

An Autonomous Institute
NAAC Accreditation 'A' Grade
Accredited by NBA
Approved by AICTE, Affiliated to JNTUH

Set No. 1

IV B.Tech II Semester Regular Examinations, September - 2020

MACHINE LEARNING

(Common to Computer Science and Engineering and Information Technology)
Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B

PART-A (14 Marks)

1.	a)	Define binary Classification.	[2]
	b)	Describe the performance of Multi-class classifier.	[3]
	c)	What is a decision tree?	[2]
	d)	What is Minkowski distance?	[2]
	e)	What is discriminative probabilistic model?	[2]
	f)	What is the representational power of perceptron?	[3]
		$\underline{\mathbf{PART-B}} \ (4x14 = 56 \ \mathbf{Marks})$	
2.	a)	What are the different types of a Machine Learning models?	[7]
	b)	Explain about Feature Construction and Transformation.	[7]
3.	a)	How to handle more than two classes in beyond Binary Classification.	[7]
	b)	Explain the following	
		i. One-versus-one voting.	
		ii. Loss based decoding.	[7]
		iii. Coverage counts as scores.	[7]
4.	a)	Explain Rule set for Ranking and Probability estimation.	[7]
	b)	Discuss in detail about Learning Ordered Rule Lists.	[7]
5.	a)	Discuss in detail about Soft Margin SVM.	[7]
	b)	Describe Nearest-Neighbor Classification in detail.	[7]
6.	a)	Write detailed note on Feature Transformations.	[7]
	b)	Explain about normal distribution with the help of sample data.	[7]
7.	a)	Explain about Principle Component Analysis in detail.	[7]
	b)	Discuss in detail about representation of Neural Networks.	[7]

Code No: **R1642053**

R16

Set No. 2

IV B.Tech II Semester Regular Examinations, September – 2020

(Common to Computer Science and Engineering and Information Technology)

MACHINE LEARNING

	Time: 3 hours	Max. Marks: 70
	Question paper consists of Part-A and Part-B	
	Answer ALL sub <mark>ques</mark> tions from Part-A	
	Answer any FOUR questions from Part-B	

	PART-A (14 Marks)	
1.		[2
	b) What is unsupervised learning?	[3]
	c) Define Feature Tree.	[2]
	d) What is Support Vector Regression?	[3]
	e) Write a short note on random forests.	[2]
	f) Write a short note on PCA?	[2]
	i) White a short note on I cir.	[2
	$\underline{\mathbf{PART-B}} \ (4x14 = 56 \ Marks)$	
2.	a) Explain in detail about geometric model.	[7]
	b) Explain the two uses of features in machine learning.	[7]
	o) Explain the two uses of features in machine featuring.	[,]
3.	a) Explain the following	
	i. Most general consistent hypothesis.	
	ii. Closed concepts in path through the hypothesis .	[7]
	b) Write in detailed note on Regression.	[7]
4.	a) Explain in detail about ranking and probability estimation tree.	[7]
	b) Discuss about First-Order rule learning in detail.	[7]
5.	a) Explain about the Least-Squares method?	[7]
	b) Discuss in detail about Distance Based Clustering. Write its impo	
	machine learning.	
5.	a) Write about Probabilistic models for categorical Data. [7]	
	b) Discuss about the Normal Distribution and its Geometric interpreta	ntions? [7]
		[7]
7.	a) Explain how dimensionality reduction takes place using PCA	
	h) Describe in detail about neural networks role in machine learning	[7]

Code No: 137DV

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAT

B. Tech IV Year I Semester Examinations, **December - 2019MACHINE**

LEARNING

(Computer Science and Engineering)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART - A

(25 Marks) List the basic design issues to machine learning. 1. a) [2] State version space representation theorem. [3] b) What is the representational power of perceptrons? c) [2] How to compute expected value and variance of a random variable? d) [3] State Bayes theorem. [2] e) Under what conditions is successful learning possible? f) [3] How to use entropy as evaluation function? g) [2] What factors contribute to the popularity of genetic algorithm? [3] h) What is the essential difference between analytical and inductive learning methods? i) [2] What are the limitations of explanation based learning? j) [3] PART - B

(50 Marks)

[4+6]

2. Which disciplines have their influence on machine learning? Explain with examples. [10]

OR

- Contrast the hypothesis space search in ID3 and candidate elimination algorithm. 3. a)
 - Illustrate the impact of overfitting in a typical application of decision tree learning.[5+5] b)
- 4. Discuss how a multi-layer network learns using a gradient descent algorithm. [10]

- 5. a) Distinguish between inductive bias and estimation bias.
 - Explain the methods for comparing the accuracy of two hypotheses. b)
- Explain the features of Bayesian learning methods. 6.a)
- Discuss the relationship between the maximum likelihood hypothesis and the leastb) squared error hypothesis. [6+4]

- 7.a) Prove \$\mathcal{C}\$-exhausting the version space theorem.
 b) With suitable example discuss a radial basis function network. [5+5]
 8. Describe the representation of hypotheses and genetic algorithms used in this. OR
 9.a) How rules are post pruned? Explain with an example.
 b) What is Q function? Write an algorithm for learning Q. [5+5]
- 10. Explain an algorithm for regressing a set of literals through a single horn clause. [10] OR
- 11. Describe the TANGENTPROP algorithm to train a neural network to fit both training values and training derivatives. [10]

