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Prerequisites

For Machine Learning Course were commend that students meet the
following prerequisites:

« Basic programmingskills(in Python)
« Algorithm design

« Basics of probability & statistics
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Unit-1
Unit-2

Unit-3

Unit—+4

Unit-5

Content

Introduction, Concept Learning, Decision Tree
LearningArtificialNeuralNetworks-1,ArtificialNeural
Networks-2, Evaluating Hypothesis,
BayesianLearning,Computationallearningtheory,
Instance Based Learning,
GeneticAlgorithms,LearningSetsofRules,
Reinforcement Learning

AnalyticalLearning-1,AnalyticalLearning-2,CombiningInductiveand
Analytical Learning
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Machine Learning Introduction

Ever since computers were invented, we have wondered whether they might
be made to learn.

If we could understand how to program them to learn-to improve
automatically with experience-the impact would be dramatic.

Imagine computers learning from medical records which treatments are most
effective for new diseases

Houseslearningfromexperiencetooptimizeenergycostsbasedontheparticularus
age patterns of their occupants.

Personal software assistants learning the evolving interests of their users in

. Order to highlight especially relevant stories from the online morning
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Example of Successful Learning

] Learning to recognize spoken words

] Learning to drive an autonomous vehicle

1 Learning to classify new astronomical structures
] Learning to play world-class backgammon




WhyisMachinelLearninglmportant?

 Sometaskscannotbedefinedwell,exceptbyexamples(e.g.,
recognizing people).

* Relationshipsandcorrelationscanbehiddenwithinlargeamountsof
data.Machine Learning/DataMining maybe able to find these
relationships.

« Humandesignersoftenproducemachinesthatdonotworkaswellas
desired in the environments in which they are used.

« Theamountofknowledgeavailableaboutcertaintasksmightbetoolarge for
explicit encoding by humans (e.g., medical diagnostic).
« Environmentschangeovertime.

* Newknowledgeabouttasksisconstantlybeingdiscoveredbyhumans.It may
be difficult to continuously re-designsystems “by hand”.

___T.Aparna,AssistantProfessor,CSE,NRCM




AreasofinfluenceforMachinelLearning

Statistics:Howbesttousesamplesdrawnfromunknownprobabilitydistributionsto help
decidefrom which distributionsomenewsampleisdrawn?

Brain Models: Non-linear elements with weighted inputs (Artificial
NeuralNetworks)havebeensuggestedassimplemodelsofbiologicalneurons.

AdaptiveControlTheory:Howtodealwithcontrollingaprocesshavingunknown
parameters that must be estimated during operation?

Psychology:Howtomodelhumanperformanceonvariouslearningtasks?

ArtificialIntelligence:Howtowritealgorithmstoacquiretheknowledgehumansare able
to acquire, atleast, as well as humans?

EvolutionaryModels:Howtomodelcertainaspectsofbiologicalevolutionto
Improve the performance of computer programs?
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MachinelLearning:ADefinition

A computer program Is said to learn from experience E
with respect to some class of tasks T and performance

measure P, If its performance at tasks in T, as measured
byP,improveswithexperienceE.




Why“Learn”?

Learningissusedwhen:
« Humanexpertise doesnot exist(navigatingonMars)
« Humansare unabletoexplaintheirexpertise(speech recognition)
« Solution changes intime(routingona computernetwork)
« Solutionneedstobe adapted toparticular cases(userbiometrics)




Well-PosedLearningProblem

someclassoftasksT
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Definition: A computer program Is said to learn from experience E with respect to

andperformancemeasureP,ifitsperformance

attasksinT,as
measured by P, improves with experience E.

Tohave awell-definedlearning problem,three featuresneedstobeidentified:
1. The classoftasks

2. Themeasureofperformancetobe improved
3. The sourceof experience
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GameBasics

Checkers iIs played by two players. Each player begins the game with 12
coloreddiscs.(Onesetofpiecesisblackandtheotherred.)Eachplayerplaceshis or her
pieces on the 12 dark squares closest to him or her. Black moves first. Players

then alternate moves.
Theboard consistsof64squares,alternatingbetween32darkand 32lightsquares.

Itispositionedsothateachplayerhasalightsquareontherightsidecornerclosest to him
or her.

A player wins the game when the opponent cannot make a move. In most cases,
thisisbecausealloftheopponent'spieceshavebeencaptured,butitcouldalsobe because
all of his pieces are blocked in.




RulesoftheGame _NREM

Moves are allowed only on the dark squares, so pieces always move diagonally.
Single pieces are always limited to forward moves (toward the opponent).
Apiecemakinganon-capturingmove(notinvolvingajump)maymoveonlyone

square.
Apiecemakingacapturingmove(ajump)leapsoveroneoftheopponent'spieces,

landinginastraightdiagonallineontheotherside.Onlyonepiecemaybecaptured In a
single jump; however, multiple jumps are allowed during a single turn.

When apiece iscaptured, itisremoved fromtheboard.

Ifaplayerisabletomake acapture,thereisnooption;the jumpmustbemade.

If morethanone captureis available,the playerisfreetochoosewhichever heor she
prefers.




RulesoftheGameCont. S

* Whenapiecereachesthefurthestrowfromtheplayerwhocontrolsthatpiece,itis
crownedandbecomesaking.Oneofthepieceswhichhadbeencapturedisplaced on top
of the king so that it is twice as high as a single piece.

 Kingsarelimitedtomovingdiagonallybutmaymovebothforwardandbackward.
(Remember that single pieces, i.e. non-kings, are always limited to forward
moves.)

« Kings may combine jumps in several directions, forward and backward, on the
same turn. Single pieces may shift direction diagonally during a multiple
captureturn, but must always jump forward (toward the opponent).




Well-DefinedLearningProblem

Acheckerslearning problem:

e TaskT:playingcheckers

e Performancemeasure P:percent ofgames wonagainstopponents
e Training experienceE:playing practicegames against itself

Ahandwritingrecognition learning problem:

e TaskT:recognizingandclassifyinghandwrittenwordswithinimages
e PerformancemeasureP:percentofwordscorrectlyclassified

e TrainingexperienceE:adatabaseofhandwrittenwordswith
given classifications

5

g I,
g L
2 @
: @ e
Wt



Arobotdriving learningproblem:

e TaskT:drivingonpublicfour-lanehighwaysusingvisionsensors

o Performance measureP:averagedistancetravelledbeforeanerror(asjudgedby
human overseer)

e TrainingexperienceE:asequence ofimages andsteeringcommands recorded
While observingahumandriver




DesigningalearningSystem

1. ChoosingtheTrainingExperience
2. ChoosingtheTargetFunction
3. ChoosingaRepresentationfortheTarget Function
4. ChoosingaFunctionApproximationAlgorithm
1. Estimating trainingvalues
2. Adjusting theweights
5. TheFinalDesign




1.ChoosingtheTrainingExperience

 Thefirstdesignchoiceistochoosethetypeoftrainingexperiencefromwhich the
system will learn.

» Thetypeoftrainingexperienceavailablecanhaveasignificantimpact on
success or failure of the learner.

Therearethreeattributeswhichimpactonsuccessorfailureofthe learner

1. Whetherthetrainingexperienceprovidesdirectorindirectfeedbackregarding the
choices made by the performance system.

2. Thedegreetowhichthelearnercontrols thesequence oftrainingexamples

3. Howwellitrepresentsthedistributionofexamplesoverwhichthefinal
system performance mustbe measured.
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1. Whetherthetrainingexperienceprovidesdirectorindirectfeedbackregarding the choices madeby th”
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performance system = o

Forexample,incheckersgame:
 Inlearningto playcheckers,thesystemmightlearnfromdirecttraining examples consisting ofindividual
Checkersboardstates andthecorrectmoveforeach.

 Indirect trainingexamplesconsistingofthe movesequencesand final outcomesofvariousgames played.

« Theinformationaboutthecorrectnessofspecificmovesearlyinthegamemustbeinferredindirectlyfrom the
fact that the game was eventually won or lost.

» Herethelearnerfacesanadditionalproblemof creditassignment,ordeterminingthedegreetowhicheach move in
the sequence deserves creditor blame for the finaloutcome.

« Creditassignment canbeaparticularlydifficultproblembecausethegamecanbelostevenwhenearly moves
are optimal,if the seare followed later by poor moves.

» Hence,learningfromdirect trainingfeedbackistypically easier thanlearningfromindirectfeedback.
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2. Asecond important attribute of the training experience is the degree to which the learner controls EO,’ -
the sequence of training examples NRCM

your roots 1o success

Forexample,incheckersgame:
« The learner might depends on the teacher to select informative board states and to provide the correct move
foreach.

 Alternatively,thelearnermightitselfproposeboardstatesthatitfindsparticularlyconfusingandaskthe teacher for
the correct move.

» The learner may have complete control over both the board states and (indirect) training classifications, as it
does when it learns by playing against itself with no teacher present.

 Noticeinthislastcasethelearnermaychoosebetweenexperimentingwithnovelboardstatesthatithasnotyet
considered, or honing its skill by playing minor variations of lines of play it currently finds mostpromising.




3. A third attribute of the training experience is how well it represents the NRCM

distributionofexamplesoverwhichthefinalsystemperformancemustbe measured =

Learning ismostreliablewhenthe trainingexamplesfollowadistribution similartothatoffuture test
examples.

Forexample,incheckersgame:
* In checkers learning scenario, the performance metric P is the percent of games the system wins in the
worldtournament.

 |f its training experience E consists only of games played against itself, there is an danger that this training
experiencemight not be fully representative of the distribution ofsituations overwhich it will later be tested.
Forexample,thelearnermightneverencountercertaincrucialboardstatesthatareverylikelytobeplayedby the
human checkers champion.

« |t is necessary to learn from a distribution of examples that is somewhat different from those on which the
finalsystemwillbeevaluated.Suchsituationsareproblematicbecausemasteryofonedistributionofexamples  will
not necessary lead to strong performance over some other distribution.
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3.ChoosingtheTargetFunction =

The next design choice is to determine exactly what type of knowledge will be
learned and how this will be used by the performance program.

« Let’s begin with a checkers-playing program that can generate the legal moves
from any boardstate.

* The program needs only to learn how to choose the best move from among these
legalmoves. Thislearningtaskisrepresentativeofalargeclassoftasksforwhich the

legal moves that define some large search space are known a priori, but for which
the best search strategy is not known.




S
Given this setting where we must learn to choose among the legal moves, the mostinrem

obviouschoiceforthetypeofinformationtobelearnedisaprogram,orfunction,that
chooses the best move for any given board state.

1. Let ChooseMovebethetarget functionand thenotationis

ChooseMove:B—M
Which indicate that this function accepts as input any board from the set of legal
boardstates Band produces as output somemove from the set of legal moves M.

ChooseMove is an choice for the target function in checkers example, but this
function will turn out to be very difficult to learn given the kind of indirect training
experience available to our system




2. Analternative targetfunction is anevaluationfunction thatassignsa NRCM
numericalscore to any given boardstate
LetthetargetfunctionVVandthenotation
V:B—R
Whichdenotethat Vmaps any legalboardstate fromthesetBto somerealvalue

We intend for this target function V to assign higher scores to better board states. If
thesystemcansuccessfullylearnsuchatargetfunctionV,itcaneasilyuseittoselect the best
move from any current board position.




et usdefinethe targetvalueV(b)foranarbitraryboardstatebinB,asfollows:
1. Ifbisa finalboardstatethat is won,thenV(b)=100

Ifbisa finalboard state that islost,thenV(b)=-100
Ifb is a finalboard statethat is drawn,thenV(b)=0
Ifb is a nota finalstatein the game,thenV(b)=V(b",

Whereb'isthebestfinalboardstatethatcanbeachievedstartingfromband playing
optimally until the end of the game

2.

3.
4.
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3. ChoosingaRepresentationforthe
TargetFunction

Letuschooseasimplerepresentation-foranygivenboardstate,thefunctionwill
calculated as a linear combination of the following board features:

XL: the number of black pieces on the

boardx2: the number of red pieces on the

boardx3:thenumberofblackkingsonthe

boardx4: the number of red kings on the

board

X5:thenumberofblackpiecesthreatenedbyred(i.e.,whichcan be
captured on red's next turn)

X6: the number ofred pieces threatened byblack

be



ﬁ’(b) = wo + wixi + waxz + wixz + waxgs + wsxs + wexe
Where,

® wothroughwesarenumericalcoefficients,orweights,tobechosenbythe
learning algorithm.

 Learnedvaluesfortheweights withroughwswill determinetherelative

Importanceofthe variousboardfeaturesindetermining the valueoftheboard
® Theweightwo willprovide anadditiveconstanttothe boardvalue
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Partialdesignofacheckerslearningprogram:

» TaskT:playingcheckers
PerformancemeasureP:percentofgameswonintheworldtournament
TrainingexperienceE:gamesplayedagainstitself
Targetfunction:V:Board — R

Targetfunctionrepresentation

ﬁ’(b) = wo + wixi + waxz + wixz + waxgs + wsxs + wexe

The first three items above correspond to the specification of the learning task,

whereasthefinaltwoitemsconstitutedesignchoicesfortheimplementationof the
learning program.




4. ChoosingaFunctionApproximation
Algorithm

* Inordertolearnthetargetfunctionwerequireasetoftrainingexamples,each
describing a specific board state band the training value Virin(b) for b.

 Eachtraining exampleis anorderedpairoftheform(b, Virin(b)).

 For instance, the following training example describes a board state b in
whichblackhaswonthegame(notexz=0indicatesthatredhasnoremaining

pieces) and for which the target function valueV.in(b) is therefore +100.

((x1=3,x2=0,x3=1,x4=0,x5=0,X6=0),+100)
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FunctionApproximationProcedure

1. Derivetrainingexamplesfromtheindirecttrainingexperienceavailableto the
learner
2. Adjuststheweightswitobestfitthesetraining examples




[Typehere]

Where,
visthe learner'scurrentapproximation to

Successor(b)denotesthenextboardstatefollowingforwhichitisagainthe program's
turn to move

Rulefor estimatingtrainingvalues

Virain(b)€-V(Successor(b))




Specifythe learning algorithmforchoosingthe weights witobest fit theset of
training examples {(b, Vitrain (b))}

Afirststepistodefinewhat wemeanbythebestfit tothetrainingdata.
« Onecommonapproach istodefinethebest hypothesis,orsetofweights,as that which

minimizes the squared error E between the training values and the values
predicted by the hypothesis.

E

> (Virain(®) — V(B))°

b, Virain(DY)€ training examples

. Severalalgorithmsareknownforfindingweightsofalinearfunction that
minimizeE.
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Onesuchalgorithmiscalledtheleastmeansquares,orLMStrainingrule.Foreach

observed training example it adjusts the weights asmall amount in the direction that
reduces the error on this training example

LMS weightupdate rule:-For each training example

(b, Virain(b))Usethecurrentweightstocalculatev(b)
Foreachweightwi,updateit as

wi—witn(Vtrain(b)-v(b))Xi

_ T.Rupa Rani ,cse, NRCM
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Whenthe error (Vtrain(b)-v(b))isz ero,no weightsarechanged.
When (Vtrain(b)-v(b))ispositive(i.e.,whenV(b)itivitvieimitiedmibi vz
ofv(b);, reducing the error.
Ifthevalueofsomefeaturexiiszero,thenitsweightisnotalteredregardlessof the

error, so that the only weights updated are those whose features actually
occur on the training example board.




Thefinaldesignofcheckerslearningsystemcanbedescribedbyfourdistinct program
modules that represent the central components in many learning systems

5. TheFinalDesign







S
1.The Performance System 1s the module that must solve the given performance li“ﬁ
taskby using the learned target function(s).
[ttakesaninstanceofanewproblem(newgame)asinputandproducesatraceofits solution
(game history) as output.
In checkers game, the strategy used by the Performance System to select its next
move at each step i1s determined by the learned vV evaluation function. Therefore,
weexpect its performance to improve as this evaluation function becomes

increasingly accurate.

2. The Critic takes as input the history or trace of the game and produces as output a
setoftrainingexamplesofthetargetfunction. Asshowninthediagram,eachtraining
example in this case corresponds to some game state in the trace, along with an
estimate Viin Of the target function value for this example.




3. TheGeneralizertakesasimputthetrainingexamplesandproducesan NRCM
output hypothes 1s that 1s its estimate of the target function. |

It generalizes from the specific training examples, hypothesizing a general
functionthatcoverstheseexamplesandothercasesbeyondthetrainingexamples. Inour
example, the Generalizer corresponds to the LMS algorithm, and the output

hypothesis 1s the functionvdescribed bythe learned weightswo, .. ., W6.

4. TheExperimentGeneratortakesasinputthecurrenthypothesisandoutputsanew
problem(1.e.,initial board state) forthe Performance Systemto explore.lts roleisto
pick new practice problems that will maximize the learning rate of the over all
system.

Inourexample,theExperimentGeneratoralwaysproposesthesameinitialgame board
to begin a new game.
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PerspectivesofMachinelLearning

Perspectiveofmachinelearninginvolvessearchingverylarge
space of possible hypothesis to determine one that

Best fits the observed data and any prior knowledge
heldby learner.
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Issuesin MachinelLearning acormmen

« What algorithms exist for learning general target functions from specific training
examples? In what settings will particular algorithms converge to the desired
function, given sufficient training data?Which algorithms perform best for which
types of problems and representations?

« Howmuchtrainingdataissufficient?wWhatgeneralboundscanbefound torelate
theconfidenceinlearnedhypothesestotheamountoftrainingexperienceandthe
character of the learner's hypothesis space?

* When and how can prior knowledge held by the  learner guide the process of

generalizingfromexamples?Canpriorknowledgebehelpfulevenwhenitisonly
approximately correct?

43



* What 1s thebest strategyforchoosing a useful next training experience, and how: .

does the choice of this strategy alter the complexity of the learning problem?

* What 1s the best way to reduce the learning task to one or more function
approximation problems? Put another way, what specific functions should the
system attempt tolearn? Can this process itself be automated?

* Howcanthelearnerautomaticallyalteritsrepresentationtoimproveitsabilityto
represent and learn the target function?

44
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ConceptLearning

* Learning involves acquiring general concepts from specific training examples.
Example: People continually learn general concepts or categories such as
"bird,""car’""

situationsinwhichIshouldstudymoreinordertopasstheexam,"etc.
* Each such concept can be viewed as describing some subset of objects or events
defined over a larger set

 Alternatively, each concept can be though to fasaBoolean-valued function defined

over this larger set. (Example: A function defined over all animals, whose value is
true for birds and false for other animals).

Conceptlearning-InferringaBoolean-valuedfunctionfromtramningexamplesof its
input andoutput




AConceptlLearningTask

Consider the example task of learning the target concept
"DaysonwhichmyfriendAldoenjoyshisfavoritewatersport."

Sunny

Sunny

Rainy

Sunny

Table-

T
e .

Warm

Warm

Cold

Warm

Normal

High

High

High

Strong Warm

Strong Warm

Strong Warm

Strong Cool

Describesasetofo-exanple.days,ce-ach.represented

Same Yes

Same Yes
Change No
Change Yes

byasetofattributes
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Whathypothes isrepresentation is provided tothelearner? N%(cw.

Let’sconsiderasimplerepresentationinwhicheachhypothesisconsistsofaconjunction of
constraints on the instance attributes.

|_eteachhypothesisbeavectorofsixconstraints,specifyingthevaluesofthesix attributes
Sky, AirTemp, Humidity,Wind,Water, and Forecast.

Foreachattribute, thehypothesiswill either

 Indicatebya"?'thatanyvalueisacceptableforthis attribute,

 Specifyasingle required value(e.g.,Warm)forthe attribute,or
* Indicatebya"®"that novalueis acceptable

48
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The hypothesis that PERSON enjoys his favo rite sport only on cold days with
highhumidity (independent of the values of the other attributes) 1s represented by
theexpression

(?, Cold, High,?,?,?)

Themostgeneralhypothesis-thateverydayisapositiveexample-isrepresentedby
(7,2,2,2,2,7)

The most specific possible hypothesis-that day Is a positive example-is
norepresented by

49



Notation

Theset ofitemsover whichtheconcept 1s definediscalledthesetof
instances,whichwedenotebyX.

Example: Xisthesetofall possibledays,eachrepresentedbytheattributes:Sky,
AirTemp, Humidity, Wind, Water,and Forecast

Theconceptorfunctiontobelearnediscalledthetargetconcept,whichwedenote by c.

ccan be anyBooleanvalued function defined
overthemstancesXc: X {0, 1}

Example:The target conceptcorrespondsto thevalueoftheattributeEnjoySport
(1.e.,c(x)=11tEnjoySport=Y es,andc(x)=01tEnjoySport=No).
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Instancesforwhichc(x)=1arecalledpositiveexamples,ormembersofthe target
concept.
Instancesforwhichc(x)=0arecallednegativeexamples,ornon-membersofthe
target concept.
Theorderedpair(x,c(x))todescribethetrainingexampleconsistingofthe

instancex and its target conceptvalue c(x).
Dtodenotethe set ofavailabletraining examples

The symbol H to denote the set of all possible hypotheses that the learner
mayconsiderregardingtheidentityofthetargetconcept.Eachhypothesis £ in
Hrepresents a Boolean-valued function defined over X

hX {01}

Thegoal ofthelearneristofindahypothesissuchthath(x)=c(x)forallxin

52



- Sunny  Warm Normal Strong Warm  Same

- Sunny  Warm High Strong Warm  Same Yes
- Rainy  Cold High Strong Warm Change No
- Sunny  Warm High Strong Cool Change Yes
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e Given: -
e Instances X: Possible days, each described by the attributes
e Sky (with possible values Sunny, Cloudy, and Rainy),
® AirTemp (with vaives Warm and Cold),
® Humidity (with values Normal and High),
e Wind (with values Strong and Weak),
e Water (with values Warm and Cool), and
e Forecast (with values Same and Change).
e Hypotheses H: Each hypothesis is described by a conjunction of constraints on the at-
tributes Sky, AirTemp, Humidity, Wind, Water, and Forecast. The constraints may be “7”
(any value is acceptable), “@’ (no value is acceptable), or a specific value.
e Target concept ¢: EnjoySport : X — {0, 1}
e Training examples D: Positive and negative examples of the target function (see Table 2.1).
o Determine: |
e A hypothesis i in H such that h(x) = c(x) for all x in X.

TABLE The EnjoySport concept learning task.




Any hypothesis foundto approximate the target function well over a sufficiently
large set of training examples will also approximate the target function well
overother unobserved examples.

ThelnductiveLearningHypothesis




ConceptlearningasSearch

* Conceptlearningcanbeviewedasthetaskofsearchingthroughalargespace of
hypotheses implicitly defined bythe hypothesis representation.

* Thegoalofthissearchistofindthehypothesisthatbestfitsthetraining
examples.

Example.theinstancesXandhypothesesHinthe EnjoySportlearningtask. The
attribute Sky has three possible values, and AirTemp,Humidity

, Wind,WaterForecasteachhavetwopossiblevalues,theinstancespaceX contains

exactly
e 32.2.2.2.2=96 Distinctinstances

* 5.4.4.4.4.4=5120syntacticallydistinct hypotheses withinH.

Everyhypothesiscontainingoneormore"®"symbolsrepresentstheemptysetof

o Instances; that 1s, it classifies every instance as negative.



1+(4.3.3.3.3.3)=97 3.5 m anticyostmctn
ypotheses
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General-to-SpecificOrderingofHypotheses

Considerthetwohypotheses
hi= (Sunny,?,?,Strong,?,?)
h2= (Sunny,?,?,2,2,?

Considerthesetsofinstancesthatareclassifiedpositivebyhiandbynh:.
h2imposesfewerconstraintsontheinstance, itclassifies more instancesaspositive.
So, any instance classified positive by hi will also be classified positiveby
h>. Therefore, h21s more generalthan h.




General-to-SpecificOrderingofHypotheses

« Givenhypotheses hjandhk,hjismore-general-thanor-
equaldohkifandonlyifanyinstancethatsatisfieshkalsosatisfieshi

Definition:Let hjandhkbeBoolean-
valuedfunctionsdefinedoverX.Thenhjismoregeneral-than-or-equal-
tohk(writtenh;> hk)ifand only if

(Vx € X)[(he(x) = 1) = (h;(x) = 1)]




Instances X Hypotheses H
® Specific
]
° General
Y
x| = <Sunny, Warm, High, Strong, Cool, Same> h (= <Sunny, ?, ?, Strong, ?, 2>
X, = <Sunny, Warm, High, Light, Warm, Same> h 2= <Sunny, 2, 2, ?, 2, 7>

hg= <Sunny, ?, ?, ?, Cool, 7>

gz
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Inthe figure, thebox “on ""the
leftrepresentsthesetXofallinstances,
the box on the right theset H ofall

hypotheses.

Eachhypothesiscorrespondstosomes
ubsetofX-
thesubsetofinstancesthatitclassifies
positive.

The arrows connecting
hypothesesrepresent  the more -
general -
thanrelation,withthearrowpointingt
owardthelessgeneralhypothesis.

Notethesubsetofinstancescharacteri
zedbyhasubsumesthesubset
characterizedbyhi,hencehzis more-
general—thanh;

58



FIND-S:FindingaMaximallySpecific
Hypothesis

FIND-SAlgorithm

1. InitializehtothemostspecifichypothesisinH
2. Foreachpositivetraininginstancex
Foreachattributeconstraintaiinh

Iftheconstraintaiissatisfiedbyx
Thendonothing

Elsereplaceaiinhbythenextmoregeneralconstraintthatissatisfiedby x
3. Outputhypothesish

59



Warm Normal  Strong Warm Same Yes
Warm High Strong Warm  Same Yes
Cold High Strong Warm  Change No
Warm High Strong Cool Change Yes

ThefirststepofFIND-SistoinitializehtothemostspecifichypothesisinH
h-(0,9,9,8,0,0)

<

2

(&l 1,

g L
2 @ >

s AL L B
H LY

: W

g

60



LY
N2

b, i
Observing the first training example, it is clear that our hypothesis is too specific.

Inparticular, none of the "@" constraints in h are satisfied by this example, so each
Isreplacedbythe nextmore general constraintthat fitsthe example

x1=<SunnyWarmNormalStrongWarmSame>,+

hi=<SunnyWarmNormalStrongWarmSame>

Thishisstillveryspecific;itassertsthatallinstancesarenegativeexceptforthesinglepositive
training example

X2=<Sunny,Warm,High,Strong,Warm,Same>,+

The second training example forces the algorithm to further generalize h, this
timesubstituting a "?' in place of any attribute value in h that is not satisfied by the
newexample

h2=<SunnyWarm?StrongWarmSame>
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x3=<Rainy,Cold,High,Strong, Warm, Change>, -

Uponencounteringthethirdtrainingthealgorithmmakesnochangetoh. The FIND-
Salgorithm simply 1gnores everynegative example.

h3=<SunnyWarm?StrongWarmSame>

x4=<SunnyWarmHighStrongCoolChange>,+
Thefourthexampleleadstoafurthergeneralizationoth

h4=<SunnyWarm?Strong??>
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Instances X

Hypotheses H

A

Specific

x| = <Sunny Warm Normal Strong Warm Same>, +
X 5= <Sunny Warm High Strong Warm Same>, +

X3 = <Rainy Cold High Strong Warm Change>, -

= <Sunny Warm High Strong Cool Change>, +

General

_:~.
Il

h; =

<D, D, 0, D,D, D>

= <Sunny Warm Normal Strong Warm San

117 -

<Sunny Warm ? Strong Warm Same>
<Sunny Warm ? Strong Warm Same>

<Sunny Warm ? Strong ? ? >




N,/
N

ThekeypropertyoftheFIND-Salgorithmis N%(cﬁ

* FIND-S is guaranteed to output the most specific hypothesis within H that
Isconsistentwith thepositive training examples

 FIND-S algorithm’s final hypothesis will also be consistent with the

negativeexamples provided the correct target concept Is contained in H, and
provided thetrainingexamples are correct.
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UnansweredbyFIND-S

1. Hasthe

PRI AP AR PELG FEMASERRBSIRPT?

3. Arethetrainingexamplesconsistent?

4. Whatifthereareseveralmaximallyspecificconsistenthypotheses?
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BlitaRani AssistantProfessor,CSE,NRCM

VersionSpaceandCANDIDATEE
LIMINATIONAIgorithm

ThekeyideaintheCANDIDATE-

ELIMINATIONalgorithmistooutputadescriptionofthesetofallnypothesesconsistentwiththetr
ainingexamples

Representation
« Definition: AhypothesishisconsistentwithasetoftrainingexamplesDifandonlyifh(x)
=c(x)foreachexample(x,c(x))inD.

Consistent(h,D)=(V(x,c(x))eD)h(x)=c(x))

Notedifferencebetweendefinitionsofconsistentandsatisfies

 Anexamplexissaidtosatisfyhypothesishwhenh(x)=1,regardless
ofwhetherxisapositiveornegativeexampleofthetargetconcept.

« anexamplexissaidtoconsistentwithhypothesishiffh(x)=c(x)
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VersionSpa S
ce b

ArepresentationofthesetofallhypotheseswhichareconsistentwithD

Definition: The version space, denoted VSupwith respect to hypothesisspace Hand

training examples D, 1s the subset of hypotheses from H consistent with thetraining
examplesin D

VSup={he H|Consistent(h,D)}

T.Rupa Rani,AssistantProfessor,CSE,NRCM
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Hypothesis Space

S (TE AT

Il §

J
>

Version Space

VS0

N,
SN
NRCM

your roots 1o success...

68



TheLIST-THEN-ELIMINATE Algorithm

TheLIST-THEN-ELIMINATEalgorithmfirstinitializestheversionspacetocontainall
hypotheses in H and then eliminates any hypothesis found inconsistent with
anytraining example.




TheLIST-THEN- Aot
ELIMINATE gorthm

1. VersionSpacecalistcontainingeveryhypothesisinH
2. Foreachtrainingexample,(x,c(x))

removefromVersionSpaceanyhypothesishforwhichh(x)#c(x)
3. OutputthelistothypothesesinVersionSpace

TheLIST-THEN-ELIMINATEAIgorithm

* List-Then-Eliminateworksinprinciple,solongasversionspaceisfinite.

* However,sinceitrequiresexhaustiveenumerationofallhypothesesinpracticeitisnot
feasible.
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AMoreCompactRepresentationforVersio
nSpaces

 Theversionspaceisrepresentedbyitsmostgeneralandleastgeneralmembers.

« Thesemembersformgeneralandspecificboundarysetsthatdelimittheversionspace
withinthe partiallyordered hypothesis space.
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S: | { <Sunny, Warm, ?, Strong, ?, 7> }

<Sunny, ?, 7, Strong, ?, 7> <Sunny, Warm, ?, 2, 72, 7> <?, Warm, ?, Strong, ?, ?>

NSNS

G:| [<Sunny, 2,2 2, 2 7>, <? Warm, ?, 2, ?, 7>}

AirTemp Humidity Wind | Water Forecast EnjoySport

Sunny Warm Normal Strong Warm  Same

Sunny Warm High Strong Warm Same Yes

Rainy Cold High Strong Warm Change No
Sunny  Warm High Strong  Cool Change Yes

Deepak D,Asst.Prof .Dept.ofC SE,CanaraEngg. College

N,

Aversionspacewithitsget? =
and specific boundary

The version space--includes
allsix hypotheses shown here,
butcanberepresentedmoresimpl
yby SandG.
Arrowsindicateinstanceof
themore-general-than
relation.Thisistheversion
spaceforthe
Enjoysportconceptlearning

« problemandtrainingexamples
describedinbelowtable
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G={geH|Consistent(g,D)A(-39'eH)[(9">¢g)AConsistent(g',D)]}

Definition: ThespecificboundaryS,withrespecttohypothesisspaceHandtraining  data
D, 1s the set of minimally general (1.e., maximally specific) members
ofHconsistentwithD.

S={seH|Consistent(s,D)N(—3s'e H)[(s>¢s Y)AConsistent(s'.D)]}
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VersionSpacerepresentationth "N
eorem

Theorem: Let X be an arbitrary set of instances and Let H be a set ofBoolean-valued
hypotheses defined over X. Let ¢ : X {0, 1} be an arbitrary target conceptdefined
over X, and let D be an arbitrary set of training examples {(X, c(x))). For allX, H,c,
and D such that Sand G are well defined,

VSup={heH|(35€S)(3gG)(g=sh>¢s)}

74



Sepes
VS up=the H|(3s€S)(3geG)(g>.h _N)(’_
ToProve: >.8)} o

1. EveryhsatisfyingtherighthandsideoftheaboveexpressionisinVSH,p
2.Everymemberof\/SH,Dsatisfiestheright-handsideoftheexpression

Sketchofproof:
1. letg,h,sbearbitrarymembersofG,H,Srespectivelywithg>gh>gs

By the definition of S, s must be satisfied by all positive examples in D. Because h >¢s ,h must alsobe
satisfied byall positive examples inD.

BythedefinitionofG,gcannotbesatisfiedbyanynegativeexampleinD,andbecauseg>ghhcannot be satisfied

by any negative example in D. Because h is satisfied by all positive examples in
Dandbynonegativeexamples inD,his consistent with D,and thereforehisa memberofVShp

2.ItcanbeprovenbyassumingsomehinVSw p, thatdoesnotsatisfytheright-
handsideoftheexpression,thenshowingthatthisleadstoaninconsistency
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TheCANDIDATE-ELIMINATIONLearningAlgorithm

The CANDIDATE-ELIMINTION algorithm computes the version space
containingall hypotheses from H that are consistent with an observed sequence of
trainingexamples.




Initialize G to the set of maximally general hypotheses in

Hlnitialize S to the set of maximally specific hypotheses in
HForeachtraining example d, do

* Ifdisapositiveexample
* RemovefromGanyhypothesisinconsistentwithd
» ForeachhypothesissinSthatisnotconsistentwithd
* RemovesfromS
* AddtoSallminimalgeneralizationshofssuchthat
* hisconsistentwithd,andsomememberofGismoregeneralthanh

* RemovefromSanyhypothesisthatismoregeneralthananotherhypothesisinS

 Ifdisanegativeexample

* RemovefromSanyhypothesisinconsistentwithd
* ForeachhypothesisginGthatisnotconsistentwithd

* RemovegfromG
* AddtoGallminimalspecializationshofgsuchthat
* hisconsistentwithd,andsomememberofSismorespecificthanh

* RemovefromGanyhypothesisthatislessgeneralthananotherhypothesisinG
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AnlllustrativeExam

e
~_ple g NG
TheboundarysetsarefirstinitializedtoGoandSo,themostgeneralandmostspecifichypothy =
esesin H.
S0 (0,00,0,)

Go <?I?’?l?’?l?>




Fortrainingexampled,

S

(Sunny,Warm,Normal,Strong, Warm,Same)+

(Sunny,Warm,Normal,Strong,Warm,Same)

<??????>

LY ALRY BURY BURY B AR
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Fortrainingexampled,

S2

(Sunny,Warm,High,Strong, Warm,Same)+

F
4
Y.

¢ Y F L ] 04 A4 5 :/' JREE 7 1 & # St 3R l’ g 18 ;) ""v 2293 4
N Sunu w i arm Normal St QRS G FI SIS

. |
\_ )
2

(Sunny,Warm,?,Strong,Warm,Same)

(22,222

N,/
S
NRCM

your roots Lo success...
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Fortrainingexampled,

(Rainy,Cold,High,Strong,Warm,Change)—

4Sunn3,ermcmT?—,Sﬁ
S3 .

rong,Warm,Same)
Gs  ((Sunny,?,2,2,2,2X2, Warm,?,?,?,7¥

2,2,2,2,?2,8ame)
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Fortrainingexampled,

G4

S4

(Sunny,Warm,High,Strong,CoolChange)+

(Sunny,Warm,?,Strong,?,?)

(Sunny,?,?,?2,?2,?2)(? Warm,?,?2,?,7)
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Ss | { <Sunny, Warm, ?, Strong, 7, 7> |

A

<Sunny, ?, ?, Strong, ?, 7> <Sunny, Warm, ?, 7, 7, 7> <7, Warm,

NN

2, Strong, 7, 7>
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InductiveBias

Thefundamentalquestionsforinductiveinference

«  Whatifthetargetconceptisnotcontainedinthehypothesisspace?

« Canweavoidthisdifficultybyusing
ahypothesisspacethatincludeseverypossiblehypothesis?

«  Howdoesthesizeofthishypothesisspaceinfluencetheabilityofthealgorithmtogeneralizet
ounobservedinstances?

« Howdoesthesizeofthehypothesisspaceinfluencethenumberoftrainingexamples
thatmustbeobserved?

s LA
5 @
s & L B
’ W
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Effectofincompletehypothesi Ny
SSpace |
PrecedingalgorithmsworkiftargetfunctionisinH
WillgenerallynotworkiftargetfunctionnotinH

Considerfollowingexampleswhichrepresenttargetfunction
“sky=sunnyorsky=cloudy”:

(SunnyWarmNormalStrongCoolChange)

Y
(CloudyWarmNormalStrongCoolChange)

Y
(RainyWarmNormalStrongCoolChange) N

IfapplyCandidateEliminationalgorithmasbefore,endupwithemptyVersionSpaceA fterf
irsttwotrainingexample

S=(?WarmNormalStrongCoolChange)

Newhypothesisisoverlygeneralanditcoversthethirdnegativetrainingexample!Our
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AnUnbiasedLear
ner

:'u
g L
5 @
: | e
‘ W

Incompletehypothesisspace

« [fcnotinH,thenconsidergeneralizingrepresentationofHtocontainc

 ThesizeoftheinstancespaceXofdaysdescribedbythesixavailableattributesis
96.ThenumberofdistinctsubsetsthatcanbedefinedoverasetXcontaining|X| elements(i.e.,
thesizeofthepowersetofX)is2IX|

* Recallthatthereare96instancesinEnjoySport;hencethereare2%possiblehypothesesinfullsp
aceH

« CandothisbyusingfullpropositionalcalculuswithAND,OR,NOT

 HenceHdefinedonlybyconjunctionsofattributesisbiased(containingonly973h’ s)
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« Let us reformulate the Enjoysportlearning task in an unbiased way by defining a NRCM
newhypothesisspaceH'thatcanrepresenteverysubsetofinstances;thatis,letH'correspondtoth ===

epowersetofX.

« Onewayto definesuchan
H'istoallowarbitrarydisjunctions,conjunctions,andnegationsofourearlierhypothes

Ees.

Forinstance,thetargetconcept'' Sky=SunnyorSky=Cloudy"'couldthenbedescribedas
(Sunny,?,?,?2,2,2)V(Cloudy,?,?,?,?,?
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Definition:

ConsideraconceptlearningalgorithmL forthesetofinstancesX.

* LetcbeanarbitraryconceptdefinedoverX

® LetDc={(x,c(x))}beanarbitrarysetoftrainingexamplesofc.

® LetL(xi,Dc)denotetheclassificationassignedtotheinstancexibyLaftertrainingonthedataD..

* TheinductivebiasoflLisany minimalsetofassertionsBsuch
thatforanytargetconceptcandcorrespondingtrainingexamplesDc

(V(xieX)[(BADeAXi) FL(xi,De)]
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Training examples

Inductive system

New imstance

Traming examples

Classification of
Candidate new instance, or
Elimination "don’t know"
Algorithm
Using Hypothesis
Space H

Equivalent deductive system

New instance

Assertion " H contains
the target concept"

/d

Inductive bias
made explicit

Classification of
new mstance. or
"don’t know"

Theorem Prover

© O
L) v’
Seee=

Modelling inductive system Y

byequivalentdeql;lm roots 1O sudcess

stems.

Theinput-
outputbehavioroftheCANDIDA
TE-ELIMINATION

algorithm using a hypothesis space
His identical to that of a

deductivetheoremproverutilizingthe

assertion”’H contains the target

concept." Thisassertion s
therefore called

theinductivebiasofthe

CANDIDATE-ELIMINATION
algorithm.
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characterizinginductivesystems
by theirinductive biasallowsmodellingthembytheirequivalentdeductivesystems.Thisprovidesawayto compareinductive
systemsaccording to theirpolicies forgeneralizing beyond the observedtrainingdata

DECISIONTREELEARNING




DECISIONTREEREPRESENTATION

Sunny

"l

Humidity

High

/

Normal

\

Yes

Outlook

Overcast

Yes

Rain
Wind
Strong Weak
No Yes

FIGURE: A
decision tree for

theconcept
PlayTennis.Anexam

pleisclassified by
sortingit through the
tree
totheappropriateleaf
node, then
returningtheclassific
ationassociated with
thisleaf



* Decision trees classify instances by sorting them down the tree from the root
tosome leaf node, which provides the classificationof the instance.

« Each node In the tree specifies a test of some attribute of the instance, and
eachbranch descending from that node corresponds to one of the possible values
forthisattribute.

 Aninstanceisclassifiedbystartingattherootnodeofthetree,testingtheattribute
specified by this node, then moving down the tree branch
correspondingtothevalueoftheattributeinthegivenexample. Thisprocessisthenrepea
tedforthe subtree rootedat the new node.




 Decisiontreesrepresentadisjunctionofconjunctionsofconstraintsontheattrib
utevalues of instances.

« Eachpathfromthetreeroottoaleafcorrespondstoaconjunctionofattributetests,an
d the treeitself toa disjunction of these conjunctions

Forexample,
Thedecisiontreeshowninabovefigurecorrespondstothe expression
(Outlook =Sunny AHumidity = Normal)
(Outlook=0Overcast)
(Outlook=RainAWind=Weak)
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APPROPRIATEPROBLEMSFOR NRGM
DECISIONTREELEARNING

Decisiontreelearningisgenerallybestsuitedtoproblemswiththefollowingcharacteristics:

1. Instancesarerepresentedbyattribute-valuepairs—Instancesaredescribedbyafixed
set of attributes and their values

2. The target function has discrete output values — The decision tree assigns
aBoolean classification (e.g., yes or no) to each example. Decision tree
methodseasilyextendtolearningfunctions withmorethantwo possibleoutputvalues.

3. Disjunctivedescriptionsmayberequired




4. Thetrainingdatamaycontainerrors—Decisiontreelearningmethodsarerobust  to
errors, both errors in classifications of the training examples and errorsinthe
attribute values that describe these examples.

5. Thetrainingdatamaycontainmissingattributevalues—Decisiontreemethodscanbe

used evenwhen some training
exampleshaveunknown values

* Decision tree learning has been applied to problems such as learning to
classifymedical patients by their disease, equipment malfunctions by their cause,
andloan applicants by their likelihood ofdefaulting on payments.

« Suchproblems,inwhichthetaskistoclassifyexamplesintooneofadiscrete
setofpossible categories, are often referred toasclassification problems.




THEBASICDECISIONTREE LEARNING N%fg
ALGORITHM

« Mostalgorithmsthathavebeendevelopedforlearningdecisiontreesarevariations on a

core algorithm that employs a top-down, (greedy search through
thespaceofpossibledecisiontrees. ThisapproachisexemplifiedbythelD3algorithmand
Itssuccessor C4.5




WhatisthelD3algorithm?

ID3standsforlterativeDichotomiser3
[D31saprecursortotheC4.5Algorithm.

ThelD3algorithmwasinventedbyRossQuinlanin1975
Usedtogenerateadecisiontreefromagivendatasetbyemployingatop-
down,greedysearch, to test each attribute at every nodeof thetree.

Theresultingtreeisusedtoclassifyfuturesamples.




ID3algorithm

ID3(Examples, Target_attribute,Attributes)

Examples are the training examples. Target_attribute is the attribute whose value is tobe predictedby
the tree. Attributes is a list of other attributes that may be tested by the learned decision
tree.Returnsadecisiontree that correctlyclassifies thegiven Examples.

e CreateaRootnodeforthetree
e IfallExamplesarepositive,Returnthesingle-nodetreeRoot,withlabel=+

o IfallExamplesarenegative,Returnthesingle-nodetreeRoot,withlabel=-
o IfAttributesisempty,Returnthesingle-

nodetreeRoot,withlabel=mostcommonvalueofTarget_attributeinExamples

10




e OtherwiseBegin
o A«theattributefromAttributesthatbest™classifiesExamples
e ThedecisionattributeforRoot«—A
® F[oreachpossiblevalue,vi,ofA,
e AddanewtreebranchbelowRoot,correspondingtothetestA=vi
o LetExamples.i,bethesubsetofExamplesthathavevalueviforA
e IfExamplesvi,isempty

e Thenbelowthisnewbranchaddaleafnodewithlabel=mostcommonvalueofTarget attri
buteinExamples

e Elsebelowthisnewbranchaddthesubtree
ID3(Examplesyi,Targe tattribute,Attributes—{A}))

e End
e ReturnRoot

*Thebestattributeistheonewithhighestinformationgain

11



WhichAttributelstheBestClassifier? S

* ThecentralchoiceintheID3algorithmisselectingwhichattributetotestat
eachnode in thetree.

* Astatisticalpropertycalledinformationgainthatmeasureshowwellagivenattributese
paratesthetraining examples accordingto theirtargetclassification.

* [ID3usesinformationgainmeasuretoselectamongthecandidateattributesateach
step while growingthe tree.

12




ENTROPYMEASURESHOMOGENEITYOFEXAMPLES

 Todefineinformationgain,webeginbydefiningameasurecalledentropy.
Entropymeasurestheimpurityofacollectionofexamples.

« GivenacollectionS,containingpositiveandnegativeexamplesofsometargetconce
pt,theentropy of Srelative to this Booleanclassificationis

EHTI"Opy (S) = _p@logz p@_pe ZOgZPQ
Where,

p+istheproportionofpositiveexamplesinS
p-istheproportionofnegativeexamplesins.

13



Example:Entropy

NRCM
« Suppose S is a collection of 14 examples of some boolean concept, including |

Opositive and 5 negative examples. Then the entropy of S relative to this

booleanclassificationis

Entropy([9+, 5-1) = —(9/14) log,(9/14) — (5/14) log,(5/14)
= (0.940

14




* TheentropyisOifallmembersofSbelongtothesameclass

* Theentropyisl whenthecollectioncontainsanequalnumberofpositiveandnegativ
¢ examples

* Ifthecollectioncontainsunequalnumbersofpositiveandnegativeexamples,theentro
pyis between 0 and 1

15



Entropy(S)

FIGURE

L.OT

The entropy function relative to a boolean classification,
as the proportion, pe, of positive examples varies between O and 1.

16



Pl
0‘4’

INFORMATIONGAINMEASURESTHEEXPECT hDRhDU%Q
NINENTROPY e

 Informationgain,istheexpectedreductioninentropycausedbypartitioning
theexamplesaccording tothis attribute.

 Theinformationgain,Gain(S,A)ofanattributeA,relativetoacollectionofexampless,
Is defined as

S
Gain(S, A) = Entropy(S) — Z u Entropy(S,)
v € Values(A4) ‘ ‘

17




Example:Informationgain

Let,Values(Wind)={Weak,Strong}

S =[9+,5—
SWeak — :6"'_,2_:
SStrong — :3+,3_:

InformationgainofattributeWind:

Gain(S,Wind)=Entropy(S)—8/14Entropy(Sweak)—6/14Entropy(Sstrong)
=0.94—(8/14)*0.811—(6/14)*1.00
=0.048




AnlllustrativeExample

 ToillustratetheoperationoflD3,considerthelearningtask
representedbythetrainingexamples of below table.

 HerethetargetattributePlayTennis,which canhave valuesyes
ornofordifferentdays.

 Considerthefirststepthroughthealgorithm,inwhichthetopmostnodeofthedecision
treeis created.

19



Day
D1
D2
D3

D4
D5
D6
D7
D8
D9
D10
D11

D12

D13
D14

Outlook
Sunny
Sunny

Overcast

Rain
Rain
Rain

Overcast
Sunny
Sunny

Rain
Sunny
Overcast

Overcast

Rain

Temperature
Hot
Hot
Hot
Mild
Cool
Cool
Cool
Mild
Cool
Mild
Mild
Mild

Hot
Mild

Humidity
High
High
High
High

Normal
Normal
Normal
High
Normal
Normal
Normal
High
Normal
High

Wind
Weak

Strong
Weak
Weak
Weak
Strong
Strong
Weak
Weak
Weak
Strong
Strong

Weak
Strong

PlayTennis

No
No
Yes
Yes
Yes
No
Yes
No
Yes
Yes
Yes
Yes

Yes
No

N,v
N"@9"s
> :‘ 0=

NRCM
Your roots 1o success
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Theinformationgainvaluesforallfourattributesare

 Gain(S,Outlook) =0.246
»  Gain(S,Humidity) =0.151
- Gain(S,Wind) =0.048
* Gain(S,Temperature) =0.029

 Accordingtotheinformationgainmeasure,theOutlookattributeprovidesthebest

prediction of the target attribute, PlayTennis, over the training

examples.Therefore,Outlookisselectedasthedecisionattributefortherootnode,
andbranchesarecreatedbelowtherootforeachofitspossiblevaluesi.e.,

22



{D1,D2, ..., D14}
[9+.5-]
Outlook
/Sunny Overcast
{D1.D2.D8.D9.D11} {D3.D7.D12.D13}
[Z2+.3-] [4+.0—]
& e
/1
/

Which attribute should be tested here?

DeepakD,Asst.Prof.,Dept.of CSE,CanaraEngg.College

—

Rain

T

1D4.D5.D6.D10.D14}

[3+.2—]

> |
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Ssiiy ={D1;DZD8DY. D11}

Gain (Sgyppy » Humidity) = 970 — (3/5) 0.0 — (2/5) 0.0 = 970
Gain (Ssynny » Temperature) = 970 — (2/5)0.0 — (2/5) 1.0 — (1/5)0.0 = .570
Gain (Sgyppy, Wind) = 970 — (2/5) 1.0 — (3/5) 918 = .019

Skain=1{D4,D5,D6,D10,D14}

Gain(Sran Humidity)=0.970-(2/5)1.0-(3/5)0.917=0.019
Gain(Srain, Temperature)=0.970-(0/5)0.0-(3/5)0.918-(2/5)1.0=0.019
Gain(Srain, Wind)=0.970-(3/5)0.0-(2/5)0.0=0.970




Sunny

/

Humidity

Normal

Yes

Outlook

Overcast

Yes

Rain

o~

Wind

Strong

/

No

Weak

N\

Yes




HYPOTHESISSPACESEARCHINDECISIONTREEL .

« ID3 can be characterized as searching a space of hypotheses for one that fits
thetraining examples.

» ThehypothesisspacesearchedbylD3isthesetofpossibledecisiontrees.

« ID3 performs a simple-to complex,

hill-climbing search through this
hypothesisspace,beginningwiththeemptytree,thenconsideringprogressivelymoreela

boratehypothesesinsearchofadecisiontreethatcorrectlyclassifiesthetraining data

27



Figure: :\:i

HypothesisspacesearchbylD3. Nrem
|D3searchesthroughthespaceofpossible
decision trees from simplest
toincreasinglycomplex,guidedbytheinfo
rmationgain heuristic
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1. ID3's hypothesis space of all deision trees is a complete space of finite discrete-
valued functions, relative to the available attributes. Because every finite discrete-

valuedfunction can be represented by some decision tree
« |D3avoidsoneofthemajorrisksofmethodsthatsearchincompletehypothesisspaces

.thatthehypothesisspacemightnotcontainthetargetfunction.

29



S
2. ID3maintainsonlyasinglecurrenthypothesisasitsearchesthroughthespaceof
decision trees.

Forexample,withtheearlierversionspacecandidateeliminationmethod, whichmaint
ains the set of all hypotheses consistent with the available trainingexamples.

Bydeterminingonlyasinglehypothesis,ID3losesthecapabilitiesthatfollowfromexplici
tlyrepresenting allconsistenthypotheses.

For example, 1t does not have the ability to determine how many
alternativedecisiontreesareconsistentwiththeavailabletrainingdata,orto  pose

newinstancequeriesthat
optimallyresolveamongthesecompetinghypotheses

30
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3. ID3 In its pure form performs no backtracking in its search. Once it SeleCﬁzav\

anattribute to test at a particular level in the tree, it never backtracks to reconsider
thischoice.

* In the case of ID3, a locally optimal solution corresponds to the decision tree
Itselects along the single search path it explores. However, this locally
optimalsolution may be less desirable than trees that would have been encountered
along adifferentbranch of the search.

4. 1D3usesalltrainingexamplesateachstepinthesearchtomakestatisticallybaseddecis
lons regarding how to refineits current hypothesis.

« Oneadvantageofusingstatisticalpropertiesofalltheexamplesisthattheresultingsearc
h ismuch less sensitiveto errorsinindividualtraining examples.

 ID3canbeeasilyextendedtohandlenoisytrainingdataby
modifyingitsterminationcriteriontoaccepthypotheses
thatimperfectlyfitthetrainingdata.

31



INDUCTIVEBIASINDECISIONTREELEARNING

Inductive bias is the set of assumptions that, together with the training
data,deductivelyjustifytheclassificationsassignedbythelearnertofutureinstances

Givenacollectionoftrainingexamples,therearetypicallymanydecisiontreesconsistent
with theseexamples.Which ofthese decisiontreesdoes ID3choose?

|D3searchstrateqy

(a) selectsinfavourofshortertreesoverlongerones

(b) selectstreesthatplacetheattributeswith highestinformationgainclosesttotheroot.
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‘ W

32



ApproximateinductivebiasofID3:Shortertreesarepreferredoverlargertrees

* Consideranalgorithmthatbeginswiththeemptytreeandsearchesbreadthfirst
throughprogressivelymorecomplextrees.

* Firstconsideringalltreesofdepthl,thenalltreesofdepth2,etc.

* Once 1tfinds a decision tree consistent with thetraining data, it returns
thesmallestconsistenttreeatthatsearchdepth(e.g.,thetreewiththefewestnodes).
* Letuscallthisbreadth-firstsearchalgorithmBFS-1D3.

 BFS-ID3findsashortestdecisiontreecandthusexhibitsthebias'shortertrees
arepreferredover longer trees.

33



« ID3 can be viewed as an efficient approximation to BFS-ID3, using a

greedyheuristic search to attempt to find the shortest tree without conducting the
entirebreadth-firstsearchthrough thehypothesis space.

« Because ID3 uses the information gain heuristic and a hill climbing strategy,
Itexhibitsa more complexbiasthan BFS-1D3.

* In particular, it does not always find the shortest consistent tree, and it is biased
tofavourtreesthat place attributeswithhigh informationgain closest tothe root.
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RestrictionBiasesandPreferenceBiases

DifferencebetweenthetypesofinductivebiasexhibitedbylD3andbythe CANDIDATE-
ELIMINATIONAIgorithm.

ID3
 |D3searchesacompletehypothesisspace

« Itsearchesincompletelythroughthisspace,fromsimpletocomplexhypotheses,untilitstermin
ation condition ismet

« Itsinductivebiasissolelyaconsequenceoftheorderingofhypothesesbyitssearchstrategy.
Itshypothesisspace introducesno additional bias

CANDIDATE-ELIMINATIONAIgorithm

* TheversionspaceCANDIDATE-
ELIMINATIONAIgorithmsearchesanincompletehypothesisspace

* [tsearchesthisspacecompletely,findingeveryhypothesisconsistentwiththetrainingdata.

 Its inductive bias is solely a consequence of the expressive power of its
hypothesisrepresentation.lts search strategy introducesno additionalbias
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RestrictionBiasesandPreferenceBiases
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NRCM
YOUr roots 1o success

« The inductive bias of ID3 is a preference for certain hypotheses over others
(e.g.,preference for shorter hypotheses over larger hypotheses), with no hard

restrictiononthehypothesesthatcanbeeventuallyenumerated. Thisformofbiasis called
apreferencebiasor a search bias.

 The bias of the CANDIDATE ELIMINATION algorithm is in the form of

acategorical restriction on the set of hypotheses considered. This form of bias
Istypicallycalled arestriction biasor alanguage bias.
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A preference bias is more desirable than a restriction bias, because it allows
thelearner to work within a complete hypothesis space that is assured to contain
theunknown target function.

* In contrast, a restriction bias that strictly limits the set of potential hypotheses

isgenerally less desirable, because i1t introduces thepossibilityofexcluding
theunknown target function altogether.
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Occam's razor: is the problem-solving principle that the simplest solution tends to
bethe right one. When presented with competing hypotheses to solve a problem,
oneshouldselect the solution with the fewest assumptions.

Occam'srazor:“Preferthesimplesthypothesisthatfitsthedata”.
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WhyPreferShortHypotheses?
Argumentinfavour:

Fewershorthypothesesthanlongones:

« Shorthypothesesfitsthetrainingdatawhicharelesslikelytobecoincident
«  Longerhypothesesfitsthetrainingdatamightbecoincident.

Manycomplexhypothesesthatfitthecurrenttrainingdatabutfailtogeneralizecorrec
tly tosubsequent data.
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Argumentopposed: Ngkéﬁ

+ There are few small trees, and our priori chance of finding one consistent with
anarbitrary set of data is therefore small. The difficulty here is that there are

verymanysmallsetsofhypothesesthatonecandefinebutunderstoodbyfewerlearner.

* The size of a hypothesis Is determined by the representation used internally by
thelearner.Occam'srazorwillproducetwodifferenthypothesesfromthesametrainingex
ampleswhenitisappliedbytwolearners,bothjustifyingtheircontradictory conclusions

by Occam's razor. On this basis we might be tempted torejectOccam's razor
altogether.
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ISSUESINDECISIONTREELEARNING
1. AvoidingOverfittingtheData

Reduced error

pruningRulepost-pruning

2. IncorporatingContinuous-ValuedAttributes

3. AlternativeMeasuresforSelectingAttributes

4. HandlingTrainingExampleswithMissingAttributeValues
5. HandlingAttributeswithDifferingCosts

41



1. AvoidingOverfittingtheData

N,’
e
NRCM

« The ID3 algorithm grows each branch of the tree just deeply enough to

perfectlyclassify the training examples but it can lead to difficulties when there

IS

noise inthe data, or when the number of training examples is too small to produce
arepresentative sample of the true target function. This algorithm can produce

treesthatoverfitthe training examples.

* Definition-Overfit:GivenahypothesisspaceH,ahypothesisheHissaidtooverfit the
training data If there exists some alternative hypothesis h'eH,

suchthathhassmallererrorthanh'overthetrainingexamples,buth'hasasmallererrorthan
hover the entire distribution of instances.
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 Thebelowfigureillustratestheimpactofoverfittinginatypicalapplicationofdecisiontreelearnin NRCM

0.() L] I L] ] L) L] 1 | 1
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0.6 F On training data —— -
On test data ——--

0.55 1

() 5 A1 1 1 1 1 i | 1 1 1

0 10 20 30 40 50 60 70 80 90 100

Size of tree (number of nodes)

» Thehorizontalaxisofthis
plotindicatesthetotalnumberofnodesinthedecisiontree,asthetreeisbeingconstructed. Theverticalaxisindicates
theaccuracy ofpredictionsmadebythe tree.

 Thesolidlineshowstheaccuracyofthedecisiontreeoverthetrainingexamples. Thebrokenlineshowsaccuracymeas
uredoveranindependentsetoftestexample

« Theaccuracyofthetreeoverthetrainingexamplesincreasesmonotonicallyasthetreeisgrown.The
accuracymeasuredovertheindependenttestexamplesfirstincreases,thendecreases.
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Howcanitbepossiblefortreehtofitthetrainingexamplesbetterthanh',butforittoperformmorepoorl ng
y over subsequentexamples? T
1. Overfittingcanoccurwhenthetrainingexamplescontainrandomerrorsornoise
2. Whensmallnumbersofexamplesareassociatedwithleaftnodes.
NoisyTrainingExample 1,2,3,4,5,6,7,8,9,10,11,12,13,1
[9+t5']
Examplel5:<Sunny,Hot, Normal,Strong,->
1,2,8,9,11 SU""Y Overcast Rain 4,5,6,10,14
* Exampleisnoisybecausethecorrectlabelis+ [2+,3 ] [3+ 2]
* Previouslyconstructedtreemisclassifiesit 3 71213
ngh Normal 144 0] Strong Light
@ ‘.& No > < Yes >
1,2,8 9 11 15 6,14 4,5,10
[0+,3] [2+ 1] Hot Mild Cool [0+:21] [3+,0-]

15 c—’jc—'ﬁﬁ

[0+ -] [1+,0-]
[1+,0]
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Criterionusedtodeterminethecorrectfinaltreesize

- Useaseparatesetofexamples,distinctfromthetrainingexamples,toevaluatetheutilityof
post- pruningnodes from the tree

- Usealltheavailabledatafortraining,butapplyastatisticaltesttoestimatewhetherexpandi
ng pruning) a particular node is likely to produce an improvement beyond
thetrainingset

or
. Usemeasureofthecomplexityforencodingthetrainingexamplesandthedecisiontree,h
alting growth of the tree when this encoding size is minimized. This

approach is theMinimumDescription Length called

] MDIL—-
Minimize:size(tree)+size(misclassifications(tree))
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Reduced-ErrorPruning

NRCM
» Reduced-error pruning, is to consider each of the decision nodes In the tree to
becandidates for pruning

 Pruning a decision node consists of removing the subtree rooted at that
node,making it a leaf node, and assigning it the most common classification of
thetrainingexamples affiliated with that node

* Nodes are removed only if the resulting pruned tree performs no worse than-
theoriginalover the validation set.

* Reduced error pruning has the effect that any leaf node added due to

coincidentalregularitiesinthetrainingsetislikelytobeprunedbecausethesesamecoinci
dencesare unlikelyto occur inthe validation set
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Theimpactofreduced-errorpruningontheaccuracyofthedecisiontreeisillustratedinbelowfigure N%M

085 |
0.8 F N
075 F

g o7

2 065 F -
0.6 F On training data
asex L On test data mun‘.i): ;l::nk.{;:;:
- 0 |ln :‘n ’:u :n 50 60 70 80 90 100

Size of tree (number of nodes)

« The additional line In figure shows accuracy over the test examples as the tree is pruned.
Whenpruning begins, the tree is at its maximum size and lowest accuracy over the test set. As
pruningproceeds,the numberofnodes isreduced andaccuracy overthetestset increases.

 The available data has been split into three subsets: the training examples, the validation
examplesused for pruning the tree, and a set of test examples used to provide an unbiased estimate
ofaccuracyoverfutureunseen examples.Theplotshowsaccuracyoverthetrainingandtestsets.
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Summary
Statisticaltheoryprovidesabasisforestimatingthetrueerror
(erro rD|:'h 'pofhypothesish,basedonitsobservederror(errOFsh)'] 1‘
overasampleSofdata.

In general, the problem of estimating confidence intervals o
isapproachedbyidentifyi?gtheparametertobeestimated(errorDh)iaHd
anestimator(€TOrsMforthigquantity.

Becausetheestimatorisarandomvariableitcanbecharacterisedbyt
heprobability distributionthat governs its value.

Itllasedestima,tor,theobservedvalueoftheestimatorislikelyto
ronTO™eERCimentto another.
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The varianceofthedistributiongoverning theestiat
estimateislikely to orcharacteriseshowwidelythis

Confidenceintervalscanthenbecalculatedbydeterminingthein
terval that containsthe desired probability mass under
thisdistribution.

‘Acause ofestimationerroristhevarianceintheestimate.Evenwithan




Prodigy and Explanation Based Learning

Prodigy defines a set of target concepts to learn,
e.g., which operator given the current state takes
you to the goal state?

An example of a rule learned by Prodigy in the block-
stacking problem 1is:

IF

THEN Solve the subgoal On(y,z) before On(x,y)

One subgoal to be solved is On(x,y) AND
One subgoal to be solved is On(y,z)




Prodigy and Explanation Based Learning

The rationale behind the rule is that it would avoid a
conflict when stacking blocks.

Prodigy learns by first encountering a conflict, then
explaining the reason for the conflict and creating a rule
like the one above.

Experiments show an improvement in efficiency by a
factor of two to four.




Problems with EBL

v" The number of control rules that must be learned is
very large.

v" If the control rules are many, much time will be spent
looking for the best rule.

Utility analysis 1s used to determine what rules to keep
and what rules to forget.

Prodigy:

328 possible rules

— 69 pass test — 19 were retained




Problems with EBL

v Another problem with EBL is that it is sometimes
intractable to create an explanation for the target concept.

For example, in chess, learning a concept like:
“states for which operator A leads to a solution”
The search here grows exponentially.




Summary

Different from inductive learning, analytical learning
looks for a hypothesis that fit the background knowledge
and covers the training examples.

Explanation based learning is one kind of analytical
learning that divides into three steps:

a. Explain the target value for the current example
b. Analyze the explanation (generalize)

c. Refine the hypothesis
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Summary

Prolog-EBG constructs intermediate features after
analyzing examples.

Explanation based learning can be used to find search
control rules.

In all cases we depend on a perfect domain theory.
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Chapter 12. Combining Inductive

and Analytical Learning

Tom M. Mitchell
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Inductive and Analytical Learning

Inductive learning

Hypothesis fits data
Statistical inference
Requires little prior knowledge

Syntactic inductive bias

Analytical learning

Hypothesis fits domain the
Deductive inference
Learns from scarce data
Bias is domain theory
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What We Would Like

Inductive learning Analytical learning
g -
Plentiful data Perfect prior knowledge
No prior knowledge Scarce data

General purpose learning method:
= No domain theory — learn as well as inductive methods
= Perfect domain theory — learn as well as Prolog-EBG

= Accomodate arbitrary and unknown errors in domain
theory

= Accomodate arbitrary and unknown errors in training data
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Domain theory:
Cup < Stable, Liftable, Open Vessel
Stable «— BottomlIsFlat
Liftable <— Graspable, Light
Graspable «— HasHandle
Open Vessel «— HasConcavity, ConcavityPointsUp

Training examples:

Non-Cups
BottomlsEFlat v, V
ConcavityIoints Up v
Expensive

Fragile
HandleOn'lop
HandleOnSide
HasConcavity
HasHandle

Light
MadeOfCeramic
MadceOfPaper
MadeOfStyrofoain

S\
ESN

v

8

S OSNNESS
SRR SR B&

SRR NG
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N
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KBANN

= KBANN (data D, domain theory B)

1. Create a feedforward network h equivalent to
B

2. Use BACKPROP totune htot D
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Expensive
BottomlsFlat Stable
MadeOfCeramic
MadeOfStyrofoam
MadeOfPaper
HasHandle
HandleOnTop
HandleOnSide
Light
HasConcavity

ConcavityPointsUp

Fragile

Graspable Liftable

Cup
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Creating Network Equivalent to
Domain Theory

Create one unit per horn clause rule (i.e., an AND unit)
= Connect unit inputs to corresponding clause antecedents

= For each non-negated antecedent, corresponding input
weight w «<— W, where W is some constant

= For each negated antecedent, input weight w <— -W

= Threshold weight w, <— -(n-.5)W, where n 1s number of
non-negated antecedents

Finally, add many additional connections with near-zero
weights

Liftable «<— Graspable, —Heavy
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Result of refining the network

Expensive
BottomlIsFlat Stable
MadeOfCeramic
MadeOfStyrofoam
MadeOfPaper
HasHandle
HandleOnTop
HandleOnSide
Light

—— Graspable —

——

Liftable Cup

: Open-Vessel
Has C()’z(‘a vl ,.‘ ’, / [
ConcavityPointsUp

Fragile

Large positive weight

—_—— Large negative weight
Negligible weight
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KBANN Results

Classifying promoter regions in DNA leave
one out testing:

= Backpropagation : error rate 8/106
= KBANN: 4/106

Similar improvements on other classification,
control tasks.

Artificial Intelligence Laborat

ory
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Hypothesis space search in KBANN

Hypothesis Space

Hypotheses that
fit training data
/ equally well

Initial hypothesis

= Initial hypothesis
fbr BACKPROPAGATION
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EBNN

Key 1dea:
= Previously learned approximate domain
theory

= Domain theory represented by collection of
neural networks

= Learn target function as another neural
network
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Explanation of

training example st Stable
in terms of
domain theory:
-
-
BoreomisFlat =T
( avityPointsUp <1 v -
Reavs ‘I’.'\',‘[;::I;i\’:" - CGraspable Lifiable Cup
Lragite =T
HandleOnlop ~ F :
HandleOnSide =T T Cup=T
HasConcavity =T =11t \
HaslHandle = T N
Light =71
MadeOCeramic =¥ gi —
MuadeOfPaper = F
MadeQfStyraofoam - l/ L
0.2 OpenVessel
R
R - I
-
Training
S derivatives
e
>~
/./
Target network: BottomlIsFlar 7 I P
ConcavityPolasUp
Expensive Cup, .
Fragile targer
HandleOnTop
HandleOnSide Lo Crip
HasConcavity
Hastiandle
Light
MadeOtCeramic
MadeOfPaper
MadeOfStyrofoan:

YOUr roots 1o success, ..



% Fadsh QA A7 i B
b ame.cs.pu .ac_Kkr Artificial Intelligence Laboratory

Modified Objective Tor C ra1en
Descent

B =5 |70 - Fa) + x| %550 - 25
. At

where
|A(J,,) — f(wz)l

4

LL('_E].—

e f(x) is target function

e f(x) is neural net approximation to f(x)

e A(w) is domain theory approximation to f(x)
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EBNN

Hypothesis Space

Hypotheses that Hypotheses that

Z,?aximizié‘ﬁ{ 1o / maximize fit to data
ata and prior
knowledge \& 4

TANGENTPROP

Search BACKPROPAGATION

Search
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Search in FOCL

Cup ——

\
\
\
Cup ~— lHasHandle C SD -
[2+.3-]) \
\
\
\

Clyr - 1 HasHandle

[24.3-] *

Cup = [rageile g ys*
¥ raguie Cup 8=~ Bortomistlat,

[2+4-] Light,

HasConcavity,

Generared by the
— domain theory

ConcavitvPaoinis Upr
a f

[4+.2-]

Cup ——~——  BoromisFlar,
Lighe,
HasConcaviry,
ConcavitvPointsUp -

HandleOnTop Cup - Bottomlilsilar,
[0+.2—] Light,
Cup —— BotromlsFlar, HasConcavity,
Lighr, ConcavievPolnisUp,
HasConcavity, HandleOnSide
ConcavityPoinisUp, [2+.0-]

VitandleOnTop

[4+.0-] 16
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