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FORMAL LANGUAGES AND AUTOMATA THEORY

UNIT 1



Introduction to Automata

* Theory




* What is Automata Theory?

= Study of abstract computing devices, or
“machines”
= Automaton = an abstract computing device

= Note: A “device” need not even be a physical
hardware!

= A fundamental question in computer science:

s Find out what different models of machines can do
and cannot do

= The theory of computation
= Computability vs. Complexity



(A pioneer of automata theory)

* Alan Turing (1912-1954)

= Father of Modern Computer
Science

= English mathematician

= Studied abstract machines callec
Turing machines even before
computers existed

= Heard of the Turing test?




An alphabet is a set of symbols:

Or “words” -

Sentences are strings of symbols:

A language is a set of sentences:

A grammar is a finite list of rules
defining a language.

Image source: Nowak et al. Nature, vol 417, 2002

Languages & Grammars

Languages: “A language is a

collection of sentences of
finite length all constructed
from a finite alphabet of
Symbols”

Grammars: “A grammar can

be regarded as a device that
enumerates the sentences of
a language’” - nothing more,
nothing less

N. Chomsky, Information
and Control, Vol 2, 1959
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The Central Concepts of
* Automata Theory




* Alphabet

An alphabet is a finite, non-empty set of
symbols

= We use the symbol ) (sigma) to denote an
alphabet
= Examples:
= Binary: > ={0,1}
= All lower case letters: > ={a,b,c,..z}
= Alphanumeric: > ={a-z, A-Z, 0-9}
= DNA molecule letters: > ={a,c,q,t}



i Strings

A string or word is a finite sequence of symbols
chosen from >

= Empty string is ¢ (or “epsilon”)

= Length of a string w, denoted by “|wW|”, is
equal to the number of (non- €) characters in the

string
= £g,x=010100 /x| =6
m X=07e0eT1e00¢ Xl="7

= Xy = concatentation of two strings x and y
9



* Powers of an alphabet

Let > be an alphabet.

= >~ =the set of all strings of length k
« Y =30U3"U>?U...

« >r=>7U32U>%U ...



Languages

L is a said to be a language over alphabet >, only if L &> *
=> this is because Y * is the set of all strings (of all possible
length including 0) over the given alphabet
Examples:

1. Let L be the language of all strings consisting of n 0’s
followed by n1’s:
L ={¢,01,0011,000111,...}
> Let L be the language of all strings of with equal humber of
O's and 1’s:
L = {¢,01,10,0011,1100,0101,1010,1001,...}

[ Definition: & denotes the Empty language ]

= LetL ={e);Is L=@? |NO

11



* The Membership Problem

Given a string w €3 *and a language L
over >, decide whether or not w L.

Example:
Let w = 100011

Q) Is w € the language of strings with
equal number of 0s and 1s?




i Finite Automata

= Some Applications

= Software for designing and checking the behavior
of digital circuits

= Lexical analyzer of a typical compiler

= Software for scanning large bodies of text (e.g.,
web pages) for pattern finding

= Software for verifying systems of all types that
have a finite number of states (e.g., stock market
transaction, communication/network protocol)

13



& Finite Automata : Example
ya
= On/Off switch j arn

Push

= Modeling recognition of the word “then’

Start t h e n
—( (e (ene—
’i
I’ I’ '\ ‘

Start state Transition  Intermediate  Final state
state

14




* Structural expressions

= Grammars

= Regular expressions

= E.g., unix style to capture city names such
as “Palo Alto CA”:

" | A-Z][g;z_]f (E] [A-Z][a-z]")"] ]\[A-Z][A-Z] )

>y
~" 4 kB
1

3
Start with 4 letter

A string of other !
letters (possibly i Should end w/ 2-letter state code

empty)

Other space delimited words
(part of city name) 15




Summary

= Automata theory & a historical perspective

= Chomsky hierarchy

= Finite automata

= Alphabets, strings/words/sentences, languages
= Membership problem



* Finite Automata




Finite Automaton (FA)

= Informally, a state diagram that comprehensively
captures all possible states and transitions that a
machine can take while responding to a stream or
sequence of input symbols

= Recognizer for “Regular Languages”

s Deterministic Finite Automata (DFA)
= The machine can exist in only one state at any given time

= Non-deterministic Finite Automata (NFA)
= The machine can exist in multiple states at the same time



Deterministic Finite Automata

i - Definition

= A Deterministic Finite Automaton (DFA)
consists of:
= Q ==> a finite set of states
= > ==> a finite set of input symbols (alphabet)
= (, ==> a start state
= F ==> set of final states

O ==> a transition function, which is a mapping
between Q x Y ==>Q

= A DFA is defined by the 5-tuple:
- {Qs Z ’ qo,F, 6 }




What does a DFA do on

& reading an input string?

= Input: awordwin )~
= Question: Is w acceptable by the DFA?

m Steps:
» Start at the “start state” q,

= For every input symbol in the sequence w do

» Compute the next state from the current state, given the
current input symbol in w and the transition function

= If after all symbols in w are consumed, the current
state is one of the final states (F) then accept w;

= Otherwise, reject w.




& Regular Languages

= Let L(A) be a language recognized by a
DFA A.

= Then L(A) is called a “Regular Language”.

= Locate regular languages in the
Chomsky Hierarchy



Example #1

= Build a DFA for the following language:

= L={w]|wis a binary string that contains 01 as a substring}
= Steps for building a DFA to recognize L:

= Y ={0,1}

= Decide on the states: Q

= Designate start state and final state(s)

= 0: Decide on the transitions:

= Final states == same as “accepting states”
= Other states == same as “non-accepting states”



Regular expression: (0+1)*01(0+1)"

DFA for strings containing O

« What makes this DFA deterministic? * Q=1{d,,9,9}
*2 ={0,1}
* start state = q,
* F ={q}
« Transition table
symbols
b} 0 1
*Jo Q4 Qo
« What if the language allows o g 9 %
empty strings? B % %




Example #2

Clamping Logic:
= A clamping circuit waits for a ”1” input, and turns on forever,
However, to avoid clamping on spurious noise, we’'ll design
a DFA that waits for two consecutive 1sin a row before
clamping on.
= Build a DFA for the following language:
L ={w | wis a bit string which contains the
substring 11}

= State Design:

= (. Start state (initially off), also means the most recent input
was nota 1

= Qy: has never seen 11 but the most recent input was a 1
= (,: has seen 11 at least once



Example #3

= Build a DFA for the following language:
L ={w | wis a binary string that has even
number of 1s and even number of 0s}
. ?



Extension of transitions (0) to

N\

Paths (0)

. d (q,w) = destination state from state g
on input string w

« 8 (qwa) =5 (3(q,w), a)

= Work out example #3 using the input
sequence w=10010, a=1:

m 8 (qo,Wa) =7



& Language of a DFA

A DFA A accepts string w if there is a
path from g, to an accepting (or final)
state that is labeled by w

wie, L(A)={w] d(gw) € F)

s le., L(A) = all strings that lead to a final
state from q,

11



Non-deterministic Finite

* Automata (NFA)

x A Non-deterministic Finite Automaton
(NFA)

= IS of course “non-deterministic”

= Implying that the machine can exist in more
than one state at the same time

= Transitions could be non-deterministic

« Each transition function therefore
maps to a set of states

12



Non-deterministic Finite

i Automata (NFA)

= A Non-deterministic Finite Automaton (NFA)
consists of:
= Q ==> afinite set of states
= > ==> a finite set of input symbols (alphabet)
= (, ==> a start state
= F ==> set of final states

O ==> a transition function, which is a mapping
between Q x 5 ==> subset of Q

= An NFA is also defined by the 5-tuple:
- {Qs Z ’ qO!Fﬂ 6}

13



How to use an NFA?

= Input: awordwin }”
= Question: Is w acceptable by the NFA?

n Ste|:_)s:

= Start at the “start state” q,

= For every input symbol in the sequence w do

» Determine all possible next states from all current states, given
the current input symbol in w and the transition function

= [f after all symbols in w are consumed and if at least one of
the current states is a final state then accept w;

= Otherwise, reject w.




Regular expression: (0+1)*01(0+1)"

NFA for strings containing O

Why is this non-deterministic?
y * Q = {q0=q1=q2}
0,1 01| -z={o.1
« start state = q
start 0 1 °
*F=1{q,}
Final « Transition table
State Symb0|s
b} 0 1
What will happen if at state q, g 1) {00,094} | {90}
an input of 0 is received? 2 q ® {02}
@ *d {05} {02}




Note: Explicitly specifying dead states is just a matter of design convenience
(one that is generally followed in NFAs), and
this feature does not make a machine deterministic or non-deterministic.

i What is a “dead state”?

= A DFA for recogmzmg the key word
“while”

= An NFA for the same purpose:

W h i I e

ITransitions into a dead state are implicit




Example #2

= Build an NFA for the following language:
L={w|wendsin 01}
m ?

= Other examples
= Keyword recognizer (e.g., if, then, else,
while, for, include, etc.)

= Strings where the first symbol is present
somewhere later on at least once



* Extension of 0 to NFA Paths

= Basis: 0 (g,¢) = {q]

0 Induction:A

= Let O (Qo,W) = {P1,Pz---. P}
= 0 (p,a)=S5 fori=1,2....k

= Then, /6\(q0,wa)=S1U82U... US,



i Language of an NFA

= An NFA accepts wif there exists at
least one path from the start state to an
accepting (or final) state that is labeled
by w A

s LIN)={w[d(qyu,w)NF#®}



& Advantages & Caveats for NFA

= Great for modeling regular expressions
= String processing - e.g., grep, lexical analyzer

= Could a non-deterministic state machine be
implemented in practice?

= A parallel computer could exist in multiple “states”
at the same time

= Probabilistic models could be viewed as
extensions of non-deterministic state machines
(e.g., toss of a coin, a roll of dice)

20



But, DFAs and NFAs are equivalent in their power to capture langauges !!

Differences: DFA vs. NFA

» DFA n NFA

1, All transitions are 1 Some transitions could be
deterministic non-deterministic
. Each transition leads to = Afransition could lead i0o a

exactly one state subset of states

2 For each state, transition on 2. Not all symbol transitions
all possible symbols need to be defined explicitly (if
(alphabet) should be defined undefined will go to a dead

s Accepts input if the last state state — this is just a design
isinF convenience, not to be

confused with “non-

construct because of the

number of states E Accepts i_nplgt if one of the last
: Practical implementation is StaleSHsiIT] .
i feasible i 4. Generally easier than a DFA

to construct

5. Practical implementation has
to be deterministic (convert to
DFA) or in the form of
parallelism 21




Equivalence of DFA & NFA

= Theorem:
ShOl;Id be = . Alanguage L is accepted by a DFA it and only if
e e it is accepted by an NFA.
any L
= Proof:
1. |If part:

Prove by showing every NFA can be converted to an
equivalent DFA (in the next few slides...)

2. Only-if part is trivial:

Every DFA is a special case of an NFA where each
state has exactly one transition for every input symbol.
Therefore, if L is accepted by a DFA, it is acceptedlt:)Iy

a corresponding NFA. o



i Proof for the if-part

= |f-part: A language L is accepted by a DFA if
it is accepted by an NFA

= rephrasing...

= Given any NFA N, we can construct a DFA D
such that L(N)=L(D)

= How to convert an NFA into a DFA?

= Observation: In an NFA, each transition maps to a
subset of states
= Idea: Represent:
each “subset of NFA_ states” = a single “DFA_state”

Subset construction v



* NFA to DFA by subset construction

= LetN={Qu.2.0n0.Fn}
= Goal: Build D={Qp,> ,0p,{q,},Fp} s.1.
L(D)=L(N)
= Construction:
1. Qp= all subsets of Qy (i.e., power set)

. Fp=set of subsets S of Q s.t. SNFFO®

. Op: for each subset S of Q and for each input
symbol ain >
05(S.a) = U On(p.a)

24



Idea: To avoid enumerating all of
power set, do
“lazy creation of states”

NFA to DFA construction: Example

= L={w/wendsin 01}

Ll DFA:
0 1
o 5p 0 1
On - 1 —— o) wa) | lad
—» 0o (G001} {Qot —» {0y} {0,014} {do.aq} {eRNePY;
a @ || ——fwr—— = o) | et | lad
o % %) —He—
{Co,0}
*{0o.0} 0. Enumerate all possible subsets
—mE 1 Determine transitions
— e 2 Retain only those states

reachable from {q,}
25




NFA to DFA: Repeating the example

* using LAZY CREATION

= L={w/wendsin 01} 1 0

DFA:  _,

B 0 1 5, | 0 | 1 I
—» @01} | (a0} — {0} | taoat | a0 |

a4 7 {g.}

q %} %}

Main Idea:
Introduce states as you go
(on a need basis)

26




* Correctness of subset construction

Theorem: If D is the DFA constructed
from NFA N by subset construction,
then L(D)=L(N)

= Proof: )
= Show that 0({qy},w) = %N(qo,w} , for allw

= Using induction on w’s length:
« Letw =xa R R
= Op({Qp}.xa) = Op( On(Qg,X}, @) = On(Qg,W}

27



A bad case where
tstates(DFA)>>#states(NFA)

s L={w|wis abinary string s.t., the k" symbol
from its end is a 1}

= NFA has k+1 states

= But an equivalent DFA needs to have at least 2%
states

(Pigeon hole principle)
= mholes and >m pigeons
» => at least one hole has to contain two or more pigeons
28




* Applications

= [extindexing
= inverted indexing

= For each unique word in the database, store all
locations that contain it using an NFA or a DFA

= Find pattern P intext T

= Example: Google querying
= Extensions of this idea:

= PATRICIA tree, suffix tree

29



A few subtle properties of
DFAs and NFAs

= [he machine never really terminates.

= It is always waiting for the next input symbol or making
transitions.

= The machine decides when to consume the next symbol from
the input and when to ignore it.

= (but the machine can never skip a symbol)

m => A transition can happen even without really consuming an
input symbol (think of consuming ¢ as a free token)

= A single transition cannot consume more than one symbol.

30



i FA with e-Transitions

= We can allow explicit e-transitions in finite
automata

= 1.e., a transition from one state to another state
without consuming any additional input symbol

» Makes it easier sometimes to construct NFAs

Definition: ¢ -NFAs are those NFAs with at
least one explicit e-transition defined.

s € -NFAs have one more column in their
transition table

31



Example of an e-NFA

L = {w | wis empty, or if non-empty will end in 01}

0,1

O 0 1 €
: . | ECLOSE(q’
- *qp ) ) {0, 0l (d%)
Qo {do.a:} | {A0} {dp} <«1— ECLOSE(a.)
94 % o [{a} J— ECLOSE@)
e 0 ) {q} ECLOSE(qy)

m €-closure of a state q,
ECLOSE(q), is the set
of all states (including
itself) that can be
reached from q by
repeatedly making an

arbitrary number of €-
transitions.

32




To simulate any transition:
Step 1) Go to all immediate destination states.
Step 2) From there go to all their e-closure states as well.

i Example of an e-NFA

L = {w | wis empty, or if non-empty will end in 01}

0,1
:i ) I 1 : Simulate for w=101:
E q,
Qo Qo

1
1$ %
o) 0 1 %] 0
- € X 0],

ECLOSE(q’

- *qp ) ) {d0.904T (o) oF
Qo G [{a} | {9} +}— ECLOSE(q,) iR
a4 ) {ao} {aq} Q2

Qo 7 ) {q} 55




To simulate any transition:
Step 1) Go to all immediate destination states.
Step 2) From there go to all their e-closure states as well.

Example of another e-NFA

Simulate for w=101:

0 1 ?
o} 0 1
- E
— ", |9 ) {90,993}

Qo {q0.q1} {0} | {9095}

o p 7 {at | {4

" |9 ) {q.}

Qs J {azh | {as)

34




i Equivalency of DFA, NFA, e-NFA

= Theorem: A language L is accepted by

some €-NFA if and only if L is accepted by
some DFA

= Implication:

= DFA= NFA = &-NFA
= (all accept Regular Languages)

35



Eliminating e-transitions

Let E = {Qg,2,0¢,9,,Fc} be an e-NFA

Goal: To build DFA D={Qp,¥,8p,{Ap},Fp} s.t. L(D)=L(E)
Construction:

Qp= all reachable subsets of Qg factoring in e-closures

T
5.  Fp=subsets Sin Qp s.t. SNF#P
s 0p: for each subset S of Q¢ and for each input symbol

acy .

« LetR=U 8:(p,a) // go to destination states

pins
= 0,(S,a) = U ECLOSE(r) // from there, take a union
rin R of all their e-closures

36



0 0 1
- E
—> (p ) ) {d'0,%%0}
Qo {4} | {A} {Q0}
a4 ) {ao} {a4}
Qo 7 ) {q}

Example: e-NFA = DFA

L = {w | wis empty, or if non-empty will end in 01}

—> "q',q0}

37




Example: e-NFA = DFA

L = {w | wis empty, or if non-empty will end in 01}

0 1

E
start

= union

\
5 .?_5_\ 1 IE

— q, |2 |@ ‘;iq’_oq_o}

T T S S
a4 D77 |{a} {%z}_ 'l
Qo 7 ) {q}

—> 00,00} \“{%:Ch} {0}
{%0,q1} {%0.q1} {do,Ga}
{To} {0,911} {0}
{00, {To.A1} {Qot

38




Summary

= DFA
= Definition
= Transition diagrams & tables
= Regular language
= NFA
= Definition
= Transition diagrams & tables
= DFAvs. NFA
= NFA to DFA conversion using subset construction
= Equivalency of DFA & NFA
= Removal of redundant states and including dead states

m E-transitions in NFA
= Pigeon hole principles
= Text searching applications 39



Equivalence & Minimization of

* DFAs

41



& Applications of interest

= Comparing two DFAs:
= L(DFA,) == L(DFA,)?

= How to minimize a DFA?
1. Remove unreachable states
>, Identify & condense equivalent states into one

42



When to call two states in a DFA
* “equivalent”?

Two states p and g are said to be
equivalent iff:

) Any string w accepted by starting at p is also accepted by
starting at q; I @
—@

) Any string w rejected by starting at p is also rejected by

starting at q.
@~"—0
= p=q . .

Past doesn’t matter - only future does!
s
=
W)

43




Computing equivalent states

* in a DFA Table Filling Algorithm

1 Mark accepting states # non-accepting states

IG)'I'IITIUO|UJJ>

1. Compare every pair of states
2.  Distinguish by one symbol transition
3 Mark = or # or blank(tbd)

1.  Compare every pair of states
2.  Distinguish by up to two symbol transitions (until different or same or thd)

(keep repeating until table complete) 44




Table Filling Algorithm - step

i by step

IG)'I'IITIUO|UJJ>

>

45




Table Filling Algorithm - step

& by step

A
B
© |
D
—E|[X[X

F X
G X
s Mark X between accepting vs. non-accepting state H X
A|B ?

46




Table Filling Algorithm - step

& by step f

IG)'I'IITIUO|UJJ>

— > [ X | X

s Mark X between accepting vs. non-accepting state
2. Look 1- hop away for distinguishing states or strings

47




1
2.

Table Filling Algorithm - step

& by step f

IG)'I'IITIUO|UJJ>

Mark X between accepting vs. non-accepting state
Look 1- hop away for distinguishing states or strings

— o[ XX

48




Table Filling Algorithm - step

& by step f

A
i

C
DIX[X|X
EIX[X|X
F X
GIX|X|X
i Mark X between accepting vs. non-accepting state HIX[X]|=
2. Look 1- hop away for distinguishing states or strings AlBIC
!

49




1
2.

Table Filling Algorithm - step

& by step f

IG)'I'IITIUO|UJJ>

Mark X between accepting vs. non-accepting state
Look 1- hop away for distinguishing states or strings

— O X[ |X[X

50




Table Filling Algorithm - step

& by step f

IG)'I'IITIUO|UJJ>

s Mark X between accepting vs. non-accepting state
2. Look 1- hop away for distinguishing states or strings

51




Table Filling Algorithm - step

& by step f

IG)'I'IITIUO|UJJ>

s Mark X between accepting vs. non-accepting state
2. Look 1- hop away for distinguishing states or strings

52




1
2.
3.

Table Filling Algorithm - step
by step

IG)'I'IITIUO|UJJ>

XXX |[X[X|X]HI

Mark X between accepting vs. non-accepting state
Look 1- hop away for distinguishing states or strings
Look 2-hops away for distinguishing states or strings

53




Table Filling Algorithm - step
by step

I(OMmMMmMmoIO|W|>»

s Mark X between accepting vs. non-accepting state
2. Look 1- hop away for distinguishing states or strings
3. Look 2-hops away for distinguishing states or strings

Equivalences:

+A=B

54




Table Filling Algorithm - step

& by step

Retrain only one copy for
each equivalence set of states

Equivalences:
«A=B
« C=H
« D=G

55




Table Filling Algorithm —

i special case

IG)'I'IITIUO|UJJ>

>

Q) What happens if the input DFA
has more than one final state?
Can all final states initially be treated
as equivalent to one another?

56




Putting it all together ...

i How to minimize a DFA?

= Goal: Minimize the number of states in
a DFA

= Algorithm:

1. Eliminate states unreachable from the

start state  tapje filling algorithm
. / F
2. ldentify and remove equivalent states

3. Output the resultant DFA

Depth-first traversal from the start state

57



Are Two DFAs Equivalent?

Unified DEA

g

Is gy = 00’7
. if yes, then DFA,=DFA,
. else, not equiv.

mw:}mmﬂmﬂ»'ﬂ

-

1. Make a new dummy DFA by just putting together both DFAs
2. Run table-filling algorithm on the unified DFA
3. IF the start states of both DFAs are found to be equivalent,
THEN: DFA,= DFA,
ELSE: different 58




Summary

= Simplification of DFAs
= How to remove unreachable states?
= How to identify and collapse equivalent states?
= How to minimize a DFA?
= How to tell whether two DFAs are equivalent?




FORMAL LANGUAGES AND AUTOMATA THEORY

UNIT 2




* Regular Expressions



Regular Expressions vs. Finite
Automata

= Offers a declarative way to express the pattern of any
string we want to accept
n Eg, 01"+ 10"

= Automata => more machine-like
< input: string , output: [accept/reject] >
= Regqular expressions => more program syntax-like

= Unix environments heavily use regular expressions
= E.g., bash shell, grep, vi & other editors, sed

= Perl scripting — good for string processing

= Lexical analyzers such as Lex or Flex
2



Regular Expressions

Syntacftical

expressions prata/machines




& Language Operators

= Union of two languages:
= L UM = all strings that are either in L or M

= Note: A union of two languages produces a third
language

= Concatenation of two languages:

= L. M = all strings that are of the form xy
s.t,xeLandye M

= The dot operator is usually omitted
« i.e., LMis same as L.M




Kleene Closure (the * operator)

Kleene Closure of a given language L.:

= L%= {g}

L'={w | for some w € L}

L= {w,w, | w, € L, w, € L (duplicates allowed)}

= { w,W,...w, | all w's chosen are € L (duplicates allowed)}
= (Note: the choice of each w, is independent)
« L*=U,, L (arbitrary number of concatenations)

Example:

m lLetL={1, 00}

LO= {€}

= L'={1,00}

= L?={11,100,001,0000}

= L3={111,1100,1001,10000,000000,00001,00100,0011}

« L=odrruezu..




i Kleene Closure (special notes)

= L*is an infinite set iff [L|21 and L#{e}
s |f L={e}, then L* = {e}
s IfL=0,then L™ = {¢}

\

2" denotes the set of all words over an
alphabet 2
= [herefore, an abbreviated way of saying

there is an arbitrary language L over an
alphabet 2 is:

\ s L2 /




& Building Regular Expressions

= Let E be a regular expression and the
language represented by E is L(E)

s [Then:
« (E)=E



Example: how to use these regular
expression properties and language

operators?

= L={w]|wis abinary string which does nofcontain two consecutive 0s or two
consecutive 1s anywhere)
= E.g.,w=01010101isinL, while w=10010is not in L
= Goal: Build a regular expression for L
= Four cases for w:
= Case A: w starts with 0 and |w| is even
= Case B: w starts with 1 and |w| is even
= Case C: w starts with 0 and |w| is odd
= Case D: w starts with 1 and |w| is odd
= Regular expression for the four cases:
= CaseA: (01)~
= CaseB: (10)~
= CaseC: 0(10)~
= CaseD: 1(01)*
= Since L is the union of all 4 cases:
= RegExpforL=(01)"+(10)" +0(10)" + 1(01}*
= |f we introduce ¢ then the regular expression can be simplified to:

= Reg Exp for L = (€ +1)(01)*(€ +0)



* Precedence of Operators

= Highest to lowest
= * operator (star)

. . (concatenation)
= + operator

= Example:
s 01% + 1 = (0.((1)))+ 1



Finite Automata (FA) & Regular
Expressions (Reg EXx)

= [0 show that they are interchangeable,
consider the following theorems:

s Theorem 1: For every DFA A there exists a reqular
expression R such that L(R)=L(A)

Proofs
in the book w Theorem 2: For every reqular expression R there

exists an € -NFA E such that L(E)=L(R)

£ -NFA NFA

Theorem 2 \ Kleene Theorem

Reg Ex DFA

Theorem 1




Dh Theorem
DFA to RE construction

Informally, trace all distinct paths (traversing cycles only once)
from the start state to each of the final states
and enumerate all the expressions along the way

Example: ¢ 0 0,1
8—6—@©
0 (g )—1
(1y 0 (07 1 (0+1)
= B s Y LY_' Y
1" 00* 1 (0+1)
ﬂ Q) What is the language?

1700*1(0+1)"




@Theorem

* RE to e-NFA construction

Example: (0+1)"01(0+1)~

(0+1)* 01 (0+1)*




Algebraic Laws of Regular

& Expressions

= Commutative:
=« E+F = F+E

= Associative:
s (E+F)+G = E+(F+G)
= (EF)G = E(FG)
= |dentity:
= E+O=E
s cE=Ee=E
= Annihilator:
s PE=EO =0




& Algebraic Laws...

= Distributive:
« E(F+G) = EF + EG
= (F+G)E = FE+GE

= |dempotent: E+ E=E
= |nvolving Kleene closures:

i (E*)* - E*
= OF =&

m &° =&

= E* =EE*
= E? =¢+E



* True or False?

Let R and S be two regular expressions. Then:

. ((R")*)* =R* ?
. (R+S)* = R* + S* ?
- (RS + R)* RS = (RR*S)* ?



& Summary

= Regular expressions
= Equivalence to finite automata
= DFA to regular expression conversion

= Regular expression to e-NFA
conversion

= Algebraic laws of regular expressions

= Unix regular expressions and Lexical
Analyzer

16



Properties of Reqgular
* Languages




& Topics

1) How to prove whether a given
language is regular or not?

o) Closure properties of regular
languages



Some languages are not

i regular

When is a language is regular?
if we are able to construct one of the

following: DFA or NFA or € -NFA or regular
expression

When is it not?

If we can show that no FA can be built for a
language



How to prove languages are

i notregular?

What if we cannot come up with any FA?
A)  Can it be language that is not regular?
B) Oris it that we tried wrong approaches?

How do we decisively prove that a language
is not regular?

“The hardest thing of all is to find a black cat in a dark room,
especially if there is no cat!” -Confucius




Example of a non-regular
language

Let L = {w | wis of the form 0"1" | for all n=0}
= Hypothesis: L is not regular

= Intuitive rationale: How do you keep track
of a running count in an FA?

= A more formal rationale:
» By contradition, if L is regular then there should exist a DFA

for L.

» Let k = number of states in that DFA.

» Consider the special word w= 01k =>we L

» DFA is in some state p;, after consuming the first i symbols in
W

5



& Rationale...

> Let {py.p+,--- P} D€ the sequence of states that the
DFA should have visited after consuming the first
k symbols in w which is 0¥

» But there are only k states in the DFA!

» ==> at least one state should repeat somewhere
along the path  (by &, 8, &, + OO Principle)

» ==> Let the repeating state be p,=p, fori <]

» ==> We can fool the DFA by inputing 0-(-)11k and
still get it to accept (note: k-(j-1) is at most k-1).

» ==> DFA accepts strings w/ unequal number of 0s
and 1s, implying that the DFA is wrong! $

6




The Pumping Lemma for
* Regular Languages

A technigue that is used to show
that a given language is not
regular



Pumping Lemma for Regular

i Languages

Let L be a regular language

Then there exists some constant N such that for
every string w € L s.t. [w/2N, there exists a
way to break winto three parts, w=xyz,
such that:

. YFE
2 [xy/sN
5. For all k=0, all strings of the form xy*z ¢ L

This clause should hold for all regular languages.

Definition: Nis called the “Pumping Lemma Constant” 8




i Pumping Lemma: Proof
= L is regular => it should have a DFA.

= Set N := number of states in the DFA

= Any string wel, s.t. |w|2N, should have the
form:  w=a,a,...a,, where mzN

= Let the states traversed after reading the first
N symbols be: {pg.P1,--- Pn}

» ==> There are N+1 p-states, while there are only
N DFA states

» ==> at least one state has to repeat
i.e, pi= p,where 0<i<j=N (by PHP)



>

Pumping Lemma: Proof...

=> We should be able to break w=xyz as follows:
> X=a18..3; Y=a,1840--ay; Z=2a,,18y,--an
> X's path will be p,..p
> ¥y's path will be p;p,,+..p, (but p;=p, implying a loop)

> Z's path will be pyp,,i--Pm ( YK (for k loops)

”,

Now consider another
string w,=xy“z , where k=0
Case k=0
> DFA will reach the accept state p,,
Case k>0
» DFA will loop for y¥, and finally reach the accept state p,, for z

In either case, w,€ L This proves part (3) of the lemma




* Pumping Lemma: Proof...

u FOI’ part (1 ) f (,y‘f‘(\f:c‘)rkloops) “
= Sincei<j,y# e —-.X ..... ,.Z@
=P

= Forpart (2):
= By PHP, the repetition of states has to
occur within the first N symbols in w

= ==> |XY|sN



The Purpose of the Pumping

* Lemma for RL

= [0 prove that some languages cannot
be regular.



How to use the pumping

i lemma?

Think of playing a 2 person game

= Role 1: You claim that the language cannot
be regular
= Role 2: An adversary who claims the

language is regular

= You show that the adversary’s statement will
lead to a contradiction that implyies pumping
lemma cannot hold for the language.

- You win!! s



How to use the pumping
lemma? (The Steps)

1. (you) L is not regular.

2. (adv.) Claims that L is regular and gives you
a value for N as its P/L constant

3. (you) Using N, choose a stringw € L s.t.,
1. |w| =N,
2. Using w as the template, construct other words
w, of the form xy*z and show that at least one
suchw, ¢ L
=> this implies you have successfully broken the

pumping lemma for the language, and hence that the
adversary is wrong.

(Note: In this process, you may have to try many values of k,
starting with k=0, and then 2, 3, .. soon, untilw, ¢ L) 4,




E Note: This N can be anything (need not necessarily be the #states in the DFA. ;
It's the adversary’s choice.) '

Example of using the Pumping Lemma to
prove that a language is not regular

Let L., = {w | w is a binary string with equal number
of 1s and Os}

= Your Claim: L, is not regular

= Proof:
- By contradiction, let L, be regular 2 adv
» P/L constant should exist = adv.
> Let N =that P/L constant
> Consider input w = ON{N =

(vour choice for the template string)

> By pumping lemma, we should be able to break 2vou
w=xyz, such that:
1) y# £
2) |Xy|SN
s For all k=0, the string xy*z is also in L 15



Template stringw =0N1N =00 .... 011 ... 1
F

N —<— N—>

Proof...

»  Because |xy|=N, xy should contain only Os = you
> (This and because y# & implies y=0+)

>  Therefore x can contain at most N-1 0s

> Also, all the N 1s must be inside z

» By (3), any string of the form xy*z e L, for all k=0

1Settingk=0is ¢ Case k=0: xz has at most N-1 0s but has N 1s
I referred to as | 0
| spumpingdown ! Therefore, xy°z ¢ L,

-------- »  This violates the P/L (a contradiction) '%

________ | Another way of proving this will be to show that if
I Settingk>1is | the #0s is arbitrarily pumped up (e.g., k=2),

I referred to as ,
! “pumping up” I then the #0s will become exceed the #1s

———————— 16



& Exercise 2

Prove L = {07107 | n= 1} is not reqular

Note: This n is not to be confused with the pumping
lemma constant N. That can be different.

In other words, the above question is same as
proving:
« L={0™0™ | m= 1} is not regular



Example 3: Pumping Lemma

Claim: L ={ 0' | i is a perfect square} is not regular
= Proof:

> By contradiction, let L be regular.

> P/L should apply

» Let N=P/L constant

> Choose w=0N

> By pumping lemma, w=xyz satisfying all three rules
> Byrules (1) & (2), y has between 1 and N Os

By rule (3}, any string of the form xy*z is also in L for all k=0
Case k=0:

v

v

> #zeros (xy°z) = #zeros (xyz) - #zeros (y)
N2—N = #zeros (xy’z) = N2-1
(N-1)2 < N2-N = #zeros(xy%z) = N2-1 < N2

But the above will complete the proof ONLY IF N>1.

;S
» xy%ze L
» ... (proof contd.. Next slide) 18



Example 3: Pumping Lemma

» (proof contd...)
» Ifthe adversary pick N=1, then (N-1)2 = N2 - N, and therefore the #zeros(xy®z)
could end up being a perfect square!
» This means that pumping down (i.e., setting k=0) is not giving us the proof!
» S0 lets try pumping up next...

> Case k=2:
» #zeros (xy®z) = #zeros (xyz) + #zeros (y)
» NZ2+1 = #zeros(xy?z) < N2+N

» N2 <« N°2+1= #izeros(xy?z) = N?+N < (N+1)?
» xy2ze L _?

> (Notice that the above should hold for all possible N values of N>0. Therefore, this
completes the proof.)



Closure properties of Regular
* Languages

20



Closure properties for Regular

& Languages (RL

s Closureproperty:
= If a set of regular languages are combined using
an operator, then the resulting language is also
regular
= Regular languages are closed under:
= Union, intersection, complement, difference
= Reversal
= Kleene closure
= Concatenation
= Homomorphism
= Inverse homomorphism

This is different
from Kleene
closure

Now, lets prove all of this!

21



i RLs are closed under union

= |[F LandM are two RLs THEN:

» they both have two corresponding regular
expressions, R and S respectively

» (LU M) can be represented using the regular
expression R+S

» Therefore, (L U M) is also regular O

How can this be proved using FAs?
22



RLs are closed under
complementation

= If Lis an RL over ¥, then L=3"*-L

~ To show L is also regular, make the following

construction convert every final state into non-final, and
every non-final state into a final state

DFA for L @ DFA for L .
__—"-"> -__a‘ﬁ"'}

Assumes g0 is a non-final state. If not, do the opposite.




RLs are closed under

i Intersection

= A quick, indirect way to prove:
= By DeMorgan’'s law:
=« LNM=(LUM)
= Since we know RLs are closed under union
and complementation, they are also closed
under intersection
= A more direct way would be construct a
finite automaton for L N M

24



i DFA construction forL N M

A =DFAforL={Q,, 2 ,q.F 0.}
AI\/I = DFA for M = {QIVIS Z ’ qI\/IJFIVIS 6I\/I }

Build A_ oy = {Qx Qu.2., (AL,9m), FLx Fy,0}

such that:

. 6((p,C|),a) = (6L(p=a)= 6M(q=a))! where P in QL! and g
N QIVI

This construction ensures that a string w will

be accepted if and only if w reaches an

accepting state in both input DFAs.

25



DFA construction forL N M

DFEA for L
--"\I‘.‘-
—
:"‘-J
\\ “\ .
N N

(©

-
-
F)
‘_b .'-——-->
by
L
~
\vi
EEN 4

DFA for M

-
’_"-“-

-

- —

-

’
~ ’

-’

» ~ ¢

D>

’
’
a [
]
’
[
4 I’
1’ 4
’

4
L




RLs are closed under set

& difference
Closed under intersection

= We observ '~ |Closed under
s L-M=LNM complementation

/

= Therefore, L - M is also regular

27



i RLs are closed under reversal

Reversal of a string w is denoted by w-
=« E.g., w=00111, wR=11100
Reversal of a language:

= LR = The language generated by
reversing all strings in L

Theorem: If L is regular then LR is also
regular

28



¢ -NFA Construction for LR

New e-NFA for LR

DFA for L @
-.._"'_'-\’-)

Make the 4 —— :

old start state P R )
as the only new ; @ »
final state /
4 \‘ . "
Reverse all transitions ™ \"\*

What to do if g, was
one of the final states

in the input DFA?

Convert the old set of final states
into non-final states 29




If L is regular, LR is regular (proof

i using regular expressions)

= Let E be aregular expression for L
= Given E, how to build ER?
= Basis: If E=¢, G, or a, then ER=E
= Induction: Every part of E (refer to the part as “F”)
can be in only one of the three following forms:
. F=F+F,
= FR=FR+FR
»  F=F,F,
« FR=F,fF,R
s F=(F)
(PR = (R

30



& Homomorphisms

= Substitute each symbol in } (main alphabet)
by a corresponding string in T (another
alphabet)
= h:y--->T*
= Example:
= Let $={0,1} and T={a,b}
= Let a homomorphic function h on > be:
= h(0)=ab, h(1)=e
= [fw=10110, then h(w) = eabeeab = abab
= In general,
= h(w) = h(a,) h(a,)... h(a,)

31



& RLs are closed under homomorphisms

Theorem: If L is regular, then so is h(L)

b

2

3.

Proof: If E is a RE for L, then show L(h(E)) = h(L(E))
Basis: If E= ¢, @, or a, then the claim holds.

Induction: There are three forms of E:

E - E1+E2

L(h(E)) = L(N(E4) + h(Ez)) = L(N(Ey))
h(L(E)) = h(L(E;) + L(Ey)) = h(L(Ey))
By inductive hypothesis, L(h(E;))= h
h(L(E2))

Therefore, L(h(E)= h(L(E)

CC

(L( 1)) and L(h(Ex))=

E - E E2 Think of a DFA based
E =

} Similar argument construction

32



Given a DFA for L, how to convert it into an FA for h(L)?

FA Construction for h(L)

Replace every edge
:Ia!! by

a path labeled h(a)
in the new DFA

DFA for L

- Build a new FA that simulates h(a) for every symbol a transition in
the above DFA

- The resulting FA (may or may not be a will be for h(L) 5




Given a DFA for L, how to convert it into an FA for h(L)?

FA Construction for h(L)

Replace every edge
:Ia!! by

a path labeled h(a)
in the new DFA

DFA for L

- Build a new FA that simulates h(a) for every symbol a transition in
the above DFA
- The resulting FA may or may not be a DFA, but will be a FA for h(alz)




Given a DFA for M, how to convert it into an FA for h-'(M)? The set of strings in 3~
whose homomorphic translation

results in the strings of M

i Inverse homomorphism

s Leth:Y--—>T"

= Let M be a language over alphabet T
s hiM)={w|we Y*s.t., h(w) e M}
Claim: If M is regular, then so is h'' (M)

= Proof:
= Let Abe aDFA for M
= Construct another DFA A’ which encodes h-1(M)

= A’is an exact replica of A, except that its transition
functions are s.t. for any input symbol ain >, A’
will simulate h(a) in A.
= 0(p,a) = 0(p,h(a))

35



Decision properties of regular
* languages

Any “decision problem” looks like this:

Yes
Input
(generally
a question) \ NG

36



& Membership question

= Decision Problem: Given L, iswin L?

s Possible answers: Yes or No

= Approach:

2.

3.

Build a DFA for L
Input w to the DFA

If the DFA ends in an accepting state,
then yes; otherwise no.

37



Emptiness test

= Decision Problem: Is L= ?

= Approach:
1. Build a DFA for L

> From the start state, run a reachability test, which

returns:

. success: if there is at least one final state that is
reachable from the start state

o failure: otherwise
5. L=@ if and only if the reachability test fails

How to implement the reachability test?
38



Finiteness

s Decision Problem: Is L finite or infinite?

= Approach:
1. Build DFA for L
> Remove all states unreachable from the start state
5. Remove all states that cannot lead to any accepting state.
s After removal, check for cycles in the resulting FA
s. L is finite if there are no cycles; otherwise it is infinite

= Another approach
= Build a regular expression and look for Kleene closure

How to implement steps 2 and 37

39



i Finiteness test - examples

Ex 1) Is the language of this DFA finite or infinite?

oo oric.

Lost 01
X (O—slef

Ex 2) Is the language of this DFA finite or infinite?

G Tty
L

FINITE

INFINITE

40




Summary

= How to prove languages are not regular?
= Pumping lemma & its applications

= Closure properties of regular languages

59



Context-Free Languages &
Grammars

W (CFLs & CFGs)




i Not all languages are regular

= S0 what happens to the languages
which are not regular?

= Can we still come up with a language
recognizer?
= I.e., something that will accept (or reject)

strings that belong (or do not belong) to the
language?



* Context-Free Languages

= A language class larger than the class of regular
languages

= Supports natural, recursive notation called “context-
free grammar”

= Applications:

= Parse trees, compilers
= XML

Context-
free
PDA/CFG)




An Example

= A palindrome is a word that reads identical from both
ends

—> < > € > € > €

= E.g., madam, redivider, malayalam, 010010010
= LetL={w | wisa binary palindrome}
= Is L regular?

= No.
= Proof:
« Let w=0N1QN {assuming N to be the p/l constant)
= By Pumping lemma, w can be rewritten as xyz, such that xy*z is also L
(for any kz0)
But |xy|=N and y#e
s y=0+

==> xykz wilf NOT be in L for k=0
==> Contradiction



But the language of

& palindromes...

is a CFL, because it supports recursive
substitution (in the form of a CFG)

= [hisis because we can construct a
r “‘grammar’ like this:

A Same as:

% ==> ¢ :> . A=>0A0|1A1| 0|1 |e
Terminal

o A ==> 0

{ W m
3.
Variable or non-terminal

Productions [, A ==> 0A0O
| 5. A ==>1A1

How does this grammar work?



How does the CFG for

* palindromes work?

An input string belongs to the language (i.e.,
accepted) iff it can be generated by the CFG

G
= Example: w=01110 A=>0A0|1A1| 0|1 ¢
= G can generate w as follows:

1. A =>0A0
2 =>01A10
5 => 01110




Context-Free Grammar:

i Definition

= A context-free grammar G=(V,T,P,S), where:
= V:setof variables or non-terminals
= T:setof terminals (= alphabet U {€})

s P:set of productions, each of which is of the form
V==> OL1 | 0t2 |
« Where each o, is an arbitrary string of variables and
terminals

= S ==> start variable

CFG for the language of binary palindromes:
G=({A}!{O=1}!P=A)
P: A==>0A0|1A1|0]|1]¢




& More examples

= Parenthesis matching in code
= Syntax checking

= In scenarios where there is a general need
for:
= Matching a symbol with another symbol, or

= Matching a count of one symbol with that of
another symbol, or

= Recursively substituting one symbol with a string
of other symbols



Example #2

= Language of balanced paranthesis

e.g., O(OND))....
s CFG? -
'S=>(S)|SS|¢

How would you “interpret” the string “({{()))}{(){))” using this grammar?




Example #3

= A grammar for L = {0™1" | m2n}

s CFG?

> 051 | A
> 0A|e

G:
S
A

How would you interpret the string “00000111"
using this grammar?




Example #4

A program containing if-then(-else) statements
if Condition then Statement else Statement
(Or)
if Condition then Statement

CFG?



* More examples

Ly ={0"| n20 }
L, ={0"[n21}
_,={0"12% | i=] or j=k, where i,j,k=0}

|,={01i2% | i=j or i=k, where i,j,k21}



Applications of CFLs & CFGs

= Compilers use parsers for syntactic checking

= Parsers can be expressed as CFGs

1. Balancing paranthesis:
= B ==>BB|(B)| Statement

Statement ==> ...
If-then-else:

S ==> §S | /f Condition then Statement else Statement| if Condition
then Statement | Statement

Condition ==> ...
«  Statement ==> ...

5. G paranthesis matching { ... }
1+ Pascal begin-end matching
5. YACC (Yet Another Compiler-Compiler)

r

13



* More applications

= Markup languages

= Nested Tag Matching
« HTML

<html> ...<p> ... <a href=...> ... </a> </p> ... </html>

= XML

<PC> ... <MODEL> ... </MODEL> .. <RAM> ...
</RAM> ... </PC>



* Tag-Markup Languages

Roll ==> <ROLL> Class Students </ROLL>
Class ==> <CLASS> Text </CLASS>

Text ==> Char Text | Char
Char==>a|b|...|z|A|B]|..|Z
Students ==> Student Students | €

Student ==> <STUD> Text </STUD>

Here, the left hand side of each production denotes one non-terminals
(e.g., “Roll*, “Class”, etc.)

Those symbols on the right hand side for which no productions (i.e.,
substitutions) are defined are terminals (e.g., ‘a’, ‘b’, I, ‘<, >", "ROLL",
etc.)

15




Structure of a production

________________________

_________________________

The above is same as:

1 . A == 061
2. A ==> (Xz
3 A ==> 063




* CFG conventions

= Terminal symbols <==a, b, c...

= Non-terminal symbols <== A,B,C, ...

= Terminal or non-terminal symbols <== X,Y,Z
= Terminal strings <==w, X, Y, Z

= Arbitrary strings of terminals and non-

terminals <==a, 3, v, .. -



Syntactic Expressions in

i Programming Languages

result = a*b + score + 10 * distance + ¢

terminals  variables Operators are also
terminals

Regular languages have only terminals
= Reg expression = [a-z][a-z0-1]"
= Ifwe allow only letters a & b, and 0 & 1 for

constants (for simplification)
= Regular expression = {(a+b)(a+b+0+1)*

18



‘1| String membership

How to say if a string belong to the language
defined by a CFG?

i.  Derivation .
= Head to body

>.  Recursive inference
= Body to head 2

> Both are equivalent forms

G:
Example: A=>0A0|1A1| O|1]e
= Isw a palindrome? =>01A10
L | =>o01110

19



* Simple Expressions...

= We can write a CFG for accepting simple
expressions
= G=(V,T,P,S)
= V ={E,F}
= [ ={0,1,a,b,+,”,(,)}
= S ={E}
= P:

« E==>E+E |E*E | (E) | F
- F==>aF |bF |OF [1F|a|b|0]1

20



* Generalization of derivation

= Derivation is head ==> body

= A==>X (A derives X in a single step)
s A==>"; X (A derives X in a multiple steps)

= Transitivity:
IFA ==>*;B, and B ==>*;C, THEN A ==>*; C

21



i Context-Free Language

= The language of a CFG, G=(V,T,P,S),
denoted by L(G), is the set of terminal
strings that have a derivation from the
start variable S.
s L(G)={winT"|S==>"gw}

22



Left-most & Right-%last
Derivation Styles |e-&€|e€|E)F

F=>aF |bF |OF | 1F | ¢

Derive the string a*(ab+10) from G;: | E ='=>g a"(ab+10)

E oE E i = :
| a==>E * E | la==>E*E |
Left-most s i E L ==ESE) . | Right-most
derivation: | {==>2’E L = EUERR) T
E —— * (E) I i ———— E * (E + F) E derlvatlon
i-——>a*(E+E) ] E'==>E*(E+1F) E
Qluvt\;:%i/tsute | a==>a* (F + E) ! a==>E * (E + 10F) ! Always
la==>a*(@F+E) | ia==>E*(E+10) | substitute
Ieftmost ! a==> a * {abF + E) | a==>E *(F +10) ! rightmost
variable ie==>a*(ab+E) | !===>E*(aF+10) ! variable
| a==>a * (ab + F) | e==> E * (abF + 0) |
te==>a*(ab+1F) | ===>E*(ab+10) !
im==>a*(ab + 10F) | !===>F *(ab+10)
: E==> g (ab+10) | ] i==> gF * (ab+ 10) E
o L a==>a* (ab +10) !
bommmmomommoo oo 23



Leftmost vs. Rightmost

& derivations

Q1) For every leftmost derivation, there is a rightmost
derivation, and vice versa. True or False?

True - will use parse trees to prove this

Q2) Does every word generated by a CFG have a
leftmost and a rightmost derivation?

Yes — easy to prove (reverse direction)

Q3) Could there be words which have more than one
leftmost (or rightmost) derivation?

Yes — depending on the grammar
24



How to prove that your CFGs
* are correct?

(using induction)

25



&CFG & CFL %LiiOA0|1A1|0|1|e

= Theorem: A stringw in (O+1)*is In
L(G,q), if and only if, w is a palindrome.

s Proof:

= Use induction
= 0N string length for the IF part
= On length of derivation for the ONLY IF part

26



* Parse trees

27



Parse Trees

= Each CFG can be represented using a parse tree:
= Each internal node is labeled by a variable in V
= Each leaf is terminal symbol

= For a production, A==>X,X,...X,, then any internal node
labeled A has k children which are labeled from X, X,,...X,
from left to right

Parse tree for production and all other subseguent productions:

/ \\

AAN




Examples
/E\
\ QO 4
/ / | S| 0 A 0 4
F ,', F < \ / AN ,‘ -
[ i NS o 17 A1 5
3 & N =
o e A @
' ‘}, \‘\ 2 e 0
) A Parse tree for 0110 ¥
Parse tree for g + 1
G.

. G:
E=>E+E|E*E|(E) | F A

—>0A0 [1A1| 0]1 e
F=>aF |[bF|OF |1F|0]1|a|b

29



Parse Trees, Derivations, and

& Recursive Inferences

Production:

A

Recursive
inference

AVAVAY

Derivation

Left-most ,—" Parse tree

/ derivation / \

Derivation | Right-most

" Recursive
derivation )
inference

30




Interchangeability of different

CFG representations

s Parse tree ==> left-most derivation
= DFS left to right

= Parse tree ==> right-most derivation

. DFS right to left A
= ==> |left-most derivation == right-mos

derivation
s Derivation ==> Recursive inference
= Reverse the order of productions

= Recursive inference ==> Parse trees
= bottom-up traversal of parse tree

31




Connection between CFLs

* and RLs

32



What kind of grammars result for regular languages?

* CFLs & Regular Languages

= A CFG is said to be right-linear if all the
productions are one of the following two
forms: A==>wB (or) A==>w

Where:
* A & B are variables,
* w is a string of terminals

s Theorem 1: Every right-linear CFG generates
a regular language

= Theorem 2: Every regular language has a
right-linear grammar

= Theorem 3: Left-linear CFGs also represent
RLs

33



1

Right linear CFG?

0,1

Some Examples

Right linear CFG?

»A=>01B|C
B=>11B|0C 1A
C=>1A|0]1

Finite Automaton?

34




* Summary

s Context-free grammars
» Context-free languages

s Productions, derivations, recursive inference,
parse trees

s Left-most & right-most derivations




FORMAL LANGUAGES AND AUTOMATA THEORY

UNIT 3



—.l- Ambiguity in CFGs and CFLs




* Ambiguity in CFGs

= A CFG is said to be ambiguous if there
exists a string which has more than one
left-most derivation

Example:
S==>AS |¢ LM derivation #2:
== S=>AS
A ==>A1|0A1 |01 !
=> 0A11S
=> 00111S
Input string: 00111 => 00111

Can be derived in two ways




& hy does ambiguity matter?

Values are
==>E+E|E*E|(E)|alb|c|0]1 different !!
string=a "b +c¢
+ LM derivation #1: E/ T\ e
‘E=>E+E=E*E+E => + =) (a'b)+c
=>"a*b+cC /|\ \;:
E" * E
/ |
a b
+ LM derivation #2 / T\
E=>E*E=>a*E=> E” - _E == a*(b+C)
a*E+E==>*a*b+c / /"/|\
a E + E
The calculated value depends on which k!, C.!

of the two parse trees is actually used.




Removing Ambiguity In
Expression Evaluations

= [t MAY be possible to remove ambiguity for
some CFLs

« E.g.,, in a CFG for expression evaluation by
Imposing rules & restrictions such as precedence

= This would imply rewrite of the grammar

Modified unambiguous version:

= Precedence: (), *, + Ews E+T|T
T=>T*F|F
F => 1] (E)
l=>a|b|c|0]|1
Ambiguous version: How will this avoid ambiguity?

E==>E+E|E*E|(E)|a|b|c|0]1
4
S



Inherently Ambiguous CFLs

= However, for some languages, it may not be
possible to remove ambiguity

= A CFL is said to be inherently ambiguous if
every CFG that describes it is ambiguous
Example:
« L={a"b"c™d™ | n,m= 1} U {a"b™c™d" | n,m= 1}
= L is inherently ambiguous

Input string: a"b"c"d"




i Summary

= Ambiguous grammars
= Removing ambiguity



Properties of Context-free
* Languages




& Topics

1 Simplifying CFGs, Normal forms
2)  Pumping lemma for CFLs

3) (Closure and decision properties of
CFLs



* How to “simplify” CFGs?




* Three ways to simplify/clean a CFG

(clean)
1. Eliminate useless symbols

(simplify)
>.  Eliminate e-productions AYoe
3. Eliminate unit productions AYB



* Eliminating useless symbols

Grammar cleanup



Eliminating useless symbols

A symbol X is reachable if there exists:
= S=2> aX B

A symbol X is generating if there exists:
n X = W,
forsomewe T*

For a symbol X to be “useful”, it has to be both
reachable and generating

S =2 aXp =2 w, forsomew € T*

reachable generating



Algorithm to detect useless
symbols

1. First, eliminate all symbols that are not
generating

2. Next, eliminate all symbols that are not
reachable

Is the order of these steps important,
or can we switch?



Example: Useless symbols

S>AB | a
A b

. A, §are generating

2. Bis not generating (and therefore B is useless)

3. ==> Eliminating B... {i.e., remove all productions that involve B)
. S=>a
> A=2Db

+.  Now, A is not reachable and therefore is useless

5. Simplified GI | what would happen if you reverse the order:
i B i.e., test reachability before generating?

Will fail to remove:
A=>Db




X 2w

i Algorithm to find all generating symbols

s Given: G=(V,T,P,S)
= Basis:
= Every symbol in T is obviously generating.

= Induction:

= Suppose for a production A= o, where o
IS generating
= Then, A is also generating




S2> aXp

& Algorithm to find all reachable symbols

= Given: G=(V,T,P,S)
= Basis:
= S is obviously reachable (from itself)

= Induction:

= Suppose for a production A=>» o dl,... O,
where A is reachable

= Then, all symbols on the right hand side,
{oy, a, ,... 0y} @re also reachable.

10



* Eliminating e-productions

A=>¢

X

11



What's the point of removing ¢-productions?

A=e¢

i Eliminating €-productions

Caveat: It is not possible to eliminate €-productions for
languages which include € in their word set

So we will target the grammar for the rest of the language

Theorem: If G=(V,T,P,S) is a CFG for a language L,
then L-{€} has a CFG without €-productions

Definition: A is “nullable” if A=>* €

= |f Ais nullable, then any production of the form
“B=>» CAD” can be simulated by:

. B CD | CAD

This can allow us to remove ¢ transitions for A

12



Algorithm to detect all nullable
variables

= Basis:

= If A= ¢is a production in G, then A is
nullable
(note: A can still have other productions)

= Induction:

= If there is a production B=> C,C,...C,,
where every G, is nullable, then B is also
nullable




Eliminating €-productions

Given: G=(V,T,P,S)

Algorithm:
1. Detect all nullable variables in G

> Then construct G,=(V,T,P,,S) as follows:

. For each production of the form: A= X, X,...X,, where
k=1, suppose m out of the k X/'s are nullable symbols
.~ Then G, will have 2™ versions for this production
i.e, all combinations where each X, is either present or absent
i Alternatively, if a production is of the form: A=>»¢, then
remove it

14



Example: Eliminating &-

productions
n Let L be the language represented by the following CFG G:
] S=2>AB

i A=>aAA | e : -
i B2bBB | ¢ Simplified
grammar

Goal: To construct G1, which is the grammar for L-{€}

m Nullable symbols:  {A, B} emTTTTTTTmTImmmmmsommoeoe s
o G, can be constructed from G as follows'.:: Gy |
= B=Db|bB|bB|bBB e o nlEleE !

= = B2 b|bB|bBB | [ :

. Similarly, Ad>alaA|aAA ! | B> D[DB[DEB !

. Similarly, S>A|B|AB | 4 i

= Note: L(G) = L(G,) U (&) | E

____________________________



* Eliminating unit productions

A=>B <— B has to be a variable

X

What's the point of removing unit transitions ?

E.g.|aA=>B] ... A=>XxX | yyy | zzz | ...
B=>C| ... # B=> xxx | yyy | zzz | ...
C=>D]| ... C=>xxx|yyy|zzz| ...
D=>xxx | yyy | zzz D=>xxx | yyy | zzz

before after 16




A=2B
Eliminating unit productions

n Unit production is one which is of the form A=>» B, where both A & B
are variables

] E.Q:
. E>T|E+T
> TF|TF
. F=1|(B)
. Ialbllallbll0]N
s How to eliminate unit productions?

=  Replace E® TwithE =2 F | T*F

. Then, upon recursive application wherever there is a unit production:

E>F|TF|E+T (substituting for T)
E21|(E) | T'FI E+T (substituting for F)
E2albllallb|10]|H]|(E)| T*F| E+T (substituting for 1)

Now, E has no unit productions

. Similarly, eliminate for the remainder of the unit productions

17



he Unit Pair Algorithm:
to remove unit productions

= Suppose A=B, 2B, ... 2B, 2«

= Action: Replace all |ntermed|ate produc’nons to produce o
directly

= e, A2 ;B2 ;... B, =2 o

Definition: (A,B) to be a “unit pair”if A=>B

= We can find all unit pairs inductively:

= Basis: Every pair (A,A) is a unit pair (by definition). Similarly, if
A=>B is a production, then (A,B) is a unit pair.

= Induction: If (A,B) and (B,C) are unit pairs, and A=>C is also a unit
pair.

18



he Unit Pair Algorithm:
to remove unit productions

Input: G=(V,T,P,S)

Goal: to build G,=(V,T,P,,S) devoid of unit
productions

Algorithm:
1. Find all unit pairs in G
». For each unit pair (A,B) in G:

1. Addto P, a new production A=»q, for every
B=>»a which is a non-unit production

o.  If a resulting production is already there in P,
then there is no need to add it.

19



Example: eliminating unit
productions

_______ Unit pairs Only non-unit
___________________________ productions to be
G e B e R padded 1 2y
1. EDTNEsL .7 (EE) e ] -2 E+T!
2, THFEIES e I ringee e T——
S g e Ry B e awE
4. I13albllalib[l0] N E (E,F) TESUE) !
___________________ ‘_b e A
{E,I) E=albllalb|10]11 |
(TT) TTFE T
(T.F) T (E)
.. (T.1) T alblla|lb]10]1
1. EE+T|TF|(E)|alblla|lb|l0|11  {(FF) F = (E)
2. TS TF|(E)|alblla]ib]l0]!
3. F=(E)|albllajib[l0]H h (F.1) F=>albflaib]|I0]
4. 19a|blla|b|l0]H I
(1) | >abllallb]I0]|
1

20



Putting all this together...

= Theorem: If G is a CFG for a language that
contains at least one string other than ¢, then there
is another CFG G, such that L(G,)=L(G) - ¢, and
G, has:
= no ¢ -productions
= No unit productions
= Nno useless symbols

= Algorithm:
Step 1) eliminate ¢ -productions Again,
Step 2) eliminate unit productions the order is
Step 3) eliminate useless symbols important!

Why?
21



* Normal Forms

22



i Why normal forms?

= If all productions of the grammar could be
expressed in the same form(s), then:

2 It becomes easy to design algorithms that use
the grammar

. It becomes easy to show proofs and properties

23



& Chomsky Normal Form (CNF)

Let G be a CFG for some L-{¢}

Definition:

G is said to be in Chomsky Normal Form if ajl
its productions are in one of the following

two forms:
A =2 BC where A,B,C are variables, or
A=2a where a is a terminal

= @ has no useless symbols
= (3 has no unit productions

\ = G has no e-productions /
24




CNF checklist

Is this grammar in CNF?

Gy

1. EE+T|TF|(E)|la]lb|10]|
2. T=>TF|(E)|la|lb|l0|

3. F=2(E)|la]|lb|I0]|I1

4. I=>albllalb]|l0] I

Checklist:
« G has no e-productions NF
+ G has no unit productions 4
» G has no useless symbols \/
« But...
 the normal form for productions is violated

=== So, the grammar is not in CNF
25



How to convert a G into CNF?

n Assumption: G has no e-productions, unit productions or useless
symbols

1) For every terminal a that appears in the body of a production:
] create a unigue variable, say X, with a production X, 2 a, and
i replace all other instances of ain G by X,

2y Now, all productions will be in one of the following
two forms:
= A=2>BB,... B, (k=3) or A=>a

3) Replace each production of the form A = B,B,B;... B, by:

<>
B, . and soon...

B.S 0y

u A951C1 0198202 e Ck_39 Bk_zck_z Ck_29 Bk-1 Bk

26



—

Example #

G in CNF:

62

S => AS | BABC 4 il
Ay =501

A =>A1|0A1 |01 S —» AS | BY

B=>0B|0 — Y, = AY, :

C=>1C |1 Y, =>BC

A =>AX, | XoYa | XX,

Y, => AX,

B=>X,B|0

C=>X,C|1

27




N

Example

o 1. EDEXT|TXF[XEX, | X, ] Xy | X | IX,
1. EE+T|T*F|(E)}|la|lb|l0| N1 g l :));Xéil |)T§<EX|)||><IX|E||><IXF||><IXO | 1X4
2. T=>TF|E)|la]|lb|I0]|I1 . a b 0 1
3, F-)(E)||I£':1|)I|b|I|0|I|1 | == |4 13X X | I 1X [ X | IX,
4. 12albllajiblI0]l Step(1) [5 X. 2>+

6. X.D*

7. X, 2+

>, o 0
G_;@Q/

1. E D EC;|TC,y| XCal X, | 1X, | 1Xq | 1X4
2. C,>XT
3. C,>XF
4. Gy EX
5. T=> .........
6.

28




i Languages with €

= For languages that include ¢,
= Write down the rest of grammar in CNF

= Then add production “S => ¢” at the end

E.g., consider: G in CNF:

G: Xo=>0
S => AS | BABC ol
A=>A1|0A1|01 ¢ S —>AS|BY, | €

B=x0E |0 & - Y, => AY,
C=>1C|1|¢ Y, =>BC

B=>X,B|0
o Aol 29




i Other Normal Forms

= Griebach Normal Form (GNF)

= All productions of the form
==>3 O

30



! Return of the Pumping Lemma !!

Think of languages that cannot be CFL

== think of languages for which a stack will not be enough

e.g., the language of strings of the form ww

31



i Why pumping lemma?

= A result that will be useful in proving
languages that are not CFLs

= (just like we did for regular languages)

= But before we prove the pumping
lemma for CFLs ....

= Let us first prove an important property
about parse trees

32



Observe that any parse iree generated by a CNF will be a
binary tree, where all internal nodes have exactly two children
{except those nodes connected 1o the leaves).

The “parse tree theorem”

Given: Parse tree for w

= Suppose we have a
parse tree for a
string w, according
to a CNF grammar,
G=(V,T,P,S)

A
1
1
1
1
1
1
1
1
1
1
1
1
1

h

= tree height

= Let hbe the height of ,
the parse tree
Implies: R NN A £ VAN
R & )

a

v

In other words, a CNF parse tree’s string yield (w) w
can no longer be 2" 33



To show: jw] < 2h-1

Proof...The size of parse trees

Proof: (using induction on h) Parse tree for w
Basis: h =1
=» Derivation will have to be i
“Saaﬂ :
> w=1=2"1. i
Ind. Hyp: h = k-1 i
> |wls 262 !
h
Ind. Step: h = k e
S will have exactly two children: i
S=2>AB i
=» Heights of A & B subtrees are E
at most h-1 -
=2 W= w, Wg, where |w,| s 2k2
and [wa| s 262
> | < 2 » >
34



Implication of the Parse Tree

& Theorem (assuming CNF)

Fact:

= If the height of a parse tree is h, then
== |W| < 2h_1

Implication:
= If |w| 2 20, then
= Its parse tree’s height is at least h+1

35



‘The Pumping Lemma for CFLs

Note: we are pumping in two places (v & x)
36



i Proof: Pumping Lemma for CFL

= |[f L=® or contains only ¢, then the lemma is
trivially satisfied (as it cannot be violated)

= For any other L which is a CFL:
= Let G be a CNF grammar for L
= Let m = number of variables in G
= Choose N=2™.
= Pickanyze Ls.t. |zZN

=> the parse tree for z should have a height = m+1
(by the parse tree theorem)

37



Parse tree for z

___________

h-msi<j=sh
: - : g i .

A
1
' i
'. i
1 : a
As A=A ‘; : T
"A I - '
2 ! 1
I 8 ! = : '
o= ! F h 2 m+1
2 5. h = m+1 ; i
1 1 1 '
1 £ 1 ! ||
I Aow, ! 1
L g l |
1 0 1 : 'l ]
R i : ; m+1
! g X ! )
E ‘l A 1 1 N -~ ! -
\:\ ..:'J |l__ _ID-J(‘F\‘ - : u \‘J] \\ Il|. ; "-\‘! \\,'
i 1 \
Vg \ 4 u v \'1’!' X y i i
N A.=a == v
h= w
Z

Z = UVWXYy

Therefore, vx#e

38




Replacing
A, with A,
(k times)

hzm+1

Extending the parse tree...

Or, replacing
A; with A,

=)

Z=uwy

==

For all k=0:

uvkwxsy L

39



& Proof contd..

» Also, since A/’s subtree no taller than m+1

==> the string generated under A;'s subtree, which is
vwx, cannot be longer than 2™ (=N)

But, 2™ =N
==> |vwx| <N

This completes the proof for the pumping lemma.

40



Application of Pumping

& Lemma for CFLs

Example 1: L ={a™™c™ | m>0 }
Claim: L is not a CFL
Proof:

= Let N <== P/L constant
= Pick z = aNbNcN
= Apply pumping lemma to z and show that there

exists at least one other string constructed from z
(obtained by pumping up or down) thatis ¢ L

41



* Proof contd...

s Z = UVWXY
= Asz=a"bNcN and |[vwx| £ N and vx#e

= ==>V, X cannot contain all three symbols
(a,b,c)
= ==> We can pump up or pump down to build

another string which is ¢ L

42



& Example #2 for P/L application

s L={ww]|wisin{0,1}*}
= Show that L is not a CFL

= Try string z = ONON
what happens?

= Try string z = ON1NQN{N
what happens?

43



* Example 3

= L = { 0 | kis any integer)

= Prove L is not a CFL using Pumping
Lemma

44



* Example 4 %

s L = {aibick | i<j<k }

= Prove that L is not a CFL

45



* CFL Closure Properties

46



Closure Property Results

s CFLs are closed under:
= Union
= Concatenation
= Kleene closure operator

s Substitution
s Homomorphism, inverse homomorphism
s _reversal ~

s CFLs are not closed under: Note: Reg languages
= Intersection . ng'rosed
= Difference these
= Complementation _ operators

47



Strategy for Closure Property
Proofs

= First prove “closure under substitution”
= Using the above result, prove other closure properties

s CFLs are closed under:
= Union <
= Concatenation <
= Kleene closure operator <

Prove - Substitution
thisfirst * . Homomorphism, inverse homomorphism <
= Reversal

48



* The Substitution operation

For each a € }, then let s(a) be a language
If w=a,a,...a, € L, then:
= S(W)={X{X,... } € 8(L), s.t.,x e s(a)
Example:
= Let Z={0,1}
= Let: s(0) ={a"b" | n 21}, s(1) = {aa,bb}
s [fw=01, s(w)=s(0).s(1)
« E.g., s(w) contains a'b'aa, a' b'bb,

a’b?aa, a2b?bb,
...and so on.

49



CFLs are closed under

i Substitution

IF L is a CFL and a substititution defined
onlL, s(L), is s.t.,, s(a) is a CFL for every
symbol a, THEN:

= (L) is also a CFL

What is s(L)?

Wy T s(L) I SEW1; ] Note: each s(w)

Wo S{W> is itself a set of strings
w, - D 1w,

Wy S(Wy)

e, = L — 50




CFLs are closed under
Substitution

n G=(V,T,P,S): CFG for L
= Because every s(a) is a CFL, there is a CFG for each s(a)

- LetG,=(V,T,.P.S,)
= Construct G’=(V',T',P’,S) for s(L)

s P’ consists of:

= The productions of P, but with every occurrence of terminal “a” in
their bodies replaced by S,.

= All productions in any P, foranyae }

X4 Xo X 51




Substitution of a CFL:
example

» LetL =language of binary palindromes s.t., substitutions for 0
and 1 are defined as follows:

m 5(0)={a"b" | n =21}, s{1) = {xx,yy}
= Prove that s(L) is also a CFL.

CFG for L: CFG for s(0): CFG for s{1):

S=> 0S0|1S1 e Sp=>aSyb | ab S =55 | yy

d

Therefore, CFG for s(L):

S=> SOSSO | 81 S 81 |8
SO=> aSOb | ab
Sy=> XX | yy 52




& CFLs are closed under union

Let L, and L, be CFLs
Toshow: L, UL, is also a CFL

Let us show by using the result of Substitution

= Make a new language:
= L., =1{ab}s.t,s(a)=L,ands(b) =L,
==> S(L,,,) ==sameas ==L, UL, O

= A more direct, alternative proof

= Let S, and S, be the starting variables of the
grammars for L, and L,

m Then, Snew => S-| | 82
53



CFLs are closed under

* concatenation

Let us show by using the result of Substitution

= Make L,.,= {ab} s.t.,
s(a) = L, and s(b)= L,
==> L1 L2 = S(Lnew)

= A proof without using substitution?

54



CFLs are closed under

& Kleene Closure

s Let L be aCFL

= Letl ., =1{a}” and s(a) = L,

= Then, L™ =s(L.,)

55



We won't use substitution to prove this result

CFLs are closed under

* Reversal

= Let L be a CFL, with grammar
G=(V,T,P,S)
s For LR, construct GR=(V,T,PR,S) s.1.,

s If A==> o is in P, then:
« A==> o isin PR

=« (that is, reverse every production)

56



Some negative closure results

CFLs are not closed under

& Intersection

= Existential proof:
= L, ={0""2"| n=1,i=1}
« L, = {012 | n=1,i=1}
= Both L, and L, are CFLs

= Grammars?
= ButL, nL, cannotbe a CFL

= We have an example, where intersection is
not closed.

= [herefore, CFLs are not closed under
Intersection -




Some negative closure results

CFLs are not closed under

& complementation

s Follows from the fact that CFLs are not
closed under intersection

Logic: if CFLs were to be closed under complementation
=» the whole right hand side becomes a CFL (because
CFL is closed for union)
=> the left hand side (intersection) is also a CFL
=>» but we just showed CFLs are
NOT closed under intersection!

=» CFLs cannot be closed under complementation. o



Some negative closure results

CFLs are not closed under

& difference

as Follows from the fact that CFLs are not
closed under complementation

s Because, if CFLs are closed under
difference, then:

L =Y"-L
= So L has to be a CFL too
= Contradiction

59



* Decision Properties

= Emptiness test
= Generating test
= Reachability test

= Membership test
= PDA acceptance

60



“Undecidable” problems for

& CFL

= Is a given CFG G ambiguous?

= Is a given CFL inherently ambiguous®?
= Is the intersection of two CFLs empty?
= Are two CFLs the same?

= Is a given L(G) equal to > *7?

61



Summary

= Normal Forms
=  Chomsky Normal Form
=  Griebach Normal Form
= Useful in proroving P/L
= Pumping Lemma for CFLs
= Main difference: z=uviwx'ly
= Closure properties

n Closed under: union, concatentation, reversal, Kleen
closure, homomorphism, substitution

= Notclosed under: intersection, complementation,
difference

62



* Pushdown Automata (PDA)



* PDA - the automata for CFLs

= What is?
= FAto Reg Lang, PDA s to CFL

= PDA ==[¢-NFA + “a stack” ]
= Why a stack?

Accept/reject

A stack filled with “stack symbols”




Pushdown Automata -

* Definition

« APDAP:=(Q5.T, 8,00, Z,F ):

= Q: states of the e-NFA

= > iInput alphabet

s I stack symbols

= O: transition function

= (! start state

s Z,: Initial stack top symbol
= F: Final/accepting states



oldstate  Stacktop inputsymb. nNew state(sjnew Stack top(s)

O0: QXxI'x Y ==QxT
O : The Transition Function

5(q,a,X) = {(p,Y), ...}
state transition from g to p

a is the next input symbol a X Y
X is the current stack top H

symbol
Y is the replacement for X; Y=2°
itis in I'* {a string of stack m
symbols) i) Y=¢ Pop(X)
ﬁe\f_‘i(: e for: Pop(X) i VX Pop(X)
| stack top is SOSHY)
unchanged iii) Y=Z,2,.Z, Pop(X)
w  1FY=Z,Z,...Z: X is popped Push(Z,)
andis replaced by Y Push(Z, )
in
reverse order {i.e., Z, will Push(Z,)
be the Push(Z,)
new stack top) p



* Example

Let L, = {wwR | wisin (0+1)*]

« CFGforL,,, : S==>0S0|1S1 | ¢
= PDAforL,,, :

= P:=(Q,, T, 0,qy5,Zy,F)

= ( {qOJ q1= q2}:{051}5{051 JZO}=6=qO:ZOJ{q2})



Initial state of the PDA:

Stack _).
PDAfor L,,, ™

symbols (wR-part)

Enter acceptance state

1 6(010.0, Z)={(00,0Z)} First symbol push on stack
o 8(anT, Zo)={(00 120} } pRIBEES
3. (00,0, 0)={(q,00)}
‘. (00,0, 1)={(90,01)} ;
5 5(q251, 0)={(q2510)} Grow the stack by pushing
5 5(q0,1, 1)={{qy,11)} new symbols on top of old
(w-part)
7 6(%: €, O)={(Q1= O)}
8 5{(q,, €, 1)={{qy, 1)} Switch to popping mode
9 8(Qq, €, Zo)={(04, Zo)} (boundary between w and wFh)
0. 9(94,0, 0)={(ay, &)} Shrink the stack by popping matchin
o 8layT, =i, o) } VPR =



PDA as a state diagram

6(q.a, X)=1(q;,Y)}

Next Current || Stack
input stack Top

Current | | symbol || top Replacement
state ., N | (w/ string Y)
> . \\\‘ ; "/
aXxX /Y Next

@@ |z




PDA for L,,,: Transition Diagram

Grow stack > =10, 1}

0, Z,/0Z, I'={Z, 0, 1}
0000 EopIstacHr Q = {0.011,%)
S matching symbols
1,0/10 0,0/¢
1, 1/11 1,1/ ¢

£, 0/0

g, 1/1 Go to acceptance

Switch to

popping mode

This would be a non-deterministic PDA




Example 2: language of

* balanced paranthesis

Pop stack for >={()}
TNtk matching symbols I'={Zy (}
Q = {95,919}
Ce s
((,% il ), (/€
8’20/20. }oll £ € Q 8,20/20©
€, 2y Zy Go to acceptance (by final state)
Switch to (ol when you see the stack bottom symbc

popping mode (’ Zi ) 2

To allow adjacent
blocks of nested paranthesis 9




Example 2: language of balanced

another design)

& paranthesis (

2=1()}
I'={Zy, (}

Q = {q,04}




PDA’s Instantaneous
Description (ID)

A PDA has a configuration at any given instance:

(q,w,y)
= (- current state

= W - remainder of the input (i.e., unconsumed part)

= Y - current stack contents as a string from top to bottom
of stack

If 8(q,a, X)={(p, A)} is a transition, then the following are also true:

" (q= a, X) |"_ (p,S,A)
= (g, aw, XB) |--- {(p,w,AB)

|--- sign is called a “turnstile notation” and represents
one move

|---* sign represents a sequence of moves

11



How does the PDA for L,
work on input “111177

* All moves made by the non-deterministic PDA

(0o, 1111,2Zy)

(04,1111,Z,) — > Pathdies...

Y

(q05111 5120)

(o, 11,112,) (q,,111,1Z,) ——» Path dies...

}

(0g,1,111Z,) (04,11,11Z)
(Qg.,1111Z,) (G,1,111Z,) (qy,1,1Zp) Acceptance by
l 1 l final state:
(a4, £1111Z,) (a4, &,11Z,) (Chi o) /' = empty input
; AND
: Path dies... 4
Path d|eS... v (qz, S,ZO) Y final state

12



& Principles about IDs

= Theorem 1: If for a PDA,
(Q, X, A) |---" (p, v, B), then for any string
we >"andye I, itis also true that:

" (qs Xw, A 'Y) |"_* (p! y w, B 'Y)

s Theorem 2: If for a PDA,
(9, x w, A) |---* (p, y w, B), then it is also true
that:

= (0, X, A) |- (P, Yy, B)




There are two types of PDAs that one can design:
those that accept by final state or by empty stack

Acceptance by...

s PDASs that accept by final state:

= For a PDA P, the language accepted by P,
denoted by L(P) by final state, is:  checkiist:

. el 1. - input exhausted?
W (Qo.W.Zo) |--"(Q.8, A) 8.t qge F - in a final state?

s PDAS that accept by empty stack:

= For a PDA P, the language accepted by P,
denoted by N(P) by empty stack, is:
« {w|(Go.W,Zp) [---"(q, ¢, ¢) }, forany g e Q.

Q) Does a PDA that accepts by empty stack Checklist:

A " " . . _ - '?
ified in th ian? Input exhausted®
need any final state specified in the desig e




Example: L of balanced
parenthesis

An equivalent PDA that

PDA that accepts by final state accepts by empty stack
(.Zo/ (£
P 1z,1(2 P L
§ e £.2,/ ¢

{/

start O. £,2o/ ZgO. start O.
e,2y/ Z, &2y Zy

How will these two PDAs work ontheinput: ((())()) ()




PDA for L,,,.: Proof of

& correctness

= Theorem: The PDA for L,,,, accepts a string x
by final state if and only if x is of the form
wwh,

= Proof:

=« (if-part) If the string is of the form ww" then there
exists a sequence of IDs that leads to a final state:
(Qo,WWH,Zp) |- (Qo,WH,WZp) |---* (Q4,WR,WZp) |---*
(01, €,40) |---" (D2 &,Z0)

= (only-if part)

= Proof by induction on |x|



PDAs accepting by final state and empty
* stack are equivalent

s P <= PDA accepting by final state
= Pe=(Qr2, T, 8r,00,Z,F)
s P, <= PDA accepting by empty stack
» Py=(Qu2., T, 0n:00:40)
= Theorem:
= (Py==>P¢) For every Py, there exists a P; s.t. L{(Pg)=L(Py)

= (Pe==>P,) For every P, there exists a Py s.t. L(Pg)=L(Py)



How to convert an empty stack PDA into a final state PDA?

Pny==> P construction

= Whenever P's stack becomes empty, make P go to
a final state without consuming any addition symbol

= To detect empty stack in Py: Pr pushes a new stack

symbol X, (not in " of P) initially before simultating
PN

. ———————————————

New
£, Xo/ X, : '

_____________

PF = (QN U {p(]spf}: Zs F U {XO}s 6Fs pOs x(}s {pf})

18




Example: Matching parenthesis “(” Y’

Py ({dot, {GM {€0:Z4}, O Gos Zo) i Py ({Po,90 Pt {()}: {Xo,Z0,24}, Ors Pos Xo, Pr)
By B (00.(.Zo) = { (A0.Z41Zo) } 5 8(Por £.X) = { (90.Z0) }
On(T0,(:Z1) = { (Qor £1£9) } E gfg%vésgo; = E £QOvZZ] éo))}}
= ! o, 41) = 1 (Qoy £14
oG£ = 0 )] : 50 Z) = { G, ©
On(Gor €,Z) ={ (9, €) } i 8:{G0r €.20) ={ (0, €) }
: O1(Po, €.Xp) =1{ (P, Xp) }
(,Z,/Z,Z, : (Zy/Z,Z,
(:Z4/Z,Z, : (Z4/Z,Z;
EWE : )Zy/ €
g,Zy/ € : e, Zy¢

StaL@ |:> i .8 Xg/ZoXq . €,Xy/ Xo @

Accept by final state 19

Accept by empty stack




How to convert an final state PDA into an empty stack PDA?

P-==> P\ construction

= Main idea:

= Whenever P reaches a final state, just make an € -transition into a
new end state, clear out the stack and accept

= Danger: What if P design is such that it clears the stack midway
without entering a final state?

= to address this, add a new start symbol X, (notin I of Pg)
PN = (O U {p()!pe}! Zs F U {Xo}g 6N’ pO’ XO)

__________________________

i €, Xo/Z§ \ €, any/ €

o 1
start '. ' ANy £>

N

rd

___________________________

20




Equivalence of PDAs and

* CFGs

21



i CFGs == PDAs ==> CFLs




This is same as: “implementing a CFG using a PDA”

* Converting CFG to PDA

Main idea: The PDA simulates the leftmost derivation on a given
w, and upon consuming it fully it either arrives at acceptance (by
empty stack) or non-acceptance.

accept
w
reject

|mplements

INPUT
OUTPUT

CFG

23



This is same as: “implementing a CFG using a PDA”

Converting a CFG into a PDA

Main idea: The PDA simulates the leftmost derivation on a given w,
and upon consuming it fully it either arrives at acceptance (by
empty stack} or non-acceptance.

Steps:

1. Push the right hand side of the production onto the stack,
with leftmost symbol at the stack top

2 If stack top is the leftmost variable, then replace it by all its
productions (each possible substitution will represent a
distinct path taken by the non-deterministic PDA)

3. If stack top has a terminal symbol, and if it matches with the
next symbol in the input string, then pop it

State is inconsequential (only one state is needed)

24



Formal construction of PDA

from CFG Note: Initial stack symbol (S)
same as the start variable
/ in the grammarl

= Given: G= (V,T,P,S)
s Output: Py=({a}, T,VUT,D9,q,S)
= O:
¥ a Forall Ae V, add the following
i transition( ) in the PDA' @

Before: - For a” ac T, add the fOIIOWIng After: g
sk transition(s) in the PDA:

n 6(q,a,a)= { (qs € ) }




i Example: CFGto PDA

(

= G=({S,A},{0,1},P,S) oo |
. P N

s S==>AS |¢ : }% |

IA==>0A1|A1|01 I I
= PDA = ({q}, {0,1}, {0,1,A,S}, 8, q, S)~— _ _ _/
u 5:

. 5(0, &, S) ={ (q, AS), (q, £)}

= 5(q, e, A) = { (3,0A1), (9,A1), (0,01) }

- 5(0,0,0)={(q,¢)} -

- 6(0], 1, 1) - { (q, 8) } How will this new PDA work?

Lets simulate string 0011
26



Simulating string 0011 on the

new PDA ... -
Leftmost deriv.:
1,1/¢
: oA/ 01 S =>AS
6(a, £, S) ={(a, AS), (g, € )} gg;g;u => 0A1S
6(g, ¢, A) ={(q,0A1), (g,A1), (q,01) } eS/e == 0011S
5(q,0,0)={(a,¢)} £.S/AS
5(a,1,1) =1{(a,&)} => 0011
£,35/53
Stack moves {shows only the successful path): 4’.
= 0 - 0
) Al = A 1| = 1
A 1 1 1 K
S s| [s s| [s| [s| [s| =I5 Accept by
- empty stack
0 0 1 1 £
TTTTTTTTTTTTTIR g B LU
S =>AS =>0A1S =>0011S8 => 0011
27



Proof of correctness for CFG ==> PDA
& construction

= Claim: A string is accepted by G iff it is
accepted (by empty stack) by the PDA
= Proof:
= (only-if part)

Prove by induction on the number of derivation steps

s (if part)
If (g, wx, S) |--" (g,x,B) then S =>",, wB

28



i Converting a PDA into a CFG

= Main idea: Reverse engineer the
productions from transitions
If 0(q,a,Z) => (p, Y;Y-Y5...Y,):

State is changed from g to p;
Terminal a is consumed;

Stack top symbol Z is popped and replaced with a
sequence of k variables.

= Action: Create a grammar variable called
“[gZp]” which includes the following
production:
[aZp] => alpY 9] [91Y29] [A2Y595]- - [Ai-1 YiQid

= Proof discussion (in the book) 29



= To avoid confusion, we will use b="(“and e=")"

Example: Bracket matching

Py ({Gok {bse}, {Z0,24}, 0, Ao, Zo)
1. 80,0, 2Z0) = { (90, Z1Zp) }

2. 0(qyb,Zy) ={ (95, Z:Z4) }

3. d(gpe i) ={(d E}!}

4. O(do, € 2o} ={ (U0, € ) }

S => [4eZ%o)

= R D

[
[AoZ 1G] => &
[

[AoZo] => D [FoZ1T0] [FoZoTo]
Ao 1%0] => b [AsZ1Q0] [AeZ10]

%i%] => &

Let A=[qyZoq0]
Let B=[g,Z,qy]

0. S=A
1 A=>bBA
2. B=-bBB
3. B=xe
4. A=>E

—>

Simplifying,

0. S=bBS|E€
1. B=>bBB]e

30




Two ways to build a CFG

Build a PDA —, Construct (indirect)
/ CFG from PDA
\ Derive CFG directly (direct)

Similarly... Two ways to build a PDA
Derive a CFG—— Construct (indirect)

/ PDA from CFG

Design a PDA directly (direct)

31




* Deterministic PDAs

32



Grow stack

0, Z,/0Z,
1,Z,/1Z,
0, 0/00
0, 1/01
1,0/10
1,1/11

Pop stack for
matching symbols

0,0/ €

l €, Z,/Z,
g, 0/0
e, 1/1

Switch to

This PDA for L,,,, IS hon-deterministic

Why does it have
to be non-
deterministic?

. ia
£, Z,/Z, Q

Accepts by final state

popping mode

To remove
guessing,
impose the user
to insert ¢ in the
middle 33




Example shows that: Nondeterministic PDAs # D-PDAs

D-PDA for L, = {wcw" | ¢ is some
special symbol not in w}

Note:
G tack « all transitions have
Lt 0, Z,/0Z, Pop stack for become deterministic
1,2y/12, matching symbols
0, 0/00
0, 1/01 0.0/€
1,010
1, 1/11 1L, 1/E
. ¢, Zy/Z, s £ 2/, Q.
¢, 0/0
i 1 Accepts by
Switch to final state

popping mode

34




i Deterministic PDA: Definition

= A PDA is deterministic if and only if:

1. 0(g,a,X) has at most one member for any
ae > Ulel

=> If 8(q,a,X) Is hon-empty for some ae >,
then d(qg, €,X) must be empty.

35



PDA vs DPDA vs Regular

* languages

non-deterministic PDA

36



* Summary

= PDAs for CFLs and CFGs
= Non-deterministic
= Deterministic
= PDA acceptance types
i. By final state
. By empty stack
= PDA

= |Ds, Transition diagram
= Equivalence of CFG and PDA

= CFG => PDA construction
= PDA => CFQG construction

37



UNIT 4



* Turing Machines



i Turing Machines are...

= Very powerful (abstract) machines that
could simulate any modern day
computer (although very, very slowly!)

= Why design such a machir)L‘._

= If a problem cannot be “solved” even using
a TM, then it implies that the problem is
undecidable

= Computability vs. Decidability ,




A Turing I\/Iachlne (TM)
= M=(Q, >, T, 9, q,,B,F)

Finite
control
Infinite tape with tape symbols jTape head
BIB|B| X | Xy | X; |... X |... BBl .

~ Input & output tape symbols —-

B: blank symbol (special symbol reserved to indicate data boundary)
3




You can also use:
= for R

Transition function € forl

= One move (denoted by |---)
in a TM does the following:

X/Y,D
- 8G,X) = (p,Y,D) @—@®

= ( is the current state

= X is the current tape symbol pointed by
tape head

= State changes from qto p
= After the move:
X is replaced with symbol Y

If D="L", the tape head moves “left” by
one position.

Alternatively, if D="R” the tape head
moves “right” by one position.




ilDofaTI\/I

= Instantaneous Description or ID :
a X, Xoo X XX, X
means:
= ( is the current state
= Tape head is pointing to X
s XX, X XX, 1... X, are the current tape symbols

+1

= 0(q,X) = (p,Y,R) is same as:

X-1.X|_-1qxl.xn |"" X‘I'X|—‘|pr|+1'xn
= 0(0,X) =(p,Y,L) issame as:
X1.X|_1qxl.xn |"" X‘]'pX|-‘]YX|+‘]'Xn

5



i Way to check for Membership

= |s a string w accepted by a TM?

= |nitial condition:

= The (whole) input string wis present in TM,
preceded and followed by infinite blank symbols

= Final acceptance:
= Accept wif TM enters final state and halts
= If TM halts and not final state, then reject




& Example: L = {O"1" | n=1}

= Strategy: w = 000111
\ Lo\
51810 = BlB|x|x|o]|Y|Y[|1]|B]|B
\
B|B|X Bl BB |x|[x|[x]|Y|Y[|1]|B]|B
BB |X Bl .. BlB|X|x|[x|Y|Y|Y|[B]|B]
B|B|X B \
| ooa BlB|x|[x|x|Y|Y|Y|B|B]




. 0/X,R

Y/Y,R

TM for {0M1n | n=1)

Y/YR
0/0.R

Mark next unread 0 with X
and move right

Move to the right all the way
to the first unread 1, and mark
it with Y

Move back (to the left} all the
way to the last marked X, and
then move one position to the
right

If the next position is 0, then
goto step 1.

Else move all the way to the
right to ensure there are no
excess 1s. If not move right to
the next blank symbol and
stop & accept.




*state diagram representation preferred

for {0"1" | n21)

Next Tape Symbol
Curr. 0 1 X Y B
State
» qO (th!R) - - (q3=Y=R)
d, (94,0,R) (9, Y,L) = (94, Y.R)
q2 (q2=0=|—) - (qosst) (q2=Y= L)
q3 - - (q3=Y=R) (q4sB=R)
'kq4 _ _

Table representation of the state diagram




* TMs for calculations

= [Ms can also be used for calculating
values
= Like arithmetic computations

= EQ., addition, subtraction, multiplication,
etlc.



Example 2: monus subtraction

/Ff 2 \
m -- n” = max{m-n,0}
0m10" = ..B O™ B.. (if m>n)
1 ...BB...B.. (otherwise) )
1. For every 0 on the left (mark X), mark off a 0 on the right
(mark Y)

. Repeat process, until one of the following happens:

1. // No more 0s remaining on the left of 1
Answer is 0, so flip all excess 0s on the right of 1 to Bs
(and the 1 itself) and halt

> //No more Os remaining on the right of 1
Answer is m-n, so simply halt after making 1 to B

Give state diagram



& Example 3: Multiplication

= 0M0" (input), 0™ (output)

s Pseudocode:

1. Move tape head back & forth such that for every
0 seen in O™, write n 0s to the right of the last
delimiting 1

Once written, that zero is changed to B to get
marked as finished

5. After completing on all m 0s, make the
remaining n Os and 1s also as Bs

Give state diagram

12



Calculations vs. Languages

The “language” for a certain
A “calculation” is one calculation is the set of strings of
that takes an input the form “<input, output>", where
and outputs a value == | the output corresponds to a valid
(or values) calculated value for the input

A “language” is a set

of strings that meet

certain criteria “<0#0,0>"
“<0#1,1>”

E.g., The language L,44 for the addition operation

“<2#4,6>"

Membership question == verifying a solution

e.g., is “<15#12,27>" a member of L ;44 ? 13




Language of the Turing

* Machines

s Recursive Enumerable (RE) language

l

Context
sensitive

Recursively
Enumerable

14



* Variations of Turing Machines

15



Generic description
Will work for both a=0 and a=1

TMs with storage

Tape
symbol

= E.g., TM for 01* + 10
ition| function o:

‘ storage \ \

7 * 9([90.Bl.a) = ([ay.a], a, R)

Tape head » 3([qy,al,a) = ([qy.al, &, R)
B|B|O|1|1]|1]|1|1]|B|B

Tra

——  +§([o,al,B) = ([0,B], B, R)

Are the standard TMs Yes

[a.a]:  where q is current state, equivalent to TMs with storage?

a is the symbol in storage




Standard TMs are equivalent to TMs
& with storage - Proof

Claim: Every TM w/ storage can be simulated
by a TM w/o storage as follows:

= For every [state, symbol] combination in
the TM w/ storage:

= Create a new state in the TM w/o storage
= Define transitions induced by TM w/ storage

Since there are only finite number of states and
symbols in the TM with storage, the number of states
in the TM without storage will also be finite

17



* Multi-track Turing Machines

= M with multiple tracks,
but just one unified tape head

One tape head to read
k symbols from the k tracks
S | at one step.

Track 1

Track 2

Track k

18



Multi-Track TMs

= M with multiple “tracks” but just one

head E.g., TM for {wew | we {0,1}*}
but w/o modifying original input string

BEFORE AFTER

Tape head

i___Track1

~ Track 1 B|B[O[1[O|c|[O|1]|0O|B

1]
B[ B|B|  Track2 B|B[X[X|X|c|Y|[Y]|¥]B

Second track mainly used as a scratch space for marking  °



Multi-track TMs are equivalent

* to basic (single-track) TMs

= Let M be a single-track TM
= M=(Q,5,T, 8§, q,,B,F)

= Let M" be a multi-track TM (k tracks)
= M=(Q, 3", 17,0, q,B,F)
s 8(0,<a;,8,,...8>) = (0, <by,0,,...0>, L/R)

= Claims:
= Forevery M, there is an M’ s.t. L(M)=L(M’).

= (proof trivial here)

20



Multi-track TM ==> TM (proof)

= Forevery M’, there is an M s.t. L(M’)=L(M).

Main idea:
= M=(Q,>,T,9,q,[B.B,...],F) Create one composite
= Where: symbol to represent
Q=Q every combination of
S =Y ‘XY ‘X... (ktimes for k-track) | X Symbols

I'=0I"xI"x... (ktimes fork-track)
do =dg
F=F
o(Qi[a1,as,-..8]) = 0'(Q, <@1,30,...8>)
= Multi-track TMs are just a different way to
represent single-track TMs, and is a matter of
design convenience.

21



i Multi-tape Turing Machines

= M with multiple tapes, each tape with a
separate head

= Each head can move independently of the
others

Tape 1 ... ’ \
v

Tape 2_

Tapek .- 22




On how a Multi-tape TM would
operate

= |nitially:
= Theinputisin tape #1 surrounded by blanks
= All other tapes contain only blanks

= The tape head for tape #1 points to the 15t symbol of the
input

= The heads for all other tapes point at an arbitrary cell
(doesn’t matter because they are all blanks anyway)

= A move:

= |s a function (current state, the symbols pointed by all the
heads)

= After each move, each tape head can move independently
(left or right) of one another

23



i Multitape TMs = Basic TMs

= Theorem: Every language accepted by a k-
tape TM is also accepted by a single-tape TM

= Proof by construction:

= Construct a single-tape TM with 2k tracks, where
each tape of the k-tape TM is simulated by 2
tracks of basic TM

= k out the 2k tracks simulate the k input tapes

= The other k out of the 2k tracks keep track of the k
tape head positions

24



Multitape TMs = Basic TMs ...

= [0 simulate one move of the k-tape TM:
= Move from the leftmost marker to the rightmost marker (k markers) and in
the process, gather all the input symbols into storage

= Then, take the action same as done by the k-tape TM (rewrite tape symbols
& move L/R using the markers)

storage
Track 1 4|_|_|X_|_|__
Track 2 A1 A2 Ai
Track 3 "' X
Track4 _= B; |B, |... |B |... |B;

25




Non-deterministic TMs = Deterministic TMs

* Non-deterministic TMs

= A TM can have non-deterministic moves:

= 0(0,X) ={ (0:,Y4,D4), (02, Y2,Dy), ... }
= Simulation using a multitape deterministic

TM: -

Input tape 7
D, ID, ID, IDS

Marker tape

Scratch tape

26




& Summary

= Ms == Recursively Enumerable languages

= [Ms can be used as both:
= Language recognizers
= Calculators/computers

= Basic TM is equivalent to all the below:
. ITM + storage
2 Multi-track TM
s, Multi-tape TM
+  Non-deterministic TM

= Ms are like universal computing machines
with unbounded storage

27



FORMAL LANGUAGES AND AUTOMATA THEORY

UNIT 3



* Undecidability




Decidability vs. Undecidability

= There are two types of TMs (based on halting):
(Recursive)

TMs that always halt, no matter accepting or non-
accepting = DECIDABLE PROBLEMS

(Recursively enumerable)

TMs that are guaranteed to halt only on acceptance. If
non-accepting, it may or may not halt (i.e., could loop
forever).

= Undecidability.:

= Undecidable problems are those that are not
recursive




Recursive, RE, Undecidable languages

No TMs exist

TMs that always halt
LBA \

TMs that may or

Non-RE Languages®
may not halt

all other languages for which
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Recursive Languages &
cursively Enumerable (RE)

Re
* languages

= Any TM for a Recurswe language is going to
look like this:

“accept”
“reject”
= Any TM for a Recursively Enumerable (RE)

language is going to look like this:
“accept”




*Closure Properties of:
'- the Recursive language
class, and
- the Recursively Enumerable
language class




Recursive Languages are closed

* under complementation

= If L is Recursive, L is also Recursive

— N
‘accept’

S “reject”




Are Recursively Enumerable
Languages closed under

* complementation? (NO)

w IfLis RE,Tneed not be RE

“accept” ?
Pl 2

™ “rgject”




1.

Recursive Langs are closed
under Union

LetM,=TMfor L, UL,
M, construction:

Make 2-tapes and
copy input w on both
tapes

Simulate M, on tape 1
Simulate M, on tape 2

If either M, or M,
accepts, then M,
accepts

Otherwise, M, rejects.




1.

Recursive Langs are closed
under Intersection

Let M, = TM for L, n L,
M,, construction:

Make 2-tapes and
copy input w on both
tapes

Simulate M, on tape 1
Simulate M, on tape 2

If either M; AND M,
accepts, then M,
accepts

Otherwise, M, rejects.




Other Closure Property

& Results

= Recursive languages are also closed under:
= Concatenation
= Kleene closure (star operator)
= Homomorphism, and inverse homomorphism
= RE languages are closed under:
= Union, intersection, concatenation, Kleene closure

= RE languages are not closed under:
= complementation

10



& “Languages” vs. “Problems”

A “language” is a set of strings

Any “problem” can be expressed as a set of all
strings that are of the form:

= “<input, output>"

e.g., Problem (a+b) = Language of strings of the form { “a#b, a+b” }

==> Every problem also corresponds to a
language!!

Think of the language for a “problem” == a verifier for the problem

11



! The Halting Problem

An example of a recursive
enumerable problem that is
also undecidable

12
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* What is the Halting Problem?

Definition of the “halting problem”:

= Does a givenTuring Machine M halt on
a given input w?

o -




A Turing Machine simulator

d
The Universal Turing Machine

= Given: TM M & its input w

= Aim: Build another TM called “H”, that will output:
= “accept’ if M accepts w, and
= “reject” otherwise

= An algorithm for H: _Implies: H is in RE
= Simulate M on w

accept, if Macceptsw
= H(<M,w>) =
reject, if M does does not accept w

Question: If M does not halt on w, what will happen to H?

15



* A Claim

= Claim: No H that is always guaranteed
to halt, can exist!

= Proof: (Alan Turing, 1936)
= By contradiction, let us assume H exists

“accept”
<Mw>—""
“reject”




Therefore, if H exists =» D also should exist.
But can such a D exist? (if not, then H also cannot exist)

HP Proof (step 1)

= Letusconstructanew TM D using H as a
subroutine:

= Oninput <M>:
. Run Honinput <M, <M> >; //({i.e., run M on M itself)
. QOutput the opposite of what H outputs;

\

“accept” /“accept”

<M>

M, “<M>" :
iy Y= “reject” \ “reject”

17




HP Proof (step 2)

= The notion of inputing “<M>" to M itself

= A program can be input to itself (e.g., a compiler is a
program that takes any program as input)

accept, if M does not accept <M>
D (<M>) =
reject, if M accepts <M>

Now, what happens if D is input to itself?

accept, if D does not accept <D>
D (<D>) =
reject, if D accepts <D>

A contradiction!!! ==> Neither D nor H can exist.

18



Of Paradoxes & Strange
Loops

E.g., Barber’s paradox, Achilles & the Tortoise (Zeno’s paradox)
MC Escher’s paintings

A fun book for further reading:
“Godel, Escher, Bach: An Eternal Golden Braid”
by Douglas Hofstadter (Pulitzer winner, 1980) 19



* The Diagonalization Language

Example of a language that is
not recursive enumerable

(i.e, no TMs exist)

20



The Diagonalization language

The Halting Problem \
\

Non-RE Languages
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- 1]
A Language about TMs &

i acceptance

= LetL be the language of all strings
<M,w> s.1.:

i. Misa TM (coded in binary) with input
alphabet also binary

2. W IS a binary string
5. M accepts input w.

22



i Enumerating all binary strings

= Let w be a binary string

= Then 1w =1, where i is some integer
= E.g., Ifw=¢, theni=1;
o If w=0, then i=2;
o If w=1, then i=3; so on...

= If fw=i, then call w as the i'" word or i"" binary
string, denoted by w..

= ==> A canonical ordering of all binary
strings:
= {¢ 0, 1,00, 01, 10, 11, 000, 100, 101, 110, .....}
s (W, Wy, Wy, Wy, .... W, ... }

23



Any TM M can also be binary-

& coded

« M={Q,{0,1}, T, 8, q,,B,F }

= Map all states, tape symbols and transitions to
Integers (==>binary strings)

= 8(q;, X)) = (9. X,Dp,,) will be represented as:
= ==> 01 011 0k1 01 O

s Result: Each TM can be written down as a
long binary string

= ==> CGanonical ordering of TMs:
u {M1, M2, Ms, M4, I MI’ . }

24



The Diagonalization Language
o Ly={w|w ¢ L(M)}

= The language of all strings whose corresponding
machine does not accept itself (i.e., its own code)

(input WOI’Ld W)

J
+ Table: T[i,j] = 1, if M; accepts w,
= 0, otherwise.

« Make a new language called
Ly={w; [ T[i,i] = 0}

P ‘I
I( ’
—_ O =, o’,’_L
f,’ "
s ,,
o =, N
I” o’
’ P
Fd
O O,/0 O|Ww
P Y
I' ’
— — (- —h _p.

R W N =T

© " diagonal =



i L, is not RE (i.e., has no TM)

= Proof (by contradiction):
= Let M be the TM for L

= ==>M has to be equal to some M, s.t.
L(M,) = Ld
= ==> Will w,_belong to L(M,) or not?

. Ifwge L(M) ==> T[k,k]=1 ==> w,& L,
2. Ifw, e L(M,) ==> T[k,k]=0 ==> w, € L,
= A contradiction either way!!

26



Why should there be
languages that do not have

* TMs?

We thought TMs can solve
everything!!

27



Non-RE languages

How come there are languages here?
(e.g., diagonalization language)

/
Non-RE Languages

ontext-
free
(PDA)

Context
sensitive

Enumerable (RE)

Recursive
Recursively

28




i One Explanation

There are more languages than TMs

= By pigeon hole principle:
= ==> Some languages cannot have TMs

= But how do we show this?

= Need a way to “count & compare” two infinite
sets (languages and TMs)

29



How to count elements In a

& set?

Let A be a set:
= If Alis finite ==> counting is trivial
= If A is infinite ==> how do we count?

= And, how do we compare two infinite sets by
their size?

30



Cantor’s definition of set “size”

i for infinite sets (1873 A.D.)

Let N ={1,2,3,...} (all natural numbers)
Let E ={2,4,6,...} (all even numbers)

Q) Which is bigger?
= A) Both sets are of the same size

= “Countably infinite”
= Proof: Show by one-to-one, onto set correspondence from

N==>E n f(n)
1 2
i.e, for every element in N, 2 4
there is a unique element in E, 3 6
and vice versa.
31




Example #2

- Let Q be the set of all rational numbers
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Really, really big sets!
(even bigger than countably infinite sets)

Uncountable sets

Example:
s Let R be the set of all real numbers
= Claim: R is uncountable

n f(n)

11 3.14159... Build x s.t. x cannot possibly
2| 5.55555 .. occur in the table

3|1 0.12345 ...

41 0.51430... Eg.x=0.2644 ...

33




Therefore, some languages

i cannot have TMs...

= The set of all TMs is countably infinite

= The set of all Languages is uncountable

= ==> [here should be some languages
without TMs ( by PHP)

34



The problem reduction
technique, and reusing other
* constructions

35



Languages that we know

& about

» Language of a Universal TM (“UTM”)
= L, ={<M,w>| M accepts w }
= Result: L, is in RE but not recursive

= Diagonalization language
s Ly={w, | M, does not accept w, }
= Result: L, is non-RE

36



TMs that accept non-empty

i languages

s L, ={M|LM)# I}
" L. IS RE
= Proof: (builda TM for L, using UTM)

e D

Non-deterministic Simulator for L

“accept” , accept”
M M__,
Guess w

- /

37




TMs that accept non-empty

* languages

= L Is not recursive

= Proof: (“Reduce”L tolL,,)
= Idea: M accepts w if and only if L(M’) # &

i >

— “accept”

38



Reducabillity

To prove: Problem P, is undecidable

Given/known: Problem P, is undecidable

Reduction idea:

“Reduce” P, to P,:

=  Convert P,’s input instance to P,’s input instance s.t.

P, decides only if P, decides
Therefore, P, is decidable
A contradiction
Therefore, P, has to be undecidable

39



The Reduction Technique

Note:
Reduce P, to P,: not same as
Py —— Decide

instance mstance

Conclusion: If we could solve P4, then we can solve P, as well

40




* Summary

Problems vs. languages
Decidability
Recursive

Undecidability
Recursively Enumerable
Not RE
Examples of languages

The diagonalization technique
Reducability
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