
DATABASE MANAGEMENT SYSTEM (23CY502)

Department of CSE(Cyber Security), NRCM Page 1

UNIT– I

Database System Applications: A Historical Perspective, File Systems versus a DBMS, the

Data Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS

Introduction to Database Design: Database Design and ER Diagrams, Entities, Attributes,

and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model,

Conceptual Design With the ER Model

1. INTRODUCTION

Data: Data is a piece of information. Data can exist in a variety of forms:

 As numbers or text on pieces of paper

 As bits and bytes stored in computer memory

 As facts stored in a person's mind.

Data is raw information and it does not give correct meaning. The processed data becomes

Information and it gives correct meaning.

Database: Database is a collection of inter-related data which is used to retrieve, insert,

delete and manipulate the data efficiently.

Database Management System (DBMS): The software which is used to

manage database is called Database Management System (DBMS).

Examples of popular DBMS:

 MySql

 Oracle

 Microsoft Access

 IBMDB2

DATABASE MANAGEMENT SYSTEM (23CY502)

Department of CSE(Cyber Security), NRCM Page 2

2. A HISTORICAL PERSPECTIVE
From the earliest days of computers, storing and manipulating data have been a major application

focus. The first general-purpose DBMS called the Integrated Data Store (IDS) was designed by

Charles Bachman in the early1960s. It formed the basis for the network data model.

In the late 1960s, IBM developed the Information Management System (IMS). This formed

the basis for an alternative data representation framework called the hierarchical data model.

In 1970, Edgar Codd, proposed a new data representation framework called the relational data

model. In a relational data model, the data is stored in the form of table containing rows and

columns. This became very famous database model. The SQL (Structured Query Language) is

the standard query language used to access relational databases.

Several vendors (e.g., IBM's DB2, Oracle 8, etc) developed data warehouses. A Data

warehouse collects data from several databases and this data is used for carrying out specialized

analysis.

In mid 90s, DBMSs have entered the Internet Age. All the database vendors are added

features to their DBMS aimed at making it more suitable for deployment over the Internet.

Database management continues to gain more popularity and more data is brought online to

access through computer networking.

Today the field is being driven by exciting visions such streaming data (youtube, vimeo, etc)

as interactive video (flash, wire wax etc), multimedia databases (facebook, instagram, gaana etc),

digital libraries (DELNET, Shodh ganga, etc). Thus the study of database systems could prove to

be richly rewarding in more.

3. DATA BASE APPLICATIONS

We use Database Management Systems in almost all application sectors. They are:

1. Telecom: A database is required to keep track of the information regarding calls history,

network usage, customer details, generating monthly bills, maintaining balances on

prepaid calling cards etc. Without the database systems it is hard to maintain that huge

amount of data that keeps updating every millisecond. Ex: Airtel, IDEA, Jio, etc

2. Banking System: A database stores bank customer’s information, maintain day to day

DATABASE MANAGEMENT SYSTEM (23CY502)

Department of CSE(Cyber Security), NRCM Page 3

credit and debit transactions, generate bank statements etc. Ex: SBI, HDFC, etc

3. Online shopping: The online shopping websites store the product information, your

addresses and preferences, credit details and provide you the relevant list of products

based on your query. Ex: Amazon, Flipkart etc.

4. Airlines: Passenger details, reservation in formation along with flight schedule is stored

in database. Eg: Air India, Indigo, etc

5. Education sector: Database systems are used in schools, colleges and universities tostore

and retrieve the data regarding student details, staff details, course details, exam details,

attendance details, fees details etc. Ex: JNTUH, IITB, etc

6. Sales: To store customer information, stock details and invoice details a database is

needed. Ex: Reliance Fresh, D-Mart etc.

7. Human resources: For information about employees, salaries, payroll taxes, and benefits

and for generation of paychecks a database is required.

8. Credit card transactions: For purchases on credit cards and generation of monthly

statements.

9. Stock market: For storing information about holdings, sales, and purchases of stocks;

also for storing real-time market data to enable online trading.

4. DIFFERENCE BETWEEN FILE SYSTEM AND DBMS

File System DBMS

Definition
A file system is a software that

manages the data files in a computer

DBMS is a software used to create and

manage databases.

Operations

Operations such as storing,

retrieving and searching are done

manually in a file system. Therefore,

it is difficult to manage data.

Op

erations such as storing, retrieving and

searching data is easier in DBMS

because it allows using SQL query

language.

DATABASE MANAGEMENT SYSTEM (23CY502)

Department of CSE(Cyber Security), NRCM Page 4

Data

Consistency

Data Inconsistency is more in file

system.
Data Inconsistency is less in DBMS.

Data

Redundancy

Data Redundancy is more in file

system.
Data Redundancy is less in a DBMS.

Backup and

Recovery
Process

Backup and recovery process is not

efficient in files system.

DBMS has a sophisticated backup and

recovery techniques.

Concurrent

access

Concurrent access to the data in the

file system has many problems

DBMS takes care of Concurrent access

using some form of locking.

Physical

address

User can locates the physical
address of the files to access data in

File System.

In DBMS, user is unaware of physical

address where data is stored.

Security File system provides less security to

the data as compared to DBMS.

DBMS provides more security to the

data.

Example
FAT, NTFS and Ext are some

examples of file systems.
MySQL, MS-Access, Oracle, and DB2

are some examples of DBMS.

5. DBMS DATABASE MODELS
A Database model defines the logical design and structure of a database. It explains how data

will be stored, accessed and updated in a DBMS. The different DBMS data models are:

 Network Model

 Hierarchical Model

 Entity-relationship Model

 Relational Model

 Object oriented data model

Network Data Model

Network model has the entities which are organized in a graphical representation and some

entities in the graph can be accessed through several paths. The data in this model is represented

as collection of records and the relationship among data are represented by links.

DATABASE MANAGEMENT SYSTEM (23CY502)

Department of CSE(Cyber Security), NRCM Page 5

Figure:NetworkModel

https://whatisdbms.com/wp-content/uploads/2016/06/Network-Model-in-DBMS.jpg

DATABASE MANAGEMENT SYSTEM (23CY502)

Department of CSE(Cyber Security), NRCM Page 6

Hierarchical Model
Hierarchical database model organizes data into a tree-like-structure, with a single root, to which

all the other data is linked. In this model, a child node will only have a single parent node.

Figure:HierarchicalData Model

Entity-Relationship Model

Entity-Relationship (ER) Model is based on the notion of real-world entities and relationships

among them. ER Model is best used for the conceptual design of a database. While formulating

real-world scenario into the database model, it depend on two important things. They are:

 Entity and their attributes

 Relationships among entities

CID CName

 Course

Relational Model

The most popular data model in DBMS is the Relational Model. The relational model contains a

set of tables (relations). Each table has a specified number of columns but can have any number

of rows.

Admission No Name Age Class

1001 Ram 15 9

1002 Ajay 14 9

1003 Jhon 14 9

1004 Akbar 15 10

SID SName

Enroll Student

DATABASE MANAGEMENT SYSTEM (23CY502)

Department of CSE(Cyber Security), NRCM Page 7

Object oriented Data Model

Object oriented data model defines a database as a collection of objects with associated attributes

and methods. This model can incorporates multimedia, such as images, audio, video. The object-

oriented database model is the best known post-relational database model, since it incorporates

tables, but isn’t limited to tables. Such models are also known as hybrid database models.

6. LEVELS OFABSTRACTION IN A DBMS

Database systems are made-up of complex data structures. To ease the user interaction with

database, the developers hide internal irrelevant details from users. This process of hiding

irrelevant details from user is called data abstraction. We have three levels of abstraction.

Level

10. Physical level: This is the lowest level of data abstraction. It describes how data is actually

stored in database. It deals with physical memory storage details of records. These details are

often hidden from the programmers.

11. Logical level: This is the middle level of 3-level data abstraction architecture. It describes

what data is stored in database. This level gives details about each attribute data type and size,

the relationship among attributes and defined constraints (Primary key, foreign key etc) on the

table. The programmers generally work at this level because they are aware of such things

about database systems.

View

LogicalLevel

PhysicalLevel

DATABASE MANAGEMENT SYSTEM (23CY502)

Department of CSE(Cyber Security), NRCM Page 8

12. View level: This is the highest level of data abstraction. This level describes the user

interaction with database system. At this level, user enters the query to get the answer. Many

users may require different sets of fields from a table. Therefore there exist many view levels.

7. DATA INDEPENDENCE
Data Independence is defined as a property of DBMS that helps you to change the Database

schema at one level without requiring changing the schema at the next higher level. Data

independence helps you to keep data separated from all programs that make use of it.

In DBMS there are two types of data independence

1. Physical data independence

2. Logical data independence.

Physical Data Independence: Physical data independence is the ability to change the

internal schema without having to change the conceptual schema. That is, if we do any changes

in the storage side of the database system server, then the Conceptual structure of the database

will not be affected. For example, in case we want to change or upgrade the storage system itself

−suppose we want to replace hard-disks with SSD−it should not have any impact on the logical

data or schemas.

Logical Data Independence: Logical data independence is the ability to change the

conceptual schema without having to change the external schema. That is, if we do any changes

in the logical view of the data, then the user view/ external view of the data should not be

affected.

8. STRUCTUREOFADBMS

The DBMS accepts SQL commands generated from a variety of user interfaces such as web

forms, applications, SQL interface and etc. When a user issues a query, the parsed query is

presented to a query optimizer, which uses information about how the data is stored to produce

an efficient execution plan for evaluating the query. An execution plan is a blueprint for

evaluating a query. It executes these plans against the database, and returns the answers to the

user.

DATABASE MANAGEMENT SYSTEM (23CY502)

Department of CSE(Cyber Security), NRCM Page 9

Figure:DBMSStructure

 DBMS consists of a Query Evaluation engine which accepts commands from the front end

applications like web forms, SQL interfaces and evaluates the query to retrieve the requested

data.

 Query Evaluation engine consists of the following components

o Parser: It parses the received SQL commands.

o Operator evaluator: It evaluates the operators used in the query.

o Plan executor: It designs a plan to obtain the result.

o Optimizer: It optimizes the query to improve the process of retrieving the result ant

data.

 File and access methods: It is responsible for the abstraction of file structures stored and for

creating indexes on the files for faster access.

 Buffer Manager: The purpose of buffer manager is to move pages in and out from a disk to

main memory.

 Disk-Space Manager: It manages space on the disk by providing empty space for new

requests, deleting space allocated for existing files which are deleted by the user.

 Transaction Manager and lock manager: It is responsible for maintaining concurrency of

the data, when accessed by multiple users.

QueryEval

uationEngi

ne

DATABASE MANAGEMENT SYSTEM (23CY502)

Department of CSE(Cyber Security), NRCM Page 10

 Recovery manager: It is responsible for maintaining log files and supports crash recovery.

When a system crashes recovery manager is responsible for bringing the system to a safe

state.

9. DATABASE DESIGN
The database design process can be divided into six steps.

i. Requirements Analysis: The very first step in designing a database application is to gather

information from different stake holders such as management, employees and end users. The

development team conducts discussions with different user groups, study the current

operating environment, analyze any available documentation on existing applications and

gather all of the types of information that to be recorded in the database. The gathered

information is documented properly.

ii. Conceptual Database Design: The information gathered in the requirements analysis step is

used to develop Entity Relationship (ER) model. The ER model facilitates discussion among

all the people involved in the design process, even those who have no technical background.

iii. Logical Database Design: The task in this stage is to convert the ER model into relational

schemas. Each entity and each relationship is converted into a relation or a table.

iv. Schema Refinement: The fourth step in database design is to analyze the collection of

relations in our relational database schema to identify potential problems, and to refine it.

This process is called normalization.

v. Physical Database Design: In this step, the database design is refined to ensure that it meets

desired performance criteria and satisfies the expected workload. This step may simply

involve building indexes on some tables and clustering some tables, or it may involve a

substantial redesign of parts of the database schema obtained from the earlier design steps.

vi. Application and Security Design: Foreachrole(manager/accountant/clerk),some part of the

database is accessible and other part of the database is not accessible. The software developer

should enforce these accessing rules while developing the applications (using application

languages like java) to access data using DBMS.

Realistically, all above six design steps are repeated until the design is satisfactory to complete

database design.

DATABASE MANAGEMENT SYSTEM (23CY502)

Department of CSE(Cyber Security), NRCM Page 11

10. ERDIAGRAMS
An entity-relationship (ER) diagram is a graphical representation of entities and their

relationships to each other, typically used to the organization of data within databases. An entity-

relationship (ER) diagram is also called as an entity relationship model.

Component of ER Diagram

Symbol Name Description

Entity /

Strong entity

An entity may be any object, class, person

or place.

Weak entity

Weak entities depend on some other entity

type. They don't have primary keys, and

have no meaning in the diagram without

their parent entity.

Relationship

Relationships are associations between or

among entities.

DATABASE MANAGEMENT SYSTEM (23CY502)

Department of CSE(Cyber Security), NRCM Page 12

Symbol Name Description

Weak

relationship

Weak Relationships are connections

between a weak entity and its owner.

Attribute
Attributes are characteristics of an entity.

The attribute is used to describe the

property of an entity.

Key Attribute
A key attribute is the unique characteristic

of the entity. It represents a primary key.

Multi

valued

attribute

Multi valued attributes are those that are

can take on more than one value.

Derived

attribute

Derived attributes are attributes whose

value can be calculated from other

attribute values.

Composite

attribute

An attribute that composed of many other

attributes is known as a composite

attribute.

Types of relationship areas follows:

The cardinality of a relationship is the number of instances of entity B that can be associated

with entity A. Based on the cardinality; the relationships are classified into four types. They are:

a. One-to-One Relationship: When only one instance of an entity is associated with the

relationship, then it is known as one to one relationship.

Example: A female can marry to one male, and a male can marry to one female.

b. One-to-many relationship: When only one instance of the entity on the left, and more than

one instance of an entity on the right associates with the relationship then this is known as a one-

to-many relationship.

DATABASE MANAGEMENT SYSTEM (23CY502)

Department of CSE(Cyber Security), NRCM Page 13

Example: Scientist can invent many inventions, but the invention is done by the only specific

scientist.

c. Many-to-one relationship: When more than one instance of the entity on the left, and only

one instance of an entity on the right associates with the relationship then it is known as a many-

to-one relationship.

Example: Student enrolls for only one course, but a course can have many students.

d. Many-to-many relationship: When more than one instance of the entity on the left, and more

than one instance of an entity on the right associates with the relationship then it is known as a

many-to-many relationship.

Example: Employee can assign by many projects and project can have many employees.

Entity Set and Relationship Set

SID SName

 Student

Entity Set: An Entity set is a set of entities of the same type that share the same properties.

The above diagram contains two entities; Instructor and Student. In the below figure, Instructor

entity contains six different instructor values (rows) called as Instructor entity set and Student

entity contain seven different student values (rows) called as Student entity set.

IID IName

Advice Instructor

DATABASE MANAGEMENT SYSTEM (23CY502)

Department of CSE(Cyber Security), NRCM Page 14

Figure: Entity set Instructor and Student

Relationship Set: A relationship set is a set of relationships of the same type. In the below

figure one instructor can advice many students but every student is advised by only one

instructor. This relationship is called as many-to-one relationship.

Figure: Relationship set advisor

11. ADDITIONAL FEATURES OF THE ER MODEL

N-array relationship

In an n-ary relationship, then shows the number of entities in the relationship. It can be

anything but the most popular relationships are unary, binary and ternary relationship.

Department of CSE(Cyber Security), NRCM Page 15

Unary Relationship: When there is a relationship between two entities of the same type, it is

known as a unary or recursive relationship. This means that the relationship is between different

instances of the same entity type.

For example, an employee can supervise multiple employees. The role of one employee is HOD

and the role and other employees is faculty. That is, one HOD supervises many faculties.

Binary Relationship: When there is a relationship between two different entities, it is known as

a binary relationship.

Each employee only has a single ID card. Hence this is a one to one binary relationship where 1

employee has 1 ID card.

Ternary Relationship: When there is a relationship between three different entities, it is known

as a ternary relationship. An example of a ternary relationship can be shown as follows:

In this example, there is a ternary relationship between Doctor, Patient and Medicine.

Department of CSE(Cyber Security), NRCM Page 16

Weak Entity

A Weak entity is the one that depends on its owner entity for its existence. A weak entity is

denoted by the double rectangle. Weak entity does not have the primary key. The primary

key of a weak entity is a composite key formed from the primary key of the strong entity and

partial key of the weak entity.

DName Address

There can be an employee without a dependent in the Company but there will be no record of the

Dependent in the company systems without any association with an Employee.

Generalization

Generalization is a bottom-up approach in which two or more lower-level entities combines to

form a new higher-level entity. In generalization, the generalized entity of higher level can also

combinewithentitiesofthelower-leveltomakefurtherhigher-levelentity. It is like a super class and

subclass system, but the only difference is that it uses the bottom-up approach. In this process,

the common attributes of two or more lower level entities are given to higher level entity

EID EName

Depends Employee Dependent

Department of CSE(Cyber Security), NRCM Page 17

Specialization

Specialization is opposite to Generalization. It is a top-down approach in whichone higher level

entity can be broken down into two or more lower level entity.

Aggregation

Aggregation is a process when relation between two entities is treated as a single entity.

In the diagram above, the relationship between Center and Course together, is acting as an

Entity, which is in relationship with another entity Visitor. Now in real world, if a Visitor or a

Student visits a Coaching Center, he/she will never enquire about the center only or just aboutthe

course, rather he/she will ask enquire about both.

12. CONCEPTUAL DESIGN WITH THE ER MODEL

The document prepared in the requirement analysis phase is used to generate ER Model by

following below six steps:

Department of CSE(Cyber Security), NRCM Page 18

 Find the entities: Look for general nouns in requirement specification document which are

of business interest to business users.

 Identify relevant attributes: Identify all attributes related to eachentity.

 Find the key attributes for every entity: Identifythe attribute or set of attributes which can

identify each entity instance uniquely.

 Find the relationships: Identify the natural relationship and their cardinalities between all

possible combinations of the entities.

 CompleteE-Rdiagram: Draw E-Rdiagramalongwithallattributesandentities.

 Reviewyourresultswithyourbusinessusers: Show the completed ER diagram to your

business user and make necessary changes.

PROBLEM: UNIVERSITY CASE STUDY

A University has many departments. Each department has a name and location. Each

department has multiple instructors; one among them is the head of the department. Every

instructor has a name, mobile number and room number. An instructor belongs to only one

department. Each department offers multiple courses, each of which is taught by a single

instructor.Each course has unique course number, name, duration and pre-requisite course. A

student may enroll for many courses offered by different departments. Every student has a ID,

name and date of birth.

SOLUTION

Step1: Identify theEntities

1. DEPARTMENT

2. COURSE

3. INSTRUCTOR

4. STUDENT

Step 2:Identify all relevant attributes

1. Forthe "Department"entity, the relevant attribute are"Department Name"is"Location".
2. For the "Course" entity, the relevant attributes are "Course Number" are "Course Name",

"Duration" and "Pre Requisite".

3. Forthe"Instructor"entity, the relevant attribute sare"InstructorName"are"RoomNumber"

and "Telephone Number".

4. Forthe"Student"entity, the relevant attributes are"StudentNumber"are"StudentName" and

"Date of Birth".

Department of CSE(Cyber Security), NRCM Page 19

Step3: Identifythekey attributes

1. DName (DepartmentName) which identifies the department uniquely will be the key

attribute for "DEPARTMENT" entity.

2. STUDENT# (Student Number) which identifies the student entity uniquely will be

thekey attribute for "STUDENT" entity.

3. IName(InstructorName)isthekeyattributefor "INSTRUCTOR" entity.

4. COURSE#(CourseNumber)is thekeyattributeforCOURSEentity.

STEP4: Find relationships.

Wecan derivethefollowing relationships:
1. The department offers multiple courses and each course belongs to only one department.

So the cardinality between department and course is one to many.

2. Onecourseisenrolledbymultiplestudentsandalsoonestudentenrollsformultiple courses. So

the relationship is many to many.

3. One department has multiple instructors and also one instructor belongs to one and only

one department. So the relationship is one to many.

4. Each department has one "Head of Department" and one Instructor is Department" for

only one department, hence the relationship is one to one.

5. One course is taught by only one instructor but one instructor teaches many courses,

hence the relationship between course and instructor is many to one.

The relationship between instructor and student need NOT be defined in the diagram.The

reasons are as follows:

1. There is no business significance of this relationship.

2. We can always derive this relationship indirectly through course and instructor, and

course and students.

1 Headed
by

N
Instructor Department

M Enrolled
by

N
Student Course

1
Offers N

Course Department

1 Has N
Instructor Department

N Taught
by

1
Instructor Course

Department of CSE(Cyber Security), NRCM Page 20

Room#

Student

Dateof Birth Student Name Student#

DeptName Location

Instructor

1

Student

M

Telephone# Enrolled
by

1

InstructorName

Duration

Course Name

1 Taught
by

 N

N
Course#

1 N

Has Headed
by

PreRequisite

Offers

1

Step5: Complete E-R diagram

After considering all the above mentioned guidelines one can generate the E-R Model for the

university database as shown in Figure.

Instructor

N

13. DESIGN CHOICES IN CONCEPTUAL DESIGN

a. Shoulda concept be modeled as an entity or an attribute?

b. Shoulda concept be modeled as an entity or a relationship?

c. Identifying relationships: Binary or ternary? Aggregation?

Entity vs. Attribute

• Should address be an attribute of Employees or an entity (related to Employees)?

• Depends up on how we want to use address information, and the semantics of the data:

Department of CSE(Cyber Security), NRCM Page 21

• If we have several addresses per employee, address must be an entity

• If the structure of address is important (plotNo, street, city, state, country and

pinCode values are compulsory for each address) then, address must be modeled

as an entity.

• Otherwise address can be modeled as an attribute.

Binary vs.Ternary Relationship

• A relationship can also have attributes.

• If an employee work in a department for a period time, then it can be modeled as

givenbelow.

• This is a binary relationship diagram

• If an employee work in a department for two or more periods , then it should be

remodeled as given below.

• Then it becomes as a ternary relationship diagram

When to use aggregation?

When an entity maintains a common relationship with two or more entities, not

individually then aggregation need to be used.

Department of CSE, NRCM Page 22

MULTIPLE CHOICE QUESTIONS

1. An entity set that does not have sufficient attributes to form a primary key is a

a) Strong entity set b)Variant setc)Weak entity set d)Variable set

2. In the relational model,cardinality is termed as:

a) no.of tuples b)no. of attributes c)no.of tables d) no.of constraints

3. In a relational model,relations are termed as

a) Tuples. b) Attributes c)Tables. d) Rows.

4. In an E-R diagram attributes are represented by

a) rectangle b) square c)ellipse d) triangle.

5. An abstraction concept for building composite object from their component to bject is

called:

a).Specializationb).Normalization c).Generalization d).Aggregation

Department of CSE, NRCM Page 23

UNIT– II

Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity

constraints, querying relational data, logical data base design, introduction to views,

destroying/altering tables and views. Relational Algebra, Tuple relational Calculus, Domain

relational calculus.

1. RELATIONAL MODEL

Relational data model is the most popular data model used widely around the world for data

storage. In this model data is stored in the form of tables.

Relational Model Concepts

Table is also called Relation. Let the below table name be SUDENT_DATA

Attribute / Column / Field

Degree=No ofcolumns=4

Tuple / Row / Record

Cardinality=Noofrows=3

Table: In relational model the data is saved in the form of tables. A table has two properties

rows and columns. Rows represent records and columns represent attributes.

Attribute: Each column in a Table is an attribute. Attributes are the properties that define a

relation. e.g., HTNO, NAME, AGE, CITY in the above relation.

Tuple: Every single row of a table is called record or tuple.

Relation Schema: It represents the name of the relation (Table) with its attributes.

Eg., STUDENT_DATA(htno, name, age, city)

htno Name age city

501 Amar 19 Hyderabad

502 Akbar 18 Warngal

503 Antony 19 Karimnagar

Department of CSE, NRCM Page 24

Degree: The total number of attributes in the relation is called the degree of the relation.

Cardinality: Total number of rows present intheTable.

2. INTEGRITY CONSTRAINT

 Integrity constraints are a set of rules that the database should not violate.

 Integrity constraints ensure that authorized changes (update deletion, insertion) made to

the database should not affect data consistency.

 Integrity constraints may apply to attribute or to relationships between tables.

TYPES OF INTEGRITY CONSTRAINTS

The integrity constraints supported by DBMS are:

1. Domain Integrity Constraint

2. Entity Integrity Constraint

3. Referential Integrity Constraint

4. Key Constraints

 Domain Constraint: These are attribute level constraints. An attribute can only take

values which lie inside the domain range.Example: If a constrain AGE > 0 is applied on

STUDENT relation, inserting negative value of AGE will result in failure. If the domain of

AGE is defined as integer, inserting an alphabet in age column is not accepted.

Example:

Not allowed. Because AGE is an integer attribute

 Entity integrity constraints: The entity integrity constraint states that primary key

value can't be null. This is because the primary key value is used to identify individual rows

in relation. A table can contain a null value other than the primary key field.

ID NAME SEMESTER AGE

1001 TOM I 18

1002 JHONSON IV 20

1003 KATE VI 21

1004 JHON II 19

1005 MORGAN II A

Referential

Integrityconstraint

EntityIntegrity

constraint

Key

constraint

Domain

constraint

Integrityconstraint

Department of CSE, NRCM Page 25

Example: Let ID be the primary key in the below table.

ID NAME SEMESTER AGE

1001 TOM I 18

1002 JHONSON IV 20

 KATE VI 21

Not allowed. Because primary key can’t be NULL value.

 Referential Integrity Constraints: It is also called as foreign key constraint. A

referential integrity constraint is specified between two tables. In this type of constraints,

if a foreign key in Table 2 refers to the Primary Key of Table 1, then every value of the

Foreign Key in Table 2 must be null or be available in Table 1.

Example: Department Table(Table1)
PrimaryKey

PrimaryKey

Employee Table (Table 2)

Relationship

Foreign Key

Not allowed as Dept_No 01. Because 01

value is not present as a primary key in

Table1.Dept_Noisaforeignkeydefined

inTable2.

 Key Constraints: A Key Constraintis a statement that a certain minimal subset of the

fields of a relation is a unique identifier for a tuple.There are 4 types ofkey constraints.

Theyare

i. Candidate key: The candidate keys in a table are defined as the set of keys that is

minimal and can uniquely identify any data row in the table.

ii. Primary key: It can uniquely identify any data row of the table. The primary key is

one of the selected candidate key.

iii. Super key: Super Keyis the superset of primary key. The super key contains a set of

attributes, including the primarykey, which can uniquelyidentify any data row in the

table.

Dept_No Dept_Name

05 CSE

02 EEE

04 ECE

EID NAME AGE Dept_No

1001 TOM 45 04

1002 JHONSON 38 01

1003 KATE 54 05

1004 MORGAN 29 02

Department of CSE, NRCM Page 26

iv. Foreign key: It is a key used to link two tables together. A FOREIGN KEY is a field

(or collection of fields) in one table that refers to the PRIMARY KEY in another

table.

CompositeKey: If any single attribute of a table is not capable of being the key i.e it

cannot identify a row uniquely, then we combine two or more attributes to form akey.

This is known as a composite key.

Secondary Key: Only one of the candidate keys is selected as the primary key. The

rest of them are known as secondary keys.

3. ENFORCING INTEGRITY CONSTRAINTS

Database Constraints are declarative integrity rules of defining table structures. They include the

following 7 constraint types:

1. Data type constraint: This defines the type of data, data length, and a few other

attributes which are specifically associated with the type of data in a column.

2. Default constraint: This defines what value the column should use when no value has

been supplied explicitly when inserting a record in the table.

3. Nullability constraint: This defines that if a column is NOT NULL or allow NULL

values to be stored in it.

4. Primary key constraint: This is the unique identifier of the table. Each row must have a

distinct value. The primary key can be either a sequentially incremented integer number

or a natural selection of data that represents what is happening in the real world (e.g.

Social Security Number). NULL values are not allowed in primary key values.

5. Unique constraint: This defines that the values in a column must be unique and no

duplicates should be stored. Sometimes the data in a column must be unique even though

the column does not act as Primary Key of the table. Only one of the values can be

NULL.

6. Foreign key constraint: This defines how referential integrity is enforced between two

tables.

7. Check constraint: This defines a validation rule for the data values in a column so it is a

user-defined data integrity constraint. This rule is defined bythe user when designing the

column in a table.

Department of CSE, NRCM Page 27

EName salary since

EmpID Works_In Employee

Employee

4. LOGICAL DATABASE DESIGN

1. Each entity in the ER model will become a table and all attributes of that entity will become

columns of the table. Key attribute of the entity will become primary key in the table.

Example:

Employee Department

CREATETABLEEmployee (

EmpID NUMBER(3),

ENameVARCHAR(20),

Salary NUMBER(5),

PRIMARYKEY(EmpID)

);

CREATETABLEDepartment (

DeptID NUMBER(3),

DNameVARCHAR(15),

LocationVARCHAR(15),

PRIMARYKEY(DeptID)

);

2. Each relationship in the ER model will become a table. Key attributes of participating entities

in the relationship will become columns of the table. If the relationship has any attributes,

then they also will become columns of the table.

Example: From the above ER diagram, theWorks_In relationship converted as

Department

Works_In

EmpID DeptID since

CREATETABLEWorks_In (
EmpIDNUMBER(3),
DeptIDNUMBER(3),

Since DATE,
PRIMARYKEY(EmpID, DeptID),
FOREIGNKEY(EmpID)REFERENCESEmployee(EmpID),
FOREIGNKEY(DeptID)REFERENCESDepartment(DeptID),

);

DeptID DName Location

EmpID EName salary

Department

DeptID DName

Location

EmpID EName Salary

DeptID DName Location

Department of CSE, NRCM Page 28

Course

3. Any multi-valued attribute is converted into new table. The primary key of the entity will be

added as column in the new table.

Student Address

CREATETABLEStudent (
HTNOCHAR(10),name

 VARCHAR(20),

ageNUMBER(2),
PRIMARYKEY(HTNO)

);

CREATETABLEAddress
(

HTNOCHAR(10),

houseNo NUMBER(3),

street VARCHAR(20),

cityVARCHAR(15), state

 VARCHAR(15),

PRIMARYKEY(HTNO),
FOREIGNKEY(HTNO)REFERENCESStudent(HTNO),

);

4. Each weak entity is converted into a table with all its attributes as columns and primary key

of the strong entity acts as a foreign key in this table.

Section

CREATETABLECourse (

CourseIDNUMBER(2),
CName VARCHAR(20),

NOofCreditsNUMBER(2),

PRIMARYKEY(CourseID)

);

CREATETABLESection (

SectionNoCHAR(2),
CourseIDNUMBER(2),

location VARCHAR(15),
PRIMARYKEY(CourseID,SectionNo),

FOREIGNKEY(CourseID)REFERENCES Course(CourseId)

);

HTNO houseNo street city state

HTNO name age

name age HouseNo street

city

HTNO
address

state Student

CourseID CName NOofCredits

CourseID SectionNo location

CName NOofCredits SectionNo location

CourseID has
Section Course

Department of CSE, NRCM Page 29

5. INTRODUCTION TO VIEWS

A view is virtual tables whose rows are not explicitly stored in the database but are

computed as needed from a view definition. They are used to restrict access to the database or to

hide data complexity. A view contains rows and columns, just like a real table. Creating a view

does not take any storage space as only the view query is stored in the data dictionary and the

actual data is not stored.The tables referred in the views areknown as Base tables. Views do not

contain data of their own. They take data from the base tables.

Thereasonsforusingviewsare

 Security is increased-sensitive information can be excluded from a view.

 Views can represent a subset of the data contained in a table.

 Views can join and simplify multiple tables into a single virtual table.

 Views take very little space to store; the database contains only the definition of a

view, not a copy of all the data it presents.

 Different views can be created on the same basetable for different categories of users.

Creating Views syntax:

Examples: Consider the below given employees table. employees(eid,name,salary,experience)

employees

eid ename salary Experience

101 Jhon 20000 2

105 Sam 18000 2

108 Ram 30000 4

If we want to hide the salary column from accessing a group of users, then we can create view on

employees table as follows.

CREATE VIEWemp AS

SELECTeid,ename,experience FROM employees;

emp

eid Name Experience

101 Jhon 2

105 Sam 2

108 Ram 4

CREATE VIEW view_name AS

SELECT column_list

FROM table_name[WHERE condition];

Department of CSE, NRCM Page 30

The view emp is a virtual table. The data in the emp table is not saved in the database but

collectedfrom employees tablewheneveremptableisreferredinSQLquery.Wecanperformall

operations (INSERT, DELETE, UPDATE) on a view just like on a table but under some

restrictions.

When can insertion, delete or update performed on view?

 The view is defined from one and only one table.

 The view must include the PRIMARY KEY of the base table.

 The base table columns which are not part of view should not have NOTNULL constraint.

 The view should not have any field made out of aggregate functions.

 The view must not have any DISTINCT clause in its definition.

 The view must not have any GROUPBY or HAVING clause in its definition.

 The view must not have any SUBQUERIES in its definitions.

i. Inserting Rows into a View: A new row can be inserted into a view in a similar way as you

insert them in a table. When an insert operation performed on view, first a new row is

inserted into the base table and the same is reflected in the view.

ii. Deleting Rows into a View: A row(s) can be deleted from a view in a similar way as you

delete them from a table. When an delete operation performed on view, first row(s) is/are

deleted from the base table and the same is reflected in the view.

iii. Updating Rows into a View: A row(s) can be updated in a view in a similar way as you

update them in a table. When an update operation performed on view, first data is updated in

the base table and the same is reflected in the view.

iv. Dropping/Destroying View: Whenever you do not need the view anymore, we can destroy

the view by using DROP command. The syntax is very simple and is given below −

Example:DROPVIEWemp;

6. RELATIONAL ALGEBRA

Relational Algebra is procedural query language, which takes Relation as input and

generates relation as output. Relational algebra mainly provides theoretical foundation for

relational databases and SQL.

DROPVIEW view_name;

Department of CSE, NRCM Page 31

OperatorSymbol OperatorName Explanation

 Projection Selectcolumnnames

 Selection Selectrow values

Renaming Renameatablenameorexpression results

 Union Performunion operation

 Intersection Performintersectionoperation

- Setdeference Performsetdifference operation

 Cartesianproduct Everyrowoffirsttableisjoinedwithevery row

of second table

 Join Jointwo tables based onsome condition

i. Select Operation(σ):Itselectstuplesthatsatisfythegivenpredicatefromarelation.

Notation:σp(r)

where σ stands for selecting tuples (rows) and r stands for relation (table) name. p is

prepositional logic formula which may use connectors like and, or, and not. These termsmay

use relational operators like = ,≠ ,≥ ,<,> ,≤ .

Example1:σsubject="database"(Books)

Output:Selects rowswhosesubjectis'database'frombooks table.

Example2:σsubject="database"andprice="450"(Books)

Output:Selects rowsfrombookswheresubjectis'database'and'price'is450.

Example3:σsubject="database"andprice="450"oryear>"2010"(Books)

Output:Selectsrowsfrombookswheresubjectis'database'and'price'is450orthose books

published after 2010.

ii. Project Operation(∏):Itprojectscolumn(s)thatsatisfyagiven predicate.

Notation:∏A1,A2,…An(r)

whereA1,A2,Anarecolumn(attribute)namesofrelationr.Duplicaterowsare automatically

eliminated in the output.

Example:∏subject,author (Books)

Displayvalues fromcolumnssubjectand authorfrom therelation Books.

iii. Union Operation(∪):Itperformsunionoperationbetweentwogivenrelations.Itcombines

rows from two given relations.

Notation:rUs

http://www.databasteknik.se/webbkursen/relalg-lecture/huge-pi.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-sigma.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-rho.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-union.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-intersection.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-cross.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif

Department of CSE, NRCM Page 32

Where r and s are either database relations or relation result set (temporary relation). rU s

returns a relation instance containing all tuples that occur in either relation instance r or

relation instance s(or both). For a union operation to be valid, the following conditions must

hold:

 Rands must have the same number of attributes.
 Attribute domains must be compatible in rands.

Example:∏author(Books)∪∏author(Articles)

Output: Projects the names of the authors who have either written a book or an article or

both.

iv. Intersection Operation(∩):It performs intersection operation between two given

relations . It collect only rows which are common in the two given relations.

Notation:R∩S

R ∩ S returns a relation instance containing all tuples that occur in both R and S. The

relations R and S must be union-compatible, and the schema of the result is defined to be

identical to the schema of R.

∏author(Books)∩∏author(Articles)

Output: Projects the names of the authors who have written bothbook and an article.

v. Set Difference (−): It finds tuples which are present in one relation but not in the second

relation.

Notation: r−s

Finds all the tuples that are present in r but not ins.

Example: ∏author(Books)−∏author(Articles)

Output− Provides the name of authors who have written books but not articles.

vi. Cartesian Product (Χ): It returns a relation instance whose schema contains all the

fields of table-1 (in the same order as they appear in table-1) followed by all the fields of

table-2. It combines every row in first table with every row in the second table.

Notation: r Χ s

Where rand sare relations and their output will be defined as :r Χs={ qt|q∈r and t ∈s}

vii. Natural join():The most general version of the join operation accepts a join condition

C and a pair of relation instances as arguments and returns a relation instance. The join condition is

identical to a selection condition in form. The operation is defined as follows:

http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif

Department of CSE, NRCM Page 33

R cS =σc(RXS)

Thus is defined to be a cross-product followed by a selection.Note that thec ondition c can

refer to attributes of both R and S.

Note: If thecondition c in R cS contain equal operator, then itis called equi-join

viii. Natural Join(): In this case, we can simply omit the join condition; the default is that

the join condition is a collection of equalities on all common fields. We call this special case
as natural join, and it has the nice propertythat the result is guaranteed not to have two fields

with the same name.

ix. Rename Operation (ρ): The results of relational algebra are also relations but without

any name. The rename operation allows us to rename the output relation. 'rename' operation

is denoted with small Greek letter rho ρ.

Notation:ρ(temp,E)

Where the result of expression E is saved with name of temp.

x. Division (/): Consider two relation instances A and B in which A has (exactly) two fields x

and y and B has just one field y, with the same domain as in A. We define the division

operation A / B as the set of all x values (in the form of unary tuples) such that for every y

value in (a tuple of) B, there is a tuple (x,y) in A.

Example:

B1

A B2

P1

B3

A/B1

A/B2

A/B3

SampleQueries: We present a number of sample queries using the following schema:

Sailors (sid:integer,sname:string,rating:integer,age: real)

Boats (bid: integer, bname: string, color: string) Reserves

(sid: integer, bid: integer, day: date)

SNO PNO

S1 P1

S1 P2

S1 P3

S1 P4

S2 P1

S2 P2

S3 P2

S4 P2

S4 P4

SNO

S1

S2

S3

S4

SNO

S1

S4

PNO

P2

P4

PNO

P2

PNO

P2

P4

SNO

S1

http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif

Department of CSE, NRCM Page 34

The key fields are underlined, and the domain of each field is listed after the field

name. Thus sid is the key for Sailors, bid is the key for Boats, and all three fields together

form thekeyforReserves. Fields in an instanceofoneoftheserelations will bereferred to by

name, or positionally, using the order in which they are listed above.

(Q1)Find the names of sailors who have reserved boat 103.

This query can be written as follows:

πsname((σbid=103Reserves) Sailors)

We first compute the set of tuples in Reserves with bid = 103 and then take the natural

join of this set with Sailors. This expression can be evaluated on instances of Reservesand

Sailors. Evaluated on the instances R2 and S3, it yields a relation

(Q2)Find the names of sailors who have reserved are d boat.

πsname((σcolor=′red′Boats) Reserves Sailors

This query involves a series of two joins. First we choose (tuples describing) red boats. Then,

we join this set with Reserves (natural join, with equality specified on the bid column) to

identify reservations of red boats. Next, we join the resulting intermediate relation with Sailors

(natural join, with equality specified on the sid column) to retrieve the names of sailors who

have rnade reservations for red boats. Finally, we project the sailors' names.

(Q3)Find the colors of boats reserved by Lubber.

πcolor((σsname=‘Lubber’Sailors) Reserves Boats)

(Q4)Find thenames ofsailors whohavereserved atleast oneboat.

πsname(Sailors Reserves)

The join of Sailors and Reserves creates an intermediate relation in which tuples consist of a

Sailors tuple 'attached to' a Reserves tuple. A Sailors tuple appears in (some tuple of) this

intermediate relation only if at least one Reserves tuple has the same sid value, that is, the sailor

has made some reservation.

(Q5)Find the names of sailors who have reserved a red or a green boat.

ρ(Tempboats,(σcolor=′red′Boats)U(σcolor=′green′Boats))

πsname(Tempboats Reserves Sailors)

http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif

Department of CSE, NRCM Page 35

We identify the set of all the rows that are either red or green from boats table. We rename this

resultasTempboats.ThenwejoinTempboatswithReservestoidentifysid’sofsailors.Finally, we join

with Sailors to find the names of Sailors with those sids.

(Q6)Find the names of sailors who have reserved a red and a green boat

ρ(Tempboats2,(σcolor=′red′Boats)∩(σcolor=′green′Boats))

πsname(Tempboats2 Reserves Sailors)

However, this solution is incorrect-it instead tries to compute sailors who have reserved a boat

thatisbothredandgreen.Aboatcanbeonlyonecolor;thisquerywillalwaysreturnanempty answer set.

The right answer is

ρ(T empred, πsid((σcolor=′red′Boats) Reserves))

ρ(Tempgreen,πsid((σcolor=′green′Boats) Reserves))

πsname((Tempred ∩ Tempgreen) Sailors)

Thetwotemporaryrelationscomputethesidsofsailors,andtheirintersection identifiessailors who

have reserved both red and green boats.

(Q7)Find the names of sailors who have reserved at least two boats.

ρ(Reservations, πsid,sname,bid(Sailors Reserves))

ρ(Reservationpairs(1→sid1,2→sname1,3→bid1,4→

sid2,5→sname2,6→bid2),Reservations×Reservations)

πsname1σ(sid1=sid2)∩ (bid1=bid2)Reservationpairs

First, we compute tuples of the form (sid, sname, bid), where sailor sid has made a reservationfor

boat bid; this set of tuples is the temporary relation Reservations. Next we find all pairs of

Reservations tuples where the same sailor has made both reservations and the boats involved are

distinct. Here is the central idea: To show that a sailor has reserved two boats, we must find two

Reservations tuples involving the same sailor but distinct boats. Finally, we project the names of

such sailors.

(Q8)Find the sids of sailors with age over 20 who have not reserved ared boat.

πsid(σage>20Sailors)−πsid((σcolor=′red′Boats) Reserves Sailors)

This query illustrates the use of the set-difference operator. Again, we use the fact that sid is

http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif

Department of CSE, NRCM Page 36

The key for Sailors.We first identify sailors aged over 20 instances and then discard those who

have reserved a red boat to obtain the answer.

(Q9)Find the names of sailors who have reserved all boats.

The use of the word all(orevery)is a good indication that the division operation might be
applicable:

ρ(Tempsids,(πsid,bidReserves)/(πbidBoats))

πsname(Tempsids Sailors)

(Q10)Find the names of sailors who have reserved all boats called Interlake.

ρ(Tempsids, (πsid,bid Reserves)/(πbid(σbname=′Interlake′ Boats)))

πsname(Tempsids Sailors)

7. RELATIONAL CALCULUS

Relational calculus is an alternative to relational algebra. In contrast to the algebra, which is

procedural, the calculus is nonprocedural, or declarative, in that it allows us to describe the set

of answers without being explicit about how they should be computed.

 TupleRelationalCalculus

Tuple Relational Calculus is a non-procedural query language unlike relational algebra.Tuple

Calculus provides only the description of the query but it does not provide the methods to solve

it. Thus, it explains what to do but not how to do.

Where t=resulting tuples,P(t)=known as Predicate and these are the conditions that are used to

fetch t. Thus, it generates set of all tuples t, such that Predicate P(t) is true for t.

P(t) may have various conditions logically combined with OR(∨),AND(∧),NOT(¬). It

also uses quantifiers:

∃t ∈r(Q(t))=”there exists”a tuple int in relationr such that predicate Q(t) is true.

∀t∈r(Q(t))=Q(t)is true“for all”tuples in relation r.

In Tuple Relational Calculus, a query is expressed as {t|P(t)}

http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif
http://www.databasteknik.se/webbkursen/relalg-lecture/huge-join.gif

Department of CSE, NRCM Page 37

(Q12)Findthenamesandagesof sailorswitharatingabove7.

{P| ∃S ∈Sailors(S.rating>7∧P.name=S.sname ∧P.age =S.age)}

This queryillustrates a useful convention: P is considered to be a tuple variable with exactly

two fields, which are called name and age,.

(Q13)Findthesailorname,boatid,andreservationdateforeachreservation

{P|∃R∈Reserves S∈Sailors

(R.sid= S.sid∧P.bid =R.bid∧P.day = R.day∧P.sname =S.sname)}

(Q1)Findthenamesofsailorswhohavereservedboat103.(similarquestionQ1from relational

algebra)

{P|∃S∈Sailors∃R∈Reserves(R.sid=S.sid∧R.bid=103∧P.sname∧S.sname)}

This query can be read as follows: “Retrieve all sailor tuples for which there exists a tuple in

Reserves, having the same value in the sid field, and with bid = 103.”

(Q2)Findthenamesofsailorswhohavereservedaredboat. (similarquestionQ2from relational

algebra)

{P| ∃S ∈Sailors R∈Reserves(R.sid =S.sid ∧P.sname=S.sname

∧∃B∈Boats(B.bid=R.bid∧B.color=′red′))}

Thisquerycanbereadasfollows:“Retrieveallsailortuples Sforwhichthereexisttuples Rin Reserves

and B in Boats such that S.sid = R.sid, R.bid = B.bid, and B.color =′red′.”

(Q7)Findthenamesofsailorswhohavereservedatleasttwoboats. (similarquestionQ7 from

relational algebra)

{P|∃S∈Sailors∃R1∈Reserves∃R2∈Reserves(S.sid=R1.sid

R1.sid =R2.sid ∧R1.bid≠ R2.bid∧P.sname= S.sname)}

(Q9)Findthenamesofsailorswhohavereservedallboats. (similarquestionQ9from relational

algebra)

{P|∃S∈Sailors ∀B∈Boats

(∃R∈Reserves(S.sid=R.sid∧R.bid =B.bid∧P.sname =S.sname))}

Department of CSE, NRCM Page 38

(Q14)Find sailorswhohavereserved allred boats.

{S| S∃Sailors ∈∀ B∈Boats

(B.color=′red′=>(∃R∈Reserves(S.sid=R.sid∧R.bid=B.bid)))}

 Domain Relational Calculus

A domain variable is a variable that ranges over the values in the domain of some

attribute (e.g., the variable can be assigned an integer if it appears in an attribute whosedomain

is the setofintegers).

ADRCqueryhastheform{ 〈 x1, x2, . . . , xn 〉 | p(〈x1,x2,.. ., xn〉)}

where eachxiis either a domain variableor a constant andp(〈x1,x2,.. ., xn〉) denotes a

DRC formula whose only free variables are the variablesamong the xi, 1 ≤ i ≤ n. The result of

this query is the set of all tuples 〈x1, x2,.. .,xn〉 for which the formula evaluates to true.

A DRC formula is defined in a manner very similar to the definition of a TRC formula.

The main difference is that the variables are now domain variables. Let op denote an operatorin

theset {<, >, =, ≤, ≥ , ≠} and let X and Ybedomain variables. Anatomicformulain DRC is one of

the following:

 (x1, x2, . . . , xn)∈Rel, where Rel is a relation with n attributes; each xi, 1 ≤ i ≤ n is

either a variable or a constant

 X op Y

 X opconstant,orconstantop X

A formula is recursively defined to be one of the following, where P and q are themselves

formulas and p(X) denotes a formula in which the variable X appears:

 anyatomic formula

 ┐p,P/\q, P V q, orp=>q

 ∃X(p(X)), whereX isadomain variable

 ∀X(p(X)),whereX isa domain variable

(Q1)Find the names of sailors who have reserved boat 103.

{ (N) |∃ I,T,A (〈I,N, T,A〉∈ Sailors

∧ ∃ Ir,Br,D(〈Ir,Br,D〉∈ Reserves∧ Ir= I∧ Br= 103))}

Department of CSE, NRCM Page 39

(Q2)Find the names of sailors who have reserved a red boat.

{〈N〉 |∃ I,T, A(〈I,N,T,A〉∈ Sailors

∧ ∃〈I,Br,D〉∈ Reserves∧∃〈Br,BN,′red′〉∈ Boats)}

(Q7)Find the names of sailors who have reserved at least two boats.

{〈N〉 |∃ I,T, A(〈I,N,T,A〉∈ Sailors∧

∃ Br1, Br2, D1, D2 (〈I,Br1, D1〉∈ Reserves

∧〈I,Br2, D2〉∈ Reserves∧Br1 ≠ Br2)

(Q9)Find thenames of sailors who have reserved all boats.

{〈N〉 |∃ I,T,A(〈I,N,T,A〉∈ Sailors∧

∀ B,BN,C(¬(〈B,BN,C〉∈ Boats) V

(∃〈Ir,Br,D〉∈ Reserves(I = Ir∧ Br = B))))}

Department of CSE, NRCM Page 40

UNIT– III

SQL: QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION, INTERSECT,

and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in

SQL, triggers and active databases. Schema Refinement: Problems caused by redundancy,

decompositions, problems related to decomposition, reasoning about functional dependencies, FIRST,

SECOND, THIRD normal forms, BCNF, lossless join decomposition, multi-valued dependencies,

FOURTH normal form, FIFTH normal form.

1. SQLCOMMANDS

Structured Query Language (SQL) is the database language used to create a database and

to perform operations on the existing database. SQL commands are instructions used to

communicate with the database to perform specific tasks and queries with data. These SQL

commands are categorized into five categories as:

i. DDL:Data Definition Language

ii. DML:Data ManipulationLanguage

iii. DQL:Data QueryLanguage

iv. DCL: Data ControlLanguage

v. TCL: Transaction ControlLanguage.

CREATE INSERT
SELECT

GRANT COMMIT

ALTER DELETE REVOKE ROLLBACK

DROP
UPDATE SAVEPOINT

TRUNCATE

TCL

Transaction

ControlLanguage

DCL

DataControl

Language

DQL

DataQuery

Language

DML

DataManipulation

Language

DDL

DataDefinition

Language

SQL commands

Department of CSE, NRCM Page 41

i. DDL(Data Definition Language) :DDL or Data Definition Language consists of the

SQL commands that can be used to define the database schema. It simply deals with

descriptions of the database schema and is used to create and modify the structure ofdatabase

objects in the database. The DQL commands are:

 CREATE: It is used to create the database or its objects (like table, index, function,

views, store procedure and triggers).

 DROP: It is used to delete objects from the database.

 ALTER: It is used to alter the structure of the database.

 TRUNCATE: It is used to remove all records from a table, including all

spaces allocated for the records are removed.

ii. DQL (Data Query Language): DML statements are used for performing queries on the

data within schema objects. The purpose of DQL Command is to get data from some schema

relation based on the query passed to it.The DQL commands are:

 SELECT–is used to retrieve data from the database.

iii. DML (Data Manipulation Language):The SQL commands that deals with the

manipulation of data present in the database belong to DML or Data Manipulation Language

and this includes most of the SQL statements. The DML commands are:

 INSERT–is used to insert data into a table.

 UPDATE– is used to update existing data with in a table.

 DELETE–is used to delete records from a database table.

iv. DCL (Data Control Language): DCL includes commands which mainly deal with the

rights, permissions and other controls of the database system. The DCL commands are:

 GRANT-givesuser’s access privileges to database.

 REVOKE-withdraw user’s access privileges given by using the GRANT command.

v. TCL (transaction Control Language):TCL commands deals with the transaction with

in the database. The TCL commands are:

 COMMIT–commitsa Transaction.

 ROLLBACK–rollbacks a transaction in case of any error occurs.

 SAVEPOINT–sets a save point within a transaction.

2. DDL COMMANDS

DDL or Data Definition Language consists of the SQL commands that can be used to define

https://www.geeksforgeeks.org/sql-select-clause/

Department of CSE, NRCM Page 42

the database schema. It simply deals with descriptions of the database schema and is used to

create and modify the structureof database objects in the database.The DQL commands are:

CREATE: It is used to create the database or its objects like table, index, function, views,

store procedure and triggers.

a) The ‘CREATE DATABASE’ Statement: This statement is used to create a database.

Example: CREATE DATABAS EEmployee;

It creates Employee database.

b) The ‘CREATE TABLE’ Statement: This statement is used to create a table.

Syntax:

Note: The content in the squarebrackets indicates it is optional.If not required,you can skip it.

Column constraints

o PRIMARYKEY //Use only,If one column name as primarykey.

o NOTNULL //It does not accept NULLvalue in that column.

o DEFAULTvalue //It storede fault value in that column,if no value is inserted

o UNIQUE //It allows to store only unique values in the column

Table constraints

o PRIMARY KEY(column_name1,column_name2,…)

Use it,If one column name or multiple column names acts as primarykey.

o UNIQUE(column_name1,column_name2,…)

Use it,if one column name o rmultiple column names should contain unique values.

If multiple column names are used, then for each row,it consider values from all the columns

mentioned to decide the uniqueness, but not column wise.

o FOREIGN KEY(column_name1) REFERENCES other_table_name(column_name2)

It is used to link data from one table to other table.

o CHECK(condition)

It does not allow inserting value(s), if the condition is not satisfied. The condition may

alsocontain multiple column names.

CREATE TABLE TableName(

Column1 datatype(size)[column_constraint],

Column2 datatype(size)[column_constraint],

....

ColumnN datatype(size)[column_constraint],

[table_constraint]

[,table_constraint]

);

Syntax:CREATE DATABASE Database_Name;

Department of CSE, NRCM Page 43

Example1:Creating table without any constraints

CREATE TABLE Employee_Info (

EmployeeID int, EmployeeName

varchar(20), PhoneNumber

numeric(10), City varchar(20),

Country varchar(20)
);

Example2:Using PRIMARYKEY and NOTNULL as column constraints

CREATE TABLE Departments (

DeptID int PRIMARY KEY, DeptName

varchar(20)NOTNULL, Hod varchar(20),

Location varchar(20)
);

Example 3: Using PRIMARY KEY, NOT NULL, UNIQUE and DEFAULT as column constraints and FOREIGN

KEY as table constraint.

CREATE TABLE Students_Info (

HallTicketNo int PRIMARYKEY, Name

varchar(20)NOT NULL,
Mobile numeric(10)NOTNULL UNIQUE, DepartmentID int,

City varchar(20)DEFAULT‘Hyderabad’,

FOREIGNKEY(DepartmentID)REFERENCES Departments(DeptID)
);

Example4:Using NOTNULL,UNIQUE as column constraints and PRIMARYKEYand CHECK as table constraints.

CREATE TABLE Voter_list (

VoterID numeric(10),
Adhaar Nonumeric(12)NOTNULL UNIQUE, Name

varchar(20)NOT NULL,

Age int,

Mobile numeric(10)UNIQUE, City

varchar(20),
PRIMARYKEY(VoterID),

CHECK(AGE>18)

);

c) The ‘CREATETABLEAS’ Statement:You can also create a table from another existing

table. The newly created table also contains data of existing table.

Syntax:

Example:CREATE TABLE Example Table AS(SELECT EmployeeName,PhoneNumber FROM Employee_Info);

CREATE TABLE NewTableName AS(SELECT Column1,column2,...,ColumnN

FROM ExistingTableName

WHERE[condition]);

Department of CSE, NRCM Page 44

ii. DROP:This statement is used to drop an existing table or a database.

a) The ‘DROP DATABASE’ Statement: This statement is used to drop an existing

database. When you use this statement, complete information present in the database will

be lost.
Syntax:

Example: DROP DATABASE Employee;

b) The‘DROPTABLE’Statement:This statement is used to drop an existing table.When

you use this statement, complete information present in the table will be lost.

Syntax:

Example: DROP TABLE Employee;

iii. TRUNCATE: This command is used to delete the information present in the table but

does not delete the table. So, once you use this command, your information will be lost, but

not the table.

Syntax:

Example: TRUNCATE TABLE Employee_Info;

iv. ALTER: This command is used to add, delete or modifycolumn(s) in an existing table. It

can also be used to rename the existing table and also to rename the existing column name.

a) The‘ALTERTABLE’ with ADD column:You can use this command to add a new

column to the existing table.

Example:Adding Blood Group column to the Employee_Info table

ALTER TABLE Employee_Info ADD

Blood Group varchar(10);

b) The ‘ALTER TABLE’ with DROP column: You can use this command to remove

acolumn from the existing table.

Example: Removing BloodGroup column from the Employee_Info table

ALTER TABLE Employee_Info DROP

BloodGroup;

Syntax: ALTER TABLE TableName

DROP ColumnName;

Syntax: ALTER TABLE TableName ADD

Column Name Datatype;

TRUNCATE TABLE TableName; .

DROP TABLE TableName; .

DROP DATABASE DatabaseName; .

Department of CSE, NRCM Page 45

c) The ‘ALTER TABLE’ with MODIFY COLUMN: This statement is used to change

the data type or size of data type of an existing column in a table.

Example 1: Changing the size of column ‘EmployeeName’ in table ‘Employee_info’ from

20 to 30.

ALTER TABLE Employee_Info

MODIFY EmployeeName varchar(30);

Example 2: Changing the data type of column ‘EmployeeID’ in the table ‘Employee_info’

from int to char(10).

ALTER TABLE Employee_Info MODIFY

Employee IDchar(10);

d) The‘ALTER TABLE’ with CHANGE column name: This statement is used to change

the column name of an existing column in a table.

Example1: Changing the column name ‘EmployeeName’ to ‘EmpName’in table ‘Employee_info’.

ALTER TABLE Employee_Info
CHANGE COLUMN EmployeeName EmpName;

e) The ‘ALTER TABLE’ with RENAME table name: This statement is used to change

the table name in the database.

Example: Changing the table name from‘Employee_Info’to ‘Employee_Data’.

ALTER TABLE Employee_Info RENAME

TO Employee_Data;

3. DML COMMANDS: The SQL commands that deals with the manipulation of data

present in the database belong to DML or Data Manipulation Language and this includes

most of the SQL statements. The DML commands are:

i. INSERT: This statement is used to insert new record (row) into the table.

Syntax: ALTER TABLE TableName

MODIFY COLUMN ColumnName Datatype;

Syntax: ALTER TABLE TableName

CHANGE COLUMNOldColumnNameNewColumnName;

Syntax: ALTER TABLE OldTableName

RENAME TO NewTableName;

Department of CSE, NRCM Page 46

Example1:

INSERT INTO Employee_Info(EmployeeID,EmployeeName,PhoneNumber,City,Country) VALUES ('06', 'Sanjana',
'9921321141', 'Chennai', 'India');

Example2: When inserting all column values as per their order in the table, you can omit

column names.

INSERT INTO Employee_Info

VALUES('07','Sayantini','9934567654','Pune','India');

ii. DELETE: This statement is used to delete the existing records in a table.

Example:
DELETE FROM Employee_Info WHERE

EmployeeName='Preeti';

Note: If where condition is not used in DELETE command, then all the rows data will be deleted. If used
only rows which satisfies the condition are deleted.

iii. UPDATE: This statement isused to modify the record values already present in the table.

Example:

UPDATE Employee_Info

SET EmployeeName='Jhon',City='Ahmedabad' WHERE

EmployeeID = 1;

Note:If where condition is not used in UPDATE command, then in all the rows Employee Name changes to

'Jhon' and City name changes to 'Ahmedabad'.Ifusedonly rows which satisfies the condition are

updated.

4. DQL COMMAND:The purpose of DQL Command is to get data from one or more

tables based on the query passed to it.

i. SELECT: This statement is used to select data from a database and the data returned

isstored in a result table, called the result-set.

Syntax: INSERT INTO TableName[(Column1,Column2,...,ColumnN)]

VALUES (value1, value2,..., valueN);

Syntax: DELETE FROM TableName
WHERE Condition;

Syntax: UPDATETableName

SETColumn1=Value1,Column2=Value2,... [WHERE

Condition];

Department of CSE, NRCM Page 47

Example1:SELECT * FROM table_name;

Example2:

SELECT EmployeeID,EmployeeName

FROM Employee_Info;

The ‘SELECT with DISTINCT’ Statement: This statement is used to display only

different unique values. It mean it will not display duplicate values.

Example: SELECT DISTINCT PhoneNumber FROM Employee_Info;

The ‘ORDER BY’ Statement: The ‘ORDER BY’ statement is used to sort the required

results in ascending or descending order. The results are sorted in ascending order by

default. Yet, if you wish to get the required results in descending order, you have to use

the DESC keyword.

Example

/*Selectallemployeesfromthe'Employee_Info'tablesortedby City*/

SELECT*FROMEmployee_Info

ORDER BY City;

/*Selectallemployeesfromthe'Employee_Info'tablesortedby City in Descending

order */

SELECT*FROMEmployee_Info

ORDER BY City DESC;

/*Selectallemployeesfromthe'Employee_Info'tablesortedby City and

EmployeeName. First it sort the rows as per city, then sort by employee name */

SELECT * FROM Employee_Info

ORDERBYCity,EmployeeName;

/*Selectallemployeesfromthe'Employee_Info'tablesortedby

CityinDescendingorderandEmployeeNameinAscendingorder:*/

SELECT*FROMEmployee_Info
ORDERBYCityASC,EmployeeNameDESC;

Syntax: SELECT[DISTINCT]*/Column1,Column2,...ColumN

FROM TableName

[WHEREsearch_condition]

[GROUP BY column_names

[HAVINGsearch_condition_for_GROUP_BY]

[ORDER BY column_name ASC/DESC] ;

Department of CSE, NRCM Page 48

AGGREGATE FUNCTIONS:

The SQL allows summarizing data through a set of functions called aggregate functions. The

commonly used aggregate functions are: MIN(), MAX(), COUNT(), SUM(),AVG().

MIN() Function: The MIN function returns the smallest value of the selected column in a table.

Syntax:SELECT MIN(ColumnName)

FROM TableName

WHERECondition;

Example: SELECT MIN(EmployeeID) FROM

Employee_Info;

MAX() Function:The MAX function returns thelargest value of the selected column in a table.

Syntax:SELECT MAX(ColumnName)

FROM TableName

WHERECondition;

Example:

SELECT MAX(Salary)ASLargestFees

FROM Employee_Salary;

COUNT()Function:The COUNT function returns the number of rows which match the specified criteria.

Syntax: SELECT COUNT(ColumnName) FROM

TableName WHERECondition;

Example:

SELECT COUNT(EmployeeID)

FROM Employee_Info;

SUM() Function:The SUM function returns the total sum of a numeric column that you

choose.

Syntax: SELECT SUM(ColumnName)

FROM TableName

WHERECondition;
Example:

SELECT SUM(Salary)
FROMEmployee_Salary;

Department of CSE, NRCM Page 49

AVG() Function:The AVG function returns the average value of a numeric column that you choose.

Syntax: SELECT

AVG(ColumnName)

FROM TableName

WHERECondition;
Example:

SELECT AVG(Salary)
FROMEmployee_Salary;

The‘GROUPBY’Statement: This ‘GROUPBY ’statement is used with the aggregate functions to

group the result-set by one or more columns.

Example:

--Tolistthenumberofemployeesfromeachcity.

SELECT COUNT(EmployeeID),City

FROM Employee_Info

GROUPBYCity;

The‘HAVING’Clause:The‘HAVING’ clause must be used SQL along with GROUPBY clause only. It

is similar to the WHERE clause.

Example

/* To list the number of employees in each city. The employees should be sorted

high to low and only those cities must be included who have more than 5 employees:*/

SELECTCOUNT(EmployeeID),City

FROM Employee_Info
GROUPBY City
HAVINGCOUNT(EmployeeID)>2;

Operators in SQL:

The different setof operators available in SQL are as follows:

 Arithmetic operators

 Bitwise operators

 Comparison operator

 Compound operator

 Logicaloperator

Letus look into each one of them, one by one.

Department of CSE, NRCM Page 50

Arithmetic Operators:

Operator Description

% Modulus [A %B]

/ Division [A /B]

* Multiplication[A * B]

– Subtraction[A– B]

+ Addition [A +B]

Bitwise Operators:

Operator Description

 ̂ BitwiseExclusiveOR(XOR) [A^ B]

| BitwiseOR [A|B]

& BitwiseAND[A &B]

Comparison Operators:

Operator Description

<> NotEqual to [A <>B]

<= Lessthan or equalto [A<= B]

>= Greaterthanor equalto[A>= B]

< Lessthan [A<B]

> Greaterthan[A>B]

= Equalto [A =B]

Compound Operators:

Operator Description

|*= BitwiseORequals [A |*=B]

^-= BitwiseExclusiveequals [A^-=B]

&= BitwiseAND equals[A&= B]

%= Moduloequals [A%=B]

/= Divideequals [A /=B]

= Multiplyequals[A= B]

-= Subtractequals[A-= B]

+= Addequals[A+= B]

Logical Operators: The Logical operators present in SQL are as follows:AND,OR,NOT, BETWEEN, LIKE, IN,

EXISTS, ALL, ANY.

Department of CSE, NRCM Page 51

AND Operator: This operator is used to filter records that rely on more than one condition. This

operator displays the records, which satisfy all the conditions separated by AND, and give the output

TRUE.

Syntax:

SELECTColumn1,Column2,...,ColumnN

FROM TableName

WHERECondition1ANDCondition2ANDCondition3...;

Example:

SELECT*FROMEmployee_Info
WHERECity='Mumbai'ANDCity='Hyderabad';</pre>

OR Operator: This operator displays all those records which satisfy any of the conditions separated by

OR and give the output TRUE.

Syntax:SELECTColumn1,Column2,...,ColumnN

FROM TableName
WHERECondition1ORCondition2ORCondition3...;

Example:

SELECT*FROMEmployee_Info

WHERECity='Mumbai'ORCity='Hyderabad';

NOT Operator: The NOT operator is used, when you want to display the records which do not satisfy a

condition.

Syntax: SELECTColumn1,Column2,...,ColumnN

FROM TableName

WHERENOTCondition;

Example:

SELECT * FROM Employee_Info

WHERE NOT City='Mumbai';

NOTE:You can also combine the above three operators and write a query as follows:

SELECT * FROM Employee_Info

WHERE NOT Country='India' AND (City='Bangalore 'OR City='Hyderabad');

BETWEEN Operator: The BETWEEN operator is used, when you want to select values within a given

range. Since this is an inclusive operator, both the starting and ending values are considered.

Syntax:

Department of CSE, NRCM Page 52

 SELECTColumnN

ame(s) FROM

TableName
WHEREColumnNameBETWEENValue1ANDValue2;

Example:

SELECT * FROM Employee_Salary
WHERE Salary BETWEEN 40000 AND 50000;

LIKE Operator

The LIKE operator is used in a WHERE clause to search for a specified pattern in a column of a table.

There are mainly two wildcards that are used in conjunction with the LIKE operator:

 % :Itisused tomatches 0ormorecharacter.

 _:Itis usedtomatchesexactlyonecharacter.

Syntax

SELECTColumnName(s

) FROM TableName

WHEREColumnNameLIKEpattern;

Refer to the following table for the various patterns that you can mention with the LIKE operator.

LikeOperatorCondition Description

WHERE CustomerName LIKE ‘v% Finds any values that start with “v”

WHERE CustomerName LIKE ‘%v’ Finds any values that end with“v”

WHERE CustomerName LIKE ‘%and%’ Finds any values that have“and”in any position

WHERE CustomerName LIKE ‘_q%’
Finds any values that h0ave“q”in the second

position.

WHERE CustomerName LIKE ‘u_%_%’
Finds any values that start with“u” and are at

least 3 characters in length

WHERE ContactName LIKE ‘m%a’
Finds any values that start with“m”and end

with “a”

Example:

SELECT * FROM Employee_Info

WHEREEmployeeNameLIKE'S%';

IN Operator:This operator is used for multiple OR conditions.This allows you to specify multiple values

in a WHERE clause.

Syntax:SELECTColumnName(s) FROM

TableName

WHERE ColumnNameIN(Value1,Value2...);

Department of CSE, NRCM Page 53

Example:
SELECT * FROM Employee_Info
WHERE City IN('Mumbai','Bangalore','Hyderabad');
NOTE:You can also use IN while writing Nested Queries.

EXISTS Operator: The EXISTS operator is used to test if a record exists or not.

Syntax:

 SELECTColumn

Name(s) FROM

TableName WHERE

EXISTS

(SELECT ColumnName FROM TableNameWHERE condition);

Example:

SELECT City
FROM Employee_Info
WHERE EXISTS (SELECTCity

FROM Employee_Info
WHERE EmployeeId=05 AND City='Kolkata');

ALL Operator: The ALL operator is used with a WHERE or HAVING clause and returns TRUEif all

of the subquery values meet the condition.

Syntax:SELECTColumnName(s)

FROM TableName
WHERE ColumnName operator ALL

(SELECT ColumnName FROM TableName WHEREcondition);

Example:

SELECTEmployeeName

FROM Employee_Info
WHEREEmployeeID=ALL(SELECTEmployeeID

FROMEmployee_Info
WHERECity='Hyderabad');

ANYOperator:Similar to the ALL operator,the ANY operator is also used withaWHEREor HAVING

clause and returns true if any of the subquery values meet the condition.

Syntax:

 SELECTColumnN

ame(s) FROM

TableName

WHERE ColumnNameoperator ANY

(SELECTColumnNameFROMTableNameWHEREcondition);

Example:

SELECTEmployeeName

FROM Employee_Info

Department of CSE, NRCM Page 54

Aliases Statement:Aliases are used to give a column /table a temporary name and only exists for
duration of the query.

Syntax:/*AliasColumnSyntax.Insteadofdisplayingthecolumnname used in the table, it display

alias name. */

SELECTColumnNameASAliasName

FROM TableName;

Example:

SELECTEmployeeIDASID,EmployeeNameASEmpName

FROM Employee_Info;

5. NESTED QUERIES

Nested queries are those queries which have an outer query and inner subquery.So, basically,

the subquery is a query which is nested within another query.

First the inner query gets executed and the result will be used to execute the outer query.

6. SETOPERATIONS:UNION,INTERSECT,EXCEPT

There are mainly three set operations:UNION, INTERSECT,EXCEPT.You can refer to the image below

to understand the set operations in SQL.

OUTERQUERY SUBQUERYorINNERQUERY

SELECT EmployeeName,PhoneNumber

FROM Employee_Info

WHERE City IN(SELECT City

FROM Office

WHERE County=‘INDIA’);

Department of CSE, NRCM Page 55

i. UNION:This operator is used to combine the result-set of two or more SELECT statements.

ii. INTERSECT:This clause used to combine two SELECTstatements and return the
intersection of the data-sets of both the SELECT statements.

iii. EXCEPT:This operator returns those tuples that are returned by the first SELECT
operation, and are not returned by the second SELECT operation.

Note: UNION, INTERSECT or EXCEPT operations are possible if and only if first SELECT

query and second SELECT query produces same no of columns in same order, same

column names and data type. Otherwise it gives an error.

7. JOINS

JOINS are used to combine rows from two or more tables, based on a related column betweenthose

tables. The following are the types of joins:

 INNER JOIN:This join returns those records which have matching values in both

thetables.

 FULL JOIN:This join returns all those records which either have a match in the left or

the right table.

 LEFT JOIN:This join returns records from the left table, and also those records which

satisfy the condition from the right table.

 RIGHTJOIN:Thisjoinreturnsrecordsfromtherighttable,andalsothoserecords which

satisfy the condition from the left table.

Syntax: SELECTColumnName(s)FROMTable1WHEREcondition

INTERSECT

SELECTColumnName(s)FROMTable2WHEREcondition;

Syntax: SELECTColumnName(s)FROMTable1WHEREcondition UNION

SELECTColumnName(s)FROMTable2WHEREcondition;

Syntax: SELECT ColumnName(s)FROM Table1 WHERE condition

EXCEPT

SELECT ColumnName(s)FROM Table2 WHERE condition;

https://www.edureka.co/blog/sql-commands#INNER%20JOIN
https://www.edureka.co/blog/sql-commands#FULL%20JOIN
https://www.edureka.co/blog/sql-commands#LEFT%20JOIN
https://www.edureka.co/blog/sql-commands#RIGHT%20JOIN

Department of CSE, NRCM Page 56

Refer to the image below.

Department of CSE, NRCM Page 57

Let’sconsider the below Technologies and the Employee_Infotable, to understand the syntax of
joins.

Employee_Info

EmployeeID EmployeeName PhoneNumber City Country

01 Shravya 9898765612 Mumbai India

02 Vijay 9432156783 Delhi India

03 Preeti 9764234519 Bangalore India

04 Vijay 9966442211 Hyderabad India

05 Manasa 9543176246 Kolkata India

Technologies

TechID EmpID TechName ProjectStartDate

1 01 DevOps 04-01-2019

2 03 Blockchain 06-07-2019

3 04 Python 01-03-2019

4 06 Java 10-10-2019

INNER JOIN or EQUI JOIN: This is a simple JOIN in which the result is based on matched data as

per the equality condition specified in the SQL query. This join is used mostly. NATURAL JOIN is a

type INNER JOIN. We can also use it. It also gives same result.

Syntax

SELECT

ColumnName(s) FROM

Table1

INNER JOIN Table2 ON Table1.ColumnName=Table2.ColumnName;

Example

SELECT T. TechID, E.EmployeeID, E.EmployeeName

FROM Technologies T

INNER JOIN Employee_InfoEONT.EmpID=E.EmpID;

TechID EmployeeID EmployeeName

1 01 Shravya

2 03 Preeti

3 04 Vijay

Department of CSE, NRCM Page 58

FULL OUTER JOIN: The full outer join returns a result-set table with the matched data of two

table then remaining rows of both left table and right table with missing values are filled with NULL

values.

Syntax

SELECTColumnName(s

) FROM Table1
FULLOUTERJOINTable2ONTable1.ColumnName=Table2.ColumnName;

Example

SELECTE.EmployeeID,E.EmployeeName,T.TechID

FROM Employee_Info E
FULLOUTERJOINTechnologiesTONE.EmployeeID=T.EmployeeID;

EmployeeID EmployeeName TechID

01 Shravya 1

02 Vijay NULL

03 Preeti 2

04 Vijay 3

05 Manasa NULL

06 NULL 4

LEFT JOIN: The left outer join returns a result-set table with the matched data from the two tables

and then the remaining rows of the left table with null for the right table's columns.

Syntax:

SELECTColumnName(s)

FROM Table1
LEFTJOINTable2ONTable1.ColumnName=Table2.ColumnName;

Example:

SELECTE.EmployeeId,E.EmployeeName,T.TechID

FROM Employee_Info E

LEFTJOINTechnologiesTONE.EmployeeID=T.EmpIDID;

EmployeeID
EmployeeName TechID

01 Shravya 1

02 Vijay NULL

03 Preeti 2

04 Vijay 3

05
Manasa NULL

Department of CSE, NRCM Page 59

RIGHT JOIN: The right outer join returns a result-set table with the matched data from the two

tables being joined, then the remaining rows of the right table and null for the remaining left table's

columns.

Syntax:
SELECTColumnName(s)

FROM Table1

RIGHTJOINTable2ONTable1.ColumnName=Table2.ColumnName;

Example:
SELECTE.EmployeeId,E.EmployeeName,T.TechID FROM

Employee_Info E

RIGHTJOINTechnologiesTONE.EmployeeID=T.EmpIDID;

EmployeeID
EmployeeName TechID

01 Shravya 1

03 Preeti 2

04 Vijay 3

NULL NULL 4

8. TRIGGERS

A trigger is a stored procedure in database which automatically invokes when ever a special

event in the database occurs. For example, a trigger can be invoked when a row is inserted into a

specified table or when certain table columns are being updated. So, a trigger can be invoked

either BEFORE or AFTER the data is changed byINSERT, UPDATE or DELETEstatement.

Refer to the image below.

Department of CSE, NRCM Page 60

Syntax:

CREATE TRIGGER[TriggerName]

[BEFORE | AFTER]
{INSERT|UPDATE|DELETE}
on[TableName]

[FOREACHROW]

[TriggerBody]

Explanation of syntax:

 Create trigger[trigger_name]:Creates or replaces an existing trigger with the

trigger_name.

 [before|after]:This specifies when the trigger will be executed.

 {insert|update|delete}: This specifies the DML operation.

 on[table_name]:This specifies the name of the table associated with the trigger.

 [foreachrow]:This specifies a row-level trigger,i.e.,the trigger will be executed for
each row being affected.

 [trigger_body]:This provides the operation to be performed as trigger is fired.

BEFOREandAFTERofTrigger:

BEFORE triggers run the trigger action before the triggering statement is run.

AFTER triggers run the trigger action after the triggering statement is run.

EXAMPLE:

CREATE TRIGGER nb BEFORE INSERT ON accounts FOR EACH ROW /*Event*/ Begin

IF:NEW.bal<0THEN /*Condition*/

DBMS_OUTPUT.PUT_LINE('BALANCE IS NAGATIVE..'); /*Action*/
END IF;

End;

A trigger called ‘nb’ is created to alert the user when inserting account details with negative balance

value in to accounts table. Before inserting, the trigger is activated if the condition istrue. When a trigger

activated, the action part of the trigger is get executed.

9. NORMALIZATION

 Normalization is the process of minimizing the redundancy from a relation or set of

relations.

 It is used to eliminate the Insertion,Update and Deletion Anomalies.

 Normalization divides the larger table into the smaller table and links them using

relationship.

 Normalization is done with the help of different normal form.

Department of CSE, NRCM Page 61

The inventor of the relational model Edgar Codd proposed the theory of normalization with the

introduction of the First Normal Form, and he continued to extend theory with Second and Third

Normal Form. Later he joined Raymond F. Boyce to develop the theory of Boyce-Codd Normal

Form.In software industry, they are using only up to third normal form and sometimes Boyce-

Codd Normal Form.

TheProblemofredundancy

Redundancy means having multiple copies of same data in the database.This problem arises when a

database is not normalized. Redundancy leads the following problems.

 WastageofMemory:Disk spaceis wasted dueto storingsame copymultiple times.

 Storage cost increases: When multiple copies of same data is stored, need more disk

space and storage cost increases.

 Update anomaly: When Address of student is stored at several places; a change in the

address must be made in all the places. Changing the address at some places and leaving

other places leads to inconsistency problem.

 Insertion Anomaly: The nature of a database may be such that it is not possible to add a

required piece of data unless another piece of unavailable data is also added. Forexample,

a librarydatabase cannot store the details of a new student until that student has taken

atleast one book from the library.

 Deletion Anomaly: When some data is deleted, it also deletes other data automatically.

For example, deleting a book details from a library database, it also delete the student

details who have taken the book previously.

10. 1NF(FIRST NORMAL FORM)

A relation (table)is said tobein first normal form if and only if:

 Each table cell contains only atomic values(single value).

 Each record needs to be uniquely identified by the primary key.

Department of CSE, NRCM Page 62

1NF Example:

HTNO FIRSTNAME LASTNAME MOBILE

501 Jhansi Rani
9999988888
7777799999

502 Ajay Kumar
8888888881
7897897897

503 Priya Verma 9898989898

Theabovetableis not in 1NFbecause 501 and 502 is havingtwo valuesin mobilecolumn. If we add a new

column as alternative mobile number to the above table, then for 503 alternative mobile number is

NULL.Moreover, if a student has ‘n’ mobile numbers, then adding ‘n’ extra column is meaningless. It is

better to add extra rows. If we add extra row for each 501 and 502 then the table looks like

HTNO FIRSTNAME LASTNAME MOBILE

501 Jhansi Rani 9999988888

501 Jhansi Rani 7777799999

502 Ajay Kumar 8888888881

502 Ajay Kumar 7897897897

503 Priya Verma 9898989898

But the above table violates primary key constraint. Therefore instead of adding either columns or rows,

the best solution is to split the table into two tables as shown below. If we do as shown below, if a

student having ‘n’ number of mobile numbers also can be added.

11. 2NF (SECOND NORMAL FORM)

A relation is said to bein 2-NFifand only if

 It should be in 1-NF(First Normal Form)

 There should not be any partial functional dependencies

2NF Example:

HTNO MOBILE

501 9999988888

501 7777799999

502 8888888881

502 7897897897

503 9898989898

HTNO FIRST

NAME

LAST

NAME

501 Jhansi Rani

502 Ajay Kumar

503 Priya Verma

Department of CSE, NRCM Page 63

HTNO Name DOB DeptNo DeptName Location
501 Jhansi 30-10-1998 05 CSE A-Block

502 Ajay 24-12-1999 05 CSE A-Block

410 Priya 12-03-2000 04 ECE B-Block

120 Rahul 30-10-1998 01 CIVIL C-Block

415 Smitha 18-06-1999 04 ECE B-Block

The above table is not in 2NF because there exist partial function dependencies. HTNO is a key attribute

in the above table. If every non-key attribute fully dependent on key attribute, then we say it is fully

functional dependent. Consider the below diagram. {Name, DOB, DeptNo, DeptName, Location}

depends on HTNO. But {DeptName, Location} also depends on DeptNo.

It is clear that DeptName and Location not only depends upon HTNO but also on DeptNo. So, there

exists partial function dependency. This partial functional dependency can be removed by splitting the

above table into two tables as follows.

12. 3NF(THIRD NORMAL FORM)

A relation (table)is in third normal form if and only if it satisfies the following conditions:

 It is in second normal form

 There is no transitive functional dependency

HTNO Name DOB DeptNo

501 Jhansi 30-10-1998 05

502 Ajay 24-12-1999 05

410 Priya 12-03-2000 04

120 Rahul 30-10-1998 01

415 Smitha 18-06-1999 04

DeptNo DeptName Location

05 CSE A-Block

04 ECE B-Block

01 CIVIL C-Block

Name

DOB

DeptNo

HTNO
DeptName

Location

DeptName

DeptNo

Location

Department of CSE, NRCM Page 64

Transitive functional dependency means, we have the following relationships in the table: A is

functionallydependent on B (A→B), and Bis functionallydependent on C (B→C). In this case, C is

transitively dependent on A via B (A→B and B→C mean A→B→C implies A→C).

3NFExample:

Consider the following book details table example:

BOOK_DETAILS

BookID GenreID GenreType Price

1 1 Gardening 250.00

2 2 Sports 149.00

3 1 Gardening 100.00

4 3 Travel 160.00

5 2 Sports 320.00

The above table is not in 3NF because there exist transitive dependency.In the table able,

BookIDdeterminesGenreID {BookID→GenreID}

GenreIDdeterminesGenreType. {GenreID→GenreType}

BookIDdeterminesGenreTypeviaGenreID. {BookID→GenreType}

It implies that transitive functional dependency is existing and the structure does not satisfy third

normal form.To bring this table into third normal form,we split the table into two as follows:

BOOK_DETAILS

GENRE_DETAILS

GenreID GenreType

1 Gardening

2 Sports

3 Travel

13. BOYCE CODD NORMAL FORM(BCNF)

A relation (table) is said to be in the BCNF if and only if it satisfy the following conditions:

 It should be in theThird Normal Form.

 For any functional dependencyA→B, A should be as uperkey.

 In simple words, it means, that for a dependency A → B, A cannot be a non-prime

attribute, if B is a prime attribute.

BookID GenreID Price

1 1 250.00

2 2 149.00

3 1 100.00

4 3 160.00

5 2 320.00

Department of CSE, NRCM Page 65

Example:Below we have a Patient table of a hospital.A patient can go to hospital many times to take

treatment. On a single day many patients can take treatment.

PatientID Name EmailID AdmittedDate Drug Quntity
101 Ram ram@gmail.com 30/10/1998 A-10 10

102 Jhon jho@gmail.com 30/10/1998 X-90 10

101 Ram ram@gmail.com 10/06/2001 X-90 20

103 Sowmya sam@gmail.com 05/03/2002 Y-30 15

102 Jhon jho@gmail.com 05/03/2002 A-10 15

In the above table,{PateintID,AdmittedDate}acts as Primarykey.But if we know the

EmailIDvalue, wecan find PatientID value.

ThatisEmailID → PatientID.

In the above dependency, EmailId is non-prime attribute and PatientID is a primeattribute. Therefore

the above table is not in BCNF. In order to bring the table into BCNF, we split it into two tables as

shown below.

In other words we can also define BCNF as there should not be any overlapping between candidate keys. If you

consider the original table (before splitting), we can get two candidate keys {PateintID, AdmittedDate}

and{EmailID, AdmittedDate}.

As there exist overlapping in the candidate keys,the table is not in BCNF. To bring it into BCNF, we split into

two tables as shown above.

PatientID Name AdmittedDate Drug Quntity

101 Ram 30/10/1998 A-10 10

102 Jhon 30/10/1998 X-90 10

101 Ram 10/06/2001 X-90 20

103 Sowmya 05/03/2002 Y-30 15

102 Jhon 05/03/2002 A-10 15

PatientID EmailID

101 ram@gmail.com

102 jho@gmail.com

103 sam@gmail.com

mailto:ram@gmail.com
mailto:jho@gmail.com
mailto:ram@gmail.com
mailto:sam@gmail.com
mailto:jho@gmail.com
mailto:ram@gmail.com
mailto:jho@gmail.com
mailto:sam@gmail.com

Department of CSE, NRCM Page 66

14. 4-NF(FOURTH NORMAL FORM)

A relation is said to be in 4-NF if and only if it satisfies the following conditions

 It should be in the ThirdNormalForm.

 The table should not have anyMulti-valuedDependency.

WhatisMulti-valuedDependency?

A table is said to have multi-valued dependency, if the following three conditions are true.

i. A table should have at-least 3 columns for it to have a multi-valued dependency.

ii. For any dependencyA →B,if there exists multiple value of B for a single value of A,

then the table may have multi-valued dependency. It is represented as A →→ B.

iii. In a relation R(A,B,C),if there is a multi-valued dependency between A and B,thenB

And C should be independent of each other.

If all these three conditions are true for any relation (table), then it contains multi-valued

dependency.Themulti-valueddependencycanbe explainedwithanexample. LettheRelationR containing

three columns A, B, C and four rows s, t, u, v.

 A B C

s a1 b1 c1

t a1 b1 c2

u a1 b2 c1

v a1 b2 c2

If s(A) =t(A)=u(A)=v(A)

s(B)=t(B) ands(B) =v(B)

s(C)=u(C)andt(C)=v(C), then thereexist multi-valueddependency.

Example:Consider the below college enrolment table with columns HTNO,Subject and

Hobby.

Department of CSE, NRCM Page 67

501

Department of CSE, NRCM Page 68

Hobby

Java C#

Cricket Dancing

Subject

Department of CSE, NRCM Page 69

502

Department of CSE, NRCM Page 70

Hobby As shown in the above figure, if501 opted forsubjects likeJavaand C# and hobbies of 501 are Cricket and Dancing.

Similarly, If 502 opted for subjects like Python andAndroid and hobbies of 501 are Chess and Singing, then it can be written

into a table with three columns as follows:

HTNO Subject Hobby

501 Java Cricket

501 Java Dancing

501 C# Cricket

501 C# Dancing

502 Python Chess

502 Python Singing

502 Android Chess

502 Android Singing

Asthereexistmultivalueddependency,theabovetableisdecomposedintotwotablessuch that

Now these tables(relations)satisfy the fourth normalform.

15. 5NF

A relation is said to be in 5-NFif and onlyif it satisfies the followingconditions

 ItshouldbeintheFourth NormalForm.

 Thetableshould not haveanyjoin Dependencyand joiningshould belossless.

5NF is also known as Project-join normal form (PJ/NF).

A table is decomposed into multiple small tables to eliminate redundancy, and when we re-join the

decomposed tables, there should not be any loss in the original data or shold not create any new data. In

simple words, joining two or more decomposed table should not lose records nor create new records.

HTNO Subject

501 Java

501 C#

502 Python

502 Android

HTNO Hobby

501 Cricket

501 Dancing

502 Chess

502 Singing

Department of CSE, NRCM Page 71

Example:Consider a table which contains a record of Subject,Professor and Semesterin three

columns. The primarykeyis the combination of all three columns. No column itself is not a candidate

key or a super key.

In the table,DBMS is taught by Ravindar and Uma Rani in semester4, DS by Sindhusha and Venu in

sem 3. In this case, the combination of all these fields required to identify valid data.

So to make the table into 5NF,we can decompose it intot here relations,

Subject Professor Semester

C Srilatha 2

DBMS Ravindar 4

DS Sindhusha 3

DBMS UmaRani 4

CN Srikanth 5

DS Venu 3

WT Srinivas 5

The above table is decomposed into three tables as follows to bringit into 5-NF.

16. LOSS LESS JOIN DECOMPOSITION

Decomposition of a relation R into R1 and R2 is lossless-join decomposition if at least one of the

following functional dependencies are in F+ (Closure of functional dependencies)

R1∩R2→R1 OR

R1∩R2→R2

 ConsiderarelationR whichis decomposedinto subrelationsR1 and R2.

 ThisdecompositioniscalledlosslessjoindecompositionwhenwejoinR1andR2and if we

get the same relation R that was decomposed.

 Forlossless joindecomposition, wealways have:R1⋈R2

Subject Professor

C Srilatha

DBMS Ravindar

DS Sindhusha

DBMS UmaRani

CN Srikanth

DS Venu

WT Srinivas

Semester Professor

2 Srilatha

3 Ravindar

5 Sindhusha

3 UmaRani

5 Srikanth

2 Venu

5 Srinivas

Semester Subject

2 C

4 DBMS

3 DS

5 CN

5 WT

Department of CSE, NRCM Page 72

Example 1:Consider the following relation R(A , B , C). Let this relationis decomposed

into two sub relations R1(A , B) and R2(B , C)

 R R1 R2
A B C

decompose→

A B

and

B C

1 2 1 1 2 2 1

2 5 3 2 5 5 3

3 3 3 3 3 3 3

Now, let us check whether this decomposition is lossless or not. For lossless decomposition,

we must have:R1⋈ R2 = R .Now, if we perform the natural join (⋈) of the sub relations R1

and R2 , we get

Thisrelationis sameastheoriginalrelation R.

Thus, we conclude that the above decomposition is lossless join decomposition. This is

because the resultant relation after joining the sub relations is same as the decomposed

relation. No extraneous tuples (rows) appear after joining of the sub-relations.

Example 2:Considerthe following relation R(A , B , C). Let this relation is decomposed

into two sub relations R1(A , C) and R2(B , C)

R R1 R2
A B C

decompose→

A C

and

B C

1 2 1 1 1 2 1

2 5 3 2 3 5 3

3 3 3 3 3 3 3

Now, let us check whether this decomposition is lossless or not. For lossless decomposition,

we must have:R1⋈ R2 = R .Now, if we perform the natural join (⋈) of the sub relations R1

and R2 , we get

ThisrelationisnotsameastheoriginalrelationR.

Thus, we conclude that the above decomposition is not lossless join decomposition. This is

because the resultant relation after joining the sub relations is not same as the decomposed

relation. Extraneous tuples (rows) appear after joining of the sub-relations.

A B C

1 2 1

2 5 3

3 3 3

A B C

1 2 1

2 5 3

2 3 3

3 5 3

3 3 3

Department of CSE, NRCM Page 73

PROBLEMS

ConsiderarelationR isdecomposed intotwo sub relationsR1andR2.

 Ifall the followingconditions satisfy, thenthedecomposition is lossless.

 If anyof theseconditions fail,then thedecomposition is lossy.

Condition-01:Unionofboththesubrelationsmustcontainalltheattributesthatarepresent in the

original relation R.

Condition-02:Intersectionofboththesubrelationsmustnotbenull. Inotherwords,there must

be some common attribute which is present in both the sub relations.

Condition-03:IntersectionofboththesubrelationsmustbeasuperkeyofeitherR1orR2or both.

**

Problem-01:ConsiderarelationschemaR(A,B,C,D)withthefunctionaldependencies A → B

and C → D. Determine whether the decomposition of R into R1 (A , B) and R2 (C , D) is

lossless or lossy.

Solution:To determine whether the decomposition is lossless or lossy, we will check all the

conditions one by one. If any of the conditions fail, then the decomposition is lossy otherwise

lossless.

Condition-01:Accordingto condition-01,union ofboththe subrelations must containallthe

attributes of relation R. So, we have:

R1(A, B)∪R2(C , D) = R(A , B, C , D)

Clearly, union of the sub relations contains all the attributes of relation R. Thus, condition-01

satisfies.

Condition-02:According to condition-02, intersection of both the sub relations must not be

null. So, we have-

R1(A, B)∩R2(C , D) = Φ

Clearly, intersection of the sub relations is null.So, condition-02 fails. Thus, we conclude that

the decomposition is lossy.

**

Problem-02:ConsiderarelationschemaR(A,B,C,D)withthefollowingfunctional dependencies

A→ B B→ C C → D D→ B

R1∩R2 ≠∅

R1∪R2= R

Department of CSE, NRCM Page 74

Determinewhetherthe decompositionof RintoR1(A , B), R2(B , C) and R3(B ,D)is lossless or

lossy.

Solution:

ConsidertheoriginalrelationR wasdecomposedintothe givensubrelationsas shown:

Decomposition ofR(A,B, C,D) intoR'(A, B, C)and R3(B,D)-

Todeterminewhetherthedecompositionis losslessor lossy,

 Wewill check all the conditions onebyone.

 Ifanyof theconditions fail,then thedecompositionis lossyotherwise lossless.

Condition-01:According to condition-01, union of both the sub relations must contain all the

attributes of relation R. So, we have

R‘(A, B, C)∪R3(B, D) = R (A , B, C , D)

Clearly, union of the sub relations contains all the attributes of relation R. Thus, condition-01

satisfies.

Condition-02:According to condition-02, intersection of both the sub relations must not

benull. So, we have

R‘(A, B, C)∩R3(B,D) = B

Clearly,intersectionofthesubrelations isnotnull.Thus,condition-02 satisfies.

Condition-03:According to condition-03, intersection of both the sub relations must be

thesuper key of one of the two sub relations or both. So, we have-

R‘(A, B, C)∩R3(B,D) = B

StrategytoSolve:Whenagivenrelationisdecomposedintomorethantwosubrelations, then

 Considerany onepossiblewaysinwhichtherelationmighthavebeendecomposed into those

sub relations.

 First,dividethe givenrelationintotwosub relations.

 Then,dividethesubrelationsaccordingtothesubrelationsgiveninthequestion. As a

thumb rule, remember-

Anyrelation can bedecomposed onlyinto two sub relations at a time.

Department of CSE, NRCM Page 75

Now, the closure of attribute B is: B+={B,C,D} So,

 Attribute‘B’cannotdetermineattribute‘A’ofsubrelation R’.

 Thus,itisnotasuper keyofthe sub relation R’.

 Attribute‘B’ candetermineall theattributesofsubrelation R3.

 Thus,it is a super keyofthe sub relation R3.

Clearly,intersectionofthesubrelationsisasuperkeyofoneofthesubrelations. So,

condition-03 satisfies. Thus, we conclude that the decomposition is lossless.

Decomposition of R'(A, B,C) intoR1(A, B)andR2(B,C)-

Todeterminewhetherthedecompositionis losslessor lossy,

 Wewill check all the conditions onebyone.

 Ifanyof the conditions fail, then thedecomposition is lossyotherwise lossless.

Condition-01: According to condition-01, union of both the sub relations must contain all the

attributes of relation R’. So, we have

R1(A, B)∪R2(B, C) = R’(A, B, C)

Clearly, union of the sub relations contain all the attributes of relation R’. Thus, condition-01

satisfies.

Condition-02: According to condition-02, intersection of both the sub relations must not

benull.

So, wehave

R1(A, B)∩R2(B, C) = B

Clearly,intersectionofthesubrelations isnotnull.Thus,condition-02 satisfies.

Condition-03: According to condition-03, intersection of both the sub relations must be

thesuper key of one of the two sub relations or both. So, we have

R1(A, B)∩R2(B, C) = B

Now, the closure of attribute B is: B+={B,C,D} So,

 Attribute‘B’cannotdetermineattribute‘A’ofsubrelation R1.

 Thus,itis nota superkeyofthe sub relation R1.

 Attribute‘B’ candetermineall theattributesofsubrelation R2.

 Thus,it is a super keyofthe subrelation R2.

Clearly,intersectionofthesubrelationsisasuperkeyofoneofthesubrelations.So, condition-03

satisfies. Thus, we conclude that the decomposition is lossless.

Department of CSE, NRCM Page 76

17. CLOSURE OF AN ATTRIBUTE SET:

The set of all those attributes which can be functionally determined from an attribute

set is called as a closure of that attribute set. Closure of attribute set {X} is denoted as {X}+.

StepstoFindClosureofanAttributeSet:Followingstepsarefollowedtofindthe closure of an

attribute set:

Step-01:Addtheattributescontainedintheattributesetforwhichclosureisbeing calculated to the

result set.

Step-02:Recursivelyaddtheattributestotheresultsetwhichcanbefunctionallydetermined from the

attributes already contained in the result set.

Question1: ConsiderarelationR(A,B,C,D,E,F,G)withthefunctional dependencies

A→ BC, BC→DE, D→ F, CF→ G

Findtheclosureof{A}, {D} and{B,C}attributesandattributesets

Solution:

Closureof attributeA:

A+= { A }

={ A , B, C } (UsingA→BC)

={ A , B, C , D , E} (UsingBC →DE)

={ A , B, C , D , E,F} (UsingD→F)

={ A , B, C , D , E,F,G } (UsingCF→ G)

Thus,

A+={A , B , C , D, E ,F,G}

ClosureofattributeD:

D+= { D }

={ D , F}(UsingD→ F)

WecannotdetermineanyotherattributeusingattributesDandFcontainedintheresultset. Thus,

D+= {D ,F}

Closureof attributeset{B, C}

{ B, C }+={ B, C}

={ B, C , D , E} (UsingBC→DE)

={ B, C , D , E,F} (UsingD→F)

={ B, C , D , E,F, G } (UsingCF→ G)

Thus,

{B , C }+= {B , C , D,E , F,G}

Department of CSE, NRCM Page 77

Question2:Considerthegivenfunctionaldependencies

AB→ CD AF→ D DE→F C → G F→ E G→ A

Findtheclosureof {A,B}, {A, F},{B, G}and {C, F}

Solution:

Closureof {A, B}:

{AB}+={ A ,B }

={ A , B, C , D } (UsingAB→ CD)

={ A , B, C , D ,G } (UsingC→ G)

Thus,{AB}+={ A , B, C , D , G}

Closureof {C, F}:

{CF}+={ C , F }

={ C , F, G } (UsingC→ G)

={ C , E , F, G } (Using F→ E)

={ A , C , E , E , F} (UsingG→A)

={ A , C , D , E , F,G } (UsingAF→ D)

Thus,{ CF}+={ A, C , D , E, F,G }

Closureof {B, G}:

{BG }+={B, G }

={ A , B,G } (UsingG→A)

={ A , B, C , D ,G } (UsingAB→ CD)

Thus,{ BG }+={ A,B , C , D , G}

Closureof {B, G}:

{AF}+={ A ,F }

={ A , D, F} (UsingAF→ D)

={ A , D, E ,F} (Using F→ E)

Thus,{ AF}+={ A ,D , E, F}

18. FINDING THE KEYS USING CLOSURE

Super Key:

Iftheclosureresultofanattributesetcontainsalltheattributesoftherelation, then that attribute set is

called as a super key of that relation.

 Thus,wecansay,“Theclosureofasuperkeyistheentirerelationschema.”

Example:In the above example (Question 1),

 Theclosureof attribute A is theentirerelation schema.

 Thus,attributeA is asuper keyfor that relation.

Department of CSE, NRCM Page 78

CandidateKey:

 If there exists no subset of an attribute set whose closure contains all the attributes of

the relation, then that attribute set is called as a candidate key of that relation.

Example:Intheaboveexample(Question1),

 Nosubsetof attributeA contains alltheattributesofthe relation.

 Thus,attributeA is also a candidatekeyfor that relation.

Finding Candidate Keys From a Relation:

Wecan det erminethecandidatekeys ofa givenrelation usingthe followingsteps-

Step-01:Determineallessentialattributesofthegiven relation

 EssentialattributesarethoseattributeswhicharenotpresentonRHSofanyfunctional

dependency.

 Essentialattributesarealwaysapartofeverycandidatekey.Thisisbecausethey cannot

be determined by other attributes.

Example:LetR(A,B,C,D,E,F)bearelationschemewiththefollowingfunctional
dependencies: A → B,C → DandD → E.

The RHS of all the above functional dependencies contain only B, D and E. The

attributeswhicharenotpresentonRHSofanyfunctionaldependencyareA,CandF. So,

essential attributes are: A, C and F.

Step-02:Determiningallnon-essentialattributesusingessentialattributes

 TheattributesoftherelationthatarepresentinRHSarenon-essentialattributes.They can be

determined by using essential attributes.

 Now,followingtwocasesarepossible-

 Case-01:Ifallessentialattributestogethercandetermineallremainingnon-essential
attributes, then

o Thecombinationofessentialattributesis thecandidatekey.

o Itis the onlypossible candidatekey.

 Case-02:Ifallessentialattributestogethercannotdetermineallremainingnon-
essential attributes, then-

 Thesetofessentialattributesandsomenon-essentialattributeswillbethecandidate key(s).

 Inthiscase,multiplecandidatekeysarepossible.

 Tofindthecandidatekeys,wecheckdifferentcombinationsofessentialandnon-

essential attributes.

.

Department of CSE, NRCM Page 79

PROBLEMS ON FINDING CANDIDATE KEYS

Problem-01:LetR=(A,B,C,D,E,F)bearelationschemewiththefollowing

dependencies:C→F,E→A,EC→DandA→B. Findthecandidatekey.Also, determine the

total number of candidate keys and super keys.

Solution:Wewillfindcandidatekeysof thegivenrelationinthefollowingsteps-

Step-01:Determineallessentialattributesofthegiven relation.

 Essentialattributesofthe relationare: C andE.

 So,attributes C and Ewill definitelybeapart ofeverycandidate key.

Step-02:Now,wewillcheckiftheessentialattributestogethercandetermineallremaining non-

essential attributes. To check, we find the closure of CE. So,

{ CE }+ ={ C , E }

={ C, E , F} (UsingC→F)

={ A , C , E , F} (UsingE→A)

={ A , C , D , E , F} (UsingEC→ D)

={ A , B, C , D , E,F} (UsingA→B)

WeconcludethatCEcandeterminealltheattributesofthegivenrelation.So,CEistheonly possible

candidate key of the relation.

TotalNumberofSuper Keys-

Therearetotal6attributes inthegiven relationofwhich-

 Thereare2essentialattributes-Cand E.

 Remaining4 attributesarenon-essential attributes.

 Essential attributes will be definitelypresent in every key.

 Non-essential attributesmayor maynot bepresent ineverysuperkey.

C E ABDF

Essential attributes Non-Essentialattributes

So,numberofsuperkeyspossible=2x 2x 2x 2=16.Thus,totalnumberofsuperkeys possible = 16.

Problem-02:ConsidertherelationschemeR(E,F,G,H,I,J,K,L,M,N)andtheset

offunctionaldependencies: {E, F} → { G}, { F} → {I, J}, { E, H} → { K,L},

{ K} → { M} and {L}→ {N}.Determine thecandidatekey(s).

Department of CSE, NRCM Page 80

Solution:Wewillfind candidatekeys ofthegivenrelation inthe following steps-

Step-01:Determineallessentialattributesofthegiven relation.

 Essentialattributesof the relationare-E,Fand H.

 So,attributes E, Fand Hwill definitelybeapart of everycandidatekey.

Step-02:

 We will check if the essential attributes together can determine all remaining on-

essential attributes.

 To check,we find the closure of EFH.

So, we have-

{EFH }+={E , F,H}

={ E , F, G ,H } (UsingEF → G)

={ E , F, G ,H ,I, J} (UsingF→IJ)

={ E , F, G ,H ,I, J, K ,L} (UsingEH→ KL)

={ E , F, G ,H ,I, J, K ,L, M } (Using K→ M)

={ E , F, G,H,I, J,K,L, M, N}(UsingL→ N)

We conclude that EFH can determine all the attributes of the given relation. So, EFH is the

only possible candidate key of the relation.

*****************************ALLTHE BEST *******************************

Department of CSE, NRCM Page 81

UNIT– IV

Transaction Management: Transaction Concept, Transaction State, Implementation of

Atomicity and Durability, Concurrent Executions, Serializability, Recoverability,

Implementation of Isolation, Testing for serializability, Lock Based Protocols, Timestamp Based

Protocols, Validation- Based Protocols, Multiple Granularity, Recovery and Atomicity, Log–

Based Recovery, Recovery with Concurrent Transactions.

1. TRANSACTION

Definition: A transaction is a single logical unit consisting of one or more database access

operation.

Example: Withdrawing 1000 rupees fromATM.

 Every transaction is executed as a single unit.

 If the database operations do not update the database but only retrieve data, this type of

transaction is called a read-only transaction.

 A successful transaction can change the database from one consistent state to another

Consistent state.

 DBMS transactions must satisfy ACID properties (atomic, consistent, isolatedand durable).

2. ACID PROPERTIES

ACID properties are used for maintaining the integrityof database during transaction processing.

ACID stands for Atomicity, Consistency, Isolation, and Durability.

 Atomicity: This property ensure that either all of the tasks of a transaction are performed or

none of them. In simple words it is referred as “all or nothing rule”.

Each transaction is said to be atomic if when one part of the transaction fails, the entire

The following set of operations are performed to withdraw1000 rupees from database

i. Read current balance from Database

ii. Deduct1000 from current balance

iii. Update current balance in Database

(Let say 5000 rupees)

(5000 – 1000 =4000)

(4000rupees)

oneTransaction

Department of CSE, NRCM Page 82

transaction fails. When all parts of the transaction completed successfully, then the transaction

said to be success. (“all or nothing rule”)

Example:Transferring $100from accountAtoaccount B.

(Assumeinitially, accountAbalance =$400andaccountBbalance=700$.)

Transferring$100from account A to account B has two operations

a) Debiting100$fromA’s balance ($400-$100 =$300)

b) Crediting100$to B’sbalance ($700+$100= $800)

Let’s say first operation (a) passed successfully while second (b) failed, in this case A’s balance

would be300$ while B would behaving700$ instead of 800$. This is unacceptablein abanking

system.Eitherthetransactionshouldfailwithoutexecutinganyoftheoperationoritshould

process both the operations. TheAtomicitypropertyensuresthat.

ii. Consistency: The consistency property ensures that the database must be in consistent state

before and after the transaction. There must not be any possibility that some data is incorrectly

affected by the execution of a transaction.

For example, transfering funds from one account to another, the consistency property ensures

that the total values of funds in both the accounts is the same before and end of the transaction.

i.e., Assume initially, A balance = $400 and B balance = 700$.

ThetotalbalanceofA +B =1100$(Beforetransferring100$fromA toB) The total

balance of A + B = 1100$(After transferring 100$ from A to B)

iii. Isolation:Foreverypairoftransactions,oneofthetransactionsshouldnotstartexecution

before the other transaction execution completed, if they use some common data variable. That

is, if the transaction T1 is executing and using the data item X, then transaction T2 should not

start until the transaction T1 ends, if T2 also use same data item X.

Forexample,TransactionT1: Transfer 100$from accountAto accountB

TransactionT2:Transfer150$ fromaccountBtoaccountC

Assumeinitially,A balance=Bbalance=Cbalance=$1000

 TransactionT1 TransactionT2

10:00AM ReadA’sbalance ($1000) ReadB’s balance ($1000)

10:01AM Abalance=ABalance –100$ (1000-100=900$) Bbalance=B Balance –150$ (1000-150= 850$)

10:02AM ReadB’s balance ($1000) ReadC’sbalance ($1000)

10:03AM Bbalance=B Balance+100$ (1000+100= 1100$) Cbalance=C Balance+150$ (1000+150=1150$)

Department of CSE, NRCM Page 83

10:04AM WriteA’sbalance (900$) WriteB’sbalance (850$)

10:05AM WriteB’sbalance (1100$) WriteC’sbalance (1150$)

10:06AM COMMIT COMMIT

After completion of Transaction T1andT2,Abalance=900$,Bbalance=1100$,Cbalance

=1150$. But B balance should be 950$. The B balance is wrong due to execution of T1 and T2

parallel and in both the transactions, Account B is common. The last write in account B is at

10:05 AM, so that B balance is 1100$ (write in account B at 10:04 AM is overwritten).

iv. Durability: Once a transaction completes successfully, the changes it has made into the

database should be permanent even if there is a system failure. The recovery-management

componentofdatabasesystemsensuresthedurabilityoftransaction.Forexample,assume

account A balance = 1000$. If A withdraw 100$ today, then the A balance = 900$. After two

days or a month, A balance should be 900$, if no other transactions done on A.

3. STATES OF TRANSACTION

A transaction goes through many different states throughout its lifecycle.These states are called

as transaction states. They are:

Active State:

 Thisis the firststate in the lifecycleof a transaction.

 Oncethetransactionstarts executing,thenit issaidto beinactivestate.

 During this state it performs operations like READ and WRITE on some data items. All

the changes made by the transaction are now stored in the buffer in main memory. They

are not updated in database.

Department of CSE, NRCM Page 84

 From active state, a transaction can go into either a partially committed state or a failed

state.

Partially Committed State:

 When the transaction executes its last statement,then the transaction is said to be in

partially committed state.

 Still,all the changes made by the transaction are stored in the buffer in main memory,but

they are not updated in the database.

 From partially committed state, a transaction can go into one of two states, a committed

state or a failed state.

Committed State:

 After all the changes made by the transaction have been successfully updated in the

database, it enters into a committed state and the transaction is considered to be fully

committed.

 After a transaction has entered the committed state, it is not possible to roll back (undo)

the transaction. This is because the system is updated into a new consistent state and the

changes are made permanent.

 Theonlywaytoundothechangesisbycarryingoutanothertransactioncalled as compensating

transaction that performs the reverse operations.

Failed State:

 When a transaction is getting executed in the active state or partiallycommitted state and

some failure occurs due to which it becomes impossible to continue the execution, it

enters into a failed state.

Aborted State:

 After the transaction has failed and entered into a failed state, all the changes made by it

have to be undone.

 To undo the changes made by the transaction, it becomes necessary to rollback the

transaction.

 After the transaction has rolledback completely,it enters into an abortedstate.

Terminated State:

 Thisis thelast state inthelifecycleof a transaction.

 After entering the committed state or aborted state,the transaction finally enters into a

Department of CSE, NRCM Page 85

Terminated state where its lifecycle finally comes to an end.

4. TYPES OF SCHEDULES–SERIALIZABILITY

In DBMS,schedules may be classified as

i. Serial Schedules:

 All the transactions execute serially one after the other.

 When one transaction executes,no other transaction is allowed to execute.

Examples:

Schedule-1 Schedule-2

In schedule 1, after T1 completes its execution, transaction T2 executes. So, schedule-1 is a Serial

Schedule. Similarly, in schedule-2, after T2 completes its execution, transaction T1 executes. So,

schedule -2 is also an example of a Serial Schedule.

ii. Non-Serial Schedules:
 In non-serial schedules,multiple transactions execute concurrently.

 Operationsofall/someofthetransactionsareinter-leaved ormixedwitheachother.

 Somenon-serialschedulesmayleadtoinconsistencyofthedatabase andmayproduce

T1 T2
Read(A)

A=A-100

Write(A)

Read(B)

B=B+100

Write(B)

COMMIT

Read(A)

 A=A+500
 Write(A)

 COMMIT

T1 T2
 Read(A)

 A=A+500
 Write(A)

Read(A)

COMMIT

A=A-100

Write(A)

Read(B)

B=B+100

Write(B)

COMMIT

Department of CSE, NRCM Page 86

wrong results.

Examples:

Schedule-1 Schedule-2

In schedule-1 and schedule-2, the two transactions T1andT2 executing concurrently.The operations of

T1 and T2 are interleaved. So, these schedules are Non-Serial Schedule.

iii. SerializableSchedules:

 A non-serial schedule of ‘n’ transactions is equivalent to some serial schedule of ‘n’

transactions, then it is called as a serializable schedule.

 In other words, the results produced bythe transactions in a serial schedule areequal to

theresultproducedbythesametransactionsinsomenon-serialschedule,thenthatnon- serial

schedule is called as serializability.

 Serializableschedules behaveexactlysameas serial schedules.

 Even though, Serial Schedule and Serializable Schedule produce same result, there are

some differences they are

Serial Schedules SerializableSchedules

Concurrency is not allowed. Thus, all the

transactionsnecessarily execute serially one

after the other.

Concurrencyisallowed.Thus,multiple

transactions can execute concurrently.

It leads to less resource utilization and CPU

throughput.

Itimprovesbothresourceutilizationand CPU

throughput.

Serial Schedules are less efficient as

compared to serializable schedules.

SerializableSchedulesarealwaysbetter than

serial schedules.

Serializability is mainly of two types. They are:

 Conflict Serializability

T1 T2
Read(A)

A=A-100

Write(A)

Read(A)

Read(B)

A=A+500

B=B+100

Write(B)

COMMIT

Write(A)

 COMMIT

T1 T2

Read(A)

Read(A)

A=A-100

Write(A)

A=A+500

Read(B)

B=B+100

Write(B)

COMMIT

Write(A)

 COMMIT

Department of CSE, NRCM Page 87

 View Serializability

Conflict Serializability:If a given non-serial schedule can be converted into a serial schedule by

swapping its non-conflicting operations, then it is called as a conflict serializable schedule.

Two operations are called as conflicting operations if all the following conditions hold true

(1) Both the operations belong to different transactions

(2) Both the operations are on the same data item

(3) Atleast one of the two operations is a write operation

Schedule–1 Schedule–2 Schedule- 3 Schedule- 4

T1 T2 T1 T2 T1 T2 T1 T2

Read(A)

Read(A)

Read(A)

Write(A)

Write(B)

Read(A)

Write(B)

Write(B)

InSchedule-1,onlyrule(1)&(2)aretrue,butrule(3)isnotholding.So,theoperationsarenotconflict. In Schedule -2, rule

(1), (2) & (3) are true. So, the operations are conflict.

InSchedule-3,onlyrule(1)&(3)aretrue,butrule(2)isnotholding.So,theoperationsarenotconflict. In Schedule -4, rule

(1), (2) & (3) are true. So, the operations are conflict.

Testing of Conflict Serializability:Precedence Graph is used to test the Conflict Serializability of

a schedule. The algorithm to draw precedence graph is

(1) Draw anodeforeachtransactioninScheduleS.

(2) IfTa readsX valuewritten byTb, thendraw arrowfrom Tb → Ta.

(3) If Tb writesXvalue afterithasbeenreadbyTa,thendraw arrowfromTa→Tb.

(4) IfTawritesXafterTb writesX,thendraw arrow from Tb →Ta.

Iftheprecedencegraphhasnocycle,thenScheduleSisknownasconflictserializable.Ifa precedence

graph contains a cycle, then S is not conflict serializable.

Problem-01:Checkwhetherthe givenschedule Sisconflictserializableornot.

S:R1(A),R2(A),R1(B),R2(B),R3(B),W1(A),W2(B)

Solution:

Giventhat S: R1(A), R2(A) ,R1(B) , R2(B),R3(B) ,W1(A) ,W2(B).

Theschedule fortheaboveoperations is

Department of CSE, NRCM Page 88

Schedule-1

T1 T2 T3
Read(A)

Read(A)

Read(B)

Read(B)

Read(B)

Write(A)

Write(B)

List all the conflicting operations and determine the dependency between the transactions

(Thumbruletofindconflictoperations:ForeachWrite(X)inTa,makeapairwitheachRead(X)andWrite(X)inTb.

Theorderisimportantineachpairi.e.,forexample,Read after WriteonX orwriteafterreadonX in thegiven schedule.)

 R2(A), W1(A) (T2→T1)
 R1(B), W2(B) (T1→T2)
 R3(B), W2(B) (T3→T2)

Drawtheprecedence graph:

There exists a cycle in the above graph.Therefore,the schedule S is not conflict serializable.

Problem-02:Check whether the given schedule S is conflict serializable schedule.

Schedule– S
T1 T2 T3 T4

 Read(X)

Write(X)

Write(X)

 COMMIT

COMMIT
Write(Y)

 Read(Z)

 COMMIT
Read(X)

 Read(Y)
 COMMIT

Solution: List all the conflicting operations to determine the dependency between transactions.

R2(X),W3(X) (T2→T3)
W3(X),W1(X) (T3→T1)

W3(X),R4(X) (T3→T4)

R2(X),W1(X) (T2→T1)
W1(X),R4(X) (T1→T4)

Department of CSE, NRCM Page 89

W2(Y), R4(Y) (T2→T4)

Draw the precedence graph:

There exists nocycle in the precedence graph.Therefore, the schedule S is conflict serializable.

View Serializability:Two schedules S1andS2 are said to be view equivalent if both of them

satisfy the following three rules:

(1) InitialRead:The first read operation on each data item inboth the schedule must be same.

 For each data itemX, If first read onXisdonebytransactionTainscheduleS1,thenin schedule2 also

the first read on X must be done by transaction Ta only.

(2) UpdatedRead:Itshouldbesameinboththe schedules.

 IfRead(X)ofTafollowedby Write(X)ofTbin scheduleS1,thenin scheduleS2also,Read(X) of Ta must

follow Write(X) of Tb ..

(3) Finalwrite:Thefinal writeoperationon each dataitem inboth theschedulemust besame.

 ForeachdataitemX,ifXhasbeenupdatedatlastbytransaction TiinscheduleS1,thenin schedule S2 also,

X must be updated at last by transaction Ti.

Note:Everyconflictserializablescheduleis also viewserializableschedulebut not vice-versa

Problem03:Checkwhetherthe givenscheduleSisviewserializableornot

Schedule–1

T1 T2
Read(A)

Write(A)

Read(A)

Read(B)

Write(A)

Write(B)
Read(B)

 Write(B)

Solution:

ViewSerializabilityDefinition:If agivenscheduleisviewequivalenttosomeserial

schedule,thenitiscalled asaviewserializableschedule.

Department of CSE, NRCM Page 90

F

o

r

t

h

e

S

c

h

e

d

u

l

e

-

1

(

S

1

)

S

c

h

e

d

u

l

e

-

2

(

S

2

)

Department of CSE, NRCM Page 91

Nowlet us check whether thethreerules of view-equivalent satisfyor not.

Schedule-1(S1) Schedule-2(S2)

Rule1: Initial Read

First Read(A)isbyT1inS1andinS2alsothefirstRead(A) isbyT1only.

First Read(B)isbyT1in S1andinS2alsothefirstRead(B) isbyT1only.

Rule2:UpdatedRead

Write(A)ofT1isreadbyT2inS1 andinS2alsoWrite(A)ofT1isreadbyT2 Write(A)of

T1 is read byT2 in S1and in S2alsoWrite(A)of T1 is read byT2

Rule3:Final Write

Thefinal Write(A)is byT2in S1andin S2 alsothefinal Write(A)is byT2 only

The final Write(B) is by T2 in S1 and in S2 also the final Write(B) is by T2 only

Conclusion: Hence, all the threerules are satisfied in this example, which means Schedule S1and

S2 are view equivalent. Also, it is proved that schedule S2 is the serial schedule of S1. Thus we

can say that the S1 schedule is a view serializable schedule.

Note:Other way of solving it is, if weare able to prove that S1 is conflict serializable, then S1 isalso view serializable. (Refer

conflict serializable problems. Every conflict serializable schedule is also view serializable but not vice-versa.)

5. IMPLEMENTATION OF ATOMICITY AND DURABILITY

The recovery-management component of a DBMS supports atomicityand durabilitybya variety

of schemes. The simplest scheme to implement it is Shadow copy.

Read(A)

Write(A)

Read(B)

Write(B)

1

1

2

2

Read(A)

Write(A)

Read(B)

Write(B)

3

3

T2 T1

Read(A)

Write(A)

1

2 Read(A)

Write(A)
3

Read(B)

Write(B)

1

2 Read(B)

Write(B)
3

T2 T1

T1 T2
Read(A)

Write(A)

Read(B)

Write(B)

Read(A)

 Write(A)

 Read(B)

 Write(B)

T1 T2
Read(A)

Write(A)

Read(A)

Read(B)

Write(A)

Write(B)
Read(B)

 Write(B)

Department of CSE, NRCM Page 92

Shadowcopy: Inshadow-copyscheme,

 Atransactionthatwantstoupdatethedatabasefirstcreatesacompletecopyofthe database.

 Allupdates aredoneonthenewdatabasecopy,leavingtheoriginal copy,untouched.

 If at any point the transaction has to be aborted, the system simply deletes the new copy.

The old copy of the database has not been affected.

 If the transaction complete successfully, then the database system updates the pointer db-

pointer to point to the new copy of the database; the new copy then becomes the original

copy of the database. The old copy of the database is then deleted. Figure below depicts

the scheme, showing the database state before and after the update.

Figure:Shadowcopytechniqueforatomicityand durability

6. RECOVERABILITY

During execution, if any of the transaction in a schedule is aborted, then this may leads

the database into inconsistence state. If anything goes wrong, then the completed operations in

the schedule needs to be undone. Sometimes, these undone operations may not possible. The

recoverability of schedule depends on undone operations.

Irrecoverable Schedule:In a schedule, if a transaction Ta performs a dirty read operation

fromothertransactionTbandTacommitsbeforeTbthensuchascheduleisknownas an Irrecoverable

Schedule.

Example:Considerthefollowingschedule

T1 T2

Read(A)

Write(A)

|

If a transaction reads a data value that is updated by an uncommitted transaction,

thenthis type of read is called as a dirty read.

Department of CSE, NRCM Page 93

| Read(A) //DirtyRead

| Write(A)

| COMMIT

|

ROLLBACK

Here,

 T2performsa dirtyreadoperation.

 T2commitsbeforeT1.

 T1failslaterandrollbacks.

 Thevalue that T2 read now stands to beincorrect.

 T2cannot recoversinceithas alreadycommitted.

Recoverable Schedules:In a schedule, if a transaction Taperforms a dirty read operation

from other transaction Tband Tacommit operation delayed till Tbcommit, then such a schedule is

known as an Irrecoverable Schedule.

Example:Considerthefollowingschedule-

T1 T2
Read(A)

Write(A)

|

| Read(A) //DirtyRead
| Write(A)
|

COMMIT

COMMIT//Delayed

Here,

 T2performsa dirtyreadoperation.

 Thecommitoperationof T2is delayedtillT1commitsorroll backs.

 T1commitslater.

 T2isnow allowedto commit.

 Incase,T1wouldhavefailed,T2hasachancetorecoverbyrollingback.

Checking Whether a Schedule is Recoverable or

Irrecoverable:Check if there exists any dirty read operation.

 Iftheredoes not exist anydirtyread operation, then theschedule is surelyrecoverable.

 Ifthereexists anydirtyread operation, then

If the commit operation of thetransaction performingthe dirtyread occurs before

thecommitorabortoperationofthetransactionwhichupdatedthevalue,thenthe schedule is

Department of CSE, NRCM Page 94

irrecoverable.

If the commit operation of the transaction performing the dirty read is delayed till the commit

or abort operation of the transaction which updated the value, then the schedule is recoverable.

7. IMPLEMENTATION OF ISOLATION

Isolation determines how transactions integrityis visible to otherusers and systems. It means

that a transaction should take place in a system in such a way that it is the only one transaction

that is accessing the resources in a database system.

Isolation level defines the degree to which a transaction must be isolated from the data

modifications made by any other transactions in the database system. The phenomena’s used to

define levels of isolation are:

a) Dirty Read

b) Non-repeatableRead

c) PhantomRead

Dirty Read: If a transaction reads a data value updated by an uncommitted transaction, then

this type of read is called as dirty read.

T1 T2

Read(A)

Write(A)

|

| Read(A) //DirtyRead

| Write(A)

| COMMIT

|

ROLLBACK

As T1 aborted, the results produced by T2 become wrong. This is because T2 read A (Dirty

Read) which is updated by T1.

Non-RepeatableRead:Non repeatableread occurs when atransaction read same data value

twice and get a different value each time. It happens when a transaction reads once before and

once after committed UPDATES from another transaction.

Department of CSE, NRCM Page 95

Write(A)
WriteA=20

ReadA=20
Read(A)

Read(A)

T1 T2
TableinDatabase

ReadA=10

First,T1readsdataitemAandgetA=10

Next, T2 writes data item A as A = 20

Last,T1readsdataitemAandgetA=20

Other example for Non-repeatable read:

Table:STUDENT_DATAbeforeT2 Table:STUDENT_DATAafter T2

T1:SELECTSUM(C)FROMSTUDENT_DATAWHEREB=5; Answeris(10+20)=30

T2: UPDATE STUDENT_DATA SET C = 15 WHEREA=100; Answer,inFirstrowCchangesto15 T1:

SELECT SUM(C) FROM STUDENT_DATA WHEREB=5; Answer is (15+20) = 35

Phantom reads: Phantom reads occurs when atransaction read same datavalue twiceand get a

different value each time. It happens when a transaction reads once before and once after

committed INSERTS and/or DELETES from another transaction.

Non-repeatableread Phantomread

WhenT1performsecondread,thereisno
changeinnoof rowsinthegiven table

WhenT1performsecondread,thenoofrows
eitherincreaseordecrease.

T2performUPDATEoperationonthe
giventable

T2 perform INSERT and/or DELETE
operationonthegiventable

ExampleforPhantomread:

Table:STUDENT_DATAbeforeT2 Table:STUDENT_DATAafter T2

T1:SELECTSUM(C)FROMSTUDENT_DATAWHEREB=5; Answeris(10+20)=30

T2:INSERT INTOSTUDENT_DATAVALUES(103,5,25); Answer,inFirstrowCchangesto15

A B C

100 5 10

101 5 20

102 6 30

103 5 25

A B C

100 5 10

101 5 20

102 6 30

A B C

100 5 15

101 5 20

102 6 30

A B C

100 5 10

101 5 20

102 6 30

A

Department of CSE, NRCM Page 96

T1:SELECTSUM(C)FROMSTUDENT_DATAWHEREB=5; Answeris(10+20+25)=55

Basedonthesethreephenomena, SQLdefine fourisolation levels.Theyare:

(1) Read uncommitted: This is the lowest level of isolation.In this level, one transaction

mayreadthedataitemmodifiedbyothertransactionwhichisnotcommitted. Itmeandirty read is

allowed. In this level, transactions are not isolated from each other.

(2) Read Committed: This isolation level guarantees that any data read is committed at the

moment it is read. Thus, it does not allow dirty read. The transaction holds a read/write lock

on the data object, and thus prevents other transactions from reading, updating or deleting it.

(3) Repeatable Read: This is the most restrictive isolation level. The transaction holds read

locks on all rows it references and writes locks on all rows it inserts, updates, or deletes.

Since other transaction cannot read, update or delete these rows, consequently it avoids non-

repeatable read. So other transactions cannot read, update or delete these data items.

(4) Serializable: This is the highest isolation level. A serializable execution is guaranteed to

be a serial schedule. Serializable execution is defined to be an execution of operations in

which concurrently executing transactions appears to be serially executing.

The table given below clearly depicts the relationship between isolation levels and the read

phenomena and locks.

Isolation Level DirtyRead Non-repeatableread PhantomRead

ReadUncommitted Mayoccur Mayoccur Mayoccur

ReadCommitted Don’toccur Mayoccur Mayoccur

RepeatableRead Don’toccur Don’toccur Mayoccur

Serializable Don’toccur Don’toccur Don’toccur

Fromtheabovetable, itisclear thatserializableisolationlevel isbetterthan others.

8. CONCURRENCY CONTROL

 Concurrencyis theabilityof adatabasetoexecutemultiple transactions simultaneously.

 Concurrency controlisamechanismtomanagethesimultaneously executingmultiple

transactions such that no transaction interfere with other transaction.

 Executingmultipletransactionsconcurrentlyimprovesthesystem performance.

 Concurrencycontrolincreasesthethroughputand reduces waitingtimeoftransactions.

 If Concurrency Control is not done, then it may leads to problems like lost updates, dirty

read, non-repeatable read, phantom read etc. (Refer section7 for more details)

 Lost Updates: It occur when two transactions update same data item at thesame time. In

Department of CSE, NRCM Page 97

this the first write is lost and only the second write is visible.

ConcurrencycontrolProtocols:

Theconcurrencycan be controlled with thehelpofthe followingProtocols

(1) Lock-BasedProtocol

(2) Timestamp-BasedProtocol

(3) Validation-BasedProtocol

9. LOCK-BASED PROTOCOL

 Lock assures that one transaction should not retrieve or update a record which another

transaction is updating.

 For example, traffic at junction, there aresignals which indicate stop and go. When one side

signal is green (vehicles allowed passing), then other side signals are red (locked. Vehicles

not allowed passing). Similarly, in database transaction when one transaction operations are

under execution, the other transactions are locked.

 If at a junction, green signal is given to more than one side, then there may be chances of

accidents. Similarly, in database transactions, if the lockingis not done properly, then it will

display the inconsistent and corrupt data.

Therearetwolock modes: (1).SharedLock (2).ExclusiveLock

SharedLocksarerepresentedbyS.IfatransactionTiapplysharedlockondataitemA,thenTi

can only read A but not write into A. Shared lock is requested using lock-S instruction.Exclusive

Locksare represented by X. If a transaction Tiapply exclusive lock on data item

A,thenTicanreadaswellaswritedataitemA.Exclusivelockisrequestedusinglock-X instruction.

LockCompatibilityMatrix:

 LockCompatibilityMatrixcontrolswhethermultipletransactionscanacquirelockson the

same resource at the same time.

 TransactionTiapplied

Shared Exclusive

TransactionTj

request for

Shared √ X

Exclusive X X

 If a transaction Tiapplied shared lock on data item A, then Tjcan also be allowed to apply

shared lock on A.

 If a transaction Tiapplied shared lock on data item A, then Tjis not allowed to apply

exclusive lock on A.

 If a transaction Tiapplied exclusive lock on data item A, then Tjis not allowed to apply

shared lock on A.

 If a transaction Tiapplied exclusive lock on data item A, then Tjis not allowed to apply

Department of CSE, NRCM Page 98

exclusive lock on it.

 Any number of transactions can hold shared locks on a data item, but if any transaction

holdsanexclusivelockonadata item,thenothertransactions arenot allowedtoholdany lock on

that data item.Whenever a transaction wants to read a data item, it should applyshared

lock and when a transaction wants to write it should apply exclusive lock. If the lock is

not applied, then the transaction is not allowed to perform the operation.

There are four types of lock protocols available.They are:

(1) Simplistic lockprotocol

 Itisthesimplestlockingprotocol.

 Itconsiderseachread/writeoperationofatransactionasindividual.

 Itallowstransactionstoperformwrite/readoperationonadataitemonlyafterobtaining a lock

on that data item.

 Transactionsunlock thedataitem immediatelyaftercompletingthewrite/read operation.

 When atransaction needs to perform manyread and writeoperations, foreach operation

lockisappliedbeforeperformingitandreleasethelockimmediatelyaftercompletionof the

operation.

(2) Pre-claiming LockProtocol

 Inpre-claimingLockProtocol,foreachtransactionalistispreparedconsistingofthe data items

and type of lock required on each of the data item.

 Beforeinitiatinganexecutionofthetransaction,itrequestsDBMStoissuealltherequired locks

as per the list.

 Ifallthelocksare grantedthenthisprotocolallowsthetransactiontobegin.Whenthe transaction

is completed then it releases all the lock.

 If all the locks are not granted then this protocol allows the transaction to rolls back and

waits until all the locks are granted.

Beginof
Transaction

Endof
Transaction

N
o

o
fl

oc
ks

Department of CSE, NRCM Page 99

(3) Two-phase locking(2PL)protocol

 Everytransaction execution starts byacquiringfew locks or zero locks. Duringexecution it

acquire all other required locks one after the other.

 When a transaction releases any of the acquired locks then it cannot acquire any more

newlocks. But,itcanonlyreleasetheacquiredlocksoneaftertheotherduringremaining

execution of that transaction.

TheTwoPhaseLocking(2PL)hastwo phases.Theyare:

Growing phase:Inthegrowingphase,anewlockonthedataitemmaybeacquiredbythe transaction, but

none can be released.(Only get new locks but no release of locks).

Shrinking phase:Intheshrinkingphase,existinglockheldbythetransactionmaybereleased, but no

new locks can be acquired. (Only release locks but no more getting new locks).

Example:

Time T1 T2

0 LOCK-S(A)

1 LOCK-S(A)

2 Read(A)

3 Read(A)

4 LOCK-X(B)

5 --

6 Read(B)

7 B=B +100

8 Write(B)

9 UNLOCK(A)

10 LOCK-X(C)

11 UNLOCK(B) --

12 Read(C)

13 C=C+500

14 Write(C)

15 COMMIT

16 UNLOCK(A)

17 UNLOCK(C)

18 COMMIT

Thefollowingwayshowshow unlockingandlockingworkwith2-PL.

GrowingPhase ShrinkingPhase

Beginof
Transaction

Endof
Transaction

N
o

o
fl

oc
ks

Department of CSE, NRCM Page 100

TransactionT1:

 Growingphase:fromstep1-5 (Afterfirstlockonwards)

 Shrinkingphase:fromstep10-12(Afterfirstunlockonwards)

 Lockpoint:at5 (Nomorenewlocks)

TransactionT2:

 Growingphase:fromstep2-11 (Afterfirstlockonwards)

 Shrinkingphase:fromstep17-18(Afterfirstunlockonwards)

 Lockpoint:at11 (Nomorenewlocks)

Department of CSE, NRCM Page 101

(4) Strict Two-phase locking(Strict-2PL)protocol

 The firstphase of Strict-2PL issimilar to2PL.In the firstphase,after acquiring allthe locks,

the transaction continues to execute normally.

 The onlydifference between 2PL and strict 2PL is that Strict-2PL does not release a lock

after using it.

 Strict-2PLwaitsuntilthewholetransactionto commit,andthenitreleasesallthelocksat a time.

 Strict-2PLprotocol doesnot haveshrinkingphaseoflockrelease.

Strict-2PLdoes not havecascadingabort as 2PLdoes.

10. TIME STAMP BASED PROTOCOL

 Atimestampisissued toeachtransactionwhen itentersintothe system.

 Ituseseithersystemtimeorlogicalcounter asatimestamp.

 Itis most commonlyused concurrencyprotocol.

 Thetimestampoftransaction Tis denotedas TS(T).

 The system order the transactions based on their arrival time. For example, let the arrival

timesoftransactionsT1,T2andT3be9:00AM,9:01AMand9:02AMrespectively.Then TS(T1)

< TS(T2) < TS(T3).(9:00AM < 9:01AM < 9:02AM)

 Byusingtimestamp, thesystem preparesthe serializabilityorder.i.e., T1→T2→T3

 Theread timestampofdata item Xis denotedbyR–timestamp(X).

 R–timestamp(X):Itisthe time stamp of theyoungesttransaction that performedread

operation on X.

R-Timestamp(X)=TS(T3)

T1:Read(X)

X T2: Read(X)

T3:Read(X)

GrowingPhase

BeginofTra
nsaction

Endof
Transaction

N
o

o
fl

oc
ks

Department of CSE, NRCM Page 102

 Thewritetimestampofdata item X is denoted byW–timestamp(X).

 W–timestamp(X): It is the time stamp of the youngest transaction that performed write

operation on X.

T1:Write(X)

T2:Write(X)

R-Timestamp(X)=TS(T2)

There aremainlytwo Timestamp OrderingAlgorithmsin DBMS. Theyare:

 BasicTimestampOrdering

 ThomasWrite rule

(1). BasicTimestampOrdering

 CheckthefollowingconditionwheneveratransactionTiissuesaRead(X)operation:

o IfW_timestamp(X)>TS(Ti)thentheoperationisrejected.

o IfW_timestamp(X)<= TS(Ti)thentheoperationisexecuted.

(ReadisnotallowedbyTi, ifanyyoungertransactionsthanTiwriteX)

 Checkthefollowingconditionwhenever atransaction Tiissues aWrite(X)operation:

o IfTS(Ti)<R_timestamp(X)thentheoperationisrejected.(WriteisnotallowedbyTi,if any

younger transactions than Ti read X)

o If TS(Ti) < W_ timestamp(X) then the operation is rejected and Ti is rolled back

otherwisetheoperationisexecuted.(WriteisnotallowedbyTi,ifanyyoungertransactionsthan Ti write

X and also Ti should be rolled back and restarted later)

(2) Thomas'sWriteRule

ThomasWriteRuleisatimestamp-basedconcurrencycontrolprotocolwhichignores outdated writes.

It follows the following steps:

(i). IfR_TS(X)>TS(Ta),thenabortandrollbackTaandrejectthe operation.

Transaction:T1
Arrival=9:00 AM

TS(T1)=9:00 AM

Transaction:T2
Arrival=9:02AM

TS(T1)=9:02AM

VariableA
InitialA=100

| |

| Read(A)(A=100) A=100 (R_TS(A)=9:02AM)

| | :

Write(A) (A=200) | (A=100) A=200100

RejectandRollbackT1

X

Department of CSE, NRCM Page 103

(ii). If W_TS(X)>TS(Ta), thendon’texecutetheWriteOperation ofTabut continueTa

processing.Thisisacaseof OutdatedorObsoleteWrites.

Transaction:T1
Arrival=9:00 AM

TS(T1)=9:00 AM

Transaction:T2
Arrival=9:02AM

TS(T1)=9:02AM

VariableA
InitialA=100

| |

| Write(A)(A=400) A=400 (W_TS(A)=9:02AM)

| | :

Write(A) (A=500) | (A=400) A=500 (Outdatedwrite)

 |

RejectbutcontinueT1 |

| |

(iii). Iftheconditionin(i)or(ii)isnotsatisfied,thenexecuteWrite(X)ofTaandset W_TS(X) to

TS(Ta).

Outdatedwritesarerejectedbutthetransactioniscontinuedin ThomasWriteRulebutinBasic TO

protocol will reject write operation and terminate such a Transaction.

11. VALIDATION BASED PROTOCOL

In this technique, no concurrency control checking is done while the transaction is under

execution. After transaction execution is completed, then only whether concurrency violated or

not is checked.It is based on timestamp based protocol. Validation Based Protocol has three

phases:

1. Readphase: Inthisphase,thetransaction Tareadthevalueofvariousdata items thatare

required by Taand stores them in temporary local variables. It can perform all the write

operations on temporary variables without an update to the actual database.

1. Validation phase: After Transaction Taexecution completed, Taperform a validation test

to determine whether it can copy the temporary local variable values to actual database

without causing a violation of serializability.

2. Write phase: If the validation of the transaction is successful (valid), then the temporary

results are written to the database. Otherwise the temporary local variable values of Tais

ignored and Tais rolled back.

To perform the validation test, we need to know when the various phases of transaction Tatook

place. We shall therefore associate three different timestamps with transaction Ta.

(i). Start(Ta): thetime whenTa,started its execution.

(ii). Validation (Ta): the time when Tafinished its execution and started its

validation phase.

Department of CSE, NRCM Page 104

(iii). Finish (Ta):thetime whenTafinished itswrite phase.

Theserializabilityorderisdetermined bychangingthetimestampof Tas TS(T)=Validation(T).

Hence the serializability is determined at the validation process and cannot be decided in

advance. Therefore it ensures greater degree of concurrency while executing the transactions.

12. MULTIPLE GRANULARITY

Thesizeofdataitemsis oftencalledthe dataitemgranularity.Thereexistmultiplegranularity levels in

the DBMS. They are:

 Database

 Table

 Record/row

 Cell/field value

A database contains multiple tables. Each table contains multiple records. Each record contains

multiple field values. It is shown in the above figure. For example, consider Table D and Record

R2. These two are not mutually exclusive. R2 is a part of D. So granularity means differentlevels

ofdatawhere as smallerlevels arenestedinsidethehigherlevels. Insidedatabase wehave tables.

Inside table we have records. Inside record we have field values. This can be represented with a

tree as shown below.

Tables

. ..

. ..

Records

Data values

DB

A B C D

r1 r2 r3 r4

d1 d2 d3 d4

TableA TableB TableD

RecordR2

RecordR4

TableC
TableE

Cell/FieldValue

Cell/FieldValue

Department of CSE, NRCM Page 105

A lock can be applied at a node, if and only if there does not exist any locks on the decedents

(childs and grand childs) of that node. Otherwise lock cannot be applied. If lock is applied on

table A, it implies that the lack is also applicable to sub-tree from node A. If lock is applied on

database (at root node), it implies the lack is also applicable to all the nodes in the tree.

The larger the object size on which lock is applied, the lower the degree of concurrency

permitted. Onthe other hand, thesmallerthe object sizeon which lockis applied, thesystem has to

maintain larger number of locks. More locks cause a higher overhead and needs more disk space.

So, what is the best object size on which lock can be applied? It depends on the types of

transactions involved. If a typical transaction accesses data values from a record, it is

advantageous to have the lock to that one record. On the other hand, if a transaction typically

accesses many records in the same table, it may be better to have lock at that table.

Locking at higher levels needs lock details at lower levels. This information is provided by

additional types of locks called intention locks. The idea behind intention locks is for a

transaction to indicate, along the path from the root to the desired node, what type of lock(shared

or exclusive) it will require from one of the node’s descendants. There are three types of

intention locks:

(1) Intention-shared(IS):Itindicatesthatoneormoresharedlockswillberequestedon some

descendant node(s).

(2) Intention-exclusive (IX): It indicates that one or more exclusive locks will be requested

on some descendant node(s).

(3) Shared-intention-exclusive (SIX): It indicates that the current node is locked in shared

modebutthatoneormoreexclusivelockswillberequestedonsomedescendantnode(s).

The compatibility table of the three intention locks, the shared and exclusive locks, is shown in

Figure.

Mode IS IX S SIX X

IS Yes Yes Yes Yes No

IX Yes Yes No No No

S Yes No Yes No No

SIX Yes No No No No

X No No No No No

It uses the intention lock modes to ensure serializability. It requires that if a transaction attempts

to lock a node, then that node must follow these protocols:

Department of CSE, NRCM Page 106

 TransactionT1shouldfollowthelock-compatibilitymatrix.

 TransactionT1 firstlylockstheroot ofthetree.Itcan lockit in anymode.

 IfT1currentlyhastheparentofthenodelockedineitherIXorISmode,thenthe transaction T1

will lock a node in S or IS mode only.

 IfT1currentlyhastheparentofthenodelockedineitherIXorSIXmodes,thenthe transaction T1

will lock a node in X, SIX, or IX mode only.

 IfT1hasnotpreviouslyunlockedanynodeonly,thentheTransactionT1canlocka node.

 If T1currentlyhasnoneof thechildrenofthenode-lockedonly,thenTransactionT1will unlock

a node.

Note:Inmultiple-granularity,thelocksareacquiredintop-downorder,andlocksmustbe released in

bottom-up order.

13. RECOVERY AND ATOMICITY

Databaseneedstoberecovered, whenthefollowingfailuresoccur.

(1) Transactionfailure

(2) System crash

(3) Disk failure

 Transaction failure: During transaction execution, if it cannot proceed further, then it needs

to abort. This is known as transaction failure. A single transaction failure may influencemany

transactions or processes. The reasons for transaction failure are:

 Logicalerrors:Itoccurs duetosomecodeerrororaninternalconditionerror.

 Systemerror: Itoccurs whentheDBMSitselfterminatesanactivetransactiondueto

deadlock or resource unavailability.

 System crash: The system may crash due to the external factors such as interruptions in

power supply, hardware or software failure. Example:Operating System errors.

 Disk failure: In early days of technology evolution, hard-disk drives or storage drives usedto

fail frequently. Disk failure occurs due to the formation of bad sectors, disk head crash,un-

reachable to the disk or any other failure which destroys all or part of disk storage.

When a system crashes, it may have many transactions being executed and many files may be

opened for them. When a DBMS recovers from a crash, it must maintain the following:

 Itmustcheck thestatesofall thetransactionsthat werebeing executed.

Department of CSE, NRCM Page 107

 Few transactions may be within the middle of some operation; the DBMS should

makesure the atomicity of the transaction during this case.

 Itmustcheck foreach transactionwhetheritsexecutionacceptedorto berolled back.

 Notransactionisallowed tobein aninconsistentstate.

The following techniques facilitate a DBMS in recovering as well as maintaining the

atomicityof a transaction:

 Logbased recovery

 Check point

 Shadowpaging

14. LOGBASED RECOVERY

The log file contains information about the start and end of each transaction and any updates

done by the transaction on database items. The log file is saved onto some stable storage so that if

any failure occurs, then it can be used to recover the database. The results of all the operation of

transaction are first saved in the log and latter updated on the database. The log information is used to

recover from system failures.

Thelogisasequenceofrecords.Itcontainsthefollowingentries.

 WhenatransactionTistartsexecution, thelogstores:<Ti, Start>

 WhenatransactionTimodifiesanitemXfromoldvalueV1tonewvalueV2,thelog stores:<Ti,

X, V1, V2>

 WhenthetransactionTiexecutioncompleted, thelogstores: <Ti,commit>

 WhenthetransactionTiexecution aborted,the logstores:<Ti,abort>

RecoveryusingLogrecords

Whenthesystemiscrashed,thentheDBMSchecksthelogtofindwhichtransactionsneedsto be undo

and which need to be redo. There are two major techniques for recovery from non- catastrophic

transaction failures. They are deferred updates and immediate updates.

i. Deferred database modification:In this technique, all the changes done by the

transaction are saved in the system log without modifying the actual database.Once the

transaction committed, then onlythe changes are updated in the database. If a transaction

failsbeforereachingitscommitpoint,ithasnotchangedthedatabaseinanywayso

Department of CSE, NRCM Page 108

T2

T3

T4

UNDO is not needed. It may be necessary to REDO the effect of the operations that are

recorded in the system log, because their effect not yet written in the database.

ii. Immediate database modification: In this technique, the database is modified

immediately after every operation. However, these operations are recorded in the log file

before they are applied to the database, making recovery still possible. If a transaction

fails to reach its commit point, the effect of its operation must be undone i.e. the

transaction must be rolled back hence we require both undo and redo.

15. CHECKPOINT–(Recovery with Concurrent Transactions)

 Inordertorecoverdatabasefromsystemcrashes, allthetransactionoperationsarefirstsaved in the

log file and latter updated on the database. The log file is saved in remote location so that it

can be used to recover the database. As time passes, the entries in the log file maygrow too

big.At the time of recovery, searching the entire log file is very time consuming and an

inefficient method. To ease this situation, the concept of 'checkpoint' is introduced.

 Checkpoint is a mechanism where all the previous log entries are removed from the log file

and their results are updated in the database. The checkpoint is like a bookmark.

 During the execution of the transactions, after executing few operations, a check point is

created and saved in the log file. Now the log file contains only entries after checkpoint

related to new step of transaction till next checkpoint and so on.

 Thecheckpoint is used to declare apoint before which theDBMS was in theconsistent state,

and all transactions were committed.

RecoveryusingCheckpoint

Inthe followingmanner, arecoverysystemrecovers thedatabasefromthisfailure:

Checkpoint Failure

T1

Time

 Therecoverysystem reads thelogs backwards from theend to thelast checkpoint.

 Itmaintainstwolists,anundo-listandaredo-list.

Department of CSE, NRCM Page 109

 If the recovery system sees a log with <Ti, Start> and <Ti, Commit> or just <Ti,

Commit>, it puts the transaction Tiin the redo-list.

Forexample: Inthelogfile,transactionT1haveonly<Ti,commit>andthetransactions T2 and

T3 have <Ti, Start> and <Ti, Commit>. Therefore T1, T2 and T3 transaction are added to

the redo list.

 If the recovery system finds a log with <Ti, Start> but no commit or abort, then it putsthe

transaction Tiin undo-list.

For example: Transaction T4 will have <Ti, Start>. So T4 will be put into undo listsince

this transaction is not yet complete and failed in the middle.

 Allthetransactionsin theundo-list arethen undoneand theirlogs areremoved.

 All the transactions in the redo-list and their previous logs are removed and then redone

before saving their logs.

16. ARIES ALGORITHM (Algorithm for Recovery and Isolation Exploiting Semantics)

AlgorithmforRecoveryandIsolationExploitingSemantics(ARIES)isoneofthelogbased recovery

method. It uses the Write Ahead Log (WAL) protocol.

Write-ahead logging (WAL): In computer science, write-ahead logging (WAL) is a

family of techniques for providing atomicity and durability (two of the ACID properties) in

database systems. The change done by the transactions are first recorded in the log file and

written to stable storage at remote location, before the changes are written to the database.

Therecoveryprocess ofARIES algorithmhas 3 phases. Theyare:

(1) Analysisphase

(2) RedoPhase

(3) Undo Phase

Startofoldestin-progress

transaction
SmallestLSNassociated

with dirty page

Lastcheckpoint

EndofLog

Log Time

AnalysisPhase

Redo Phase

Undophase

Department of CSE, NRCM Page 110

(1) Analysis phase: The recovery subsystem scans the log file forward from the last checkpoint

up to the end. The purpose of the scan is to obtain information about the following:

 Thestartingpoint fromwheretheredopassshould start.

 Thelistof transactionstoberolled backin theundo pass.

 Thelistof dirtypages.

(2) Redo: In this phase, the log file is read forward starting from smallest LSN of a dirtypage to

the end and each update found in the log file is redone. The purpose of this redo pass is to

repeat the historyto reconstruct the database to the state present at the time of system failure.

(3) Undo:Thelogisscannedbackwardandupdatesrelatedtolosertransactionsareundone.The ‘loser

transaction’ updates are rolled back in reverse chronological order. If any of the aborted

transaction operations are undone, then skip them, no need to undo once again.

17. DATABASE BACKUP

The process of creating duplicate copy of database is called database backup. Backup

helps to recover against failure of media, hardware or software failures or any other kind of

failures that cause a serious data crash.

Database copy is created and stored in the remote area with the help of network. This

database is periodically updated with the current database so that it will be in sync with data and

other details. This remote database can be updated manually called offline backup. It can be

backed up online where the data is updated at current and remote database simultaneously. Inthis

case, as soon as there is a failure of current database, system automatically switches to the

remote database and starts functioning. The user will not know that there was a failure.

Network

Primarysite

Backup

Department of CSE, NRCM Page 111

Someofthe backuptechniques areas follows:

 Full backup or Normal backup: Full backup is also known as Normal backup. In this,

an exact duplicate copy of the original database is created and stored every time the

backup made. The advantage of this type of backup is that restoring the lost data is very

fast as compared to other. The disadvantage of this method is that it takes more time to

backup.

 Incremental Backup:Instead of backup entire database every time, backup only the

files that have been updated since the last full backup.For this at least weekly once

normal backup has to be done. While incremental database backups do run faster, the

recovery process is a bit more complicated.

 Differential backup: Differential is similar to incremental backup but the difference is

that the recovery process is simplified by not clear the archive bit. So a file that isupdated

after a normal backup will be archived every time a differential backup is run until the

next normal backup runs and clears the archive bit.

Department of CSE, NRCM Page 112

UNIT– V

Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and

Secondary Indexes, Index data Structures, Hash Based Indexing, Tree base Indexing,

Comparison of File Organizations, Indexes and Performance Tuning, Intuitions for tree Indexes,

Indexed Sequential Access Methods (ISAM), B+ Trees: A Dynamic Index Structure.

1. DATA ON EXTERNAL STORAGE

Primarymemoryhas limitedstoragecapacityand is volatile. Toovercomethis limitation,

secondary memory is also termed as external storage devices are used. External storage devices

such as disks and tapes are used to store data permanently.

The Secondary storage devices can be fixed or removable. Fixed Storage device is an

internal storage device like hard disk that is fixed inside the computer. Storage devices that are

portable and can be taken outside the computer are termed as removable storage devices such as

CD, DVD, external hard disk, etc.

Magnetic/optical Disk:It supports random and sequential access.It takes less access time.

Magnetic Tapes:It supports only sequential access.It takes more access time.

In DBMS, processing a query and getting output need accessing random pages. So, disks

are preferable than magnetic tapes.

2. FILE ORGANIZATION

The database is stored as a collection of files. Each file contains a set of records. Each record

is a collection of fields. For example, a student table (or file) contains many records and each

record belongs to one student with fields (attributes) such as Name, Date of birth, class,

department, address, etc.

File organization defines how file records are mapped onto disk blocks.

The records of a file are stored in the disk blocks because a block is the unit of data transfer

between disk and memory. When the block size is larger than the record size, each block will

contain more than one record. Sometimes, some of the files may have large records that cannot

fit in one block.In this case,we can store part of a record on one block and the rest on another. A

Department of CSE, NRCM Page 113

pointer at the end of the first block points to the block containing the remainder of the record.

The different types of file organization are given below:

Heap File Organization: When a file is created using Heap File Organization mechanism, the

records are stored in the file in the order in which they are inserted. So the new records are

inserted at the end of the file. In this type of organization inserting new records is more efficient.

It uses linear search to search records.

Sequential File Organization: When a file is created using Sequential File Organization

mechanism, all the records are ordered (sorted) as per the primary key value and placed in the

file. In this type of organization inserting new records is more difficult because the records need

to be sorted after inserting every new record.It uses binary search to search records.

Hash File Organization: When a file is created using Hash File Organization mechanism, ahash

function is applied on some field of the records to calculate hash value. Based on the hash value,

the corresponding record is placed in the file.

Clustered File Organization: Clustered file organization is not considered good for large

databases. In this mechanism, related records from one or more relations are kept in a same disk

block, that is, the ordering of records is not based on primary key or search key.

3. INDEXING

If the records in the file are in sorted order, then searching will become very fast. But, in

most of the cases, records are placed in the file in the order in which they are inserted, so new

records are inserted at the end of the file. It indicates, the records are not in sorted order. In

order to make searching faster in the files with unsorted records, indexing is used.

Indexing is a data structure technique which allows you to quickly retrieve records from a

database file. An Index is a small table having only two columns. The first column contains a

copy of the primary or candidate key of a table. The second column contains a set of disk block

addresses where the record with that specific key value stored.

HeapFile
Organization

SequentialFile
Organization

File
Organization

Hash File
Organization

ClusteredFile
Organization

Department of CSE, NRCM Page 114

Indexing in DBMScan be of the following types:

i. Primary Index

 If the index is created by using the primary key of the table, then it is known as primary

indexing.

 As primary keys are unique and are stored ina sorted manner,the performance of the

searching operation is quite efficient.

 The primary index can be classified into two types: dense index and sparse index.

Dense index

 If every record in the table has one index entry in the index table, then it is called

denseindex.

 In this, the number of records (rows) in the index table is same as the number of records

(rows) in the main table.

 Aseveryrecord hasoneindexentry, searchingbecomes faster.

TS TS Hyderabad KCR

AP AP Amaravathi Jagan

TN TN Madras PalaniSwamy

MH MH Bombay Thackray

Sparse index

 Ifonlyfewrecordsinthetablehaveindexentriesintheindextable,thenitiscalled sparse index.

 In this, the number of records (rows) in the index table is less than the number of records

(rows) in the main table.

 Asnotalltherecordhaveindex entries,searchingbecomes slowforrecordsthatdoesnot have

index entries.

ClusteringIndexing

Indexing

SparseIndexing Dense Indexing

SecondaryIndexing PrimaryIndexing

Department of CSE, NRCM Page 115

TS

 TS Hyderabad KCR

TN

 AP Amaravathi Jagan

MH

 TN Madras PalaniSwamy
 MH Bombay Thackray

ii. Secondary Index

When the sizeofthe main table grows, then sizeofindex tablealso grows. If theindex tablesize

grows then fetching the address itself becomes slower. To overcome this problem, secondary

indexing is introduced.

 Insecondaryindexing, toreducethesizeofmapping, another levelof indexingis introduced.

 Itcontainstwolevels. Inthefirstleveleachrecordinthemaintablehasoneentryinthefirst- level

index table.

 The index entries in the fisrt level index table are divided into different groups. For each

group, one index entry is created and added in the second level index table.

Multi-levelIndex:Whenthemaintablesizebecomestoolarge,creatingsecondarylevelindex

improves the search process.Even if the search process is slow; we can add one more level of

indexing and so on. This type of indexing is called multi-level index.

Department of CSE, NRCM Page 116

iii. Clustering Index

 Sometimestheindexiscreatedonnon-primarykeycolumnswhichmaynotbeunique for

each record.

 Inthiscase,toidentifytherecordfaster,wewillgrouptwoormorecolumnstogetthe unique

value and create index out of them. This method is called a clustering index.

 Therecordswhichhavesimilarcharacteristicsaregrouped,andindexesare createdfor these

group.

Example:Consider acollegecontainsmanystudentsineachdepartment. Allthestudentsbelong to the

same Dept_ID are grouped together and treated as a single cluster. One index pointers point to

the one cluster as a whole. The idex pointer points to the first record in each cluster.Here

Dept_ID is a non-unique key.

IndexFile Recordsof tableinmemory

CSE

501 Ajay BCD

ECE

502 Ramya BCA

EEE

 … … …

…

560 Fathima BCE

 401 VijayReddy OC

… … …

460 Mallesh ST

201 Jhon SC

… … …

260 Sowmya BCC

… … …
… … …

In above diagram we can see that, indexes are created for each department in the index

file. In the data block, the students of each department are grouped together to form the cluster.

The address in the index file points to the beginning of each cluster.

4. HASHBASED INDEXING

Hashing is a technique to directly search the location of desired data on the disk without

using index structure. Hash function is a function which takes a piece of data (key) as input and

produces a hash valueas output which maps the data to a particular location in the hash table.

Department of CSE, NRCM Page 117

Theconcept of hashingandhash table is shownin thebelow figure

There aremainlytwo typesof hashing methods:

i. Static Hashing

ii. DynamicHashing

 Extendedhashing

 Linearhashing

5. STATIC HASHING

Instatichashing,thehashfunctionproduceonlyfixednumberofhashvalues.For example

consider the hash function

f(x)= x mod 7

Foranyvalueofx, theabovefunctionproducesoneof thehashvaluefrom{0,1,2, 3,4, 5,6}. It means

static hashing maps search-key values to a fixed set of bucket addresses.

Example:Inserting10,21,16and12inhash table.

HashValue DataRecord

f(10)=10 mod7=3
0 21*

f(21)=21 mod7=0 1

f(16)=16mod 7=2 2 16*

f(12)=12 mod7=5 3 10*

4

5 12*

 6

Figure5.1:Statichashing

Department of CSE, NRCM Page 118

Suppose, latter if we want to insert 23, it produce hash value as 2 (23 mod 7 = 2). But, in the

above hash table, the location with hash value 2 is not empty (it contains 16*). So, a collision

occurs. To resolve this collision, the following techniques are used.

o Open addressing

o SeparateChainingorClosed addressing

i. Open Addressing:

Openaddressingisacollisionresolvingtechniquewhichstoresallthekeysinsidethe hash table. No

key is stored outside the hash table. Techniques used for open addressing are:

o LinearProbing

o QuadraticProbing

o DoubleHashing

 LinearProbing:

In linear probing, when there is a collision, we scan forwards for the next empty slot to

fill the key’s record. If you reach last slot, then start from beginning.

Example: Consider figure 1. When we try to insert 23, its hash value is 2. But the slotwith

2 is not empty. Then move to next slot (hash value 3), even it is also full, then move once

again to next slot with hash value 4. As it is empty store 23 there. This is shown in the

below diagram.

HashValue DataRecord

0 21*

1

f(23)=23 mod7=2 2 16*

3 10*

4 23*

5 12*

6

Figure5.2:LinearProbing

Department of CSE, NRCM Page 119

 QuadraticProbing:

In quadratic probing, when collision occurs, it compute new hash value by taking the

original hash value and adding successive values of quadratic polynomial until an open

slot is found. If here is a collision, it use the following hash function: h(x) = (f(x) + i2)

mod n ,where I = 1, 2, 3, 4,….. and f(x) is initial hash value.

Example: Consider figure 1. When we try to insert 23, its hash value is 2. But the slot

with hash value 2 is not empty. Then compute new hash value as (2 +12) mod 7 =3, even

it is also full, and then once again compute new hash value as (2 +22) mod 7 = 6. As it is

empty store 23 there. This is shown in the below diagram.

Hash

Value

DataRecord

0 21*

1

f(23)=23 mod7=2 2 16*

3 10*

4

5 12*

6 23*

Figure5.3:Quadratic Probing

 DoubleHashing

In double hashing, there are two hash functions. The second hash function is used to

provide an offset value in case the first function causes a collision. The followingfunction

is an example of double hashing: (firstHash(key) + i * secondHash(key)) % tableSize.

Use i = 1, 2, 3, …

Apopular secondhash functionis : secondHash(key)=PRIME–(key%PRIME)

wherePRIMEisaprimesmallerthantheTABLE_SIZE.

Department of CSE, NRCM Page 120

Example:Considerfigure1.Whenwetry toinsert23,itshashvalueis2.Buttheslot with hash

value 2 is not empty. Then compute double hashing value as

secondHash (key)=PRIME–(key%PRIME)→ secondHash(23)=5–(23 %5)=2

Doublehashing:(firstHash(key)+i*secondHash(key))%tableSize→ (2+1*2))%7 =4

Astheslotwithhashvalue4isempty,store23there.Thisisshowninthebelow diagram.

HashValue DataRecord

 0 21*

 1

f(23)=23 mod7=2 2 16*

 3 10*

 4 23*

 5 12*

 6

Figure5.4:Double Probing

ii. Separate Chaining or Closed addressing:

To handle the collision, This technique creates a linked list to the slot for which collision

occurs. The new key is then inserted in the linked list. These linked lists to the slots appear like

chains. So, this technique is called as separate chaining. It is also called as closed addressing.

Example:Inserting10, 21,16, 12, 23,19, 28, 30in hash table.

HashValue DataRecord

f(10)=10 mod7=3 0 21*

f(21)=21 mod7=0 1

f(16)=16mod 7=2 2 16*

f(12)=12 mod7=5 3 10*

f(23)=23 mod7=2 4

f(19)=19 mod7=5 5 12*

f(30)=30 mod7=2 6

Figure5.5:Separatechainingexample

23* 30*

19*

Department of CSE, NRCM Page 121

6. DYNAMIC HASHING

The problem with static hashing is that it does not expand or shrink dynamically as the

size of the database grows or shrinks. Dynamic hashing provides a mechanism in which data

buckets are added and removed dynamically and on-demand. Dynamic hashing can be

implemented using two techniques. They are:

o Extendedhashing

o LinearHashing

i. Extendable hashing

In extendable hashing, a separate directory of pointers to buckets is used. The number

bitsusedindirectoryiscalledglobaldepth(gd)andnumberentriesindirectory=2gd.Numberof bits used

for locating the record in the buckets is called local depth(ld) and each bucket canstores up to 2ld

entries. The hash function use last few binarybits of the keyto find the bucket. If

abucketoverflows,itsplits,andiflocaldepth greaterthanglobaldepth,thenthetabledoublesin size. It is

one form of dynamic hashing.

Example: Let global depth (gd) = 2. It means the directory contains four entries. Let the local

depth (ld) of each bucket = 2. It means each bucket need two bits to perform search operation.

Let each Bucket capacity is four. Let us insert 21, 15, 28, 17, 16, 13, 19, 12, 10, 24, 25 and 11.

21 = 10101 19 = 10011

15 = 01111 12 = 01100

28 = 11100 10 = 01010

17 = 10001 24 = 11000

16 = 10000 25 = 11101

13 = 01101 11 = 01011

Bucket A

Bucket B

BucketC

BucketD

Figure6.1:Extendible hashing example

Now, let us consider insertion of data entry 20* (binary 10100). Looking at directory

element00,weareledtobucketA,whichisalreadyfull.So,wehavetosplitthebucketby

Globaldepth
Local depth

Directory

10*
2

11* 19* 15*
2

2

28* 16* 12* 24*

 2

21* 17* 25* 13*

2

00
01
10
11

Department of CSE, NRCM Page 122

Local depth 3

16*

3

28*

24*
Globaldepth

12* 20*

2

21* 17* 25* 13*

2

10*

2

15*19* 11*

allocating a new bucket and redistributing the contents (including the new entry to be inserted)

across the old bucket and its 'split image (new bucket). To redistribute entries across the old

bucket and its split image, we consider the last three bits; the last two bits are 00, indicating a

data entrythat belongs to one of these two buckets, and the third bit discriminates between these

buckets. That is if a key’s last three bits are 000, then it belongs to bucket A and if the last three

bits are 100, then the key belongs to Bucket A2.As we are using three bits for A and A2, so the

local depth of these buckets becomes 3. This is illustrated in the below Figure 6.2.

BucketA

Bucket A2

Bucket B

BucketC

BucketD

Figure6.2:Afterinserting20andsplittingBucket A

Aftersplit, BucketAandA2havelocaldepthgreaterthanglobaldepth(3>2),so double the

directory and use three bits as global depth. As Bucket A and A2 has local depth 3, so they have

separate pointers from the directory. But, Buckets B, C and D use only local depth 2, so they

have two pointers each. This is shown in the below diagram.

BucketA

BucketA2

BucketB

BucketC

BucketD

Directory

Figure6.3: After inserting 20and doubling the directory

2

10*

Directory 2

15*19* 11*

Local depth

Globaldepth

3

16* 24*

3

28* 12* 20* 2

00
01
10
11

2

21* 17* 25* 13*

3

000
001
010
011
100
101
110
111

Department of CSE, NRCM Page 123

An important point that arises is whether splitting a bucket necessitates a directory

doubling. Consider our example, as shown in Figure 6.3. If we now insert 9* (01001), it belongs

inbucketB;thisbucketisalreadyfull.Wecan dealwiththissituationbysplittingthebucket and using

directory elements 001 and 101to point to the bucket and its split image. This is shown in the

below diagram. As Bucket B and its split image now have local depth three and it is not

greaterthan global depth. Hence, abucket split does not necessarilyrequire adirectorydoubling.

However, if either bucket A or A2 grows full and an insert then forces a bucket split, we are

forced to double the directory once again.

BucketA

BucketA2

BucketB

BucketB2

BucketC

BucketD

Figure6.4:Afterinserting 9

KeyObservations:

 ABucketwillhavemorethanonepointerspointingtoitifitslocaldepthislessthan the global

depth.

 Whenoverflowconditionoccursinabucket,alltheentriesinthebucketarerehashed with a

new local depth.

 IfnewLocalDepthoftheoverflowingbucketisequaltotheglobaldepth,onlythenthe

directories are doubled and the global depth is incremented by 1.

 Thesizeof abucketcannot bechangedafterthedata insertionprocess begins.

ii. LinearHashing

Linear hashing is a dynamic hashing technique that linearly grows or shrinks number of

buckets in a hash file without a directory as used in Extendible Hashing. It uses a family of hash

functions instead of single hash function.

Local depth

Globaldepth

3

17*

Directory 11* 19* 15*
2

10*
2

13* 25* 21*
3

9*

20* 12* 28*
3

24* 16*
3

3

000
001
010
011
100
101
110
111

Department of CSE, NRCM Page 124

hi+1(key)=keymod (2iN)

This scheme utilizes a family of hash functions h0, h1,h2, ... , with the property that each

function's range is twice that of its predecessor. That is, if himaps a data entry into one of N

buckets, hi+1 maps a data entry into one of 2N buckets. One example of such hash functionfamily

can be obtained by: where N is the initial number of

buckets and i = 0,1,2,….

Initiallyit use N buckets labelled 0 through N–1 and an initial hashingfunction h0(key) =

key% N is used to map anykeyinto one of the N buckets.For each overflow bucket, one of the

buckets in serial order will be splited and its content is redistributed between it and its split

image. That is, for first time overflow in any bucket, bucket 0 will be splited, for second time

overflow in any bucket; bucket 1 will be splited and so on. When number of buckets becomes

2N, then this marks the end of splitting round 0.Hashing function h0 is no longer needed as all

2N buckets can be addressed by hashing function h1. In new round namely splitting-round 1,

bucketsplitonceagainstartsfrombucket0.Anewhashfunctionh2willbeused.Thisprocessis repeated

when the hash file grows.

Example: Let N = 4, so we use 4 buckets and hash function h0(key) = key % 4 is used to map

any key into one of the four buckets. Let us initially insert 4, 13, 19, 25, 14, 24, 15, 18, 23, 11,

16, 12 and 10.This is shown in the below figure.

Bucket#h1h0 Primarypages Overflowpages

0 000 00 4* 24* 16* 12*

1 001 01 13* 25*

2 010 10 14* 18* 10*

3 011 11 19* 15* 23* 11*

Next,when27isinserted,anoverflowoccursinbucket3.So,bucket0(firstbucket)issplited

anditscontent isdistributed betweenbucket 0andnew bucket. This isshown inbelow figure.

Bucket#h1h0 Primarypages Overflowpages

0 000 00 24* 16*

1 001 01 13* 25*

2 010 10 14* 18* 10*

3 011 11 19* 15* 23* 11* 27*

4 100 00 4* 12*

Department of CSE, NRCM Page 125

Next,when30,31and34isinserted,anoverflowoccursinbucket2.So,bucket1issplited and its content

is distributed between bucket 1 and new bucket. This is shown in below figure.

Bucket# h1 h0 Primarypages Overflowpages

0 000 00 24* 16*

1 001 01 13*

2 010 10 14* 18* 10* 30* 34*

3 011 11 19* 15* 23* 11* 27* 31*

4 100 00 4* 12*

5 101 01 25*

When32,35,40and48isinserted,anoverflowoccursinbucket0.So,bucket2issplited andits content is

distributed between bucket 2 and new bucket.This is shown in below figure.

Bucket# h1 h0 Primarypages Overflowpages

0 000 00 24* 16* 32* 40* 48*

1 001 01 13*

2 010 10 18* 10* 34*

3 011 11 19* 15* 23* 11* 27* 31* 35*

4 100 00 4* 12*

5 101 01 25*

6 110 10 14* 30*

When26,20and42isinserted,anoverflowoccursinbucket0.So,bucket3issplited andits content is

distributed between bucket 3 and new bucket.This is shown in below figure.

Bucket# h1 h0 Primarypages Overflowpages

0 000 00 24* 16* 32* 40* 48*

1 001 01 13*

2 010 10 18* 10* 34* 26* 42

3 011 11 19* 11* 27* 35*

4 100 00 4* 12* 20*

5 101 01 25*

6 110 10 14* 30*

7 111 11 15* 23* 31*

Department of CSE, NRCM Page 126

This marks the end of splitting round.Hashing function h0is no longer needed as all 2N

buckets can be addressed by hashing function h1. In new round namely splitting-round 1, bucket

split once again starts from bucket 0. A new hash function h2will be used.This process is

repeated.

7. INTUITIONS FOR TREE INDEXES

We can use tree-like structures as index as well. For example, a binary search tree can

also be used as an index. If we want to find out a particular record from a binary search tree, we

have the added advantage of binary search procedure, that makes searching be performed even

faster. A binary tree can be considered as a 2-way Search Tree, because it has two pointers in

each of its nodes, thereby it can guide you to two distinct ways. Remember that for every node

storing 2 pointers, the number of value to be stored in each node is one less than the number of

pointers, i.e. each node would contain 1 value each.

The abovementioned concept can be further expanded with the notion of the m-Way

Search Tree, where m represents the number of pointers in a particular node. If m = 3, then each

nodeofthesearchtreecontains3pointers,andeachnodewouldthencontain2values.We use mainly two

tree structure indexes in DBMS. They are:

 IndexedSequentialAccessMethods(ISAM)

 B+Tree

8. INDEXED SEQUENTIAL ACCESS METHODS(ISAM)

ISAMisatreestructuredatathatallowstheDBMStolocateparticularrecordusingindex without

having to search the entire data set.

 Therecords in a filearesorted accordingto theprimarykeyand saved in the disk.

 Foreachprimarykey,anindexvalueisgeneratedandmappedwiththerecord.This index is

nothing but the address of record.

 Asorted data file accordingto primaryindexiscalled anindexed sequential file.

 TheprocessofaccessingindexedsequentialfileiscalledISAM.

 ISAMmakessearchingforarecordinlargerdatabaseiseasyandquick.Butproper primary key

has to be selected to make ISAM efficient.

Department of CSE, NRCM Page 127

59 46 42 35 31 10 20 23 27 68

31

 ISAM gives flexibility to generate index on other fields also in addition to primary

keyfields.

ISAMcontainthreetypesofnodes:

 Non-leafnodes: Theystorethe search indexkeyvalues.

 Leafnodes: Theystoretheindexof records.

 Overflownodes: Theyalsostorethe indexofrecordsbut aftertheleafnodeis full.

OnISAM, wecanperform search,insertionanddeletion operations.

Search Operation: It follows binarysearch process. The record to be searched will be available

in the leaf nodes or in overflow nodes only. The non-leaf nodes are used to search the value.

Insertion operation: First locate a leaf node where the insertion to be take place (use binary

search). After finding leaf node, insert it in that leaf node if space is available, else create an

overflow node and insert the record index in it, and link the overflow node to the leaf node.

Deletion operation: First locate a leaf node where the deletion to be take place (use binary

search). After finding leaf node, if the value to be deleted is in leaf node or in overflow node,

remove it. If the overflow node is empty after removing the deleted value, then delete overflow

node also.

Example: Insert10, 23, 31, 20,68, 35,42,61, 27,71, 46and 59

 23 68

 42 59

71 61

Department of CSE, NRCM Page 128

39

31 59 46 35 10 20 23 27

31

68

33

39

10 20 23 27 68

24

31

59 46 42

33

35 31

Afterinserting24, 33, 36, and 39 in theabovetree, it looks like

Deletion:From the above figure, after deleting 42, 71,24 and 36

9. B+ TREE

B+ Tree is an extension of Binary Tree which allows efficient insertion, deletion and search

operations. It is used to implement indexing in DBMS. In B+ tree, data can be stored onlyon the

leaf nodes while internal nodes can store the search key values.

1. B+treeof anordermcanstoremaxm-1valuesateach node.

2. Eachnode canhaveamaximumofmchildrenandatleastm/2children(except root).

3. Thevaluesin eachnode areinsorted order.

4. Allthenodesmust containatleasthalf fullexcepttheroot node.

5. Onlyleafnodescontainvaluesandnon-leaf nodescontainsearch keys.

 23 68

 42 59

 23 68

 42 59

71 61

36

61

Department of CSE, NRCM Page 129

68 66 64 61 59 46 42 35 31 27 23 20 18 16 15 12 11 9 8 5 2

15 8 68 23

11

18

B+ Search:

SearchingforavalueintheB+-Treealwaysstartsattherootnodeandmovesdownwards until it

reaches a leaf node. The search procedure follows binary tree search procedure.

1. Readthe valueto besearched.Let ussaythis valueasX.

2. Startthesearchprocessfromroot node

3. Ateachnon-leafnode(includingroot node),

a. Ifall thevalues inthenon-leafnodeare greaterthanX, thenmove toits first child

b. Ifallthevaluesinthenon-leafnodearelessthanorequaltoX,thenmovetoits last child

c. Ifforanytwoconsecutivevaluesinthenon-leafnode,leftvalueislessandright value

greaterthan or equal to X, then moveto the child nodewhosepointer is in between

these two consecutive values.

4. Repeatstep-3untilaleaf nodereaches.

5. Atleafnodecomparethekeywiththevaluesinthatnodefromlefttoright. Ifthekey value is

found then display found. Otherwise display it is not found.

Example:Searchingfor35in thebelowgiven B+ tree. Thesearchpath isshown inred color.

 31 64

 42 59

B+ Insertion:

1. Applysearch operation on B+treeandfind aleafnodewherethenew value has to insert.

2. Iftheleaf nodeis notfull, theninsertthevaluein theleaf node.

3. Iftheleafnodeisfull, then

71

Department of CSE, NRCM Page 130

a. Split that leaf node including newly inserted value into two nodes such that each

contains half of the values (In case of odd, 2nd node contains extra value).

b. Insertsmallestvaluefromnewrightleafnode(2ndnode)intotheparentnode. Add

pointers from these new leaf nodes to their parent node.

c. If theparent is full, split it too. Addthemiddlekey(In caseof even,1st valuefrom 2nd

part)of this parent node to its parent node.

d. Repeatuntilaparentis foundthatneednot split.

4. If therootsplits, createanewroot whichhasonekeyandtwo pointers.

Example:Insert1,5,3,7,9,2,4,6,8,10intoB+treeofanorder4.

B+treeoforder4indicatestherearemaximum3valuesinanode. Initially

Afterinserting1

Afterinserting5

 1 5

Afterinserting3

 1 3 5

Afterinserting7

Afterinserting9

Afterinserting2

5

5

5

 1 3 5

 1 3

 5 7

 1 3

 5 7 9

 1 2 3

 5 7 9

1

7

Department of CSE, NRCM Page 131

8 7 6 5 4 3 2 1

9 5 3

7

8 7 6 5 4 3 2 1

5 6 4 3 2 1

5 6 4 3 2 1

6 4 3 2 1

5

4 3 2 1 4

Afterinserting4

 3 5

Afterinserting6

 3 5

 5 7 9

 3 5 7

Afterinserting8

 3 5 7

 7 8 9

Afterinserting10

 3 5 7

 9 10

 9 10

5 6 7 9 4 3 2 1

 1 2 3

 5 7 9

 5 7 9

 7 8 9

3 5 7

10

9

Department of CSE, NRCM Page 132

B+Deletion

 Identifythe leaf nodeLfromwheredeletion should takeplace.

 Removethedatavaluetobe deletedfrom theleafnodeL

 IfLmeetsthe"half full"criteria, thenitsdone.

 IfLdoesnotmeetsthe "halffull"criteria,then

o If L's right sibling can give a data value, then move smallest value in right sibling

to L (After giving a data value, the right sibling should satisfy the half fullcriteria.

Otherwise it should not give)

o Else, if L's left sibling can give a data value, then move largest value in leftsibling

to L (After giving a data value, the left sibling should satisfy the half full criteria.

Otherwise it does not give)

o Else,merge Landasibling

o If any internal nodes (including root) contain key value same as deleted value,

then delete those values and replace with it successor. This deletion may

propagate up to root. (If the changes propagate up to root then tree height

decreases).

Example:Considerthegivenbelowtree anddelete19,

 19

Delete19:Half fullcriteriaissatisfied evenafter deleting19,so justdelete19 fromleaf node

 19

 5 14

24 33

2 3

5 7

14 16

19 20 22

24 27 29

33 34 38 39

 5 14

 24 33

2 3

5 7

14 16

20 22

24 27 29

33 34 38 39

Department of CSE, NRCM Page 133

Delete 20: Half full criteria is not satisfied after deleting 20, so bring 24 from its right siblingand

change key values in the internal nodes.

 19

Delete 24: Half full criteria is not satisfied after deleting 24, bringing a value from its siblings

also not possible. Therefore merge it with its right sibling and change key values in the internal

nodes.

 19

Delete 5: Half full criteria is not satisfied after deleting 5, bringing a value from its siblings also

not possible. Therefore merge it with its left sibling (you can also merge with right) and change

key values in the internal nodes.

 19

Delete7:Halffullcriteriaissatisfiedevenafterdeleting7,sojustdelete7fromleafnode.

 17

 5 14

27 33

2 3

5 7

14 16

22 24

27 29

33 34 38 39

 5 14

33

2 3

5 7

14 16

22 27 29

33 34 38 39

 14

33

2 3 7

14 16

22 27 29

33 34 38 39

 14

33

2 3

14 16

22 27 29

33 34 38 39

Department of CSE, NRCM Page 134

Delete 2: Half full criteria is not satisfied after deleting 2, bringing a value from its siblings also

not possible. Therefore merge it with its right sibling and change key values in the internalnodes.

22 33

9. INDEXES AND PERFORMANCE TUNING

Indexing is very important to execute DBMS query more efficiently. Adding indexes to

important tables is a regular part of performance tuning. When we identify a frequently executed

querythat is scanningatableorcausingan expensivekeylookup, then first consideration is ifan

index can solve this problem. If yes add index for that table.

While indexes can improve query execution speed, the price we pay is on index

maintenance. Update and insert operations need to update the index with new data. This means

that writes will slow down slightly with each index we add to a table. We also need to monitor

index usage and identify when an existing index is no longer needed. This allows us to keep our

indexing relevant and trim enough to ensure that we don’t waste disk space and I/O on write

operations to any unnecessary indexes.To improve performance of the system,we need to do the

following:

 Identifytheunusedindexesand removethem.

 Identifytheminimallyused indexesand remove them.

 An index that is scanned more frequently, but rarely findsthe required answer. Modifythe

index to reach the answer.

 Identifytheindexes that are verysimilarand combinethem.

-oO0Oo–

3 14 16

22 27 29

33 34 38 39

	UNIT– I
	1. INTRODUCTION
	Examples of popular DBMS:

	2. A HISTORICAL PERSPECTIVE
	3. DATA BASE APPLICATIONS
	4. DIFFERENCE BETWEEN FILE SYSTEM AND DBMS
	Network Data Model
	Hierarchical Model
	Entity-Relationship Model
	Relational Model
	Object oriented Data Model

	6. LEVELS OFABSTRACTION IN A DBMS
	7. DATA INDEPENDENCE
	8. STRUCTUREOFADBMS
	9. DATABASE DESIGN
	10. ERDIAGRAMS
	Types of relationship areas follows:
	Entity Set and Relationship Set

	11. ADDITIONAL FEATURES OF THE ER MODEL
	N-array relationship
	Weak Entity
	Generalization
	Specialization
	Aggregation

	12. CONCEPTUAL DESIGN WITH THE ER MODEL
	PROBLEM: UNIVERSITY CASE STUDY
	SOLUTION
	Step1: Identify theEntities
	Step 2:Identify all relevant attributes
	Step3: Identifythekey attributes
	STEP4: Find relationships.
	Step5: Complete E-R diagram

	13. DESIGN CHOICES IN CONCEPTUAL DESIGN
	Entity vs. Attribute
	Binary vs.Ternary Relationship
	When to use aggregation?

	MULTIPLE CHOICE QUESTIONS

	UNIT– II
	1. RELATIONAL MODEL
	Relational Model Concepts

	2. INTEGRITY CONSTRAINT
	TYPES OF INTEGRITY CONSTRAINTS
	Example:

	3. ENFORCING INTEGRITY CONSTRAINTS
	4. LOGICAL DATABASE DESIGN
	Employee Department
	Department
	Student Address
	Section

	5. INTRODUCTION TO VIEWS
	Thereasonsforusingviewsare
	employees
	When can insertion, delete or update performed on view?

	6. RELATIONAL ALGEBRA
	Notation:σp(r)
	Notation: r−s
	Notation: r Χ s

	7. RELATIONAL CALCULUS
	TupleRelationalCalculus
	Domain Relational Calculus

	UNIT– III
	1. SQLCOMMANDS
	2. DDL COMMANDS
	Example:
	Example: (1)
	Example2:

	AGGREGATE FUNCTIONS:
	Operators in SQL:

	5. NESTED QUERIES
	6. SETOPERATIONS:UNION,INTERSECT,EXCEPT
	7. JOINS
	Syntax
	Example
	Syntax (1)
	Example (1)
	Syntax:
	Example:
	Syntax: (1)
	Example: (1)

	8. TRIGGERS
	Syntax:
	Explanation of syntax:
	BEFOREandAFTERofTrigger:
	EXAMPLE:

	9. NORMALIZATION
	10. 1NF(FIRST NORMAL FORM)
	1NF Example:

	11. 2NF (SECOND NORMAL FORM)
	2NF Example:

	12. 3NF(THIRD NORMAL FORM)
	3NFExample:

	13. BOYCE CODD NORMAL FORM(BCNF)
	14. 4-NF(FOURTH NORMAL FORM)
	WhatisMulti-valuedDependency?

	16. LOSS LESS JOIN DECOMPOSITION
	R R1 R2
	R R1 R2
	Solution:
	Decomposition ofR(A,B, C,D) intoR'(A, B, C)and R3(B,D)-
	Decomposition of R'(A, B,C) intoR1(A, B)andR2(B,C)-

	17. CLOSURE OF AN ATTRIBUTE SET:
	Solution:
	Closureof attributeA:
	A+={A , B , C , D, E ,F,G}
	D+= {D ,F}
	{B , C }+= {B , C , D,E , F,G}

	Solution: (1)
	Closureof {A, B}:
	Closureof {C, F}:
	Closureof {B, G}:
	Closureof {B, G}: (1)

	18. FINDING THE KEYS USING CLOSURE
	Super Key:
	CandidateKey:

	Finding Candidate Keys From a Relation:
	TotalNumberofSuper Keys-
	Step-02:

	UNIT– IV
	1. TRANSACTION
	2. ACID PROPERTIES
	3. STATES OF TRANSACTION
	Active State:
	Partially Committed State:
	Committed State:
	Failed State:
	Aborted State:
	Terminated State:

	4. TYPES OF SCHEDULES–SERIALIZABILITY
	i. Serial Schedules:
	Examples:

	ii. Non-Serial Schedules:
	Schedule-1 Schedule-2

	iii. SerializableSchedules:
	Schedule– S
	Solution:

	Schedule-1(S1) Schedule-2(S2)
	Schedule-1(S1) Schedule-2(S2) (1)
	Rule1: Initial Read
	Rule2:UpdatedRead
	Rule3:Final Write

	5. IMPLEMENTATION OF ATOMICITY AND DURABILITY
	6. RECOVERABILITY
	7. IMPLEMENTATION OF ISOLATION
	Other example for Non-repeatable read:
	ExampleforPhantomread:

	8. CONCURRENCY CONTROL
	ConcurrencycontrolProtocols:

	9. LOCK-BASED PROTOCOL
	LockCompatibilityMatrix:
	(1) Simplistic lockprotocol
	(2) Pre-claiming LockProtocol
	(3) Two-phase locking(2PL)protocol
	Example:
	TransactionT1:
	TransactionT2:

	(4) Strict Two-phase locking(Strict-2PL)protocol

	10. TIME STAMP BASED PROTOCOL
	(1). BasicTimestampOrdering
	(2) Thomas'sWriteRule

	11. VALIDATION BASED PROTOCOL
	12. MULTIPLE GRANULARITY
	13. RECOVERY AND ATOMICITY
	Databaseneedstoberecovered, whenthefollowingfailuresoccur.

	14. LOGBASED RECOVERY
	RecoveryusingLogrecords
	15. CHECKPOINT–(Recovery with Concurrent Transactions)
	RecoveryusingCheckpoint

	17. DATABASE BACKUP

	UNIT– V
	1. DATA ON EXTERNAL STORAGE
	2. FILE ORGANIZATION
	3. INDEXING
	i. Primary Index
	Dense index
	Sparse index

	ii. Secondary Index
	iii. Clustering Index

	4. HASHBASED INDEXING
	5. STATIC HASHING
	 LinearProbing:
	 QuadraticProbing:
	 DoubleHashing

	6. DYNAMIC HASHING
	i. Extendable hashing
	KeyObservations:

	ii. LinearHashing

	7. INTUITIONS FOR TREE INDEXES
	8. INDEXED SEQUENTIAL ACCESS METHODS(ISAM)
	9. B+ TREE
	B+ Search:
	B+ Insertion:
	B+Deletion

	9. INDEXES AND PERFORMANCE TUNING

