithm design

• Basics of probability & statistics



Unit–1 
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Unit–4

Unit–5

Introduction, Concept Learning, Decision Tree 

LearningArtificialNeuralNetworks-1,ArtificialNeural 

Networks-2, Evaluating Hypothesis, 

BayesianLearning,Computationallearningtheory, 

Instance Based Learning, 

GeneticAlgorithms,LearningSetsofRules, 

Reinforcement Learning

AnalyticalLearning-1,AnalyticalLearning-2,CombiningInductiveand

Analytical Learning



UNIT-1



Machine Learning Introduction

Ever since computers were invented, we have wondered whether they might

be made to learn.

If we could understand how to program them to learn-to improve

automatically with experience-the impact would be dramatic.

Imagine computers learning from medical records which treatments are most

effective for new diseases

Houseslearningfromexperiencetooptimizeenergycostsbasedontheparticularus

age patterns of their occupants.

Personal software assistants learning the evolving interests of their users in

order to highlight especially relevant stories from the online morning

newspaper



Example of Successful Learning

Learning to recognize spoken words

Learning to drive an autonomous vehicle

Learning to classify new astronomical structures

Learning to play world-class backgammon



• Sometaskscannotbedefinedwell,exceptbyexamples(e.g., 
recognizing people).

• Relationshipsandcorrelationscanbehiddenwithinlargeamountsof 
data.Machine Learning/DataMining maybe able to find these 
relationships.

• Humandesignersoftenproducemachinesthatdonotworkaswellas

desired in the environments in which they are used.

• Theamountofknowledgeavailableaboutcertaintasksmightbetoolarge for

explicit encoding by humans (e.g., medical diagnostic).

• Environmentschangeovertime.

• Newknowledgeabouttasksisconstantlybeingdiscoveredbyhumans.It may 
be difficult to continuously re-designsystems “by hand”.
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• Statistics:Howbesttousesamplesdrawnfromunknownprobabilitydistributionsto help

decidefrom which distributionsomenewsampleisdrawn?

• Brain Models: Non-linear elements with weighted inputs (Artificial

NeuralNetworks)havebeensuggestedassimplemodelsofbiologicalneurons.

• AdaptiveControlTheory:Howtodealwithcontrollingaprocesshavingunknown

parameters that must be estimated during operation?

• Psychology:Howtomodelhumanperformanceonvariouslearningtasks?

• ArtificialIntelligence:Howtowritealgorithmstoacquiretheknowledgehumansare able

to acquire, atleast, as well as humans?

• EvolutionaryModels:Howtomodelcertainaspectsofbiologicalevolutionto 

improve the performance of computer programs?



A computer program is said to learn from experience E
with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured
byP,improveswithexperienceE.



Learningissusedwhen:

• Humanexpertise doesnot exist(navigatingonMars)

• Humansare unabletoexplaintheirexpertise(speech recognition)

• Solution changes intime(routingona computernetwork)

• Solutionneedstobe adapted toparticular cases(userbiometrics)



Definition: A computer program is said to learn from experience E with respect to

someclassoftasksT andperformancemeasureP,ifitsperformance attasksinT,as

measured by P, improves with experience E.

Tohave awell-definedlearning problem,three featuresneedstobeidentified:

1. The classoftasks

2. Themeasureofperformancetobe improved

3. The sourceof experience
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• Checkers is played by two players. Each player begins the game with 12

coloreddiscs.(Onesetofpiecesisblackandtheotherred.)Eachplayerplaceshis or her

pieces on the 12 dark squares closest to him or her. Black moves first. Players

then alternate moves.
• Theboard consistsof64squares,alternatingbetween32darkand 32lightsquares.

• Itispositionedsothateachplayerhasalightsquareontherightsidecornerclosest to him

or her.

• A player wins the game when the opponent cannot make a move. In most cases,

thisisbecausealloftheopponent'spieceshavebeencaptured,butitcouldalsobe because

all of his pieces are blocked in.



• Moves are allowed only on the dark squares, so pieces always move diagonally. 

Single pieces are always limited to forward moves (toward the opponent).

• Apiecemakinganon-capturingmove(notinvolvingajump)maymoveonlyone 

square.
• Apiecemakingacapturingmove(ajump)leapsoveroneoftheopponent'spieces,

landinginastraightdiagonallineontheotherside.Onlyonepiecemaybecaptured in a

single jump; however, multiple jumps are allowed during a single turn.

• When apiece iscaptured, itisremoved fromtheboard.

• Ifaplayerisabletomake acapture,thereisnooption;the jumpmustbemade.

• If morethanone captureis available,the playerisfreetochoosewhichever heor she 

prefers.



• Whenapiecereachesthefurthestrowfromtheplayerwhocontrolsthatpiece,itis 

crownedandbecomesaking.Oneofthepieceswhichhadbeencapturedisplaced on top 

of the king so that it is twice as high as a single piece.

• Kingsarelimitedtomovingdiagonallybutmaymovebothforwardandbackward. 

(Remember that single pieces, i.e. non-kings, are always limited to forward 

moves.)

• Kings may combine jumps in several directions, forward and backward, on the

same turn. Single pieces may shift direction diagonally during a multiple

captureturn, but must always jump forward (toward the opponent).



Acheckerslearning problem:

• TaskT:playingcheckers

• Performancemeasure P:percent ofgames wonagainstopponents

• Training experienceE:playing practicegames against itself

Ahandwritingrecognition learning problem:

• TaskT:recognizingandclassifyinghandwrittenwordswithinimages

• PerformancemeasureP:percentofwordscorrectlyclassified

• TrainingexperienceE:adatabaseofhandwrittenwordswith

given classifications



Arobotdriving learningproblem:

• TaskT:drivingonpublicfour-lanehighwaysusingvisionsensors

• Performance measureP:averagedistancetravelledbeforeanerror(asjudgedby

human overseer)

• TrainingexperienceE:asequence ofimages andsteeringcommands recorded

While observingahumandriver



1. ChoosingtheTrainingExperience

2. ChoosingtheTargetFunction

3. ChoosingaRepresentationfortheTarget Function

4. ChoosingaFunctionApproximationAlgorithm

1. Estimating trainingvalues

2. Adjusting theweights

5. TheFinalDesign



• Thefirstdesignchoiceistochoosethetypeoftrainingexperiencefromwhich the

system will learn.

• Thetypeoftrainingexperienceavailablecanhaveasignificantimpact on

success or failure of the learner.

Therearethreeattributeswhichimpactonsuccessorfailureofthe learner

1. Whetherthetrainingexperienceprovidesdirectorindirectfeedbackregarding the 

choices made by the performance system.
2. Thedegreetowhichthelearnercontrols thesequence oftrainingexamples

3. Howwellitrepresentsthedistributionofexamplesoverwhichthefinal 

system performance mustbe measured.



Forexample,incheckersgame:

• Inlearningto playcheckers,thesystemmightlearnfromdirecttraining examples consisting ofindividual

Checkersboardstates andthecorrectmoveforeach.

• Indirect trainingexamplesconsistingofthe movesequencesand final outcomesofvariousgames played.

• Theinformationaboutthecorrectnessofspecificmovesearlyinthegamemustbeinferredindirectlyfrom the

fact that the game was eventually won or lost.

• Herethelearnerfacesanadditionalproblemof creditassignment,ordeterminingthedegreetowhicheach move in 

the sequence deserves creditor blame for the finaloutcome.

• Creditassignment canbeaparticularlydifficultproblembecausethegamecanbelostevenwhenearly moves

are optimal,if the seare followed later by poor moves.

• Hence,learningfromdirect trainingfeedbackistypically easier thanlearningfromindirectfeedback.



Forexample,incheckersgame:

• The learner might depends on the teacher to select informative board states and to provide the correct move

foreach.

• Alternatively,thelearnermightitselfproposeboardstatesthatitfindsparticularlyconfusingandaskthe teacher for

the correct move.

• The learner may have complete control over both the board states and (indirect) training classifications, as it

does when it learns by playing against itself with no teacher present.

• Noticeinthislastcasethelearnermaychoosebetweenexperimentingwithnovelboardstatesthatithasnotyet 

considered, or honing its skill by playing minor variations of lines of play it currently finds mostpromising.



Learning ismostreliablewhenthe trainingexamplesfollowadistribution similartothatoffuture test

examples.

Forexample,incheckersgame:

• In checkers learning scenario, the performance metric P is the percent of games the system wins in the 

worldtournament.

• If its training experience E consists only of games played against itself, there is an danger that this training

experiencemight not be fully representative of the distribution ofsituations overwhich it will later be tested.

Forexample,thelearnermightneverencountercertaincrucialboardstatesthatareverylikelytobeplayedby the

human checkers champion.

• It is necessary to learn from a distribution of examples that is somewhat different from those on which the

finalsystemwillbeevaluated.Suchsituationsareproblematicbecausemasteryofonedistributionofexamples will

not necessary lead to strong performance over some other distribution.



The next design choice is to determine exactly what type of knowledge will be

learned and how this will be used by the performance program.

• Let’s begin with a checkers-playing program that can generate the legal moves

from any boardstate.
• The program needs only to learn how to choose the best move from among these

legalmoves.Thislearningtaskisrepresentativeofalargeclassoftasksforwhich the

legal moves that define some large search space are known a priori, but for which

the best search strategy is not known.



Given this setting where we must learn to choose among the legal moves, the most 

obviouschoiceforthetypeofinformationtobelearnedisaprogram,orfunction,that 

chooses the best move for any given board state.

1. Let ChooseMovebethetarget functionand thenotationis

ChooseMove:B M

Which indicate that this function accepts as input any board from the set of legal

boardstates Band produces as output somemove from the set of legal moves M.

ChooseMove is an choice for the target function in checkers example, but this

function will turn out to be very difficult to learn given the kind of indirect training

experience available to our system



2. Analternative targetfunction is anevaluationfunction thatassignsa 

numericalscore to any given boardstate 

LetthetargetfunctionVandthenotation

V:B R

Whichdenotethat Vmaps any legalboardstate fromthesetBto somerealvalue

We intend for this target function V to assign higher scores to better board states. If

thesystemcansuccessfullylearnsuchatargetfunctionV,itcaneasilyuseittoselect the best

move from any current board position.



Let usdefinethe targetvalueV(b)foranarbitraryboardstatebinB,asfollows:

4.

1. Ifbisa finalboardstatethat is won,thenV(b)=100

2. Ifbisa finalboard state that islost,thenV(b)=-100

3. Ifb is a finalboard statethat is drawn,thenV(b)=0 

Ifb is a nota finalstatein the game,thenV(b)=V(b'),

Whereb'isthebestfinalboardstatethatcanbeachievedstartingfromband playing 

optimally until the end of the game



Letuschooseasimplerepresentation-foranygivenboardstate,thefunctionwill be 

calculated as a linear combination of the following board features:

XL: the number of black pieces on the 

boardx2: the number of red pieces on the 

boardx3:thenumberofblackkingsonthe 

boardx4: the number of red kings on the 

board

X5:thenumberofblackpiecesthreatenedbyred(i.e.,whichcan be 

captured on red's next turn)

x6: the number ofred pieces threatened byblack



Where,

• w0throughw6arenumericalcoefficients,orweights,tobechosenbythe

learning algorithm.

Learnedvaluesfortheweights w1throughw6will determinetherelative

Importanceofthe variousboardfeaturesindetermining the valueoftheboard

• Theweightw0 willprovide anadditiveconstanttothe boardvalue

•



Partialdesignofacheckerslearningprogram:

• TaskT:playingcheckers

• PerformancemeasureP:percentofgameswonintheworldtournament

• TrainingexperienceE:gamesplayedagainstitself

• Targetfunction:V:Board R

• Targetfunctionrepresentation

The first three items above correspond to the specification of the learning task, 

whereasthefinaltwoitemsconstitutedesignchoicesfortheimplementationof the 

learning program.



• Inordertolearnthetargetfunctionwerequireasetoftrainingexamples,each 

describing a specific board state band the training value Vtrain(b) for b.

• Eachtraining exampleis anorderedpairoftheform(b,Vtrain(b)).

• For instance, the following training example describes a board state b in 

whichblackhaswonthegame(notex2=0indicatesthatredhasnoremaining 

pieces) and for which the target function valueVtrain(b) is therefore +100.

((x1=3,x2=0,x3=1,x4=0,x5=0,x6=0),+100)



2.

1. Derivetrainingexamplesfromtheindirecttrainingexperienceavailableto the 

learner

Adjuststheweightswitobestfitthesetraining examples



[Typehere]

Where,

V̂isthe learner'scurrentapproximation to

VSuccessor(b)denotesthenextboardstatefollowingforwhichitisagainthe program's 

turn to move

Rulefor estimatingtrainingvalues

Vtrain(b)←V̂(Successor(b))



Specifythe learning algorithmforchoosingthe 

training examples {(b, Vtrain (b))}
weights witobest fit theset of

Afirststepistodefinewhat wemeanbythebestfit tothetrainingdata.

• Onecommonapproach istodefinethebest hypothesis,orsetofweights,as that which

minimizes the squared error E between the training values and the values 

predicted by the hypothesis.

• Severalalgorithmsareknownforfindingweightsofalinearfunction that

minimizeE.



Onesuchalgorithmiscalledtheleastmeansquares,orLMStrainingrule.Foreach 

observed training example it adjusts the weights asmall amount in the direction that 

reduces the error on this training example

LMS weightupdate rule:-For each training example

(b,Vtrain(b))UsethecurrentweightstocalculateV̂(b)
Foreachweightwi,updateit as

wi←wi+ƞ(Vtrain(b)-V(b))x ̂ i

T.Rupa Rani ,cse,NRCM



update.Working of weight update

rule

•

• Whenthe error (Vtrain(b)-V(b))isz ̂ ero,no weightsarechanged.

• When (Vtrain(b)-V(b))i ̂spositive(i.e.,whenV(b)i ̂stoolow),theneachweightis increasedinproportiontothevalueofitscorrespondingfeature.Thiswillraisethe value

ofV(b), ̂ reducing the error.

Ifthevalueofsomefeaturexiiszero,thenitsweightisnotalteredregardlessof the 

error, so that the only weights updated are those whose features actually

occur on the training example board.



Thefinaldesignofcheckerslearningsystemcanbedescribedbyfourdistinct program 

modules that represent the central components in many learning systems
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1.The Performance System is the module that must solve the given performance 

taskby using the learned target function(s). 

Ittakesaninstanceofanewproblem(newgame)asinputandproducesatraceofits solution 

(game history) as output.

In checkers game, the strategy used by the Performance System to select its next

move at each step is determined by the learned V̂ evaluation function. Therefore,

weexpect its performance to improve as this evaluation function becomes

increasingly accurate.

2.The Critic takes as input the history or trace of the game and produces as output a 

setoftrainingexamplesofthetargetfunction.Asshowninthediagram,eachtraining 

example in this case corresponds to some game state in the trace, along with an 

estimateVtrain of the target function value for this example.



3.TheGeneralizertakesasinputthetrainingexamplesandproducesan 

output hypothes is that is its estimate of the target function.
It generalizes from the specific training examples, hypothesizing a general

functionthatcoverstheseexamplesandothercasesbeyondthetrainingexamples. Inour 

example, the Generalizer corresponds to the LMS algorithm, and the output 
hypothesis is the functionV̂described bythe learned weightsw0, .. . , W6.

4.TheExperimentGeneratortakesasinputthecurrenthypothesisandoutputsanew 

problem(i.e.,initial board state) forthe Performance Systemto explore.Its roleisto 

pick new practice problems that will maximize the learning rate of the over all 

system.
Inourexample,theExperimentGeneratoralwaysproposesthesameinitialgame board

to begin a new game.





Perspectiveofmachinelearninginvolvessearchingverylarge 

space of possible hypothesis to determine one that

Best fits the observed data and any prior knowledge

heldby learner.



• What algorithms exist for learning general target functions from specific training

examples? In what settings will particular algorithms converge to the desired

function, given sufficient training data?Which algorithms perform best for which

types of problems and representations?

43

• Howmuchtrainingdataissufficient?Whatgeneralboundscanbefound 

theconfidenceinlearnedhypothesestotheamountoftrainingexperienceandthe 

character of the learner's hypothesis space?

torelate

• When and how can prior knowledge held by the learner guide the process of 

generalizingfromexamples?Canpriorknowledgebehelpfulevenwhenitisonly 

approximately correct?



• What is thebest strategyforchoosing a useful next training experience, and how

does the choice of this strategy alter the complexity of the learning problem?

• What is the best way to reduce the learning task to one or more function

approximation problems? Put another way, what specific functions should the

system attempt tolearn? Can this process itself be automated?

• Howcanthelearnerautomaticallyalteritsrepresentationtoimproveitsabilityto 

represent and learn the target function?

44



• Learning involves acquiring general concepts from specific training examples.
Example: People continually learn general concepts or categories such as
"bird,""car,""situationsinwhichIshouldstudymoreinordertopasstheexam,"etc.

• Each such concept can be viewed as describing some subset of objects or events

defined over a larger set

• Alternatively, each concept can be though to fasaBoolean-valued function defined
over this larger set. (Example: A function defined over all animals, whose value is
true for birds and false for other animals).

Conceptlearning-InferringaBoolean-valuedfunctionfromtrainingexamplesof its 
input andoutput



Consider the example task of learning the target concept

"DaysonwhichmyfriendAldoenjoyshisfavoritewatersport."

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

Table-

DescribesasetofDeeexpaakDm,Apsstl.eProdf.,Daeypts.o,fCeSEa,CcahnararEenpggr.Ceoslleegented

byasetofattributes 47



Whathypothes isrepresentation is provided tothelearner?

Let’sconsiderasimplerepresentationinwhicheachhypothesisconsistsofaconjunction of 

constraints on the instance attributes.

Leteachhypothesisbeavectorofsixconstraints,specifyingthevaluesofthesix attributes 

Sky, AirTemp, Humidity,Wind,Water, and Forecast.

Foreachattribute, thehypothesiswill either

• Indicatebya"?'thatanyvalueisacceptableforthis attribute,

• Specifyasingle required value(e.g.,Warm)forthe attribute,or

• Indicatebya"Φ"that novalueis acceptable

48



The hypothesis that PERSON enjoys his favo rite sport only on cold days with

highhumidity (independent of the values of the other attributes) is represented by

theexpression

49

(?, Cold, High,?,?,?)

Themostgeneralhypothesis-thateverydayisapositiveexample-isrepresentedby 

(?,?,?,?,?,?)

The most specific possible hypothesis-that day is a positive example-is

norepresented by



Theset ofitemsover whichtheconcept is definediscalledthesetof

instances,whichwedenotebyX.

Example:Xisthesetofall possibledays,eachrepresentedbytheattributes:Sky, 

AirTemp, Humidity,Wind,Water,and Forecast

Theconceptorfunctiontobelearnediscalledthetargetconcept,whichwedenote by c.

ccan be anyBooleanvalued function defined

overtheinstancesXc:X{O, 1}

Example:The target conceptcorrespondsto thevalueoftheattributeEnjoySport

(i.e.,c(x)=1ifEnjoySport=Yes,andc(x)=0ifEnjoySport=No).

51



• Instancesforwhichc(x)=1arecalledpositiveexamples,ormembersofthe target 

concept.

• Instancesforwhichc(x)=0arecallednegativeexamples,ornon-membersofthe 

target concept.

• Theorderedpair(x,c(x))todescribethetrainingexampleconsistingofthe 

instancex and its target conceptvalue c(x).
• Dtodenotethe set ofavailabletraining examples

• The symbol H to denote the set of all possible hypotheses that the learner

mayconsiderregardingtheidentityofthetargetconcept.Eachhypothesis h in

Hrepresents a Boolean-valued function defined over X

h:X {O,1}

• Thegoal ofthelearneristofindahypothesissuchthath(x)=c(x)forallxin

X.

52



Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

53
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Any hypothesis foundto approximate the target function well over a sufficiently

large set of training examples will also approximate the target function well

overother unobserved examples.

55



• Conceptlearningcanbeviewedasthetaskofsearchingthroughalargespace of

hypotheses implicitly defined bythe hypothesis representation.

• Thegoalofthissearchistofindthehypothesisthatbestfitsthetraining

examples.

Example,theinstancesXandhypothesesHintheEnjoySportlearningtask. The 

attribute Sky has three possible values, and AirTemp,Humidity

,Wind,WaterForecasteachhavetwopossiblevalues,theinstancespaceX contains 

exactly
• 3.2.2.2.2.2=96 Distinctinstances

• 5.4.4.4.4.4=5120syntacticallydistinct hypotheses withinH.

Everyhypothesiscontainingoneormore"Φ"symbolsrepresentstheemptysetof

instances; that is, it classifies every instance as negative.
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• Considerthetwohypotheses

h1= (Sunny,?,?,Strong,?,?)

h2= (Sunny,?,?,?,?,?)

•

•

Considerthesetsofinstancesthatareclassifiedpositivebyhlandbyh2.

h2imposesfewerconstraintsontheinstance, itclassifies more instancesaspositive.

will also be classified positivebySo, any instance classified positive by hl 

h2.Therefore, h2is more generalthan hl.



• Givenhypotheses hjandhk,hjismore-general-thanor-

equaldohkifandonlyifanyinstancethatsatisfieshkalsosatisfieshi

Definition:Let hjandhkbeBoolean-
valuedfunctionsdefinedoverX.Thenhjismoregeneral-than-or-equal-
tohk(writtenhj≥ hk)ifand only if



• Inthe figure, thebox on the

leftrepresentsthesetXofallinstances,

the box on the right theset H ofall

hypotheses.

• Eachhypothesiscorrespondstosomes 

ubsetofX-

thesubsetofinstancesthatitclassifies 

positive.

• The arrows 

hypothesesrepresent 

general

connecting

the more -

-

thanrelation,withthearrowpointingt

owardthelessgeneralhypothesis.

• Notethesubsetofinstancescharacteri 

zedbyh2subsumesthesubset 

characterizedbyhl,henceh2is more-

general–thanh1
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FIND-SAlgorithm

1. InitializehtothemostspecifichypothesisinH

2. Foreachpositivetraininginstancex

Foreachattributeconstraintaiinh 

Iftheconstraintaiissatisfiedbyx 

Thendonothing

Elsereplaceaiinhbythenextmoregeneralconstraintthatissatisfiedby x

3. Outputhypothesish

59



Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

60

ThefirststepofFIND-SistoinitializehtothemostspecifichypothesisinH

h-(Ø,Ø,Ø,Ø,Ø,Ø)



x1=<SunnyWarmNormalStrongWarmSame>,+

Observing the first training example, it is clear that our hypothesis is too specific.
Inparticular, none of the "Ø" constraints in h are satisfied by this example, so each
isreplacedbythe nextmore general constraintthat fitsthe example

h1=<SunnyWarmNormalStrongWarmSame>

Thishisstillveryspecific;itassertsthatallinstancesarenegativeexceptforthesinglepositive

training example

x2=<Sunny,Warm,High,Strong,Warm,Same>,+

The second training example forces the algorithm to further generalize h, this
timesubstituting a "?' in place of any attribute value in h that is not satisfied by the
newexample

h2=<SunnyWarm?StrongWarmSame>

61



x3=<Rainy,Cold,High,Strong,Warm,Change>,-

Uponencounteringthethirdtrainingthealgorithmmakesnochangetoh.TheFIND-
Salgorithm simply ignores everynegative example.

h3=<SunnyWarm?StrongWarmSame>

x4=<SunnyWarmHighStrongCoolChange>,+

Thefourthexampleleadstoafurthergeneralizationofh

h4=<SunnyWarm?Strong??>

62
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ThekeypropertyoftheFIND-Salgorithmis

• FIND-S is guaranteed to output the most specific hypothesis within H that
isconsistentwith thepositive training examples

• FIND-S algorithm’s final hypothesis will also be consistent with the
negativeexamples provided the correct target concept is contained in H, and
provided thetrainingexamples are correct.
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1. Hasthe

learnerconvergedtothecorrecttargetconcept?

65

2. Whypreferthemostspecifichypothesis?

3. Arethetrainingexamplesconsistent?

4. Whatifthereareseveralmaximallyspecificconsistenthypotheses?



Representation

• Definition:AhypothesishisconsistentwithasetoftrainingexamplesDifandonlyifh(x)

=c(x)foreachexample(x,c(x))inD.

Consistent(h,D)(x,c(x)D)h(x)=c(x))

Notedifferencebetweendefinitionsofconsistentandsatisfies

• Anexamplexissaidtosatisfyhypothesishwhenh(x)=1,regardless 
ofwhetherxisapositiveornegativeexampleofthetargetconcept.

• anexamplexissaidtoconsistentwithhypothesishiffh(x)=c(x)
T.Rupa Rani,AssistantProfessor,CSE,NRCM

ThekeyideaintheCANDIDATE-
ELIMINATIONalgorithmistooutputadescriptionofthesetofallhypothesesconsistentwiththetr 
ainingexamples

66
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ArepresentationofthesetofallhypotheseswhichareconsistentwithD

67

Definition: The version space, denoted VSH,Dwith respect to hypothesisspace Hand
training examples D, is the subset of hypotheses from H consistent with thetraining
examplesin D

VSH,D{hH|Consistent(h,D)}
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DeepakD,Asst.Prof.,Dept.ofCSE,CanaraEngg.College

69

TheLIST-THEN-ELIMINATE Algorithm

TheLIST-THEN-ELIMINATEalgorithmfirstinitializestheversionspacetocontainall 
hypotheses in H and then eliminates any hypothesis found inconsistent with 
anytraining example.



Algorithm

1. VersionSpacecalistcontainingeveryhypothesisinH

2. Foreachtrainingexample,(x,c(x)) 

removefromVersionSpaceanyhypothesishforwhichh(x)≠c(x)

3. OutputthelistofhypothesesinVersionSpace

TheLIST-THEN-ELIMINATEAlgorithm

• List-Then-Eliminateworksinprinciple,solongasversionspaceisfinite.

• However,sinceitrequiresexhaustiveenumerationofallhypothesesinpracticeitisnot 
feasible.
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• Theversionspaceisrepresentedbyitsmostgeneralandleastgeneralmembers.

• Thesemembersformgeneralandspecificboundarysetsthatdelimittheversionspace

withinthe partiallyordered hypothesis space.
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• Aversionspacewithitsgeneral 

and specific boundarysets.
• The version space includes

allsix hypotheses shown here,

butcanberepresentedmoresimpl

yby SandG.

• Arrowsindicateinstanceof 

themore-general-than 

relation.Thisistheversion 

spaceforthe 

Enjoysportconceptlearning

• problemandtrainingexamples

describedinbelowtable

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High
Deepak

Strong
D,Asst.Prof

Cool Change Yes
College.,Dept.ofC SE,CanaraEngg.
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G{gH|Consistent(g,D)(g'H)[(g'gg)Consistent(g',D)]}

73

Definition:ThespecificboundaryS,withrespecttohypothesisspaceHandtraining data
D, is the set of minimally general (i.e., maximally specific) members
ofHconsistentwithD.

S{sH|Consistent(s,D)(s'H)[(sgs')Consistent(s',D)]}



Theorem: Let X be an arbitrary set of instances and Let H be a set ofBoolean-valued

hypotheses defined over X. Let c : X →{O, 1} be an arbitrary target conceptdefined

over X, and let D be an arbitrary set of training examples {(x, c(x))). For allX, H,c,

and D such that Sand G are well defined,

74

VSH,D={hH|(sS)(gG)(gghgs)}



ToProve:

1.EveryhsatisfyingtherighthandsideoftheaboveexpressionisinVSH,D

2.EverymemberofVSH,Dsatisfiestheright-handsideoftheexpression

Sketchofproof:

1. letg,h,sbearbitrarymembersofG,H,Srespectivelywithgghgs

By the definition of S, s must be satisfied by all positive examples in D. Because h gs ,h must alsobe

satisfied byall positive examples inD.

BythedefinitionofG,gcannotbesatisfiedbyanynegativeexampleinD,andbecausegghhcannot be satisfied

by any negative example in D. Because h is satisfied by all positive examples in
Dandbynonegativeexamples inD,his consistent with D,and thereforehisa memberofVSH,D

2.ItcanbeprovenbyassumingsomehinVSH,D,thatdoesnotsatisfytheright-

handsideoftheexpression,thenshowingthatthisleadstoaninconsistency
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TheCANDIDATE-ELIMINATIONLearningAlgorithm

76

The CANDIDATE-ELIMINTION algorithm computes the version space
containingall hypotheses from H that are consistent with an observed sequence of
trainingexamples.



Initialize G to the set of maximally general hypotheses in

HInitialize S to the set of maximally specific hypotheses in

HForeachtraining example d, do

• Ifdisapositiveexample

• RemovefromGanyhypothesisinconsistentwithd

• ForeachhypothesissinSthatisnotconsistentwithd

• RemovesfromS

• AddtoSallminimalgeneralizationshofssuchthat

• hisconsistentwithd,andsomememberofGismoregeneralthanh

• RemovefromSanyhypothesisthatismoregeneralthananotherhypothesisinS

• Ifdisanegativeexample

• RemovefromSanyhypothesisinconsistentwithd

• ForeachhypothesisginGthatisnotconsistentwithd

• RemovegfromG

• AddtoGallminimalspecializationshofgsuchthat

• hisconsistentwithd,andsomememberofSismorespecificthanh

• RemovefromGanyhypothesisthatislessgeneralthananotherhypothesisinG
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TheboundarysetsarefirstinitializedtoGoandSo,themostgeneralandmostspecifichypoth 

esesin H.
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S0

G0 ?,?,?,?,?,?

,,,,,



Fortrainingexampled,

Sunny,Warm,Normal,Strong,Warm,Same+

S0

S1

?,?,?,?,?,?

Sunny,Warm,Normal,Strong,Warm,Same
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,,,,.



Fortrainingexampled,

Sunny,Warm,High,Strong,Warm,Same+

S1

S2

?,?,?,?,?,?

Sunny,Warm,?,Strong,Warm,Same
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Fortrainingexampled,

Rainy,Cold,High,Strong,Warm,Change−

?,?,?,?,?,?

Sunny,?,?,?,?,??,Warm,?,?,?,??,?,?,?,?,Same

81

S2,S3

G3

G2



Fortrainingexampled,

Sunny,Warm,High,Strong,CoolChange+

S3

S4

G4

G3

Sunny,Warm,?,Strong,Warm,Same

Sunny,?,?,?,?,??,Warm,?,?,?,??,?,?,?,?,Same
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Sunny,?,?,?,?,??,Warm,?,?,?,?

Sunny,Warm,?,Strong,?,?



The final version space for the EnjoySportconcept learning problem

and
84



CSE,NRCM 84

Thefundamentalquestionsforinductiveinference

• Whatifthetargetconceptisnotcontainedinthehypothesisspace?

• Canweavoidthisdifficultybyusing 

ahypothesisspacethatincludeseverypossiblehypothesis?
• Howdoesthesizeofthishypothesisspaceinfluencetheabilityofthealgorithmtogeneralizet

ounobservedinstances?

• Howdoesthesizeofthehypothesisspaceinfluencethenumberoftrainingexamples

thatmustbeobserved?



PrecedingalgorithmsworkiftargetfunctionisinH

WillgenerallynotworkiftargetfunctionnotinH

Considerfollowingexampleswhichrepresenttargetfunction

“sky=sunnyorsky=cloudy”:
SunnyWarmNormalStrongCoolChange

CloudyWarmNormalStrongCoolChange

RainyWarmNormalStrongCoolChange

85

Y

Y

N

IfapplyCandidateEliminationalgorithmasbefore,endupwithemptyVersionSpaceAfterf

irsttwotrainingexample

S=?WarmNormalStrongCoolChange

Newhypothesisisoverlygeneralanditcoversthethirdnegativetrainingexample!Our



Incompletehypothesisspace

• IfcnotinH,thenconsidergeneralizingrepresentationofHtocontainc

• ThesizeoftheinstancespaceXofdaysdescribedbythesixavailableattributesis 
96.ThenumberofdistinctsubsetsthatcanbedefinedoverasetXcontaining|X| elements(i.e., 
thesizeofthepowersetofX)is2|X|

• Recallthatthereare96instancesinEnjoySport;hencethereare296possiblehypothesesinfullsp 

aceH

• CandothisbyusingfullpropositionalcalculuswithAND,OR,NOT

• HenceHdefinedonlybyconjunctionsofattributesisbiased(containingonly973h’s)

87



• Let us reformulate the Enjoysportlearning task in an unbiased way by defining a 
newhypothesisspaceH'thatcanrepresenteverysubsetofinstances;thatis,letH'correspondtoth 
epowersetofX.

• Onewayto definesuchan 

H'istoallowarbitrarydisjunctions,conjunctions,andnegationsofourearlierhypothes 

es.

Forinstance,thetargetconcept"Sky=SunnyorSky=Cloudy"couldthenbedescribedas

(Sunny,?,?,?,?,?)V(Cloudy,?,?,?,?,?)
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ConsideraconceptlearningalgorithmLforthesetofinstancesX.

89

• LetcbeanarbitraryconceptdefinedoverX

• LetDc={(x,c(x))}beanarbitrarysetoftrainingexamplesofc.

• LetL(xi,Dc)denotetheclassificationassignedtotheinstancexibyLaftertrainingonthedataDc.

• TheinductivebiasofLisany minimalsetofassertionsBsuch

thatforanytargetconceptcandcorrespondingtrainingexamplesDc

(xiX)[(BDcxi)├L(xi,Dc)]



Modelling inductive systems

byequivalentdeductivesy

stems. 

Theinput-

outputbehavioroftheCANDIDA

TE-ELIMINATION

algorithm using a hypothesis space

His identical to that of a

deductivetheoremproverutilizingthe 

assertion"H contains the target

concept." Thisassertion

therefore
is 

called

theinductivebiasofthe 

CANDIDATE-ELIMINATION
algorithm.

.
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characterizinginductivesystems

by theirinductive biasallowsmodellingthembytheirequivalentdeductivesystems.Thisprovidesawayto compareinductive 
systemsaccording to theirpolicies forgeneralizing beyond the observedtrainingdata

DECISIONTREELEARNING



FIGURE:

decision

theconcept

A

tree for

PlayTennis.Anexam 

pleisclassified by 

sortingit through the 

tree 

totheappropriateleaf 

node, then

returningtheclassific

ationassociated with

thisleaf
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• Decision trees classify instances by sorting them down the tree from the root

tosome leaf node, which provides the classificationof the instance.

• Each node in the tree specifies a test of some attribute of the instance, and

eachbranch descending from that node corresponds to one of the possible values

forthisattribute.

• Aninstanceisclassifiedbystartingattherootnodeofthetree,testingtheattribute 

specified by this node, then moving down the tree branch 

correspondingtothevalueoftheattributeinthegivenexample.Thisprocessisthenrepea 

tedforthe subtree rootedat the new node.
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• Decisiontreesrepresentadisjunctionofconjunctionsofconstraintsontheattrib

utevalues of instances.

• Eachpathfromthetreeroottoaleafcorrespondstoaconjunctionofattributetests,an

d the treeitself toa disjunction of these conjunctions

Forexample,

Thedecisiontreeshowninabovefigurecorrespondstothe expression

(Outlook =Sunny 𝖠Humidity = Normal) 

(Outlook=Overcast) 

(Outlook=Rain𝖠Wind=Weak)

5



Decisiontreelearningisgenerallybestsuitedtoproblemswiththefollowingcharacteristics:

1. Instancesarerepresentedbyattribute-valuepairs–Instancesaredescribedbyafixed
set of attributes and their values

2. The target function has discrete output values – The decision tree assigns
aBoolean classification (e.g., yes or no) to each example. Decision tree
methodseasilyextendtolearningfunctions withmorethantwo possibleoutputvalues.

3. Disjunctivedescriptionsmayberequired

6



4. Thetrainingdatamaycontainerrors–Decisiontreelearningmethodsarerobust to

errors, both errors in classifications of the training examples and errorsinthe

attribute values that describe these examples.

5. Thetrainingdatamaycontainmissingattributevalues–Decisiontreemethodscanbe

used evenwhen some training

exampleshaveunknown values

• Decision tree learning has been applied to problems such as learning to

classifymedical patients by their disease, equipment malfunctions by their cause,

andloan applicants by their likelihood ofdefaulting on payments.

• Suchproblems,inwhichthetaskistoclassifyexamplesintooneofadiscrete 

setofpossible categories, are often referred toasclassification problems.
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LEARNING

8

• Mostalgorithmsthathavebeendevelopedforlearningdecisiontreesarevariations on a 
core algorithm that employs a top-down, greedy search through 
thespaceofpossibledecisiontrees.ThisapproachisexemplifiedbytheID3algorithmand 
itssuccessor C4.5



• ID3standsforIterativeDichotomiser3

• ID3isaprecursortotheC4.5Algorithm.

• TheID3algorithmwasinventedbyRossQuinlanin1975

• Usedtogenerateadecisiontreefromagivendatasetbyemployingatop-

down,greedysearch, to test each attribute at every nodeof thetree.

• Theresultingtreeisusedtoclassifyfuturesamples.
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ID3(Examples,Target_attribute,Attributes)

Examples are the training examples. Target_attribute is the attribute whose value is tobe predictedby

the tree. Attributes is a list of other attributes that may be tested by the learned decision

tree.Returnsadecisiontree that correctlyclassifies thegiven Examples.

• CreateaRootnodeforthetree

• IfallExamplesarepositive,Returnthesingle-nodetreeRoot,withlabel=+

• IfallExamplesarenegative,Returnthesingle-nodetreeRoot,withlabel=-

• IfAttributesisempty,Returnthesingle-

nodetreeRoot,withlabel=mostcommonvalueofTarget_attributeinExamples

10



• OtherwiseBegin

• A←theattributefromAttributesthatbest*classifiesExamples

• ThedecisionattributeforRoot←A

• Foreachpossiblevalue,vi,ofA,

11

•

•

•

AddanewtreebranchbelowRoot,correspondingtothetestA=vi 

LetExamplesvi,bethesubsetofExamplesthathavevalueviforA 

IfExamplesvi,isempty

• Thenbelowthisnewbranchaddaleafnodewithlabel=mostcommonvalueofTarget_attri

buteinExamples

• Elsebelowthisnewbranchaddthesubtree

ID3(Examplesvi,Targe_tattribute,Attributes–{A}))

• End

• ReturnRoot

*Thebestattributeistheonewithhighestinformationgain



• ThecentralchoiceintheID3algorithmisselectingwhichattributetotestat 
eachnode in thetree.

• Astatisticalpropertycalledinformationgainthatmeasureshowwellagivenattributese

paratesthetraining examples accordingto theirtargetclassification.

• ID3usesinformationgainmeasuretoselectamongthecandidateattributesateach

step while growingthe tree.

12



• Todefineinformationgain,webeginbydefiningameasurecalledentropy.

Entropymeasurestheimpurityofacollectionofexamples.

• GivenacollectionS,containingpositiveandnegativeexamplesofsometargetconce 
pt,theentropy of Srelative to this Booleanclassificationis

Where,

p+istheproportionofpositiveexamplesinS

p-istheproportionofnegativeexamplesinS.

13



Example:Entropy

• Suppose S is a collection of 14 examples of some boolean concept, including
9positive and 5 negative examples. Then the entropy of S relative to this
booleanclassificationis

14



• Theentropyis0ifallmembersofSbelongtothesameclass

• Theentropyis1whenthecollectioncontainsanequalnumberofpositiveandnegativ 
e examples

• Ifthecollectioncontainsunequalnumbersofpositiveandnegativeexamples,theentro 
pyis between 0 and 1

15
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• Informationgain,istheexpectedreductioninentropycausedbypartitioning
theexamplesaccording tothis attribute.

• Theinformationgain,Gain(S,A)ofanattributeA,relativetoacollectionofexamplesS,

is defined as
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Example:Informationgain

18

Let,Values(Wind)={Weak,Strong}

S

SWeak

SStrong

=[9+,5−]

=[6+,2−]

=[3+,3−]

InformationgainofattributeWind:

Gain(S,Wind)=Entropy(S)−8/14Entropy(SWeak)−6/14Entropy(SStrong)

=0.94–(8/14)*0.811–(6/14)*1.00

=0.048



• ToillustratetheoperationofID3,considerthelearningtask 

representedbythetrainingexamples of below table.

• HerethetargetattributePlayTennis,which canhave valuesyes 

ornofordifferentdays.

• Considerthefirststepthroughthealgorithm,inwhichthetopmostnodeofthedecision 

treeis created.
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Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

20



Theinformationgainvaluesforallfourattributesare

• Gain(S,Outlook)

• Gain(S,Humidity)

• Gain(S,Wind)

22

=0.246

=0.151

=0.048

Gain(S,Temperature)• =0.029

• Accordingtotheinformationgainmeasure,theOutlookattributeprovidesthebest 

prediction of the target attribute, PlayTennis, over the training 

examples.Therefore,Outlookisselectedasthedecisionattributefortherootnode, 

andbranchesarecreatedbelowtherootforeachofitspossiblevaluesi.e.,



DeepakD,Asst.Prof.,Dept.ofCSE,CanaraEngg.College
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SRain={D4,D5,D6,D10,D14}

Gain(SRain,Humidity)=0.970–(2/5)1.0–(3/5)0.917=0.019

Gain(SRain,Temperature)=0.970–(0/5)0.0–(3/5)0.918–(2/5)1.0=0.019 

Gain(SRain,Wind)=0.970–(3/5)0.0–(2/5)0.0=0.970





• ID3 can be characterized as searching a space of hypotheses for one that fits
thetraining examples.

• ThehypothesisspacesearchedbyID3isthesetofpossibledecisiontrees.

• ID3 performs a simple-to complex, hill-climbing search through this 
hypothesisspace,beginningwiththeemptytree,thenconsideringprogressivelymoreela 
boratehypothesesinsearchofadecisiontreethatcorrectlyclassifiesthetraining data

27



Figure:

• HypothesisspacesearchbyID3.

• ID3searchesthroughthespaceofpossible 

decision trees from simplest 

toincreasinglycomplex,guidedbytheinfo 

rmationgain heuristic
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1. ID3's hypothesis space of all deision trees is a complete space of finite discrete-
valued functions, relative to the available attributes. Because every finite discrete-
valuedfunction can be represented by some decision tree

• ID3avoidsoneofthemajorrisksofmethodsthatsearchincompletehypothesisspaces

:thatthehypothesisspacemightnotcontainthetargetfunction.
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2. ID3maintainsonlyasinglecurrenthypothesisasitsearchesthroughthespaceof 
decision trees.

Forexample,withtheearlierversionspacecandidateeliminationmethod,whichmaint
ains the set of all hypotheses consistent with the available trainingexamples.

Bydeterminingonlyasinglehypothesis,ID3losesthecapabilitiesthatfollowfromexplici
tlyrepresenting allconsistenthypotheses.

For example, it does not have the ability to determine how many
alternativedecisiontreesareconsistentwiththeavailabletrainingdata,orto pose

newinstancequeriesthat

optimallyresolveamongthesecompetinghypotheses

30



3. ID3 in its pure form performs no backtracking in its search. Once it selects
anattribute to test at a particular level in the tree, it never backtracks to reconsider
thischoice.

• In the case of ID3, a locally optimal solution corresponds to the decision tree
itselects along the single search path it explores. However, this locally
optimalsolution may be less desirable than trees that would have been encountered
along adifferentbranch of the search.

4. ID3usesalltrainingexamplesateachstepinthesearchtomakestatisticallybaseddecis

ions regarding how to refineits current hypothesis.

• Oneadvantageofusingstatisticalpropertiesofalltheexamplesisthattheresultingsearc

h ismuch less sensitiveto errorsinindividualtraining examples.

• ID3canbeeasilyextendedtohandlenoisytrainingdataby 
modifyingitsterminationcriteriontoaccepthypotheses 
thatimperfectlyfitthetrainingdata.
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Inductive bias is the set of assumptions that, together with the training 
data,deductivelyjustifytheclassificationsassignedbythelearnertofutureinstances

32

Givenacollectionoftrainingexamples,therearetypicallymanydecisiontreesconsistent 
with theseexamples.Which ofthese decisiontreesdoes ID3choose?

ID3searchstrategy

(a) selectsinfavourofshortertreesoverlongerones

(b) selectstreesthatplacetheattributeswith highestinformationgainclosesttotheroot.



ApproximateinductivebiasofID3:Shortertreesarepreferredoverlargertrees

33

• Consideranalgorithmthatbeginswiththeemptytreeandsearchesbreadthfirst

throughprogressivelymorecomplextrees.

• Firstconsideringalltreesofdepth1,thenalltreesofdepth2,etc.

• Once itfinds a decision tree consistent with thetraining data, it returns 
thesmallestconsistenttreeatthatsearchdepth(e.g.,thetreewiththefewestnodes).

• Letuscallthisbreadth-firstsearchalgorithmBFS-ID3.

• BFS-ID3findsashortestdecisiontreeandthusexhibitsthebias"shortertrees 
arepreferredover longer trees.



• ID3 can be viewed as an efficient approximation to BFS-ID3, using a
greedyheuristic search to attempt to find the shortest tree without conducting the
entirebreadth-firstsearchthrough thehypothesis space.

• Because ID3 uses the information gain heuristic and a hill climbing strategy,
itexhibitsa more complexbiasthan BFS-ID3.

• In particular, it does not always find the shortest consistent tree, and it is biased

tofavourtreesthat place attributeswithhigh informationgain closest tothe root.
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DifferencebetweenthetypesofinductivebiasexhibitedbyID3andbytheCANDIDATE-

ELIMINATIONAlgorithm.

ID3

• ID3searchesacompletehypothesisspace

• Itsearchesincompletelythroughthisspace,fromsimpletocomplexhypotheses,untilitstermin

ation condition ismet

• Itsinductivebiasissolelyaconsequenceoftheorderingofhypothesesbyitssearchstrategy.

Itshypothesisspace introducesno additional bias

CANDIDATE-ELIMINATIONAlgorithm

• TheversionspaceCANDIDATE-

ELIMINATIONAlgorithmsearchesanincompletehypothesisspace

• Itsearchesthisspacecompletely,findingeveryhypothesisconsistentwiththetrainingdata.

• Its inductive bias is solely a consequence of the expressive power of its

hypothesisrepresentation.Its search strategy introducesno additionalbias
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• The inductive bias of ID3 is a preference for certain hypotheses over others
(e.g.,preference for shorter hypotheses over larger hypotheses), with no hard
restrictiononthehypothesesthatcanbeeventuallyenumerated.Thisformofbiasis called
apreferencebiasor a search bias.

• The bias of the CANDIDATE ELIMINATION algorithm is in the form of
acategorical restriction on the set of hypotheses considered. This form of bias
istypicallycalled arestriction biasor alanguage bias.
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• A preference bias is more desirable than a restriction bias, because it allows
thelearner to work within a complete hypothesis space that is assured to contain
theunknown target function.

• In contrast, a restriction bias that strictly limits the set of potential hypotheses
isgenerally less desirable, because it introduces thepossibilityofexcluding
theunknown target function altogether.
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Occam's razor: is the problem-solving principle that the simplest solution tends to
bethe right one. When presented with competing hypotheses to solve a problem,
oneshouldselect the solution with the fewest assumptions.

38

Occam'srazor:“Preferthesimplesthypothesisthatfitsthedata”.



Argumentinfavour:

Fewershorthypothesesthanlongones:

• Shorthypothesesfitsthetrainingdatawhicharelesslikelytobecoincident

• Longerhypothesesfitsthetrainingdatamightbecoincident. 

Manycomplexhypothesesthatfitthecurrenttrainingdatabutfailtogeneralizecorrec

tly tosubsequent data.
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Argumentopposed:

• There are few small trees, and our priori chance of finding one consistent with
anarbitrary set of data is therefore small. The difficulty here is that there are
verymanysmallsetsofhypothesesthatonecandefinebutunderstoodbyfewerlearner.

• The size of a hypothesis is determined by the representation used internally by 
thelearner.Occam'srazorwillproducetwodifferenthypothesesfromthesametrainingex 
ampleswhenitisappliedbytwolearners,bothjustifyingtheircontradictory conclusions 
by Occam's razor. On this basis we might be tempted torejectOccam's razor 
altogether.
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1. AvoidingOverfittingtheData 

Reduced error 

pruningRulepost-pruning

2. IncorporatingContinuous-ValuedAttributes

3. AlternativeMeasuresforSelectingAttributes

4. HandlingTrainingExampleswithMissingAttributeValues

5. HandlingAttributeswithDifferingCosts
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• The ID3 algorithm grows each branch of the tree just deeply enough to
perfectlyclassify the training examples but it can lead to difficulties when there is
noise inthe data, or when the number of training examples is too small to produce
arepresentative sample of the true target function. This algorithm can produce
treesthatoverfitthe training examples.

• Definition-Overfit:GivenahypothesisspaceH,ahypothesish∈Hissaidtooverfit the 
training data if there exists some alternative hypothesis h'∈H, 
suchthathhassmallererrorthanh'overthetrainingexamples,buth'hasasmallererrorthan 
hover the entire distribution of instances.

42



• Thebelowfigureillustratestheimpactofoverfittinginatypicalapplicationofdecisiontreelearnin 

g.

• Thehorizontalaxisofthis 
plotindicatesthetotalnumberofnodesinthedecisiontree,asthetreeisbeingconstructed.Theverticalaxisindicates 
theaccuracy ofpredictionsmadebythe tree.

• Thesolidlineshowstheaccuracyofthedecisiontreeoverthetrainingexamples.Thebrokenlineshowsaccuracymeas

uredoveranindependentsetoftestexample

• Theaccuracyofthetreeoverthetrainingexamplesincreasesmonotonicallyasthetreeisgrown.The

accuracymeasuredovertheindependenttestexamplesfirstincreases,thendecreases.
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Howcanitbepossiblefortreehtofitthetrainingexamplesbetterthanh',butforittoperformmorepoorl

y over subsequentexamples?

1. Overfittingcanoccurwhenthetrainingexamplescontainrandomerrorsornoise

2. Whensmallnumbersofexamplesareassociatedwithleafnodes.

NoisyTrainingExample

Example15:<Sunny,Hot,Normal,Strong,->

• Exampleisnoisybecausethecorrectlabelis+

• Previouslyconstructedtreemisclassifiesit
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Criterionusedtodeterminethecorrectfinaltreesize

• Useaseparatesetofexamples,distinctfromthetrainingexamples,toevaluatetheutilityof
post- pruningnodes from the tree

• Usealltheavailabledatafortraining,butapplyastatisticaltesttoestimatewhetherexpandi
ng pruning) a particular node is likely to produce an improvement beyond
thetrainingset

• Usemeasureofthecomplexityforencodingthetrainingexamplesandthedecisiontree,h
alting growth of the tree when this encoding size is minimized. This
approach is theMinimumDescription Length

MDL–

Minimize:size(tree)+size(misclassifications(tree))

45
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• Reduced-error pruning, is to consider each of the decision nodes in the tree to
becandidates for pruning

• Pruning a decision node consists of removing the subtree rooted at that
node,making it a leaf node, and assigning it the most common classification of
thetrainingexamples affiliated with that node

• Nodes are removed only if the resulting pruned tree performs no worse than-

theoriginalover the validation set.

• Reduced error pruning has the effect that any leaf node added due to 
coincidentalregularitiesinthetrainingsetislikelytobeprunedbecausethesesamecoinci 
dencesare unlikelyto occur inthe validation set
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Theimpactofreduced-errorpruningontheaccuracyofthedecisiontreeisillustratedinbelowfigure

• The additional line in figure shows accuracy over the test examples as the tree is pruned.
Whenpruning begins, the tree is at its maximum size and lowest accuracy over the test set. As
pruningproceeds,the numberofnodes isreduced andaccuracy overthetestset increases.

• The available data has been split into three subsets: the training examples, the validation
examplesused for pruning the tree, and a set of test examples used to provide an unbiased estimate
ofaccuracyoverfutureunseen examples.Theplotshowsaccuracyoverthetrainingandtestsets.
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'

Becausetheestimatorisarandomvariableitcanbecharacterisedbyt

heprobability distributionthat governs its value.

' Statisticaltheoryprovidesabasisforestimatingthetrueerror

(errorDh )ofhypothesish,basedonitsobservederror(errorSh) 

overasampleSofdata.

' In general, the problem of estimating confidence intervals 

isapproachedbyidentifyingtheparametertobeestimated(errorDh)and 

anestimator(errorSh)forthisquantity.

unbiasedestima2tor,theobservedvalueoftheestimatorislikelyto 

vary fromone experimentto another.



The varianceofthedistributiongoverning theestiamt

estimateislikely to orcharacteriseshowwidelythis
'

Confidenceintervalscanthenbecalculatedbydeterminingthein 

terval that containsthe desired probability mass under

thisdistribution.

'Acause ofestimationerroristhevarianceintheestimate.Evenwithan
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